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ABSTRACT 

 

IDENTIFICATION OF ATP8A2 GENE MUTATION IN A 

CONSANGUINEOUS FAMILY SEGREGATING 

CEREBELLAR ATROPHY AND QUADRUPEDAL GAIT 

 

Onur Emre Onat 

Ph.D. in Molecular Biology and Genetics 

Supervisor: Prof. Dr. Tayfun Özçelik 

December, 2012 

 

 

Cerebellar ataxia, mental retardation, and dysequilibrium syndrome is a rare and 

heterogeneous neurodevelopmental disorder characterized by cerebellar atrophy, 

dysarthric speech, and quadrupedal locomotion. Here, a consanguineous family with 

four affected individuals which suggest an autosomal recessive inheritance was 

investigated. Homozygosity mapping analysis using high-resolution genotyping arrays 

in two affected individuals revealed four shared homozygous regions on 13q12, 

19p13.3, 19q13.2, and 20q12. Target enrichment and next-generation sequencing of 

these regions in an affected individual was uncovered 11 novel protein altering variants 

which were filtered against dbSNP132 and 1000 genomes databases.  Further 

population filtering using personal genome databases and previous exome sequencing 

datasets, segregation analysis, geographically-matched population screening, and 

prediction approaches revealed a novel missense mutation, p.I376M, in ATP8A2 

segregated with the phenotype in the family. The mutation resides in a highly 

conserved C-terminal transmembrane region of E1-E2 ATPase domain. ATP8A2 is 

mainly expressed in brain, in particular with the highest levels at cerebellum which is 

a crucial organ for motor coordination. Mice deficient with Atp8a2 revealed impaired 

axonal transport in the motor neurons associated with severe cerebellar ataxia and body 

tremors. Recently, an unrelated individual with a de novo t(10;13) balanced 

translocation whose one of the ATP8A2 allele was disrupted has been identified. This 

patient shares similar neurological phenotypes including severe mental retardation and 

hypotonia. These findings suggest a role for ATP8A2 in the neurodevelopment, 

especially in the development of cerebro-cerebellar structures required for posture and 

gait in humans. 

 

Keywords: Quadrupedal locomotion, CAMRQ, cerebellar atrophy, next-generation 

sequencing, ATP8A2. 
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ÖZET 

 

EL AYAK ÜZERİNDE YÜRÜYÜŞ VE SEREBELLAR ATROFİ  

AKTARILAN AKRABA EVLİLİĞİ YAPMIŞ BİR AİLEDE 

ATP8A2 GEN MUTASYONU SAPTANMASI 

 

Onur Emre Onat 

Moleküler Biyoloji ve Genetik, Doktora 

Tez Yöneticisi: Prof. Dr. Tayfun Özçelik 

Aralık, 2012 

 

 

Serebellar ataksi, mental retardasyon ve dengesizlik sendromu, serebellar atrofi, 

dizartirik konuşma ve el ayak üzerinde yürüme ile tanımlanan nadir heterojen bir sinir-

gelişimsel hastalıktır. Burada, hastalığın otozomal resesif olarak aktarıldığı bir ailede, 

ebeveynleri arasında akraba evliliği bulunan etkilenmiş dört bireyin durumu 

tanımlanmıştır. Etkilenmiş iki bireyde yüksek çözünürlüklü genotipleme yöntemi ile 

yapılan homozigotluk haritalaması sonucu 13q12, 19p13.3, 19q13.2 ve 20q12 

üzerinde dört adet ortak homozigot bölge tespit edilmiştir. Bu bölgelerin etkilenmiş 

bir bireyde hedefe yönelik yeni nesil dizilemesi sonucu bulunan varyantlar, 

“dbSNP132” ve “1000 genomes” veri tabanlarında filtrelenmiş ve 11 adet yeni protein 

yapısını değiştiren varyant belirlenmiştir. Bu varyantların, kişisel genom veri 

tabanlarında ve eksom dizileme veri setlerinde filtrelenmesi, segregasyon analizi, aynı 

bölgeden bireylerde toplum taraması ve öngörü yaklaşımları ile elenmesi sonucu 

olarak, ailede hastalığın kalıtımı ile uygun ATP8A2 üzerinde yeni bir yanlış anlam 

mutasyonu, p.I376M, ortaya çıkmıştır. Mutasyon E1-E2 ATPaz etki alanında evrimsel 

olarak son derece korunmuş C-terminal transmembran bölgesinde yer almaktadır. 

ATP8A2 en çok beyinde ifade edilir, özellikle motor koordinasyondan sorumlu 

serebellumda en yüksek seviyededir. Atp8a2 geni eksik farelerde motor nöronlarda 

bozuk aksonal transporttan kaynaklı ciddi serebellar ataksi ve vücut titremesi 

görülmüştür. Yakın zamanlarda, t(10;13) dengeli translokasyon taşıyan alakasız bir 

bireyin ATP8A2 bozulması sonucu ciddi mental retardasyon ve hipotoni gibi benzer 

nörolojik fenotipleri taşıdığı gösterilmiştir. Bu bulgular, insanlarda duruş ve yürüyüş 

için gereken serebro-serebellar yapıların gelişmesinde ATP8A2’nin bir rolü olduğunu 

düşündürmektedir.  

 

Ahahtar Sözcükler: ATP8A2, serebellar hipoplazi, hedefe yönelik yeni nesil dizileme, 

el ayak üzerinde yürüme, CAMRQ 
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Chapter 1 

Introduction 

1.1 Quadrupedal Locomotion in Humans 

Quadrupedalism is the form of locomotion of the majority of vertebrates and 

mammals. It uses limbs and legs. Bipedalism is the fundamental adaptation of 

hominids which separate them from other primates. However, bipedal gait including 

long-distance walking and running is one of the key characteristics of humans.[1-3] 

Actually, humans begin life with crawling on all fours but do not retain quadrupedal 

gait and continue life with up-right posture.[2, 4] The origin of human bipedalism is 

still on debate since its genetic background is poorly understood, but a century of 

research of fossil and comparative anatomy studies give valuable information about 

the development of the bipedal locomotion.[1-6]    

 

Bipedal walking in humans is controlled by central nervous system which 

transmits the signals to peripheral nervous system.[7] Detailed functional analysis of 

the brain regions revealed that cerebellum, cerebral cortex, occipital cortex, and basal 

ganglia are the crucial parts in controlling locomotion.[8] Especially, recent studies on 
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cerebellar disorders revealed that cerebellum has a particular role in controlling motor 

movements and balance in humans.[9, 10]  

1.2 Cerebellum and Motor Coordinates 

1.2.1 Function of the cerebellum 

The cerebellum is a brain region involved in motor control. Lesions in cerebellum are 

associated with loss of coordination (asynergia), drunk-like movement (ataxia), 

inability to perform rapid movements (adiadochokinesia), poor articulation 

(dysarthria), movement tremors (intention tremor), inability to decide when to stop 

(dysmetria), weak muscle tone (hypotonia), and abnormal eye movement 

(nystagmus).[11]   

 

 The role of cerebellum in cognitive functions such as articulation, emotion, and 

mental behavior has not been elucidated yet. The evidence underlying the causes of 

the cognitive function of the cerebellum comes from the anatomical investigations, 

clinical manifestation of the cerebellar disorders, and functional neuroimaging 

approaches, but genetic evidence is still missing.[12] Recent improvements in brain 

imaging techniques, genetics, and mouse genomics have provided identification of 

many genes involved in cerebellar malformations which in turn provided information 

about the function of the cerebellum.[13]  

 

 The strongest clues about the function of the cerebellum have come from 

animals and humans with cerebellar dysfunction. The essential role of the cerebellum 

is the coordinating motor movements such as typing, running, and talking. Patients 

with completely damaged or loss of the cerebellum continue to generate motor 

movements but they loses precision, coordination, and accurate timing.[14]  

 



3 

 

 The cerebellum functionally locates between the central nervous system (CNS) 

and peripheral nervous system (PNS). The PNS connects the CNS with the rest of the 

body by network of nerves. The input signals from the sensory organs unite with the 

input signals from the motor pathways.[15] These inputs transmitted to the CNS via 

sensory pathways and to muscles and glands via motor pathways. The signals from 

various parts of the spinal cord and brain integrated to the cerebellum via spinal and 

cranial nerves, respectively. Cerebellum analyzes these inputs, corrects mismatches 

between predicted and actual movements, calculates timing, and decides the action 

quickly.[16] These predictions are learnt according to past experiences which is called 

motor learning.[17] There are some evidence that the cerebellum participates in some 

types of motor learning with basal ganglia and cerebral cortex.[18] Cerebellum also 

helps to motor cortex in planning the next movement while controlling a motor 

movement.[19] 

1.2.2 Anatomy of the cerebellum and pathology characteristics  

The cerebellum constitutes 10% of the total volume of the brain locating at the bottom 

between the cerebral cortex and pons which is the part of brainstem.[20] It is separated 

from the cerebrum by a layer called dura mater. More than half of all neurons reside 

at the cerebellum with a regular repeating manner because of the presence of the 

granule cells. Cerebellum is divided into several distinct regions (Figure 1.1). First, it 

is divided into two hemispheres each of which divided into intermediate and lateral 

regions where vermis located at the middle line. According to its standing position, 

cerebellum classified in three regions: the anterior (front), posterior (behind) , and 

flocculonoduler lobes.[21]  

 

 The volume of the cerebellum is occupied by gray matter, also called the 

cerebral cortex at the outside, the internal white matter, and the deep nuclei. The gray 

and white matters are made up myelinated nerve fibers and the deep nucleus is 

composed of branched nerve bodies. The cerebellar output originates from the deep 

nuclei and is transmitted to white and gray matter.[22]  
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 The cerebellum coordinates motor functions at three levels: 

vestibulocerebellum, spinocerebellum, and cerebrocerebellum (Figure 1.1). 

Vestibulocerebellum consist of flocculonoduler lobes and a small portion of the 

vermis. Evolutionary it is the oldest part of the cerebellum. This region plays a role in 

the coordination of the balance of the movements with the help of vestibular system 

and also in the eye movements.[22] The spinocerebellum composed of most portions 

of the vermis and medial zone of the anterior and posterior lobes. This region involves 

in the coordination of the movements at the distal part of the body, especially hands 

and fingers. It receives input signals from the spinal cord, visual and auditory systems 

and transmits these signals to the cerebral cortex and brainstem. The 

cerebrocerebellum is the largest functional part including the both hemispheres and it 

provides connection with the cerebral motor cortex and cerebrum. The input signals 

from the motor and sensory pathways are received by cerebrocerebellum and the 

output signals are transmitted back to the ventrolateral thalamus and red nuclei where 

the cerebellum functions in the planning and coordination of the sequential voluntary 

movements.[19, 20]   

1.2.3 Cellular components of the cerebellum and neuronal circuits 

At cellular level cerebellum composed of three types of neuronal cells which are 

Purkinje, granule and deep nuclei cells and three types of axon fibers which are mossy, 

climbing and parallel fibers.  

1.2.3.1 Purkinje cells 

Purkinje cells are evolutionary the earliest cell types and are packed in the cerebral 

cortex, called Purkinje layer. These cells are one of the largest neurons in the human 

brain composed of dendritic bodies which are branched perpendicular to the cerebellar 

folds. These dendrites receive signals from the fibers which then travel into the deep 

cerebellar nuclei via axons.[23]  
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Figure 1.1: Schematic representation of the major functional and anatomical divisions 

of the cerebellum 

 

 

Purkinje cells are at the heart of cerebellar circuits connected with two layers. 

The dendrites of the Purkinje cells reach to the cerebellar nuclei through parallel fibers 

and to the inferior olivary nucleus through climbing fibers. They send inhibitory 

(GABAergic) signals to the deep nuclei to provide motor coordination in the cerebral 

cortex.[23] 

1.2.3.2 Granule cells 

Granule cells are the smallest but the most numerous neurons in the brain. They 

account for the half of the neurons in the CNS. These cells are packed at the bottom of 
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the cerebral cortex forming the dendritic claw. These dendritic claws receive excitatory 

signals from the mossy fibers originating at the pontei nuclei and inhibitory signals 

from the Golgi cells. The axons of the granule cells reach to the upper layer of the 

cerebral cortex and split into parallel fibers through dendritic bodies of the Purkinje 

cells. At this level, granule cells and the Purkinje cells contact each other at every 3-5 

parallel fibers forming synapses using glutamate as a neurotransmitter so it is 

excitatory.[22] These parallel fibers of the granule cells fire synchronization which 

results in the only excitatory signals present in the cortex. The synapse between 

Purkinje cells and granule cells has a role in motor learning.[24] 

1.2.3.3 Deep nuclei 

The deep nucleus is the center of the output signals from the cerebellum that resides at 

the core region within the gray matter. It consists of three nuclei: dentate nucleus 

communicates with the lateral parts of the cerebellar cortex; interpositus and fastigial 

nuclei communicate with the spinocerebellum. The neurons at the deep nuclei have 

large cell bodies and dendrites. Most of them use glutamate neurotransmitter which 

target several regions outside the cerebellum. A little portion of the neurons use GABA 

neurotransmitter and target the olivary nucleus which is the source of climbing 

fibers.[21] 

 

 The deep nuclei always receive excitatory signals from mossy and climbing 

fiber pathways and inhibitory signals from Purkinje cells in the cerebellar cortex. The 

deep nuclei inhibited by the Purkinje cells when the motor cortex is activated after a 

short delay with a negative feedback signal which prevent the overreaction and 

oscillation of the muscles.[23]  

1.2.3.4 Mossy fibers 

Mossy fibers are the major inputs to the cerebellum. They originate from many 

regions: most of them from pontei nuclei of the cerebral cortex and remaining fibers 

from vestibular nuclei, spinal cord, reticular formation, and the deep nuclei. These 



7 

 

fibers make synapses with the dendritic claws of the granule cells at the deep nuclei 

forming fiber rosettes within the structures called glomeruli. Mossy fibers function in 

the sensory pathway by transmitting the information from pontine nuclei to the granule 

cells, which is then transmitted to the Purkinje cells through the parallel fibers.[23]  

1.2.3.5 Climbing fibers 

Climbing fibers are the neuronal projections that transmit signals from inferior olivary 

nucleus to the brainstem. A climbing fiber emerging from the olivary nucleus passes 

through pons and enters the cerebellum. Then it forms synapses with the deep 

cerebellar nuclei and Purkinje cells. During the development of the cerebellum the 

Purkinje cells are surrounded by several climbing fibers which are then eliminated as 

the cerebellum matures resulting in a single powerful climbing fiber. In this way they 

function in the motor coordination, especially in timing.[23]  

1.2.3.6 Neuronal circuits of the cerebellum 

In summary, Purkinje cells and the deep nuclei are the major functional units of the 

cerebellum. They receive input signals from motor and sensory pathways. Motor 

signals activate deep nuclei which adjust the movement by increasing and decreasing 

the signal. The sensory signals activated with the movement and the resulting output 

signals reach the Purkinje cells and are corrected if wrong by negative feedback 

(Figure 1.2).  

 

 The cerebellum receives input motor signals from several parts of the brain 

using four tracts: the corticopontocerebella, olivocerebellar, vestibulocerebellar, and 

reticulocerebellar tracts. The sensory signals from the peripheral body regions enter to 

the cerebellum by using dorsal and ventral spinocerebellar tracts. These 

spinocerebellar tracts are the ones where the most rapid signal conduction since rapid 

cerebellar response to rapid muscle movements occurs via these tracts. 
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Figure 1.2: Neuronal circuits and cellular components of the cerebellum. 
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1.3 Cerebellar Dysfunction and Ataxia 

There are several diseases involving dysfunction of the cerebellum and producing 

ataxia. The clinical symptoms of the ataxic motor syndromes involve body 

disequilibrium, uncoordinated movement, tremor, dysarthria, extremity and eye 

movements. A small proportion of the diseases with cerebellar lesion do not result in 

ataxia. Patients with the cerebellar cognitive affective syndrome (CCAS) have defects 

in executive, visual, and linguistic abilities.[25]  

 

 The lesions on the different regions of the cerebellum have distinct 

consequences. Patients with cerebellar lesions without any damage to the central core 

of the cerebellum, which is called deep nuclei, can still perform motor functions but in 

slow rate. [21] The dysfunction of the vestibulocerebellum results in impairment in the 

balance and the eye control. The dysfunction of the spinocerebellum including vermis 

results in truncal ataxia which is drunk-like movement. The dysfunction of the 

cerebrocerebellum results in appendicular ataxia which is the inability to achieve 

voluntary and planned movements. These patients represent intention tremor, 

dysarthria, dysdiadochokinesia, and dysmetria.[25]   

 

 The cerebellar ataxias are a very diverse group of disorders according to the 

clinical representation and causes. The ataxic disorders caused by cerebellar 

dysfunction divided into three groups. First group involves acquired ataxias which are 

mostly caused by stroke, trauma, and intoxication such as alcohol induced 

degeneration, radiation poisoning, and vitamin B12 deficiency.[26] The second group 

is degenerative ataxias, which are caused by de novo mutations, including idiopathic 

late onset cerebellar ataxia (ILOCA) and multiple system atrophy (MSA).[27] The last 

group consists of the hereditary ataxias caused by genetic mutations segregated in the 

family with Mendelian inheritance. Hereditary ataxias include autosomal dominant 

cerebellar ataxias such as episodic ataxias and spinocerebellar ataxias; autosomal 

recessive cerebellar ataxias such as Friedreich’s ataxia, ataxia telangiectasia, and 
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Niemann Pick disease; and X-linked cerebellar ataxias such as fragile X-associated 

tremor/ataxia syndrome.[26]   

 

 The genetic ataxias are both genetically and phenotypically heterogeneous 

where they can be caused by mutations in several different genes or different mutations 

in the same gene can cause different phenotypes.[26]  

1.4 Autosomal Recessive Cerebellar Ataxias 

Autosomal recessive cerebellar ataxias are neurodegenerative diseases. Most of them 

are heterogeneous with respect to age of onset, severity, and the frequency of the 

disease. They are associated with both CNS and PNS. Several autosomal recessive 

cerebellar ataxia disorders may have the same phenotype, whereas mutations in the 

same genes may lead to distinct phenotype such as frataxin (FXN), polymerase gamma 

(POLG), aprataxin (APTX), ataxia telangiectasia (ATM) or senataxin (SETX).[10] 

Therefore, the clinical classification is still remains controversial. 

 

 Palau and Espinos classified autosomal recessive cerebellar ataxias in four 

groups depending on the molecular mechanism as congenital and developmental 

ataxias, metabolic ataxias, , degenerative and progressive ataxias, ataxias due to DNA 

repair defects.[9] The examples of these subgroups are described in Table 1.1 

1.5 Cerebellar Ataxia, Mental Retardation, and Disequilibrium 

Syndrome 

Cerebellar ataxia, mental retardation, and disequilibrium syndrome (CAMRQ) is a 

genetically heterogeneous disorder characterized by cerebellar atrophy, mental 

retardation, dysarthric speech, and hypotonia with or without quadrupedal gait.  
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Table 1.1: Classification of the most common autosomal recessive ataxia syndromes. 

Adopted from Palau and Espinós (2006).[9] 

 

Classification Gene Locus 

Congenital ataxias   

Joubert syndrome JBTS4 NPHP1 2q13 

Cayman ataxia ATCAY 19p13.3 

Metabolic ataxias   

Ataxia with isolated vitamin E deficiency α-TTP 8q13 

Refsum disease PhyH 10pter-p11.2 

DNA repair defects   

Spinocerebellar ataxia with axonal neuropathy TDP1 14q31 

Ataxia with oculomotor apraxia 1 APTX 9p13 

Ataxia telangiectasia ATM 11q22.3 

Xeroderma Pigmentosum A XPA 9q22.3 

Degenerative ataxias   

Infantile onset spinocerebellar ataxia C10orf2 10q22.3-q24.1 

Charlevoix-Saguenay spastic ataxia SACS 13q12 

Friedreich’s ataxia  FXN 9q13 

Marinesco-Sjögren syndrome SIL1 5q32 

 

 

 

1.5.1 Genetic heterogeneity 

This form of ataxia is first described by Tan in a large consanguineous family in 

Turkey.[28] Since then multiple consanguineous families with CAMRQ syndrome 

with autosomal recessive inheritance have been reported. Genetic analysis revealed a 

genetically heterogeneous condition (Figure 1.3).  

 

 The first locus of CAMRQ was mapped on the locus 17p13 and a missense 

mutation was reported on WDR81 (WD repeat domain 81) [CAMRQ2; MIM: 610185; 

also referred to as Uner Tan syndrome].[29-31] VLDLR (very low-density lipoprotein 

receptor) is the first gene identified as a cause of CAMRQ syndrome [CAMRQ1; 
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MIM: 224050] by using linkage mapping followed by candidate gene sequencing.[31-

34] Furthermore, CA8 (Carbonic anhydrase VIII) gene [CAMRQ3; MIM: 613227] 

identified in another consanguineous family using the same methodology.[35]   

1.5.1.1 Very low-density lipoprotein receptor 

VLDLR has a role in the neural positioning in the cortical brain and neuronal migration 

by forming complex with reelin (RELN), apolipoprotein E receptor 2 (APOER2), and 

the adaptor protein, disabled, drosophila, homolog of 1 (DAB1) [36], which regulates 

Purkinje cell alignment in the cerebellum.[37] RELN is responsible for Lissencephaly 

2 which is associated with cerebellum, hippocampus, and brainstem abnormalities 

[LIS2; MIM: 257320].[38] Mice knock-outs of reelin represent ataxic gait and 

trembling [38], whereas mice knock-outs of VLDLR appear normal with small 

cerebellum.[36] 

 

In humans VLDR is first identified in the North American Hutterite population 

as a cause of Disequilibrium syndrome [DES-H, MIM: 224050] with truncal ataxia, 

mental retardation, delayed ambulation, and cerebral gyral simplification (Table 

1.2).[39] However, none of the disequilibrium syndromes including DES-H have been 

characterized with quadrupedal gait in the literature.[32] VLDLR is the first gene 

reported by our group as responsible for CAMRQ1 with quadrupedal locomotion in 

two unrelated consanguineous Turkish families. During the course, two additional 

families with CAMRQ1 with VLDLR mutation identified (Figure 1.3). 

 

 Family A is a consanguineous family from southeastern Turkey with seven 

affected individuals (Figure 1.4) and Family D is another consanguineous family from 

western Turkey with three affected individuals (Figure 1.5).[32, 40] Family A and D 

have distinct clinical characteristics (Table 1.2). Genome wide linkage analysis in the 

family linked the disease locus at chromosomal locus 9p24.2. Following candidate 

gene sequencing identified a nonsense mutation (p.R257X) and a single nucleotide 

deletion (c.2339delT) in VLDLR gene in Family A and D, respectively.[32]  
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Figure 1.3: Genetic heterogeneity in CAMRQ. Four different loci identified in seven 

families with CAMRQ, so far. The candidate gene research furthers for two more 

families (represented on top). The genes carrying the causal mutations were shown at 

the bottom.  
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Table 1.2: Clinical characteristics of the families with VLDLR deficiency 

 

 Family A Family D DES-H 

Locus 9p24 9p24 9p24 

Gene VLDLR VLDLR VLDLR 

Gait Quadrupedal Quadrupedal Bipedal 

Mental retardation Profound Profound Moderate to profound 

Inferior cerebellum Hypoplasia Hypoplasia Hypoplasia 

Hypotonia Absent Absent Present 

Speech Dysarthric Dysarthric Dysarthric 

Corpus callosum Normal Normal Normal 

Barany caloric nystagmus Normal Not done Not done 

Tremor Very Present Absent 

Cortical gyri Mild simplification Mild simplification Mild simplification 

Ambulation Delayed Delayed Delayed 

Inferior vermis Absent Absent Absent 

Seizures Very rare Absent Various degree 

Strabismus Present Present Present 

Truncal ataxia Severe Severe Severe 

Upper extremity reflexes Vivid Vivid Vivid 

Lower leg reflexes Hyperactive Hyperactive Hyperactive 

Pes-planus Present Present Present 

 

 

Furthermore, in recent studies, VLDLR was found to be associated with very 

similar phenotypes. Another consanguineous family from Iran with eight affected 

individuals with a homozygous truncating mutation in the VLDLR gene (p.R448X) 

represents a phenotype with cerebellar ataxia, disturbed equilibrium, strabismus, and 

short stature.[33] In addition, a 21-kb long homozygous deletion in the VLDR gene is 

reported in unrelated consanguineous Turkish family with two affected sibs who had 

delayed psychomotor development, cerebellar atrophy, speech delay, severely ataxic 

bipedal gait, dysarthria, dysmetria, dysdiadochokinesis, and hyperreflexia.[34] 
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Figure 1.4: Pedigree of the Family A. Seven individuals in the consanguineous Turkish 

family are affected by CAMRQ1. 

 

 

 

 

 

 

 

Figure 1.5: Pedigree of the Family D. Three individuals in the consanguineous Turkish 

family are affected by CAMRQ1. 
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1.5.1.2 Carbonic anhydrase VIII 

CA8 gene encodes carbonic anhydrase VIII which binds to inositol 1,4,5-triphosphate 

(IP3) receptor, type 1 (ITPR1). Mutations in the ITPR1 is responsible for autosomal 

dominant spinocerebellar ataxia 15 [SCA15; MIM 606658] in humans.[41] CA8 

inhibits binding of IP3 to ITPR1 which inhibits calcium release from the endoplasmic 

reticulum.[42] Mice deficient with both Ip3r1 and Ca8 represents ataxia but not 

cerebellar atrophy.[43]  

 

 In humans, homozygous mutation (S100P) in CA8 gene detected by genome-

wide linkage analysis and following candidate gene sequencing reported as the cause 

of CAMRQ3 in a consanguineous Iraqi family with four affected sibs. All of the 

patients represent quadrupedal gait, ataxia and mild mental retardation.[35] Another 

missense mutation in CA8 was detected by using homozygosity mapping followed by 

exon sequencing in an unrelated consanguineous family with CAMRQ3 in four 

affected individuals.[44]  

1.5.1.3 WD repeat domain 81 

Family B is the first consanguineous family in the literature with quadrupedal gait 

(Figure 1.6). The family lives in the southeastern Turkey and consists of six affected 

sibs with cerebellar hypoplasia, dysarthric speech, mental retardation, truncal ataxia 

and quadrupedal locomotion (Table 1.3).[28]  

 

 The disease locus was mapped to chromosomal region 17p13 by linkage 

analysis [32]. Homozygosity mapping of the affected individuals broaden the region 

and following targeted next generation sequencing revealed a homozygous missense 

mutation (p.P856L) at WDR81 gene segregated with the autosomal recessive 

inheritance of the family.[29] The analysis of multiple brain regions of the affected 

individuals using Magnetic Resonance Imaging (MRI) revealed cerebellar atrophy and 

abnormalities in corpus callosum, precentral gyrus, and Brodmann areas.[29] 
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Figure 1.6: Pedigree of the Family B. Six of the 19 sibs of a first cousin marriage are 

affected by CAMRQ2. 

 

 

 

 WDR81 was a predicted uncharacterized gene with unknown function. In a 

very recent study, Gulsuner et al. (2011) stated that the WDR81 encodes a 

uncharacterized protein which is predicted to be a membrane-spaning transmembrane 

protein with six domains.[29] WDR81 expression is analyzed in different parts of the 

brain regions and the highest level of expression is detected in the cerebellum and 

corpus callosum. Analysis of the expression profiles of the mouse embryos using 

published expression datasets revealed that mouse Wdr81 is detected at the Purkinje 

cells in the cerebellum. Functional clustering analysis of the genes which are 

coexpressed with the Wdr81 revealed that these genes are especieally enriched in 

neurodevelopmental processes including neuronal differentiation, axonogenesis, and 

cell morphogenesis.[29] This suggested a role of WDR81 in nervous system 

development. 
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Table 1.3: Clinical characteristics of the family with WDR81 deficiency. 

 Family B 

Locus 17p13 

Gene WDR81 

Gait Quadrupedal 

Mental retardation Severe to profound 

Inferior cerebellum Hypoplasia 

Hypotonia Absent 

Speech Dysarthric 

Corpus callosum Reduced 

Ambulation Delayed 

Truncal ataxia Severe 

Upper extremity reflexes Vivid 

Tremor rare 

Pes-planus Present 

Strabismus Present 

Seizures Rare 

Barany caloric nystagmus Cvs defect 

Lower leg reflexes Hyperactive 

Inferior vermis Absent 

Cortical gyri Mild simplification 

 

 

 

1.6 Gene Identification in Mendelian Disorders 

The human genome consists of thousands of genes and finding a particular gene 

responsible for a given phenotype is literally defined as “needles in stacks of 

needles”.[45] Traditionally, disease gene identification begins with family-based 

linkage analysis. However, this analysis has difficulties in identifying disease causing 

de novo mutations. This problem was overcome with the development of high-

resolution microarrays for Genome-Wide Association (GWAS) and Next Generation 

Sequencing (NGS) technologies and as a consequence, family-based linkage studies 

in Mendelian disorders have become the focus of genetic studies.[46] 
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 Over the past decade, association studies in large cohorts with cases and 

controls using genome-wide single nucleotide polymorphism (SNP) microarrays were 

used to identify common risk factors in common diseases. However, association 

studies had weaknesses in identifying rare disease causing mutations through linkage 

disequilibrium (LD) with common SNPs.[47] Family-based linkage analysis using 

genome-wide SNP microarrays made it possible to identify genetic loci that 

encompass the rare variants. This approach using genome-wide SNP microarrays also 

contributed to overcome population stratification and heterogeneity problems.[48] 

Thus, combination of next generation sequencing technology with family-based 

linkage analysis become the most powerful and robust approach to identify disease 

causing rare variants (Figure 1.7).[49] 

1.6.1 Genetic mapping in autosomal recessive disorders 

Identification of familial disorder with autosomal recessive inheritance pattern is the 

first step in understanding the pathobiological events and certain pathways underlying 

the disease. The most commonly used method to map the disease causing loci in 

autosomal recessive case is the linkage analysis. Linkage analysis is suitable when a 

family with multiple generations including multiple affected and unaffected 

individuals is found. Under these circumstances, the disease loci can be detected by 

genotyping certain markers, which are genetically variable, in the family.[50] 

 

 However, the disease locus identification is not this simple in every case. The 

most important limitation is the number of the genetic markers surrounding the locus, 

which is recently overcome with the use of high-throughput genome-wide SNP 

genotyping arrays. With the use of this technology thousands to millions of SNPs can 

be genotyped in many individuals at one step. The disease causing locus can be 

identified by determining which alleles were present only in affected individuals in 

large families.[49] 
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Figure 1.7: Schematic representation of the gene identification in Mendelian diseases. 

The methods used to identify the causal genes responsible for autosomal recessive 

disorders are represented. In this study homozygosity mapping and next generation 

sequencing is used to identify disease causing genes. 
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 Most often families with multiple affected and unaffected individuals can not 

be obtained so mapping of gene locus involved in rare autosomal recessive disorders 

would be a difficult task. In such cases, homozygosity mapping analysis using 

genome-wide SNP arrays is the best way to identify disease locus. Homozygosity 

mapping is the detection of the regions which would probably be homozygous only in 

patients because of the presence of the homozygous mutation inherited from each 

parent (Figure 1.8). One of the overlapping homozygous blocks in the genomes of the 

each patient should contain the disease causing mutation. This procedure can give 

information in families with two or three affected individuals from the same 

kindred.[51] These homozygous intervals can be searched for disease causing gene by 

conventional Sanger sequencing.  

 

 The rate limiting step of the identification of the disease causing gene using 

homozygosity mapping is the total length of the intervals determined by the analysis. 

These regions can be several megabases long and can contain several genes. At these 

circumstances Sanger sequencing of the entire genes would be time consuming and 

expensive. Bioinformatics approaches try to prioritize the candidate genes at the 

intervals by their probability of involvement in a disease phenotype using functional 

predictions and online databases. However, this is not applicable when the functional 

information or characterization of a protein is absent or hypothetical genes present at 

the locus. With the advent of targeted capture of the determined homozygous regions 

and next generation sequencing technology, it is now possible to search the regions at 

single nucleotide resolution.[52-54] 

1.6.2 Consanguinity 

Homozygosity mapping is an efficient method when searching for a mutation 

segregating within a small and closed population with a small gene pool due to founder 

effect. In such a population the mutation would probably come from each carrier parent 

by segregating on the same haplotype. Co-efficiency of inbreeding increases with the  
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Figure 1.8: Homozygosity mapping of recessive disease genes. Rare mutations can be 

identified in autosomal recessive disorders in consanguineous families based on the 

fact that, the disease locus will not have tendency to recombine and will be identical 

by decent. So it is likely that these regions contain the disease gene.    
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level of consanguinity. Thus, homozygosity mapping is the most robust technique in 

consanguineous families with autosomal recessive disorders. 

 

Homozygosity mapping method depends on the fact that the regions adjacent 

to the disease causing mutation will be identical in affected individuals coming from 

a common ancestor in an inbred family. Percentage of homozygous regions, also called 

as inbreeding coefficient, of the siblings in consanguineous families, differs from 0.4 

to 12.5% depending on the degree of consanguinity.[55]  

 

 At the randomly mated populations the occurrence of a recessive disease is 

proportional to the square of disease allele frequency. The rate of consanguineous 

marriages increases in the southern and eastern rims of the Mediterranean basin 

(Figure 1.9). In some regions such as Saudi Arabia and Pakistan, the consanguinity 

rate reaches to 50% of the population. At such regions the occurrence of the recessive 

diseases is directly proportional to the disease allele frequency.[56]  

1.6.3 Genetic heterogeneity 

A Mendelian genetic disorder caused by more than a single gene or allele is defined as 

genetically heterogeneous. The increased usage of the next generation sequencing 

technologies revealed that Mendelian disorders with genetic heterogeneity is far 

greater than expected.[57] 

 

As a result of next generation sequencing experiments, millions of variants 

with no phenotypic effect were identified whereas individually rare mutations with 

deleterious effect were at very small proportional. These rare deleterious mutations 

were implicated in several genetically heterogeneous Mendelian disorders and also in 

common diseases such as breast cancer [58], inherited hearing loss [59], autism and 

schizophrenia.[60, 61] 

 

 



24 

 

 

 

Figure 1.9: Prevalence of the consanguineous marriages in the world. Consanguinity 

increases at the southern and eastern rims of the Mediterranean basin. (Copyright © 

2009, National Academy of Sciences. From Bittles et al., 2010 with permission] 

 

1.6.4 Targeted next generation sequencing 

Disease gene identification studies in consanguineous families with genetically 

heterogeneous autosomal recessive diseases were greatly improved with the combined 

use of homozygosity mapping, target-enrichment, and next generation sequencing. 

Such a sequencing reaction could generate thousands of genetic variations including 

structural variations, single nucleotide variants (SNVs), and small insertions or 

deletions (indels). More than 95% of these variants would be phenotypically neutral 

and identified in healthy populations.  The critical point here is the identification of 

the causal mutation among the remaining suspicious variants.[45, 62] 
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 The identification of the recessive causal mutation involves several steps 

depending on the exclusion of the irrelevant variants. As a first step, novel variants 

should be identified by discrete filtering of the variants against a set of polymorphisms 

with minor allele frequencies higher than 0.1% using databases or datasets such as 

NCBI dbSNP, 1000 Genomes Project, and NHLBI GO Exome Sequencing Project. 

The next step would be stratification of the candidate variants on the basis of their 

positional and functional impacts by coding (frameshift, stop codon, splice site, 

missense, silence) or noncoding (intronic, intergenic, UTR). Protein altering variants 

that reside at the exons, regulatory regions and canonical splice sites should be selected 

for further analysis. The most important step here is the filtering of the variants which 

are not segregated with the disease phenotype in the family. Population screening 

would be last filtering step of the novel homozygous protein altering variants. The 

remaining variants can be annotated using the computational approaches such as 

evolution-based conservation analysis as the measure of deleteriousness, constraint-

based prediction analysis concerning the effect of variation on the protein-coding 

sequence and analysis of the curated databases.[45, 62]  

 

 As a result of sequencing data annotation, the most likely culprit disease 

causing mutation is identified. Experimental analysis would provide a support of 

causality for the given phenotype. The most powerful approach is the identification of 

the same or different mutations in the same gene in different families or unrelated 

sporadic cases. However, the phenotype and/or the mutation would be extremely rare 

in some recessive cases. In such cases, molecular consequences of the causal mutation 

could be evaluated in vitro or the phenotypic consequences of the causal mutation 

could be evaluated in vivo in a model organism.  

1.6.5 Identification of the causal mutation in CAMRQ  

In this thesis, identification of a novel missense causal mutation in a consanguineous 

Turkish family with a genetically heterogeneous autosomal recessive disorder, 

Cerebellar Ataxia, Mental Retardation, and disequilibrium syndrome with or without 
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quadrupedal locomotion (CAMRQ), by using homozygosity mapping followed by 

target enrichment and next generation sequencing will be discussed. 

1.7 Subject and outline of the Thesis 

CAMRQ syndrome is observed in another consanguineous family (Family C) from 

southern Turkey with four affected individuals in three branches of the pedigree 

(Figure 1.3, Figure 3.1, and Table 3.1).[32, 63] 

 

 The involvement of previously identified CAMRQ genes VLDLR, WDR81 and 

CA8 genes were excluded by using Sanger sequencing and homozygosity analysis. 

Homozygosity mapping analysis revealed four shared homozygous regions on 

chromosomes 13, 19 and 20 (Table 3.2). In order to identify the culprit gene, all 

homozygous regions were sequenced using target enrichment followed by next-

generation sequencing and all segregated variants were evaluated using structural and 

functional predictions, and population screening (Table 3.19). In this thesis, the story 

behind the identification of a missense mutation in ATP8A2, encoding a P4-type 

transmembrane protein ATPase, aminophospholipid transporter, class I, type 8A, 

member 2, which is found to be associated with the phenotype in Family C is 

described.[64]  
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Chapter 2 

Materials and Methods 

2.1 Recruitment of Patients and Controls 

A consanguineous family from southern Turkey, Family C, in which four individuals 

had CAMRQ syndrome, was investigated (Figure 3.1). The only affected female in the 

family was withdrawn form the study since her parents did not give consent for 

publishing the DNA analysis results. The index patient of the study, coded as 05-993, 

recently died secondary to a respiratory infection. The study was approved by the 

institutional review boards (IRB) at the Cukurova and Baskent Universities (decision 

21/3, 08.11.2005 and KA07/47, 02.04.2007, respectively).  

 

A total of 605 healthy individuals with no family history of movement 

disorders were used as a control in the study. Two additional cohorts including patients 

with similar neurological phenotypes were used in the study to find another patient 

with the candidate mutation: A cohort of 58 patients with cerebellar phenotypes with 

or without quadrupedal locomotion and a cohort of 750 patients with degenerative 
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neurological disorders or structural cortical malformations. All the participants and/or 

their parents were asked to sign an informed consent form prior to the study.  

2.2 Clinical Investigations 

Clinical investigations were performed at Cukurova University while the patients were 

awake and the clinical description of the family was published elsewhere. [63] All 

clinical investigations performed were compatible with the Helsinki Declaration 

(http://www.wma.net). 

 

 The “Mini Mental State Examination” (MMSE) test is performed in order to 

measure mental statuses of the individuals. It measures five cognitive function: 

language, registration, orientation, recall, and attention/calculation. A score of 23 or 

lower out of 30 reveals a cognitive problem with varying degrees.[65] Standardized 

Turkish version of the MMSE test was used for the three of the four patients.[66]  

 

 Cranial MRI and full-body computed tomography (CT) screening studies were 

performed at Cukurova University, Medical Faculty, Adana, Turkey.  

2.3 DNA Isolation from the Family Members 

Peripheral blood samples obtained from the patients and their parents by a specialist 

using venipuncture technique. 10 ml venous blood samples were collected in K3-

EDTA containing BD Vacutainer® Blood Collection tubes (Becton Drive, NJ, USA). 

The tubes were transferred to the laboratory at cold chains, quickly divided into 1 ml 

aliquots in 1.5 ml eppendorf tubes, and stored at -80oC refrigerators. 

 

 DNA isolation was performed with 200 µl peripheral blood samples using 

Nucleospin® Blood kit (Macherey-Nagel Inc., PA, USA) according to protocols 
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manufacturers supplied. A second DNA isolation from patients (05-993, 05-994, and 

05-996) were carried out using Phenol-Chloroform DNA extraction method [67] to 

obtain genomic DNA with high quality and high quantity which is necessary for high-

throughput genotyping and sequencing reactions.  

 

 The quantities and qualities of the samples were measured by densitometry 

analysis using horizontal 1% gel electrophoresis, by spectrophotometric reading using 

NanoDropTM ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., DE, USA), 

and by fluorometric quantification using PicoGreen® assay.[68] 

2.4 Genetic Mapping Techniques 

2.4.1 Genome-wide SNP Genotyping  

DNA from peripheral blood samples of four patients and their three obligate carrier 

parents and two siblings were genotyped using the GeneChip® Human Mapping 

Affymetrix 10K Xba arrays (Affymetrix, Inc., CA, USA) for haplotype construction. 

SNP genotyping experiments were performed according to the manufacturer's protocol 

(Affymetrix, Inc., CA, USA). Briefly, 250 nanogram of DNA was digested with XbaI 

and the fragmented DNA was ligated to the XbaI adaptor. PCR amplification of the 

fragments carried out using AmpliTaq Gold (Applied Biosystems, CA, USA) enzyme 

following by array hybridization. Affymetrix GTYPE v4.1 software (Affymetrix, Inc., 

CA, USA) was used to generate CEL files. Exploration, normalization, and retrieval 

of genotype calls were achieved using Affymetrix Genotype Console Software v2.1 

(Affymetrix, Inc., CA, USA) with the default parameters. 

 

 For homozygosity mapping analysis, three patients’ (05-993, 05-994, and 05-

996) DNA were genotyped by using GeneChip® Human Mapping Affymetrix 250K 

NspI arrays as in the protocol that the manufacturer supplied (Affymetrix, Inc., CA, 

USA). Briefly, 250 nanograms of DNA was digested using NspI restriction enzyme 
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followed by linker ligation, PCR amplification, fragmentation, labeling, and array 

hybridization. Affymetrix GTYPE v4.1 software (Affymetrix, Inc., CA, USA) was 

used to generate CEL files. Image data were normalized and genotypes were called 

using Affymetrix Genotype Console Software v2.1 (Affymetrix, Inc., CA, USA) with 

the default parameters using the BRLMM algorithm. 

 

 In addition, a higher resolution Illumina Human610-Quad BeadChip arrays 

(Illumina, Inc., CA, USA) were used to genotype two affected individuals (05-994 and 

05-996) in order to confirm homozygous regions detected by Affymetrix SNP array. 

The experiments were performed according to manufacturer's instructions. Briefly, 

200 nanogram of genomic DNA was whole-genome amplified, fragmented with FMS 

reagent (Illumina, Inc., CA, USA), precipitated with 2-propanol and resuspended in 

RA1 hybridization buffer supplied by the manufacturer (Illumina, Inc., CA, USA). 

After overnight hybridization, the arrays were subjected to single-base extension, 

labeling, and coating with XC4 (Illumina, Inc., CA, USA). The image data were 

obtained by Illumina Bead Array Reader (Illumina, Inc., CA, USA). Normalization of 

the image data and genotype calling were achieved using Bead Studio software 

(Illumina, Inc., CA, USA) with the default parameters. 

