
A COMPARATIVE STUDY ON HUMAN ACTIVITY

CLASSIFICATION WITH MINIATURE INERTIAL

AND MAGNETIC SENSORS

a thesis

submitted to the department of electrical and

electronics engineering

and the graduate school of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Murat Cihan Yüksek

August 2011



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Billur Barshan (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Çetin
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ABSTRACT

A COMPARATIVE STUDY ON HUMAN ACTIVITY

CLASSIFICATION WITH MINIATURE INERTIAL

AND MAGNETIC SENSORS

Murat Cihan Yüksek

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

August 2011

This study provides a comparative assessment on the different techniques of

classifying human activities that are performed using body-worn miniature in-

ertial and magnetic sensors. The classification techniques compared in this

study are: naive Bayesian (NB) classifier, artificial neural networks (ANNs),

dissimilarity-based classifier (DBC), various decision-tree methods, Gaussian

mixture model (GMM), and support vector machines (SVM). The algorithms for

these techniques are provided on two commonly used open source environments:

Waikato environment for knowledge analysis (WEKA), a Java-based software;

and pattern recognition toolbox (PRTools), a MATLAB toolbox. Human activi-

ties are classified using five sensor units worn on the chest, the arms, and the legs.

Each sensor unit comprises a tri-axial gyroscope, a tri-axial accelerometer, and a

tri-axial magnetometer. A feature set extracted from the raw sensor data using

principal component analysis (PCA) is used in the classification process. Three

different cross-validation techniques are employed to validate the classifiers. A

performance comparison of the classification techniques is provided in terms of

their correct differentiation rates, confusion matrices, and computational cost.
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The methods that result in the highest correct differentiation rates are found to

be ANN (99.2%), SVM (99.2%), and GMM (99.1%). The magnetometer is the

best type of sensor to be used in classification whereas gyroscope is the least

useful. Considering the locations of the sensor units on body, the sensors worn

on the legs seem to provide the most valuable information.

Keywords: inertial sensors, gyroscope, accelerometer, magnetometer, activity

recognition and classification, feature extraction and reduction, cross validation,

Bayesian decision making, artificial neural networks, support vector machines,

decision trees, dissimilarity-based classifier, Gaussian mixture model, WEKA,

PRTools.
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ÖZET

MİNYATÜR EYLEMSİZLİK DUYUCULARI VE

MANYETOMETRELER İLE İNSAN AKTİVİTELERİNİN

SINIFLANDIRILMASI ÜZERİNE KARŞILAŞTIRMALI BİR

ÇALIŞMA

Murat Cihan Yüksek

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Billur Barshan

Ağustos 2011

Bu çalışmada insan vücuduna takılan minyatür eylemsizlik duyucuları ve

manyetometreler kullanılarak çeşitli aktiviteler örüntü tanıma yöntemleriyle

ayırdedilmiş ve karşılaştırmalı bir çalışmanın sonuçları sunulmuştur. Ayırdetme

işlemi için basit Bayesçi (BB) yöntem, yapay sinir ağları (YSA), benzeşmezlik-

tabanlı sınıflandırıcı (BTS), çeşitli karar ağacı (KA) yöntemleri, Gauss karışım

modeli (GKM) ve destek vektör makinaları (DVM) kullanılmıştır. Kullanılan

yöntemlerin algoritmaları, açık kaynak Java tabanlı bir uygulama olan Waikato

environment for knowledge analysis (WEKA) ile MATLAB araç kutusu olan

pattern recognition toolbox (PRTools) yazılımlarından sağlanmıştır. Aktiviteler

gövdeye, kollara ve bacaklara takılan beş duyucu ünitesinden gelen verilerin

işlenmesiyle ayırdedilmiştir. Her ünite, her biri üç-eksenli olmak üzere birer

ivmeölçer, dönüölçer ve manyetometre içermektedir. Sınıflandırma için ham

duyucu verisinden asal bileşenler analizi ile elde edilen öznitelikler kullanılmıştır.

Sınıflandırıcılar üç farklı çapraz sağlama yöntemi ile sınanmıştır. Sınıflandırma

yöntemlerinin başarımları, başarı oranları, hata matrisleri ve işlem yüklerine göre
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karşılaştırılmıştır. Çalışmanın sonuçlarına göre, en iyi ilk üç başarı oranı sırasıyla

YSA (%99.2), DVM (%99.2) ve GKM (%99.1) yöntemleri ile elde edilmiştir.

Ayırdetme işleminde kullanılabilecek en iyi duyucu tipinin manyetometre, en

başarısızının ise dönüölçer olduğu ortaya çıkmıştır. Duyucu ünitelerinin vücut

üzerindeki yerleri karşılaştırıldığında ise, bacaklara takılan ünitelerin en değerli

bilgileri sağladığı görülmüştür.

Anahtar Kelimeler: eylemsizlik duyucuları, dönüölçer, ivmeölçer, manyeto-

metre, insan aktivitelerinin tanınması ve ayırdedilmesi, öznitelik çıkarma, çapraz

sağlama, Bayesçi karar verme, yapay sinir ağları, destek vektör makinaları,

karar ağaçları, benzeşmezlik-tabanlı sınıflandırıcı, Gauss karışım modeli, WEKA,

PRTools.
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Chapter 1

Introduction

Inertial sensors are self-contained, nonradiating, nonjammable, dead-reckoning

devices that provide dynamic motion information through direct measurements.

Gyroscopes provide angular rate information around an axis of sensitivity,

whereas accelerometers provide linear or angular velocity rate information.

For several decades, inertial sensors have been used for navigation of air-

craft [2, 3], ships, land vehicles, and robots [4, 5, 6], for state estimation and

dynamic modeling of legged robots [7, 8], for shock and vibration analysis in

the automotive industry, and in telesurgery [9, 10]. Recently, the size, weight,

and cost of commercially available inertial sensors have decreased considerably

with the rapid development of micro electro-mechanical systems (MEMS) [11].

Some of these devices are sensitive around a single axis; others are multi-

axial (usually two- or three-axial). The availability of such MEMS sensors has

opened up new possibilities for the use of inertial sensors, one of them being

human activity monitoring, recognition, and classification through body-worn

sensors [12, 13, 14, 15, 16]. This in turn has a broad range of potential ap-

plications in biomechanics [15, 17], ergonomics [18], remote monitoring of the

physically or mentally disabled, the elderly, and children [19], detecting and
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classifying falls [20, 21, 22], medical diagnosis and treatment [23], home-based

rehabilitation and physical therapy [24], sports science [25], ballet and other

forms of dance [26], animation and film making, computer games [27, 28], profes-

sional simulators, virtual reality, and stabilization of equipment through motion

compensation.

Earlier studies in activity recognition employ vision-based systems with single

or multiple video cameras, and this remains to be the most common approach to

date [29, 30, 31, 32, 33]. For example, although the gesture recognition problem

has been well studied in computer vision [34], much less research has been done

in this area with body-worn inertial sensors [35, 36]. The use of camera systems

may be acceptable and practical when activities are confined to a limited area

such as certain parts of a house or office environment and when the environment

is well lit. However, when the activity involves going from place to place, camera

systems are much less convenient. Furthermore, camera systems interfere con-

siderably with privacy, may supply additional, unneeded information, and cause

the subjects to act unnaturally.

Miniature inertial sensors can be flexibly used inside or behind objects with-

out occlusion effects. This is a major advantage over visual motion-capture

systems that require a free line of sight. When a single camera is used, the

3-D scene is projected onto a 2-D one, with significant information loss. Points

of interest are frequently pre-identified by placing special, visible markers such

as light-emitting diodes (LEDs) on the human body. Occlusion or shadowing

of points of interest (by human body parts or objects in the surroundings) is

circumvented by positioning multiple camera systems in the environment and

using several 2-D projections to reconstruct the 3-D scene. This requires each

camera to be separately calibrated. Another major disadvantage of using camera

systems is that the cost of processing and storing images and video recordings

is much higher than those of 1-D signals. 1-D signals acquired from multiple
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axes of inertial sensors can directly provide the required information in 3-D.

Unlike high-end commercial inertial sensors that are calibrated by the manu-

facturer, in low-cost applications that utilize these devices, calibration is still a

necessary procedure. Accelerometer-based systems are more commonly adopted

than gyroscopes because accelerometers are easily calibrated by gravity, whereas

gyroscope calibration requires an accurate variable-speed turntable and is more

complicated.

The use of camera systems and inertial sensors are two inherently different

approaches that are by no means exclusive and can be used in a complementary

fashion in many situations. In a number of studies, video cameras are used only

as a reference for comparison with inertial sensor data [37, 38, 39, 40, 41, 42]. In

other studies, data from these two sensing modalities are integrated or fused [43,

44]. The fusion of visual and inertial data has attracted considerable attention

recently because of its robust performance and potentially wide applications [45,

46]. Fusing the data of inertial sensors and magnetometers is also reported in

the literature [40, 47, 48].

Previous work on activity recognition based on body-worn inertial sensors

is fragmented, of limited scope, and mostly unsystematic in nature. Due to the

lack of a common ground among different researchers, results published so far are

difficult to compare, synthesize, and build upon in a manner that allows broad

conclusions to be reached. A unified and systematic treatment of the subject

is desirable; theoretical models need to be developed that will enable studies

designed such that the obtained results can be synthesized into a larger whole.

Most previous studies distinguish between sitting, lying, and standing [19, 37,

38, 39, 42, 49, 50, 51, 52], as these postures are relatively easy to detect using the

static component of acceleration. Distinguishing between walking, and ascending

and descending stairs has also been accomplished [49, 50, 52], although not as

successfully as detecting postures. The signal processing and motion detection
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techniques employed, and the configuration, number, and type of sensors differ

widely among the studies, from using a single accelerometer [19, 53, 54, 55] to as

many as 12 [56] on different parts of the body. Although gyroscopes can provide

valuable rotational information in 3-D, in most studies, accelerometers are pre-

ferred to gyroscopes because of the ease of calibration. To the best of our knowl-

edge, guidance on finding a suitable configuration, number, and type of sensors

does not exist [49]. Usually, some configuration and some modality of sensors are

chosen without strong justification, and empirical results are presented. Process-

ing the acquired signals is also often done ad hoc and with relatively unsophis-

ticated techniques. A summary of the sensor configuration, classified activities,

the subjects, classification techniques with the corresponding maximum correct

differentiation rate reported in earlier studies can be found in Table 1.1. This

Ref.
sensors activity subjects

classification maximum correct
technique differentiation

number type number type male female number best method rate (%)

[16] 2 gyro 8 mot 1 N/A 7 BDM 98.2

[18] 23
acc, mag,

7 pos, mot 13 3 3
custom

97.0
GPS, other decision tree

[19] 1 acc 12 pos, mot, trans 19 7 1
hierarchical

97.7
decision tree

[25] 5 acc, GPS 20 pos, mot 10 2 4
hybrid model

N/A
classifier

[39] 2 acc 5 pos, mot 1 4 1
physical activity

89.7
detection algorithm

[49] 6 acc 20 pos, mot 13 7 4
C4.5

84.3
decision tree

[54] 1 acc 8 pos, mot 2 4 3
adopted

92.2
GMM

[55] 1 acc 19 pos, mot, trans 3 3 1
hierarchical

97.9
recognizer

[56] 12 acc 8 pos, mot 1 N/A 1 BDM N/A

[57] 15
gyro, acc,

19 pos, mot 4 4 7 BDM 99.2
mag

[58] 12
video

6 pos, mot 3 N/A 8 SVM N/A
tags

Table 1.1: A summary of earlier studies on activity recognition. The information
provided from leftmost to rightmost column are: the reference number, number and
type of sensors [gyroscope (gyro), accelerometer (acc), magnetometer (mag), global
positioning system (GPS), other (other type of sensors)], number of activities classified,
basic group of activities [posture (pos), motion (mot), transition (trans)], number of
male and female subjects, number of classification methods, the best method, and the
correct differentiation rate of the best method.

study is an extension of the earlier work performed by our research group and
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reported in [57]. In that work, miniature inertial sensors and magnetometers po-

sitioned on different parts of the body are used to classify human activities. The

motivation behind investigating activity classification is its potential applications

in the many different areas mentioned above. The main contribution of the ear-

lier article is that unlike previous studies, many redundant sensors are used to

begin with and a variety of features from the sensor signals are extracted. Then,

unsupervised feature transformation technique that allows considerable feature

reduction through automatic selection of the most informative features are used.

Extensive and systematic comparison between various classification techniques

used for human activity recognition based on the same data set is provided. The

classification techniques evaluated are least-squares method (LSM), k-nearest

neighbor (k-NN), dynamic time warping (DTW), rule-based algorithm (RBA),

Bayesian decision making (BDM), support vector machines (SVM), and artificial

neural networks (ANNs). The correct differentiation rates, confusion matrices,

and computational requirements of the techniques are compared.

