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ABSTRACT

FREE ACTIONS ON PRODUCT OF SPHERES AT
HIGH DIMENSIONS

Osman Berat Okutan

M.S. in Mathematics

Supervisor: Prof. Dr. Ergün Yalçın

July, 2012

A classical conjecture in the theory of transformation groups states that if G =

(Z/p)r acts freely on a product of k spheres Sn1 × · · · × Snk , then r ≤ k. We

prove a special case of this conjecture. We show that given positive integers k, l

and G = (Z/p)r, there is an integer N such that if G acts freely and cellularly

on a CW-complex homotopy equivalent to Sn1 × · · · × Snk where ni > N for all

i and |ni − nj| < l for all i, j, then r ≤ k.

Keywords: Free Actions, Product of Spheres, Rank Conjecture.
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ÖZET

YUKSEK BOYUTLU KURELERIN CARPIMI UZERINE
SERBEST ETKILER

Osman Berat Okutan

Matematik, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ergün Yalçın

July, 2012

G = (Z/p)r grubu k tane kürenin çarpımı Sn1 × · · · × Snk üzerine serbest etki

ediyorsa, dönüşüm grupları teorisindeki klasik bir sanıya gore r ≤ k’dır. Bu tezde

bu sanının özel bir hali olan şu önermeyi ispatladık: k, l pozitif tamsayilari ve G =

(Z/p)r verildiğinde, öyle bir N tamsayısı vardır ki, eğer G grubu Sn1×· · ·×Snk ’ye

homotopik olan bir CW-kompleksine serbest etki ediyorsa öyle ki her i için ni > N

ve her i, j için |ni − nj| < l ise, r ≤ k’dır.

Anahtar sözcükler : Serbest Etkiler, Kürelerin Çarpımı, Rank Sanısı.
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Chapter 1

Introduction

Let G be a finite group. The rank of G, denoted by rk(G), is defined to be

the largest integer r such that (Z/p)r ⊆ G for some prime p. Due to results of

Smith [12] and Swan [13], we know that G acts freely and cellularly on a finite

CW-complex homotopy equivalent to a sphere Sn if and only if rk(G) = 1.

Homotopy rank of G, denoted by hrk(G), is defined to be the smallest integer

k such that G acts freely and cellularly on a finite complex homotopy equivalent

to a product of k spheres Sn1 × · · · × Snk for some n1, . . . , nk ≥ 1. Benson-

Carlson [2] conjectured that hrk(G) = rk(G). Note that this implies the result

in the previous paragraph. The weaker argument rk(G) ≤ hrk(G) is a classical

conjecture that can be equivalently written as follows.

Conjecture 1.1. If G = (Z/p)r acts freely and cellularly on a finite CW-complex

X homotopy equivalent to a product of spheres Sn1 × · · · × Snk , then r ≤ k.

The case n1 = · · · = nk = n is proved by G. Carlsson [5] under the assumption

that the action of G on homology groups of X is trivial. Later Adem-Browder [1]

proved the same case without assuming the action of G on homology groups is

trivial except for p = 2 and n = 1, 3, 7. The n = 1, p = 2 case is proven by Yalçın

[15]. More recently, B. Hanke [9] proved Conjecture 1.1 when p ≥ 3 dimX.

In this paper we prove another special case of this conjecture. Our main result

1



CHAPTER 1. INTRODUCTION 2

is the following.

Theorem 1.2. Let G = (Z/p)r and k, l are positive integers. Then there exists

an integer N such that if G acts freely and cellularly on a finite dimensional

CW-complex homotopy equivalent to Sn1 × · · · × Snk with ni ≥ N for all i and

|ni − nj| ≤ l for all i, j, then r ≤ k.

Browder [3] gives another proof of Conjecture 1.1 for the case n1 = · · · = nk

where the action of G on homology groups are trivial, with a different approach.