2.4.2 Homozygosity mapping analysis and haplotype construction 

Homozygosity mapping is used to identify the locus containing the gene underlying 

recessive diseases. It is based on enrichment of homozygosity in the region harboring 

the disease causing gene in the affected individuals in a family.[51] Advances in high 

throughput SNP genotyping made this technique crucial in the identification of the 

disease causing recessive locus.  

 

 Processing and analysis of the Affymetrix and Illimuna SNP genotyping data 

was carried out using web-based HomozygosityMapper software [69] to identify 

homozygous regions. Homozygosity mapping using the Affymetrix 250K SNP arrays 

was performed in the three affected patients. According to array data sheet supplied 
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by the manufacturer, these arrays capable of genotyping a total of 262,264 SNPs with 

a median physical distance of 5.0 Kb and an average distance of 11.0 Kb between 

SNPs. The average heterozygosity of these SNPs is 0.30. 

 

 Homozygosity mapping analysis was repeated using Illimuna SNP array which 

has the genomic coverage of 620,901 SNPs. This provide marker spacing down to 1.5 

Kb (median physical distance: 2.7 Kb, average distance: 4.7 Kb according to data sheet 

provided by the manufacturer) with a mean heterozygosity rate of 0.22. This analysis 

with relatively low average heterozygosity and high density of SNP chips excluded the 

previously detected homozygous blocks with a length of 0.01 and 1.4 cM. The 

contiguous homozygous blocks detected by Affymetrix SNP array on chromosomes 

13 and 19 were evaluated as a single block in Illimuna array most probably due to high 

false positive rate of Affymetrix SNP data. 

 

  Haplotype blocks were analyzed by hand for each homozygous blocks 

including flanking regions detected by Illimuna SNP array data, separately using 

Affymetrix 10K SNP data. One affected individual (05-999), her sibling (05-1000), 

and her obligate carrier parents (05-997 and 05-998) leaved from the study by request. 

Linkage analysis is a powerful technique to identify critical region segregating with 

the disease. However, a meaningful LOD scores can be obtained in a large informative 

families. Therefore, haplotypes constructed were used for segregation of variants 

detected. 

 

 In order to saturate the homozygosity of the most likely candidate locus, 13q12, 

polymorphic microsatellite markers, also known as short tandem repeats (STRs), were 

genotyped by appropriate primers (see Appendix A). The selected STR markers 

D13S787, D13S1243, D13S742, D13S283, D13S1294, and D13S221 were 

determined using “Simple Repeats” tract of UCSC Genome Browser database (human 

reference genome NCBI36/hg18). 
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2.5 The Candidate Gene Approach 

2.5.1 Selecting a candidate gene 

Homozygosity mapping is a powerful technique to identify disease locus without any 

information about the disease causing genes. Candidate gene approach allows 

investigating genetic basis of the disorder. Selecting the appropriate candidate gene 

focus on the etiological role of the genes in disease, by understanding of the underlying 

biological pathway.[70] 

 

 The candidate disease loci identified by homozygosity mapping could contain 

several genes. In such a situation, the candidate genes can be identified by several 

methods, including database search, prediction analysis using bioinformatics tools, or 

expression analysis.  

 

 After detecting the shared regions, the genes involved in the homozygous 

blocks were extracted using web based Ensembl BioMart data mining tool. By using 

BioMart several information from several databases about the corresponding genes 

can be obtained such as chromosome names, gene loci, chromosomal bands, transcript 

counts, gene biotypes, gene statuses, gene ontology (GO) functions, Mendelian 

Inheritance of Man (MIM) associations, associated diseases, protein family domains, 

expression profiles,  and gene functions. 

 

 As a next step, corresponding genes on the homozygous blocks were prioritized 

using computational prediction tools. The GeneWanderer is a web-based tool which 

measures the probability by comparing the relative positions of each candidate genes 

to genes known to be involved in the disease pathogenesis by using protein-protein 

interactions.[71]  



33 

 

2.5.2 Testing the Candidate Gene 

2.5.2.1 Determination of the coding regions of the candidate genes 

Coding regions of the selected candidate genes were determined using Ensembl 

database (according to the human reference assembly GRCh37) and the corresponding 

sequences with the flanking regions were extracted by using the BioMart data mining 

tool of the Ensembl database.  

2.5.2.2 Primer design and quality 

Appropriate primers (Appendix A) were designed for sequencing coding exons, exon-

intron boundaries, untranslated regions (UTRs) using web-based Primer3 (v. 0.4.0) 

software.[72] In order to verify 3’ and 5’ self-complementarity, internal hairpin 

structures, and Tm differences, In-Slico PCR tool of the UCSC Genome Browser 

(http://genome.ucsc.edu/cgi-bin/hgPcr) was used. Also, primers were analyzed using 

BLAT tool of UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgBlat) to 

check assembly to the entire genome. The primers were purchased from IONTEK, Inc. 

(Istanbul, Turkey). 

2.5.2.3 Amplification of the coding regions 

The coding regions were amplified by conventional PCR technique in TechneTM TC-

512 thermal cycler (Bibby Scientific, Inc., UK) with the following template conditions: 

initial denaturation step at 95oC for five minutes, followed by 35 cycles of denaturation 

(95oC for 30 seconds), annealing (60oC for 30 seconds) and elongation (72oC for 30 

seconds), and final elongation for five minutes at 72 oC. The template PCR conditions 

were optimized according to the GC-content of the amplified region and/or low-or-

high melting temperatures (Tm) of the primers by increasing or decreasing the 

annealing temperatures.  
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 PCR reactions were carried out in a total volume of 25 μL with the following 

ingredients: 75-150 ng of template DNA samples, 1X Taq polymerase buffer, 10 pmol 

of each primer, 0.2 mM dNTP, 1.0 mM MgCl2, and 1.25 unit Taq polymerase enzyme 

(MBI Fermentas, NY, USA). The template PCR cocktail were optimized when the 

GC-content of the targeted region is higher than 55% by addition of the BSA or 

DMSO, which help to dissolve secondary structure of DNA. Additional optimization 

is achieved by increasing or decreasing the amount of MgCl2 and/or primers when 

unwanted fragments obtained. 

2.5.2.3 Visualization of the PCR products 

It is necessary to check suitable PCR amplification which should contain a single PCR 

fragment prior to sequencing. PCR products were run in the 1% agarose gel (Basica 

LE, EU) which was completely dissolved in 1X TAE buffer. As a fluorescence tag, 30 

ng/ml ethidium bromide (EtBr) was added to the agarose gel. PCR products were 

mixed with 6X loading dye (MBI Fermentas, NY, USA) and loaded onto agarose gel.  

 

 The PCR products were run horizontally at the magnetic field (90-120 Volts) 

for 25-40 minutes according to the size of the products at room temperature. pUC Mix 

Marker 8 and Mass Ruler DNA Ladder (MBI Fermentas, NY, USA) were used as 

DNA markers (Figure 2.1). PCR products were visualized using GelDoc imaging 

system (Bio-Rad, CA, USA) and the images were captured by MultiAnalyst software 

version 1.1 (Bio-Rad, CA, USA). 

2.5.2.4 Sequencing of the candidate genes 

The PCR products were sequenced using conventional automated Sanger method. The 

sequencing reactions were carried out by Refgen, Inc., (Ankara, Turkey) using ABI 

3130 XL capillary sequencing instrument (Applied Biosystems, Inc., CA, USA). The 

purification of the PCR products was also carried out by the company using 

MinEluteTM 96 UF PCR Purification Kit (Qiagen, MD, USA). 
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2.5.2.5 Visualization and analysis of the sequencing data 

As a result of Sanger sequencing, raw sequence data files were obtained in the AB1 

sequence trace format. Each sequence trace file was aligned to the corresponding 

reference sequence extracted from NCBI database and analyzed by using CLCBio 

Main Workbench 6 software (CLC bio, Denmark) with the default parameters. The 

possible variations found were searched in the NCBI SNP database. 

 

 

 

 

 

 

 

Figure 2.1: DNA Markers used in the study. MassRuler DNA Ladder: 10 µL per lane, 

1% agarose gel, 1X TAE 7 V/cm, 45 minutes. pUC Mix Marker 8: 0.5 µg per lane, 

1.7% agarose gel, 1X TBE, 5 V/cm, 1.5 hours (http://www.fermentas.com/en/support/ 

printed-media). 
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2.6 Targeted next generation sequencing analysis  

Since 2007, several next generation sequencing technologies such as Roche 454, 

Illumina Genome Analyzer (GA), and ABI SOLiD have emerged and improved. Since 

the disease loci identified contains many genes, targeted next generation sequencing 

of these candidate intervals determined by homozygosity mapping would be the best 

option because of its advantages on focus time, expenses, and data storage. In order 

the identify disease causing mutation, Illimuna GA platform was used to sequence the 

targeted region in an affected individual (05-996). The sequencing procedure involves 

several steps which were summarized in Figure 2.2. 

2.6.1 Probe and Chip design 

Target enrichment method allows that selected regions were enriched in the genomic 

DNA library. The homozygous regions were analyzed using UCSC Genome Browser 

and as a result, 45,181 unique probes on chromosomes 13, 19, and 20 with a total 

length of 16,711,445 base pairs were designed. The designed probes were reanalyzed 

by using Sequence Search and Alignment Hashing Algorithm (SSAHA) software [73] 

with the less stringent parameters to determine uniqueness of the probes and efficiency 

of mapping. SSAHA maps sequence reads to a reference genome using pair-wise 

alignment.  

 

 Next, the probes then printed on a custom designed sequence capture 

microarrays, Roche NimbleGen Human Sequence Capture HD2 2.1M (Roche, 

Madison, USA), which is an ideal solution for targeted enrichment of the human 

disease associated regions. These high density microarrays constitudes 2.1 million 

long oligonucleotide probes with more than 60-bp single-probes. The manufactured 

arrays targeted an extended region of 16,756,626 base pairs.  
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Figure 2.2: Schematic representation of the next generation sequencing and analysis 

algorithm. Software packages and databases used were given at the bottom of boxes.  
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2.6.2 Single-end library construction and sequence capture  

DNA sample from an affected individual (05-996) was captured using the custom 

designed Nimblegen Human Sequence Capture HD2 2.1 M microarrays (Roche 

NimbleGen, WI, USA) according to the protocol supplied by the manufacturer (Roche 

NimbleGen, WI, USA) with modifications at the W. M. Keck Facility at Yale 

University. This process includes fragmentation of the DNA sample, ligation of the 

adapter sequences, and amplification of the produced DNA templates (Figure 2.3).  

 

Briefly, genomic DNA was sheared randomly into fragments by sonication and 

the GS FLX Titanium adaptors were ligated to these fragments. The verification of the 

sizes of the adaptor-ligated templates was carried out by agarose gel electrophoresis. 

The DNA sample was extracted from the gel and amplified by ligation-mediated PCR 

with the universal primers supplied. The PCR products were purified to avoid primer 

dimers and then hybridized in the appropriate buffer supplied to the capture array at 

42.0°C. Washing steps repeated two times at 47.5 °C and three more times at room 

temperature. The fragments which are bound to designed probes on the chip were 

eluted using 125 mM NaOH solution. These fragments amplified again by ligation-

mediated PCR. The amplified fragments are purified one more time and ready for 

sequencing. Captured DNA samples were sequenced by Illumina Genome Analyser 

IIx platform (Illimuna, CA, USA) as single-end 74- and 75-base pair reads. For 

additional information, see manufacturer's manual (http://www. nimblegen.com/ 

products/seqcap/arrays/2.1m/). 

2.6.3 Analysis of the targeted NGS data 

Next generation sequencing results in huge data which requires several steps for 

annotation. These steps include quality control filtering, alignment to reference 

sequences, variant calling and annotation. In order to achieve these steps several 

commercial and non-commercial pipelines generated.  
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Figure 2.3: Representation of the library construction and sequence capture 
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2.6.3.1 Alignment and read mapping 

Illumina sequence data were mapped to reference genome (human reference genome 

NCBI36 / hg18) using Mapping and assembly with qualities (Maq) [74] and Burrows-

Wheeler Aligner (BWA) [75] software packages. 

 

 Maq is suitable for alignment of the single-end short reads (<200 bp) to a 

reference genome in order to detect SNVs. The software is able to index all the reads 

with up to 2 or 3 mismatches by using ungapped alignment. While assembling the 

reads on the reference, Maq calls the heterozygote and homozygote bases by 

maximizing the posterior and phred qualities at each position. The manufacturer’s 

protocol involving detailed description, Maq codes and commands, and examples can 

be downloaded from http://maq.sourceforge.net/maq-manpage.shtml. 

 

 BWA is suitable for relatively short sequences to a reference genome by using 

a gapped Burrows-Wheeler Transform (BWT) algorithm in order to detect short indels. 

This algorithm can be used to map short queries up to 200bp with error rate lower than 

3%. The manufacturer’s protocol involving detailed description, BWA codes and 

commands, and examples can be downloaded from http://bio-bwa.Sourceforge.net/ 

bwa.shtml. 

2.6.3.2 Genotype and variant calling 

Alignment data obtained by using BWA and Maq was used for SNV and short indel 

calling, respectively. Variant detection and analysis were carried out using Sequence 

Alignment/Map Tools (SAMtools)  software package.[76]  SAMtools has ability to 

sort, merge, and index reads retrieved from Maq and BWA tools and generate a pile 

up of read bases. The detected homozygous and heterozygous variants were generated 

as variant calling output format which can be annotated using other resources.   

 

 Genotype calling is performed by using default cut-off rules such as an average 

Phred-type quality score of 20, a minimum read number of 2, a minimum coverage of 
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8, a minimum variation frequency of 0.01, and a minimum error rate of 0.01. All cut-

off values were set to zero while doing analysis, in order to obtain all possible SNVs 

and indels.  Phred quality scores can be obtained from the image data with the formula 

“QPhred = -10log10P (error rate)”. [77] Note that, 1% error rate is equal to a Phred score 

of 20. 

  

 Variant coordinates were converted to the updated human genome assembly 

GRCh37/hg19 by using Batch Coordinate Conversion tool (liftOver) of UCSC 

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Read mapping and 

genotype calling analysis were repeated with the converted coordinates. 

2.6.3.3 Fold enrichment and coverage analysis 

The fold enrichment factor explains the total count of reads on each individual base 

pair. The analysis carried out using pileup module of SAMtools. The fold enrichment 

was calculated by dividing the mean number of covered bases to mean number of 

excluded bases.[78] Base coverage is the mean number of how many times of each 

base at the targeted region was read. Coverage calculations were evaluated using the 

mpileup module of SAMtools and coverage calculation of the coding regions were 

evaluated with intersectBED command of the BEDtools software packages.[79]  

 

 Samtools mpileup module provides information of alignment coverage across 

the targeted region by calculating mean of the read depths of each base in the multiple 

alignments. The called bases were classified as zero-covered bases for the ones with 

<1X mean read depth, low-coverage bases for the ones with 1-3X mean read depth, 

and high-covered bases for the ones with ≥4X mean read depth. The average coverage 

percentage values were calculated for each.  

 

 BEDtools utilities have ability to evaluate overlapping features and coverage 

calculations. In order to determine zero-covered, low-covered, and high-covered bases 

which were located in the coding regions, sequencing data files were intersected with 
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the exome data (genome assembly NCBI36/hg18, exome_B_NCBI36.bed, created 

from HAVANA & ENSEMBL data on 2008, downloaded from ftp://ftp.sanger.ac.uk/ 

pub/fsk/exome/)  and the evolutionary conserved protein-coding exons (genome 

assembly GRCh17/hg19, Exoniphy, downloaded from UCSC Genome Browser Genes 

and Gene Prediction tracts). A total statistics indicating the coverage percentages of 

each region was calculated. Using the start-end coordinates of the coding regions and 

the constitutive exons, zero- and low-covered regions were annotated. 

 

 The exoniphy program determines the constitutive exons which are 

evolutionarily conserved across species by multiple alignments of the coding regions 

using a phylogenetic hidden Markov model.[80] Constitutive exon coverage was 

calculated using BEDtools and non-covered (low- and zero-covered) constitutive 

exons were determined. The genes corresponding to the non-covered constitutive 

exons were extracted from Ensembl BioMart database and evaluated by the same tool 

according to expression profiles, mice knock-out studies, or involvement in a 

phenotype.  

 

 Zero- and low-coverage regions were further analyzed visually by using 

Integrative Genomics Viewer (IGV) platform.[81] IGV allows interactive exploration 

of the genomic datasets. 

2.6.3.4 Genotype calling error analysis 

A Mendelian error describes a wrong allele inherited from none of the parents. 

Mendelian errors were calculated and evaluated using PLINK Whole Genome 

Association Analysis Toolset.[82] 

 

 PLINK has ability to analyze, visualize and annotate genotype/phenotype data. 

The annotation includes management of the data (merge, intersect, flip files, and 

extract subsets), summary statics (allele and genotype frequencies, missing genotype 

rates), and population stratification (linkage, significance, association, CNV, and 

haplotype analyses).  
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 Mendelian error rates calculated by comparing SNP genotypes obtained from 

Illumina Human610-Quad BeadChip array and targeted next generation sequencing 

data obtained from NimbleGen Human Sequence Capture HD2 2.1 M microarrays 

using “Mendel” module of the PLINK software package.  

2.6.3.5 Positional and functional annotation of the variants  

The next step of the analysis of variants determined at the targeted region is the 

positional and functional annotation of the variants and determination of the novel 

variants by filtering of the SNPs.  

 

 Annotation and filtering of the variants carried out using ANNOVAR software 

package [83]. ANNOVAR software package has an ability to annotate genetic variants 

detected from high-throughput sequencing data by performing gene-based, region-

based, and filter-based annotations. Functional annotations such as protein coding 

alterations at the amino acid level can be detected using gene-based annotations.  By 

using region-based annotation positional specification, conservation across species, 

segmental duplications, GWAS hits, OMIM hits and genomic variants can be 

determined. Filter based-annotation is used to identify SNPs that are reported in NCBI 

dbSNP database, 1000 genomes datasets, and NHBLI-EVS exome sequencing projects 

datasets. 

  

 Conversion of the SAMtools variant calling output file into ANNOVAR 

annotation input file can be achieved by using “convert2annovar” script. Annotation 

of the variants using ANNOVAR can be achieved by either manually (for detailed 

manual visit http://www.openbioinformatics.org/annovar/annovar_startup.html) or 

automatically by using “summarize_annovar” script. This developed pipeline allows 

annotation of the sequence data with steps on a cluster. The automated annotation 

generates an excel file with gene annotation, exonic function, amino acid change and 

its effect, conservation analysis and predictions, population screening, and SNP 

identifiers (Figure 2.4).  
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Figure 2.4: Algorithm of the ANNOVAR annotation pipeline. Functional annotation 

of the variants carried out using summarize_annovar script of the ANNOVAR 

software package. 
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 As a result, novel variants were determined by exclusion of the SNPs with 

heterozygosity rates higher than 0.01 using dbSNP132 database. Novel homozygous 

and heterozygous variants were classified according to their genomic location as 

intronic, protein coding, intergenic, non-coding RNA, upstream, downstream, exonic 

splicing, intronic splicing, 3’UTR, and 5’UTR. The protein coding variants then 

classified according to their functional effects as frameshift insertion, frameshift 

deletion, frameshift block substitution, stop-gain, stop-loss, nonframeshift insertion, 

nonframeshift deletion, nonframeshift block substitution, nonsynonymous SNV, 

synonymous SNV. Novel homozygous protein altering variants were considered as a 

potential disease causing mutation. 

2.6.3.6 File formats 

Targeted next generation sequencing generates a huge data which should be annotated. 

For functional annotation of the targeted next generation sequencing data several files 

were generated in order to make them usable for the next annotation in the pipeline.  

 

The raw data in the form of “.bcl” files were generated by sequencing of the 

targeted region using Illumina Hiseq 2000 platform and converted to “.qseq” files 

through the use of Illumina’s BCL converter tool to obtain “.fastq” files for further 

analysis. The FASTQ format is a text-based file with the sequencing read data. FASTQ 

files validated, indexed and aligned to the human reference genome in order to obtain 

output files in the SAM format using the BWA tool which uses Burrows-Wheeler 

Transform algorithm and Maq which uses ungapped algorithm. The “.sam” file is 

designed to store nucleotide alignments. After the alignment is performed, “.sam” files 

converted to the “.bam” files by SAMtools which are binary representations of the 

reads. The “.bam” files than indexed and used to generate “.pileup” files which 

includes additional tracks such as diversity and SNP by mpileup module of the 

SAMtools. PILEUP file than converted to several formats such as VCF, IGV, and BED 

for annotations and coverage analysis.  
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2.7 Identification of the disease causing mutation 

Novel homozygous protein altering variants at the homozygous blocks determined by 

combining Illimuna SNP array and targeted next generation sequencing data were 

considered as potential disease causing mutation candidates. In order to find the 

disease causing gene, the remaining candidate variants were subjected to exclusion 

and the remaining variant was defined as the culprit mutation. 

2.7.1 Population screening 

2.7.1.1 Population datasets 

Functional novel variants were further analyzed in two population datasets: 1000 

genome datasets (http://www.1000genomes.org, data release, phase I) and NHLBI 

Exome Sequencing Project (EVS) (http://evs.gs.washington.edu/EVS/, data release 

ESP6500).  Common variants were excluded if minor allele frequency (MAF) was 

higher than 0.01.  

 

 1000 genomes, a deep catalog of the human genetic variation, project aimed to 

determine SNPs in different populations by using next generation sequencing. The 

pilot project composed of sequencing data of 2,500 healthy individuals in the “.vcf” 

format which are available for researchers. The sequencing data was annotated with 

1000 genome database by using tabix module of the SAMtools. 

 

 EVS database is a collaborating group project aims to discover novel genes in 

non-neurological phenotypes such as lung, blood, and heart disorders by using next-

generation sequencing. The data release ESP6500 composed of 6503 samples. The 

sequencing data can be analyzed individually for each variant on the project site or can 

be annotated by ANNOVAR. 
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2.7.1.2 Alleles specific PCR analysis 

Functional variants which had not been recognized by a restriction enzyme were 

genotyped by allele specific PCR (AS-PCR) method in Turkish population in order to 

exclude rare variants as disease causing mutation. The cohort consists of 305 random 

healthy individuals and 300 region-match healthy controls which constitute a total of 

1210 control chromosomes. The mutant and wild type primers, and also the reference 

primer which is used as internal control designed by using web-based Primer3 software 

and analyzed using In-Slico PCR and BLAT tools of UCSC Genome Browser 

(Appendix A). The primers were purchased from IONTEK, Inc. (Istanbul, Turkey). 

PCR products were visualized on 1.5% agarose gel electrophoresis. 

2.7.1.3 Restriction fragment length polymorphism analysis 

Functional variants which are recognized by restriction enzymes were analyzed by 

using restriction fragment length polymorphism (RFLP). Restriction enzymes were 

determined by using web-based NEBcutter tool.[84] The related fragments were 

amplified by the appropriate primers (Appendix A). Restriction enzyme digestion was 

carried out with at 37oC, overnight. The cocktail composed of 5 µL of PCR products, 

2 µL of appropriate reaction buffer (10x), and 2 units restriction enzyme (MBI 

Fermentas, NY, USA) in 20 µL completed with double-distilled H20.The digested 

samples were visualized on 2.0% agarose gel electrophoresis. 

2.7.2 Confirmation of the candidate variants 

Novel functional homozygous variants were analyzed by conventional Sanger 

sequencing explained in section 2.5.2.4, AS-PCR, and RFLP methods in order to 

confirm targeted next generation sequencing results. The related regions were 

amplified by the appropriate primers (Appendix A). The sequencing results were 

evaluated using CLC Main Workbench 6. 
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2.7.3 Segregation analysis of the candidate variants 

Segregation analysis of the novel homozygous candidate variants were facilitated 

using haplotyping analysis explained in section 2.4.2 in order to determine if the 

candidate genes were co-segregated with the autosomal recessive disease.   

 

 The candidate genes that were not co-segregated with the disease in 

homozygous state were confirmed by conventional Sanger sequencing in three 

affected individuals (05-993, 05-994, and 05-996). The related regions were amplified 

by the appropriate primers (Appendix A). The sequencing results were evaluated using 

CLC Main Workbench 6. 

2.8 Screening the candidate genes in neurological disease cohorts 

The most important step in candidate gene approach is the identification of other 

mutations in randomly chosen subjects with the disease. For this purpose the candidate 

genes were further screened in two cohorts of patients with neuro-developmental 

phenotypes with unknown causal mutation.  

 

 The first cohort consisted of 58 patients with ataxia. Among these, twelve 

patients have cerebellar ataxia with or without quadrupedal locomotion. The screening 

of the mutations carried out using AS-PCR.  

 

 The second cohort consisted of 750 patients with neuro-degenerative diseases 

or structural cortical malformations for whom the underlying genetic cause is missing. 

Analysis of the region was carried out by evaluation of the homozygous regions 

spanning the linkage interval. The genotyping of the patients were carried out using 

Illumina Human 370 Duo or 610 Quad BeadChip microarrays at Yale University, CT, 

USA.  
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2.9 Functional Characterization of ATP8A2 

2.9.1 Prediction tools and databases 

Predictive analytics compose of several statistical techniques and is used to provide 

predictive models concerning biological, biochemical, and evolutionary functions of 

the candidate genes. Also, several databases used in the study (see section 2.12 and 

Table 2.1) in order to collect information about candidate genes and data to use in 

analysis.  

 

 Evolutionary conservation analysis is carried out by multiple sequence 

alignment of the protein sequences of the orthologs of the candidate genes. The protein 

sequences in the fasta format were extracted from Ensembl database (see section 2.11 

for reference sequence IDs and chromosomal locations). The homologous protein 

sequences were aligned using the appropriate modules of CLCMain Workbench 6 

(CLC Bio, Aarhus, Denmark). This software also generates phylogenetic tree using 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm that is 

evaluated by bootstrap analysis. UPGMA algorithm creates a root tree by assuming a 

constant rate of evolution by calculating a bootstrap value using pairwise similarity 

matrix. 

 

 Conservation analysis using multiple alignments is validated using prediction 

tools. First, Phylogenetic p-Value (phyloP) and Genomic Evolutionary Rate Profiling 

(GERP) scores of the each candidate variant were extracted using the approapriate 

tracts of the UCSC Genome Browser: phyloP46wayall track21 and allHg19RS_BW 

track20, respectively. GERP score can be defined as neutral if the substitution occurs 

in multiple alignments, and as under functional constraints if not.[85] The phyloP score 

identifies acceleration (for negative scores) or conservation (for positive scores) in a 

subtree using likelihood ratio test.[86] Next, web-based prediction tools were used 

which depend on the effect of the mutated amino acid on the protein structure and 

function. So, disease causing probabilities of the candidate variants were evaluated 



50 

 

using SIFT [87], Polyphen2 [88], and MutationTaster [89] tools. By using “liftOver” 

tool of the UCSC Genome Browser, the variant coordinates were converted into the 

human genome assembly GRCh37/hg19.  

  

 Functional domains and predicted membrane-spanning domains of the 

ATP8A2 protein were determined using Protein Family (Pfam) database [90] and 

Transmembrane Prediction (TmPred) tool (http://www.ch.embnet.org/software/ 

TMPRED_form), respectively. Pfam is a database including collection of protein 

families predicted by multiple sequence alignments and hidden Markov models 

(HMMs). TMpred predicts the possible membrane spanning regions of the 

transmembrane domains. The possible effects of the each candidate variant on the two- 

and three-dimensional protein structure were predicted using web-based Protein 

Structure Prediction PSIPRED server [91] and Have yOur Protein Explained (HOPE) 

project tools [92], respectively.  

 

 The protein altering candidate variants were further evaluated in several 

databases. The description and websites of the databases were given in Table 2.1 

2.9.2 Expression analysis 

2.9.2.1 cDNA libraries construction 

cDNA synthesis was carried out with random hexamer primers using RevertAidTM 

First Strand cDNA Synthesis kit (Fermentas, NY, USA) after DNaseI (Fermentas, NY, 

USA) digestion. First-strand cDNAs were obtained from multiple commercially 

available human RNA samples [Clontech: 636567 (Corpus Callosum), 636643 

(Human Total RNA Master Panel); Agilent: 540005 (Total Brain), 540007 

(Cerebellum), 540053 (Brain Stem), 540117 (Frontal Cortex), 540135 (Striatum), 

540137 (Occipital Cortex), 540143 (Parietal Cortex), 540157 (Fetal Brain)]. The 

quantities and the qualities of the samples were measured by NanoDrop 

spectrophotometry.  
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Table 2.1: Databases used to evaluate novel homozygous protein altering candidate 

variants 

 

Databases Description Website 

HapMap International HapMap Project hapmap.ncbi.nlm.nih.gov 

DGV Database of Genomic Variants projects.tcag.ca/variation 

DDBJ DNA Data Bank of Japan www.ddbj.nig.ac.jp 

ALFRED Human ALlele FREquency 

Database 

alfred.med.yale.edu/alfred 

CGAP SNP 

 

CGAP Genetic Annotation 

Initiative 

lpgws.nci.nih.gov/perl/snpbr 

FESD II Functional Element SNPs 

Database 

sysbio.kribb.re.kr:8080/fesd 

F-SNP Functional SNPs compbio.cs.queensu.ca/F-SNP 

Gene Viewer Displays SNPs in mRNA 

sequences 

lpgws.nci.nih.gov/GeneViewer 

GWAS A genotype-phenotype 

association database 

www.gwascentral.org/index 

JSNP Japanese SNP Database snp.ims.u-tokyo.ac.jp 

PhenCode Paving the Path between 

Phenotype and Genome 

globin.bx.psu.edu/phencode 

SNAP SNP Annotation Platform snap.humgen.au.dk/views 

SNPper Look for known SNPs in public 

databases 

snpper.chip.org/bio/snpper 

Tagger Selection and evaluation of tag 

SNPs from genotype data 

www.broadinstitute.org/tagger 

HGMD The Human Gene Mutation 

Database 

www.hgmd.cf.ac.uk/ac 
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2.9.2.2 Semi-quantitative RT-PCR analysis 

Semi-quantitative RT-PCR assay was performed using conventional PCR of the 

cDNAs obtained. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as 

reference since it is highly expressed in the leukocytes as a housekeeping gene. The 

reaction was performed using the following protocol: Initial denaturation step at 95oC 

for five minutes, followed by 25 cycles of denaturation (95oC for 30 seconds), 

annealing (60oC for 30 seconds) and elongation (72oC for 30 seconds), and final 

extension for five minutes at 72 oC. 25µL reaction mixture composed of 100 ng of 

template DNA samples, 1X Taq polymerase buffer, 10 pmol of each primer, 0.2 mM 

dNTP, 1.0 mM MgCl2, and 1.25 unit Taq polymerase enzyme (MBI Fermentas, NY, 

USA). 

2.9.2.3 Real time Quantitative RT-PCR analysis 

Real-time Quantitative Reverse Transcription PCR (QRT-PCR) assay was performed 

using iQTM SYBR® Green Supermix according to standard protocols (BioRad, CA, 

USA) with ABI 7500 Fast Real-Time PCR System (Applied Biosystems, CA, USA). 

The relative quantifications were calculated by normalizing Ct values to reference 

genes beta-actin (ACTB) and GAPDH. The expression data were analyzed using the 

Pfaffl method [93]. 

 

 Real-time QRT-PCR primers were designed at the exon-intron boundaries in 

order to prevent amplification of the DNA contaminations by Primer3 software 

(Appendix A) and verified by In-silico PCR and BLAT tools of the UCSC Genome 

Browser. Each primer was normalized by diluting cDNAs from 1-5-6 fold to verify 

efficiency. Primers were purchased from Iontek, Inc., Istanbul, Turkey. 

 

 The reaction was carried out in 25µL cocktail including 12.5 µL SYBR Green 

Supermix, 5 pmol from each primer, 100 ng of cDNA, and double-distilled H2O by 

using the following conditions: Initial denaturation step at 95oC for ten minutes, 

followed by 45 cycles of denaturation (95oC for 30 seconds), annealing (60oC for 30 
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seconds) and elongation (72oC for 30 seconds), and final extension for five minutes at 

72 oC. Melting curve analysis were carried out in order to detect contaminations and/or 

improper binding of the primers, if any, by using dissociation-chracteristics of double-

stranded DNA, just after the final elongations step by raising the temperature 0.5oC 

per 15 seconds from 55oC to 94oC.  

2.9.2.4 Data mining from published expression datasets 

NCBI Gene Expression Ombibus (GEO) is a database of curated gene expression 

experiments (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi). Microarray 

expression data of the mouse brain tissues at the embryonic days E9.5, E11.5 and 

E13.5 were extracted from the database.[94] The data was evaluated with GeneSpring 

GX V11.1 software (Agilent Technologies, Inc.). Quality control and filtering analysis 

was carried out using the appropriate modules of the software as in the manufacturer’s 

protocol (A detailed protocol can be obtained from the http://www.chem.agilent.com/ 

cag/bsp/products/gsgx/manuals/GeneSpring-manual.pdf). Differentially expressed 

genes within day groups were annotated and filtered using One-way ANOVA Test 

(Bonferroni corrected p < 0.001). By using “Find Similar Entity Lists” module of the 

GeneSpring software genes that are predicted to be correlated with the candidate gene 

(R≥0.95) were detected. The human disease associations of the related genes were 

evaluated by Mouse Genome Informatics (MGI) database.[95] 

 

 Functional annotation clustering of the correlated genes was evaluated by the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) tool.[96, 

97] 
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2.10 Enzymes, Chemicals, and Reagents 

2.10.1 Enzymes 

 

Table 2.2: Enzymes used in the experiments 

Enzyme Company 

Proteinase K Appligene, CA, USA 

Taq DNA Polymerase Fermentas, NY, USA 

DNase I Fermentas, NY, USA 

Bpil Fermentas, NY, USA 

Phusion® Hot Start Flex New England Biolabs, UK 

OneTaq® Hot Start New England Biolabs, UK 

OneTaq® DNA Polymerase New England Biolabs, UK 

iQ SYBR Green Bio-Rad, CA, USA 

Phusion Hot Start II High-Fidelity Finnzymes, Finland 
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2.10.2 Solutions and buffers 

 

Table 2.3: Solutions and buffers used in the experiment 

 

Solutions and Buffer Content 

Ethidium bromide: 10 mg/ml in water (stock solution) 

 30 ng/ml (working solution) 

  

Acrylamide:bisacrylamide (30%): 29.5 gr acrylamide 

 0.44 gr bisacrylamide 

 ddH2O to 100 ml 

  

Agarose gel loading buffer (6X): 15% coll 

 0.05% bromophenol 

 0.05% xylene cyanol 

  

1X TAE (Tris-acetic acid-EDTA): 40mM Tris-acetate, 

 2 nM EDTA 

 pH 8.0 

  

1X TBE (Tris-Boric Acid-EDTA) 89 mM Tris-base 

 89 mM boric acid 

 2 mM EDTA 

 pH 8.3 

  

SSC (20X): 175.32 gr Sodium Chloride 

 88.23 gr Sodium Citrate 

 ddH20 to 1 lt 

 pH 7.0 

  

10% APS 1 g Ammonium persulfate 

 ddH2O to 10 ml 
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2.10.3 Chemicals and reagents 

 

Table 2.4: Reagents and chemicals used in the experiment 

 

Reagent/Chemical Company 

Acetic acid Sigma, MO, USA 

Acrylamide Sigma, MO, USA 

Agarose Basica LE, EU 

Ammonium per sulfate Carlo Elba, Italy 

Anti-Digoxigenin-AP, Fab fragments Roche, Germany 

Bakers yeast RNA Sigma, MO, USA 

BCIP Roche, Germany 

Bisacrylamide Sigma, MO, USA 

Bromophenol blue Sigma, MO, USA 

BSA Promega, CA, USA 

CHAPS Sigma, MO, USA 

Denhardt's reagent Invitrogen, CA, USA 

dNTPs Fermentas, NY, USA 

EDTA Fermentas, NY, USA 

Ethanol Merck, Germany 

Ethidium bromide Sigma, MO, USA 

Ficoll Type 400 Sigma, MO, USA 

Formamide (Deionized) Ambion, TX, USA 

Heparin Sigma, MO, USA 

Herring sperm DNA Invitrogen, CA, USA 

MgCl2 Fermentas, NY, USA 

NBT Roche, Germany 

NH4OAc Ambion, TX, USA 

TEMED Sigma, MO, USA 

Tris-Base Bio-Rad, CA, USA 

Tris-HCl Sigma, MO, USA 

Trizol reagent Invitrogen, CA, USA 

Tween-20 Sigma, MO, USA 

Xylene Cyanol Sigma, MO, USA 
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2.11 Reference sequences used in this study 

 

Table 2.5: Accession codes and locations of the ortholog sequences of the candidate 

genes 

 

 Species Ensemble Gene ID Location 

APBA3 orthologes   

Bos taurus ENSBTAG00000008395 7:21440493-21447907 

Canis familiaris ENSCAFG00000019193 20:55713773-55721057 

Cavia porcellus ENSCPOG00000026376 687:63474-66471 

Dipodomys ordii ENSDORG00000005324 5484:7506-12773 

Felis catus ENSFCAG00000019172 4155:157830-165598 

Gorilla gorilla ENSGGOG00000004637 19:3832569-3843515 

Homo sapiens ENSG00000011132 19:3750771-3761673 

S.tridecemlineatus ENSSTOG00000000352 1:2124399-2130070 

Macaca mulatta ENSMMUG00000009672 19:3590577-3601845 

Macropus eugenii ENSMEUG00000013011 8213:22976-31616 

Microcebus murinus ENSMICG00000014756 3672:14526-20558 

Mus musculus ENSMUSG00000004931 10:81268172-81273247 

Myotis lucifugus ENSMLUG00000010776 504:187520-193685 

Otolemur garnettii ENSOGAG00000017147 1:16443947-16451566 

Pan troglodytes ENSPTRG00000010275 19:3753399-3763164 

Procavia capensis ENSPCAG00000000644 6138:24641-33058 

Rattus norvegicus ENSRNOG00000020466 7:9930015-9934987 

Sarcophilus harrisii ENSSHAG00000002223 G410.1:26352-32251 

Sorex araneus ENSSARG00000004110 129:653-6870 

Sus scrofa ENSSSCG00000013492 2:75521565-75529547 

ATP8A2 Orthologs   

Bos taurus ENSBTAG00000019529 12:33754809-34054513 

Danio rerio ENSDARG00000077492 24:21980347-22077198 

Dipodomys ordii ENSDORG00000000239 2794:7266-241256 

Felis catus ENSFCAG00000001581 1872:202599-915634 

Gallus gallus ENSGALG00000017106 1:181054445-181328604 

Gorilla gorilla ENSGGOG00000003045 13:7288395-7801797 

Homo sapiens ENSG00000132932 13:25946209-26599989 

Macaca mulatta ENSMMUG00000008520 17:5281514-5918044 

Monodelphis domestica ENSMODG00000008674 4:295073504-295928157 
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Mus musculus ENSMUSG00000021983 14:59647531-60197179 

Ochotona princeps ENSOPRG00000003638 2068:4320-730369 

Otolemur garnettii ENSOGAG00000003827 1:5252098-5877244 

Pan troglodytes ENSPTRG00000005721 13:24918459-25571779 

Pteropus vampyrus ENSPVAG00000000898 3706:27656-465399 

Tarsius syrichta ENSTSYG00000002400 3466:9606-14765 

Tetraodon nigroviridis ENSTNIG00000012718 6:3751410-3769309 

Tursiops truncatus ENSTTRG00000012736 1304:21683-467711 

Xenopus tropicalis ENSXETG00000010674 272.1:102868-323788 

PCP2 Orthologs   

Bos taurus ENSBTAG00000008906 7:17700404-17701870 

Canis familiaris ENSCAFG00000018302 20:52407779-52409628 

Cavia porcellus ENSCPOG00000020356 42:14877819-14878832 

Equus caballus ENSECAG00000006836 7:4617290-4618648 

Erinaceus telfairi ENSETEG00000018017 259696:1910-2915 

Felis catus ENSFCAG00000001595 445:41838-44033 

Gorilla gorilla ENSGGOG00000002452 19:7845053-7847186 

Homo sapiens ENSG00000174788 19:7696509-7698570 

Loxodonta africana ENSLAFG00000007547 114:1659014-1660387 

Macaca mulatta ENSMMUG00000028904 19:7582857-7585049 

Macropus eugenii ENSMEUG00000001483 980:33754-36479 

Microcebus murinus ENSMICG00000010552 430:12274-14003 

Monodelphis domestica ENSMODG00000015012 3:463179948-463181640 

Mus musculus ENSMUSG00000004630 8:3623371-3625545 

Otolemur garnettii ENSOGAG00000001240 821.1:493965-495066 

Pan troglodytes ENSPTRG00000010396 19:7732220-7734353 

Procavia capensis ENSPCAG00000010909 728:34704-36528 

Rattus norvegicus ENSRNOG00000000993 12:2529466-2531706 

Sorex araneus ENSSARG00000010822 733:287-1115 
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2.12 Web Sources 

Table 2.6: Web-tools used in analysis and design 

 

Web-Tool Web address Reference 

HomozygosityMapper www.homozygositymapper.org [69] 

BioMart www.ensembl.org/biomart/martview - 

GeneWanderer compbio.charite.de/genewanderer/ [71] 

Ensembl www.ensembl.org - 

Primer3 frodo.wi.mit.edu [72] 

BLAT genome.ucsc.edu/cgi-bin/hgBlat - 

In-Slico PCR genome.ucsc.edu/cgi-bin/hgPcr - 

SSAHA www.sanger.ac.uk/resources/ssaha [73] 

Maq maq.sourceforge.net [74] 

BWA bio-bwa.sourceforge.net [75] 

SAMtools samtools.sourceforge.net [76] 

liftOver genome.ucsc.edu/cgi-bin/hgLiftOver - 

BEDtools code.google.com/p/bedtools [79] 

IGV www.broadinstitute.org/igv [81] 

PLINK pngu.mgh.harvard.edu/~purcell/plink [82] 

ANNOVAR www.openbioinformatics.org/annovar [83] 

dbSNP www.ncbi.nlm.nih.gov/projects/SNP - 

1000 Genomes www.1000genomes.org - 

EVS evs.gs.washington.edu/EVS - 

NEBcutter tools.neb.com/NEBcutter2 [84] 

Genome Bioinformatics genome.ucsc.edu - 

GERP mendel.stanford.edu/SidowLab [85] 

phyloP compgen.bscb.cornell.edu/phast [86] 

SIFT sift.jcvi.org/ [87] 

PolyPhen2 genetics.bwh.harvard.edu/pph2 [88] 

MutationTaster www.mutationtaster.org/ [89] 

Pfam pfam.sanger.ac.uk/ [90] 

TMpred www.ch.embnet.org/TMPRED - 

HOPE www.cmbi.ru.nl/hope/home [92] 

PSIpred bioinf.cs.ucl.ac.uk/psipred [91] 
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Chapter 3 

Results 

3.1. Clinical Assessment of the Family 

The consanguineous family from Adana-Turkey has four affected individuals with 

mental retardation, dysarthric speech, and truncal ataxia (See the pedigree in Figure 

3.1). All the patients in the family had significant developmental delay noted in 

childhood (Table 3.1). Two of the patients (05-994 and 05-999) exhibited quadrupedal 

locomotion (Figure 3.2). These patients did not show any ataxic movements during 

quadrupedal walking. The woman (05-999) had ability to stand upright and maintain 

the position with bent knees and hips. She preferentially got back to quadrupedal 

position while walking. The man (05-994) could only stand by support (Figure 3.3, 

left). One of the male patients (05-996) walked quadrupedally during infancy, acquired 

occasional drunk-like ataxic bipedal gait later in his adulthood with 

dysdiadochokinesia and dysmetria (Figure 3.3, right). The last patient (05-993) also 

walked quadrupedally during childhood, but exhibiting total inability to walk during 

his adulthood. 