In this study, we evaluate the performance of alternative classification tech-

niques on the data set used previously. The classification methodology in terms

of feature extraction and reduction and cross-validation techniques are kept the

same. In [57], the algorithms compared are implemented by the authors, whereas

the algorithms considered in this study are provided in two open source environ-

ments in which a wide variety of classification algorithms are available. These

environments are Waikato environment for knowledge analysis (WEKA) and pat-

tern recognition toolbox (PRTools). WEKA is a Java based collection of machine

learning algorithms for solving data mining problems [59, 60]. PRTools is a

MATLAB based toolbox for pattern recognition [61]. WEKA is executable via

MATLAB so that MATLAB is used as the master software to manage both en-

vironments. The performances of these two environments are compared in terms

of the classification performance and execution time of the algorithms employed.

The shorter version of this work appears in [62] and [63].

5



The rest of this thesis is organized as follows: In Chapter 2, classified activities

and data acquisition methodology are explained and descriptions of the features

used and the feature vectors, and the feature reduction approach are given. In

Chapter 3, classification techniques are reviewed. In Chapter 4, experimental

results, comparison of the classification techniques, and time considerations are

presented. In Chapter 5, some conclusions are drawn, several potential applica-

tions of this study are mentioned and future research directions are discussed.
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Chapter 2

Experimental Methodology and

Feature Extraction

In this chapter, classified activities and data acquisition methodology are ex-

plained and descriptions of the features used, the feature vectors, and the feature

reduction approach are given.

2.1 Experimental Methodology

The 19 activities that are classified using body-worn miniature inertial sensor

units are: sitting (A1), standing (A2), lying on back and on right side (A3 and

A4), ascending and descending stairs (A5 and A6), standing in an elevator still

(A7) and moving around (A8), walking in a parking lot (A9), walking on a

treadmill with a speed of 4 km/h (in flat and 15◦ inclined positions) (A10 and

A11), running on a treadmill with a speed of 8 km/h (A12), exercising on a

stepper (A13), exercising on a cross trainer (A14), cycling on an exercise bike in

horizontal and vertical positions (A15 and A16), rowing (A17), jumping (A18),

and playing basketball (A19).
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(a) (b)

Figure 2.1: (a) MTx with sensor-fixed coordinate system overlaid, (b) MTx held
in a palm (both parts of the figure are reprinted from [1]).

Five MTx 3-DOF orientation trackers (Figure 2.1) are used, manufactured

by Xsens Technologies [1]. Each MTx unit has a tri-axial accelerometer, a tri-

axial gyroscope, and a tri-axial magnetometer, so the sensor units acquire 3-D

acceleration, rate of turn, and the strength of Earth’s magnetic field. Each

motion tracker is programmed via an interface program called MT Manager to

capture the raw or calibrated data with a sampling frequency of up to 512 Hz.

Accelerometers of two of the MTx trackers can sense up to ±5g and the other

three can sense in the range of ±18g, where g = 9.80665 m/s2 is the standard

gravity. All gyroscopes in the MTx unit can sense in the range of ±1200◦/sec an-

gular velocities; magnetometers can sense magnetic fields in the range of ±75µT.

We use all three types of sensor data in all three dimensions. The sensors are

(a) (b) (c)

Figure 2.2: Positioning of Xsens sensor modules on the body.
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placed on five different places on the subject’s body as depicted in Figure 2.2.

Since leg motions, in general, may produce larger accelerations, two of the ±18g

sensor units are placed on the sides of the knees (right side of the right knee and

left side of the left knee), the remaining ±18g unit is placed on the subject’s

chest (Figure 2.2(b)), and the two ±5g units on the wrists (Figure 2.2(c)).

The five MTx units are connected with 1 m cables to a device called the Xbus

Master, which is attached to the subject’s belt. The Xbus Master transmits data

from the five MTx units to the receiver using a BluetoothTM connection. The

Xbus Master, which is connected to three MTx orientation trackers, can be seen

in Figure 2.3(a). The receiver is connected to a laptop computer via a USB

port. Two of the five MTx units are directly connected to the Xbus Master and

the remaining three units are indirectly connected to the Xbus Master by wires

to the other two. Figure 2.3(b) illustrates the connection configuration of the

five MTx units and the Xbus Master. Each activity listed above is performed

(a) (b)

Figure 2.3: (a) MTx blocks and Xbus Master (the picture is reprinted
from http://www.xsens.com/en/movement-science/xbus-kit), (b) connection
diagram of MTx sensor blocks (body part of the figure is from
http://www.answers.com/body breadths).
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by eight different subjects (four female, four male, between the ages 20 and 30)

for 5 min. The subjects are asked to perform the activities in their own style

and were not restricted on how the activities should be performed. For this

reason, there are inter-subject variations in the speeds and amplitudes of some

activities. The activities are performed at the Bilkent University Sports Hall,

in the Electrical and Electronics Engineering Building, and in a flat outdoor

area on campus. Sensor units are calibrated to acquire data at 25 Hz sampling

frequency. The 5-min signals are divided into 5-s segments, from which certain

features are extracted. In this way, 480 (= 60× 8) signal segments are obtained

for each activity.

2.2 Feature Extraction and Reduction

After acquiring the signals as described above, we obtain a discrete-time sequence

of Ns elements that can be represented as an Ns× 1 vector s = [s1, s2, . . . , sNs
]T .

For the 5-s time windows and the 25-Hz sampling rate, Ns = 125. The initial

set of features we use before feature reduction are the minimum and maximum

values, the mean value, variance, skewness, kurtosis, autocorrelation sequence,

and the peaks of the discrete Fourier transform (DFT) of s with the corresponding
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frequencies. These are calculated as follows:

mean(s) = µs = E{s} =
1

Ns

Ns
∑

i=1

si

variance(s) = σ2
s
= E{(s− µs)

2} =
1

Ns

Ns
∑

i=1

(si − µs)
2

skewness(s) =
E{(s− µs)

3}
σ3
s

=
1

Nsσ3
s

Ns
∑

i=1

(si − µs)
3

kurtosis(s) =
E{(s− µs)

4}
σ4
s

=
1

Nsσ4
s

Ns
∑

i=1

(si − µs)
4

autocorrelation : Rss(∆) =
1

Ns −∆

Ns−∆−1
∑

i=0

(si − µs) (si−∆ − µs)

where ∆ = 0, 1, . . . , Ns − 1

DFT : SDFT(k) =
Ns−1
∑

i=0

si e
− j2πki

Ns

where k = 0, 1, . . . , Ns − 1

In these equations, si is the ith element of the discrete-time sequence s, E{·}

denotes the expectation operator, µs and σs are the mean and the standard

deviation of s, Rss(∆) is the unbiased autocorrelation sequence of s, and SDFT(k)

is the kth element of the 1-D Ns-point DFT. In calculating the first five features

above, it is assumed that the signal segments are the realizations of an ergodic

process so that ensemble averages are replaced with time averages. Apart from

those listed above, we have also considered using features such as the total energy

of the signal, cross-correlation coefficients of two signals, and the discrete cosine

transform coefficients of the signal.

Since there are five sensor units (MTx), each with three tri-axial devices, a

total of nine signals are recorded from every sensor unit. When a feature such

as the mean value of a signal is calculated, 45 (= 9 axes × 5 units) different

values are available. These values from the five sensor units are placed in the

feature vectors in the order of right arm (RA), left arm (LA), right leg (RL),

torso (T), and left leg (LL). For each one of these sensor locations, nine values for

each feature are calculated and recorded in the following order: the x, y, z axes’
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acceleration, the x, y, z axes’ rate of turn, and the x, y, z axes’ Earth’s magnetic

field. In constructing the feature vectors, the above procedure is followed for

the minimum and maximum values, the mean, skewness, and kurtosis. Thus,

225 (= 45 axes×5 features) elements of the feature vectors are obtained by using

the above procedure.

After taking the DFT of each 5-s signal, the maximum five Fourier peaks are

selected so that a total of 225 (= 9 axes × 5 units × 5 peaks) Fourier peaks are

obtained for each segment. Each group of 45 peaks is placed in the order of RL,

LA, RL, T, and LL, as above. The 225 frequency values that correspond to these

Fourier peaks are placed after the Fourier peaks in the same order.

Eleven autocorrelation samples are placed in the feature vectors for each axis

of each sensor, following the order given above. Since there are 45 distinct sensor

signals, 495 (= 45 axes× 11 samples) autocorrelation samples are placed in each

feature vector. The first sample of the autocorrelation function (the variance)

and every fifth sample up to the fiftieth are placed in the feature vectors for each

signal.

As a result of the above feature extraction process, a total of 1, 170 (= 225 +

225+225+495) features are obtained for each of the 5-s signal segments so that

the dimensions of the resulting feature vectors are 1, 170 × 1. All features are

normalized to the interval [0, 1] so as to be used for classification.

Because the initial set of features was quite large (1,170) and not all fea-

tures were equally useful in discriminating between the activities, we investi-

gated different feature selection and reduction methods [64]. In this work, we

reduced the number of features from 1,170 to 30 through principal component

analysis (PCA) [65], which is a transformation that finds the optimal linear com-

binations of the features, in the sense that they represent the data with the high-

est variance in a feature subspace, without taking the intra-class and inter-class

12



variances into consideration separately. The reduced dimension of the feature

vectors is determined by observing the eigenvalues of the covariance matrix of

the 1, 170×1 feature vectors, sorted in Figure 2.4(a) in descending order. The 30

eigenvectors corresponding to the largest 30 eigenvalues (Figure 2.4(b)) are used

to form the transformation matrix, resulting in 30× 1 feature vectors. Although

the initial set of 1,170 features do have physical meaning, because of the matrix

transformation involved, the transformed feature vectors cannot be assigned any

physical meaning. Scatter plots of the first five transformed features are given

in Figure 2.5 pairwise. As expected, in the first two plots or so (parts (a) and

(b) of the figure), the features for different classes are better clustered and more

distinct. We assume that after feature reduction, the resulting feature vector is

an N × 1 vector x = [x1, x2, . . . , xN ]
T .
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(a) (b)

Figure 2.4: (a) All 1,170 eigenvalues, (b) the first 50 eigenvalues of the covariance
matrix sorted in descending order.

Figure 2.5: Scatter plots of the first five features selected by PCA.
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Chapter 3

Classification Techniques

The classification techniques used in this study are briefly reviewed in this

chapter. We associate a class wj with each activity type (j = 1, 2, . . . , c).

Every feature vector x = [x1, x2, . . . , xN ]
T in the set of training patterns

X = {x1, x2,. . . , xI} is labeled with corresponding class wj if it falls in the re-

gion Ωj. A rule that partitions the decision space into regions Ωj is called a

decision rule. In our work, each one of these regions corresponds to a different

activity type. Boundaries between these regions are called decision surfaces. The

training set contains a total of I = I1+ I2+ . . .+ Ic sample feature vectors where

Ij sample feature vectors belong to class wj. In the training set, the number of

feature vectors included in wj depends on the cross-validation method employed.

The test set is then used to evaluate the performance of the decision rule.

3.1 Naive Bayesian (NB)

Naive Bayes classifier is based on the Bayes’ theorem and calculates the pos-

terior probabilities according to the probabilistic models of each class. In this

method, p(xi|wj) denotes the class conditional probability density function given
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the class wj. Probabilistic models for p(xi|wj) are constructed first, using the

training data for each wj. The probability density function is modeled as a nor-

mal distribution whose parameters (mean and variance) are estimated by maxi-

mum likelihood estimation. A simplifying assumption in the NB method is that

the features are independent of each other and model parameters are calculated

accordingly. Prior probabilities are taken to be equal and the posterior probabil-

ities are calculated as p(wj|xi) =
p(xi|wj)p(wj)

p(xi)
, where p(xi) =

∑c
j=1 p(xi|wj)p(wj)

is the total probability. Classification is made based on maximum a posteriori

(MAP) decision rule so that the feature vector is assigned to the class with the

highest posterior probability [66].

3.2 Artificial Neural Networks (ANNs)

The theory underlining ANNs is inspired by the working principles of actual

neurons in the brain. The main purpose of ANNs is to learn nonlinear map-

ping parameters along with linear discriminant parameters simultaneously so

that highly complex data mining and classification tasks are feasible [67]. A

multi-layer ANN consists of an input layer, one or more hidden layers to extract

progressively more meaningful features, and a single output layer, each composed

of a number of units called neurons. The model of each neuron includes a smooth

nonlinearity, called the activation function. Due to the presence of distributed

nonlinearity and a high degree of connectivity, theoretical analysis of ANNs is

difficult. These networks compute the boundaries of decision regions by adjust-

ing their connection weights and biases through the use of training algorithms.

The performance of ANNs is affected by the choice of parameters related to the

network structure, training algorithm, and input signals, as well as by parameter

initialization [68, 69].
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In this work, a three-layer artificial neural network (ANN) is used for classi-

fying human activities. The input layer has N neurons, equal to the dimension

of the feature vectors (30), the hidden layer has N + c neurons, equal to the sum

of the dimension of the feature vectors and the number of classes (49), and the

output layer has c neurons, equal to the number of classes (19). For an input

feature vector x ∈ R
N , the target output is one for the class that the vector be-

longs to, and zero for all other output neurons. The sigmoid function used as the

activation function in the input and output layers is given by h(x) = (1+e−x)−1.

