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Dounreay Nuclear Establishment (Figure 1), northern Caithness, Scotland (Figure 3A and B) was established in the mid | |Section Il - Geological Modelling of Rockhead and Bedrock o
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1950's on a disused Second World War airfield” as the United Kingdom Government’s Prototype Fast Reactor and | | A land surface model was created by combining the site Digital Elevation Model (DEM), side-radar survey
experimental research laboratories. The Prototype Fast Reactor used Uranium to produce energy and in the process | |data, DGPS points and, for the sea floor, side-scan sonar bathymetry data. Arockhead horizon was created | | ol
created Plutonium, which could be recycled and used to produce more energy.” Three reactors were built at Dounreay with | | using a combination of well tops and DGPS measured points from excavations across the site and the
the last ceasing operation in 1994.° By the late 1990's site decommissioning and clean-up had begun.” The Nuclear | |interpolated depth of the superficial deposits. = :
Decommissioning Authority (NDA) took ownership of Dounreay in 2007 with decommissioning to be completed by 2025 at | | The cyclicity of the bedrock enables a reference stratigraphy to be established, based on the presence of the| ~ | a N ~
an estimated cost of £2,228.6 million.’ Due to the experimental nature of the Dounreay site and the variable nature of its | |distinctive Aunit, with each cycle numbered sequentially, upwards from the base of the Bighouse Formation.
geology, the decommissioning and clean-up is recognised internationally as one of the most complex in the world.’ 211 boreholes have been logged to this reference stratigraphy and are used in the creation of the bedrock
model. The vertical thickness of each cycle shows minimal variation within the upper Dounreay Shore and| | o : | ] |
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such a complex geological terrains. The boundary between the bedrock and superficial deposits, and fracture Dounreay Shore and upper Crosskirk Bay formations. _ _ _ The base of cycles 20to 40 was created
networks within the bedrock can have a considerable impact on the rate and direction of transport of radionuclide The fault model was created using mterpret_ed faul_t centre Il_nes which were draped over the elevation with a flat surface in each fault block
particles. Consequently, an understanding of the bedrock-superficial boundary and the nature of how fractures and | |Model. These where then projected at a uniform dip and azimuth recorded from coastal €xposures or, | 1o\ which was moved and rotated until a
g faults influence and control the transport of fluids is of key concern. where no data were available, the average dips of similar exposed faults exposed on the coastwere used. | ﬁ bestvisual fitwas achieved between the
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The Quaternary of Dounreay area comprise tills, glaciofluvial sands| |- | e Caeien| N simugtion s poorly constrained faultblocks . 4 Three fracture sets have been identified (Figure 7). The first two sets of
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