 

 



61 

 

Table 3.1: Physical, radiological, and genetic characteristics of the patients. Adopted 

from Ozcelik et al., 2008 [32] with permission 

 

 05-993 05-994 05-996 

Gait (childhood) Quadrupedal Quadrupedal Quadrupedal 

Gait (adulthood) None Quadrupedal Bipedal 

Truncal ataxia Severe Severe Severe 

Corpus callosum Normal ? Normal 

Inferior cerebellum Mild hypoplasia ? Mild hypoplasia 

Cortical gyri Mild 

simplification 

? Mild 

simplification 

Mental retardation Profound Profound Profound 

Hypotonia Absent Absent Absent 

Speech Dysarthric Dysarthric Dysarthric 

Tremor Present Present Present 

Seizures Rare Rare Rare 

Barany caloric nystagmus Pvs defect Pvs defect Pvs defect 

Ambulation Delayed Delayed Delayed 

Lower leg reflexes Hyperactive Hyperactive Hyperactive 

Upper extremity reflexes Vivid Vivid Vivid 

Pes-planus Present Present Present 

Strabismus Present Present Present 

Inferior vermis Normal ? Normal 
 

Abbreviations used in this table: PVS, pulmonary valve stenosis 

 

 

 All affected individuals of the family had severe dysarthric speech with great 

difficulty in articulation using a limited vocabulary. All three affected individuals 

examined had severe mental retardation determined by MMSE test. Two of the 

patients (05-994 and 05-996) had zero and the other (05-993) had 3 points in the test. 

The test revealed that they followed very simple questions and commands, but they 

disoriented in time and place. They were not aware of the time or the place. They also 

did not exhibit consciousness in arithmetic calculations and memory. However, none 

of the patients showed autistic features. 
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Figure 3.1: Family pedigree of the affected individuals. (Copyright © 2013, Copyright 

Clearance Center, Inc. Adopted from Tan et al., 2006 [63] with permission). 

 

  

Neurological examinations of the affected individuals were carried out at the 

Cukurova University University Hospital by specialists which revealed that they had 

bilateral dysmetria and dysdiadochokinesia with severe truncal ataxia. Motor 

examinations revealed normal muscle tone and power and no sensory loss. Patients’ 

lower extremities were hyperactive and upper extremities were vivid. Cranial MRI and 

whole-body CT examinations of the patients revealed normal corpus callosum and 

inferior vermis whereas mild cerebral and cerebellar atrophy, mild cerebral cortical 

simplification. 
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Figure 3.2: Quadrupedal walking of patients 05-994 (left) and 05-999 (right). 

(Copyright © 2013, Copyright Clearance Center, Inc. From Tan et al., 2006 [63] 

with permission).  
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Figure 3.3: Standing postures of the quadrupedal man (05-994) and bipedal ataxic man 

(05-996). (Copyright © 2013, Copyright Clearance Center, Inc. From Tan et al., 2006 

[63] with permission). 

 

3.2. Genetic Mapping 

Close examination of the pedigree revealed that CAMRQ inherited in the family with 

autosomal recessive transmission. Homozygosity mapping analysis is a useful method 

to map recessive traits in consanguineous families. 

3.2.1. Homozygosity mapping using Affymetrix arrays 

Homozygosity mapping analysis was facilitated with Affymetrix 250K NspI 

genotyping data which was generated using DNA of three affected individuals (05-

993, 05-994 and 05-996) (Figure 3.4). As a result 23 shared homozygous regions 

detected for a mutation segregating within the three affected individuals (Table 3.2). 

Since nine of the homozygous blocks were located in centromeric or telomeric regions, 

they were excluded from the study. The two consecutive blocks on chromosome 13 

were supposed as a single block and selected as the first candidate locus. 
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Figure 3.4: Homozygosity mapping analysis using Affymetrix arrays. Shared 

homozygosity regions of the three affected individuals (05-993, 05-994 and 05-996) 

were determined using web-based online HomozygosityMapper software. Y-axis of 

the graph indicates genome-wide homozygosity scores (max=1000). Red bars refer to 

the common homozygous intervals. 

 

 

3.2.2. Candidate gene sequencing 

The shared homozygous blocks contain 563 genes including 286 protein coding (see 

Appendix B), 149 pseudogenes, 15 processed transcripts, and 113 RNA genes. 

Because of the huge number of genes, a candidate gene approach determined. The 

shared homozygote interval on 13q region evaluated as the primary candidate. 

 

 The 1.3 Mb long candidate region on chromosome 13q contains 10 protein 

coding genes (Table 3.3). Among these ATP12A (ATPase, Na+/K+ transporting, alpha 

polypeptide-like 1), ATP8A2 (ATPase, class I, type 8a, member 2), MTMR6 

(Myotubularin-related protein 6), NUPL1 (Nucleoporin-like 1), CENPJ (Centromeric 

protein j), and SACS (Sacsin) genes expressed at the cerebellum. Especially CENPJ 

gene causes primary microcephaly [MIM: 609279] with mental retardation and SACS 

gene causes spastic ataxia [MIM: 270550].  
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Table 3.2: Shared homozygous regions of Affymetrix 250K data 

Chr:Start-End SNP Start-SNP End Number 

of SNPs 

Size (bp) 

1:1,156,131-2,283,313 rs2887286-rs2843130 10 1,127,182 

2:193,892,056-195,377,437 rs6746137-rs16831761 110 1,485,381 

3:48,531,740-49,696,633 rs9851771-rs2131104 18 1,164,893 

3:50,539,219-52,446,788 rs1107312-rs6766038 62 1,907,569 

3:155,104,305-156,147,664 rs4131239-rs1450107 70 1,043,359 

5:68,638,941-70,701,990 rs6879078-rs5005863 3 2,063,049 

9:38,708,759-41,227,099 rs16935357-rs3012258 12 2,518,340 

9:43,553,500-44,768,659 rs11261805-rs11263386 3 1,215,159 

12:123,153,825-124,181,820 rs6489190-rs7979528 27 1,027,995 

13:24,982,832-26,080,014 rs4769349-rs17082385 126 1,097,182 

13:26,080,617-26,474,189 rs41516145-rs11149407 52 393,572 

19:40,264,738-41,416,143 rs2190846-rs3852872 34 1,151,405 

19:41,502,602-43,044,329 rs6508964-rs6509018 38 1,541,727 

20:44,460,376-46,115,853 rs12480250-rs6066353 106 1,655,477 

Centromeric and telomeric regions 

1:121,213,673-142,821,805 rs6600668-rs6668639 4 21,608,132 

2:90,242,076-91,965,175 rs842160-rs55651153 4 1,723,099 

8:43,156,798-46,924,211 rs7007551-rs2353200 14 3,767,413 

9:45,088,879-68,781,772 rs2217821-rs41349147 5 23,692,893 

11:51,563,636-55,050,890 rs7484073-rs10792084 7 3,487,254 

19:2,909,033-4,822,855 rs10853963-rs4807651 33 1,913,822 

19:5,458,230-6,977,118 rs674316-rs4807918 50 1,518,888 

19:6,977,924-8,103,881 rs7256969-rs10411185 50 1,125,957 

19:24,240,785-28,319,922 rs17272051-rs7258458 23 4,079,137 
 

Abbreviations used in this table: Chr, chromosome; bp, base pair; SNP, single nucleotide polymorphism 

 

 

 The genes reside at the 13q region were prioritized to select candidate genes 

using web-based GeneWanderer tool.[71] This approach prioritizes genes reside in a 

genomic interval found by comparing protein-protein interactions and being involved 

in a disease or phenotype. As a result CDK8, GTF3A, POLR1D, MTMR6, CENPJ are 

the first five candidates (Table 3.4) which were prioritized by association with 

spinocerebellar ataxia and protein-protein interactions with previously identified 

CAMRQ genes (VLDLR and CA8).  
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 Table 3.3: Genes located on the 13q candidate homozygous region 

 

Chr:Start-End (bp) Gene Biotype Status 

13:24982295-25171798 RP11-556N21.4 pseudogene known 

13:24993688-24995180 RP11-169O17.5 processed transcript putative 

13:24995064-25086948 PARP4 protein coding known 

13:25129366-25129451 AL359538.2 miRNA novel 

13:25140981-25144866 PSPC1P2 pseudogene known 

13:25141011-25171814 TPTE2P6 processed transcript novel 

13:25183217-25183313 AL359538.1 miRNA novel 

13:25254549-25285921 ATP12A protein coding known 

13:25277694-25277803 RNY1P7 misc RNA known 

13:25278540-25278926 RPL26P34 pseudogene known 

13:25316815-25320322 IRX1P1 pseudogene known 

13:25324795-25326309 ANKRD20A10P pseudogene known 

13:25338290-25454059 RNF17 protein coding known 

13:25457171-25497018 CENPJ protein coding known 

13:25498815-25542625 TPTE2P1 pseudogene known 

13:25511014-25512491 LINC00357 processed transcript putative 

13:25517713-25518636 SLC25A15P3 pseudogene known 

13:25562715-25563063 RPL34P27 pseudogene known 

13:25670006-25673392 PABPC3 protein coding known 

13:25715794-25716046 AL359757.1 pseudogene novel 

13:25735822-25746426 FAM123A protein coding known 

13:25746966-25754217 RP11-165I9.4 lincRNA novel 

13:25755579-25763898 RP11-165I9.8 antisense novel 

13:25767245-25784433 RP11-165I9.6 processed transcript putative 

13:25780187-25780640 RPL23AP69 pseudogene known 

13:25802307-25862147 MTMR6 protein coding known 

13:25820669-25820753 AL590787.1 miRNA novel 

13:25874262-25875576 RP11-271M24.2 antisense novel 

13:25875662-25923938 NUPL1 protein coding known 

13:25939937-25940293 TCEB2P1 pseudogene known 

13:25946209-26599989 ATP8A2 protein coding known 

13:26027137-26027428 Metazoa_SRP misc RNA novel 

13:26091257-26091363 RNU6-78 snRNA known 

13:26437388-26437805 RP11-467D10.2 pseudogene known 

13:26442061-26455095 AL138815.1 protein coding known 
 

Abbreviations used in this table: Chr, chromosome; bp, base pair; misc RNA, miscellaneous RNA, miRNA, microRNA 
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Table 3.4: Gene prioritization using GeneWanderer 

 

Rank Gene Symbol Score Start (bp) End (bp) 

1 CDK8 0.06336 25,726,755 25,876,568 

2 GTF3A 0.06135 26,895,848 26,907,957 

3 POLR1D 0.01466 27,094,002 27,139,547 

4 MTMR6 0.01304 24,718,338 24,759,703 

5 CENPJ 0.01227 24,354,411 24,395,084 

6 CDX2 0.00785 27,434,277 27,441,316 

7 PDX1 0.00775 27,392,156 27,397,393 

8 WASF3 0.00213 26,029,839 26,161,081 

9 LNX2 0.00208 27,018,049 27,092,719 

10 SHISA2 0.00167 25,516,734 25,523,197 

11 RPL21 0.00149 26,723,691 26,728,704 

12 NUPL1 0.00093 24,773,665 24,814,560 

13 ATP8A2 0.00087 24,844,208 25,493,419 

14 GSX1 0.00057 27,264,779 27,266,088 

15 ATP12A 0.00040 24,152,694 24,183,917 

16 GPR12 0.00032 26,230,959 26,231,963 

17 RNF6 0.00029 25,684,904 25,694,507 

18 PABPC3 0.00029 24,568,275 24,570,704 

19 USP12 0.00010 26,540,432 26,644,027 

20 RNF17 0.00005 24,236,300 24,352,058 

21 RASL11A 0.00000 26,742,463 26,745,826 
 

Abbreviations used in this table: bp, base pair 

 

 

 

 All in all, taking expression and prioritization analysis and database searches 

into account MTMR6, NUPL, CENPJ and SACS genes were selected as the first 

candidates for sequencing. The 96.8% of the 57 exons, the exon-intron boundaries and 

untranslated regions of these four genes were sequenced with 93 primers (see 

Appendix A for the full list of primers) but no mutations associated with the disease 

were detected (Table 3.5). Further sequencing using candidate gene priorization 

approach would be time and expense consuming so the Affymetrix array genotyping 

results were evaluated. 
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Table 3.5: Statistics of the sequencing results of the 13q region 

 

Genes Exon 

Number 

Total 

Reactions 

Exons not  

Sequenced 

Completed 

(%) 

MTMR6 15 19 1 100 

CENPJ 17 18 1 94.4 

NUPL1 16 22 0 100 

SACS 9 36 1 97.2 

 

 

3.2.3. Homozygosity mapping using high-resolution Illimuna arrays 

Homozygosity mapping analysis using Affymetrix 250K NspI array results with 23 

shared homozygous loci. 9 of them were excluded since they were at the centromeric 

or telomeric regions. Remaining 14 loci on chromosomes 1, 2, 3, 5, 9, 12, 13, 19, 20 

could not be excluded from the study. Affymetrix 250K SNP Array contains of 

approximately 262,264 SNPs and do not represent all regions of the genomes. Also 

the experiment resulted with low confidence (79.5%) since 53.787 SNPs were not 

informative for haplotyping.  

 

Therefore, the homozygosity mapping analysis were repeated with a more 

comprehensive SNP array, Illumina Human610-Quad BeadChip with 599,012 SNP 

and 21889 CNV probes, using DNA’s of the two patients (05-994 and 05-996). 

Homozygosity mapping analysis were carried out using web-based 

HomozygosityMapper software using 589,904 informative SNPs (98.5% coverage) 

for both patients (Figure 3.5). As a result four shared homozygous blocks were 

identified in two affected individuals (Table 3.6). All other previously reported regions 

including the telomeric and centromeric ones and also previously identified locus for 

CAMRQ syndrome were excluded by this analysis (Figure 3.6).   
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Table 3.6: Shared homozygous regions of Illimuna arrays 

 

Chr Start End SNP start SNP end Size (in bp) 

13 23,644,401 26,534,333 rs4769238 rs11618503 2,889,932 

19 3,136,845 14,337,400 rs1465245 rs4926182 11,200,555 

19 39,666,967 45,543,787 rs1529712 rs1560725 5,876,820 

20 41,015,889 45,954,292 rs2425479 rs6094661 4,938,403 
 

Abbreviations used in this table: Chr, chromosome; bp, base pair; SNP, single nucleotide polymorphism 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Homozygosity mapping analysis using high-resolution Illimuna arrays. 

Shared homozygosity regions of the two affected individuals (05-994 and 05-996) 

were determined using web-based online HomozygosityMapper software. Y-axis of 

the graph indicates genome- wide homozygosity scores (max=1000). Red bars refer to 

the common homozygous intervals. (Copyright © 2012, Rights Managed by Nature 

Publishing Group. From Onat et al., 2012 [64] with permission). 
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Figure 3.6: Comparison of the Affymetrix and Illimuna arrays. Homozygosity 

mapping analysis using Affymetrix 250K NspI array results with 23 shared 

homozygous loci. 9 of them were located at the centromeric or telomeric regions. 

Affymetrix array experiment resulted with 208.477 informative SNPs (79.5% 

coverage). Homozygosity mapping analysis was repeated with a Illumina Human610-

Quad BeadChip with 589,904 informative SNPs (98.5% coverage). Four shared 

homozygous blocks were identified which excluded many of the regions identified by 

Affymetrix arrays including the telomeric and centromeric ones. 

 

 

 

 



72 

 

3.3 Targeted next generation sequencing of the homozygous regions 

Four common homozygous intervals determined by high-resolution Illimuna 

genotyping contain 882 genes with 2,263 transcripts and 16,935 exons which 

constitute a total of 4,068,182 base pairs. The shared regions constitute a total of 

24,905,710 base pairs with intergenic and intragenic regions which may be involved 

in regulation of the transcription. The region also contains 594 known protein coding 

genes so candidate gene prioritization would not be work. Because of the huge number 

of genes it is not possible to sequence all exons with exon-intron boundaries and 

untranslated regions; therefore a genome-wide approach was aimed.  

 

As a next step, targeted enrichment followed by next generation sequencing 

technology is the most promising step towards maximizing the efficiency and cost. 

Sample preparation, capture and sequence enrichment, and data analysis are the major 

steps that encompass workflow.  

3.3.1 Sample Preparation 

The quality of the next generation sequencing data depends on the optimal sample 

preparation. Genomic DNA with high quality and high quantity is necessary for 

targeted next generation sequencing experiments as in all high-throughput sequencing 

or genotyping experiments.  

 

Genomic DNA isolations of the selected individuals were carried out using 

phenol-chloroform extraction method. The quantities and qualities of the samples were 

measured by gel electrophoresis using densitometry analysis (Figure 3.7 and Table 

3.7), spectrophotometry measurements (Table 3.8), and PicoGreen method (Table 3.9, 

Table 3.10, and Figure 3.8). 
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Table 3.7: DNA concentrations as a result of densitometric measurements 

 

Sample Concentration (ng/µl) Dilution Total (ng/µl) 

05-992 70.23 1/5 351.15 

05-994 67.57 1/5 337.85 

05-996 94.37 1/5 471.85 

Affy DNA 25ng 22.76 1/2 45.52 

Affy DNA 50ng 50 1 reference 

MassRuler 10k 25 1 reference 

MassRuler 8k 20 1 reference 
 

Abbreviations used in this table: ng, nano gram; µl, microliters; Affy, Affymetrix 

 

 

 

 

 

 

 

Figure 3.7: Density measurements using agarose gel electrophoresis. DNA samples 

were run on 1% agarose gel at 70V for 50 minutes.  Lane 1: MassRuler DNA Ladder 

Mix (1 µl); Lanes 2-4: DNA samples diluted 1:5 in TE (1 µl); Lanes 5-6: Affymetrix 

Reference gDNA (25 ng, 50 ng); Lane 7: pUC mix Marker 8 (1 µl). Gel image was 

captured with BioRad Gel Doc 2000 system, DNA quantitation was performed using 

BioRad Multi Analyst 1.1 software. Affymetrix gDNA (50 ng) and MassRuler (10k: 

25 ng, 8k: 20 ng) used as reference. Affymetrix gDNA (25 ng) used as control. 
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Table 3.8: DNA concentrations as a result of spectrophotometric measurements 

 

Sample 260/280 260/230 Conc. 

(ng/µl) 

Dilution Total 

(ng/µl) 

Total DNA 

(95 µl) 

Affy DNA  

(50 ng) 

1.79 1.78 49.82 1 49.82 - 

Affy DNA  

(25 ng) 

1.87 1.22 22.76 1/2 45.52 - 

05-992 1:5 1.77 2.10 63.88 1/5 319.40 30.34 

05-994 1:5 1.84 2.28 123.48 1/5 617.40 58.65 

05-996 1:5 1.82 2.21 95.99 1/5 479.95 45.60 
 

Abbreviations used in this table: Conc., concentration; ng, nano gram; µl, microliters; Affy, Affymetrix 

 

 

 

 

Table 3.9: DNA concentrations as a result of PicoGreen analysis 

 

Well Fluorescein  Dilution 

Factor 

Counts Concentration 

(ng/ml) 

Total 

DNA 

Reference 1246 0 0 -2,62 - 

Reference 5125 1 3879 6,81 - 

Reference 5156 1/10 3910 6,89 - 

Reference 43385 1/100 42139 99,88 - 

Reference 413440 1/1000 412194 1000,04 - 

05-992 123510 1/5 122264 294,79 147,39 

05-992 200728 1/5 199482 482,62 241,31 

05-994 303311 1/5 302065 732,15 366,08 

05-994 343331 1/5 342085 829,50 414,75 

05-996 235531 1/5 234285 567,28 283,64 

05-996 252286 1/5 251040 608,03 304,02 

Affy DNA 66914 1/2 65668 157,12 31,42 

Affy DNA 58375 1/2 57129 136,34 27,27 

05-992 67102 1/10 65856 157,57 157,57 

05-994 174756 1/10 173510 419,44 419,44 

05-994 59471 1/20 58225 139,01 278,02 

05-992 374703 1/2 373457 905,81 181,16 

05-996 130496 1/10 129250 311,78 155,89 
 

Abbreviations used in this table: ng, nano gram; µl, microliters; Affy, Affymetrix 
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Table 3.10: Average concentrations of samples of PicoGreen measurements 

 

Samples 1:2 1:5 1:5 1:10 1:20 Average 

(ng/µl) 

Total DNA 

(95 µl) 

05-992 181 147 241 157  - 182 17.2 

05-994  - 366 414 419 278 369 35.1 

05-996  - 283 304 155  - 247 23.5 

Affy DNA  

(50ng) 

 - 31 27  -  - 58  - 

 

Abbreviations used in this table: ng, nano gram; µl, microliters; Affy, Affymetrix 

 

 

 

 

 

 

 

 

Figure 3.8: Linear regression graph of PicoGreen assay 
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3.3.2 Capture and sequence enrichment 

The next step to be considered for targeted next generation sequencing experiment is 

the make-up of the library to be sequenced. So the capturing reaction should recover 

the fragments with low bias and high complexity to obtain a high percentage of 

coverage of the targeted region. The minimal critical regions at the shared homozygous 

regions determined by homozygosity mapping using Illimuna genotyping data 

(chr13:23,644,401-26,534,333, chr19:3,136,845-14,337,400, chr19:39,666,967-

45,543,787, chr20:41,015,889-45,954,292, according to hg19 reference genome) was 

captured using 3 µg input DNA of one affected individual, 05-996 by custom-designed 

Nimblegen Human Sequence Capture HD2 microarray. A total of 16,756,626 base 

long unique probes were designed to target homozygous regions and as a result 

captured with 629-fold enrichment (Table 3.11). Captured DNA sample of the affected 

individual was sequenced by Illimuna Genome Analyzer IIx using Titanium series 

reagents. 29.2% of the reads mapped to the targeted homozygosity intervals. Average 

read length was 74.32 base-pairs with 4,764,521 single-end 75 base-pair reads 

contributing 20.42 fold coverage and 10,059,448 single-end 74 base-pair reads 

contributing 42.55 fold coverage. A total of 48.62 million reads were sequenced with 

62.96 fold mean coverage depth. As a result, 97.41% of the targeted bases being 

covered by at least four reads (Table 3.11). 

3.3.3 Data Analysis 

3.3.3.1 Variant calling and error rates 

Since next generation sequencing is a valuable technique for understanding disease 

and health, management and analysis of the huge data obtained requires several steps. 

At first, error sources and rates in the original raw data should be determined. Data 

should be analyzed by computational methods including assembly, alignment, and 

variation detection. Variant annotation requires a broad range of genetic analysis 
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including comparative genomics, polymorphism detection, analysis of coding and 

non-coding regions, and identifying mutant genes in disease pathways. 

 

 

 

Table 3.11: Statistics of targeted next generation sequence data. (Copyright © 2012, 

Rights Managed by Nature Publishing Group. From Onat et al., 2012 [64] with 

permission). 

 

Patient ID 05-996 

Number of lanes 3 

Read Type (SR/PE) SR 

Read length 75 bp 

Total number of reads  48,627,393 

T
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ed
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 Interval size (bp) 16,756,626 

Fold enrichment 629 

% mapped to the interval 29.20 

Mean coverage (fold) 62.96 

% of bases covered at least 4X  97.41 

Mean error rate (%) 0.61 

2nd base error rate (%) 0.25 

Last base error rate (%) 2.36 
 

Abbreviations used in this table: SR, single repeat; PE, paired end; bp, base pair 

 

 

 

 It is critical to assess the quality of the sequencing reactions by evaluating the 

sequencing errors and artifacts. Variant calling accuracy is affected by several factors 

such as library generation, read mapping, variation in unique and repetitive elements, 

detecting indels with short reads, difficulties in mapping homopolymer regions and 

GCC motifs, and artificial amplification.[98]  Next generation sequencing platforms 

had an average of 0.1-1% error rate which reaches to 3-4.5% at homopolymer 

regions.[99] Comparison analysis between the Illimuna SNP genotyping data and 

Illimuna targeted sequencing data revealed a mean error rate of 0.61% (0.24%-2.36%) 

determined on overall sequencing data. 
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3.3.3.2 Analysis of the low-coverage regions 

As mentioned, as a result of targeted next generation sequencing, 97.41% of the 

targeted bases being covered by at least four reads. Therefore, 2.59% of the targeted 

bases which constitutes 434,494 bases were whether covered less than four reads 

(239,122 bp) or did not covered at all (195,372 bp) (Table 3.12, see also Figure 3.9). 

So in principle, mutations in these low and zero coverage regions could also be disease 

causing and should be analyzed. 

 

 The non-covered bases would reside at the coding exons, exon-intron 

boundaries, untranslated regions, introns, and intragenic regions. Classification of 

these non-covered bases according to their physical location would provide 

information about the functional consequences of the possible variations since the non-

covered bases at the non-coding regions would not be important in coverage 

calculations.  

 

 The targeted regions contain 5,235 exons that compose a total of 1,067,180 

bases (genome assembly NCBI36/hg18, exome_B_NCBI36.bed,  created from 

HAVANA & ENSEMBL data on 2008, downloaded from ftp://ftp.sanger.ac.uk/ 

pub/fsk/exome/) of which 919,453 bases are on the evolutionary conserved protein-

coding exons (genome assembly GRCh17/hg19, Exoniphy, downloaded from UCSC 

Genome Browser Genes and Gene Prediction tracts).  

 

Evaluation of the low and zero coverage regions using mpileup module of 

Samtools and intersectBED command of BEDtools revealed that 14,027 bases reside 

at the exonic regions which increase the coverage to 98.69%. A more detailed analysis 

of the exonic region revealed that only 4,505 bases place on the constitutive parts 

which comprise 99.51% coverage with at least four times readings (Table 3.12, see 

also Figure 3.9). These 4,505 bases correspond to 77 exons in 9 genes (Table 3.13) 
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Table 3.12: Coverage analysis of the next generation sequencing data 

 

 Base pairs Percentage 

Interval size  16,756,626 100 

Bases  covered (>3X) 16,322,132 97.41 

Low covered bases (1-3X) 239,122 1.42 

Zero covered bases 195,372 1.17 

Bases non-covered 434,494 2.59 

Bases non-covered at the noncoding regions 420,467 2.51 

Bases non-covered at the exonic regions 14,027 0.08 

Bases non-covered at the UTRs and boundaries 9,522 0.05 

Bases non-covered at the constitutive exons 4,505 0.03 

Total number of exons 1,067,180 5.49 

Exonic coverage (>3X) 14,027 98.69 

Total number of constitutive exons 919,454 6.37 

Constitutive exonic coverage (>3X) 4,505 99.51 

 

 The genes located at the low or zero coverage regions with the constitutive 

exons were evaluated in detail. It is revealed that they neither have cerebellar 

expression nor display a phenotype compatible with cerebellar involvement in mouse 

knockouts (Table 3.13). Based on these results, we concluded that it is highly unlikely 

that a causative mutation is missed at the low or zero coverage regions. 

3.4 Identification of the Disease-Causing Determinants 

With the advent of next generation sequencing technology, identifying novel disease 

genes has become facilitated. Figure 3.10 summarizes the procedure followed in this 

study to identify disease-causing genes. The common step in disease-causing gene 

identification is mutation testing in a candidate gene, but the other steps are unique to 

the case. In general the method we used can be divided into those that determination 

of the chromosomal location of the disease locus, next generation sequencing, 

genotype calling and functional annotation of the variants, evaluation and exclusion of 

the variants, identification and confirmation of the disease-causing variant. 
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Figure 3.9: Graphical representation of the coverage analysis of the next generation 

sequencing data. 97.41% of the targeted bases covered by at least four reads. Among 

these, 99.51% of the constitutive exons in protein coding regions were found to be 

covered by at least four reads. The numbers corresponds to base pairs. Coverage 

analysis carried out using intersectBED command of BEDtools and mpileup module 

of Samtools.



81 

 

 

 

Table 3.13: List of genes corresponding to low and zero coverage regions. (Copyright © 2012, Rights Managed by Nature Publishing 

Group. From Onat et al., 2012 [64] with permission). 

Gene Name Gene Biotype MIM 

accession 

Exp. in 

cerebellum 

Exp. in 

brain 

Exp. in 

nerve 

MGI Phenotype of the homozygous mice 

GNA15 Protein coding - no no no Normal hematopoiesis and normal response to 

inflammatory challenges 

CLASRP Protein coding - no yes yes - 

DOHH Protein coding - yes yes no Embryonic lethal 

SAFB2 Protein coding - yes yes yes Born at the expected Mendelian ratio and did 

not show any obvious defects in growth or 

fertility 

PAK4 Protein coding - yes yes yes Die at midgestation exhibiting heart defects as 

well as impaired neuronal development and 

yolk sac vasculature 

CHAF1A Protein coding - yes yes yes Lethality before implantation, embryonic 

growth arrest, and abnormal heterochromatin 

morphology 

AC006271.1 Pseudogene - no no no - 

C1QTNF9 Protein coding - no no no - 

C1QTNF9-AS1 Processed 

transcript 

- no no no - 

 

Abbreviations used in this table: MIM, Mendelian Inheritance in Man; Exp., expression 
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Figure 3.10: Schematic representation of the disease-causing gene identification 

method. 
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3.4.1 Genotype calling and analysis 

After the sequencing reaction was completed, image analysis and base calling was 

performed using Illumina Pipeline version 1.5 with default parameters to generate 

primary sequencing data. Genotype calling is the process done to determine positions 

in which a SNP or variant has been called. Obtained 75 base pair single-end reads were 

then aligned against the reference human genome (NCBI36/hg18) using Maq and 

BWA software packages to determine single nucleotide variants and insertion/ 

deletions, respectively. SNVs and indels were extracted and analyzed using SAMtools 

software package. Positional annotations of the genetic variants carried out using the 

ANNOVAR software package. 

 

 As a result, a total of 35,325 variants (18,292 heterozygous + 17,033 

homozygous) were detected within the targeted homozygous regions (Table 3.14). 

Among these, heterozygous variants composed of 3,866 SNVs, 7,948 insertions, and 

6,478 deletions; and homozygous variants composed of 15,311 SNVs, 687 insertions 

and 1,035 deletions. As a result, a total of 489 protein coding heterozygous variations 

(457 exonic, 23 exonic splicing and 24 intronic splicing variants) and 596 protein 

coding homozygous variations (581 exonic, 10 exonic splicing and 5 intronic splicing 

variant were detected (See Table 3.14 for detailed analysis). 

3.4.2 SNP calling and filtering 

Exclusion of the variants that matching with previously reported SNPs is the first 

filtering step, since the NCBI dbSNP database assumed not to contain pathogenic 

variations. Non-pathogenic SNP calling and filtering carried out using the ANNOVAR 

software package by utilizing dbSNP132 in hg18 coordinates.  
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Table 3.14: Statistics of the genetic variants after base calling and positional annotations 

 

                                       Functional Annotation 

  Protein Coding Noncoding Regions 

 Total Exonic Exonic; 

splicing 

Splicing Intergenic Intronic ncRNA Upstream; 

downstream 

UTR 

Total number of 

variations 

35325 1038 23 24 13447 16819 1562 1493 919 

Heterozygous variations 18292 457 13 19 6997 8789 789 760 468 

SNVs 3866 106 3 5 1533 1798 190 133 98 

Insertions 7948 311 10 8 2859 3820 321 369 250 

Deletions 6478 40 0 6 2605 3171 278 258 120 

Homozygous variations 17033 581 10 5 6450 8030 773 733 451 

SNVs 15311 569 8 4 5773 7189 682 678 408 

Insertions 687 6 1 1 264 333 34 27 21 

Deletions 1035 6 1 0 413 508 57 28 22 
 

Abbreviations used in this table: SNV, single nucleotide variation; ncRNA, noncoding RNA; UTR, untranslated region
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 As a result, 43.8% of the total variants (15,470 variants) called as SNP and 

excluded from the study. Remaining 18,726 novel variants (15,946 heterozygous + 

2,780 homozygous) were analyzed (See Table 3.15 for detailed statistics). Novel 

heterozygous variants composed of 3,188 SNVs, 7,948 insertions, and 5,662 deletions; 

and novel homozygous variants composed of 1,736 SNVs, 687 insertions and 634 

deletions.  As a result of positional annotations, a total of 467 novel protein coding 

heterozygous variations (437 exonic, 12 exonic splicing variant and 18 intronic 

splicing variant) and 126 novel protein coding homozygous variations (121 exonic, 3 

exonic splicing variant and 2 intronic splicing variant) were detected (Table 3.15).  

3.4.3 Functional annotation of the novel homozygous variants 

 Since the family pedigree revealed an autosomal recessive inheritance, the 

patients would carry a homozygous mutation. After the exclusion of the previously 

reported dbSNP32 variants, the variants were evaluated according to their positions. 

126 novel protein coding homozygous variations (See Appendix C for the full list of 

the variants) were selected for further functional annotation according to their exonic 

function. As a result, novel protein coding homozygous variants classified as 

frameshift deletion, frameshift insertion, nonframeshift deletion, nonframeshift 

insertion, synonymous SNV, and nonsynonymous SNV (Figure 3.11). The 92 protein 

altering variations were selected for further analysis. 
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Table 3.15: Statistics of the novel genetic variants filtered by using dbSNP32 database 

 

                                      Functional Annotation 

  Protein Coding Noncoding Regions 

 Total Exonic Exonic; 

splicing 

Splicing Intergenic Intronic ncRNA Upstream; 

downstream 

UTR 

SNPs filtered by dbSN132 15470 480 8 4 5981 7407 674 570 346 

Novel variants 19855 558 15 20 7466 9412 888 923 573 

Novel Heterozygous variants 16798 437 12 18 6410 8056 717 710 438 

SNVs 3188 87 2 5 1263 1482 151 115 83 

Insertions 7948 311 10 8 2859 3820 321 369 250 

Deletions 5662 39 0 5 2288 2754 245 226 105 

Novel Homozygous variants 3057 121 3 2 1056 1356 171 213 135 

SNVs 1736 111 2 1 544 705 102 170 101 

Insertions 687 6 1 1 264 333 34 27 21 

Deletions 634 4 0 0 248 318 35 16 13 
 

Abbreviations used in this table: SNV, single nucleotide variation; ncRNA, noncoding RNA; UTR, untranslated region
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Figure 3.11: Functional annotation of the novel homozygous coding variants 

 

3.4.4 Population Screening 

According to the NCBI database dbSNP build 132 (2010) contains 19,727,605 

validated SNPs which were used to filter non-pathogenic variants. Meanwhile, with 

the development of the next generation sequencing technology, sequencing of 

individual genomes has become possible. As a consequence, open source public 

databases that contain catalogue of common and rare variations generated.  These 

databases can be ordered as 1000 genomes, NHLBI Exome Sequencing Project, 

Database of Structural Variants and International HapMap Project.  

 

 The 92 protein altering variations (exonic splicing, intronic splicing, 

nonsynonymous SNVs, frameshift indels) were further filtered using these databases 

with the criteria that if the MAF of the common variant was lower than 0.1%.  Actually, 

allele frequency of 1% or higher is the classic definition of the polymorphism, but at 

coding regions the allele frequencies have reduced down towards 0.1% [100]. As a 

3

5

1

1

32

79

2

3

Frameshift deletion

Frameshift insertion

Nonframeshift deletion

Nonframeshift insertion

Synonymous SNV

Nonsynonymous SNV

Intronic; splicing

Exonic; splicing

0 20 40 60 80 100



88 

 

result, 10 homozygous novel coding missense SNVs and one homozygous novel 

coding nonframeshift deletion (Table 3.16). 

 

 Four of the 11 coding variants (ZNF234 p.G602E, MEGF8 p.V2502I, 

CYP2A6 p.V80M, MBD3L3 p.G124S) were excluded by screening the unpublished 

exome sequencing data of Yale University of 2400 individuals with non-neurological 

disorders. Seven missense variants (ATP8A2 p.I376M, APBA3 p.A97T, MUC16 

p.A6352V, MUC16 T6290I, ZNF823 p.C250R, SERINC3 p.M116T, PCP2 p.E6) with 

minor allele frequency of 0.1% or higher were selected for further analysis (Table 

3.16). 

3.4.5 Exclusion of the variants 

Figure 3.12 summarizes the analysis, annotation and exclusion of the genetic variants 

determined used targeted next generation sequencing of the homozygous regions of 

the affected individual (05-996).  

3.4.5.1 Database Search 

As a first step in determination of the disease causing variant, remaining 7 variant were 

evaluated in the several databases in order to understand their biological functions (see 

Table 3.17). Online Mendelian Inheritance in Man (OMIM) database focuses on the 

relationships between genotype and phenotype. We did not find any reported 

phenotype related with candidate genes. The Universal Protein Resource (UniProt) 

database is a catalog of information on proteins. According to this database none of 

candidate genes reported to be involved directly in a neurological function. Kyoto 

Encyclopedia of Genes and Genome (KEGG) database shows the molecular functions 

of the genes in diverse biological pathways. None of the genes reported to be involved 

in a neurological pathway.  
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Table 3.16: Novel homozygous protein altering variants at the targeted region (Copyright © 2012, Rights Managed by Nature 

Publishing Group. Adopted from Onat et al., 2012 [64] with permission). 

 

Chr Position Base 

change 

Het/Hom Gene Segdup Simple 

Repeats 

dbSNP pgVariation 1000 

Genomes 

Yale 

Data 

Candidate SNVs 

chr13 25026001 C>G Hom ATP8A2 None None Novel Novel Novel Novel 

chr19 3710974 C>T Hom APBA3 None None Novel Novel Novel Novel 

chr19 8929391 G>A Hom MUC16 None None Novel Novel Novel Novel 

chr19 8929577 G>A Hom MUC16 None None Novel Novel Novel Novel 

chr19 11694601 A>G Hom ZNF823 None 1 Novel Novel Novel Novel 

chr20 42574904 A>G Hom SERINC3 None None Novel Novel Novel 1 

Candidate deletion 

chr19 7604325 CTC>- Hom PCP2 None None Novel Novel Novel Novel 

Excluded by Yale exome sequencing data 

chr19 49353814 G>A Hom ZNF234 None None Novel Novel 1:11,2:0 9 

chr19 47571934 G>A Hom MEGF8 None None Novel Novel Novel 11 

chr19 46047668 C>T Hom CYP2A6 1 None Novel Novel Novel 13 

chr19 7007590 C>T Hom MBD3L3 1 None Novel Novel 1:285,2:11 461 
 

Abbreviations used in this table: Chr, chromosome; SNV, single nucleotide variation; Het, heterozygous, Hom, homozygous; Segdup, segmental duplication 
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Figure 3.12: Schematical representation of the analysis, annotation, and exclusion of 

the genetic variants 
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Table 3.17: Database annotation of the novel homozygous protein altering variants 

GENE ATP8A2 APBA3 MUC16 MUC16 ZNF823 SERINC3 PCP2 

CHR chr13 chr19 chr19 chr19 chr19 chr20 chr19 

POSITION (HG_19) 26128001 3759974 9068391 9068577 11833601 43141490 7698326-7698328 

TYPE Sub Sub Sub Sub Sub Sub Del 

BASE CHANGE C>G C>T G>A G>A A>G A>G CTC>- 

CCDS POSITION C1128G C289T G19055A C18869T A748G A347G - 

STATUS Coding-missense Coding-missense Coding-missense Coding-missense Coding-missense Coding-missense Coding 

AA CHANGE I376M A97T A6352V T6290I C250R M116T E6 

UNIPROT  

Function: Catalytic activity: May modulate processing of the 
beta-APP 

-      May be involved in 
transcriptional 

regulation. 

May be involved in 
cellular transformation. 

- 

Subcellular Location: Multi-pass membrane 

protein. 

- Single-pass type I membrane protein. 

Secreted, extracellular space. 

Nucleus (Probable) Multi-pass membrane 

protein 

- 

Tissue Specificity: - Expressed in all the tissues with 

lower levels in brain and testis. 

Overexpressed in ovarian carcinomas and 

ovarian low malignant (LMP) tumors 

- Increased expression in 

lung tumor tissues  

- 

Similarity: Cation transport 

ATPase-P family. 

Contains 2 PDZ (DHR), 1 PID 

domains 

Contains 2 ANK repeats, 56 SEA domains Krueppel C2H2-type 

zinc-finger family. 

Belongs to the TDE1 

family 

- 

Induction: - - Up-regulated in ovarian cancer cells - - - 

Polymorphism:  - - The number of repeats is highly 
polymorphic. 

- - - 

OMİM: - - - - - - - 

KEGG PATHWAY - - - - - - - 

JAX KO&MGI - Deletion in mutants causes 

abnormalities in colon 

morphology Surviving 

homozygotes display postnatal 

viability and decreased life span. 

Homozygous null mice are viable and fertile 

with no gross histological abnormalities. 

Homozygous male mice father larger litters 

when crossed to wild-type females. 

. 