The output neurons can take continuous values between zero and one. Fully

connected ANNs are trained with the back-propagation algorithm which is the

extension of the least mean squares (LMS) method and based on the gradient-

descent algorithm [67, 69, 70] by presenting a set of feature vectors to the network.

The aim is to minimize the average of the sum of squared errors over all training

vectors:

Eav(w) =
1

2I

I
∑

i=1

c
∑

j=1

[tij − oij(w)]2 (3.1)

Here, w is the weight vector, tij and oij are the desired and actual output values

for the ith training feature vector and the jth output neuron, and I is the total

number of training feature vectors as before. When the entire training set is

covered, an epoch is completed. The error between the desired and actual outputs

is computed at the end of each iteration and these errors are averaged at the end

of each epoch (Equation (3.1)). The training process is terminated when a certain

precision goal on the average error is reached or if the specified maximum number

of epochs (1,000) is exceeded. Precision goal and weight vector initializations are

made by the classification toolboxes themselves. A three-layer ANN with learning

and momentum constants both set equal to 0.05 is employed.
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3.3 Dissimilarity-Based Classifier (DBC)

In DBC, a classifier based on Fisher linear discriminant analysis (FLDA) is devel-

oped using the data that are obtained by a dissimilarity mapping of the original

feature vectors. The notion of dissimilarity space in which objects are character-

ized by relation to other objects instead of features or models is a recent concept

in pattern recognition [71]. In this study, the feature vectors in X are treated

as objects and the method is implemented on those feature vectors. It is shown

that working on dissimilarity spaces derived from feature vectors yields some

interesting results [72].

A dissimilarity mapping is defined as F (·, R) : X → R
n from X to so called

dissimilarity space. The n-element set R consists of feature vectors that are

representative for the problem. This set is called the representation set and it

can be any subset of X. In this study, the vectors in R are chosen randomly

with n = 100 so that a representation set R = {r1, r2, . . . , rn} is formed. An n-

dimensional dissimilarity vector F (x, R) = [u(x, r1), . . . , u(x, rn)]
T between the

feature vector x and the set R describes the resulting objects. An Euclidean

dissimilarity measure ρ, between x and x′, is defined in dissimilarity space to be

used in the test stage of the classification:

ρ(x,x′) =
n
∑

ℓ=1

[u(x, rℓ)− u(x′, rℓ)] (3.2)

As a result, the feature space is mapped onto the n-dimensional dissimilarity

space. The linear discriminant functions are found using FLDA by minimizing

the errors in the least square sense. In FLDA, the criterion function

J(W) =
| WTSBW |
| WTSWW | (3.3)

is to be maximized. In Equation (3.3), W, SB, and SW are N × (c − 1) trans-

formation matrix, between-class, and within-class scatter matrices, respectively.

The operator | · | denotes the determinant. The scatter matrices are expressed
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as

SB =
c
∑

j=1

Ij(µj − µ
x
)(µj − µ

x
)T (3.4)

SW =
c
∑

j=1

∑

x∈wj

(x− µj)(x− µj)
T (3.5)

where µ
x
= 1

I

∑I
i=1 xi and µj =

1
Ij

∑

x∈wj
x. As before, Ij denotes the number of

feature vectors in the jth class. It can be shown that J(W) is maximized when

the columns of W are the eigenvectors of SW
−1SB having the largest eigenvalues.

As a result, c−1 classifiers are built to perform the classification in c-dimensional

space.

3.4 Decision-Tree Methods

Decision-tree classifiers are non-metric classifiers in which no measure of dis-

tance can be found so that they are efficiently adapted to tasks where nominal

features appear. Nominal features are non-numeric and descriptive features such

as those that specify the color of an object (e.g., green, red, blue, etc.). However,

real-valued features can also be used in the classification process. Decision-tree

classifiers are fast, comprehensible, and easy to visualize.

Decision-tree induction is based on divide and conquer algorithm that recur-

sively breaks down a problem into two or more subproblems until these problems

of related type are directly solvable. In decision-tree notion, directly solvable

problems indicate the leaf nodes. In most of the decision-tree methods including

the ones used here, each node along with the root, is split into two branches

considering a single feature according to some criterion. The process continues

until a leaf is encountered. The leaf is a node at which the class of a given

feature vector is indicated. There are several important aspects of decision-tree

induction methods: number of splits at a node, splitting criterion, and stopping

criterion. There is another term called pruning which reduces the size of the tree
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by considering all pairs of neighboring leaf nodes for elimination after a complete

tree is built. Pruning prevents overfitting [67, 73].

WEKA is used for the decision-tree classification tests. The correct differ-

entiation rates acquired seems to be robust to changes in classifier parameters

during the implementation; therefore, default parameters are used. Pruning is

performed on the generated trees which is the only change in the parameter set-

tings. One of the striking drawbacks of WEKA is that some tree methods are

not applicable because of the memory restrictions of the software.

3.4.1 Trees Using J48 Algorithm (J48-T)

J48 method implements the C4.5 algorithm for generating a pruned or an un-

pruned C4.5 decision-tree learner which is an improved version of the ID3 learner.

Both ID3 and C4.5 algorithms are developed by Ross Quinlan [74]. ID3 allows

only two classes, requires nominal or discrete features, and does not deal with

the feature vectors comprising missing and noisy features. C4.5, on the other

hand, can be used for classification tasks involving multiple classes and feature

vectors with real-valued, missing, and noisy features [75, 76].

J48 builds decision trees from a set of labeled training data using the concept

of normalized information gain. This concept is a splitting criterion that is used

for selecting the feature that most effectively splits the given set of feature vectors

at a tree node. It is desired to define a rule, ϑ, at a node for splitting, based

on a single feature of a feature vector, x = [x1,x2,. . . ,xN ], such that the selected

feature, xk, will yield the maximum normalized information gain. The rule ϑ

determines the structure of the subtree of the node that it belongs to and C4.5

uses three types of rules for splitting at a node:
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• If xk is a discrete feature with L outcomes, possible queries that will con-

stitute ϑ are:

1. “xk = ?,”for all possible L outcomes of xk.

2. “xk ∈ G?” with 2 ≤ l ≤ L outcomes, where G = {G1,. . . ,Gl} is a

partition of the values of xk. G is determined with a greedy search ac-

cording to the splitting criterion which is information gain (discussed

below).

• If xk is real-valued, the query becomes:

3. “xk ≤ ξ” with outcomes true or false, where ξ is a constant threshold.

Each possible value of xk is considered to find ξ. If there are d possible

values of xk, d−1 possible thresholds are considered between each pair

of adjacent values.

The class of a feature vector in X is identified by its information content which

is expressed as:

B(X) = −
c
∑

j=1

Fr(wj, X) log
(

Fr(wj, X)
)

(3.6)

where Fr(wj, X) denotes the relative frequency of the feature vectors in X that

belong to class wj. Once X is partitioned into subsets X1, X2,. . . , XQ by ϑ, the

information gained is calculated with the following equation:

AB(X,ϑ) = B(X)−
Q
∑

q=1

| Xq |
| X | B(Xq) (3.7)

The potential information in a partition Xq can be found using the following

expression:

AP (X,ϑ) = −
Q
∑

q=1

| Xq |
| X | log

( | Xq |
| X |

)

(3.8)

The rule that maximizes the normalized information gain, AN(X,ϑ) = AB(X,ϑ)
AP (X,ϑ)

,

is chosen along with the feature to be used at a node. If all feature vectors in Xq
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belong to the same class, a leaf node is created. If none of the features provide

any information gain, a decision node higher up the tree is created. If neither

one of the previous cases occur, a child node is created.

3.4.2 Naive Bayes Trees (NB-T)

Naive Bayes trees are hybrid classifiers that combine the principles governing the

NB classifier and decision-tree classifiers. The hybrid algorithm is similar to the

classical recursive decision-tree partitioning schemes, except that the leaf nodes

created are NB classifiers instead of nodes predicting a single class. The main

drawback of NB method is that if the assumptions regarding the independence

of features fail, performance cannot be improved by increasing the size of the

dataset [73].

Given a feature vector x = [x1,x2,. . . ,xN ] for training, the threshold, ξ, is

calculated for real-valued features using the normalized information gain concept

defined in Section 3.4.1. In addition, the utility function, U(xk), is used to find

the utility of a split on xk by discretizing the feature vectors and computing the

five-fold cross-validation accuracy estimate of using NB at that node. The utility

of a split is the weighted sum of the utility of the nodes, where the weight given

to a node is proportional to the number of feature vectors that go down to that

node. The feature with the maximum utility such that

kmax = argmax
k

U(xk) (3.9)

is determined. If U(xkmax
) is not significantly better than the utility of the current

node, a NB classifier is created for the current node. Here, the term significance

implies that the relative reduction in error is greater than 5% and there are

at least 30 feature vectors in the node. If significance is assured, the feature

vectors are partitioned according to the rule on xk. For splitting, the three rules

explained in Section 3.4.1 apply. Then, the algorithm is repeated recursively for
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each child node on the portion of feature vectors that matches the test leading

to the child.

3.4.3 Random Forest (RF-T)

Random forests are a combination of tree predictors such that each tree de-

pends on the values of a random vector sampled independently and with the

same distribution for all trees in the forest. The formal definition states that a

random forest is a classifier consisting of a collection of tree-structured classi-

fiers {H(x,Θq), q = 1, 2, . . .,Q} where the {Θq} are independent identically dis-

tributed random vectors and each tree casts a unit vote for the most popular

class at input x [77].

A random forest is constructed using the bagging method along with random

feature selection. Given a training set X, the procedure starts with randomly

forming bootstrap training sets X1, X2,. . . , XQ and specifying a which is the

parameter indicating the number of random features to select at a node. Al-

though we use the same notation, this partitioning, in general, is different than

the one in Section 3.4.1. Bagging corresponds to splitting the bootstrap training

set into in-bag (two-thirds) and out-of-bag (one-third) portions. The rule at a

node of the qth tree is defined by evaluating the normalized information gain

explained in Section 3.4.1 using the a randomly selected features of the in-bag

portion of bootstrap training set Xq and choosing the one with the highest gain.

Then, the classifier H(x,Θq), where Θq = (Xq, a), is constructed. Out-of-bag

portion is used for estimating the generalization error which is the error rate

of the classifier on the training set. In this regard, bagging resembles three-fold

cross validation with the slight difference that three-fold cross validation is biased

whereas out-of-bag estimates are unbiased. In the WEKA implementation, sev-

eral other parameters such as strength, correlation, and variable importance that
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are listed under out-of-bag estimates are missing. The only parameters specified

are a = 5 and Q=10.

3.5 Gaussian Mixture Model (GMM)

In GMM, each feature vector in the training set is assumed to be associated with

a mixture of M different and independent multi-variate Gaussian distributions.

Expectation-Maximization (EM) algorithm is implemented to estimate the mean

vector and the covariance matrices of the individual mixture components [78].

To define the iteration procedure, we start with a mixture model as a linear

combination of M densities:

p(xi | Υ) =
M
∑

m=1

αm pm(xi | θm) (3.10)

where Υ = (α1, . . . , αM ; θ1, . . . , θM) such that αm ≥ 0 and
∑M

m=1 αm = 1.

Analytical expressions for θm can be obtained for the special case of GMM for

which θm = (µm,Σm). Considering the GMM case, each distribution pm(x | θm)

is assumed to have a multi-variate Gaussian probability density function with

mean µm and covariance matrix Σm:

pm(x | θm) = pm(x | µm,Σm)

=
1

(2π)N/2 | Σm |1/2 exp
[

−1

2
(x− µm)

TΣ−1
m (x− µm)

]

(3.11)

Starting with initial parameter estimates Υ(0) = (α
(0)
1 , . . . , α

(0)
M ; θ

(0)
1 , . . . , θ

(0)
M ),

the elements of parameter vector Υ are updated recursively as follows:

αm
(κ) =

1

I

I
∑

i=1

p(m | xi,Υ
(κ−1)) (3.12)

µm
(κ) =

∑I
i=1 p(m | xi,Υ

(κ−1))xi
∑I

i=1 p(m | xi,Υ(κ−1))
(3.13)

Σm
(κ) =

∑I
i=1 p(m | xi,Υ

(κ−1))(xi − µm
(κ−1))(xi − µm

(κ−1))T
∑I

i=1 p(m | xi,Υ(κ−1))
(3.14)

24



where

p(m | xi,Υ
(κ−1)) =

α
(κ−1)
m pm(xi | θ(κ−1)

m )
∑M

m=1 α
(κ−1)
m pm(xi | θ(κ−1)

m )
(3.15)

Among the five types of covariance matrix provided in [78], the arbitrary one

(Equation (3.14)) is used where each component in the mixture has a different

covariance matrix with non-zero off-diagonal elements. The expressions provided

here are valid for the generalized EM algorithm. Recursive iteration can be

terminated if the change in the log-likelihood

E(Υ(κ),Υ(κ−1)) =
M
∑

m=1

I
∑

i=1

log(αm) p(m | xi,Υ
(κ−1))

+
M
∑

m=1

I
∑

i=1

log
(

pm(xi | θm)
)

p(m | xi,Υ
(κ−1)) (3.16)

for consecutive iterations is less than a preset threshold value or if the number

of iterations exceeds the limit.