- TDE1 overexpression 

reduces apoptosis caused 

by serum starvation. Did 

not alter cell growth rate, 

immortalization, or 
motility 

Mice homozygous for 

a null mutation do not 

exhibit any detectable 

abnormalities. 
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EXPRESSION        

Fetal brain 143,9 4,8 4,55 4,55 NA 147,85 NA 

Whole brain 41,95 4,15 3,85 3,85 - 564,1 - 

Temporal Lobe 74,65 4,2 4 4 - 335,85 - 

Parietal Lobe 58,8 4,45 4,25 4,25 - 386,5 - 

Occipital Lobe 46,5 4,1 3,9 3,9 - 393,8 - 

Prefrontal Cortex 135,45 5,85 5,5 5,5 - 522,75 - 

Cingulate Cortex 102,25 4,3 4,1 4,1 - 157 - 

Cerebellum 28,75 3,5 3,35 3,35 - 188,3 - 

Cerebellum Peduncles 97,05 4,85 4,6 4,6 - 180,25 - 

Amygdala 104,3 4,75 4,4 4,4 - 321,95 - 

Hypothalamus 138,75 5,35 5 5 - 290,7 - 

Thalamus 93,7 4,45 4,2 4,2 - 209,15 - 

Subthalamic Nucleus 102,45 4,3 4,2 4,2 - 298,15 - 

Caudate nucleus 24,8 3,9 3,7 3,7 - 136,8 - 

Globus Pallidus 45,35 3,6 3,55 3,55 - 242,25 - 

Olfactory Bulb 8 3,9 3,7 3,7 - 176,8 - 

Pons 39,45 4,25 4 4 - 192,65 - 

Medulla Oblongata 70,35 4,4 4,2 4,2 - 296,95 - 

Spinal cord 15,65 4,75 4,5 4,5 - 146,95 - 

Ciliary Ganglion 11,5 3,3 3,15 3,15 - 60,75 - 

Trigeminal Ganglion 7,4 3,45 3,4 3,4 - 29,3 - 

Thymus 8,4 4,4 4,05 4,05 - 453,85 - 

Tonsil 9,05 4,8 4,45 4,45 - 94,1 - 
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Lymph node 8,85 5,1 4,1 4,1 - 88,9 - 

Bone marrow 8,95 4,15 3,95 3,95 - 191,8 - 

Whole Blood 9 9,15 4,85 4,85 - 399,1 - 

Appendix 9,75 4,25 4,2 4,2 - 51 - 

Skin 7,2 3,45 3,3 3,3 - 26,85 - 

Adipocyte 9,4 4,55 4,35 4,35 - 276,6 - 

Thyroid 10,35 10,3 5,35 5,35 - 197,45 - 

Adrenal gland 7,7 3,7 3,55 3,55 - 290,4 - 

Adrenal Cortex 9,2 4,3 4,25 4,25 - 117,95 - 

Prostate 9,85 7,5 5,15 5,15 - 318,9 - 

Salivary gland 8,25 4 3,9 3,9 - 28,65 - 

Pancreas 7,75 3,55 3,35 3,35 - 62,5 - 

Heart 8,95 4,5 4,05 4,05 - 40,65 - 

Skeletal Muscle 8,35 3,95 3,9 3,9 - 7,85 - 

Smooth Muscle 9,9 5,55 5,15 5,15 - 338,95 - 

Uterus 7,55 4,15 4,25 4,25 - 248,95 - 

Trachea 8,25 3,9 61,7 61,7 - 201,8 - 

Lung 9,2 4,9 4,6 4,6 - 381,25 - 

Kidney 7,35 3,4 3,2 3,2 - 127,8 - 

Liver 9,65 4,55 4,25 4,25 - 105,45 - 

Placenta 9,35 5 4,85 4,85 - 762,4 - 

Ovary 6 3 2,85 2,85 - 59,65 - 

Testis 9,2 4,25 4 4 - 393,35 - 

 

Abbreviations used in this table: Chr, chromosome; sub, substitution; del, deletion; aa, amino acid; ccds, consensus coding sequence  
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 Next, the candidate genes were searched in The Jackson Laboratory Knock-

Out (JAX KO) Mice and Mouse Genome Informatics (MGI) databases (Table 3.17). 

As a result, mice knock-out models of APBA3, MUC16, SERINC3, and PCP2 have 

been identified.  

 

Deletion of APBA3 in mice causes morphological and physiological 

abnormities in colon. Blood urea nitrogen levels increase while serum chloride, 

sodium and potassium levels decrease in these mice. Surviving APBA3 homozygote 

knockouts display diarrhea, postnatal viability and decreased life span. MUC16 

homozygous null mice are viable and fertile with no histological abnormalities.  

 

SERINC3 is a member of TDE1 (Tumor Differentially Expressed) family. 

TDE1 overexpression reduces apoptosis but did not alter cell growth rate, 

immortalization, or motility.  

 

Next, mice homozygous for a null mutation in PCP2 do not exhibit any 

detectable abnormalities. To conclude, none of the candidate genes is reported to be 

involved in neurological processes.  

 

 Lastly the candidate genes corresponding to 7 candidate variants were 

evaluated in several open source databases including Database of Genomic Variants 

(DGV) [101], The Allele FREquency Database (ALFRED) [102], SNPper [103], 

Cancer Genome Anatomy Project – Genetic Annotation Initiative (CGAP-GAI, 

http://gai.nci.nih.gov/cgap-gai/) , Japanese SNP (JSNP) [104], Functional SNPs (F-

SNP) [105], SPSmart [106], National Human Genome Research Institute Genome 

Wide Association Studies  (NHGRI GWAS) [107] for genomic variants. As a result, 

five functional SNVs for MUC16, one functional SNV for ZNF823 and on functional 

SNV for PCP2 were detected. However, no reported functional indels, genomic and 

structural SNVs/indels, CNVs, or associated SNPs were detected (Table 3.18).
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Table 3.18: Evaluation of the candidate genes in several databases 

 Database ATP8A2 APBA3 MUC16 ZNF823 SERINC3 PCP2 

International HapMap Project HapMap - - - - - - 

Genomic Variants DGV - - - - - - 

Genome-Wide Association studies NHGRI - - - - - - 

OMIM disease associations NCBI - - - - - - 

ALFRED USNatSciFnd - - - - - - 

SNPper CHIP - - - - - - 

CGAP SNP index NCI - - - - - - 

SPSmart Meta Search USC - - - - - - 

F-SNP (functional SNPs) Queen's Uni - - - - - - 

CGAP-GAI  NCI - - - - - - 

JSNP Database Uni of Japan - - - - - - 

NHLBI ESP Uni of Wash 1 splice-3 1 splice-5 5 nonsense 

2 splice-5 

1 nonsense 1/4873 1 nonsense 

1 splice-5 
 

Abbreviations used in this table: DGV, Database of Genomic Variants; NHGRI, National Human Genome Research Institute; NCBI, National Center for Biotechnology Information; USNatSciFnd, U.S. 

National Science Foundation; NCI, National Cancer Institute;  USC, University of South California; Uni, university; CGAP-GAI, Cancer Genome Anatomy Project-Genetic Annotation Initiative; ESP, 

Exome Sequencing Project
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3.4.5.2 Segregation Analysis by haplotype construction 

Segregation analysis is achieved in order to determine if the selected candidate genes, 

underling the distribution in CAMRQ family, were inherited in Mendelian autosomal 

recessive manner.  

 

Segregation analysis was facilitated by haplotype construction and confirmed 

by Sanger sequencing. Haplotype construction of the all homozygous regions was 

carried out using Affymetrix 10K genotyping data which was generated using DNA 

of the selected family members (05-992, 05-993, 05-994, 05-995 and 05-996). In 

addition, markers D13S221, D13S283, D13S742, D13S787, D13S1243, and 

D13S1294 were used to confirm the linkage disequilibrium among the affected 

individuals for the most likely candidate locus on chromosome 13q12 (Figure 3.13, 

Figure 3.14, and Figure 3.15). As a result, four of the 7 candidate variants were 

excluded by segregation analysis. Confirmation of the haplotyping analysis carried our 

using Sanger sequencing of the excluded variants in three affected individuals (05-

993, 05-994, and 05-996) (Figure 3.16). 

 

 All in all, a 3-bp in-frame deletion (PCP2 p.E6del) and two missense variants 

(ATP8A2 p.I376M and APBA3 p.A97T) were determined to be consistent with the 

recessive inheritance of the disease allele in the family (Table 3.19). 
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Figure 3.13: Pedigree of Family C with haplotype structure of the disease interval on 

chromosome 13q12. Haplotype segregating with the disease is boxed. ATP8A2 

p.I376M variant is bold. Positions are given as Mb. Please note that the DNA of one 

affected individual is not available for the study. (Copyright © 2012, Rights Managed 

by Nature Publishing Group. From Onat et al., 2012 [64] with permission). 
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Figure 3.14: Haplotype structure of homozygous region on chromosome 19. 

Haplotype segregating with the disease on chromosomal region 19:3,136,845-

14,337,400 is boxed. APBA3 p.A97T, PCP2 p.E6del, MUC16 p.T6290I, MUC16 

p.A6352V and ZNF823 p.C250R variants are bold. Positions are given as Mb. 

(Copyright © 2012, Rights Managed by Nature Publishing Group. From Onat et al., 

2012 [64] with permission). 
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Figure 3.15: Haplotype structure of homozygous region on chromosome 20. 

Haplotype segregating with the disease on chromosomal region 20:41,015,889-

45,954,292 is boxed. SERINC3 c.1128 C4G variant is bold Positions are given as Mb. 

(Copyright © 2012, Rights Managed by Nature Publishing Group. From Onat et al., 

2012 [64] with permission). 
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Figure 3.16: Segregation analysis of the variants in the affected individuals (05-993, 

05-994 and 05-996) by using Sanger sequencing. The variants (a) ZNF823 p.C250R 

(b) SERINC3 p.M116T (c) MUC16 p.A6352V and (d) MUC16 p.T6290I do not co-

segregate with the disease. 
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Table 3.19: Novel coding variants identified by targeted next-generation sequencing of 05-996. (Copyright © 2012, Rights Managed by 

Nature Publishing Group. From Onat et al., 2012 [64] with permission). 

 

Gene Position (hg19) 
Base 

Change 
Effect 

dbSNP 

132 
pgVar 1000g 2400e 

GERP 

(Score) 

PhyloP 

(Score) 

SIFT 

(Score) 

Polyphen2 

(Score) 

M.Taster 

(p-value) 

Candidate Variants 

ATP8A2 chr13:26.128.001 C>G I376M Novel Novel Novel 0 2,18 1,091 D. (0,02) P.D. (1,00) D.C. (0,995) 

APBA3 chr19:3.759.974 C>T A97T Novel Novel Novel 0 -4,11 -0,308 T. (0.16) B. (0,14) P. (0,999) 

PCP2 chr19:7.698.326 CTC>- E6del Novel Novel Novel 0 N.A. 0,168 N.A. N.A. P. (0,717) 

Variants not cosegregated with the disease phenotype in the family 

MUC16 chr19:9.068.391 G>A A6352V Novel Novel Novel 0 -1,45 -0,803 N.A. N.A. P. (0,999) 

MUC16 chr19:9.068.577 G>A T6290I Novel Novel Novel 0 2,35 2,273 N.A. N.A. P. (0,999) 

ZNF823 chr19:11.833.601 A>G C250R Novel Novel Novel 0 0,63 1,532 D. (0,00) P.D. (1,00) P. (0,994) 

SERINC3 chr20:43.141.490 A>G M116T Novel Novel Novel 1 3,98 2,524 T. (0,34) B. (0,13) D.C. (0,999) 

Variants excluded with population screening  

MBD3L3 chr19:7.056.590 C>T G124S Novel Novel 45:02,2 461 0,74 -0,345 T. (0,58) Ps.D (0,70) P. (0,999) 

CYP2A6 chr19:41.355.828 C>T V80M Novel Novel Novel 13 2,72 1,568 T. (0,10) P.D. (0,99) P. (0,996) 

MEGF8 chr19:42.880.094 G>A V2502I Novel Novel Novel 11 5,11 6,197 T. (0,06) P.D. (0,99) P. (0,996) 

ZNF234 chr19:44.661.974 G>A G602E Novel Novel 11:02,2 9 1,89 2,503 D. (0,04) P.D. (0,99) P. (0,970) 

 

Abbreviations used in this table: M.Taster, MutationTaster, D., Damaging; T., Tolerated; P.D., Probably Damaging; Ps.D, possibly damaging; B., Benign; N.A., Not Available; D.C., Disease Causing; P., 

Polymorphism, 1000g, 1000 genomes; 2400e, Yale exome sequencing project; pgVar, pgVariation database; chr, chromosome 
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3.4.5.2 Exclusion of the APBA3 as the disease causing gene 

Amyloid beta (A4) precursor protein-binding, family A, member 3 (APBA3), p.A97T 

variant was excluded from the study based on the conservation considerations and 

prediction analyses.  Protein sequences of the sequenced species are downloaded from 

Ensembl database and alignments done using CLC Workbench 6. Multiple sequence 

alignment and conservation analysis revealed that four of 20 species (O. garnetti, S. 

scrofa, C. porcellus, S. tridecemlineatus) sequenced have threonine (T) at the 

orthologous site (Figure 3.17). Pair-wise alignment of the APBA3 in 46 vertebrates 

carried out using USCS Genome Browser Multiz Alignments tract which revealed two 

more species (O. garnetti, I. tridecemlineatus, and T. nigroviridis) sequenced have 

threonine (T) at the site (Figure 3.18). These results suggest that this variant would be 

a polymorphism and not damaging to humans.  

 

 Next, the secondary structures of the both wild-type and mutant APBA3 

protein sequences were predicted using Protein Structure Prediction Server 

(PSIPRED) v.3.0. As a result, the p.A97T amino acid change had no effect on protein 

secondary structure (Figure 3.19). Additionally, the p.A97T alteration did not reside 

in any of the three protein family domains (one PID, phosphotyrosine interaction 

domain; two PDZ domains) found by Protein Families (Pfam) database (Figure 3.20).   

  

 Next, evolutionary conservation analysis by prediction tools used to improve 

multiple alignment results. GERP identifies the substituted elements in multiple 

alignments. The presence of the substitutions reveals a neutral element; the absence of 

the substitutions reveals a functional constraint. A negative GERP score (-4.11) for the 

mutated nucleotide suggests that this site is probably evolving neutrally. PhyloP 

algorithm computes conservation or acceleration p-values based on a model of neutral 

evolution. PhyloP score of the variant (-0.308) suggests a faster evolution than 

expected for this site. Furthermore, web-based SIFT, PolyPhen2 and MutationTaster 

tools predict whether an amino acid substitution affects protein function. The 

predictions based on conservation of the residues in sequence alignments. The variant 

was predicted as “tolerated” by SIFT (SIFT score, 0.16), “benign” by PolyPhen2 



103 

 

(PSIC score difference, 0.0) and “polymorphism” by MutationTaster (p-value, 0.999) 

(Table 3.19).  

 

 In conclusion, conservation analysis using multiple and pair-wised alignments 

together with the prediction of mutant secondary protein structure, protein family 

domains, and amino acid substitution effect on protein function strongly suggest that 

this variant is a neutral polymorphism. 

 

 

 

 

 

 

 

Figure 3.17: Amino acid sequence homology of the APBA3 protein. Conservation 

analysis of the APBA3 p.A97T variant among 20 species sequenced. Four of the 20 

species have threonine (T) at the mutation site. A97T residue is represented with a box. 

The bootstrap values on the tree represent the phylogenetic distances. (Copyright © 

2012, Rights Managed by Nature Publishing Group. From Onat et al., 2012 [64] with 

permission). 
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Figure 3.18: Conservation analysis of the APBA3 p.A97T variant among 46 species 

sequenced using pair-wise alignment. A97T residue was represented by red arrow. 
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Figure 3.19: The PSIPRED protein secondary structure prediction of the wild-type and 

mutant sequences of APBA3 

 

 

 

 

 

Figure 3.20: Pfam domain analysis of the APBA3. p.A97T variant do not reside in any 

of the three domains found. The numbers represent the amino acid positions of the 

protein. 
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3.4.5.3 Exclusion of the PCP2 as the disease causing gene 

Purkinje cell protein-2 (PCP2) is highly expressed in cerebellar Purkinje cells and 

retinal bipolar neurons. The expression pattern of Pcp2 reveals a role in the 

development of CNS.[108] However, its function remains unknown. Mice 

homozygous for null PCP2 mutation do not exhibit any detectable phenotypic change 

such as loss of balance, intention tremor, and ataxia which are associated with 

cerebellar defects in humans. Also, the structure and shape of Purkinje cells is not 

affected in these knock-out mice.[109-112] 

 

 PCP2 p.E6del variant was excluded from the study based on population 

screening. The 180 healthy control individuals which were from the geographically 

same region with the family were selected for genotyping using RFLP. In 360 healthy 

chromosomes, four heterozygous individuals were identified and verified by Sanger 

sequencing (Figure 3.21). This yields an expected homozygote frequency of 

approximately 1 in 8,000 which is much higher than expected.  

    

 Multiple and pair-wise sequence alignments of the region containing the 

mutation suggested that it was not conserved among species. PCP2 p.R6 is deleted in 

eight of the 20 species sequenced (Figure 3.22 and Figure 3.23), and the deletion was 

also predicted as “polymorphism” by MutationTaster (p-value, 0.717) (Table 3.19).   

 

 To conclude, population screening together with the literature searches 

involving gene knock-outs and the conservation considerations using multiple and 

pair-wise alignments and the prediction tools strongly revealed that this variant is a 

neutral polymorphism. 
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Figure 3.21: Confirmation of the PCP2 p.E2del variant by Sanger sequencing. 

Sequence data of family members (05-992 and 05-993) and unrelated healthy 

individuals (wild type: 10-120; carriers: 10-237, 10-245, 10-350, 10-373) are shown. 

(Copyright © 2012, Rights Managed by Nature Publishing Group. From Onat et al., 

2012 [64] with permission). 
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Figure 3.22: Amino acid sequence homology of the PCP2 protein. PCP2 p.E6del 

variant is represented with a box. The bootstrap values on the tree represent the 

phylogenetic distances. (Copyright © 2012, Rights Managed by Nature Publishing 

Group. From Onat et al., 2012 [64] with permission). 

 

 

Figure 3.23: Conservation analysis of the PCP2 p.E6 variant among 46 species 

sequenced using pair-wise alignment. p.E6 residue was represented by red arrow. 
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3.4.6 ATP8A2 p.I376M as the disease causing mutation 

The remaining variant at chr13:26,128,001 (hg19; c.1128 C>G) results in an isoleucine 

(I) to methionine (M) substitution at residue 376 and is located in exon 12 of ATPase, 

aminophospholipid transporter, class I, type 8A, member 2 (ATP8A2, 

ENSG00000132932, ENST00000381655) gene. The mutation co-segregated with the 

disease in the family (Figure 3.13). 

 

 The longest isoform of the ATP8A2 encodes 1,148 amino acids. According to 

the Pfam database, the protein has 2 protein family domains; E1 E2 ATPase domain 

at amino acids 123-396 and haloacid dehalogenase-like hydrolase (HAD) domain at 

amino acids 425-830. The mutation lies in the C terminal transmembrane site of E1 

E2 ATPase domain (Figure 3.24). 

 

 

 

 

Figure 3.24: Graphical representation of the predicted functional and structural 

elements of ATP8A2 protein. ATP8A2 is composed of an E1 E2 ATPase domain and 

a haloacid dehalogenase-like hydrolase (HAD) domain. Ten transmembrane domains 

were predicted by TMPRED. The mutation represented by red dot lies in the 

transmembrane region of C-terminal end of E1 E2 ATPase domain. (Copyright © 

2012, Rights Managed by Nature Publishing Group. From Onat et al., 2012 [64] with 

permission). 
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 ATP8A2 is a multi-pass transmembrane protein. Web-based TransMembrane 

Prediction (TMpred, http://www.ch.embnet.org/software/TMPRED_form.html) tool 

makes a prediction of regions spanning membrane and their orientation. According to 

TMpred predictions, ATP8A2 has 10 membrane spanning transmembrane helices 

(Table 3.20). The p.I376M mutation lies inside the fourth transmembrane spanning 

domain represented in Figure 3.24.  

 

 

Table 3.20: Locations and orientations of the predicted transmembrane helices of 

ATP8A2 

 

Transmembrane 

Helices 

Start End Length Score Orientation 

1 95 113 -19 1176 inside-out 

2 118 137 -20 1093 outside-in 

3 317 338 -22 2534 inside-out 

4 363 382 -20 1489 outside-in 

5 888 906 -19 1457 inside-out 

6 913 931 -19 1425 outside-in 

7 965 983 -19 1416 inside-out 

8 997 1018 -22 1114 outside-in 

9 1030 1049 -20 2317 inside-out 

10 1064 1084 -21 1415 outside-in 

 

 

 Since there is no structural model or information known for ATP8A2 protein, 

the consequences of the amino acid change were evaluated by comparing the predicted 

secondary and tertiary protein structures of the wild-type and mutant ATP8A2 protein 

sequences by using web-based PSIPred and HOPE tools. As a result, the wild type 

protein is predicted to contain 27 beta-strands and 32 alpha-helices. I376 residue is 

located at the N-terminus of the 11th alpha-helix. The mutation enlarges the 11th and 

12th alpha-helices and creates an additional alpha-helix at residue 401 (Figure 3.25) 
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 Multiple sequence alignment analysis using CLC Workbench 6.0 revealed that 

the isoleucine (I) allele conserved in all 19 species sequenced (Figure 3.26). Protein 

sequences of the sequenced species are downloaded from Ensembl database. 

Additionally, pair-wise alignment of the ATP8A2 in 46 vertebrates carried out using 

USCS Genome Browser Multiz Alignments tract which revealed p.I376 is highly 

conserved across species (Figure 3.27). In particular the isoleucine residue is 

completely conserved across all species sequenced including the most distantly related 

ortholog T. nigroviridis determined by bootstrap analysis of the phylogenetic trees. 

Human ATP8A2 and T. nigroviridis ATP8A2 have 49.09% similarity with a distance 

score of 0.76 (Figure 3.28). 

 

 

 

 

 

Figure 3.25: The secondary protein structures of the wild-type and mutant ATP8A2 

protein sequences predicted by using PSIPRED tool. The wild type protein is predicted 

to contain 27 beta-strands and 32 alpha-helices. I376 residue is located at the N-

terminus of the 11th alpha-helix. The mutation enlarges the 11th and 12th alpha-

helices and creates an additional alpha-helix at residue 401. (Copyright © 2012, Rights 

Managed by Nature Publishing Group. From Onat et al., 2012 [64] with permission). 
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 Next, evolutionary conservation analysis by using prediction tools revealed 

that the mutation is under evolutionary constraints. Positive GERP and PhyloP scores 

(2.18 and 1.091, respectively) revealed that the mutation evolved as a functional 

constraint. Furthermore, the mutation was predicted to be “damaging” (SIFT score, 

0.16), “probably damaging” (Polyphen2 PSIC score difference, 0.00) and “disease 

causing” (p-value, 0.995) (Table 3.19).  

 

 In conclusion, conservation analysis using multiple and pair-wised alignments 

together with the prediction of mutant secondary protein structure, protein family 

domains, and amino acid substitution effect on protein function strongly suggest that 

this variant is a causative mutation. 

 

 

 

Figure 3.26: Amino acid sequence homology of the ATP8A2 protein. Multiple amino 

acid sequence alignments show the sequence homology of ATP8A2 protein in 

vertebrates. I376 residue is indicated with a box. The bootstrap values on the tree 

represent the phylogenetic distances. (Copyright © 2012, Rights Managed by Nature 

Publishing Group. From Onat et al., 2012 [64] with permission). 
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Figure 3.27: Conservation analysis of the ATP8A2 p.I376M variant among 46 species 

sequenced using pair-wise alignment. p.I376 residue, represented by red arrow, 

conserved among all species sequenced 

   

 
  

Figure 3.28: Phylogenetic tree analysis of multiple sequence alignments of ATP8A2 

from 19 sequenced species. Human ATP8A2 is the most similar with P. troglodytes 

(98.23%) and less similar with T. nigroviridis (49.09%). 
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Mutation screening in unrelated families, isolated cases and healthy controls is 

one of the most popular methods for providing evidence that a candidate gene is 

responsible for the disease of interest. Identifying mutations in other families or in two 

or more unrelated individuals with the same phenotype and in none of the healthy 

individuals strongly suggests that the selected gene is responsible for the diseases. 

ATP8A2 c.1128 C>G mutation was evaluated in several healthy and affected 

individuals (Table 3.21). 

 

 Firstly, the mutation genotyped by allele specific PCR in 58 isolated ataxia 

patients of which 12 of them have cerebellar phenotype with or without quadrupedal 

locomotion. None of the patients have G allele neither in heterozygous nor in 

homozygous state (Table 3.21). 

 

Next, the status of ATP8A2 was evaluated in a cohort of 750 patients with 

structural cortical malformations or degenerative neurological disorders including 

cerebellar phenotypes in which the causative mutation is still unknown. According to 

the SNP genotyping data generated by Illumina Human 370 Duo or 610K Quad 

BeadChips none of the patients were found to harbor a homozygous interval (≥ 2.5 

cM) surrounding the ATP8A2 locus. Analysis of the exome sequencing data of the 

same group did not reveal any mutations, including compound heterozygous 

substitutions, in ATP8A2 (Table 3.21). 

 

 By allele specific PCR the c.1128 C>G mutation was screened in 1,210 healthy 

control chromosomes, including 305 individuals from the same geographic region as 

the family.  As a result, none of the individuals in this control population have G allele 

neither in heterozygous nor in homozygous state. Together with the 1,092 healthy 

controls from 1000 genomes database, 6500 healthy controls form Exome Variant 

Server database, and exome sequencing data of the 2400 patients with non-

neurological phenotypes, the mutation was screened in 22808 healthy and affected 

individuals with a MAF of 0.0 (Table 3.21). 
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Table 3.21: Mutation screening of ATP8A2 p.I376M in isolated cases, healthy 

controls, patients with non-neurological phenotypes and databases. 

Population A B MAF Ind (#) Method 

Turkish Control 610 0 0 305 Allele spesific PCR 

Region-matched controls 600 0 0 300 Allele spesific PCR 

Yale exomes* 4800 0 0 2400 Exome sequencing 

1000 genomes 2182 0 0 1092 WGS 

EVS 13000 0 0 6500 Exome sequencing 

Yale Patients** 1500 0 0 750 Illumina SNP array 

Hacettepe Patients*** 116 0 0 58 Allele spesific PCR 

Total 22808 0 0 11404  
 
* The cohort consist of 2400 patients with non-neurological phenotypes 

** The cohort consisted of 750 patients with structural cortical malformations or degenerative neurological disorders 

*** 58 ataxia patients, 12 had cerebellar phenotype with or without quadrupedal gait 
Abbreviations used in this table: EVS, Exome variant server; MAF, minor allele frequency; Ind(#), number of the individuals; 

WGS, whole genome sequencing 

3.5 Characterization of ATP8A2 

The transmembrane protein, ATP8A2, consists of three protein coding, one nonsense 

mediated RNA decay transcript and two processed transcript isoforms according to 

Ensembl database (Table 3.22). The longest isoform (ENST00000381655) contains a 

total of 9,575 base pairs long transcript with 37 exons (See Appendix D for the full list 

of exons). This transcript encodes a 1,188 amino acids long 112 kD protein 

(ENSP00000371070).  

 

Table 3.22: Transcripts of ATP8A2 according to Ensembl database 

Name Transcript ID Length 

(bp) 

Protein ID Length 

(aa) 

Biotype 

001 ENST00000381655 9575 ENSP00000371070 1188 p.c. 

003 ENST00000381648 476 ENSP00000371062 141 p.c. 

201 ENST00000255283 3674 ENSP00000255283 1123 p.c. 

004 ENST00000281620 3891 ENSP00000281620 643 n.m.d 

002 ENST00000466079 169 No protein product - p.t. 

006 ENST00000491840 2227 No protein product - p.t. 
 

Abbreviations used in this table: p.t., processed transcript; p.c., protein coding; n.m.d., nonsense mediated decay; aa, amino 

acid; bp, base pair 
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3.6 Expression of ATP8A2 

3.6.1 Real time RT-PCR analysis 

ATP8A2 expression studies revealed that the protein is highly expressed in newborn 

and embryonic tissues with the strongest expression in mouse heart, brain and 

testis.[113, 114] In order to confirm expression profiles of ATP8A2, we analyzed 

expression of the transcript ENST00000381655 by using quantitative real-time RT-

PCR and semi-quantitative RT-PCR in a cDNA panel of multiple human tissues (lung, 

thyroid, prostate, trachea, skeletal muscle, spleen, liver, adrenal gland, fetal liver, 

hearth, kidney, colon, thymus, salivary gland, placenta, big uterus, big testis, whole 

brain, and fetal brain). ATP8A2 was detected with the highest levels in testis, whole 

brain, trachea, thyroid, and fetal liver (Figure 3.29 and Figure 3.30) 

 

 Since the patients have cerebellar phenotype, we evaluated the possible 

involvement of ATP8A2 in motor functions by evaluating the expression profile in of 

ATP8A2 transcript in different human brain regions (strata parietal cortex, strata 

brainstem, strata occipital cortex, strata striatum, strata frontal cortex, corpus callosum, 

cerebellum)  by quantitative real-time RT-PCR and semi-quantitative RT-PCR. 

Human ATP8A2 is expressed in all regions of the brain with the highest level of 

expression in the cerebellum (Figure 3.31). ATP8A2 expression in the patients cannot 

be evaluated since the gene is not expressed in lymphocytes. 

3.6.2 Annotation clustering of early embryonic mouse brain genes 

In order to identify predicted biological function of ATP8A2 in brain development, a 

bioinformatics approach was performed upon updating related approaches.[115] In 

this approach, a large set of genes which are correlated with ATP8A2 were detected 

and then categorized by functional annotation clustering (Figure 3.32). 
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Figure 3.29: Expression profiles of ATP8A2 in multiple human tissues. The expression 

of the transcript ENST00000381655 was analyzed by using semi-quantitative RT-

PCR. The highest levels of expression was obseved in testis and brain regions. 

 

 

 

 

 

 

Figure 3.30: Real-time expression profiles of ATP8A2 in multiple human tissues. The 

expression of the transcript ENST00000381655 was analyzed by using quantitative 

real-time RT-PCR. The highest levels of expression were detected in testis, fetal liver, 

thyroid and trachea. 
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Figure 3.31: Real-time expression profiles of ATP8A2 in different human brain 

regions. The expression of the transcript ENST00000381655 was analyzed by using 

quantitative real-time RT-PCR. The highest levels of expression were detected in 

cerebellum. (Copyright © 2012, Rights Managed by Nature Publishing Group. 

Adopted from Onat et al., 2012 [64] with permission). 

 

 

 As a first step, expression data set of mouse brains at early embryonic days 9.5, 

11.5, and 13,5  (GSE8091) [94] was extracted from the Gene Expression Omnibus 

(GEO) database. Expression data were grouped into embryonic days and 3,611 

differentially expressed genes were filtered (One-way ANOVA test Bonferroni 

corrected p<0.001). By using GeneSpring GX expression data analysis software, 218 

genes found to be significantly correlated with ATP8A2 according to their expression 

profiles (R>0.95) (Figure 3.33). According to the MGI database, 24 of these genes 

were associated with human diseases including neurological phenotypes (Table 3.23). 

Especially, ATP8A2 is co-expressed with doublecortin (DCX) which is responsible for 

Lissencephaly, X-linked [LISX1; OMIM: 300067] [116], and WD repeat domain 81 

(WDR81) which is associated with Cerebellar Ataxia and Mental Retardation with or 

Without Quadrupedal Locomotion 2 [CAMRQ2; OMIM: 610185] [29] suggesting that 

these genes could represent similar developmental pathways. 
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Figure 3.32: Schematic representation of the functional annotation clustering of a set 

of genes which are correlated with ATP8A2.  

 

 

 

 Next, those 218 genes correlated with ATP8A2 expression profile were 

evaluated by the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) tool. Functional annotation clustering analysis revealed that positively 

correlated genes were enriched for those involved in neuron differentiation 

(Bonferroni corrected p-value: 2.1E-3), cell and neuron projection morphogenesis 

(Bonferroni corrected P values: 1.4E-3, and 1.5E-3, respectively) and axonogenesis 

(Bonferroni corrected p-value: 1.9E-3) (see Appendix E for the full list of functional 

annotation clusters). 
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Figure 3.33: Graphical representation of the expression profiles of the filtered 

differentially expressed genes within day groups. Expression data set of mouse brains 

at early embryonic days 9.5, 11.5, and 13.5 were grouped into embryonic days and 

3,611 differentially expressed genes were filtered. By using GeneSpring GX 

expression data analysis software, 218 genes found to be significantly correlated with 

ATP8A2 according to their expression profiles. 
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Table 3.23: Genes associated with human diseases which are co-expressed with 

Atp8a2   

MGI ID Symbol Gene Name MIM 

ID 

MIM Term 

102806 Acvr2a activin receptor IIA 261800 Pierre Robin Syndrome 

104311 Ptger4 prostaglandin E receptor 4  607411 Patent Ductus Arteriosus 

104741 Nfkbia nuclear factor of kappa light 

polypeptide gene enhancer 

in B-cells inhibitor, alpha 

270150 

603165 

Sjogren Syndrome 

Dermatitis, Atopic 

107164 Ppp3ca protein phosphatase 3,  

catalytic subunit, alpha 

104300 Alzheimer Disease; AD 

107978 Klc1 kinesin light chain 1 104300 Alzheimer Disease; AD 

108085 Hpgd hydroxyprostaglandin 

dehydrogenase 

607411 Patent Ductus Arteriosus 

1201673 Shox2 short stature homeobox 2 127300 Leri-Weill Dyschondrosteosis 

   249700 Langer Mesomelic Dysplasia 

1277124 Asah1 N-acylsphingosine 

amidohydrolase 1 

228000 Farber Lipogranulomatosis 

1277171 Dcx doublecortin 607432 Lissencephaly 1; LIS1 

1354956 Trfr2 transferrin receptor 2 604250 Hemochromatosis, Type 3; HFE3 

1858896 Spast spastin 182601 Spastic Paraplegia 4 

2135272 Vangl2 vang-like 2 182940 Neural Tube Defects 

2148705 Foxp2 forkhead box P2 602081 Speech-Language Disorder 1; 

SPCH1 

2389465 Tbx22 T-box 22 303400 Cleft Palate, X-Linked; CPX 

88059 App amyloid beta (A4)  

precursor protein 

104300 Alzheimer Disease; AD 

96015 Hba-a1 hemoglobin alpha,  

adult chain 1 

141800 

141900 

Hemoglobin--Alpha Locus 1 

Hemoglobin--Beta Locus 

96432 Igf1 insulin-like growth  

factor 1 

601489 Insulin-Like Growth Factor-

Binding Protein, Acid-Labile 

Subunit; IGFALS 

96909 Maf avian musculoaponeurotic 

fibrosarcoma  

610202 Cataract, Pulverulent, Juvenile-

Onset 

97530 Pdgfra platelet derived growth  

factor receptor, alpha 

142340 Diaphragmatic Hernia, Congenital 

98347 Snrpn small nuclear  

ribonucleoprotein N 

105830 

176270 

Angelman Syndrome; AS 

Prader-Willi Syndrome; PWS 

98371 Sox9 SRY-box containing gene 9 114290 Campomelic Dysplasia 

98737 Thbs1 thrombospondin 1 270150 Sjogren Syndrome 

99414 Id4 inhibitor of DNA binding 4 166710 Osteoporosis 

99846 Gdi1 guanosine diphosphate 

dissociation inhibitor 1 

300104 GDP Dissociation Inhibitor 1; 

GDI1 

2681828 Wdr81 WD repeat domain 81 610185 Cerebellar hypoplasia, mental 

retardation, and quadrupedal 

locomotion 2 
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Chapter 4 

Discussion 

CAMRQ is a rare genetically heterogeneous disorder characterized by cerebellar 

ataxia, mental retardation and dysarthric speech with or without quadrupedal gait.[28, 

31] The first locus was mapped to chromosomal region 17p13 in Family B [31] and 

the causative mutation identified in WDR81 using homozygosity mapping and targeted 

next generation sequencing.[29] Two additional loci have been mapped so far on 

chromosomes 9p24 and 8q12 in consanguineous families, and causative mutations 

have been identified in VLDLR and CA8, respectively, using genome-wide linkage 

analysis and candidate gene sequencing.[32, 35]  

 

 In this thesis, identification of the fourth gene locus in a consanguineous family 

of two affected siblings and an affected nephew with CAMRQ inherited with 

autosomal recessive transmission is described (Figure 1.3).  

4.1 Disease Gene Identification 

Disease gene identification amongst thousands of variants obtained via next generation 

sequencing is a major challenge, and requires prioritization of the novel variants 



123 

 

depending on the number of affected individuals which are clinically well-

characterized and availability of the family members, the inheritance pattern, the 

severity and frequency of the disease. Figure 3.10 summarizes the strategy followed 

in this study to identify disease-causing gene.  

 

 Whole genome homozygosity mapping analysis, which is a powerful technique 

to map recessive traits in consanguineous families, revealed 23 shared homozygous 

regions in the three affected individuals. Candidate gene prioritization among 563 

genes at the homozygous blocks and Sanger sequencing did not revealed a causative 

mutation segregated with the disease in the family.  

 

 The high number of shared homozygous regions detected by 250K SNP arrays 

gave rise to thought that SNPs were detected with less accuracy which would result in 

non-contiguous homozygous regions due to low number of informative SNPs. A 

recent study presented that 250K arrays is problematic in detection of homozygosity 

since they have high false-positive heterozygosity rate (>4%) and low SNP density 

with more non-informative alleles. These non-informative alleles generate additional 

homozygosity peaks appear as backgrounds.[117] These backgrounds can be 

eliminated either by linkage calculation with parental genotypes or by recently 

developed more comprehensive SNP arrays. These high-resolution arrays are more 

informative compared with 250K SNP arrays since they have high density of SNPs 

and also contain HapMap-derived-SNPs with high heterozygosity rate.[117]  

 

 The problem is achieved by repeating the homozygosity mapping with more 

comprehensive high-resolution genome-wide arrays in two affected individuals, which 

in turn revealed four contiguous common homozygous intervals. These regions 

contain a total of 882 genes with 2,263 transcripts and 16,935 exons, so a genome-

wide approach was determined. By using targeted enrichment of the homozygous 

regions and next generation sequencing several missense variants were identified. 

These variants were annotated and filtered using segregation analysis, population 

screening, protein conservation, and disease gene prediction approaches.  
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 Consequently, a novel missense variant in ATP8A2 (c.1128 C>G; p.I376M) is 

identified as the causal mutation that segregates with the phenotype in the family. 

4.2 Overview of Variant Filtration and Prioritization 

With the development of the high-resolution genotyping arrays and the next-

generation sequencing technologies, human disease gene identification is greatly 

facilitated.[29, 118, 119] However, in majority of the cases multiple candidate 

variations on many candidate genes detected. Among these, none of the variants could 

be on a gene with a protein product or cosegregate with the phenotype in the family. 

The mutation could be on an uncharacterized gene or present only in one isoform. The 

mutation could be a missense so did not cause a truncated protein.  In such situations, 

in order to demonstrate the causality of the identified gene, two or more independent 

cases with a mutation on the corresponding gene should be identified.   

 

 In the absence of independent cases, where the mutation is associated with an 

extremely rare and genetically heterogeneous autosomal recessive phenotype as in our 

unique consanguineous family, narrowing the list of potential genetic culprits by 

excluding the harmless ones could be applied (Figure 2.4 and Figure 3.12). 

Improvements in bioinformatics likely increased the success rate of identifying the 

disease causing gene. The first filtering step is the exclusion of the variants which are 

previously reported by NCBI dbSNP because these variants assumed to be non-

pathogenic. However, the criteria for SNP filtering should depend on the allele 

frequencies or genotyping rates since more than six million SNPs in this database 

identified by the SNP discovery projects and not curated to be involved in disease 

pathogenesis.[120] Thus, by definition of a polymorphism, SNPs with MAFs greater 

than 1% which fit the Hardy-Weinberg equilibrium should be selected as a filtering 

criterion.[121]  

 

 The second step involves screening of the variations for novelty with 

comparison to personal genome databases and previous exome sequencing databases. 
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The remaining variants that match with the previously detected variants by next 

generation sequencing projects could be further excluded using open source public 

databases that contain catalogue of common and rare variants such as 1000 genomes, 

NHLBI Exome Sequencing Project, Database of Structural Variants and International 

HapMap Project. The screening of the candidate variations in the geographically 

and/or ethnically matched unaffected individuals would distinguish the putative 

mutation from the unknown rare SNPs.   

 

 Disease phenotypes are due to mutations that cause amino acid changes which 

result in the loss of a critical protein function.[122] Thus, the variants annotated 

according to the positions and their effects on the protein function. The protein altering 

variants including nonsynonymous SNPs, frameshift coding insertions/deletions and 

splice site variants could be pathogenic and potential disease causing candidates. These 

candidates should be further evaluated in the family to determine whether the gene 

cosegregated with the phenotypic trait. 

 

 Another filtering option is the functional annotation of the variants in several 

databases. OMIM database contains several germ-line mutations associated with 

corresponding phenotypes.[123] Association of a gene with a phenotype allows 

comparison of the phenotypic similarities so the genes associated with the irrelevant 

phenotypes could be excluded from further analysis. Besides that, mice knock-out or 

knock-in studies provide useful information for understanding the role of the genes 

since they are the most closely related animals to humans.[124] The loss of gene 

expression in mice often causes phenotypic changes which could be compared with 

the human disease phenotypes. Databases such as JAX KO and MGI collect those 

information which can be used to evaluate candidate genes. Other databases including 

KEGG, UniProt, DGV, F-SNP, etc. were given in (Table 2.1) 

 

 Next, conservation analysis would provide evolutionary comparison between 

cross-species and give information about the predicted deleteriousness of the amino 

acid change. The region where the mutation resides in a gene would be evolutionary 

conserved across species. In addition, several tools can be used to predict the impact 
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of potential causal substitutions according to their effect on protein secondary 

structure.[62] As a result of multiple sequence alignments across species sequenced 

and consequences of the prediction tools, the variants with the mutant allele at many 

orthologous species at the same site and with no effect on protein structure could be 

considered as non-pathogenic, and could not be involved in the disease pathogenesis. 

 

 Lastly, the fold enrichment and coverage analysis reveal the total number of 

reads on each individual bases and how many times those bases are read within the 

targeted region. The targeted bases can be classified as zero-coverage bases which did 

not read at all, low-coverage bases with 1-3X mean read depth, and high-covered bases 

at least four read depths. The analysis revealed a mean coverage depth of 62.96-fold 

across the targeted homozygosity intervals with 97.41% of the targeted bases being 

covered by at least four reads. Thus, analysis of these non-covered regions including 

gaps would be one of the important challenges of the sequencing analysis, since 

disease causing mutations at these points could be missed. In sequencing reactions the 

non-covered regions are mostly associated with GC-low and GC-rich regions because 

they are difficult to amplify because of their secondary structures. These regions 

comprise about 1% of the human genome and they are epigenetically important so 

need to be evaluated.[125] Evaluation of these regions revealed that only 0.03% of the 

targeted bases that are non-covered are located on the constitutive coding exons and 

functionally important. This stated that 99.51% of the constitutive regions are covered 

by at least four reads (Table 3.12 and Figure 3.9). Evaluation of these genes encoding 

for the constitutive exons in the low- or zero-coverage regions were revealed that, they 

either do not have cerebellar expression or do not display a phenotype compatible with 

cerebellar involvement in mouse knockouts (Table 3.13). These results suggested that 

missing a causative mutation at the non-covered regions seems highly unlikely. 

 

 All of these strategies are enriched for discrete filtering, stratification, and 

functional annotation to explore which of the observed variants are more likely to 

affect phenotype. In conclusion, an evolutionary conserved novel missense mutation 

in ATP8A2 gene segregated with the CAMRQ in the family remained to be the only 
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causal mutation. However, biological evidence is still necessary in order to 

demonstrate the identified mutation is the causal of the phenotype. 

4.3 ATP8A2 is associated with CAMRQ 

ATP8A2 is one of the members of P4-ATPases subfamily of P-type ATPases, which 

are a large group of ion and lipid pumps involved in the transport across membranes.  

4.3.1 Biochemical properties of P-type ATPases 

The P-type ATPases are calcium pump (Ca+2-ATPase), proton-potassium pump 

(H+K+-ATPase), sodium-potassium pump (Na+K+-ATPase), and the plasma 

membrane proton pump (H+-ATPase). P-type ATPases include five subgroups: Type 

I involves in transition of K+ and heavy metals; type II involves in transition of Ca+2; 

type III involves in the transition of H+ and Mg+2; type IV involves in the transition of 

aminophospholipids; and type IV in the transition of cations.[126]  

 

 P4-type ATPases are key regulators of lipid asymmetry that catalyze transport 

by altering the curvature of the phospholipid bilayer by phosphorylation reactions in 

order to flip aminophospholipids from the endoplasmic reticulum to the cytoplasmic 

leaflet.[127] The best studied ones are the sarcoplasmic reticulum Ca+2-ATPase which 

functions in muscle contradiction and plasma membrane associated Na+K+-ATPase 

which functions in the stimulation and neuronal cells.[128] Functional analysis and 

homology searches revealed that the transport mechanism through P4-type ATPases 

conserved among all species.[127]  

 

ATP8A1, the closest homolog of ATP8A2, is the first ATPase identified in 

human red blood cells. Biochemical analysis revealed that this ATPase is activated by 

aminophospholipids and inhibited by phosphatases. [129] This ATPase was found to 

play role in transport across membrane by catalyzing rapid flipping of 
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phosphatidylserine. ATP8A2 was first purified from photoreceptor membranes and 

play role in transport across membranes by catalyzing active transport of 

phosphatidylserine. [130]  Mice deficient for either Atp8a1 or Atp8a2 cannot survive 

after birth. This reveals overlapping function of both genes. CDC50 protein family is 

reported to play role in export of some types of ATPases from the endoplasmic 

reticulum. Both ATP8A1 and ATP8A2 make complex with CDC50A to operate their 

function in photoreceptor outer segment membranes. [130] In a more recent study, 

downregulation of the CDC50A by using RNA interference technology revealed 

reduced neurite outgrowth in PC12 cells which are derived from rat adrenal medulla. 

Neurite outgrowth enhanced when ATP8A2 overexpressed in these cells. [131] These 

results suggested that ATP8A2-CDC50A complex play role in vesicle formation or 

transport across membranes.  

4.3.2 Clinical phenotypes associated with P4-type ATPases 

P4-type ATPases have been implicated in several phenotypes (Table 4.1). First, 

mutations  in ATP8B1 is associated with severe human liver diseases such as benign 

recurrent intrahepatic cholestasis type 1 (BRIC) and progressive familial intrahepatic 

cholestasis type 1 (PFIC1) in humans.[132] Similar to human phenotype, mice 

deficient with Atp8b1 suffer from hearing loss due to degeneration of hair cells.[133]  

Also, ATP2B2 is reported in a family with three affected individuals as the causal gene 

associated with sensorineural hearing loss.[134] Murine ATP8B3 is implicated in 

sperm cell capacitation and acrosome formation.[135] In vitro studies with Atp8b3 

knock-out sperm cells are deficient in fertilization.[136] P4-type ATPases are also 

implicated in complex disorders. Atp10a deficiency in mice leads to increased insulin 

levels and hyperglycemia. It is implicated in related disorders such as type-2 diabetes, 

obesity, and non-alcoholic fatty liver disease.[137] Besides that Atp10d deficiency is 

implicated in lipid metabolism in mice which results in predisposition to obesity, 

hyperglycemia, hyperinsulinemia, and hypertension.[138]  
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 P4-type ATPases have also been implicated in neurological phenotypes. First 

of all, genome-wide association studies revealed a highly significant association 

between ATP8B4 gene and Alzheimer’s disease.[139] By using linkage analysis and 

candidate gene sequencing ATP13A2 is found to be associated with Kufor-Rakeb 

syndrome which is a rare autosomal recessive form of juvenile-onset atypical 

Parkinson diseases.[140] Next, imprinting mutations in maternally expressed ATP10C 

gene is associated with Angelman syndrome.[141] In addition heterozygous mutations 

leads haploinsufficiency of ATP1A2 which is responsible for familial hemiplegic 

migraine type 2.[142] Mice deficient with Atp8b2 have impaired motor coordination 

and represents cerebellar ataxia.[143] In a very recent study, a missense mutation in 

ATP2B3 was identified in a family by using X-exome sequencing as a cause of X-

linked congenital cerebellar ataxia.[144] Lastly, Atp8a1 deficiency, which is the 

closest homolog of Atp8a2, leads to increase in phosphatidylserine externalization in 

hippocampus and associated with delayed hippocampus-dependent learning.[145] 

4.3.3 Clinical phenotypes associated with ATP8A2 

ATP8A2 haploinsufficiency is reported in a patient with a de novo t(10;13) balanced 

translocation leading to disruption of ATP8A2 gene. The patient represents severe 

neurological phenotypes including severe mental retardation and major hypotonia 

which brings into attention the clinical findings of carriers in Family C.[114] The 

translocation carrier shares partially overlapped phenotype with the affected members 

of Family C whereas the carriers of ATP8A2 p.I376M mutation (05-992 and 05-995) 

did not show any detected neurological abnormalities. This suggests that ATP8A2 

mutations should represent a clinical heterogeneity in humans, and demonstrates 

fundamental features of genomic analysis of human traits such as variable expression, 

allelic heterogeneity, and genotype–phenotype correlations.  

 

 

 



130 

 

Table 4.1: Clinical phenotypes associated with P4-type ATPases 

 

Gene Phenotype Species Reference MIM ID 

ATP8B1  Progressive familial intrahepatic 

cholestasis type 1 

human [129] 211600 

ATP8B1  Benign recurrent intrahepatic 

cholestasis type 1 

human [130] 243300 

ATP2B2  Deafness, autosomal recessive 12 human [131] 601386 

ATP8B3  Impairment in sperm cell acrosome 

formation and capacitation 

murine  [132] - 

Atp8b3  Inability to fertilize mice [133] - 

Atp10a  Obesity, type-2 diabetes, and non-

alcoholic fatty liver disease 

mice [134] - 

Atp10d  Obesity, hyperglycemia, 

hyperinsulinemia, and hypertension  

mice [135] - 

ATP8B4  Alzheimer’s disease  human [136] 104300 

ATP13A2  Parkinson disease 9 human [137] 606693 

ATP10C  Angelman syndrome human [138] 105830 

ATP1A2 Migraine, familial hemiplegic, 2 human [139] 602481 

Atp8b2  Cerebellar ataxia  mice [140] - 

ATP2B3  X-linked congenital cerebellar ataxia  human [141] - 

Atp8a1  Delayed hippocampus-dependent 

learning 

mice [142] - 

Atp8a2  Ataxia and body tremors mice [143] - 

ATP8A2  Mental retardation and major 

hypotonia  

human [114] - 

 

 

 

 There are several examples of heterozygous and homozygous mutations in the 

same gene causing similar phenotypes. First, both CRYBB1 homozygous and 

heterozygous mutations cause congenital cataract.[147] Another example is 

Zweymuller Weissenbacher syndrome, caused by heterozygous and homozygous 

mutations in COLL11A2.[148] A deleterious homozygous mutation in MYBPC1 

causes arthrogryposis that is more severe than that caused by heterozygous missense 

MYBPC1 mutations.[149] The osteopetroses are caused by defects in ClCN7 or ATP6i 

genes. They range from a devastating autosomal recessive neurometabolic disease to 
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more benign autosomal dominant conditions affecting adults.[150, 151] Menkes 

disease is an X-linked disorder caused by mutations in ATP7A gene, but variable forms 

exist such as occipital horn syndrome, which is the mildest form.[152] Autosomal 

recessive lethal congenital contractural syndrome is a severe form of neuromuscular 

arthrogryposis. SPG7 mutational screening in spastic paraplegia patients supports a 

dominant effect for some mutations and autosomal recessive hereditary spastic 

paraplegia.[153] It is noteworthy that in all these examples, the mutations causing the 

recessive phenotypes are more severe than the dominant phenotypes. This is likely due 

to the fact that the heterozygous mutations have dominant-negative effect where 

recessive mutations are dramatically disrupt the encoded protein resulting in a normal 

wild-type phenotype of the heterozygous individuals. 

 

  The wabbler lethal mice colonies with spontaneous homozygous mutation 

were present in the Jackson Laboratory since 1952. These mice represent phenotype 

with severe neurological abnormalities including ataxia and body tremors.[154] In a 

recent study, genetic approaches revealed that these spontaneous mutations located in 

the Atp8a2 gene. Further biochemical analysis represented that the phenotype occurs 

due to axonal degeneration since loss of phosphatidylserine translocase activity of 

Atp8a2 disrupts axonal transport in the motor neurons and accumulation of 

phosphorylated neurofilaments.[146] 

 

 These findings suggest that ATP8A2 could be critical for the developmental 

processes of central nervous system and alterations of this gene may lead to severe 

neurological phenotypes. 

4.3.4 ATP8A2 p.I376M mutation  

The disease causing variant (c.1128C>G) located at chr13:26128001 in exon 12 of 

ATP8A2 gene and results in an isoleucine (I) to methionine (M) substitution at residue 

376. There is no structural model for ATP8A2 protein so the consequences of the 

amino acid change are predicted. The protein is predicted to contain 27 β-strands and 
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32 α-helices. I376 residue is located at the N terminus of the 11th α-helix. The 

substitution predicted to alter secondary protein structure by enlarging the 11th and 

12th α-helices and creating an additional α-helix at residue 401.  

 

 The mutation lies in the predicted C-terminal-transmembrane site of the E1 E2 

ATPase domain. The domain is present on the loop of ATPase which is essential for 

the metal ion binding [155] and is highly conserved across species.  

 

The wild-type residue is a methionine which is a hydrophobic and flexible 

residue of intermediate size. It is mutated into an isoleucine which is also hydrophobic 

and of an intermediate size. However, the shape of isoleucine is different, its side-

chain is beta-branched and less flexible. The mutation might cause sterical hindrance 

with other side-chains that are surrounding the residue. In a transmembrane domain 

hydrophobic residue can be located on the surface of the protein, making interactions 

with hydrophobic membrane lipids. The mutation can affect these interactions. It is 

also possible that the residue is located on the inside of the helix, facing the other 

transmembrane helices. In that case the strong hydrophobic interactions are stabilizing 

the protein. Therefore, the mutation might destabilize the protein. 

4.3.5 Expression of ATP8A2 

Previous studies revealed that Atp8a2 is highly expressed at embryonic and new born 

stages. The strongest expression is at the heart, brain and testis tissues during these 

stages.[114] Our real time RT-PCR analysis revealed that ATP8A2 expression is high 

in the testis, whole brain, trachea, thyroid, and fetal liver. 

 

 Since the patients have cerebellar phenotype, we hypothesized that ATP8A2 

would possibly involve in motor functions. In order to test our hypothesis, firstly, 

expression profile of ATP8A2 was examined in different human brain regions. As a 

result human ATP8A2 is expressed in all regions of the brain with the highest level of 

expression in the cerebellum. In a very recent study, highest expression of Atp8A2 
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reported in central nervous system including cerebrum, cerebellum, spinal cord, and 

retina [146] which together with our expression data confirmed our hypothesis. 

Cerebellum is a crucial regulatory organ functioning in the coordination of the motor 

activities so that this expression pattern is consistent with CAMRQ.  

 

 Biological function of the ATP8A2 in brain development is still a mystery. The 

prediction-based bioinformatics approaches such as functional annotation clustering 

analysis would provide clues about the function.[115] Functional clustering of the 

genes correlated with ATP8A2 according to expression profiles revealed that they 

involved in neural pathways such as neuron differentiation, neuron projection 

morphogenesis and axonogenesis. Among the genes expressed with ATP8A2, 

doublecortin is responsible for X-linked lissencephaly and WDR81 associated with 

CAMRQ suggesting that these genes could represent similar developmental pathways. 

 

 As well as ATP8A2, CAMRQ associated genes WDR81, VLDLR, and CA8 

expressed highly in retina.[156] Since strabismus is observed among all the patients 

with CAMRQ reported eye abnormalities may be an additional clinical feature of the 

phenotype.  

4.3.6 Association with other CAMRQ genes 

Expression pattern and functional clustering analysis of the genes responsible for the 

CAMRQ syndrome revealed that these genes may be involved in a same or similar 

developmental pathways. ATP8A2 gene is a multi-pass transmembrane protein where 

VLDLR is a single-pass transmembrane protein. ATP8A2 is an ATP-dependent 

transporter of aminophospholipids from outer to inner leaflet whereas VLDLR is a 

ligand-dependent transporter of lipoproteins from outer to inner leaflet. CA8 encodes 

a carbonic anhydrase VIII protein which inhibits binding of IP3 receptors to ITPR1. 

ITPR1 is receptor localized in the intracellular membranes such as endoplasmic 

reticulum and plays role in the transport of cytoplasmic Ca+2. Binding of CA8 to ITPR1 

inhibits IP3 binding and causes calcium release from endoplasmic reticulum which 
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results in increased Ca+2 levels in the cytoplasm. [157] Increase in the cytoplasmic 

Ca+2 levels regulated by a transcription factor, CREB, which is activated by 

phosphorylation through calmodulin-dependent kinases such as Reelin. [158] VLDLR 

forms complex with Reelin, the cytoplasmic adaptor protein Disabled-1, 

apolipoprotein E receptor 2, and Src family kinases which regulates neural migration 

during embryonic development. In a more recent study, it is indicated that Reelin 

signaling is involved in the Ca+2 influx through NMDA receptors [158] which are 

responsible for the synaptic plasticity and memory. [159]  

 

 ATP8A2 forms complex with CDC50 and this complex functions in the neurite 

outgrowth in PC12 cells and in hippocampal neurons. Increase in the Ca+2 levels 

through NMDAR mediated calcium influx also triggers Reelin-dependent 

hippocampal neurite outgrowth and dendrite development through Apoer2/Vldlr-Dab1 

dependent pathway. [160] Therefore, these data suggest that three genes may play role 

in the similar pathways involved in neurite outgrowth and synapse formation.  

 

 Similar to ATP8A2, WDR81 also encodes a multi-pass transmembrane 

protein, which is predominantly expressed in the cerebellum with unknown in vivo 

function. Chracterization and functional annotation of the gene is necessary to draw a 

common pathway among these genes.  

4.4 Conclusion 

A novel missense homozygous variant in ATP8A2 is identified as causal mutation of 

the phenotype in three affected individuals with CAMRQ by filtering the all possible 

culprit genes using co-segregation analysis, population screening, protein conservation 

and disease gene prediction approaches. The mutation segregates with the autosomal 

recessive inheritance in the family. The mutation is in a functional transmembrane 

domain which is predicted to alter secondary structure of the protein and highly 

conserved across species. ATP8A2 is a P4-type ATPase involved in the transportation 

of the aminophospholipids across membranes. P4-type ATPases mostly implicated 
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with several neurological phenotypes in both humans and model organisms, especially 

Atp8b2 with motor coordination and cerebellar ataxia [143], ATP2B3 with X-linked 

congenital cerebellar ataxia [144], and the closest homolog Atp8a1 with delayed 

hippocampus-dependent learning.[145] ATP8A2 is mainly expressed in brain tissues, 

with highest levels in cerebellum which is a crucial regulatory organ for motor 

coordination. The Atp8a2 deficiency in mice revealed impaired axonal transport in the 

motor neurons associated with severe neurological phenotype including ataxia and 

body tremors.[146] Lastly, a patient with a de-novo-balanced translocation leading to 

ATP8A2 haploinsufficiency shares similar neurological phenotypes including severe 

mental retardation and major hypotonia with affected individual in Family C. All these 

findings are consistent with our observations and strongly suggest a possible role for 

ATP8A2 in development of the nervous system especially in motor behavior.  
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Chapter 5 

Future Perspectives 

CAMRQ is a novel form of autosomal recessive cerebellar ataxias with mental 

retardation, dysarthric speech and with or without quadrupedal locomotion. The 

condition is phenotypically and genetically heterogeneous since four gene locus 

identified so far:  VLDLR on chromosome region 9p24 [32], CA8 on chromosome 

region 8q12 [35], WDR81 on chromosome region 17p13 [29], and recently ATP8A2 

on chromosome region 13q12.[64] The expression profiles of these genes, mouse 

knock-out studies, and predictions about their biological roles revealed that these genes 

may be involved in similar neurological pathways. Since biochemical analysis is 

needed to observe functional common domains or motifs, gene-gene interactions, 

differential pathway expression profiles. These data would provide to compare gene-

phenotype correlations and would address the phenotype related differences in gene-

pathway interactions.  Such observations related with gene-pathway interactions are 

important to understand the pathology underlying the disease mechanisms and would 

provide clues for potential drug targeting. In addition, several consanguineous families 

with CAMRQ or related phenotypes including autosomal recessive ataxias were 

investigated so far. Identification of novel genes responsible for novel CAMRQ or 

phenotypically related cases would help discovering common neurological pathways 

involved in disease pathogenesis and classification of the clinical phenotypes arise 
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from phenotypic heterogeneity.  Homozygosity mapping following targeted next 

generation sequencing is the most efficient method for identifying novel genes 

associated with autosomal recessive disorders in consanguineous families. Thus, 

improvements in SNP genotyping arrays and target capturing arrays, as well as 

sequence analysis methods would lower the error rates associated with false positives, 

false negatives and coverage of the bases.  

 

 A novel missense homozygous variant in ATP8A2 is identified as causal 

mutation of CAMRQ. Segregation analysis, population stratification, protein 

conservation analysis, expression profiles, secondary structure predictions, functional 

annotation clustering, as well as phenotypes associated with the gene and its homolog 

relatives and mice studies revealed that the missense mutation is responsible for 

CAMRQ and associated with the clinical phenotypes. However, direct evidence is still 

missing. Introducing the same homozygous mutation into cell lines in vitro and 

additionally into model organisms in vivo would provide significant information about 

the role of ATP8A2 in nervous system development, especially in motor coordination 

associated with cerebellum, mental retardation, and hypotonia.  

 

 Comparison and classification of the phenotypes associated with other 

CAMRQ genes would help understanding the pathways involved in disease 

pathogenesis. Therefore, fully characterization of the CAMRQ associated genes is 

necessary. For that purpose, characterization of the gene structure and identification of 

the tissue specific novel transcript isoforms of the WDR81 gene which is associated 

with CAMRQ2 by using Zebrafish as a model organism have been got started in our 

laboratories.  
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Appendix A 

Primer List 

 

 

Table A.1: Primers for candidate gene sequencing 

 

Locus D. Primer Tm Size 

CENPJ gene sequencing 

CN_1 
F 

R 

CGCCTACGTCGACCACTG 

TGAACGAAGCCACTGAACTG 

61.5 

60.0 
477 

CN_2 
F 

R 

TATGCTGGGTTGAGGTTTGG 

AAACAGAAACCTGCAATGACA 

60.9 

58.3 
648 

CN_3 
F 

R 

AGGAGGGAGATGGGAGGAAT 

GCATTATACTGAGGCCCTGTG 

61.2 

59.6 
247 

CN_4 
F 

R 

CACTGTGGAGAAGTCTTTGTGG 

GCTACCTGAGAGGCTGATGG 

59.8 

60.0 
577 

CN_5 
F 

R 

TCCTGGCCTCAAGTGATTCT 

CACCAAATGGGAGATGTCAA 

59.8 

59.3 
502 

CN_6 
F 

R 

GGGTTTCTATACCAGGCACAC 

TGGAGTTGCTGTCTATCCATTT 

58.4 

58.7 
500 

CN_7_1 
F 

R 

TTTAGGAAGCAGAAGGACCA 

AGCCAGTATCGCAAGGTTT 

57.5 

57.4 
468 

CN_7_2 
F 

R 

TCTTTCTCCGTCAGGATTGA 

GCCGGATTTGTCTTCTGTG 

58.4 

59.2 
483 

CN_7_3 
F 

R 

CCATAAGGGAGACCATGAAA 

CTCTCACTATTTGGAACACCTTC 

57.5 

57.0 
484 
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CN_7_4 
F 

R 

GAATTGAGGGAACAGCCTTG 

GGCGTCCCATAAGTGGATT 

59.7 

59.8 
470 

CN_7_5 
F 

R 

CACCAGGACCCAAGAAGATAA 

GGGAAGAAAGGAAACGTAGAAG 

59.0 

58.5 
697 

CN_8 
F 

R 

TTGCCATATTCTTGGCTCTT 

GTCTTAAAGGTATAACTGAGTCACTGC 

57.5 

58.2 
289 

CN_9 
F 

R 

GGATGAATGCTTTAGTGAGTGG 

TTTCCAACTCCAGGCTTGTT 

58.7 

59.7 
596 

CN_10 
F 

R 

TCATTGCTGGGTCTCTATTCTTC 

TTCCCATTCTACTTTCTGACTCTATG 

59.7 

59.3 
400 

CN_11 
F 

R 

AACCCACAGCATTCTTAGCAC 

GATGCACAGGAGCTTCAATTAC 

59.3 

58.9 
336 

CN_12_13 
F 

R 

AAGGACAGCAGTTCACAGGA 

TCTGAACGAGAAATGGCAAC 

58.4 

58.9 
627 

CN_14_16 
F 

R 

GTAGGCAGTTGGGAGGAGAA 

ACATATCATCAGAAACGCAAGG 

59.3 

59.1 
675 

CN_17 
F 

R 

GATAACCAAGGGATGTCTCCA 

GTGCTCTACGGCTGATGTGT 

58.8 

58.9 
679 

MTMR6 gene sequencing 

MTMR_1 
F 

R 

TCCATTCTCACGCAGTCTTCC 

CTTCGTCTCCTCCTGCCTCA 

62.7 

63.0 
498 

MTMR_2 
F 

R 

TGCATGTAAGTCCTGGGCTA 

GGCAGGAGTGATCTGGAGAC 

59.3 

59.8 
341 

MTMR_3 
F 

R 

TGCTTTCCATGTTGATGACC 

GGGGAGATAGAGTACAAAAGAACC 

59.5 

58.7 
340 

MTMR_4 
F 

R 

TCAGGTATTAGCCATCTCTTTGAAG 

CTGGGGTAAGTTTCACAAATCTG 

60.2 

59.9 
488 

MTMR_5 
F 

R 

TGAAATGTGCTGTTCTTGCA 

AAGCATCCTACCTCCTTATCTTGA 

59.0 

59.7 
236 

MTMR_6 
F 

R 

GGATCTTAAAGTTAATGCCTCCTAA 

AGAAGATGTAAGAAATCACCATGAG 

58.4 

57.9 
479 

MTMR_7 
F 

R 

TTCCTTTAAACTGCCTCCTAGC 

TGCCTGATTTCTAAGAGTTGATGA 

59.1 

60.3 
477 

MTMR_8 
F 

R 

CGTATTTGGTTAGTGGCTGCT 

ACTCCTTCCCAATCATTATAGACC 

59.3 

58.8 
584 

MTMR_9 
F 

R 

ATTGCAGGCATAGCACTTC 

TGCCAGTCTCATCATTTCCTT 

56.5 

59.7 
355 

MTMR_10 
F 

R 

TCCACCTCAGTCTACCACCT 

CATCACGCATGTGAGTTCAT 

57.1 

58.0 
541 

MTMR_11 
F 

R 

CAATACCTGAACAATGGACCTT 

AGCTTCACACTTAACGCTCTATG 

58.0 

57.9 
519 
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MTMR_12_14 
F 

R 

GAAGCCATCGCCTGATTTAT 

GGGATGACCTGATTTTGAAGA 

59.1 

59.0 
558 

MTMR_15_1 
F 

R 

TGTAACATATTGTGGCTTATGCAAT 

CTGACCACAGCAGGTTCTGA 

59.7 

60.0 
284 

MTMR_15_2 
F 

R 

CCCGGCAGATAATCGTTATAG 

ATTCCTTGCTGGAAATGCAA 

58.6 

60.6 
293 

MTMR_15_3 
F 

R 

GATGGTCTGTAAGCATAACCAAA 

GCAGTAATGAGAGCACAATTCTTT 

58.2 

59.0 
550 

MTMR_15_4 
F 

R 

TTCTTCTGGTCAGCCTTGTTT 

CCAGGAACAGCAACTCATTG 

59.0 

59.3 
431 

MTMR_15_5 
F 

R 

GTGGTTGGCTTTATTTCTTTCAC 

GCCAGTTGGGTGATATTGCT 

59.1 

60.0 
471 

MTMR_15_6 
F 

R 

GTGCATGGTTGCATGAATTT 

AAGTTTCCATTCCCAGTGCTT 

59.4 

60.0 
581 

MTMR_15_7 
F 

R 

GATTAACCAATCCTGCTTCCA 

CTCCTCAAACCTTATGCTGTTATG 

59.0 

59.2 
495 

NUPL1 gene sequencing 

NUPL1_1 
F 

R 

AACTCTGGGAGCCTACTCCTTT 

AGGCGAGAAAGTGCGGTTAC 

59.8 

61.7 
465 

NUPL1_2 
F 

R 

ACCCAGCCTGAAATCTGGTA 

TCCCAAGCCTACTCTCTGACA 

59.6 

60.0 
485 

NUPL1_3 
F 

R 

CACATTTCACAGCCACATCT 

TCTCCGATAAGTCACCATCTG 

57.1 

57.8 
565 

NUPL1_4 
F 

R 

CTCTCACAGATACACCCTTCTTCT 

ACAGCCTCTCCTGCTTCAAT 

58.1 

59.0 
438 

NUPL1_5 
F 

R 

TACTCCTCAAAGCCCTTATTTCTG 

AGAATCTCTCTTGAACCCTGGAG 

60.1 

60.2 
635 

NUPL1_6 
F 

R 

CGCATCATCCAAACTGCATA 

GCAACCTAGACATTCCCTCAAC 

60.6 

60.0 
381 

NUPL1_7 
F 

R 

GGCAAGCAAAGAAATGCTTAAC 

GAGAAATACCAAACACCTTTCCAG 

60.3 

60.3 
394 

NUPL1_8 
F 

R 

GAAATCATCCAGAGAAGCCATAC 

CTTGAACTTGTTTCTGCTCCTTC 

59.1 

59.6 
557 

NUPL1_9 
F 

R 

GGGAGCATCTCTTCCTCCTA 

TTCCTACCTTGTTGGGTCTTT 

58.4 

57.7 
691 

NUPL1_10 
F 

R 

TCTTTGAAGTTTCAGTCCAGAG 

GGCTCAGCCTTTCCACATAG 

56.3 

59.8 
296 

NUPL1_11 
F 

R 

CTTCCTTTCCTTGGATAACCTTG 

GCCCTAAGATTTCTGTCCTTGTT 

60.3 

60.0 
452 

NUPL1_12 
F 

R 

CTGCTACTCTGTGTGTTCTCTGG 

CGTTATGTCTGGGTATGTTATGGA 

59.2 

60.0 
397 
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NUPL1_13 
F 

R 

CCTACACCAAAGTGCATTATTAGC 

TCAGTGCTCACACAAATGGA 

59.2 

58.8 
449 

NUPL1_14 
F 

R 

AGACTGGAGAGACATCCTGAAA 

TTGCCAGATGGAACCTTAACT 

58.0 

58.7 
382 

NUPL1_15 
F 

R 

ACTTGTCCATATCCTTTAACCTGTG 

GCACACTTCATCCAGGGAGTA 

59.7 

60.1 
298 

NUPL1_16_1 
F 

R 

AATTTACTGCTCCTCCCTGTTT 

GGCCCTAGAGTTCACACCA 

58.3 

58.7 
627 

NUPL1_16_2 
F 

R 

TGTGTTGAGAGAATCCATAGCAG 

AGTGCAGTGGTGTGATCTCG 

59.4 

59.9 
545 

NUPL1_16_3 
F 

R 

GGTGGCTCACGCCTGTAATC 

TCACAGAAGCAATGTAAGGACACA 

62.9 

62.0 
495 

NUPL1_16_4 
F 

R 

TCAGTGCTTGTAGAATGATGAGC 

ACATGCCTATGCGTTATTACCTG 

59.5 

60.3 
598 

NUPL1_16_5 
F 

R 

GGCTTCTCAGCCTCTTAATGTC 

AAGCCAACCACTGCTATATGC 

59.5 

59.3 
533 

NUPL1_16_6 
F 

R 

AGCCATGATTTCGTTAGTAGACCT 

CTAACTTCCCATGTTCTGGATCTG 

59.6 

61.2 
424 

NUPL1_16_7 
F 

R 

GCATATAGCAGTGGTTGGCTTT 

GGAAATGGAAGGGAATTAGGG 

60.5 

60.8 
700 

SACS gene sequencing 

Sacs_1_2 
F 

R 

GGCGGATCCCCAGCTAAC 

AACGGAAAAGGCAAGTGATG 

62.9 

60.1 
696 

Sacs_3 
F 

R 

TTCTCCAGACAACTTCCTTCA 

GCCTGTAATCCGAACACTTTG 

57.5 

59.6 
600 

Sacs_4 
F 

R 

TGCTTCGTCAGGTAGATTTCTG 

GGAGCGACACTGCTGATTAC 

59.5 

58.5 
496 

Sacs_5 
F 

R 

TGCAAATAGTGGGTTTCCTT 

CAACTGGTGGAGACACCTTC 

57.2 

58.1 
407 

Sacs_6 
F 

R 

GAGATAGAACAGAACACCCTGGTA 

CATTGACATACCTCCTGCTACTG 

58.7 

58.8 
352 

Sacs_7_1 
F 

R 

CCTGGCATTTGTTATTGGAT 

TGAAGGTTGTAGGCGAAGAG 

57.4 

58.1 
443 

Sacs_7_2 
F 

R 

CAGTTTGCACCATTTGTTGG 

TGCTTCATCATCTCTGCTTGA 

60.0 

59.7 
564 

Sacs_7_3 
F 

R 

GGGCGAGGGATCAGTAGTAA 

AGCTCTGGAGGTAGTTGAGCA 

59.1 

59.2 
592 

Sacs_7_4 
F 

R 

GTCAGGTTGGAGCAGGTGTA 

GCTCACTGTAGGCTTGGTCA 

58.7 

59.0 
280 

Sacs_7_5 
F 

R 

GCACAACACCTGTGAGGAAG 

CTGGCCTTGTTATTATTTGCAC 

59.3 

58.7 
532 
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Sacs_8 
F 

R 

TGTGAGAGTCCTTTGTTGTGAA 

CCATGCAGGTATAAGATGTTGA 

58.4 

57.7 
932 

Sacs_9_1 
F 

R 

CCTTCCAGTACTGTGTTATTTGTGAG 

CAAGAACTTCCTCAGGGCATC 

60.4 

61.1 
623 

Sacs_9_2 
F 

R 

GATGCATCTATCCAACATCCGCT 

GGGGTGGGAAATAGGTTCCTTC 

64.5 

64.0 
602 

Sacs_9_3 
F 

R 

AAAAATGAGAATCCAAATGTGCT 

GCACTAAGGCTAGGTTTTGTGAAG 

59.1 

60.7 
599 

Sacs_9_4 
F 

R 

GCTCCTCACTTCCTCTTGTTG 

CGTGAATTTGGCTTCATGATAA 

59.1 

60.0 
601 

Sacs_9_5 
F 

R 

AGCAATCAGATTCCAGCAAGC 

GATGGGAATGTCAGTGATATGG 

61.8 

59.1 
612 

Sacs_9_6 
F 

R 

GGGAGAAGTTGACAAAGTTGGA 

CTTTGGTTCATCACTGGGAAG 

60.5 

59.6 
625 

Sacs_9_7 
F 

R 

TCCAAAGCATTGAACACACCT 

CAGGTCCCGTAAGACACTCAG 

60.5 

59.8 
633 

Sacs_9_8 
F 

R 

CAATGGGTGCTTTGCTGTTAC 

CGAAGAACTCCCGAGAACTCA 

60.5 

61.8 
621 

Sacs_9_9 
F 

R 

GCTGGCTGCAAACAGATACTAC 

GCAAACATGGTTTCAGGCTTA 

59.1 

60.1 
605 

Sacs_9_9_2 
F 

R 

AACTTCCTTCTTCGGTAAAAT 

CAATGACACTGAACCACAA 

54.0 

53.5 
746 

Sacs_9_10 
F 

R 

CAAACAATCCGCTTCCTTCCAT 

ATTATTCGTCGGCAAAGCTGA 

64.5 

62.0 
653 

Sacs_9_11 
F 

R 

TTCCGCGAACTTTTTTGAAACC 

ACACAAAGTGCTGGCCCTTGC 

64.4 

66.9 
601 

Sacs_9_12 
F 

R 

GATGCAAAGGCGACAGAAATC 

ATACAGCACATTTAGAGCTCCAGT 

62.0 

58.6 
627 

Sacs_9_13 
F 

R 

GCATCAGACAGAATGGTCCAG 

GCAATTCAACATATGCAGGAG 

60.7 

58.3 
625 

Sacs_9_14 
F 

R 

GTGAATGGCCACTTTGCACT 

TGATATCAGCAGGGGTCACAT 

61.1 

60.4 
649 

Sacs_9_15 
F 

R 

ACCACACGCAAAACAGTAGCA 

GCCATGCATTCTTAAGCCAAG 

61.7 

62.0 
610 

Sacs_9_16 
F 

R 

TGACATTTCCAGCTTTGCTGA 

AGCGGCCACTGATGGATTTAT 

61.9 

62.9 
632 

Sacs_9_17 
F 

R 

AAATGATTTTGAGGCAACTTTTG 

TTCCACCCAGGATGTCATAAA 

59.5 

60.2 
594 

Sacs_9_17_2 
F 

R 

AATATAGAGAGCCCCACAAGC 

GTTTTCTGTATTAGCCCTCACAC 

57.5 

57.0 
786 
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Sacs_9_18 
F 

R 

ACAGTAGACTAAAGCAAGCAAAGC 

ATCAAGAGGAGGATCCAGGTT 

58.6 

59.0 
647 

Sacs_9_19 
F 

R 

CATCCTGCCCTATTCTTCCAG 

TAAAGCGCAAGGTCTCGTACA 

61.0 

60.9 
619 

Sacs_9_20 
F 

R 

TGAGGGCAAACAATTAGATCC 

TCTGCTGTGGGGAATAGGATT 

59.0 

60.8 
616 

Sacs_9_21 
F 

R 

GCAAAGCCCTAAGAGAAGGAT 

TGCTTTGAGTAGCTTTCCTCAG 

59.0 

58.9 
634 

Sacs_9_22 
F 

R 

TGAAAGAGAAGATGCTGACAATTC 

GTAAGTCTGTCCGGCTGAAGG 

59.9 

61.2 
655 

Sacs_9_23 
F 

R 

CATCCCGATTTCAGTCAGACA 

TTCGTGCTACAACACATTCAAGA 

61.1 

60.7 
639 

 

 

 

 

 

 

Table A.2: Sanger sequencing primers for segregation analysis of protein altering 

variants 

 

Locus D. Primer Tm Size 

ATP8A2 
F 

R 

TCCACAGACACCACCTCAGA 

AAATGCCAAAGGCTCTGAAA 

60.3 

59.8 
197 

APBA3 
F 

R 

TTCAGGACCAGTCTGGGAAG 

AGTCAAGCCTTCAGGAGCTG 

60.2 

59.7 
227 

MUC16_A6352V 
F 

R 

GTGCCTTGGATGGATGTTCT 

ACCTCGGGGGACTCAATAGT 

59.9 

59.8 
233 

MUC16_T6290I 
F 

R 

TCGCAGAGGATCTAGGCATT 

CCTGTGACTCGTTCACCTCA 

59.9 

59.9 
247 

ZNF823 
F 

R 

GCTGAAGGCTTTCCCACATT 

TTTGCACGAAAGAACACACA 

61.5 

58.9 
235 

SERINC3 
F 

R 

TGCATCTGAGCCACTCATTT 

TTGTGATGTGCTGGTTGGTT 

59.4 

60.0 
250 

PCP2 
F 

R 

TACAGCCACAACTGGGTCAG 

GAGGCCAGCAGAAAAGTGAC 

59.7 

60.0 
214 
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Table A.3: AS-PCR primers for population screening 

 

Locus D. Primer Tm Size 

ATP8A2_AS1_WT 
F  

R 

CATGCAGGAGGTGCTCAATA 

CTCAAGAGTCACCAACAGACTG 

59.8 

57.6 
193 

ATP8A2_AS1_Mut 
F  

R 

CATGCAGGAGGTGCTCAATA 

CTCAAGAGTCACCAACAGACTC 

59.8 

56.6 
193 

APBA3_as2_wt 
F  

R 

GGAGCCCGTGGGCATCAGC 

CCTCAGTCGGATGGAACTTG 

70.8 

60.6 
170 

APBA3_as2_mut 
F  

R 

GGAGCCCGTGGGCATCAGT 

CCTCAGTCGGATGGAACTTG 

68.1 

60.6 
170 

 

 

Table A.4: Real time RT-PCR primers expression analysis 

 

Locus D. Primer Tm Size 

ATP8A2_RT 
F  

R 

GCACACTTCTGGTTGGGATT 

CGAGACTTGGTTTCCAGCTC 

60.0 

60.0 
131 

GAPDH 
F  

R 

GGCTGAGAACGGGAAGCTTGTCAT 

CAGCCTTCTCCATGGTGGTGAAGA 

68.8 

68.8 
143 

 

 

Table A.5: STR markers for haplotype construction of chromosome 13q12 

 

Marker D. Primer Expected 

Size 

D13S787 F 

R 

ATCAGGATTCCAGGAGGAAA 

ACCTGGGAGTCGGAGCTC 

252  

D13S1243 F 

R 

TGCTGACAGGCTACAGAACTTT 

CTCTTGTGCAGGTATAGGGG 

0 

D13S742 F 

R 

TCCAGCCTGGTCAACACAG 

TCCAGACTTCCCAATTCAGG 

364 

D13S283 F 

R 

TCTCATATTCAATATTCTTACTGCA 

GCCATTCCAAGCGTGT 

108 

D13S1294 F 

R 

GACCCCAATTCTATGTGTTCAG 

CAGGAGTTTTTATCTACTTTGTGCC 

251 

D13S221  F 

R 

TAGCCATGATAGGAAATCAACC 

GAGATCGTGCAGCACTTGT 

243 
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Appendix B 

Candidate genes at the homozygous regions 

 

 

Table B.1: Full list of the candidate genes located at the shared homozygous regions 

 

Chr:Start-End (bp) Gene Name Gene Biotype Status 

1:1152288-1167411 SDF4 protein_coding KNOWN 

1:1167629-1170421 B3GALT6 protein_coding KNOWN 

1:1177826-1182102 FAM132A protein_coding KNOWN 

1:1189289-1209265 UBE2J2 protein_coding KNOWN 

1:1214447-1227409 SCNN1D protein_coding KNOWN 

1:1227756-1244989 ACAP3 protein_coding KNOWN 

1:1243947-1247057 PUSL1 protein_coding KNOWN 

1:1246965-1260071 CPSF3L protein_coding KNOWN 

1:1260136-1264277 GLTPD1 protein_coding KNOWN 

1:1266694-1270686 TAS1R3 protein_coding KNOWN 

1:1270656-1284730 DVL1 protein_coding KNOWN 

1:1288069-1297157 MXRA8 protein_coding KNOWN 

1:1309110-1310875 AURKAIP1 protein_coding KNOWN 

1:1321091-1334708 CCNL2 protein_coding KNOWN 

1:1334902-1337426 RP4-758J18 protein_coding NOVEL 

1:1337288-1342693 MRPL20 protein_coding KNOWN 

1:1353800-1357149 ANKRD65 protein_coding KNOWN 

1:1361508-1363167 TMEM88B protein_coding KNOWN 

1:1370241-1378262 VWA1 protein_coding KNOWN 

1:1385069-1405538 ATAD3C protein_coding KNOWN 
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1:1407143-1433228 ATAD3B protein_coding KNOWN 

1:1447531-1470067 ATAD3A protein_coding KNOWN 

1:1470554-1475833 TMEM240 protein_coding KNOWN 

1:1477053-1510249 SSU72 protein_coding KNOWN 

1:1510355-1511373 AL645728.1 protein_coding KNOWN 

1:1533392-1535476 C1orf233 protein_coding KNOWN 

1:1550795-1565990 MIB2 protein_coding KNOWN 

1:1567474-1570639 MMP23B protein_coding KNOWN 

1:1570603-1590473 CDK11B protein_coding PUTATIVE 

1:1592939-1624167 SLC35E2B protein_coding KNOWN 

1:1634169-1655777 CDK11A protein_coding KNOWN 

1:1656277-1677431 SLC35E2 protein_coding KNOWN 

1:1682671-1711896 NADK protein_coding KNOWN 

1:1716725-1822502 GNB1 protein_coding KNOWN 

1:1846266-1848735 CALML6 protein_coding KNOWN 

1:1849029-1850712 TMEM52 protein_coding KNOWN 

1:1853396-1935276 C1orf222 protein_coding KNOWN 

1:1950780-1962192 GABRD protein_coding KNOWN 

1:1981909-2116834 PRKCZ protein_coding KNOWN 

1:2115903-2144159 C1orf86 protein_coding KNOWN 

1:2143360-2145620 AL590822.1 protein_coding KNOWN 

1:2160134-2241558 SKI protein_coding KNOWN 

1:2252692-2323146 MORN1 protein_coding KNOWN 

3:48509197-48542259 SHISA5 protein_coding KNOWN 

3:48555117-48599448 PFKFB4 protein_coding KNOWN 

3:48599160-48601206 UCN2 protein_coding KNOWN 

3:48601506-48632700 COL7A1 protein_coding KNOWN 

3:48636435-48648409 UQCRC1 protein_coding KNOWN 

3:48658192-48659288 TMEM89 protein_coding KNOWN 

3:48663156-48672926 SLC26A6 protein_coding KNOWN 

3:48673902-48700348 CELSR3 protein_coding KNOWN 

3:48701364-48723797 NCKIPSD protein_coding KNOWN 

3:48725436-48777786 IP6K2 protein_coding KNOWN 

3:48782030-48885279 PRKAR2A protein_coding KNOWN 

3:48894369-48936426 SLC25A20 protein_coding KNOWN 

3:48955221-48956818 C3orf71 protein_coding KNOWN 

3:48956254-49023815 ARIH2 protein_coding KNOWN 

3:49027319-49044587 P4HTM protein_coding KNOWN 

3:49044495-49053386 WDR6 protein_coding KNOWN 

3:49052921-49059726 DALRD3 protein_coding KNOWN 

3:49057892-49060905 NDUFAF3 protein_coding KNOWN 
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3:49061758-49066841 IMPDH2 protein_coding KNOWN 