3.6 Support Vector Machines (SVM)

SVM technique is introduced by Vladimir Vapnik in the late seventies and it is

being used intensively for complex classification tasks [79, 80, 81]. The general

algorithm for SVM is explained below [82].

In SVM classification technique, it is desired to estimate a function f : R →

{±1} using the training data. Given the training data X = {x1, x2, . . . , xI} and

the corresponding desired output labels Z = {z1, z2, . . . , zI}, we have a set of I

training points:

O = {(xi, zi) ∈ R
N× {−1, 1}} i = 1, 2, . . . , I (3.17)

where xi’s are the training feature vectors labeled with zi as −1 or as +1 accord-

ing to function f(x) = z. Here, the problem is posed as a binary classification

problem since WEKA builds a binary classifier in which, assuming there are c
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classes in the actual training set, there exists c(c−1)
2

pairwise problems so that

every pair of classes is considered [83]. Hyperplanes of the form

(v · x) + b = 0 v ∈ R
N , b∈ R (3.18)

are assigned to separate the pair of classes {−1, 1}. The form of the decision

functions corresponding to these hyperplanes can be expressed as

f(x) = sign
[

(v · xi) + b
]

(3.19)

where v is the vector normal to the hyperplane and b is an arbitrary constant.

It is desired to select v and b such that the margin between two parallel sepa-

rating hyperplanes is maximum. These hyperplanes are given with the following

equations:

(v · xi) + b ≤ −1 for all xi in class 1 (3.20)

(v · xi) + b ≥ 1 for all xi in class 2 (3.21)

These inequalities can be compactly combined into a single inequality:

zi ·
[

(v · xi) + b
]

≥ −1 (3.22)

A simple binary classification problem with a corresponding hyperplane solution

is depicted in Figure 3.1. The margin that we want to maximize is measured

to be 2
‖v‖

and ‖v‖ must be minimized to maximize that margin. To simplify

the problem, the term, 1
2
‖v‖2 is minimized instead of ‖v‖. Using the inequality

given in Equation (3.22) and the optimization constraint, we have the following

quadratic programming (QP) optimization problem:

minimize
1

2
‖v‖2 subject to zi·

[

(v · xi) + b
]

≥ 1 i = 1, 2, . . . , I (3.23)

A functional is constructed using the method of Lagrange multipliers to come

up with a solution to the optimization problem presented.

L(v, b, λ) = 1

2
‖v‖2 −

I
∑

i=1

λi

(

zi ·
[

(v · xi) + b
]

− 1
)

(3.24)
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Figure 3.1: Simple binary classification problem. Three hyperplanes separate
the balls from the stars. The hyperplane represented with a solid line is the sep-
arating hyperplane that is to be optimized. Two other hyperplanes represented
with dashed lines and parallel to the separating hyperplane are the marginal
hyperplanes.

The above Lagrangian must be minimized with respect to v and b and maximized

with respect to λ ≥ 0. To achieve that, we set the partial derivative of L(v,b,λ)

with respect to v and b to zero and obtain
∑I

i=1 λizi = 0 and v =
∑I

i=1 λizixi.

Solving these two equations simultaneously will yield several non-zero λi and

using Karush-Kuhn-Tucker complementary condition:

λi ·
[

zi ·
[

(v · xi + b)
]

− 1
]

= 0 i = 1, 2, . . . , I (3.25)

corresponding xi’s provided with non-zero λi will satisfy Equation (3.22) and be

the support vectors through which the marginal hyperplanes shown in Figure 3.1

will pass. Substituting the expression of v into Equation (3.19), the decision
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function giving the optimal hyperplane is

f(x) = sign

(

I
∑

i=1

ziλi(x · xi) + b

)

(3.26)

The optimization problem stated in Equation (3.23) cannot be solved if the

training data is not linearly separable. This issue is overcome by mapping the

original training data to some other nonlinearly related dot product space using

kernel functions. Once the mapping Ψ : R
N →F is performed, the algorithm

provided is applied in F to find the optimal separating hyperplane. In this case,

the expression given in Equation (3.26) can be rewritten as

f(x) = sign

(

I
∑

i=1

ziλiK(x,xi) + b

)

(3.27)

where K(x,xi) = Ψ(x) · Ψ(xi). In our experiments, Gaussian radial basis func-

tion of the form K(x,xi) = e−γ||x−xi||
2

is employed as the Kernel. In order

to decide which Kernel to use, we tested SVM classifier with various Kernels

and different parameters. The Kernels that are implemented are: polynomial

Kernel function K(x,xi) = (x · xi)
η for η∈{1, 2, 3, 4}, normalized polynomial

Kernel function K(x,xi) = (x·xi)√
||x||2+||xi||2

, and Gaussian radial basis function

K(x,xi) = e−γ||x−xi||
2

for γ∈{2−15, 2−13, 2−11, 2−9, 2−7, 2−5, 2−3, 2−1, 20, 21, 23, 25}

and C∈{2−5, 2−3, 2−1, 20, 21, 23, 25, 27, 29, 211, 213} where C is the soft margin pa-

rameter also called the complexity parameter. Every combination of γ and C

is considered. The SVM classifier is tested based on the 5-fold cross validation

using the one third of the original dataset and L1O cross validation using the

whole dataset. The radial basis function with γ = 2 and C = 2 has provided the

best classification performance and used in the actual tests.

SVM implemented in WEKA is enhanced with sequential minimal

optimization (SMO) algorithm. SMO breaks down the QP problem mentioned

earlier (Equation (3.23)) to smallest possible QP problems that can be solved

analytically. Resulting SVM is improved in terms of computational cost and

scaling [84].
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Chapter 4

Experimental Results

In this chapter, experimental results are presented and compared considering

the cross-validation techniques, the correct differentiation rates, the confusion

matrices, the machine learning environments, the previous results, and the com-

putational considerations. The main purpose of this chapter is to determine the

best classifier to be used in activity classification. It is also intended to deter-

mine the most informative sensor type and sensor unit location on the body. In

order to achieve that, the experimental results systematically consider all pos-

sible combinations of sensor types and sensor unit locations on the body. In

addition, the activities that are confused with each other are indicated, the com-

parison between the machine learning environments, WEKA and PRTools, is

given, the results of the previous study [57] are recalled and compared with the

results of this study, and finally, computational requirements of the classification

techniques are considered.
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4.1 Cross-Validation Techniques

The classification techniques described in Chapter 3 are employed to classify the

19 different activities using the 30 features selected by PCA. A total of 9, 120 (=

60 feature vectors× 19 activities× 8 subjects) feature vectors are available, each

containing the 30 reduced features of the 5-s signal segments. In the training and

testing phases of the classification methods, we use the repeated random sub-

sampling (RRSS), P -fold, and leave-one-out (L1O) cross-validation techniques.

In RRSS, we divide the 480 feature vectors from each activity type randomly

into two sets so that the first set contains 320 feature vectors (40 from each

subject) and the second set contains 160 (20 from each subject). Therefore,

two thirds (6,080) of the 9,120 feature vectors are used for training and one

third (3,040) for testing. This is repeated 10 times and the resulting correct

differentiation percentages are averaged. The disadvantage of this method is

that some observations may never be selected in the testing or the validation

phase, whereas others may be selected more than once. In other words, validation

subsets may overlap.

In P -fold cross validation, the 9,120 feature vectors are divided into P = 10

partitions, where the 912 feature vectors in each partition are selected completely

randomly, regardless of the subject or the class they belong to. One of the P

partitions is retained as the validation set for testing, and the remaining P − 1

partitions are used for training. The cross-validation process is then repeated

P times (the folds), where each of the P partitions is used exactly once for

validation. The P results from the folds are then averaged to produce a single

estimation. The random partitioning is repeated 10 times and the average correct

differentiation percentage is reported. The advantage of this validation method

over RRSS is that all feature vectors are used for both training and testing, and

each feature vector is used for testing exactly once in each of the 10 runs.
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Finally, we also used subject-based L1O cross validation, where the 7, 980 (=

60 vectors × 19 activities × 7 subjects) feature vectors of seven of the subjects

are used for training and the 1,140 feature vectors of the remaining subject are

used in turn for validation. This is repeated eight times such that the feature

vector set of each subject is used once as the validation data. The eight correct

classification rates are averaged to produce a single estimate. This is similar to

P -fold cross validation with P being equal to the number of subjects (P = 8),

and where all the feature vectors in the same partition are associated with the

same subject.

4.2 Correct Differentiation Rates

The algorithms for the techniques used in this study are provided on two com-

monly used open source environments: WEKA, a Java-based software [60]; and

PRTools, a MATLAB toolbox [61]. The NB and ANN classifiers are tested in

both of these software environments to compare two different implementations

of the algorithms and the environments themselves. SVM and decision-tree tech-

niques, namely, NB-T, J48-T, and RF-T are tested using WEKA. PRTools is

used for testing DBC and GMM for different cases where the number of mixtures

in the model varies from one to four.

The classification techniques are tested based on every combination of sensor

types (gyro, acc, and mag) and different sensor units (T, RA, LA, RL, LL). In

the first approach, training data extracted from all possible combinations of sen-

sor types are used for classification and correct differentiation rates and standard

deviations over 10 runs are provided in Tables 4.1–4.3. Because L1O cross val-

idation would give the same classification percentage if the complete cycle over

the subject-based partitions is repeated, its standard deviation is zero. Correct

differentiation rates are also depicted in the form of bar graphs in Figure 4.1 for
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better visualization. In the second approach, training data extracted from all

possible combinations of different sensor units are used for the tests and correct

differentiation rates are tabulated in Tables 4.4 and 4.5. Each cross-validation

technique is applied in these tests.

It is observed that the 10-fold cross validation has the best performance, with

RRSS following it with slightly smaller rates. The difference is caused by the

fact that in 10-fold cross validation, a larger data set is used for training. On

the other hand, L1O has the smallest rates in all cases because each subject

performs the activities in a different manner. Outcomes obtained by implement-

ing L1O indicate that the dataset should be sufficiently comprehensive in terms

of the diversity of the physical characteristics of the subjects. Each additional

subject with distinctive characteristics included in the initial feature vector set

will improve the correct classification rate of novel feature vectors.

Compared to other decision-tree methods, the random forest outperforms in

all of the cases. Such an outcome is expected since the random forest consists of

10 decision trees each voting individually for a certain class and the class with

the highest vote is classified to be the correct one. Despite its random nature, it

competes with the other classifiers and achieves the average correct differentiation

rate of 98.6% for 10-fold cross validation when data from all sensors is used

(Table 4.3). NB-T method seems to be the worst of all decision trees because

of its independence assumption. WEKA provides a large number of decision-

tree methods to choose from. However, some of these such as the best-first and

logistic model decision-tree classifiers are not applicable in our case because of

the size of the training set, especially for 10-fold cross validation.

Generally, the best performance is expected from ANN and SVM for prob-

lems involving multi-dimensional and continuous feature vectors [85]. L1O cross-

validation results for each sensor combination indicate that they have a great
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capacity for generalization. As a consequence, they are less susceptible to over-

fitting than every other classifier, especially, the GMM. ANN and SVM classifiers

are the best classifiers among all and usually have slightly higher performance

than GMM1 (99.1%) with 99.2% for 10-fold cross validation when the feature

vectors extracted from combination of all sensors are used for classification (Ta-

ble 4.3). In the case of L1O cross validation, their success rates are significantly

better than GMM1.

The ANN classifier implemented in PRTools seems to be quite incompetent.

In an ANN trained with the back-propagation algorithm, the system should

be initialized with proper parameters. The most important parameters are the

learning and momentum constants and initial values of the connection weights.

PRTools does not allow user to set the values for the learning and momentum

constants which play a crucial role in updating the weights. Without proper val-

ues set for these constants, it is difficult to provide the system with suitable initial

weights. Therefore, the correct differentiation rates regarding ANN implemented

in PRTools do not reflect the true potential of the classifier.

Considering the outcomes obtained based on 10-fold cross validation and each

sensor combination, it is difficult to determine the number of mixture components

to be used in the GMM method. The average correct differentiation rates are

quite close to each other for GMM1, GMM2, and GMM3 (Gaussian mixture

models with one, two, and three components). However, in case of RRSS and

especially L1O cross validation, the rates rapidly decrease as the number of

components in the mixture increases. Such an outcome is not anticipated. It

seems that the data set is not sufficiently large to train GMM with a mixture

of multiple components. Indeed, it is observed in Table 4.1(c) that the GMM3

and GMM4 could not be trained due to insufficient data. Another interpretation

of the results would be overfitting [67]. While multiple Gaussian estimators are

exceptionally complex for classification of training patterns, they are unlikely
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to result in acceptable classification of novel patterns. Low differentiation rates

of GMM for L1O in all cases support the overfitting condition. Despite the

incompetent outcomes taken from this method for L1O case, it is the third best

classifier with 99.1% average correct differentiation rate based on 10-fold cross

validation when data from all sensors is used (Table 4.3).