3:49067140-49131796 QRICH1 protein_coding KNOWN 

3:49133365-49142553 QARS protein_coding KNOWN 

3:49145479-49158371 USP19 protein_coding KNOWN 

3:49158547-49170551 LAMB2 protein_coding KNOWN 

3:49199968-49203754 CCDC71 protein_coding KNOWN 

3:49209044-49213917 KLHDC8B protein_coding KNOWN 

3:49215065-49236502 RP11-694I15 protein_coding KNOWN 

3:49235861-49295537 CCDC36 protein_coding KNOWN 

3:49297518-49298749 RP11-3B7.1 protein_coding PUTATIVE 

3:49306035-49315342 C3orf62 protein_coding KNOWN 

3:49315264-49378145 USP4 protein_coding KNOWN 

3:49394609-49396033 GPX1 protein_coding KNOWN 

3:49396578-49450431 RHOA protein_coding KNOWN 

3:49449639-49453908 TCTA protein_coding KNOWN 

3:49454211-49460186 AMT protein_coding KNOWN 

3:49460379-49466759 NICN1 protein_coding KNOWN 

3:49506146-49573048 DAG1 protein_coding KNOWN 

3:49591922-49708978 BSN protein_coding KNOWN 

3:50400233-50541675 CACNA2D2 protein_coding KNOWN 

3:50595462-50608458 C3orf18 protein_coding KNOWN 

3:50606583-50622366 HEMK1 protein_coding KNOWN 

3:50643921-50649262 CISH protein_coding KNOWN 

3:50648951-50686720 MAPKAPK3 protein_coding KNOWN 

3:50712672-51421329 DOCK3 protein_coding KNOWN 

3:51422478-51426828 MANF protein_coding KNOWN 

3:51428731-51435330 RBM15B protein_coding KNOWN 

3:51433298-51534010 VPRBP protein_coding KNOWN 

3:51575596-51697610 RAD54L2 protein_coding KNOWN 

3:51696709-51738339 TEX264 protein_coding KNOWN 

3:51741086-51752629 GRM2 protein_coding KNOWN 

3:51812580-51813009 IQCF6 protein_coding KNOWN 

3:51851620-51864876 IQCF3 protein_coding KNOWN 

3:51895645-51897440 IQCF2 protein_coding KNOWN 

3:51907737-51909600 IQCF5 protein_coding KNOWN 

3:51928892-51937351 IQCF1 protein_coding KNOWN 

3:51967446-51975957 RRP9 protein_coding KNOWN 

3:51976361-51982883 PARP3 protein_coding KNOWN 

3:51989330-51991509 GPR62 protein_coding KNOWN 

3:51991470-52008032 PCBP4 protein_coding KNOWN 

3:52002526-52017425 ABHD14B protein_coding KNOWN 
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3:52005442-52015212 ABHD14A protein_coding KNOWN 

3:52009066-52023213 ACY1 protein_coding KNOWN 

3:52009066-52023199 ACY1 protein_coding NOVEL 

3:52027644-52029958 RPL29 protein_coding KNOWN 

3:52082935-52090566 DUSP7 protein_coding KNOWN 

3:52097076-52097567 C3orf74 protein_coding KNOWN 

3:52109269-52188706 POC1A protein_coding KNOWN 

3:52232102-52248343 ALAS1 protein_coding KNOWN 

3:52255096-52260179 TLR9 protein_coding KNOWN 

3:52255097-52265206 RP11-330H6.5 protein_coding NOVEL 

3:52262626-52273177 TWF2 protein_coding KNOWN 

3:52279841-52284613 PPM1M protein_coding KNOWN 

3:52288437-52322036 WDR82 protein_coding KNOWN 

3:52321105-52329272 GLYCTK protein_coding KNOWN 

3:52350335-52434507 DNAH1 protein_coding KNOWN 

3:52435029-52444366 BAP1 protein_coding KNOWN 

3:52443510-52457657 PHF7 protein_coding KNOWN 

3:155093369-155462856 PLCH1 protein_coding KNOWN 

3:155459933-155461515 AC104472.1 protein_coding KNOWN 

3:155480401-155524140 C3orf33 protein_coding KNOWN 

3:155544305-155572218 SLC33A1 protein_coding KNOWN 

3:155588325-155658457 GMPS protein_coding KNOWN 

3:155755490-156256545 KCNAB1 protein_coding KNOWN 

5:68646811-68665840 TAF9 protein_coding KNOWN 

5:68665120-68710628 RAD17 protein_coding KNOWN 

5:68710939-68740157 MARVELD2 protein_coding KNOWN 

5:68788119-68853931 OCLN protein_coding KNOWN 

5:68856035-68890550 GTF2H2C protein_coding KNOWN 

5:69321074-69338940 SERF1B protein_coding KNOWN 

5:69345350-69374349 SMN2 protein_coding KNOWN 

5:70196492-70214357 SERF1A protein_coding KNOWN 

5:70220768-70249769 SMN1 protein_coding KNOWN 

5:70264310-70320941 NAIP protein_coding KNOWN 

5:70330784-70363516 GTF2H2 protein_coding KNOWN 

9:39072764-39288456 CNTNAP3 protein_coding KNOWN 

9:39355699-39361956 FAM75A1 protein_coding KNOWN 

9:39884975-39891210 FAM75A2 protein_coding KNOWN 

9:39900338-39907240 FAM74A1 protein_coding KNOWN 

9:40028620-40032417 AL353791.1 protein_coding PUTATIVE 

9:40700291-40706537 FAM75A3 protein_coding KNOWN 

9:40760700-40836415 ZNF658 protein_coding KNOWN 
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9:43624507-43630730 FAM75A6 protein_coding KNOWN 

9:43684902-43924049 CNTNAP3B protein_coding KNOWN 

12:123104824-123215390 HCAR1 protein_coding KNOWN 

12:123185840-123187890 HCAR2 protein_coding KNOWN 

12:123199303-123201439 HCAR3 protein_coding KNOWN 

12:123237321-123255611 DENR protein_coding KNOWN 

12:123258874-123312075 CCDC62 protein_coding KNOWN 

12:123319000-123347507 HIP1R protein_coding KNOWN 

12:123349882-123380991 VPS37B protein_coding KNOWN 

12:123405498-123466196 ABCB9 protein_coding KNOWN 

12:123459127-123464590 OGFOD2 protein_coding KNOWN 

12:123464333-123467456 ARL6IP4 protein_coding KNOWN 

12:123468027-123634562 PITPNM2 protein_coding KNOWN 

12:123636867-123728561 MPHOSPH9 protein_coding KNOWN 

12:123717463-123742506 C12orf65 protein_coding KNOWN 

12:123745528-123756881 CDK2AP1 protein_coding KNOWN 

12:123773656-123834988 SBNO1 protein_coding KNOWN 

12:123868320-123893905 SETD8 protein_coding KNOWN 

12:123899936-123921264 RILPL2 protein_coding KNOWN 

12:123942188-123957701 SNRNP35 protein_coding KNOWN 

12:123955925-124018265 RILPL1 protein_coding KNOWN 

12:124069078-124083116 TMED2 protein_coding KNOWN 

12:124086624-124105482 DDX55 protein_coding KNOWN 

12:124104953-124118313 EIF2B1 protein_coding KNOWN 

12:124118375-124146479 GTF2H3 protein_coding KNOWN 

12:124155660-124192948 TCTN2 protein_coding KNOWN 

13:24995064-25086948 PARP4 protein_coding KNOWN 

13:25254549-25285921 ATP12A protein_coding KNOWN 

13:25338290-25454059 RNF17 protein_coding KNOWN 

13:25457171-25497018 CENPJ protein_coding KNOWN 

13:25670006-25673392 PABPC3 protein_coding KNOWN 

13:25735822-25746426 FAM123A protein_coding KNOWN 

13:25802307-25862147 MTMR6 protein_coding KNOWN 

13:25875662-25923938 NUPL1 protein_coding KNOWN 

13:25946209-26599989 ATP8A2 protein_coding KNOWN 

13:26442061-26455095 AL138815.1 protein_coding KNOWN 

19:40267234-40276775 LEUTX protein_coding KNOWN 

19:40315993-40324841 DYRK1B protein_coding KNOWN 

19:40325094-40337054 FBL protein_coding KNOWN 

19:40353964-40440533 FCGBP protein_coding KNOWN 

19:40477073-40487351 PSMC4 protein_coding KNOWN 
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19:40502943-40523514 ZNF546 protein_coding KNOWN 

19:40534167-40562116 ZNF780B protein_coding KNOWN 

19:40575059-40596845 ZNF780A protein_coding KNOWN 

19:40697651-40721481 MAP3K10 protein_coding KNOWN 

19:40721965-40724306 TTC9B protein_coding KNOWN 

19:40728115-40732597 CNTD2 protein_coding KNOWN 

19:40736224-40791443 AKT2 protein_coding KNOWN 

19:40825443-40854434 C19orf47 protein_coding KNOWN 

19:40854491-40886346 PLD3 protein_coding KNOWN 

19:40885179-40896094 HIPK4 protein_coding KNOWN 

19:40899672-40919271 PRX protein_coding KNOWN 

19:40927499-40931932 SERTAD1 protein_coding KNOWN 

19:40946749-40950282 SERTAD3 protein_coding KNOWN 

19:40953693-40971725 BLVRB protein_coding KNOWN 

19:40973126-41082364 SPTBN4 protein_coding KNOWN 

19:41082757-41097301 SHKBP1 protein_coding KNOWN 

19:41099072-41135725 LTBP4 protein_coding KNOWN 

19:41171810-41196556 NUMBL protein_coding KNOWN 

19:41197434-41222790 ADCK4 protein_coding KNOWN 

19:41223008-41246763 ITPKC protein_coding KNOWN 

19:41246761-41256408 C19orf54 protein_coding KNOWN 

19:41256759-41271296 SNRPA protein_coding KNOWN 

19:41281300-41283392 MIA protein_coding KNOWN 

19:41284171-41302847 RAB4B protein_coding KNOWN 

19:41305048-41314336 EGLN2 protein_coding KNOWN 

19:41349444-41356352 CYP2A6 protein_coding KNOWN 

19:41381344-41388657 CYP2A7 protein_coding KNOWN 

19:41396731-41406413 CYP2G1P protein_coding KNOWN 

19:41414377-41416754 AC008537.1 protein_coding KNOWN 

19:41497204-41524301 CYP2B6 protein_coding KNOWN 

19:41530172-41533615 CYP2A7P1 protein_coding KNOWN 

19:41594368-41602099 CYP2A13 protein_coding KNOWN 

19:41620337-41634271 CYP2F1 protein_coding KNOWN 

19:41699115-41713443 CYP2S1 protein_coding KNOWN 

19:41725108-41767670 AXL protein_coding KNOWN 

19:41768391-41813811 HNRNPUL1 protein_coding KNOWN 

19:41816094-41830785 CCDC97 protein_coding KNOWN 

19:41836813-41859831 TGFB1 protein_coding KNOWN 

19:41856816-41889988 TMEM91 protein_coding KNOWN 

19:41860322-41870078 B9D2 protein_coding KNOWN 

19:41882662-41930906 CTC-435M10.3 protein_coding NOVEL 
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19:41892281-41903256 EXOSC5 protein_coding KNOWN 

19:41903365-41930910 BCKDHA protein_coding KNOWN 

19:41931265-41934635 B3GNT8 protein_coding KNOWN 

19:41937224-41945843 ATP5SL protein_coding KNOWN 

19:41949063-41950670 C19orf69 protein_coding KNOWN 

19:42041702-42093197 CEACAM21 protein_coding KNOWN 

19:42125344-42133442 CEACAM4 protein_coding KNOWN 

19:42177235-42192296 CEACAM7 protein_coding KNOWN 

19:42212504-42233718 CEACAM5 protein_coding KNOWN 

19:42259329-42276113 CEACAM6 protein_coding KNOWN 

19:42300369-42315591 CEACAM3 protein_coding KNOWN 

19:42341148-42348736 LYPD4 protein_coding KNOWN 

19:42349086-42356398 DMRTC2 protein_coding KNOWN 

19:42363988-42375482 RPS19 protein_coding KNOWN 

19:42381190-42385439 CD79A protein_coding KNOWN 

19:42387267-42411597 ARHGEF1 protein_coding KNOWN 

19:42460838-42463528 RABAC1 protein_coding KNOWN 

19:42470734-42498384 ATP1A3 protein_coding KNOWN 

19:42502477-42569957 GRIK5 protein_coding KNOWN 

19:42572864-42585717 ZNF574 protein_coding KNOWN 

19:42592650-42700737 POU2F2 protein_coding KNOWN 

19:42702752-42721813 DEDD2 protein_coding KNOWN 

19:42724492-42732353 ZNF526 protein_coding KNOWN 

19:42734338-42746777 GSK3A protein_coding KNOWN 

19:42746927-42749125 AC006486.1 protein_coding KNOWN 

19:42751717-42759309 ERF protein_coding KNOWN 

19:42772689-42799948 CIC protein_coding KNOWN 

19:42801185-42806929 PAFAH1B3 protein_coding KNOWN 

19:42806284-42814973 PRR19 protein_coding KNOWN 

19:42817477-42829214 TMEM145 protein_coding KNOWN 

19:42829761-42882921 MEGF8 protein_coding KNOWN 

19:42891173-42894444 CNFN protein_coding KNOWN 

19:42905666-42931578 LIPE protein_coding KNOWN 

19:42928421-43030020 AC011497.1 protein_coding KNOWN 

19:42932696-42947136 CXCL17 protein_coding KNOWN 

19:43011458-43032661 CEACAM1 protein_coding KNOWN 

20:44451853-44462384 TNNC2 protein_coding KNOWN 

20:44462449-44471914 SNX21 protein_coding KNOWN 

20:44470360-44486045 ACOT8 protein_coding KNOWN 

20:44486256-44507761 ZSWIM3 protein_coding KNOWN 

20:44509866-44513905 ZSWIM1 protein_coding KNOWN 
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20:44515128-44516274 SPATA25 protein_coding KNOWN 

20:44517264-44519926 NEURL2 protein_coding KNOWN 

20:44519591-44527459 CTSA protein_coding KNOWN 

20:44527399-44540794 PLTP protein_coding KNOWN 

20:44563267-44576662 PCIF1 protein_coding KNOWN 

20:44577292-44600833 ZNF335 protein_coding KNOWN 

20:44637547-44645200 MMP9 protein_coding KNOWN 

20:44650329-44688789 SLC12A5 protein_coding KNOWN 

20:44689624-44718591 NCOA5 protein_coding KNOWN 

20:44746911-44758502 CD40 protein_coding KNOWN 

20:44802372-44937137 CDH22 protein_coding KNOWN 

20:44978167-44993043 SLC35C2 protein_coding KNOWN 

20:44994688-45061704 ELMO2 protein_coding KNOWN 

20:45129709-45142198 ZNF334 protein_coding KNOWN 

20:45169585-45179213 OCSTAMP protein_coding KNOWN 

20:45186463-45304714 SLC13A3 protein_coding KNOWN 

20:45313004-45318418 TP53RK protein_coding KNOWN 

20:45338126-45364965 SLC2A10 protein_coding KNOWN 

20:45523263-45817492 EYA2 protein_coding KNOWN 

20:45837859-45985567 ZMYND8 protein_coding KNOWN 
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Appendix C 

Novel homozygous variants  

 

 

Table C.1: Full list of novel homozygous variants at the homozygous regions 

 

Chr:Start-End Func. Gene aa Change ExonicFunc 

13:23363737-23363737 exonic C1QTNF9B p.F231F syn 

13:24642937-24642937 exonic FAM123A p.D274A nonsyn 

13:24643067-24643067 exonic FAM123A p.T231P nonsyn 

13:24643068-24643068 exonic FAM123A p.L230delinsLP nonfr ins 

13:24643070-24643070 exonic FAM123A p.L230fs fr ins 

13:24643073-24643073 exonic FAM123A p.S229P nonsyn 

13:25026001-25026001 exonic ATP8A2 p.I376M nonsyn 

19:3551210-3551210 exonic TBXA2R p.P141P syn 

19:3577742-3577742 exonic CACTIN p.S7A nonsyn 

19:3703551-3703551 exonic APBA3 p.T450fs fr del 

19:3710974-3710974 exonic APBA3 p.A97T nonsyn 

19:4005416-4005416 exonic ZBTB7A p.Y272F nonsyn 

19:4125809-4125809 exonic SIRT6 p.R264R syn 

19:4125810-4125810 exonic SIRT6 p.R264H nonsyn 

19:4188027-4188027 exonic EBI3 p.Y211C nonsyn 

19:4462725-4462725 exonic PLIN4 p.Q735fs fr ins 

19:4494834-4494834 exonic SEMA6B p.G816R nonsyn 

19:4767464-4767464 exonic TICAM1 p.P642P syn 

19:4905679-4905679 exonic UHRF1 p.A672fs fr ins 

19:4905702-4905702 exonic UHRF1 p.P679P syn 
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19:4905706-4905706 exonic UHRF1 p.K681Q nonsyn 

19:5180539-5180539 exonic PTPRS p.P758L nonsyn 

19:5182618-5182618 exonic PTPRS p.A607T nonsyn 

19:6326342-6326342 exonic PSPN p.P145H nonsyn 

19:6326343-6326343 exonic PSPN p.P145A nonsyn 

19:6375676-6375676 exonic KHSRP p.P13A nonsyn 

19:6375677-6375677 exonic KHSRP p.G12G syn 

19:6418744-6418744 exonic DENND1C p.F726S nonsyn 

19:7007501-7007501 exonic MBD3L3 p.P153P syn 

19:7007502-7007502 exonic MBD3L3 p.P153R nonsyn 

19:6969691-6973065 exonic MBD3L3 p.V2502I nonsyn 

19:7244837-7244837 exonic INSR p.L22L syn 

19:7244859-7244859 exonic INSR p.L15R nonsyn 

19:7604326-7604328 exonic PCP2 p.6_6del nonfr del 

19:7840631-7840631 exonic FLJ22184 p.P1166P syn 

19:7840639-7840639 exonic FLJ22184 p.E1164Q nonsyn 

19:7840649-7840649 exonic FLJ22184 p.L1160L syn 

19:8306001-8306001 exonic KANK3 p.A237G nonsyn 

19:8470398-8470398 exonic PRAM1 p.P98P syn 

19:8470404-8470404 exonic PRAM1 p.P96P syn 

19:8470422-8470422 exonic PRAM1 p.D90E nonsyn 

19:8470433-8470433 exonic PRAM1 p.E87K nonsyn 

19:8929391-8929391 exonic MUC16 p.A6352V nonsyn 

19:8929577-8929577 exonic MUC16 p.T6290I nonsyn 

19:9223311-9223311 exonic OR7E24 p.D198fs fr del 

19:9942658-9942658 exonic COL5A3 p.G1292V nonsyn 

19:10063156-10063156 exonic C19orf66 p.W165G nonsyn 

19:10268245-10268245 exonic ICAM5 p.S910P nonsyn 

19:10268267-10268267 exonic ICAM5 p.F917C nonsyn 

19:10268279-10268279 exonic ICAM5 p.L921P nonsyn 

19:10292454-10292454 exonic RAVER1 p.P566P syn 

19:10843437-10843437 exonic CARM1 p.P20R nonsyn 

19:11477594-11477594 exonic ZNF653 p.E3G nonsyn 

19:11694601-11694601 exonic ZNF823 p.C250R nonsyn 

19:12357800-12376367 exonic ZNF443 p.V44G nonsyn 

19:12618497-12618497 exonic MAN2B1 p.T991T syn 

19:12661806-12661806 exonic FBXW9 p.R334R syn 

19:12706132-12706132 exonic C19orf43 p.S114C nonsyn 

19:12797543-12797543 exonic RTBDN p.S255G nonsyn 

19:13270590-13270590 exonic CACNA1A p.G957R nonsyn 

19:13270602-13270602 exonic CACNA1A p.T953P nonsyn 
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19:13934528-13934528 exonic RFX1 p.V973V syn 

19:13934530-13934530 exonic RFX1 p.V973L nonsyn 

19:14061755-14061755 exonic SAMD1 p.G160S nonsyn 

19:14133169-14133169 exonic LPHN1 p.Q489K nonsyn 

19:44490126-44490126 exonic LRFN1 p.E768G nonsyn 

19:44490202-44490202 exonic LRFN1 p.A743T nonsyn 

19:44689902-44689902 exonic DLL3 p.L493V nonsyn 

19:44722476-44722476 exonic EID2 p.G28G syn 

19:45084190-45084190 exonic FCGBP p.G2718G syn 

19:45103599-45103599 exonic FCGBP p.R1290P nonsyn 

19:45411495-45411495 exonic MAP3K10 p.D690G nonsyn 

19:45411570-45411570 exonic MAP3K10 p.G715D nonsyn 

19:45411859-45411859 exonic MAP3K10 p.T811T syn 

19:45412809-45412809 exonic MAP3K10 p.T879P nonsyn 

19:45415716-45415716 exonic TTC9B p.Y138C nonsyn 

19:45415790-45415790 exonic TTC9B p.P113P syn 

19:45415792-45415792 exonic TTC9B p.P113S nonsyn 

19:45415793-45415793 exonic TTC9B p.G112G syn 

19:45567764-45567764 exonic PLD3 p.L180R nonsyn 

19:45592376-45592376 exonic PRX p.G1241G syn 

19:45814933-45814933 exonic LTBP4 p.Q1011fs fr ins 

19:45957320-45957320 exonic SNRPA p.T131P nonsyn 

19:45960753-45960753 exonic SNRPA p.G178G syn 

19:45960761-45960761 exonic SNRPA p.P181Q nonsyn 

19:45960767-45960767 exonic SNRPA p.G183E nonsyn 

19:45960770-45960770 exonic SNRPA p.A184D nonsyn 

19:45960775-45960775 exonic SNRPA p.P186T nonsyn 

19:46059261-46085147 exonic CYP2A6 p.V80M nonsyn 

19:46419682-46419682 exonic AXL p.F156S nonsyn 

19:47065071-47065071 exonic RPS19 p.R101R syn 

19:47092377-47092377 exonic ARHGEF1 p.E335A nonsyn 

19:47195040-47195040 exonic GRIK5 p.A922A syn 

19:47195041-47195041 exonic GRIK5 p.A922fs fr ins 

19:47195045-47195045 exonic GRIK5 p.P921S nonsyn 

19:47444878-47444878 exonic ERF p.L409P nonsyn 

19:47571934-47571934 exonic MEGF8 p.V2502I nonsyn 

19:47572454-47572454 exonic MEGF8 p.G2675E nonsyn 

19:47572456-47572456 exonic MEGF8 p.P2676T nonsyn 

19:47572457-47572457 exonic MEGF8 p.P2676L nonsyn 

19:47597847-47597847 exonic LIPE p.T1063R nonsyn 

19:47597853-47597853 exonic LIPE p.G1061V nonsyn 
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19:47597854-47597854 exonic LIPE p.G1061R nonsyn 

19:47597858-47597858 exonic LIPE p.P1059fs fr del 

19:48064301-48064301 exonic PSG1 p.R345R syn 

19:48064305-48064305 exonic PSG1 p.Y344F nonsyn 

19:48551709-48551709 exonic CD177 p.T146A nonsyn 

19:48803930-48803930 exonic ZNF428 p.A82A syn 

19:48803931-48803931 exonic ZNF428 p.A82D nonsyn 

19:49353814-49353814 exonic ZNF234 p.G602E nonsyn 

19:49867907-49867907 exonic CEACAM19 p.Q85Q syn 

19:49944090-49944090 exonic BCL3 p.A68G nonsyn 

19:50104029-50104029 exonic APOE p.T212T syn 

20:41976994-41976994 exonic TOX2 p.G17R nonsyn 

20:41977001-41977001 exonic TOX2 p.E19A nonsyn 

20:41977005-41977005 exonic TOX2 p.P20P syn 

20:42574904-42574904 exonic SERINC3 p.M116T nonsyn 

20:43953645-43953645 exonic CTSA p.L29M nonsyn 

20:43953646-43953646 exonic CTSA p.L29Q nonsyn 

20:43953647-43953647 exonic CTSA p.L29L syn 

20:44097037-44097037 exonic SLC12A5 p.T55T syn 

19:5182626-5182626 exonic; 

splicing 

PTPRS p.K604I nonsyn 

19:7844306-7844306 exonic; 

splicing 

FLJ22184 p.L90fs fr ins 

19:49708831-49708831 exonic; 

splicing 

CEACAM20 p.E390G nonsyn 

19:8858187-8858187 splicing MUC16 - - 

19:12741693-12741693 splicing HOOK2 - - 
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Appendix D 

Exons of ATP8A2 isoform 1 

 

 

Table D.1: Exons of longest transcript (ENST00000381655) of ATP8A2 isoform 1 

(ENSP00000371070) 

 

Exon 

Rank 

Ensembl Exon ID Exon Start/End (bp) CDS 

Start/End 

Length 

(bp) 

- 5' UTR 25946209-25946350 - 141 

1 ENSE00001423490 25946209-25946426 1-76 217 

2 ENSE00001719877 26043115-26043259 77-221 144 

3 ENSE00001161731 26104137-26104236 222-321 99 

4 ENSE00001002176 26104700-26104798 322-420 98 

5 ENSE00001295032 26106410-26106455 421-466 45 

6 ENSE00001335438 26107411-26107451 467-507 40 

7 ENSE00001002184 26112126-26112199 508-581 73 

8 ENSE00001002177 26114457-26114526 582-651 69 

9 ENSE00001002183 26116057-26116184 652-779 127 

10 ENSE00001002179 26117429-26117540 780-891 111 

11 ENSE00001002181 26125476-26125641 892-1057 165 

12 ENSE00001002182 26127931-26128058 1058-1185 127 

13 ENSE00001002185 26129129-26129206 1186-1263 77 

14 ENSE00001764388 26133111-26133199 1264-1352 88 

15 ENSE00001144543 26133859-26133903 1353-1397 44 

16 ENSE00001161708 26138094-26138169 1398-1473 75 

17 ENSE00001144526 26144905-26145010 1474-1579 105 
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18 ENSE00001326309 26145748-26145830 1580-1662 82 

19 ENSE00001144512 26148946-26148995 1663-1712 49 

20 ENSE00001144505 26151207-26151276 1713-1782 69 

21 ENSE00001144500 26152953-26153037 1783-1867 84 

22 ENSE00001144494 26153946-26154085 1868-2007 139 

23 ENSE00001144484 26155957-26156095 2008-2146 138 

24 ENSE00001292904 26163773-26163837 2147-2211 64 

25 ENSE00001144464 26273311-26273483 2212-2384 172 

26 ENSE00001312575 26343184-26343367 2385-2568 183 

27 ENSE00001002197 26348987-26349097 2569-2679 110 

28 ENSE00001313811 26402256-26402330 2680-2754 74 

29 ENSE00001714062 26411301-26411423 2755-2877 122 

30 ENSE00001002198 26413684-26413762 2878-2956 78 

31 ENSE00001002195 26434333-26434394 2957-3018 61 

32 ENSE00001687596 26434942-26434998 3019-3075 56 

33 ENSE00001771180 26436439-26436546 3076-3183 107 

34 ENSE00001002200 26535713-26535801 3184-3272 88 

35 ENSE00001161721 26542713-26542817 3273-3377 104 

36 ENSE00001002199 26586669-26586760 3378-3469 91 

37 ENSE00001489373 26594026-26599989 3470-3567 5963 

- 3' UTR 26594124-26599989 - 5865 
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Appendix E 

Functional Annotation Clusters 

 

 

Table E.1: DAVID analysis to determine enrichment for genes whose expression 

profiles correlated with ATP8A2  

Annotation Cluster 1 (Enrichment Score: 3.73) 

Catagory Term Count P_Value Benjamini 

GOterm BP FAT neuron differentiation 18 1.8E-6 2.1E-3 

GOterm BP FAT cell projection 

morphogenesis 

13 2.2E-6 1.4E-3 

GOterm BP FAT neuron projection 

morphogenesis 

12 3.7E-6 1.5E-3 

GOterm BP FAT cell morphogenesis 

involved in differentiation 

13 3.7E-6 1.1E-3 

GOterm BP FAT cell part morphogenesis 13 3.7E-6 1.1E-3 

GOterm BP FAT neuron projection 

development 

13 4.9E-6 1.2E-3 

GOterm BP FAT cell morphogenesis 

involved in neuron 

differentiation 

12 5.1E-6 1.0E-3 

GOterm BP FAT cell projection 

organization 

15 1.1E-5 1.9E-3 

GOterm BP FAT axonogenesis 11 1.2E-5 1.9E-3 

GOterm BP FAT neuron development 14 2.0E-5 2.7E-3 

GOterm BP FAT cell morphogenesis 14 3.5E-5 4.3E-3 
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GOterm BP FAT cellular component 

morphogenesis 

14 1.3E-4 1.0E-2 

GOterm BP FAT developmental cell growth 4 2.6E-4 2.0E-2 

GOterm BP FAT developmental growth 7 8.0E-4 4.4E-2 

GOterm BP FAT growth 9 1.3E-3 5.5E-2 

GOterm BP FAT axon extension 3 4.1E-3 1.1E-1 

GOterm BP FAT cell growth 4 7.6E-3 1.5E-1 

GOterm BP FAT regulation of cellular 

component size 

5 1.0E-1 6.5E-1 

GOterm BP FAT regulation of cell size 4 1.2E-1 6.8E-1 

GOterm BP FAT regulation of growth 6 1.5E-1 7.6E-1 

GOterm BP FAT cell motion 5 5.8E-1 9.9E-1 

Annotation Cluster 2 (Enrichment Score: 3.61) 

Catagory Term Count P_Value Benjamini 

SP PIR Keywords developmental protein 24 3.7E-5 4.0E-3 

SP PIR Keywords neurogenesis 9 2.1E-4 1.5E-2 

SP PIR Keywords differentiation 14 1.9E-3 6.7E-2 

Annotation Cluster 3 (Enrichment Score: 3.01) 

Catagory Term Count P_Value Benjamini 

GOterm BP FAT neuron differentiation 18 1.8E-6 2.1E-3 

GOterm BP FAT regulation of nervous 

system development 

10 3.6E-5 4.0E-3 

GOterm BP FAT regulation of neurogenesis 9 1.0E-4 8.8E-3 

GOterm BP FAT regulation of cell 

development 

9 3.6E-4 2.4E-2 

GOterm BP FAT regulation of neuron 

differentiation 

7 8.9E-4 4.3E-2 

GOterm BP FAT regulation of neuron 

projection development 

5 1.7E-3 6.5E-2 

GOterm BP FAT forebrain development 8 2.4E-3 7.7E-2 

GOterm BP FAT regulation of cell 

projection organization 

5 3.5E-3 9.4E-2 

GOterm BP FAT regulation of cell 

morphogenesis involved in 

differentiation 

4 1.7E-2 2.8E-1 

GOterm BP FAT regulation of cell 

morphogenesis 

5 2.2E-2 3.2E-1 

GOterm BP FAT regulation of axonogenesis 3 6.8E-2 5.5E-1 

Annotation Cluster 4 (Enrichment Score: 2.8) 

Category Term Count P_Value Benjamini 

GOterm BP FAT regulation of transcription 45 4.1E-5 4.2E-3 
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GOterm MF FAT transcription regulator 

activity 

29 1.1E-4 2.9E-2 

GOterm BP FAT regulation of RNA 

metabolic process 

32 3.1E-4 2.2E-2 

GOterm BP FAT regulation of transcription, 

DNA-dependent 

31 5.3E-4 3.2E-2 

SP PIR Keywords DNA-binding 30 8.4E-4 4.4E-2 

SP PIR Keywords transcription regulation 32 8.9E-4 3.8E-2 

GOterm MF FAT DNA binding 34 1.6E-3 1.9E-1 

GOterm BP FAT transcription 32 5.2E-3 1.2E-1 

SP PIR Keywords Transcription 32 7.0E-3 1.9E-1 

GOterm MF FAT transcription factor activity 17 1.1E-2 6.4E-1 

GOterm MF FAT sequence-specific DNA 

binding 

13 2.0E-2 6.6E-1 

SP PIR Keywords nucleus 54 3.9E-2 4.6E-1 

Annotation Cluster 5 (Enrichment Score: 2.78) 

Catagory Term Count P_Value Benjamini 

GOterm MF FAT transcription regulator 

activity 

29 1.1E-4 2.9E-2 

GOterm BP FAT regulation of RNA 

metabolic process 

32 3.1E-4 2.2E-2 

GOterm BP FAT regulation of transcription, 

DNA-dependent 

31 5.3E-4 3.2E-2 

GOterm BP FAT positive regulation of 

transcription 

15 7.3E-4 4.2E-2 

GOterm BP FAT positive regulation of gene 

expression 

15 9.5E-4 4.4E-2 

GOterm BP FAT regulation of transcription 

from RNA polymerase II 

promoter 

17 1.2E-3 5.2E-2 

GOterm BP FAT positive regulation of 

nucleobase, nucleoside, 

nucleotide and nucleic 

acid metabolic process 

15 1.4E-3 5.9E-2 

GOterm BP FAT positive regulation of 

macromolecule metabolic 

process 

17 1.6E-3 6.2E-2 

GOterm BP FAT positive regulation of 

nitrogen compound 

metabolic process 

15 1.9E-3 7.1E-2 
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GOterm BP FAT positive regulation of 

macromolecule 

biosynthetic process 

15 2.1E-3 7.4E-2 

GOterm BP FAT positive regulation of 

transcription, DNA-

dependent 

13 2.1E-3 7.3E-2 

GOterm BP FAT positive regulation of 

RNA metabolic process 

13 2.2E-3 7.3E-2 

GOterm BP FAT positive regulation of 

cellular biosynthetic 

process 

15 3.0E-3 8.5E-2 

GOterm BP FAT positive regulation of 

biosynthetic process 

15 3.2E-3 9.0E-2 

GOterm BP FAT positive regulation of 

transcription from RNA 

polymerase II promoter 

11 6.1E-3 1.3E-1 

SP PIR Keywords activator 10 9.1E-2 6.4E-1 

Annotation Cluster 6 (Enrichment Score: 2.3) 

Catagory Term Count P_Value Benjamini 

GOterm BP FAT regulation of transcription 

from RNA polymerase II 

promoter 

17 1.2E-3 5.2E-2 

GOterm BP FAT negative regulation of 

macromolecule 

biosynthetic process 

13 2.2E-3 7.3E-2 

GOterm BP FAT negative regulation of 

transcription 

12 2.7E-3 8.2E-2 

GOterm BP FAT negative regulation of 

cellular biosynthetic 

process 

13 2.8E-3 8.3E-2 

GOterm BP FAT negative regulation of 

biosynthetic process 

13 3.0E-3 8.7E-2 

GOterm BP FAT negative regulation of 

nucleobase, nucleoside, 

nucleotide and nucleic 

acid metabolic process 

12 4.3E-3 1.1E-1 

GOterm BP FAT negative regulation of 

nitrogen compound 

metabolic process 

12 4.7E-3 1.1E-1 

GOterm BP FAT negative regulation of 

gene expression 

12 5.5E-3 1.2E-1 
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GOterm BP FAT negative regulation of 

transcription, DNA-

dependent 

10 6.9E-3 1.4E-1 

GOterm BP FAT negative regulation of 

RNA metabolic process 

10 7.2E-3 1.4E-1 

GOterm BP FAT negative regulation of 

macromolecule metabolic 

process 

13 9.8E-3 1.8E-1 

GOterm BP FAT negative regulation of 

transcription from RNA 

polymerase II promoter 

8 1.4E-2 2.3E-1 

GOterm MF FAT transcription repressor 

activity 

7 2.9E-2 6.3E-1 

Annotation Cluster 7 (Enrichment Score: 1.97) 

Category Term Count P_Value Benjamini 

INTERPRO Basic helix-loop-helix 

dimerisation region bHLH 

7 1.3E-3 4.5E-1 

SMART HLH 7 3.1E-3 2.9E-1 

UP SEQ Feature domain:Helix-loop-helix 

motif 

6 1.2E-2 8.3E-1 

UP SEQ Feature DNA-binding region:Basic 

motif 

7 1.3E-2 8.0E-1 

INTERPRO Helix-loop-helix DNA-

binding 

3 2.3E-1 1.0E0 

Annotation Cluster 8 (Enrichment Score: 1.69) 

Category Term Count P_Value Benjamini 

GOterm BP FAT negative regulation of 

transcription from RNA 

polymerase II promoter 

8 1.4E-2 2.3E-1 

GOterm BP FAT positive regulation of 

mesenchymal cell 

proliferation 

3 2.4E-2 3.4E-1 

GOterm BP FAT regulation of mesenchymal 

cell proliferation 

3 2.6E-2 3.6E-1 
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Abstract. Recently, a functional T to G polymorphism at
nucleotide 309 in the promoter region of the MDM2 gene (rs:
2279744, SNP 309) has been identified. This polymorphism
has an impact on the expression of the MDM2 gene, which is
a key negative regulator of the tumor suppressor molecule p53.
The effect of T309G polymorphism of the MDM2 gene on
bladder cancer susceptibility was investigated in a case-control
study of 75 bladder cancer patients and 103 controls from
Turkey. The G/G genotype exhibited an increased risk of 2.68
(95% CI, 1.34-5.40) for bladder cancer compared with the
combination of low-risk genotypes T/T and T/G at this locus.
These results show an association between MDM2 T309G
polymorphism and bladder cancer in our study group. To the
best of our knowledge, this is the first study reporting that
MDM2 T309G polymorphism may be a potential genetic
susceptibility factor for bladder cancer.

Bladder cancer is a major cause of morbidity and mortality.
In the Turkish population, it is the third most common
cancer in men and the eighth in women (1). Although
multiple environmental and host genetic factors are known
to be important in bladder cancer development, the exact
molecular mechanisms of genetic susceptibility and
molecular changes during malignant transformation are still
under investigation.

Recently, a functional T to G polymorphism at nucleotide
309 in the promoter region of the MDM2 gene (rs: 2279744)
has been identified (2). We hypothesized that this gene
polymorphism might be a critical predisposition factor for
bladder cancer, as the MDM2 molecule is an important
player in bladder cancer pathogenesis, evidenced by its over-
expression in 30% of urothelial carcinoma (3). This

oncoprotein attenuates p53 activity by promoting ubiquitin-
mediated degradation (4). In addition to functional
inactivation by MDM2, structural TP53 mutations have been
observed in 50% of urothelial cancer and these mutations
were associated with poor prognosis, advanced stage and
higher grade of the bladder cancer (3).

MDM2 T309G polymorphism is a functional polymorphism
having an impact on the p53 protein level in the cell. The G
allele confers an increased binding affinity to the Sp1
transcriptional activator, hence increased transcription of the
MDM2 gene. Eventually, the relative increase in the level of
MDM2 protein causes a relative decrease in the level of the
p53 protein (2).

It is recognized that host genetic factors modifying the
genotoxicity of carcinogens are important for the genetic
susceptibility to bladder cancer. For example, gene
polymorphisms decreasing the carcinogen detoxification
activity of glutathione S-tranferases and N-acetyl
transferases are established predisposition factors for this
cancer (5). The p53 molecule is considered to be the
guardian of the genome, since it plays a vital part in various
antineoplastic mechanisms such as cell cycle arrest,
senescence and apoptosis, preventing the carcinogenic effect
of mutagens (6). Therefore, it is conceivable that MDM2
SNP 309, which has an effect on the level of p53, may also
be a genetic predisposition factor for bladder cancer. 

In order to investigate the role of MDM2 T309G
polymorphism in bladder cancer, a case-control study was
performed with 75 patients and 103 controls. Our results
indicated an association between bladder cancer risk and
MDM2 SNP309 polymorphism in the group indicated.

Patients and Methods

Peripheral blood samples were collected from 75 bladder cancer
patients and 103 age-matched controls (non-cancer) diagnosed at
Hacettepe University Medical School, and Ankara Numune
Hospital, Turkey. The mean age of the bladder cancer patients was
59.87 years, with a standard deviation of 12.54, range 25-87; the
mean age of the control group was 59.33 years, with a standard
deviation of 13.58, range 23-79. Genomic DNA was isolated from
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200 Ìl blood by standard phenol-chloroform extraction. MDM2
T309G polymorphism was determined by polymerase chain reaction
(PCR) and restriction digestion. The PCR amplification was carried
out using primers: MDM2F (5’-GCTTTGCGGAGGTTTTGTT-3’)
and MDM2R (5’-TCAAGTTCAGACACGTTCCG-3’). After
confirming the presence of the 304-bp amplicon on 2% agarose test
gel, the PCR products were digested with MspA1I and
electrophoresed in 3% agarose gel for SNP 309 genotyping. The T
allele had a constitutional restriction site, which also served as an
internal control for restriction digestion. The G allele had an
additional restriction site to the constitutional restriction site. After
digestion, T allele yielded two fragments (193 bp and 111 bp), where
as the G allele yielded three fragments (147 bp, 111 bp and 46 bp)
(Figure 1).

The G/G genotype was defined as the risk group for statistical
analysis. Odds ratio (OD) tests with 95% confidence interval (CI)
and ¯2 analysis were performed with the GraphPad Prism4
statistical software.

Results and Discussion 

The genotype frequencies of MDM2 T309G polymorphism
in the bladder cancer patients and control groups are
summarized in Table I. The genotype frequency values for
the control group closely resembled the results from other
Caucasian populations (7-9) and were in Hardy Weinberg
equilibrium. The comparison of the high-risk genotype
(G/G) with the combination of the two low-risk alleles (G/T
and T/T) revealed that the G/G genotype conferred a risk of
2.68 (95% CI 1.34-5.40) relative to the low-risk genotypes
(Table I). The G allele frequency in the patient group was
0.58 (T allele: 0.42), the control group it was 0.44 (T allele:
0.56). There was a significant difference between the allelic
frequencies of the control (n=150 alleles) and patient groups
(n=206 alleles) (¯2: 6.76, df: 1, p=0.0093). Odds ratio
analysis revealed that the G allele resulted in a 1.72-fold risk
increase (95% CI 1.14-2.60) compared to the T allele.

After the initial discovery of MDM2 T309G polymorphism,
several reports were published with discordant results
regarding the impact of this polymorphism on cancer risk. In
two separate studies, it was shown that G/G genotype caused a
reduction in the age of onset of cancer in Li-Fraumeni
syndrome patients (2, 10). However, no age of onset reduction
was observed for Lynch syndrome (7). The case-control studies
on colorectal cancer (9), squamous cell carcinoma of the head
and neck (9), uterine leiomyosarcoma (9), breast (8, 11) and
ovarian cancer (8) did not show an association. Interestingly,
two lung cancer studies in the Chinese population reported
discordant results: in one study an association was observed
(12), while in the other it was not (13). 

Issues with sampling and population stratification have
always been cited for the lack of reproducibility between
different case-control studies (14), but p53-related factors
might also have contributed to such problems. It is intriguing
that MDM2 T309G polymorphism had an impact on a
hereditary cancer syndrome (2, 10) characterized by germ
line p53 mutations (i.e., Li-Fraumeni syndrome), but had no
effect on another hereditary cancer such as lynch syndrome
(7) with relatively rare somatic p53 mutations (15). 

In conclusion, this study showed an association between
MDM2 T309G polymorphism and bladder cancer in the
Turkish population. The small sample size was a limitation
of the study and the results should definitely be validated
on larger bladder cancer cohorts in different populations.
That said, to our knowledge, the study is the first study to
indicate that MDM2 T309G polymorphism could be a
potential genetic susceptibility factor for bladder cancer.
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Quadrupedal gait in humans, also known as Unertan syndrome, is
a rare phenotype associated with dysarthric speech, mental retar-
dation, and varying degrees of cerebrocerebellar hypoplasia. Four
large consanguineous kindreds from Turkey manifest this pheno-
type. In two families (A and D), shared homozygosity among
affected relatives mapped the trait to a 1.3-Mb region of chromo-
some 9p24. This genomic region includes the VLDLR gene, which
encodes the very low-density lipoprotein receptor, a component of
the reelin signaling pathway involved in neuroblast migration in
the cerebral cortex and cerebellum. Sequence analysis of VLDLR
revealed nonsense mutation R257X in family A and single-
nucleotide deletion c2339delT in family D. Both these mutations
are predicted to lead to truncated proteins lacking transmembrane
and signaling domains. In two other families (B and C), the
phenotype is not linked to chromosome 9p. Our data indicate that
mutations in VLDLR impair cerebrocerebellar function, conferring
in these families a dramatic influence on gait, and that hereditary
disorders associated with quadrupedal gait in humans are genet-
ically heterogeneous.

genetics � Unertan syndrome

Obligatory bipedal locomotion and upright posture of mod-
ern humans are unique among living primates. Studies of

fossil hominids have contributed significantly to modern under-
standing of the evolution of posture and locomotion (1–5), but
little is known about the underlying molecular pathways for
development of these traits. Evaluation of changes in brain
activity during voluntary walking in normal subjects suggests that
the cerebral cortices controlling motor functions, visual cortex,
basal ganglia, and the cerebellum might be involved in bipedal
locomotor activities (6). The cerebellum is particularly impor-
tant for movement control and plays a critical role in balance and
locomotion (7).

Neurodevelopmental disorders associated with cerebellar hy-
poplasias are rare and often accompanied by additional neuro-
pathology. These clinical phenotypes vary from predominantly
cerebellar syndromes to sensorimotor neuropathology, ophthal-
mological disturbances, involuntary movements, seizures, cog-
nitive dysfunction, skeletal abnormalities, and cutaneous disor-
ders, among others (8). Quadrupedal locomotion was first
reported when Tan (9, 10) described a large consanguineous
family exhibiting Unertan syndrome, an autosomal recessive
neurodevelopmental condition with cerebellar and cortical hy-
poplasia accompanied by mental retardation, primitive and
dysarthric speech, and, most notably, quadrupedal locomotion.
Subsequent homozygosity mapping indicated that the phenotype
of this family was linked to chromosome 17p (11). Thereafter,
three additional families from Turkey (12–14) and another from
Brazil (15) with similar phenotypes have been described, and
video recordings illustrating the quadrupedal gait have been

made (10–12). Here, we report that VLDLR is the gene respon-
sible for the syndrome in two of these four Turkish families and
report additional gene mapping studies that indicate the disorder
to be highly genetically heterogeneous.
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Fig. 1. Phenotypic (A) and cranial radiologic (B) presentation of quadrupe-
dal gait in families A and D. (A) Affected brothers VI:20 and VI:18 and cousin
VI:25 in family A (Upper) and the proband II:2 in family D (Lower) display
palmigrate walking. This is different from quadrupedal knuckle-walking of
the great apes (2). The hands make contact with the ground at the ulnar palm,
and consequently this area is heavily callused as exemplified by VI:20. Stra-
bismus was observed in all affected individuals. (B) Coronal and midsagittal
MRI sections of VI:20, demonstrating vermial hypoplasia, with the inferior
vermial portion being completely absent. Inferior cerebellar hypoplasia and a
moderate simplification of the cerebral cortical gyri are noted. The brainstem
and the pons are particularly small (Left and Center). Similar findings are
observed for II:2 (Right).
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Results
The proband of Family A (12) is a 37-year-old male with habitual
quadrupedal gait (Fig. 1A Upper Left and Fig. 2A, VI:20). He did
not make the transition to bipedality during his childhood
despite the efforts of his healthy parents. He has dysarthric
speech with a limited vocabulary, truncal ataxia, and profound
mental retardation. He was not aware of place or of the year,

month, or day. His MRI brain scan revealed inferior cerebellar
and vermial hypoplasia, with the inferior vermial portion being
completely absent. Whereas corpus callosum appeared normal,
a moderate simplification of the cerebral cortical gyri accom-
panied by a particularly small brainstem and the pons was
observed (Fig. 1 B Left and Center). Subsequently, we studied the
proband’s affected brother and cousin (Fig. 1 A Upper Center and

Fig. 2. Homozygosity mapping of cerebellar hypoplasia and quadrupedal locomotion to chromosome 9p24 (A) and identification of the VLDLR c769C 3 T
mutation in family A (B) and of the VLDLR c2339delT mutation in family D (C). (A) Pedigree of family A; filled symbols represent the affected individuals. Squares
indicate males, and circles indicate females. Black bars represent the haplotype coinherited with the quadrupedal phenotype in the family. Recombination events
in individuals VI:16 (obligate carrier) and VII:4 (normal sibling) positioned the disease gene between markers rs7847373 and rs10968723. Physical positions and
pairwise lod scores for each marker are shown on the upper left. Zmax represents the maximum lod score obtained at � � 0.00 cM. (B and C) Sequences of critical
regions of VLDLR for wild-type and homozygous mutant genotypes.
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Upper Right and Fig. 2 A, VI:18 and VI:25) and other branches
of the family living in nearby villages in southeastern Turkey. All
affected individuals were offspring of consanguineous marriages
(Fig. 2 A). With the exception of one female (VII:1), who was an
occasional biped with ataxic gait, all affected persons in family
A had quadrupedal locomotion.

The proband of family D (14) is a 38-year-old male (Fig. 1 A
Lower Left and Center). Like all other quadrupedal individuals
in these families, he did not make the transition to bipedality
during his early childhood. He is profoundly retarded and
exhibits dysarthric speech along with truncal ataxia. His MRI
brain scan images are consistent with moderate cerebral cortical
simplification and inferior cerebellar and vermial hypoplasia
(Fig. 1B Right). The 65-year-old aunt and 63-year-old uncle of the
proband are both mentally retarded and continue to walk on
their wrists and feet despite their advanced ages. The family is
consanguineous; all relatives were raised in neighboring villages
on the western tip of the Anatolian peninsula.

All patients in these four families had significant developmen-
tal delay noted in infancy (Table 1). They sat unsupported
between 9 and 18 months, and began to crawl on hands and knees
or feet. Whereas normal infants make the transition to bipedal
walking in a short period, the affected individuals continued to
move on their palms and feet and never walked upright. All
patients had severe truncal ataxia affecting their walking pat-
terns. They can stand from a sitting position and maintain the
upright position with flexed hips and knees. However, they
virtually never initiate bipedal walking on their own and instead
ambulate efficiently in a quadrupedal fashion. All patients had
hyperactive lower leg and vivid upper extremity reflexes. Normal
tone and power were observed in motor examination. All
affected persons were mentally retarded to the degree that
consciousness of place, time, or other experience appeared to be
absent. However, no autistic features were expressed. The
affected individuals all had good interpersonal skills, were
friendly and curious to visitors, and followed very simple ques-
tions and commands. Additional clinical information on families
A and D is provided in supporting information (SI) Table 2.

To identify the chromosomal locale of the gene or genes
responsible for this phenotype, we carried out genome-wide
linkage analysis and homozygosity mapping in families A–C (see

Materials and Methods below). Although the families lived in
isolated villages 200–300 km apart and reported no ancestral
relationship, the rarity of the quadrupedal gait in humans led us
to expect a single locus shared by affected individuals in all
families. Instead, the trait mapped to three different chromo-
somal locales. In family A, linkage analysis and homozygosity
mapping positioned the critical gene on chromosome 9p24
between rs7847373 and rs10968723 in a 1.032-Mb region (Fig.
2A and SI Fig. 4). In family B, the trait mapped to chromosome
17p13, confirming a previous study (11). In family C, highly
negative logarithm of odds (lod) scores were obtained for both
chromosomes 9p24 and 17p13 (SI Figs. 5 and 6); gene mapping
in this family is ongoing. In family D, polymorphic markers from
the critical intervals of chromosomes 9p24 and 17p13 were
genotyped, and homozygosity was detected with markers on
9p24. Together, these results indicate that the syndrome includ-
ing quadrupedal gait, dysarthric speech, mental retardation, and
cerebrocerebellar hypoplasia is genetically heterogeneous.

The chromosome 9p24 region linked to the trait in families A
and D includes VLDLR, the very low-density lipoprotein recep-
tor. We hypothesized that a gene involved in neural develop-
ment, cell positioning in brain, and cerebellar maturation could
be involved in the pathogenesis of quadrupedal gait. In addition,
cerebellar hypoplasia with cerebral gyral simplification was
shown to be associated with a genomic deletion that includes
VLDLR (16). We therefore considered VLDLR (17) to be a
prime positional candidate for our phenotype and sequenced the
gene in genomic DNA from probands of the four families (SI
Table 3). The VLDLR sequence of affected members of family
A was homozygous for a nonsense mutation in exon 5 (c769C3
T; R257X) (Fig. 2B). The VLDLR sequence of the proband of
family D was homozygous for a single-nucleotide deletion in
exon 17 resulting in a stop codon (c2339delT; I780TfsX3) (Fig.
2C). VLDLR sequences excluded the possibility of compound
heterozygosity in families B and C (SI Fig. 7). In families A and
D, homozygosity for the VLDLR mutations was perfectly coin-
herited with quadrupedal gait (SI Figs. 8 and 9). Both mutations
were absent from 100 unaffected individuals who live in the same
local areas of southeastern and western Turkey as families A and
D (SI Fig. 10).

Table 1. Physical, radiological, and genetic characteristics of the Turkish families in this study and of Hutterite family DES-H (27)

Characteristic Family A Family B Family C Family D DES-H

Chromosomal location 9p24 17p Not 9p or 17p 9p24 9p24
Gene and mutation VLDLR

(c769C3 T)
Unknown Unknown VLDLR

(c2339delT)
Deletion including VLDLR

and LOC401491
Gait Quadrupedal Quadrupedal Quadrupedal Quadrupedal Bipedal
Speech Dysarthric Dysarthric Dysarthric Dysarthric Dysarthric
Hypotonia Absent Absent Absent Absent Present
Barany caloric nystagmus Normal Cvs defect Pvs defect Not done Not done
Mental retardation Profound Severe to profound Profound Profound Moderate to profound
Ambulation Delayed Delayed Delayed Delayed Delayed
Truncal ataxia Severe Severe Severe Severe Severe
Lower leg reflexes Hyperactive Hyperactive Hyperactive Hyperactive Hyperactive
Upper extremity reflexes Vivid Vivid Vivid Vivid Vivid
Tremor Very rare Mild Present Absent Present
Pes-planus Present Present Present Present Present
Seizures Very rare Rare Rare Absent Observed in 40% of cases
Strabismus Present Present Present Present Present
Inferior cerebellum Hypoplasia Hypoplasia Mild hypoplasia Hypoplasia Hypoplasia
Inferior vermis Absent Absent Normal Absent Absent
Cortical gyri Mild simplification Mild simplification Mild simplification Mild simplification Mild simplification
Corpus callosum Normal Reduced Normal Normal Normal

Cvs, central vestibular system; Pvs, peripheral vestibular system.
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VLDLR�R257X is in the ligand-binding domain, and
VLDLR�I780TfsX3 is in the O-linked sugar domain of the
VLDLR protein (Fig. 3 A and B). Mutant VLDLR transcripts
were expressed in endothelial cells from blood of affected
individuals (Fig. 3C), and in these cells, levels of mutant and
wild-type transcript expression appeared approximately equal
(Fig. 3D; please also see SI Text). Because the stop codons of
both mutations are located in the extracellular domain of
VLDLR (Fig. 3B), the encoded mutant proteins could not be
inserted into the membrane and could not function as receptors
for reelin.

We propose VLDLR-associated Quadrupedal Locomotion
(VLDLR-QL) or Unertan Syndrome Type 1 to describe the
phenotype of families A and D.

Discussion
The identification of these VLDLR mutations provides molec-
ular insight into the pathogenesis of neurodevelopmental move-
ment disorders and expands the scope of diseases caused by
mutations in components of the reelin pathway (18). Reelin is a
secreted glycoprotein that regulates neuronal positioning in
cortical brain structures and the migration of neurons along the
radial glial fiber network by binding to lipoprotein receptors
VLDLR and APOER2 and the adapter protein DAB1 (19). In
the cerebellum, reelin regulates Purkinje cell alignment (20),
which is necessary for the formation of a well defined cortical
plate through which postmitotic granual cells migrate to form the
internal granular layer (21). Homozygous mutations in the reelin
gene (RELN) cause the Norman–Roberts type lissencephaly
syndrome, associated with severe abnormalities of the cerebel-
lum, hippocampus, and brainstem (OMIM 257320) (22). Muta-
tion of Reln in the mouse results in the reeler phenotype and
disrupts neuronal migration in several brain regions and gives
rise to functional deficits such as ataxic gait and trembling (23).
In contrast, mice deficient for Vldlr appear neurologically normal

(24), but the cerebellae of these mice are small, with reduced
foliation and heterotopic Purkinje cells (17).

In humans, homozygosity for either of two VLDLR truncating
mutations leads to cerebrocerebellar hypoplasia, specifically
vermial hypoplasia, accompanied by mental retardation, dysar-
thric speech, and quadrupedal gait. In the Hutterite population
of North America, homozygosity for a 199-kb deletion encom-
passing the VLDLR gene leads to a form of Disequilibrium
Syndrome (DES-H, OMIM 224050), characterized by nonpro-
gressive cerebellar hypoplasia with moderate-to-profound men-
tal retardation, cerebral gyral simplification, truncal ataxia, and
delayed ambulation (16). The designation Disequilibrium Syn-
drome was originally given to cerebral palsy characterized by a
variety of congenital abnormalities, including mental retarda-
tion, disturbed equilibrium, severely retarded motor develop-
ment, muscular hypotonia, and perceptual abnormalities (25,
26). Neither DES-H nor other disequilibrium syndromes have
been reported to include quadrupedal gait. The movement of
most DES-H patients was so severely affected that independent
walking was not possible. Those who could walk had a wide-
based, nontandem gait (27).

The neurological phenotypes in the Turkish families and in the
Hutterite families appear similar, with the most striking differ-
ence being the consistent adoption of efficient quadrupedal
locomotion by the affected Turkish individuals (Table 1). In our
view, the movement disorder described for the Hutterite patients
may be a more profound deficit, with the patients perhaps
lacking the motor skills for quadrupedal locomotion. The 199-kb
deletion in DES-H encompasses the entire VLDLR gene and
part of a hypothetical gene. LOC401491, the hypothetical gene,
is an apparently noncoding RNA that shares a CpG island and
likely promoter with VLDLR, and is represented by multiple
alternative transcripts expressed in brain. It has been suggested
that the DES-H phenotype could be the result of deletion of
VLDLR or both VLDLR and the neighboring gene (16).

Fig. 3. Functional domains of VLDLR with positions of the mutations relative to the exons (A), domains (B), and the analysis of VLDLR transcript (C and D).
(A) The gene consists of 19 exons. Arrows indicate the locations of the mutations. (B) VLDLR consists of ligand-binding type repeat (LBTR), epidermal growth
factor repeat (EGFR) I–III, YWTD �-propeller (YWTD), O-linked sugar domain (OLSD), transmembrane domain (TD), and cytoplasmic domain (CD) (34)
(www.expasy.org/uniprot/P98155). (C) Restriction-based analysis with HphI revealed the presence of only the mutant (347 bp) and both the mutant and wild type
(396 and 347 bp; please note that the 49-bp fragment is not visible) VLDLR transcripts in patient VI:20 and carrier V:18 (both from family A), respectively. M is
a DNA size marker. (D) Quantitative RT-PCR analysis of VLDLR transcript from peripheral blood samples of all probands in families A and D and controls was
performed. Relative expression ratios were normalized according to the housekeeping gene GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and the
endothelial marker KDR (kinase insert domain receptor). �Ct values were calculated from duplicate samples and were converted to linear scale (35). Control
denotes ‘‘VLDLR expression in controls,’’ VLDLR-GAPDH denotes ‘‘VLDLR expression in patients normalized to GAPDH,’’ and finally VLDLR-KDR denotes ‘‘VLDLR
expression in patients normalized to KDR.’’
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It has been suggested that in the Turkish families, lack of
access to proper medical care exacerbated the effects of cere-
bellar hypoplasia, leading to quadrupedality. Although it may be
true that family B lacked proper medical care, families A and D
had consistent access to medical attention, and both families
actively sought a correction of quadrupedal locomotion in their
affected children. An unaffected individual in family A is a
physician who was actively involved in the medical interventions.
In family D, the proband’s mother sought a definitive diagnosis
and correction of the proband’s quadrupedal locomotion from
private medical practices and from two major academic medical
centers. The parents in family A discouraged quadrupedal
walking of their affected children, but without success. We
conclude that social factors were highly unlikely to contribute to
the quadrupedal locomotion of the affected individuals.

In conclusion, we suggest that VLDLR-deficiency in the brain
at a key stage of development leads to abnormal formation of the
neural structures that are critical for gait. Given the heteroge-
neity of causes of quadrupedal gait, identification of the genes in
families B and C promises to offer insights into neurodevelop-
mental mechanisms mediating gait in humans.

Materials and Methods
Study Subjects. Parents of patients and other unaffected individuals gave
consent to the study by signing the informed consent forms prepared accord-
ing to the guidelines of the Ministry of Health in Turkey. The Ethics Commit-
tees of Baskent and Cukurova Universities approved the study (decision
KA07/47, 02.04.2007 and 21/3, 08.11.2005, respectively).

Genome-Wide Linkage Analysis. Linkage analysis was performed by SNP geno-
typing with the commercial release of the GeneChip 250K (NspI digest) or 10K

Affymetrix arrays as described (28). In addition, genotype data were analyzed
by hand to identify regions of homozygosity. The parametric component of
the Merlin package v1.01 was used for the multipoint linkage analysis assum-
ing autosomal recessive mode of inheritance with full penetrance (29, 30). The
analysis was carried out along a grid of locations equally spaced at 1 cM.
Haplotype analysis was performed on chromosomal regions with positive lod
scores (Fig. 2A and SI Figs. 4–6). Pairwise linkage was analyzed by using the
MLINK component of the LINKAGE program (FASTLINK, version 3) (31–33).
Markers D17S1298 (3.51 Mb) and D9S1779 (0.4 Mb), D9S1871 (3.7 Mb) were
used to test for homozygosity to chromosomes 17p13 and 9p24, respectively.

Mutation Search. Sequencing primers were designed for each VLDLR exon by
using Primer3, BLAST, and the sequence of NC�000009. DNA from all of the
probands was sequenced in both directions by using standard methods. The
mutations in exons 5 (c769C 3 T) and 17 (c2339delT) were detected in all
affected (homozygous) and carrier (heterozygous) individuals of families A
and D, respectively. The c769C3 T mutation creates a restriction site for the
enzyme HphI (5�-GGTGA(N)82 3�), and the c2339delT mutation abolishes a
restriction site for the enzyme MboI (5�-G2 ATC-3�). Assays using these
restriction enzymes were developed to test for the mutations in all four
families and in 200 healthy controls from the Turkish population. Restriction
based mutation and quantitative RT-PCR analyses of VLDLR transcript in
patients and controls was also performed (please see SI Text relating to Fig. 3
C and D).
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LETTER

Reply to Herz et al. and Humphrey
et al.: Genetic heterogeneity of
cerebellar hypoplasia with
quadrupedal locomotion

Mutations in the very low-density lipoprotein receptor
VLDLR are responsible for cerebellar hypoplasia with qua-
drupedal gait (1). The most likely mechanism leading to this
phenotype is that VLDLR deficiency in the brain at a key
stage of development precludes the normal formation of neu-
ral structures critical for gait. Quadrupedal gait is an integral
part of VLDLR-associated cerebellar hypoplasia syndrome in
these families (1, 2). It is not necessary to invoke an ‘‘epiphe-
nomenon’’ or ‘‘unfavorable environmental conditions’’ to ex-
plain the phenotype (3), but rather simply considering clinical
heterogeneity in the context of genomic understanding of
complex traits is sufficient.

Disequilibrium syndrome was first described by the Swedish
neuropediatrician Bengt Hagberg and colleagues (4) as a
form of cerebral palsy characterized by a variety of congenital
abnormalities. Subsequently, Schurig et al. (5) described, in
the North American Hutterite population, inherited cerebellar
disorder with mental retardation, the genetic basis of which
proved to be homozygous deletion of the VLDLR gene and
the adjacent noncoding LOC401491 sequence (6). Based on
the phenotypic similarities of the Swedish and Hutterite pa-
tients, the acronym DES-H [disequilibrium syndrome-
Hutterites, Online Mendelian Inheritance in Man (OMIM)
accession no. 224050] was adopted for this syndrome (6).

Our results (1) and those of others (7) extend these find-
ings to different VLDLR mutations leading to cerebellar hyp-
oplasia and related disequilibrium features, including in some
families bipedal gait (5, 6), in other families quadrupedal gait
(1, 8), and in another family ‘‘gait ataxia’’ (7). Additional kin-
dreds with disequilibrium syndrome and quadrupedal gait
have been described in Brazil (9) and Iraq (10). It will be in-
teresting to know whether mutations responsible for the phe-
notype in these families lie in the VLDLR gene or in one
of the other loci linked to this genetically heterogeneous
phenotype (1).

The comments of Humphrey et al. (11) address three fun-
damental features of genomic analysis of human traits: allelic
heterogeneity, genotype–phenotype correlations, and variable
expression.

Allelic heterogeneity—the expression of the same pheno-
type due to different mutations in a gene—is characteristic of
virtually all human genetic disease. For example, homozygos-
ity for any of �300 different mutations in the LDL receptor
leads to hypercholesterolemia. It was to be expected, there-
fore, that in different families different mutations in VLDLR
would lead to a phenotype comprising cerebellar hypoplasia
with quadrupedal gait. It would not be expected that quadru-

pedalism would be present only in the presence of one ‘‘spe-
cific mutation.’’

The converse observation, of a correlation between geno-
type and phenotype, is also characteristic of inherited human
disease. Different mutations in the same gene frequently lead
to different clinical phenotypes. Contrary to the statement of
Humphrey et al. (11), the Hutterite families in North America
and families A and D in Turkey do not carry ‘‘the same ho-
mozygous mutation.’’ The Hutterite mutation is a complete
genomic deletion of VLDLR; the mutations in Turkish fami-
lies A and D are, respectively, a nonsense mutation and a
single-base-pair deletion leading to a frame shift in VLDLR.
It is not surprising, therefore, that features of the cerebellar
hypoplasia syndrome, including presence or absence of qua-
drupedal walking, differ among families with different muta-
tions in the gene.

Third, variable expression of a phenotype is frequently ob-
served even among persons with the same mutation in a criti-
cal gene. Variable expression may be due to differences in
genetic background of the individual, to differences in envi-
ronmental exposures, or to chance. Among affected individu-
als in families A and D, none displays exclusively bipedal
locomotion; two affected individuals can walk bipedally for
short distances but prefer quadrupedal locomotion (1, 8).

Finally, the use of a walking frame to assist bipedalism in
affected individuals (12) does not demonstrate that the cause
of quadrupedalism was ‘‘local cultural environment.’’ Wear-
ing eyeglasses assists persons with myopia. Should we then
conclude that near-sightedness is caused by ‘‘local cultural
environment’’?

Some descriptions by the press of Turkish families with cer-
ebellar hypoplasia and quadrupedal gait have portrayed the
affected individuals as doomed to quadrupedal gait by the
religious beliefs of their parents (13). We hope that future
descriptions of these families will conform to standards re-
f lected in recent genomic analyses of their disorder.
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Homozygosity mapping and targeted genomic
sequencing reveal the gene responsible for cerebellar
hypoplasia and quadrupedal locomotion
in a consanguineous kindred
Suleyman Gulsuner,1 Ayse Begum Tekinay,2 Katja Doerschner,3,4 Huseyin Boyaci,3,4

Kaya Bilguvar,5,6,7 Hilal Unal,2 Aslihan Ors,4 O. Emre Onat,1 Ergin Atalar,4,8

A. Nazli Basak,9 Haluk Topaloglu,10 Tulay Kansu,11 Meliha Tan,12 Uner Tan,13

Murat Gunel,5,6,7 and Tayfun Ozcelik1,2,14

1Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey; 2Institute of Materials

Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey; 3Department of Psychology, Faculty of Economics,

Administrative and Social Sciences, Bilkent University, Ankara 06800, Turkey; 4National Research Center for Magnetic Resonance,

Bilkent University, Ankara 06800 Turkey; 5Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut

06510, USA; 6Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA; 7Department of

Genetics, Center for Human Genetics and Genomics and Program on Neurogenetics, Yale University School of Medicine, New Haven,

Connecticut 06510, USA; 8Department of Electrical and Electronics Engineering, Faculty of Engineering, Bilkent University, Ankara

06800, Turkey; 9NDAL Laboratory, School of Arts and Sciences, Bogazici University, Istanbul 34342, Turkey; 10Department of Pediatric

Neurology, Ihsan Dogramaci Children’s Hospital, Ankara 06100, Turkey; 11Department of Neurology, Hacettepe University Faculty of

Medicine, Ankara 06100, Turkey; 12Department of Neurology, Baskent University Faculty of Medicine, Ankara 06490, Turkey;
13Department of Physiology, Cukurova University Faculty of Medicine, Adana 01330, Turkey

The biological basis for the development of the cerebro-cerebellar structures required for posture and gait in humans is
poorly understood. We investigated a large consanguineous family from Turkey exhibiting an extremely rare phenotype
associated with quadrupedal locomotion, mental retardation, and cerebro-cerebellar hypoplasia, linked to a 7.1-Mb region
of homozygosity on chromosome 17p13.1–13.3. Diffusion weighted imaging and fiber tractography of the patients’ brains
revealed morphological abnormalities in the cerebellum and corpus callosum, in particular atrophy of superior, middle,
and inferior peduncles of the cerebellum. Structural magnetic resonance imaging showed additional morphometric ab-
normalities in several cortical areas, including the corpus callosum, precentral gyrus, and Brodmann areas BA6, BA44,
and BA45. Targeted sequencing of the entire homozygous region in three affected individuals and two obligate carriers
uncovered a private missense mutation, WDR81 p.P856L, which cosegregated with the condition in the extended family.
The mutation lies in a highly conserved region of WDR81, flanked by an N-terminal BEACH domain and C-terminal
WD40 beta-propeller domains. WDR81 is predicted to be a transmembrane protein. It is highly expressed in the cere-
bellum and corpus callosum, in particular in the Purkinje cell layer of the cerebellum. WDR81 represents the third gene,
after VLDLR and CA8, implicated in quadrupedal locomotion in humans.

[Supplemental material is available for this article.]

Developmental abnormalities of the cerebellum are a rare and ge-

netically heterogeneous group of disorders characterized by loss of

balance and coordination. Identification of the genes responsible

for these disorders provides mechanistic insights into the regulation

of neuronal development, differentiation, morphogenesis, migra-

tion, and organization (Fogel and Perlman 2007). These genes can

be identified by exploiting targeted genomic sequencing in com-

bination with linkage analysis and homozygosity mapping (Ropers

2007; Bilguvar et al. 2010). We applied this approach to the analysis

of cerebellar hypoplasia and quadrupedal locomotion in an ex-

tended consanguineous family from southern Turkey.

Multiple families have been reported with cerebellar ataxia,

mental retardation, and disequilibrium syndrome (CAMRQ ) (Tan

2006; Turkmen et al. 2006, 2009; Moheb et al. 2008; Ozcelik et al.

2008; Kolb et al. 2010). All the reported CAMRQ families are con-

sanguineous with recessive inheritance of their condition. Clinical

characteristics vary slightly among the families. In four families

from Turkey and Iran, the condition is due to homozygosity for

mutations in the VLDLR gene encoding the very low density lipo-

protein receptor (CAMRQ1 [MIM 224050]). Each of these four

families harbors a different VLDLR mutation. In a fifth family, from

Iraq, the condition is due to homozygosity for a missense mutation

in the CA8 gene encoding carbonic anhydrase VIII (CAMRQ3 [MIM

613227]). In Family B, the first family described in the literature

14Corresponding author.
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Article published online before print. Article, supplemental material, and pub-
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and also referred to as Uner Tan syndrome (Tan 2006), homozy-

gosity mapping revealed a 7.1-Mb interval on chromosome 17p13,

containing 192 genes and at least 20 pseudogenes, that segre-

gates with the disease (CAMRQ2 [MIM 610185]) (Turkmen et al.

2006; Ozcelik et al. 2008). In order to identify the mutation re-

sponsible for CAMRQ2 in Family B, we targeted and fully se-

quenced the 7.1-Mb genomic interval and evaluated all variation

in the region.

Results

Description of the affected family

Family B came to medical attention because of the unusual form of

locomotion in five of the 19 siblings. A detailed clinical description,

including video recordings and genetic mapping, was published

elsewhere (Tan 2006; Turkmen et al. 2006; Ozcelik et al. 2008).

Pedigree analysis suggested autosomal recessive inheritance. Link-

age analysis and homozygosity mapping revealed a single locus on

chromosome 17p between D17S1866 and D17S960. Illumina 300

Duo v2 BeadChip SNP genotype data of two of the affected in-

dividuals (05-984 and 05-987) revealed a single 6.8-Mb homozy-

gous stretch between markers rs4617924–rs7338 (chr17: 114,669–

6,917,703) and confirmed that chromosome 17p is the only region

of interest (Supplemental Fig. 1).

The phenotype was further characterized by magnetic reso-

nance imaging (MRI) and morphometric analyses (Fig. 1). The

most dramatic morphological differences were significant re-

ductions in volume in the cerebellum and corpus callosum of the

patient’s brain (Fig. 1A). Both the cortex and the white matter of

the cerebellum were significantly smaller in the patients. In con-

trast, the volume occupied by the caudate nucleus was signifi-

cantly larger. Significant structural differences were also detected

in the motor areas precentral gyrus and BA6 (increased mean

curvature and gray matter volume) and motor speech areas pars

opercularis and pars triangularis (increased cortical thickness and

mean curvature) (Fig. 1B). A detailed account of the morphometric

analyses is presented in Supplemental Figure 2 and Supplemental

Table 1. Diffusion tensor imaging (DTI) and fiber tractography

revealed moderate to high atrophy in superior, middle, and in-

ferior cerebellar peduncles (Supplemental Fig. 3).

Targeted next-generation sequencing of the critical region

The critical region at chr17: 82,514–7,257,922 (hg19) was captured

by NimbleGen 385K microarrays and sequenced with 454 Life

Sciences (Roche) GS FLX in DNA of two of the affected individuals

(05-985, 05-987) and two of the unaffected obligate carrier parents

(05-981 father, 05-982 mother). An average of ;400 Mb, yielding

46.33 haploid coverage, was sequenced from the captured DNA of

each individual. An average of 79% of all reads from each sample

mapped to the target region, representing 1275-fold to 2247-fold

enrichment (Supplemental Table 2). On average, 99.4% of all targeted

bases were covered by at least four reads (Supplemental Table 3).

In a parallel experiment, the same region from the DNA of

another affected sibling (05-984) was captured with NimbleGen

HD2 2.1M sequence capture microarrays and sequenced on an

Illumina Genome Analyzer IIx. The captured region was enriched

123-fold, with 2.98 billion bases and 40.3 million reads obtained

and 28% of reads mapped to the targeted region; 99.6% of targeted

bases were covered by at least four reads. Combined sequence data

for the three affected siblings yielded at least a fourfold coverage of

99.78% of all coding base pairs, 95.32% of intronic and UTR base

pairs, and 91.36% of intergenic base pairs. The remaining 0.22% of

coding regions with less than fourfold coverage was analyzed by

Sanger sequencing (Supplemental Table 4).

With the 454 GS FLX platform, a total of 18,410 different

variants were detected at high confidence (defined as in Hedges

et al. 2009) in at least one sample (Supplemental Table 2). No ad-

ditional functional variants were detected with the Illumina se-

quencing platform. Comparison of the sequence data from both

platforms with Illumina 300 Duo v2 SNP genotype data indicated

that the alleles were detected with sensitivity and specificity >99%.

Heterozygous SNPs detected at the borders of the homozygous

blocks of the affected individuals narrowed the region of homo-

zygosity to 6.74 Mb (Supplemental Table 5). The Mendelian error

rate, an indicator of call errors (Hedges et al. 2009), was calculated

as 0.3%.

Of the 18,410 high-confidence variants, 17,281 were reported

by dbSNP. For each nonsynonymous SNP compatible with the

Mendelian transmission of the disease allele, the frequencies of

homozygotes for each allele were accessed from public databases.

With one exception, homozygosity at both alleles had been reported

in control populations. The one exception, rs55916885, was at a

nonconserved site and was predicted as tolerated by SIFT (Ng and

Henikoff 2001) and Polyphen-2 (Sunyaev et al. 2001). Based on

these observations, all previously reported nonsynonymous vari-

ants were excluded (Supplemental Table 6).

Of the 18,410 high-confidence variants, 1119 variants were

both novel vis-á-vis dbSNP132 and present in both the affected

siblings and their obligate carrier parents. These 1119 novel shared

variants were classified by genomic context: coding sequence or

flanking splice junctions (n = 20), 59 UTR or 39 UTR (n = 15),

intronic (n = 689), or intergenic (n = 395). The 20 variants in the

Figure 1. MRI-based morphological analysis of brain from affected and
unaffected individuals. (A) Midsagittal MRI scans of a healthy control in-
dividual (left) and affected relative from Family B (right). The highlighted
regions show areas where volumetric differences are readily visible: corpus
callosum (1), third ventricle (2), fourth ventricle (3), and cerebellum (4).
(B) Cortical regions with significant differences in morphometric param-
eters are displayed on a reference cortex, from lateral and medial view:
BA45 (5), BA44 (6), BA6 (7), precentral (8), superior temporal (9), superior
parietal (10), lateral occipital (11), fusiform (12), isthmus cingulated (13),
posterior cingulated (14), frontal pole (15), medial orbitofrontal (16), and
temporal pole (17). Additional details are provided in Supplemental
Figure 2 and Supplemental Table 1.
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coding sequence or flanking splice junctions were genotyped in the

family to evaluate cosegregation with the phenotype (Supplemental

Table 7). Genotypes of three missense variants were consistent with

the recessive inheritance of the disease allele in Family B: WDR81

p.P856L, MYBBP1A p.R671W, and ZNF594 p.L639F (Table 1). Of the

15 59/39 UTR variants, five cosegregated with the disease phenotype.

Therefore, they were carried to a more detailed analysis, including

evaluation of the protein interactions. None was found to interact

with previously identified genes with cerebellar phenotypes, in-

cluding CAMRQ-associated VLDLR and CA8 (Supplemental Table 8).

Identification of disease causing variant

MYBBP1A p.R671W could be excluded as the causal mutation for the

disorder of Family B based on the genotypes of controls (Supple-

mental Table 9). In 214 unrelated healthy controls (428 chromo-

somes), 50 of whom were sampled from the same region of Turkey as

Family B, 13 individuals were heterozygous for MYBBP1A p.R671W.

This carrier frequency yields an allele frequency of 0.016 and an

expected frequency of homozygotes of about one in 4000, far higher

than the frequency of CAMRQ2, which occurs in only one extended

family. In a second, independent series of 400 individuals of various

European and Middle Eastern ancestries, MYBBP1A was fully se-

quenced in the context of whole-exome sequencing. Of these 400

individuals, two were homozygous for MYBBP1A p.R671W. Neither

of these two homozygotes had any signs consistent with CAMRQ2.

MYBBP1A p.R671W was therefore excluded as the allele responsible

for the disorder of Family B.

ZNF594 p.L639F could be excluded as the causal mutation for

the disorder based on conservation considerations. Residue 639 of

ZNF594 is not well conserved: Two of 16 species sequenced have

phenylalanine (F) at the orthologous site, strongly suggesting that

phenylalanine at this site would also not be damaging in humans. A

negative GERP score (�0.665) for the mutated nucleotide indicates

that this site is probably evolving neutrally (Davydov et al. 2010).

The variant is predicted as ‘‘benign’’ (PSIC score difference, 0.301) by

PolyPhen (Sunyaev et al. 2001) and ‘‘damaging low confidence’’

(SIFT score, 0.04) by SIFT (Supplemental Table 10; Ng and Henikoff

2001). In addition, the human ZNF594 gene harbors polymorphic

nonsense mutations at sites near the missense at L639F. ZNF594

p.E684X appeared in four of 118 Yoruban controls (rs114754534;

allele frequency, 0.034), and ZNF594 p.Q681X appeared in one of

120 CEU controls (rs116878311; allele frequency, 0.0083) in the

HapMap series.

In contrast, WDR81 p.P856L (Fig. 2A,B; Supplemental Fig. 4) is

both rare and alters a highly conserved site. This missense did not

appear in any of the 549 individuals of the control series. WDR81 is

a highly conserved protein throughout vertebrates, with no poly-

morphic stops in any sequenced species. In particular, proline at

residue 856 is completely conserved in all known sequences of the

WDR81 protein (Fig. 2C).

The extended genealogy of Family B revealed consanguinity

in several branches of the kindred (Fig. 2D), whose ancestors have

migrated from a village on the Syrian side of the border with Hatay,

Turkey, in the early 1950s. Approximately 240 individuals span-

ning seven generation could be ascertained. WDR81 p.P856L was

genotyped in 177 members of the kindred spanning five genera-

tions. A single union of heterozygous carriers, 05-981 3 05-982,

was observed whose children include the affected individuals of

this study. None of the 172 unaffected individuals in the kindred is

homozygous for WDR81 p.P856L. Genetic counseling is in prog-

ress for the 27 members of the family who are heterozygous carriers

of the mutation. The status of WDR81 was evaluated in two dif-

ferent cohorts of the patients with neurodevelopmental/cerebellar

phenotypes for whom the underlying genetic cause is still un-

known. The first cohort consisted of 750 patients with structural

cortical malformations or degenerative neurological disorders. By

using the whole-genome genotyping data based on Illumina Hu-

man 370 Duo or 610K Quad BeadChips, we did not identify any

patient with a cerebellar phenotype or ataxia phenotype to harbor

a homozygous interval ($2.5 cM) surrounding the WDR81 locus.

Exome sequencing of the same group did not reveal any muta-

tions, including compound heterozygous substitutions. In the

second cohort of 58 probands, 12 had cerebellar hypoplasia with or

without quadrupedal gait. No additional mutations in WDR81

were identified by Sanger sequencing of the entire coding regions.

Characterization of WDR81

WDR81 p.P856L at chr17: 1,630,820 (hg19) lies in exon 1 of

WDR81 isoform 1 (ENST00000409644, NM_001163809.1, NP_

001157281.1), the longest isoform of WDR81, containing 10

exons and encoding 1941 amino acids (Fig. 2A). Proline at this site

was present in all species analyzed (Fig. 2C), including the most

distantly related sequenced ortholog, the Tetraodon nigroviridis

WDR81 protein, which is 47.8% identical and 57.2% similar and

has a distance score of 0.76 compared with the human protein.

WDR81 p.P856L was predicted to be ‘‘damaging’’ (SIFT score, 0) by

SIFT (Ng and Henikoff 2001), ‘‘probably damaging’’ (PSIC score

difference, 2.724) by PolyPhen (Sunyaev et al. 2001), and ‘‘under

evolutionary constraint’’ (GERP score, 5.68) by GERP (Davydov

et al. 2010).

The function of WDR81 is unknown, but clues can be derived

from its structure. The conserved region of WDR81 that includes

P856 is flanked on the N-terminal side by a BEACH (Beige and

Chediak-Higashi) domain at amino acids 352–607. BEACH proteins

Table 1. Missense variants co-inherited with cerebellar hypoplasia and quadrupedal locomotion in Family Ba

No. and percentage of variant reads

Gene Position (hg19) Ref Var Effect 05-981b 05-982b 05-985c 05-987c

WDR81 chr17: 1,630,820 C T P856L 41 (51%) 33 (52%) 40 (97%) 53 (100%)
MYBBP1A chr17: 4,448,967 G A R671W 29 (52%) 21 (48%) 32 (97%) 29 (100%)
ZNF594 chr17: 5,085,637 G A L639F 39 (54%) 50 (56%) 38 (97%) 37 (100%)

Ref indicates reference nucleotide; Var, variant nucleotide.
aCoding regions, consensus splices-sites, and RNA genes.
bCarrier.
cAffected individual.

WDR81 is associated with CAMRQ2
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have been implicated in membrane trafficking (Wang et al. 2000),

synapse morphogenesis (Khodosh et al. 2006), and lysosomal axon

transport (Lim and Kraut 2009). A BEACH domain is the major

structural feature of neurobeachin, a scaffolding protein disrupted in

a patient with autism (Volders et al. 2011). WDR81 p.P856L lies in

a major facilitator superfamily (MFS) domain, a region characteristic

of solute carrier transport proteins (Saier et al. 1999). The C terminus

of WDR81 is composed of six WD-repeats that are likely constituents

of a beta-propeller. Based on analysis by TMpred (www.ch.embnet.

org/software/TMPRED_form.html), WDR81 is a transmembrane

protein with six membrane-spanning domains, the most N-terminal

at amino acids 45–66 and the other five at the C terminus of the

protein, between amino acids 980 and 1815 (Fig. 2A). Supporting

the likelihood that WDR81 is a transmembrane protein is the

observation that WDR81 transcript expression is increased in

membrane-associated RNA in contrast to cytoplasmic RNA (4.14

folds, P = 0.03, and 1.78 folds, P = 0.0002 in Gene Expression Om-

nibus [GEO] [http://www.ncbi.nlm.nih.gov/geo/] data set GSE4175)

(Diehn et al. 2006).

In order to assess a possible role for WDR81 in regulating

motor behavior, we evaluated the expression profiles of human

and mouse WDR81/Wdr81 isoform 1 in the brain. Human WDR81

isoform 1 transcript was expressed in all the tissues evaluated

(Supplemental Fig. 5). In particular, all the brain tissues were pos-

itive for the transcript, with highest levels of expression in the

cerebellum and corpus callosum (Fig. 3A). In the mouse brain at

post-partum day P7, Wdr81 expression was observed in Purkinje

cell layer in the cerebellum (Fig. 3B,C). The cerebellum is a crucial

regulatory center for motor function.

We examined the expression of WDR81 in the context of ex-

pression profiles of the early embryonic mouse brain (GSE8091)

(Hartl et al. 2008). Differentially expressed genes within the day

groups were filtered (one-way ANOVA test Bonferroni-corrected P <

0.001, n = 3611). From these profiles, we identified the subset of

genes whose expression was highly correlated with that of WDR81

(R > 0.95, n = 670) and then used DAVID tools (Huang et al. 2009) to

evaluate the predicted functions of this subset of genes. The subset

of genes coexpressed with WDR81 was enriched for those involved

in neuronal differentiation and neuronal projection, axonogenesis,

and cell morphogenesis (Bonferroni-corrected P-values 2.3 3

10�11, 1.3 3 10�9, and 3.7 3 10�9, respectively). Among the genes

coexpressed with WDR81 were those encoding prion protein,

doublecortin (responsible for lissencephaly), and L1CAM (re-

sponsible for MASA syndrome) (Supplemental Table 11). WDR81

is not coexpressed with VLDLR and CA8, raising the possibility

that WDR81 represents a different developmental regulatory

pathway.

Discussion
The identification of genes responsible for human disease has been

greatly facilitated with new technologies, particularly the targeted

enrichment of the genome by solution capture, followed by geno-

mic sequencing (Bilguvar et al. 2010). Despite these advances,

demonstrating the causality for a mutation in the absence of two or

more independent cases remains a challenge. This is particularly

true when multiple variants, none of them with obvious effect on

protein function, cosegregate with the phenotype in the family; the

candidate gene encodes a previously uncharacterized protein with

multiple isoforms, of which the critical mutation is on only one; and

the candidate mutation is a missense. However, unique families and

uncharacterized proteins exist, and precisely because of this reason,

it becomes imperative to fully exploit genetics and genomics ap-

proaches to distinguish the causative mutation.

We describe here the discovery of a mutation associated with

an extremely rare and genetically heterogeneous autosomal re-

cessive phenotype in a unique consanguineous family (Tan 2006).