The comparison of classification results based on each sensor combination

reveal quite an unexpected outcome. It seems that when the data set corre-

sponding to magnetometer alone is used, the average correct differentiation rate

is higher than the rates provided by the other two sensor types used alone. For a

considerable number of classification methods, the rate provided by magnetome-

ter data alone outperforms the rates provided by the other two sensors combined

together. It can be observed in Figure 4.1 that for almost all classification meth-

ods applied based on all cross-validation techniques, the turquoise bar is higher

than the green bar at the top plots of the figures except for the GMM model

used in L1O cross validation. It can be stated that the features extracted from

magnetometer data, which is slowly varying in nature, are not sufficiently di-

verse for the training of the GMM classifier. This statement is supported by the

results provided in Table 4.1(c) such that GMM3 and GMM4 cannot be trained

with magnetometer-based feature vectors. The best performance (98.8%) based

on magnetometer data is achieved with SVM using 10-fold cross validation (Ta-

ble 4.1(c)).

Correct differentiation rates obtained by using feature vectors based on gyro-

scope data are the worst. Outcomes of the combination of gyroscope with other

two sensors are also usually worse than the combination of accelerometer and

magnetometer. The magnetometers used in this study measure the strength of

the magnetic field along three orthogonal axes and the combination of the quan-

tities measured with respect to each axis provides the direction of the Earth’s

magnetic north. In other words, the magnetometers function as a compass. Thus,
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the results discussed here indicate that the most useful source of information is

provided by the feature vectors based on the compass data (magnetometer), then

translational data (accelerometer), and finally, the rotational data (gyroscope).

In general, the combination of these three types of data provides the best classi-

fication performance.

The case in which classifiers are tested based on combination of different sen-

sor units (Table 4.4 and 4.5) shows that GMM usually has the best classification

performance for all cross-validation techniques other than L1O. In L1O cross val-

idation, ANN and SVM classifiers have the best performances. In 10-fold cross

validation (Table 4.5(b)), correct differentiation rates achieved with GMM2 are

better than GMM1 in tests for which single unit or combination of two units is

used. Another remark regarding the contribution of each sensor unit is that the

units placed on the legs (RL and LL) seem to provide the most useful data. Com-

paring the cases where feature vectors extracted from single sensor unit data, it

is observed that highest correct classification rates are achieved with these two

units. They improve the performance of the combinations in which they are used

as well.
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classification cross validation
techniques RRSS 10-fold L1O

WEKA

NB 66.7±0.45 67.4±0.15 56.9
ANN 79.8±0.71 84.3±0.17 60.9
SVM 80.1±0.43 84.7±0.14 61.2

tree methods
NB-T 62.3±1.22 67.8±0.73 36.4
J48-T 61.9±0.66 68.0±0.35 45.2
RF-T 73.1±0.58 78.3±0.34 53.3

PRTools

NB 63.9±0.67 67.7±0.30 49.7
ANN 59.9±5.38 59.5±0.89 48.6
DBC 68.5±0.81 69.7±0.30 56.9

GMM

GMM1 79.8±0.50 82.2±0.14 57.1
GMM2 76.8±0.82 83.4±0.26 42.5
GMM3 71.4±1.30 83.1±0.24 37.3
GMM4 64.7±1.39 82.6±0.25 32.1

(a)

classification cross validation
techniques RRSS 10-fold L1O

WEKA

NB 80.5±0.67 80.8±0.09 73.6
ANN 92.5±0.51 95.3±0.07 79.7
SVM 91.2±0.61 94.6±0.09 81.0

tree methods
NB-T 74.8±1.42 79.0±0.61 55.9
J48-T 75.8±0.85 80.9±0.33 62.8
RF-T 86.0±0.51 89.7±0.16 72.2

PRTools

NB 77.3±0.66 81.2±0.22 66.5
ANN 76.2±2.58 75.4±1.29 67.5
DBC 81.9±0.52 82.2±0.26 74.6

GMM

GMM1 93.3±0.48 95.1±0.07 74.8
GMM2 90.7±0.66 95.5±0.12 58.2
GMM3 86.0±1.31 95.3±0.13 53.0
GMM4 77.4±1.37 94.8±0.25 44.2

(b)

classification cross validation
techniques RRSS 10-fold L1O

WEKA

NB 89.0±0.37 89.5±0.08 79.3
ANN 97.5±0.28 98.6±0.06 81.5
SVM 98.1±0.09 98.8±0.04 84.8

tree methods
NB-T 90.9±0.85 94.3±0.33 52.3
J48-T 90.0±0.60 93.8±0.15 65.8
RF-T 96.9±0.25 98.1±0.12 78.2

PRTools

NB 91.9±0.36 93.5±0.17 74.1
ANN 90.2±2.07 89.6±0.97 78.3
DBC 91.0±0.88 92.0±0.33 82.6

GMM

GMM1 96.2±0.33 96.5±0.04 42.6
GMM2 96.2±0.47 97.3±0.18 22.6
GMM3 94.2±0.87 – –
GMM4 89.8±1.54 – –

(c)

Table 4.1: Correct differentiation rates and the standard deviations based on all
classification techniques, cross-validation methods, and both environments. Only (a)
gyroscopes, (b) accelerometers, (c) magnetometers are used for classification.
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classification cross validation
techniques RRSS 10-fold L1O

WEKA

NB 84.6±0.55 85.2±0.13 76.3
ANN 95.1±0.24 96.9±0.09 82.6
SVM 95.0±0.19 96.7±0.07 83.3

tree methods
NB-T 81.7±1.66 86.5±0.37 57.2
J48-T 82.5±1.11 87.0±0.19 66.2
RF-T 91.9±0.43 94.5±0.15 77.7

PRTools

NB 84.2±0.36 86.9±0.16 71.2
ANN 81.2±3.85 81.4±1.36 71.9
DBC 85.3±0.71 86.2±0.41 76.5

GMM

GMM1 96.0±0.30 97.1±0.10 79.3
GMM2 93.9±0.42 96.9±0.07 50.7
GMM3 88.9±0.90 96.7±0.11 44.1
GMM4 81.5±1.70 96.4±0.15 37.9

(a)

classification cross validation
techniques RRSS 10-fold L1O

WEKA

NB 92.1±0.27 92.2±0.09 85.1
ANN 98.5±0.14 99.0±0.04 87.5
SVM 98.6±0.16 99.0±0.04 86.1

tree methods
NB-T 92.0±0.69 94.9±0.30 61.3
J48-T 90.7±1.27 94.5±0.15 75.0
RF-T 97.5±0.22 98.4±0.06 81.8

PRTools

NB 93.8±0.43 95.4±0.09 77.2
ANN 91.6±2.59 91.4±1.28 84.6
DBC 92.9±0.64 93.0±0.47 85.2

GMM

GMM1 98.6±0.12 98.9±0.03 64.6
GMM2 96.9±1.68 98.7±0.06 35.9
GMM3 93.3±1.04 98.7±0.06 29.8
GMM4 86.1±3.43 98.6±0.09 26.1

(b)

classification cross validation
techniques RRSS 10-fold L1O

WEKA

NB 92.8±0.41 92.7±0.09 87.2
ANN 98.7±0.15 99.2±0.04 92.2
SVM 98.5±0.12 99.0±0.03 89.5

tree methods
NB-T 91.1±0.81 93.7±0.31 64.9
J48-T 89.9±0.55 93.1±0.12 79.8
RF-T 96.9±0.26 98.1±0.10 86.0

PRTools

NB 93.1±0.50 94.1±0.07 81.8
ANN 93.0±1.97 92.1±0.82 87.1
DBC 93.2±0.70 93.5±0.24 85.7

GMM

GMM1 98.7±0.23 99.1±0.03 69.8
GMM2 97.5±1.01 99.0±0.06 46.9
GMM3 93.2±1.85 98.8±0.07 39.8
GMM4 85.9±4.67 98.6±0.09 34.0

(c)

Table 4.2: Correct differentiation rates and the standard deviations based on all clas-
sification techniques, cross-validation methods, and both environments. Two types of
sensors, namely, (a) gyroscopes and accelerometers, (b) gyroscopes and magnetome-
ters, (c) accelerometers and magnetometers are used for classification.
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classification cross validation
techniques RRSS 10-fold L1O

WEKA

NB 93.9±0.49 93.7±0.08 89.2
ANN 99.1±0.13 99.2±0.05 91.0
SVM 99.1±0.09 99.2±0.03 89.9

tree methods
NB-T 94.6±0.68 94.9±0.16 67.7
J48-T 93.8±0.73 94.5±0.17 77.0
RF-T 98.3±0.24 98.6±0.05 86.8

PRTools

NB 96.5±0.46 96.6±0.07 83.8
ANN 93.0±3.05 92.5±1.61 84.2
DBC 94.7±0.60 94.8±0.16 89.0

GMM

GMM1 99.1±0.20 99.1±0.02 76.4
GMM2 98.8±0.17 99.0±0.03 48.1
GMM3 98.2±0.30 98.9±0.07 37.6
GMM4 97.3±0.37 98.8±0.07 37.0

Table 4.3: Correct differentiation rates and the standard deviations based on all
classification techniques, cross-validation methods, and both environments. All sensors
are used for classification.
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(a)

(b)

(c)

Figure 4.1: Comparison of classifiers and combinations of different sensor types
in terms of correct differentiation rates using (a) RRSS, (b) 10-fold, (c) L1O
cross validation. The patterns in the legends are ordered from left to right in the
bar chart.
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units used NB ANN SVM NB-T J48-T RF-T NB ANN SVM NB-T J48-T RF-T
– – – – – – – +T 70.5 92.2 91.0 69.8 70.5 83.5
RA 67.5 92.1 91.2 73.3 71.9 84.4 +T 81.7 95.8 96.1 81.9 79.4 92.1
LA 69.2 89.7 92.7 68.2 69.3 83.1 +T 82.4 96.0 96.3 81.9 79.2 92.8
RL 87.0 95.7 94.9 80.5 82.1 89.9 +T 86.2 97.2 97.0 85.1 85.3 94.3
LL 86.3 96.9 95.6 82.4 84.0 90.0 +T 85.8 97.5 97.0 84.2 84.8 94.1
RA+LA 78.4 94.0 95.6 81.7 79.7 91.8 +T 87.0 97.3 97.4 87.8 85.4 95.2
RL+LL 88.8 97.3 96.8 87.6 88.8 94.9 +T 90.8 97.9 97.9 90.5 89.7 96.4
RA+RL 89.0 97.1 97.2 86.5 86.2 94.6 +T 90.1 97.9 98.2 88.6 87.4 96.3
LA+LL 89.7 97.6 97.5 85.7 86.6 94.7 +T 91.8 98.1 98.0 87.9 87.8 96.2
RA+LL 88.9 97.7 97.6 85.9 85.7 94.7 +T 90.3 98.0 98.1 88.4 87.8 96.2
LA+RL 90.3 97.4 97.5 85.8 85.3 94.2 +T 90.3 97.9 98.0 88.1 86.6 96.3
RA+LA+RL 90.9 98.3 98.3 88.4 87.6 96.3 +T 92.9 98.4 98.7 90.5 88.8 97.1
RA+LA+LL 90.8 98.0 98.4 89.6 88.8 96.6 +T 92.3 98.4 98.6 90.2 89.5 97.0
RA+RL+LL 91.1 98.2 98.1 90.1 89.6 96.7 +T 92.5 98.5 98.7 91.2 90.8 97.3
LA+RL+LL 91.6 98.2 98.2 91.3 90.7 97.1 +T 92.7 98.2 98.5 91.3 91.3 97.6
RA+LA+RL+LL 92.2 98.7 98.7 91.5 90.6 97.7 +T 93.9 99.1 99.1 94.6 93.8 98.3

(a)

units used NB ANN SVM NB-T J48-T RF-T NB ANN SVM NB-T J48-T RF-T
– – – – – – – +T 71.5 95.3 95.7 77.5 78.2 89.4
RA 67.3 95.5 95.1 80.5 79.7 89.8 +T 82.7 97.5 97.8 87.1 86.1 95.2
LA 70.0 92.6 96.2 76.0 76.6 88.5 +T 83.5 97.7 97.9 87.8 86.3 95.7
RL 87.5 97.6 96.8 86.1 86.3 93.2 +T 86.4 98.4 98.3 90.0 89.4 96.4
LL 87.0 98.2 97.6 87.1 87.7 93.2 +T 86.1 98.6 98.4 89.9 89.9 96.6
RA+LA 79.1 95.5 97.5 87.4 86.3 94.9 +T 87.9 98.0 98.5 91.4 90.0 97.0
RL+LL 89.0 98.5 98.1 91.2 92.1 96.6 +T 91.0 98.8 98.8 93.3 93.1 97.7
RA+RL 89.2 97.8 98.4 90.4 90.6 96.7 +T 90.5 98.5 98.8 92.7 91.3 97.6
LA+LL 90.2 98.5 98.5 90.1 90.1 96.5 +T 92.2 98.6 98.8 92.0 92.0 97.7
RA+LL 89.2 98.6 98.5 90.3 90.1 96.7 +T 90.8 98.8 98.9 92.7 91.8 97.6
LA+RL 90.6 98.4 98.4 90.3 89.5 96.4 +T 91.2 98.7 98.7 92.5 91.4 97.7
RA+LA+RL 91.1 98.9 99.0 92.2 92.0 97.8 +T 93.2 98.9 99.1 94.1 92.8 98.1
RA+LA+LL 90.9 98.7 99.0 92.8 92.3 97.8 +T 92.4 99.0 99.1 93.2 93.1 98.1
RA+RL+LL 91.2 98.9 98.9 93.7 93.0 97.9 +T 93.0 98.9 99.1 94.6 94.3 98.4
LA+RL+LL 91.5 98.7 98.9 94.0 93.7 98.0 +T 93.0 98.9 99.0 94.6 94.3 98.4
RA+LA+RL+LL 92.4 99.1 99.1 95.0 94.3 98.6 +T 93.7 99.2 99.2 94.9 94.5 98.6

(b)

units used NB ANN SVM NB-T J48-T RF-T NB ANN SVM NB-T J48-T RF-T
– – – – – – – +T 58.8 67.1 70.3 40.2 49.1 58.7
RA 57.8 64.2 67.6 36.0 43.6 55.9 +T 71.9 78.4 80.5 46.2 57.8 69.7
LA 55.6 64.3 65.5 37.9 42.9 55.8 +T 73.9 77.6 80.4 46.2 56.1 69.6
RL 78.5 81.7 83.4 65.0 67.7 77.2 +T 78.6 83.5 85.6 58.0 66.6 78.9
LL 78.6 82.7 84.1 60.3 70.5 76.8 +T 78.5 86.1 87.6 61.1 66.9 80.1
RA+LA 66.7 75.5 76.3 42.7 52.6 65.7 +T 76.5 82.9 83.9 48.7 65.8 76.4
RL+LL 81.9 85.6 86.2 65.0 76.4 83.2 +T 83.6 89.4 89.0 68.3 75.7 84.5
RA+RL 83.0 84.3 86.3 66.4 72.4 81.5 +T 84.7 88.4 88.5 60.8 72.1 83.0
LA+LL 83.3 83.6 84.8 61.2 70.9 81.3 +T 84.7 86.5 87.0 60.4 71.6 83.3
RA+LL 82.5 86.1 85.4 58.6 70.0 79.7 +T 83.4 89.5 88.9 61.4 71.6 83.0
LA+RL 83.2 85.7 84.9 59.9 72.1 80.3 +T 83.7 87.5 86.6 59.1 73.5 82.2
RA+LA+RL 84.7 85.5 86.0 61.7 72.6 82.5 +T 86.2 88.9 88.4 60.5 74.8 85.6
RA+LA+LL 84.5 85.6 85.6 65.4 73.0 81.1 +T 86.7 89.5 89.1 63.7 72.8 86.1
RA+RL+LL 85.6 86.6 86.7 66.5 76.3 84.3 +T 86.7 90.6 89.8 65.9 76.4 86.5
LA+RL+LL 84.8 86.7 85.8 68.2 77.4 85.2 +T 86.8 88.5 88.7 66.3 78.4 87.0
RA+LA+RL+LL 86.8 86.1 86.4 67.3 78.4 86.2 +T 89.2 91.0 89.9 67.7 77.0 86.8

(c)

Table 4.4: All possible sensor unit combinations and the corresponding correct clas-
sification rates for classification methods in WEKA using (a) RRSS, (b) 10-fold, (c)
L1O cross validation.
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units used NB ANN DBC GMM1 GMM2 GMM3 GMM4 NB ANN DBC GMM1 GMM2 GMM3 GMM4

– – – – – – – – +T 67.9 71.4 77.8 93.9 91.1 85.8 73.1
RA 68.3 66.1 76.1 91.9 88.1 84.3 76.7 +T 82.2 77.4 85.9 96.7 94.4 88.7 80.8
LA 67.7 68.6 76.2 92.2 90.1 84.5 76.2 +T 83.9 83.0 86.5 96.7 93.9 85.7 75.4
RL 83.9 85.2 86.3 95.8 94.6 91.8 85.4 +T 85.7 84.7 88.7 98.0 95.8 92.6 85.1
LL 83.9 82.4 85.3 96.6 95.8 92.7 84.7 +T 85.9 87.4 88.4 98.2 95.5 91.7 85.2
RA+LA 79.0 76.3 83.7 95.7 93.0 87.5 80.3 +T 89.4 85.5 88.3 97.6 94.9 89.6 82.0
RL+LL 88.3 86.4 89.3 97.9 96.8 93.6 85.4 +T 91.3 90.8 91.5 98.7 97.5 94.1 86.8
RA+RL 88.0 84.4 89.1 97.9 96.6 92.5 84.8 +T 92.0 88.9 91.4 98.4 96.5 92.6 80.1
LA+LL 88.7 86.3 89.4 97.9 96.5 92.1 85.6 +T 92.1 90.7 91.9 98.3 96.8 91.5 84.0
RA+LL 87.8 88.5 89.3 97.9 96.7 92.9 85.5 +T 92.5 89.7 91.8 98.3 97.0 92.8 84.9
LA+RL 88.3 90.3 89.8 97.6 96.1 90.9 85.1 +T 90.9 89.8 91.5 98.2 96.3 92.1 86.1
RA+LA+RL 90.8 87.7 91.4 98.3 96.7 91.9 83.3 +T 93.8 91.4 92.9 98.6 96.8 91.5 84.5
RA+LA+LL 91.0 89.0 91.4 98.3 97.3 91.4 85.1 +T 93.4 91.4 93.3 98.7 97.2 92.0 86.3
RA+RL+LL 91.5 91.0 91.4 98.6 97.3 94.4 87.0 +T 93.7 93.1 93.6 98.7 97.8 93.0 86.1
LA+RL+LL 92.7 92.0 91.7 98.6 97.6 94.2 87.8 +T 94.4 93.0 93.8 98.7 97.6 93.0 86.9
RA+LA+RL+LL 93.1 92.4 93.0 98.9 97.3 93.9 87.0 +T 96.5 93.0 94.7 99.1 98.8 98.2 97.3

(a)

units used NB ANN DBC GMM1 GMM2 GMM3 GMM4 NB ANN DBC GMM1 GMM2 GMM3 GMM4

– – – – – – – – +T 73.5 71.2 79.5 95.2 96.3 95.9 95.4
RA 72.8 67.7 77.3 93.3 94.8 94.8 94.2 +T 86.2 80.0 86.8 97.7 97.3 97.1 96.7
LA 72.5 68.0 77.1 93.5 95.1 95.0 94.6 +T 87.8 81.5 87.3 97.5 97.5 97.3 96.8
RL 87.0 84.5 87.1 96.7 97.4 97.3 97.0 +T 88.1 85.0 89.1 98.4 98.5 98.3 98.1
LL 87.7 82.6 86.3 97.4 97.7 97.6 97.3 +T 89.3 86.1 89.3 98.7 98.7 98.4 98.3
RA+LA 83.9 76.2 84.5 96.8 96.9 96.8 96.1 +T 91.6 84.3 89.6 98.3 97.9 97.7 97.4
RL+LL 91.3 87.7 89.6 98.5 98.5 98.3 98.0 +T 93.3 89.8 92.0 99.0 98.8 98.7 98.6
RA+RL 90.3 85.9 89.6 98.3 98.4 98.2 97.9 +T 93.8 88.7 92.0 98.6 98.6 98.4 98.2
LA+LL 91.3 88.6 90.1 98.4 98.5 98.3 98.1 +T 94.0 90.5 92.4 98.8 98.6 98.6 98.4
RA+LL 90.4 87.0 89.9 98.5 98.4 98.2 97.9 +T 94.1 89.6 92.1 98.8 98.6 98.5 98.4
LA+RL 91.1 88.1 90.5 98.2 98.4 98.2 98.0 +T 93.4 90.5 92.4 98.6 98.5 98.4 98.2
RA+LA+RL 92.7 88.0 91.8 98.8 98.7 98.5 98.2 +T 95.1 90.2 93.4 98.9 98.7 98.6 98.4
RA+LA+LL 93.0 88.8 91.8 98.8 98.7 98.6 98.4 +T 94.8 91.2 93.3 99.0 98.8 98.6 98.3
RA+RL+LL 93.3 89.4 92.2 98.9 98.8 98.7 98.5 +T 94.6 91.8 94.0 99.0 98.8 98.8 98.6
LA+RL+LL 94.3 88.8 91.9 98.9 98.8 98.8 98.6 +T 95.7 92.4 94.0 99.0 98.9 98.9 98.7
RA+LA+RL+LL 94.4 91.5 93.2 99.1 99.0 99.0 98.8 +T 96.6 92.5 94.8 99.1 99.0 98.9 98.8

(b)

units used NB ANN DBC GMM1 GMM2 GMM3 GMM4 NB ANN DBC GMM1 GMM2 GMM3 GMM4

– – – – – – – – +T 53.1 60.2 66.0 48.9 30.4 25.7 23.4
RA 48.7 59.8 63.4 44.2 26.2 20.8 23.5 +T 64.8 70.5 74.5 60.7 30.5 23.6 21.5
LA 50.3 57.2 59.8 45.7 33.2 27.0 21.0 +T 61.8 73.9 75.8 63.3 42.2 30.8 25.3
RL 75.6 78.4 79.7 71.1 55.5 50.0 47.2 +T 73.8 79.7 81.3 71.2 51.7 41.1 37.6
LL 72.7 75.2 78.4 70.1 57.4 53.6 48.8 +T 74.4 76.7 81.6 70.9 46.4 42.2 29.8
RA+LA 58.6 66.4 71.4 54.0 31.2 22.8 18.5 +T 66.8 74.7 79.2 65.0 37.2 31.6 22.4
RL+LL 79.3 80.7 83.8 73.9 57.6 52.5 47.8 +T 79.8 83.7 86.0 73.6 47.3 43.2 39.9
RA+RL 78.4 81.4 81.7 73.7 49.4 42.1 34.9 +T 77.6 82.0 85.4 75.0 46.5 39.0 33.4
LA+LL 78.5 79.9 82.2 72.2 50.9 39.0 31.0 +T 76.8 83.5 84.9 71.4 46.6 40.8 29.1
RA+LL 76.1 79.7 83.4 72.2 42.1 35.4 29.5 +T 77.9 82.7 84.0 75.4 43.2 35.8 28.9
LA+RL 77.7 81.5 82.0 73.2 54.6 44.8 36.7 +T 78.0 83.1 84.5 73.2 46.9 43.1 39.9
RA+LA+RL 75.9 81.4 85.2 73.3 46.5 42.5 29.8 +T 79.7 83.4 85.7 72.2 43.5 41.1 34.0
RA+LA+LL 77.5 81.3 84.4 74.2 45.0 37.0 26.8 +T 79.2 82.8 87.5 75.4 46.6 33.6 24.9
RA+RL+LL 80.0 82.9 85.3 73.9 51.3 43.8 35.9 +T 82.4 85.3 87.4 75.1 48.7 39.4 36.4
LA+RL+LL 79.3 83.8 86.4 74.1 51.4 44.2 36.0 +T 82.6 87.1 87.8 74.4 47.5 45.0 37.7
RA+LA+RL+LL 80.7 85.4 86.5 74.3 46.0 43.2 36.1 +T 83.8 84.2 89.0 76.4 48.1 37.6 37.0

(c)

Table 4.5: All possible sensor unit combinations and the corresponding correct clas-
sification rates for classification methods in PRTools using (a) RRSS, (b) 10-fold, (c)
L1O cross validation.
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4.3 Confusion Matrices

In order to show which activities are confused with each other, the confusion ma-

trices of the different techniques are presented in Tables 4.6 and 4.7. We chose to

employ the 10-fold cross-validation technique to report these results. Inspecting

the confusion matrices of the different techniques, it can be observed that A7

and A8 are the activities most confused with each other. This is because both of

these activities are performed in the elevator and the signals recorded from these

activities have similar segments. Therefore, confusion at the classification stage

becomes inevitable. A2 and A7, A13 and A14, as well as A9, A10, and A11 are

also confused from time to time for similar reasons. The two activities that are

almost never confused are A12 and A17.

The results for the confusion matrices given in Tables 4.6 and 4.7 are summa-

rized in Table 4.9 to report the performance of the classifiers on distinguishing

each activity. The feature vectors that belong to A3, A4, A5, A6, A12, A15,

A17, and A18 are classified with the above average performance by all classifiers.

The rest of the feature vectors cannot be classified well by some classifiers.