The putative causative mutation could be distinguished from pre-

viously unknown rare polymorphisms in the same genomic region

by analysis of conservation at all candidate variant sites, by the

presence of polymorphic stops in the critical region of another

candidate gene, and by genotyping ethnically matched unaffected

individuals who would not be expected to carry homozygous mu-

tations at the mutant site. We conclude that the WDR81 p.P856L

mutation is the cause of cerebellar hypoplasia associated with qua-

drupedal locomotion in Family B.

WDR81 is an uncharacterized gene. It shows similarity with

a host of genes, including NSMAF (neutral sphyngomyelinase ac-

tivation associated factor), NBEA (neurobeachin), and LYST (lyso-

somal trafficking regulator). The LYST gene contains HEAT/ARM

repeats, a BEACH domain, and seven WD40 repeats (Ward et al.

2000). Nearly all reported LYST mutations result in protein trun-

cation and lead to Chediak-Higashi syndrome (CHS), which is

characterized by accumulation of giant intracellular vesicles lead-

ing to defects in the immune and blood systems (Rudelius et al.

2006). Two patients with missense LYST mutations have been

reported (Karim et al. 2002). Interestingly, these patients presented

with neurological symptoms without immunological involvement.

The LystIng3618/LystIng3618 mutant mouse harbors a missense mu-

tation in the WD40 domain. Purkinje cell degeneration accom-

panied by age-dependent impairment of motor coordination without

Figure 3. Expression pattern of WDR81 in brain. (A) Expression in hu-
man brain with highest levels in cerebellum and corpus callosum. (B) In
situ hybridization of mouse embryonic brain revealing increased expres-
sion of Wdr81 in purkinje cells and molecular layer of cerebellum. (C ) No
hybridization was observed with the sense probe. (ML) Molecular layer,
(GL) granular layer.
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signs of lysosomal deficiency in immunological organs were charac-

teristics of these animals (Rudelius et al. 2006).

Expression of WDR81 at high levels in the human cerebellum

and corpus callosum and in the Purkinje cell layer of the mouse

cerebellum is consistent with our observations of major structural

abnormalities in these regions of the brain of affected individuals.

Together, these observations suggest a possible role for WDR81 in

motor behavior. Further work will be required to understand the

normal biological function of WDR81 and the role of the mutation

in causing cerebellar hypoplasia and quadrupedal locomotion.

Genomic analysis of Family B demonstrates that WDR81 is highly

likely to be critical to these developmental processes.

Methods

Human subjects
The institutional review boards of Bilkent, Hacettepe, Baskent,
and Cukurova Universities approved the study (decisions: BEK02,
28.08.2008; TBK08/4, 22.04.2008; KA07/47, 02.04.2007; and 21/3,
08.11.2005, respectively). Written informed consent, prepared
according to the guidelines of the Ministry of Health in Turkey, was
obtained from all family members and control group subjects prior
to the study. A total of 18 subjects participated in MRI scans. Six of
them were from Family B, including four affected siblings (05-984,
05-986, 05-987, 05-988), one normal female sibling homozygous
for the wild-type allele of the WDR81 p.P856L variant (10-033),
and their carrier father (05-981). The remaining 14 participants
were age- and sex-matched healthy controls. The two male pa-
tients (age, mean 6 SD = 37.00 6 4.24) were matched to seven male
controls (age, mean 6 SD = 35.14 6 5.76), and the two female
patients (age, mean 6 SD=27.00 6 4.24) were matched to seven
female controls (age, mean 6 SD = 28.57 6 3.64). Family B mem-
bers were scanned under sedation. For the healthy controls, no
sedation was performed. Sedation was achieved by initial admin-
istration of midazolam (2 mg per subject), which was followed by
propofol (120 mg) and fentanyl (50 mcg) administration in-
travenously. Hypnosis level was adjusted by 20 mg injections
of propofol approximately every 10 min to eliminate somatic re-
sponses such as slight movements. Blood oxygen level and heart
rate were monitored during the entire procedure. Eyelash reflexes
were absent at all times. Neuromuscular blockade was not used.

Next-generation sequencing

NimbleGen 385K microarrays were produced to capture the criti-
cal region at chr17: 82,514–7,257,922 (hg19) using 7464 unique
probes with a total probe length of 4,853,455 bp. Sequence Search
and Alignment by Hashing Algorithm (SSAHA) (Ning et al. 2001)
was used to determine probe uniqueness by NimbleGen (Roche
NimbleGen). Sequence capture was conducted by the NimbleGen
facility using 25 mg of input DNA. Captured DNA samples were
subjected to standard sample preparation procedures for 454 GS
FLX sequencing with Titanium series reagents. Four full 454 GS
FLX runs were conducted for two affected individuals (05-985, 05-
987) and their unaffected obligate carrier parents (05-981 father,
05-982 mother). Sequence data were initially mapped to human
genome reference sequence and annotated using the GSMapper
software package (Roche). Fold enrichment of the target region was
calculated with the formula +REMTrm/STrm: +RMG/SG as de-
scribed previously (REMTrm, number of reads mapped to target
region; STrm, size of target region; RMG, number of reads mapped
outside of the target region; SG, size of human genome) (Rehman
et al. 2010). Variants were identified with ALLDiff and more strin-

gent HCDiff approaches (Hedges et al. 2009). Annotation of variants
was made by GSMapper software using the refGene table of the
University of California, Santa Cruz (UCSC) Genome Browser
(Fujita et al. 2010). Ensembl 62 genome annotation data for hg19
human genome assembly were extracted using the BIOMART data-
mining tool for further analysis of intronic and intergenic variants
in terms of hypothetical genes and splicing variants (Flicek et al.
2011). Novel variants were reported based on the SNPs included
in the reference SNP database. For Illumina sequencing, a total of
6,184,539-bp-long unique probes were designed to target a 9-Mb
genomic region spanning the disease locus (chr17:0–9,059,276;
hg19) using a custom NimbleGen HD2 2.1M sequence capture
microarray. Another affected individual was sequenced with the
Illumina Genome Analyzer IIx. Illumina sequence data were map-
ped to the reference genome using MAQ tools (Li et al. 2008), and
single nucleotide variants were determined with Samtools (Li et al.
2009). To determine indels, data were mapped with BWA (Li and
Durbin 2010) and analyzed with Samtools. Sequence data were
visually analyzed using the Integrative Genomics Viewer (IGV)
(Robinson et al. 2011).

Array based genotyping

We conducted Illumina 300 Duo v2 BeadChip for two affected
individuals (05-984, 05-987) according to the manufacturer’s rec-
ommendations (Illumina). The image data were normalized, and
the genotypes were called using data analysis software (Bead Stu-
dio, Illumina). Sex, inbreeding, and sibship were confirmed.
The Mendelian compatibility of sequence variants was analyzed
with PLINK (Purcell et al. 2007).

DNA sequencing

Confirmation of novel variants identified by next-generation se-
quencing was done with conventional capillary sequencing. The
Primer3 software (Rozen and Skaletsky 2000) was used to design
PCR primers for the amplification of candidate variants (Supple-
mental Table 12). Products were analyzed via gel electrophoresis
and were sequenced using forward and reverse primers on an ABI
3130 XL capillary sequencing instrument (Applied Biosystems).
Sanger sequence trace files were analyzed with the CLCBio Main
Workbench software package (CLCBio Inc.).

Population screening

To distinguish the disease-causing variant from novel polymor-
phisms, a population screening approach was conducted for each
candidate variant. Allele-specific PCR (AS-PCR) and restriction frag-
ment length polymorphism (RFLP) analyses were performed (Sup-
plemental Table 12) on 1098 chromosomes from a healthy control
population. In addition, the first-, second-, and third-degree rela-
tives of the affected family, amounting to 177 individuals, were
sampled for genotype analysis. Sanger sequencing was performed to
confirm all of the variants detected in the normal population using
the above-mentioned methods. Racial distribution of the control
group was 100% Caucasian, including 22% from southeastern Turkey.

Quantitative real-time RT-PCR analysis of WDR81 expression

First-strand cDNA was prepared from multi-tissue RNA panels
(Clontech: 636567, 636643; Agilent: 540007, 540117, 540137,
540157, 540053, 540005, 540143, 540135) with RevertAid kit and
random hexamer primers (Fermentas; K1622) after DNase I (Fer-
mentas; EN0521) digestion. The PCR primers located in exon 1
and flanking the mutation site were designed using Primer3 soft-
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ware (Supplemental Table 13; Rozen and Skaletsky 2000). SYBR
Green real-time PCR were realized according to standard protocols
(BioRad; 170-8882) with 100% PCR efficiency. Each assay included
minus RT and nontemplate controls. Ct values were normalized to
GAPDH as an internal control. The data were analyzed using the
Pfaffl method (Pfaffl 2001).

In situ hybridization

In order to examine the specific expression pattern of Wdr81 gene
in the mouse brain, probes that contain the mutated region in
human patients were prepared by PCR amplification of the region
from mouse genomic DNA and subsequent cloning into plasmids.
The riboprobes were synthesized by using Dig-labeled NTPs, and
in situ hybridization experiments were performed as described
(Tekinay et al. 2009). The Animal Ethics Committee of Bilkent
University approved procedures for the tissue extraction and for in
situ hybridization tests. Animals were group housed in a 12-h dark,
12-h light cycle. Embryo and P7 brain sections were prepared as
described (Gong et al. 2003). Twenty-micrometer sagittal sections
were taken with a cryostat (Leica). The antisense probe was prepared
by PCR amplification from the mouse genomic DNA and sub-
sequent cloning into pCR4-TOPO vector (Invitrogen). A modified
version of pSK vector was used for cloning the sense probe of the
same region. Digoxigenin (Dig)-labeled riboprobe was transcribed
using Dig-NTP in the transcription reaction. Riboprobes were pu-
rified with Mini Quick Spin DNA columns (Roche) prior to hy-
bridization. Sections were incubated at 60°C overnight in hybrid-
ization buffer containing 50% formamide, 53 SSC, 53 Denhardt’s
reagent, 50 mg/mL heparin, 500 mg/mL herring sperm DNA, and
250 mg/mL yeast tRNA. Hybridized sections were washed for 90 min
with 50% formamide and 23 SSC at 60°C. Probes were detected
with anti-Dig Fab fragments conjugated to alkaline phosphatase
and NBT/BCIP substrate mixture (Tekinay et al. 2009).

Bioinformatics analyses

Homozygosity mapping analysis was performed using Homo-
zygosityMapper software (Seelow et al. 2009). SIFT (Ng and Henikoff
2001) and PolyPhen (Sunyaev et al. 2001) tools were used to pre-
dict the functional impact of the variants. Genomic Evolutionary
Rate Profiling (GERP) scores for each variant were obtained from
the UCSC Genome Browser allHg19RS_BW track (Davydov et al.
2010). The PFAM protein domain search module of CLCMain
Workbench V5.0 (CLCBio, Inc.) and ScanProsite (Gattiker et al.
2002) tools were used to predict domains and possible effects of the
variant on protein product. Membrane spanning domains were
predicted using TMpred software (www.ch.embnet.org/software/
TMPRED_form.html). Homology searches were performed with
CLCMain Workbench using appropriate modules (reference se-
quence accession codes for WDR81 orthologs are Ailuropoda
melanoleuca, XP_002918082; Callithrix jacchus, XP_002747874; Danio
rerio, XP_001921778; Equus caballus, XP_001502383; Gallus gallus,
XP_415806; Monodelphis domestica, XP_001371487; Mus musculus,
NP_620400; Oryctolagus cuniculus, XP_002718930; Pan troglodytes,
XP_523527; Pongo abelii, XP_002826860; Rattus norvegicus, NP_
001127832; Sus scrofa, XP_003131868; Taeniopygia guttata, XP_
002194363; Tetraodon nigroviridis, CAG08933; Xenopus [Silurana]
tropicalis, XP_002937192). Published microarray data sets of E9.5,
E11.5, and E13.5 mouse brain tissue (GSE8091) were downloaded
from the GEO database (http://www.ncbi.nlm.nih.gov/projects/
geo/query/acc.cgi) (Hartl et al. 2008) and processed with GeneSpring
GX V11.1 software (Agilent Technologies). Data sets were grouped
within day groups, and standard quality control and filtering
analysis were performed (http://www.chem.agilent.com/cag/bsp/

products/gsgx/manuals/GeneSpring-manual.pdf). Differentially ex-
pressed genes within the day groups were filtered using a one-way
ANOVA test (Bonferroni-corrected P < 0.001). Genes that corre-
lated with Wdr81 (R = 0.95 � 1.0) were obtained using the ‘‘Find
Similar Entity Lists’’ module of the software. Functional annota-
tion clustering was performed using the obtained gene list by
DAVID tools (Huang et al. 2009). WDR81 differential expression in the
GEO data sets was further investigated using the NextBio System,
a web-based data-mining engine (Kupershmidt et al. 2010), and the
GSE4175 (Diehn et al. 2006) data set was selected as a significant dif-
ference in membrane-associated RNA versus cytoplasmic RNA com-
parisons. Ensembl identifiers of the candidate genes and transcripts
are as follows: WDR81 [ENSG00000167716; ENST00000409644],
MYBBP1A [ENSG00000132382; ENST00000254718], and ZNF594
[ENSG00000180626; ENST00000399604].

MRI data acquisition and structural analysis procedures

MRI data were acquired using a three Tesla scanner (Magnetom
Trio, Siemens AG) with a 12-channel phase-array head coil. A high-
resolution T1-weighted three-dimensional (3D) anatomical-vol-
ume scan was acquired for each participant (single-shot turbo
flash; voxel size = 1 3 1 3 1 mm3; repetition time [TR] = 2600 msec;
echo time[TE] = 3.02 msec; flip angle = 8°; field of view [FOV] = 256 3

224 mm2; slice orientation = sagittal; phase encode direction =

anterior-posterior; number of slices = 176; acceleration factor
[GRAPPA] = 2). DTI data were acquired using a single-shot spin-echo
EPI with a parallel imaging technique GRAPPA (acceleration factor
2). The sequence was performed with 30 gradient directions, and the
diffusion weighting b-factor was set to 800 sec/mm2 (TR, 6400
msec; TE, 88 msec; in-plane resolution, 1 mm 3 1 mm; slice thick-
ness, 3.0 mm; 50 transverse slices; base resolution, 128 3 128).
Structural analyses were performed with the Freesurfer image anal-
ysis package (http://surfer.nmr.mgh.harvard.edu/). The analyses
involved intensity normalization, removal of nonbrain tissue, sub-
cortical segmentation (Fischl et al. 2002), and identification of the
white matter/gray matter boundary upon which cortical re-
construction and volumetric parcellation were performed. The
cortex was then registered to a spherical atlas and parceled into units
according to the gyral and sulcal structure based on the Desikan-
Kilinay Atlas (Desikan et al. 2006) and the Destrieux Atlas (Destrieux
et al. 2010). Next, using the same software, we performed mor-
phometric analyses of cortical thickness, mean curvature, surface
area, and volume for each unit of parcellation and computed the
group differences. Significant differences between the groups are
determined using two-tailed unpaired t-tests at an alpha level of
0.05. Fiber tracking was performed in MedINRIA (Toussaint et al.
2007). Fibers with FA < 0.3 were excluded from the analysis. Region
of interests (ROIs) were drawn manually over cross-sections of su-
perior, middle, and inferior cerebellar peduncles, using the MRI
Atlas of Human White Matter as a reference (Oishi et al. 2010). ROIs
were drawn at approximately corresponding locations for the pa-
tients and healthy controls. Fiber tracts were first limited to pass
through these ROIs and were then subsequently refined using a re-
cursive tracking technique (Toussaint et al. 2007). T1-weighted
images were coregistered with DWI data using FSL (Smith et al.
2004; Woolrich et al. 2009). Final tracts were manually overlaid onto
high-resolution T1-weighted images for illustration purposes.

Data access
Sequence data of the homozygous region has been deposited at the
DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp/) under
accession no. DRA000432. SNP genotype data have been deposited
at the European Genome-Phenome Archive (EGA; http://www.
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ebi.ac.uk/ega/), which is hosted at the EBI, under accession no.
EGAS00000000099.

Acknowledgments
We thank Dr. Mary-Claire King for innumerable discussions, sug-
gestions, and critical reading of the manuscript. We also thank the
members of Family B and their relatives for cooperation in this
study. Dr. Alper Iseri and Dr. Bayram Kerkez kindly provided tech-
nical and logistic support. This work was supported by the Scientific
and Technological Research Council of Turkey (TUBITAK-SBAG
108S036 and 108S355) and the Turkish Academy of Sciences (TUBA
research support) to T.O., and the European Commission (PIRG-GA-
2008-239467) and TUBA-GEBIP award to H.B.

Authors’ contributions: S.G., A.B.T., K.D., H.B., and T.O. con-
ceived and designed the experiments. S.G., H.U., K.D., and H.B.
performed the experiments. S.G., A.B.T., K.D., H.B., K.B., H.U.,
A.O., E.A., T.K., M.G., and T.O. analyzed the data. O.E.O., A.N.B.,
H.T., M.T., and U.T. contributed patient materials. S.G. and T.O.
wrote the paper.

References

Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D,
Tuysuz B, Caglayan AO, Gokben S, et al. 2010. Whole-exome
sequencing identifies recessive WDR62 mutations in severe brain
malformations. Nature 467: 207–210.

Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010.
Identifying a high fraction of the human genome to be under selective
constraint using GERP++. PLoS Comput Biol 6: e1001025. doi: 10.1371/
journal.pcbi.1001025.

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner
RL, Dale AM, Maguire RP, Hyman BT, et al. 2006. An automated labeling
system for subdividing the human cerebral cortex on MRI scans into
gyral based regions of interest. Neuroimage 31: 968–980.

Destrieux C, Fischl B, Dale A, Halgren E. 2010. Automatic parcellation of
human cortical gyri and sulci using standard anatomical nomenclature.
Neuroimage 53: 1–15.

Diehn M, Bhattacharya R, Botstein D, Brown PO. 2006. Genome-scale
identification of membrane-associated human mRNAs. PLoS Genet 2:
e11. doi: 10.1371/journal.pgen.0020011.

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der
Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. 2002. Whole brain
segmentation: Automated labeling of neuroanatomical structures in the
human brain. Neuron 33: 341–355.

Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G,
Fairley S, Fitzgerald S, et al. 2011. Ensembl 2011. Nucleic Acids Res 39:
D800–D806.

Fogel BL, Perlman S. 2007. Clinical features and molecular genetics of
autosomal recessive cerebellar ataxias. Lancet Neurol 6: 245–257.

Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D. 2010. The UCSC
Genome Browser database: update 2011. Nucleic Acids Res 39: D876–
D882.

Gattiker A, Gasteiger E, Bairoch A. 2002. ScanProsite: a reference
implementation of a PROSITE scanning tool. Appl Bioinformatics 1: 107–
108.

Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak
NJ, Joyner A, Leblanc G, Hatten ME, et al. 2003. A gene expression atlas
of the central nervous system based on bacterial artificial chromosomes.
Nature 425: 917–925.

Hartl D, Irmler M, Romer I, Mader MT, Mao L, Zabel C, de Angelis MH,
Beckers J, Klose J. 2008. Transcriptome and proteome analysis of early
embryonic mouse brain development. Proteomics 8: 1257–1265.

Hedges DJ, Burges D, Powell E, Almonte C, Huang J, Young S, Boese B,
Schmidt M, Pericak-Vance MA, Martin E, et al. 2009. Exome sequencing
of a multigenerational human pedigree. PLoS ONE 4: e8232. doi:
10.1371/journal.pone.0008232.

Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat
Protoc 4: 44–57.

Karim MA, Suzuki K, Fukai K, Oh J, Nagle DL, Moore KJ, Barbosa E, Falik-
Borenstein T, Filipovich A, Ischida Y, et al. 2002. Apparent genotype–
phenotype correlation in childhood, adolescent, and adult Chediak–
Higashi syndrome. Am J Med Genet 108: 16–22.

Khodosh R, Augsburger A, Schwarz TL, Garrity PA. 2006. Bchs, a BEACH
domain protein, antagonizes Rab11 in synapse morphogenesis and
other developmental events. Development 133: 4655–4665.

Kolb LE, Arlier Z, Yalcinkaya C, Ozturk AK, Moliterno JA, Erturk O, Bayrakli F,
Korkmaz B, DiLuna ML, Yasuno K, et al. 2010. Novel VLDLR
microdeletion identified in two Turkish siblings with pachygyria and
pontocerebellar atrophy. Neurogenetics 11: 319–325.

Kupershmidt I, Su Q J, Grewal A, Sundaresh S, Halperin I, Flynn J, Shekar M,
Wang H, Park J, Cui W, et al. 2010. Ontology-based meta-analysis of
global collections of high-throughput public data. PLoS ONE 5: e13066.
doi: 10.1371/journal.pone.0013066.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 26: 589–595.

Li H, Ruan J, Durbin R. 2008. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res 18: 1851–
1858.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, Genome Project Data Processing Subgroup. 2009.
The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:
2078–2079.

Lim A, Kraut R. 2009. The Drosophila BEACH family protein, blue cheese,
links lysosomal axon transport with motor neuron degeneration.
J Neurosci 29: 951–963.

Moheb LA, Tzschach A, Garshasbi M, Kahrizi K, Darvish H, Heshmati Y,
Kordi A, Najmabadi H, Ropers HH, Kuss AW. 2008. Identification of
a nonsense mutation in the very low-density lipoprotein receptor gene
(VLDLR) in an Iranian family with dysequilibrium syndrome. Eur J Hum
Genet 16: 270–273.

Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions.
Genome Res 11: 863–874.

Ning Z, Cox A, Mullikin J. 2001. SSAHA: A fast search method for large DNA
databases. Genome Res 11: 1725–1729.

Oishi K, Faria AV, van Zijl PCM, Mori S. 2010. MRI atlas of human white
matter, 2nd ed. Elsevier, Amsterdam.

Ozcelik T, Akarsu N, Uz E, Caglayan S, Gulsuner S, Onat OE, Tan M, Tan U.
2008. Mutations in the very low-density lipoprotein receptor VLDLR
cause cerebellar hypoplasia and quadrupedal locomotion in humans.
Proc Natl Acad Sci 105: 4232–4236.

Pfaffl MW. 2001. A new mathematical model for relative quantification in
real-time RT-PCR. Nucleic Acids Res 29: e45. doi: 10.1093/nar/29.9.e45.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, et al. 2007. PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am J Hum
Genet 81: 559–575.

Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, Shahzad M,
Ahmed ZM, Riazuddin S, Khan SN, Riazuddin S, et al. 2010. Targeted
capture and next-generation sequencing identifies C9orf75, encoding
Taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J
Hum Genet 86: 378–388.
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ARTICLE

Missense mutation in the ATPase, aminophospholipid
transporter protein ATP8A2 is associated with
cerebellar atrophy and quadrupedal locomotion

Onur Emre Onat1,10, Suleyman Gulsuner1,10, Kaya Bilguvar2,3,4, Ayse Nazli Basak5, Haluk Topaloglu6,
Meliha Tan7, Uner Tan8, Murat Gunel2,3,4 and Tayfun Ozcelik*,1,9

Cerebellar ataxia, mental retardation and dysequilibrium syndrome is a rare and heterogeneous condition. We investigated a

consanguineous family from Turkey with four affected individuals exhibiting the condition. Homozygosity mapping revealed that

several shared homozygous regions, including chromosome 13q12. Targeted next-generation sequencing of an affected

individual followed by segregation analysis, population screening and prediction approaches revealed a novel missense variant,

p.I376M, in ATP8A2. The mutation lies in a highly conserved C-terminal transmembrane region of E1 E2 ATPase domain. The

ATP8A2 gene is mainly expressed in brain and development, in particular cerebellum. Interestingly, an unrelated individual has

been identified, in whom mental retardation and severe hypotonia is associated with a de novo t(10;13) balanced translocation

resulting with the disruption of ATP8A2. These findings suggest that ATP8A2 is involved in the development of the cerebro-

cerebellar structures required for posture and gait in humans.

European Journal of Human Genetics advance online publication, 15 August 2012; doi:10.1038/ejhg.2012.170

Keywords: ATP8A2; cerebellar hypoplasia; targeted next-generation sequencing; quadrupedal locomotion; CAMRQ

INTRODUCTION

Cerebellar ataxia, mental retardation and dysequilibrium syndrome
(CAMRQ) is a rare and genetically heterogeneous autosomal recessive
disorder characterized by mental retardation, cerebellar ataxia and
dysarthric speech with or without quadrupedal gait.1–8 Multiple
consanguineous families have been reported with autosomal
recessive inheritance of the condition. The first locus was mapped
to a 7.1-Mb region on chromosome 17p13 and a missense mutation
was reported on WDR81 (WD repeat domain 81; CAMRQ2; MIM:
610185; also referred to as Uner Tan syndrome).1,2,7 Linkage mapping
followed by candidate gene sequencing also led to the identification of
mutations in very low-density lipoprotein receptor (CAMRQ1; MIM:
224050)3–5 and carbonic anhydrase VIII (CAMRQ3; MIM: 613227).6

In another consanguineous family (Family C)3,9 from Turkey, the
involvement of VLDLR, WDR81 and CA8 genes were excluded, and
four shared-homozygous regions on chromosomes 13, 19 and 20 were
uncovered by homozygosity mapping. To identify the culprit gene, we
utilized targeted next-generation sequencing of all homozygous
regions and evaluated all co-segregated variants using functional
and structural predictions and population screening. We report herein
that a recessive missense mutation in ATP8A2, encoding ATPase,
aminophospholipid transporter, class I, type 8A, member 2, is
associated with the phenotype in Family C. In an independent

study, a de novo t(10;13) balanced translocation disrupting the
coding sequence of ATP8A2 on 13q12 was observed in a patient
with severe mental retardation and major hypotonia, raising the
possibility that haploinsufficiency of this gene could be implicated in
neurodevelopmental phenotypes.10 On the basis of these observations,
we suggest that ATP8A2 could be critically important in the
development of the nervous system.

SUBJECTS AND METHODS

Patients
The consanguineous family analyzed in this study has four members affected

by mental retardation, mild cerebellar and cerebral atrophy and truncal ataxia

(Figure 1). The index case was a 27-year-old man exhibiting total inability to

walk (05-993). Briefly, patients share the following clinical features: truncal

ataxia with/without quadrupedal gait, mental retardation and dysarthric

speech. MRI results revealed mild atrophy of cerebral cortex, corpus callosum

and inferior cerebellum. Clinical description of Family C was published

elsewhere.3,9 The only affected female in the family could not be included in

the study, as her parents did not give consent for DNA analysis. Case 05-993

recently died secondary to a respiratory infection. The study was approved by

the institutional review boards at the Baskent and Cukurova Universities

(decision KA07/47, 02.04.2007 and 21/3, 08.11.2005, respectively). Written

informed consent was obtained from all participants or their parents before

the study.
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Homozygosity mapping analysis
Participants’ DNA from peripheral blood samples were genotyped using 10 K

Affymetrix SNP chips. Experiments were performed according to the

manufacturer’s instructions (Affymetrix, Santa Clara, CA, USA). DNA of

two affected individuals (05-994 and 05-996) was genotyped using Illumina

Human610-Quad BeadChip according to manufacturer’s recommendations

(Illumina, Inc., San Diego, CA, USA). The image data were normalized and the

genotypes were called using data analysis software (Bead Studio, Illumina).

Homozygosity mapping analysis was performed using HomozygosityMapper

software.11 Homozygosity was ruled out for the previously reported loci.

Markers D13S787, D13S1243, D13S742, D13S283, D13S1294 and D13S221

were used to test homozygosity for the most likely candidate locus,

chromosome 13q12. Haplotype analysis was carried out by hand.

Mutation analysis
A total of 16 711 445 base long unique probes were designed to target

homozygous regions (Supplementary Table 1) using a custom-designed

Nimblegen Human Sequence Capture HD2 microarray (Roche NimbleGen,

Madison, WI, USA). DNA sample from an affected individual (05-996) was

captured using 3mg input DNA. Captured DNA sample was sequenced with

Illumina Genome Analyzer IIx. Illumina sequence data were mapped to

reference genome (hg18) using Maq12 and single-nucleotide variants were

determined with Samtools.13 To determine indels, data were mapped with

BWA14 and analyzed with Samtools. Variant coordinates were converted to

hg19 before publication by liftOver tool (http://genome.ucsc.edu/cgi-bin/

hgLiftOver). Coverage calculations of coding regions were done with

mpileup module of Samtools13 and intersectBED command of BEDTools.15

Novel variants were determined based on SNPs reported in dbSNP database

and further analyzed in 1000 genome data sets (http://www.1000genomes.org),

NHLBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS/, data

release ESP5400) and exome sequencing data of 2400 individuals with non-

neurological disorders generated at Yale University. Common variants were

excluded if minor allele frequency was lower than 0.1%. Novel variants were

confirmed by Sanger sequencing. Segregation analysis of the variants in the

pedigree and its presence in healthy population were carried out using allele-

specific PCR analysis (Supplementary Table 2). Racial distribution of control

group was 100% Caucasian, including 22% from southeastern Turkey.

Bioinformatics analysis
DNA and protein sequences were obtained from ENSEMBL database.16 SIFT,17

PolyPhen218 and MutationTaster19 tools were used to predict causative

variants. Genomic evolutionary rate profiling (GERP) and phylogenetic

P-value (phyloP) conservation scores for each variant were extracted

seperately from the UCSC Genome Browser allHg19RS_BW track20 and

phyloP46wayall track,21 respectively. Functional and transmembrane domains

of the ATP8A2 protein were predicted using Pfam database22 and TmPred

prediction tool (www.ch.embnet.org/software/TMPRED_form.html),

respectively. Homology searches were performed with CLCMain Workbench

(CLC Bio, Aarhus, Denmark) using appropriate modules. CLCMain

Workbench also generates phylogenetic tree using UPGMA algorithm that is

evaluated by bootstrap analysis. Possible effects of the variant on protein

secondary structure were predicted using PSIPRED server.23 Published

microarray data sets of E9.5, E11.5 and E13.5 mouse brain tissue

(GSE8091)24 were obtained from the GEO database (http://

www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi) and analyzed with

GeneSpring GX V11.1 software (Agilent Technologies, Santa Clara, CA,

USA). Differentially expressed genes within day groups were filtered (one-

way ANOVA test Bonferroni-corrected Po0.001) and genes that correlated

with Atp8a2 (R¼ 0.95–1.0) were functionally annotated using DAVID tools.25

Primers used in this study were designed with Primer326 software and are listed

in Supplementary Table 2.

Quantitative real-time RT-PCR
First-strand cDNAs were prepared from human RNA samples (Clontech,

Mountain View, CA, USA: 636567 (corpus callosum); Agilent: 540007

(cerebellum), 540117 (frontal cortex), 540137 (occipital cortex), 540157 (fetal

brain), 540053 (brain stem), 540005 (total brain), 540143 (parietal cortex),

540135 (striatum)) using RevertAid First Strand cDNA Synthesis kit with

random hexamer primers (Fermentas, now Thermo Fisher Scientific, Waltham,

MA, USA; K1622) after DNaseI (Fermentas EN0521) digestion. Real-time RT-

PCR was performed using IQ SYBR Green Supermix according to standard

protocols (BioRad, Hercules, CA, USA; 170-8882). Ct values were normalized

to GAPDH as an internal control. The data were analyzed using the Pfaffl

method.27

RESULTS

We identified four common homozygous regions in two affected
individuals (05-994 and 05-996) using Ilumina Human610-Quad
BeadChip. Targeted next-generation sequencing of all homozygous
regions (Supplementary Figure 1 and Supplementary Table 1) was
carried out using DNA of one affected individual (05-996). This
region was enriched 629-fold in the capture experiment. In total,
48.62 million single-end 75 bp reads were obtained and 29.2% of the
reads mapped to the targeted regions. This in turn provided a mean
coverage depth of 62.96-fold across the targeted homozygosity
intervals with 97.41% of the targeted bases being covered by at least
four reads (Supplementary Table 3). Next, the constitutive exons in
the homozygous intervals were analyzed and 99.51% of the protein
coding regions was found to be covered by at least four reads. When
the genes encoding for the constitutive exons in the low- or zero-
coverage regions were analyzed, they either do not have cerebellar
expression or do not display a phenotype compatible with cerebellar
involvement in mouse knockouts (Supplementary Table 4). On the
basis of these results, we find it highly unlikely that a causative
mutation is missed.

Figure 1 Pedigree of Family C with haplotype structure of the disease

interval on chromosome 13q12. Haplotype segregating with the disease is

boxed. ATP8A2 c.1128 C4G mutation is bold. Please note that the DNA of

one affected individual is not available for the study.
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A total of 14 103 homozygous variants (13 394 single-nucleotide
variants and 709 indels) were detected by next-generation sequencing.
Of these, 13 528 variants were reported by dbSNP132. Remaining 575
novel variants were classified by genomic context: protein altering or
flanking splice junctions (n¼ 11), coding synonymous (n¼ 4),
50-UTR (n¼ 44), 30-UTR (n¼ 30), intronic (n¼ 224) and intergenic
(n¼ 262). Of the 11 protein-altering variants, four were excluded
based on the comparison for novelty with 1000 genomes data, NHLBI
Exome Sequencing Project and the exome sequence data of 2400
individuals with non-neurological diseases. The remaining seven
variants in the coding regions of homozygous blocks were verified
by Sanger sequencing and four of them were excluded by segregation
analysis (Supplementary Figures 2–3). Two missense variants (ATP8A2
p.I376M and APBA3 p.A97T) and a 3-bp in-frame deletion (PCP2
p.E6del) were consistent with the recessive inheritance of the disease
allele in Family C (Table 1, Figure 1 and Supplementary Figure 2).

APBA3 p.A97T variant was excluded based on the conservation
considerations and prediction analyses. Four of 20 species sequenced
have threonine (T) at the orthologous site (Supplementary Figure 4),
suggesting that this variant would be a polymorphism and not
damaging to humans. A negative GERP score (�4.11) for the
mutated nucleotide suggests that this site is probably evolving
neutrally.20 PhyloP score of the variant (�0.308) suggests a faster
evolution than expected for this site.21 Furthermore, the variant was
predicted as ‘tolerated’ by SIFT17 (SIFT score, 0.16), ‘benign’ by
PolyPhen218 (PSIC score difference, 0.0) and ‘polymorphism’ by
MutationTaster19 (P-value, 0.999) (Table 1).

PCP2 p.E6del was excluded based on population screening. In 360
healthy chromosomes, four heterozygous individuals were identified
(Supplementary Figure 5), yielding an expected homozygote fre-
quency of approximately 1 in 8000. The region containing the
mutation is not conserved among species, and the deletion was
predicted as ‘polymorphism’ by MutationTaster19 (P-value, 0.717;
Table 1 and Supplementary Figure 6).

The remaining variant at chr13:26128001 (hg19; c.1128 C4G)
is located in exon 12 of ATP8A2 (ENSG00000132932,
ENST00000381655) and results in an isoleucine (I) to methionine
(M) substitution at residue 376. The mutation co-segregated with the
disease in Family C (Figure 1) lies in the C-terminal-predicted
transmembrane site of the E1 E2 ATPase domain (Figure 2a) and is
highly conserved across species (Figure 2b and Supplementary
Figure 7). Screening of 1210 control chromosomes, including 300
individuals from the same geographic region as Family C, excluded
presence of the variant in this control population. SIFT,17 PolyPhen218

and MutationTaster19 tools predicted the ATP8A2 p.I376M as a
causative mutation (scores: 0.0, 1.0 and 0.955, respectively).
Consequences of the amino acid change in protein structure were

evaluated by comparing the predicted secondary structures of wild-
type and mutant protein sequences. The wild-type protein is
predicted to contain 27 b-strands and 32 a-helices. I376 residue is
located at the N terminus of the 11th a-helix. The mutation enlarges
the 11th and 12th a-helices and creates an additional a-helix at
residue 401 (Figure 2c).

The status of ATP8A2 was evaluated in a cohort of 750 patients
with structural cortical malformations or degenerative neurological
disorders, and the underlying genetic cause is still unknown. Whole-
genome genotyping data generated by Illumina Human 370 Duo or
610K Quad BeadChips is available for this cohort. None of the
patients were found to harbor a homozygous interval (Z2.5 cM)
surrounding the ATP8A2 locus. Exome sequencing of the same group
did not reveal any mutations, including compound heterozygous
substitutions, in ATP8A2.

The transmembrane protein, ATP8A2, consists of four protein-
coding isoforms. The longest isoform (ENST00000381655) contains
37 exons and encodes a 112 kDa protein. The protein is highly
expressed in newborn and embryonic tissues, with strongest expres-
sion in mouse heart, brain and testis.10,28 RT-PCR analysis revealed
similar expression in different regions of the human brain.10 To
evaluate the possible involvement of ATP8A2 in motor functions, we
examined its expression profile in different human brain regions by
quantitative real-time RT-PCR. Human ATP8A2 is expressed in all
brain regions with the highest level of expression in cerebellum
(Figure 3). ATP8A2 expression in the patients cannot be evaluated, as
the gene is not expressed in lymphocytes.

To further investigate the role of ATP8A2 in brain development, we
examined the expression profiles of early embryonic mouse brain
(GSE8091)24 and identified genes with significantly correlated
expression profiles (R40.95, n¼ 218) with that of ATP8A2.
Functional clustering analysis suggested that positively correlated
genes were enriched for those involved in neuron differentiation,
cell, and neuron projection morphogenesis and axonogenesis
(Bonferroni-corrected P-values: 2.1E-3, 2.7E-3, 4.5E-3 and 1.5E-2
respectively). ATP8A2 is co-expressed with doublecortin responsible
for lissencephaly and WDR81 associated with CAMRQ2,7 suggesting
that these genes could represent similar developmental pathways.

DISCUSSION

CAMRQ is a rare genetically heterogeneous cerebellar ataxia with
mental retardation and dysarthric speech, with or without quad-
rupedal gait. Since the first mapping of the gene locus on chromo-
some 17p13, two additional loci on chromosomes 9p24 and 8q12
have been reported, and causative mutations have been identified in
VLDLR, CA8 and WDR81.2,3,6,7 Here we present the identification of
a fourth gene locus in a consanguineous family of two affected

Table 1 Novel coding variants identified by targeted next-generation sequencing of 05-996

Gene Position (hg19) Ref Var Effect GERP (score) PhyloP (score) SIFT (score) Polyphen2 (score) M. Taster (P-value) Segregation

ATP8A2 chr13:26,128,001 C G I376M 2.18 1.091 D. (0.02) P.D. (1.00) D.C. (0.995) Yes

APBA3 chr19:3,759,974 C T A97T �4.11 �0.308 T. (0.16) B. (0.14) P. (0.999) Yes

MUC16 chr19:9,068,391 G A A6352V �1.45 �0.803 n.a. n.a. P. (0.999) No

MUC16 chr19:9,068,577 G A T6290I 2.35 2.273 n.a. n.a. P. (0.999) No

ZNF823 chr19:11,833,601 A G C250R 0.632 1.532 D. (0.00) P.D. (1.00) P. (0.994) No

SERINC3 chr20:43,141,490 A G M116T 3.98 2.524 T. (0.34) B. (0.13) D.C. (0.999) No

PCP2 chr19:7,698,326 CTC — E6del n.a. 0.168 n.a. n.a. P. (0.717) Yes

Abbreviations: Ref, reference allele; Var, variant allele; M.Taster, Mutation Taster, D., damaging; T., tolerated; P.D., probably damaging; B., benign; n.a., not available; D.C., disease causing;
P., polymorphism.
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siblings and an affected nephew. Using whole-genome homozygosity
mapping followed by targeted next-generation sequencing, several
missense variants were observed. Filtering the variants by
co-segregation analysis, population screening, protein conservation
and disease gene prediction approaches revealed a novel missense
variant in ATP8A2 (c.1128 C4G; p.I376M) that segregates with the
phenotype. The mutation is located inside a transmembrane domain
and is predicted to change secondary structure of the protein.

ATP8A2 belongs to the P4-ATPases subfamily of P-type ATPases,
which are involved in the transport of aminophospholipids.
Biochemical studies have shown that P4-ATPases determine the
curvature of the phospholipid bilayer by flipping aminophospholipids
from the exoplasmic to the cytoplasmic leaflet.29,30 ATPases have been
implicated in human diseases such as ATP10C in Angelman
syndrome,31 ATP8B1 in hearing loss32 and hereditary cholestasis,33

and ATP8A2 in a severe neurological phenotype.10

ATP8A2 is involved in the transport of aminophospholipids toward
the cytoplasmic leaflet in brain cells, retinal photoreceptors and
testis.34 In humans, ATP8A2 is mainly expressed in brain tissues, with
highest levels in cerebellum, as well as in retina and testis.10

Cerebellum is a crucial regulatory organ for motor coordination
and this expression pattern is consistent with CAMRQ. The fact that
CAMRQ-associated genes have retinal expression34,35 raises the
possibility that eye abnormalities may be an additional clinical
feature of the phenotype. Strabismus has been observed in almost
all affected individuals in all the families reported thus far.1–8 In
addition, homozygous WDR81 mutation carriers display downbeat
nystagmus, temporal disk pallor and macular atrophy.36 However,
retinopathy is not a feature of WDR81-, VLDLR- and CA8-associated
CAMRQ.6,36 With respect to ATP8A2, further information is not
available, as Family C declined neuro-ophthalmological investigations.

Documentation of a de-novo-balanced translocation leading to
ATP8A2 haploinsufficiency10 brings into attention the clinical findings
of carriers in Family C. Whereas 05-992 and 05-995 did not
show neurological abnormalities, the t(10;13) de-novo-balanced
translocation carrier presented with a severe neurological phenotype

Figure 2 Graphical representation of the predicted functional and structural elements of ATP8A2 protein. (a) ATP8A2 is composed of an E1 E2 ATPase

domain and a haloacid dehalogenase-like hydrolase (HAD) domain. Ten transmembrane domains were predicted by TMPRED. The mutation lies in the

transmembrane region of C-terminal end of E1 E2 ATPase domain (dot). (b) Multiple amino acid sequence alignments show the sequence homology of

ATP8A2 protein in vertebrates. I376 residue is indicated with a box. (c) Graphical representation of secondary structural elements as predicted by

PSIPRED. The predicted elements (Pred) are indicated above the amino acid (AA) sequences (straight lines: coils; cylinders: helices; arrows: strands). The

mutation is predicted to alter the secondary structure of the protein. Transmembrane region is represented within the Pred graphs of wild-type (WT) and

mutant (Mut) proteins. EC, extracellular; IC, intracellular.

Figure 3 Expression pattern of ATP8A2 in nine different regions of human

brain. Real-time RT-PCR analysis showed that ATP8A2 is expressed in all

regions of the brain with the highest levels in the cerebellum.
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that partially overlaps with the phenotype of the affected members of
Family C. The possibility of a chimeric protein was ruled out, leaving
haploinsufficiency of ATP8A2 as the most likely explanation for the
phenotype. This suggests that ATP8A2 mutations represent yet
another example of clinical heterogeneity in the context of genomic
understanding of complex traits in humans and demonstrates
fundamental features of genomic analysis of human traits such as
variable expression, allelic heterogeneity and genotype–phenotype
correlations. Other examples include CRYBB1 in congenital cataract,37

COLL11A2 in Zweymuller Weissenbacher syndrome38 and MYBPC1
in arthrogryposis.39

These findings suggest that ATP8A2 could be critical for the
developmental processes of central nervous system, and alterations
of this gene may lead to severe neurological phenotypes.
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