For ANN implemented in PRTools, since the network classifies some samples

as belonging to none of the classes and output neurons take continuous values

between 0 and 1, it is not possible to form a confusion matrix. The number of

correctly and incorrectly classified feature vectors with 10-fold cross validation

is given in Table 4.8. On the other hand, ANN implemented in WEKA assigns

each feature vector to a certain class therefore it is possible to form a confusion

matrix for that method (Table 4.6(b)).
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classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 445 0 32 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
A2 3 437 0 0 0 0 37 3 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 478 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
A4 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 477 0 0 0 2 0 1 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 463 0 17 0 0 0 0 0 0 0 0 0 0 0
A7 8 39 0 1 0 0 394 38 0 0 0 0 0 0 0 0 0 0 0
A8 0 12 0 1 2 3 54 400 2 0 0 0 0 0 0 0 0 0 6
A9 0 0 0 0 13 3 0 0 428 26 9 0 1 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 414 66 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 61 419 0 0 0 0 0 0 0 0
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 0 0 0 1 0 463 16 0 0 0 0 0
A14 0 0 0 0 0 0 0 1 1 0 0 0 95 383 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0
A16 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 477 0 1 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 478 0
A19 0 0 0 0 0 0 0 7 0 0 0 1 2 0 0 0 0 0 470

(a)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 479 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 460 20 0 0 0 0 0 0 0 0 0 0 0
A8 0 3 0 0 1 2 34 438 0 0 0 0 0 0 0 0 0 0 2
A9 0 0 0 0 0 0 0 0 479 1 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 479 1 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 2 478 0 0 0 0 0 0 0 0
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 0 0 0 1 0 478 1 0 0 0 0 0
A14 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0
A19 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 475

(b)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 467 13 0 0 0 0 0 0 0 0 0 0 0
A8 0 4 0 0 1 1 43 429 1 0 0 0 0 0 0 0 0 0 1
A9 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 2 478 0 0 0 0 0 0 0 0
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0
A14 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0
A19 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 477

(c)
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classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 468 3 3 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0
A2 3 455 0 0 0 0 14 8 0 0 0 0 0 0 0 0 0 0 0
A3 4 2 467 1 0 0 3 1 0 0 0 0 0 0 1 0 0 0 1
A4 2 1 1 471 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0
A5 2 0 0 0 466 1 0 5 2 1 1 0 1 0 0 1 0 0 0
A6 1 0 0 0 1 463 1 10 3 0 0 0 1 0 0 0 0 0 0
A7 6 16 1 1 0 0 413 43 0 0 0 0 0 0 0 0 0 0 0
A8 7 8 1 1 6 7 57 372 5 1 1 0 3 1 0 0 1 0 9
A9 3 0 0 0 3 5 1 4 451 4 3 0 2 1 0 1 0 1 1
A10 3 0 0 0 1 0 0 1 3 455 13 0 1 0 0 1 0 0 2
A11 3 0 0 0 0 0 0 1 3 11 456 0 2 2 0 1 0 0 1
A12 1 0 0 0 0 0 0 0 0 1 0 477 0 0 0 0 0 0 1
A13 4 0 0 0 1 1 0 3 2 1 1 0 450 12 1 2 0 0 2
A14 4 0 0 0 0 0 0 1 1 0 2 0 10 458 1 1 0 0 2
A15 2 0 0 0 0 0 0 1 0 0 1 0 0 1 472 3 0 0 0
A16 4 0 0 0 1 0 0 1 1 1 1 0 2 2 5 460 0 1 1
A17 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 477 0 0
A18 2 0 0 0 0 1 0 2 1 0 0 1 0 0 0 0 0 472 1
A19 3 0 0 0 0 1 0 11 1 1 1 1 2 1 0 1 0 1 456

(d)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 462 2 9 0 0 0 4 2 0 0 0 0 0 0 0 0 1 0 0
A2 1 451 0 1 0 1 19 7 0 0 0 0 0 0 0 0 0 0 0
A3 7 0 471 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
A4 1 2 1 471 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 463 0 0 6 2 0 2 0 1 1 0 5 0 0 0
A6 0 0 0 0 0 468 0 9 1 0 0 0 0 0 0 0 0 2 0
A7 5 23 0 1 0 1 399 51 0 0 0 0 0 0 0 0 0 0 0
A8 2 5 0 0 10 14 60 366 3 1 1 0 4 2 1 0 0 1 10
A9 0 0 0 0 3 2 0 3 452 9 6 0 2 0 0 1 0 2 0
A10 0 0 0 0 1 0 0 2 6 452 15 0 1 1 0 1 0 1 0
A11 0 0 0 0 0 0 0 1 4 19 452 0 1 1 1 0 0 0 1
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 1 0 0 5 2 1 1 0 443 22 2 2 0 0 1
A14 0 0 0 0 1 0 0 1 1 1 2 1 23 445 0 4 0 0 1
A15 0 0 0 0 0 0 0 2 0 0 0 0 3 1 469 5 0 0 0
A16 0 0 0 0 5 0 0 1 2 2 2 0 4 4 5 455 0 0 0
A17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 479 0 0
A18 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 476 1
A19 0 0 0 0 0 0 0 12 0 0 0 0 3 0 0 1 0 1 463

(e)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 479 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 479 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A3 1 0 479 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 479 0 0 0 1 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 478 0 2 0 0 0 0 0 0 0 0 0 0 0
A7 0 8 0 0 0 0 457 15 0 0 0 0 0 0 0 0 0 0 0
A8 0 3 0 0 3 4 52 413 1 0 0 0 0 0 0 0 0 0 4
A9 0 0 0 0 0 3 0 0 475 1 1 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 1 477 2 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 2 477 0 0 0 0 0 0 0 1
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 0 0 0 0 0 476 4 0 0 0 0 0
A14 0 0 0 0 0 0 0 0 0 0 0 0 1 479 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 477 2 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 479 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0
A19 0 0 0 0 0 0 0 7 0 0 0 0 1 0 0 0 0 0 472

(f)

Table 4.6: Confusion matrices for (a) NB (93.7%), (b) ANN (99.2%), (c) SVM (99.2%),
(d) NB-T (94.9%), (e) J48-T (94.5%), (f) RF-T (98.6%) classifier in WEKA for 10-fold
cross validation.
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classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 467 2 9 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
A2 0 475 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0
A3 0 1 473 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 2
A4 0 0 0 479 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 479 0 0 0 0 1 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 475 0 5 0 0 0 0 0 0 0 0 0 0 0
A7 4 32 0 0 2 0 407 35 0 0 0 0 0 0 0 0 0 0 0
A8 0 6 0 0 1 4 55 403 4 0 0 0 0 0 0 0 0 0 7
A9 0 0 0 0 4 2 0 2 454 7 7 0 4 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 1 447 32 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 1 22 457 0 0 0 0 0 0 0 0
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 2 1 0 0 0 468 9 0 0 0 0 0
A14 0 0 0 0 0 0 0 2 0 0 0 0 8 470 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 479 0 1 0 0
A16 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 477 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 478 0
A19 0 0 0 0 0 0 0 7 0 0 1 0 3 0 0 0 0 0 469

(a)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 445 1 33 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A2 1 463 0 0 0 1 11 4 0 0 0 0 0 0 0 0 0 0 0
A3 2 0 478 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 479 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 471 0 7 2 0 0 0 0 0 0 0 0 0 0
A7 13 53 0 1 4 3 383 23 0 0 0 0 0 0 0 0 0 0 0
A8 0 15 0 0 7 11 55 381 5 0 0 0 1 0 0 0 0 0 5
A9 0 0 0 0 13 3 0 0 426 28 6 0 3 1 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 3 417 60 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 1 58 419 0 1 1 0 0 0 0 0
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 0 0 0 1 0 471 8 0 0 0 0 0
A14 0 0 0 0 0 0 0 0 0 0 0 0 11 469 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 476 4 0 0 0
A16 0 0 0 0 1 0 0 0 0 0 0 0 0 1 2 475 0 1 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 477 0
A19 0 0 0 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0 470

(b)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 478 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 479 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 477 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 478 0 0 2 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 478 0 2 0 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 467 13 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 44 434 0 0 0 0 0 0 0 0 0 0 2
A9 0 0 0 0 0 0 0 1 479 0 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 478 2 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0 0
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 0 0 0 0 0 479 1 0 0 0 0 0
A14 0 0 0 0 0 0 0 2 0 0 0 0 0 478 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0
A19 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 476

(c)
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classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 479 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 479 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 477 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 477 0 0 2 0 0 0 0 0 0 0 0 0 0 1
A6 0 0 0 0 0 478 0 1 0 0 0 0 0 0 0 0 0 0 1
A7 0 0 0 0 0 0 468 12 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 57 421 0 0 0 0 0 0 0 0 0 0 2
A9 0 0 0 0 0 0 0 2 476 0 0 0 0 0 0 0 0 0 2
A10 0 0 0 0 0 0 0 0 0 478 1 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 0 0 0 0 0 479 0 0 0 0 0 0 0 1
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 1 0 0 0 0 477 1 0 0 0 0 1
A14 0 0 0 0 0 0 0 1 0 0 0 0 0 478 0 0 0 0 1
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 479 0 0 1
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0
A19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 478

(d)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 477 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 479 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 477 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 475 0 0 4 0 0 0 0 0 0 0 0 0 0 1
A6 0 0 0 0 0 476 0 3 0 0 0 0 0 0 0 0 0 0 1
A7 0 0 0 0 0 0 461 19 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 47 431 0 0 0 0 0 0 0 0 0 0 2
A9 0 0 0 0 0 0 0 2 477 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 1 0 477 1 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 0 0 0 0 0 479 0 0 0 0 0 0 0 1
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 1 0 0 0 0 476 1 0 0 0 0 2
A14 0 0 0 0 0 0 0 1 0 0 0 0 0 478 0 0 0 0 1
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0
A19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 478

(e)

classified
true A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
A1 479 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A2 0 476 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 479 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 478 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 474 0 0 5 0 0 0 0 0 0 0 0 0 0 1
A6 0 0 0 0 0 476 0 2 0 0 0 0 0 0 0 0 0 0 2
A7 0 0 0 0 0 0 454 25 0 0 0 0 0 0 0 0 0 0 1
A8 0 0 0 0 0 0 46 430 0 0 0 0 0 0 0 0 0 0 4
A9 0 0 0 0 0 0 0 2 477 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 479 1 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 1 0 0 478 0 0 0 0 0 0 0 1
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 2 0 0 0 0 472 4 0 0 0 0 2
A14 0 0 0 0 0 0 0 1 0 0 0 0 0 477 0 0 0 0 2
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0
A19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 478

(f)

Table 4.7: Confusion matrices for (a) NB (96.6%), (b) DBC (94.8%), (c) GMM1

(99.1%), (d) GMM2 (99.0%), (e) GMM3 (98.9%), (f) GMM4 (98.8%) classifier in
PRTools for 10-fold cross validation.
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classified
true correct incorrect
A1 441 39
A2 435 45
A3 466 14
A4 463 17
A5 474 6
A6 470 10
A7 346 134
A8 368 112
A9 414 66
A10 422 58
A11 435 45
A12 462 18
A13 455 25
A14 476 4
A15 470 10
A16 465 15
A17 474 6
A18 453 27
A19 447 33

Table 4.8: Number of correctly and incorrectly classified motions out of 480 for ANN
classifier in PRTools (10-fold cross validation, 92.5%).

classification activities
techniques A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

WEKA

NB a a g e g g a a a a a e a p e g e g g
ANN e e g e e g g a g g g e g e e e e e g
SVM e e e e e e g a e e g e e e e e e e g

tree methods
NB-T g a g g g g a p a a a g a a g g g g a
J48-T g a g g g g p p a a a e a a g a g g g
RF-T g g g e g g a a g g g e g g g g e e g

PRTools

NB g g g g g g a a a a a e g g g g e g g
ANN a a g a g g p p a a a g g g g g g a a
DBC e g g g g g g g a g e e g g e e e e g

GMM

GMM1 e g g g g g g a g g e e g g e e e e g
GMM2 e g g g g g g a g g g e g g e e e e g
GMM3 e g g g g g g a g g g e g g e g e e g
GMM4 g g g g g g a a g g g e g g e e e e g

Table 4.9: The performances of classification techniques for distinguishing different
activity types (categorized as poor (p), average (a), good (g), and excellent (e)). These
results are deduced from confusion matrices given in Tables 4.6 and 4.7 according to
the number of feature vectors of a certain activity that the classifier correctly classifies
[poor (<400), average (in the range 400–459), good (in the range 460–479), excel-
lent (exactly 480)].
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4.4 Comparison of Machine Learning Environ-

ments

In comparing the two machine learning environments used in this study, algo-

rithms implemented in WEKA appear to be more robust to parameter changes

than PRTools. In addition, WEKA is easier to work with because of its graph-

ical user interface (GUI). The interface displays detailed descriptions of the al-

gorithms along with their references and parameters when needed. On the other

hand, PRTools does not have a GUI and the descriptions of the algorithms given

in the references are insufficient. However, PRTools is more compatible with

MATLAB. All in all, both software environments are very strong tools to be

used in pattern recognition.

The implementations of the same algorithm in WEKA and PRTools may

not be exactly the same. For instance, this is reflected by the difference in

correct differentiation rates obtained with NB and ANN classifiers. The higher

rates are achieved with NB implemented in PRTools because the distribution of

each feature is estimated using histograms. On the other hand, WEKA uses a

normal distribution to estimate probability density functions. Considering the

ANN classifier, PRTools does not allow the user to set values for the learning

and momentum constants which play a crucial role in updating the connection

weights. Therefore, the ANN implemented in PRTools is quite incompetent

compared with the one implemented in WEKA.

4.5 Previous Results

The results previously reported by our research group indicate that the best

method, given its high correct classification rate, relatively small pre-processing

and classification times, and storage requirements, is Bayesian decision making
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(BDM) [57]. In 10-fold cross-validation scheme, it has a rate of 99.2% which

slightly outperforms the GMM1 classifier with 0.1%. The rates obtained by using

ANN and SVM presented in this study are higher than the ones reported in [57].

Especially for L1O cross validation, the differences between the rates are around

3%. These differences arise both from the implementation of the algorithms and

the variation in the distribution of the feature vectors in the partitions obtained

using RRSS and 10-fold cross-validation schemes. The high rates provided by

BDM and GMM1 in these studies illustrate the high estimation efficiency of

multi-variate Gaussian models for activity recognition tasks. However, multi-

variate Gaussian models are not well-suited to situations where subject-based

L1O cross validation is employed. In such occasions where high generalization

accuracy is required, they need to be replaced with ANNs or SVM.

Although both of them are based on the Bayesian approach, there is consid-

erable difference between NB and BDM because of the independence assumption

embraced in the NB classifier. The average correct classification rates previously

reported by our group for BDM using RRSS and 10-fold cross-validation tech-

niques are 99.1% and 99.2%, respectively [57], whereas these rates drop to 96.5%

and 96.6% for NB in this study (Table 4.3). In L1O cross validation however,

75.8% rate achieved in BDM [57] is outperformed by NB with the rate 89.2%

(Table 4.3). It can be concluded that independent feature assumption works

better for subject-wise partitioning scheme.

4.6 Computational Considerations

The performances of the software environments and implemented classifiers are

compared in terms of their execution times. The master software MATLAB is

run on a computer with Pentium(R) Dual-Core CPU E520 at clock frequency of

2.50 GHz, 2.00 GB of RAM, and operated with Microsoft Windows XP Home
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Edition. Execution times for training and test steps corresponding to all classi-

fiers and both environments are provided in Table 4.10. These times are based

on the time it takes for the full L1O cross-validation cycle to be completed. In

other words, each classifier is run 8 times for all subjects and the total time of the

complete cycle for each classifier is recorded. Assuming that these classification

algorithms are used in a real-time system, it is desirable to keep the test times

at a minimum.

Considering WEKA, test times are misleading because apart from the time

consumed for calculating the correct differentiation rate, several other perfor-

mance criteria, such as various error parameters and confusion matrices, are

calculated during the test step and the time consumed for those calculations

are added to the total time given in Table 4.10. The actual test times should

be much shorter. In contrast, times concerning PRTools are quite consistent.

Therefore, it is not possible to compare these two environments in terms of their

classification speed.

Among the decision-tree methods, because they train a NB classifier for every

leaf node, NB-T have the longest training time whereas J48-T have the shortest.

There is hardly any difference between the test times of decision trees. Therefore,

taking its high correct classification rate into consideration, RF-T seems to be

the best decision-tree method. In WEKA particularly, tree methods perform

better than every other classifier in terms of test times.

In terms of the correct differentiation rates, ANN implemented in WEKA

and SVM are superior to the other classifiers. However, training and testing the

ANN and SVM takes much longer time than all other techniques but consid-

ering the rates obtained using these techniques for all cross-validation schemes,

they are the best techniques to be used. SVM classifier takes the most testing

time because it uses a Gaussian kernel for mapping and considers every possible

pairwise combination of classes during testing phase therefore, it seems better to
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prefer ANN instead of SVM. On the other hand, GMM1 with its short training

and test time requirements could be considered except for the L1O case. Con-

sidering L1O cross validation, the immediate choice would be the ANN or SVM

technique. DBC with its moderate correct classification rates and longest test

time is not to be preferred among the classifiers used in PRTools.

classification times (sec)
techniques training test

WEKA

NB 1.66 20.44
ANN 2416.00 4.50
SVM 355.32 2356.97

tree methods
NB-T 2610.90 2.65
J48-T 24.09 2.65
RF-T 57.47 2.80

PRTools

NB 0.68 0.48
ANN 547.77 0.44
DBC 98.55 1.41

GMM

GMM1 1.33 0.46
GMM2 161.70 0.58
GMM3 129.44 0.72
GMM4 118.02 1.06

Table 4.10: Execution times of training and test steps for all classification techniques
based on the full cycle of L1O cross-validation method and both environments.
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Chapter 5

Conclusion and Future Work

In this chapter, the main inferences drawn from this study are presented, the

potential application areas are mentioned, and possible future research directions

to be explored are discussed.

In this thesis, we presented the results of a comparative study where features

extracted from miniature inertial sensor and magnetometer signals are used for

classifying human activities. We compared a number of classification techniques

based on the same data set in terms of their correct differentiation rates, con-

fusion matrices, and computational costs. The algorithms of the classification

techniques compared are provided on two commonly used open source environ-

ments: WEKA and PRTools. The functionality and the manageability of these

two environments are also discussed.

In general, the ANN and SVM techniques implemented in WEKA are the

best choices in terms of classification performance; however, the computational

cost of these methods is very high. The rates achieved by the GMM1 technique

are very close to ANN and SVM classifiers except for the L1O cross-validation

scheme and this technique requires quite small computational time compared to

other classification techniques. Thus, the GMM technique also seems to be a
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suitable method for activity classification problems where it is appropriate to

model the feature space with multi-variate Gaussian distributions.

The magnetometer turns out to be the best type of sensor to be used in

classification whereas gyroscope is the least useful compared to the other sensor

types. However, it should be kept in mind that the absolute information that

magnetometer signals provide can be distorted by metal surfaces and magnetized

objects in the vicinity of the sensor. Considering location of the sensor units on

body, the sensors worn on the legs seem to provide most valuable information on

activities.

We implemented and compared a number of different cross-validation tech-

niques in this study. The correct classification rates obtained by subject-based

L1O cross validation are usually lower whereas the ones obtained by 10-fold cross

validation are usually the highest. Considering the satisfying correct differentia-

tion rates obtained with it, RRSS cross-validation technique has a disadvantage

that some feature vectors may never be used for testing, whereas other may be

used more than once. In 10-fold and L1O cross validation, all feature vectors are

used equally for both training and testing, and each feature vector is used for

testing exactly once.

To the best of our knowledge, positioning, number, and type of sensors has

not been much studied in the area of activity recognition. Typically, some con-

figuration, number, and modality of sensors is chosen and used without strong

justification. The comparative analysis provided in this thesis may guide the

researchers working in activity classification using body-worn sensors signals.

There are diverse applications in which the human activity monitoring and

classification techniques presented here can be utilized. An essential area of in-

terest could be home-based care and rehabilitation of elderly people; emergency

situations such as falls or changes in vital signs could be detected almost instantly.
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Proper performance of daily physical therapy exercises assigned, for example, af-

ter a surgery can be remotely monitored and feedback can be provided. Similarly,

remote monitoring of people with physical or mental disabilities, and children at

home, school, or in the neighborhood could be done.

Another potential area that is related to health is medical diagnosis where

these techniques can be employed to diagnose a patient and proper treatment

can be immediately applied. In order to achieve this, some additional sensors

could be necessary.

Similarly, these techniques can be used in the area of physical education,

training and sports, and dance to guide the individual to improve his/her skills

and prevent injury. In animation and film making, the sensors used in this study

can be used in complementary fashion with cameras to develop realistic animated

models.

In entertainment, video games could be much more realistic and appealing

with wearable inertial sensors integrated into the game in which these classifi-

cation techniques are embedded for recognizing the moves made by the player.

There are some simple games with this capability however rather complex moves

could be possible in the game if these techniques are used.

Today’s advanced cell phone industry has many opportunities as well. These

devices are carried by almost everyone during the day. It would be quite beneficial

to develop an application for an iPhone to monitor the daily activities that are

performed by the individual. An iPhone seems to be the best candidate since

it has an embedded 3D inertial sensors (gyroscopes and accelerometers) and

developing an application for this device is quite common. It is possible to

perform classification of activities instantly, once the individual is instructed on

where to locate the device on the body.
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There are several future research problems to investigate in activity recogni-

tion and classification:

An activity recognition system should be able to recognize and classify as

many activities as possible while maintaining the performance already achieved;

therefore, a broader activity spectrum is a necessity. In addition, a further set of

unclassified activities should be taken into account to prevent the system from

making an incorrect decision and that requires a separate class of unexpected

activities to be defined to the classifiers. In order to define such a class of activ-

ities, each activity that is already defined to the system needs to be normalized

and should have certain boundaries in the feature space. However, this requires

an extensive study because, for example, different individuals perform the same

activities in a different way.

Fall detection and classification is another research area that has not been

sufficiently well investigated [22], due to the difficulty of performing realistic

experiments in this area [13]. There is no standard definition of falls and a

systematic technique for detecting them does not exist. As the average age of

population increases, it seems vital to develop such definitions and techniques as

soon as possible [20].

An aspect that could be further investigated is the sensor-feature relevance.

In most of the activity recognition studies, it is desired to feed the classifiers with

the most informative and discriminative features. Especially, in the case of fusing

several types of sensors, each sensor type could be associated with particular set

of features that are the most discriminative in terms of classifying activities.

Considering the sensors used in these systems, all of the potential applications

mentioned and our study itself suggest the need for a systematic framework

for optimizing the number, positioning, and type of sensors used in activity
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recognition. Otherwise, it is quite difficult to apply the techniques that are

proposed to a real-time system.

56



Bibliography

[1] Xsens Technologies B.V., Enschede, Holland, MTi and MTx User Manual

and Technical Documentation, 2009. http://www.xsens.com.

[2] I. J. Cox and G. T. Wilfong, ed., Autonomous Robot Vehicles. New York:

Springer-Verlag, 1990. Section on Inertial Navigation edited by M. M. Ku-

ritsky, and M. S. Goldstein.

[3] D. A. Mackenzie, Inventing Accuracy: A Historical Sociology of Nuclear

Missile Guidance. Cambridge, MA: MIT Press, 1990.

[4] B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems for

mobile robots,” IEEE Transactions on Robotics and Automation, vol. 11,

pp. 328–342, June 1995.

[5] B. Barshan and H. F. Durrant-Whyte, “Evaluation of a solid-state gyroscope

for robotics applications,” IEEE Transactions on Instrumentation and Mea-

surement, vol. 44, pp. 61–67, February 1995.

[6] C.-W. Tan and S. Park, “Design of accelerometer-based inertial navigation

systems,” IEEE Transactions on Instrumentation and Measurement, vol. 54,

pp. 2520–2530, December 2005.

[7] J. G. Nichol, S. P. N. Singh, K. J. Waldron, L. R. Palmer, III, and D. E. Orin,

“System design of a quadrupedal galloping machine,” International Journal

of Robotics Research, vol. 23, pp. 1013–1027, October-November 2004.

57

http://www.xsens.com


[8] P.-C. Lin, H. Komsuoglu, and D. E. Koditschek, “Sensor data fusion for

body state estimation in a hexapod robot with dynamical gaits,” IEEE

Transactions on Robotics, vol. 22, pp. 932–943, October 2006.

[9] W. T. Ang, P. K. Khosla, and C. N. Riviere, “Design of all-accelerometer

inertial measurement unit for tremor sensing in hand-held microsurgical

instrument,” in Proceedings of IEEE International Conference on Robotics

and Automation, vol. 2, (Tapei, Taiwan), pp. 1781–1786, 14–19 September

2003.

[10] W. T. Ang, P. K. Pradeep, and C. N. Riviere, “Active tremor compensation

in microsurgery,” in Proceedings of the 26th Annual International Confer-

ence of the IEEE Engineering in Medicine and Biology Society, vol. 1, (San

Francisco, CA), pp. 2738–2741, 1–5 September 2004.

[11] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology.

U.K.: IEE, 2nd ed., 2004.

[12] W. Zijlstra and K. Aminian, “Mobility assessment in older people: new

possibilities and challenges,” European Journal of Ageing, vol. 4, pp. 3–12,

March 2007.

[13] M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler, “Accelerom-

etry: providing an integrated, practical method for long-term, ambula-

tory monitoring of human movement,” Physiological Measurement, vol. 25,

pp. R1–R20, April 2004.

[14] W. Y. Wong, M. S. Wong, and K. H. Lo, “Clinical applications of sen-

sors for human posture and movement analysis: A review,” Prosthetics and

Orthotics International, vol. 31, pp. 62–75, March 2007.

[15] A. M. Sabatini, Inertial sensing in biomechanics: a survey of computational

techniques bridging motion analysis and personal navigation, pp. 70–100.

58



Computational Intelligence for Movement Sciences: Neural Networks and

Other Emerging Techniques, Idea Group Publishing, 2006.
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