His proof is as follows: He shows that if a finite group G acts freely and cellularly

on a CW-complex X then the order of the group G divides the product

dimX∏
j=1

exp Hj+1(G,Hj(X))

Notice that when X is homotopy equivalent to (Sn)k, it has nonzero homology

groups only at dimensions 0, n, 2n, . . . , kn. If a ZG-module M has a trivial G-

action, then the exponent of H i(G,M) divides p for all i > 0. Hence we get pr

divides pk and so r ≤ k. In this paper this idea of Browder will be one of the

main tools for proving our result.

If the dimensions of the spheres are not equal, then there are nonzero homology

groups of X at more than k dimensions. Therefore, if we apply Browder’s idea

directly, we do not get pr ≤ pk but instead we get pr ≤ pm where m is the

number of dimensions where X has nonzero homology groups and m > k. To

handle this problem, we use a method used by Habegger [8] to glue homologies

at different dimensions and decrease the number of dimensions where there are

nonzero homology groups. However after gluing, the new homology groups may

not have trivial G-action, so the exponents in the Browder’s theorem may not

divide p. To overcome this difficulty, we use a theorem by Pakianathan [11] to

show that for any finitely generated ZG-module M , there is an integer N such

that if i > N then exp H i(G,M) divides p. We show that there are finitely many

possibilities for homology groups as ZG-modules after gluing so that we can take

the largest N coming from the Pakianathan’s theorem. To show this finiteness we

use a version of Jordan-Zassenhaus Theorem [6] and finiteness of the Ext-groups

under some conditions.



Chapter 2

Preliminaries

2.1 Homology Groups of Products of Spheres

We know that if n > 0, then the homology group Hi(S
n) is isomorphic to integers

for i = 0, n and is equal to 0 otherwise. Künneth theorem, which we will just

state without a proof, says that the homology groups of a product of spaces is

determined by homology groups of those spaces in the product. By using this

theorem, we can compute the homology groups of products of spheres.

Theorem 2.1 (Künneth theorem). If X and Y are CW-complexes, then there

are split exact sequences

0→
n⊕
i=0

(Hi(X)⊗Hn−i(Y ))→ Hn(X × Y )→

n−1⊕
i=0

TorZ(Hi(X), Hn−i−1(Y ))→ 0

for all n > 0.

In the case of product of spheres, the Tor part disappears since all homology

groups of a sphere are Z-free.

3
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Corollary 2.2. The homology groups of a product of spheres is given by the

following isomorphism

Hn(Sn1 × · · · × Snk) ∼=
⊕

i1+...+ik=n

Hi1(S
n1)⊗ · · · ⊗Hik(Snk).

As a consequence, nonzero homology groups of Sn1 × · · · × Snk are Z-free and

occurs at dimensions of the form nj1 + · · ·+njm where {j1, . . . , jm} is a nonempty

subset of {1, . . . , k}.

Proof of Corollary 2.2. We will prove the corollary by induction on k. If k = 1,

the statement is obvious. Assume k > 1 and the statement is true for all m ≤
k − 1. Let X = Sn1 × · · · × Snk−1 and Y = Snk . Note that in the short exact

sequence in Theorem 2.1, the Tor part is equal to 0 since Hi(Y ) is Z-free for all

i. Hence the first map in Theorem 2.1 becomes an isomorphism. By using the

inductive step, we get the desired result.

Let us apply this theorem to find homology groups of some products of spheres.

Example 2.3. Let us consider the case n1 = ... = nk > 0, in other words let

X := Sn × · · · × Sn︸ ︷︷ ︸
k times

and n > 0.

By Corollary 2.2 we know that nonzero homology groups of X occur only at

dimensions 0, n, ..., kn and for j = 0, 1, ..., k, we have

Hjn(X) =
⊕
(k
j)

Z.

Here is another example:

Example 2.4. Let X := Sn × Sn+1 and n > 0. By Corollary 2.2 we have

Hi(X) =

{
Z for i = 0, n, n+ 1, 2n+ 1

0 otherwise.
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2.2 Group Actions and Cellular Chain Com-

plexes

Let X be a CW-complex with cellular chain complex (C∗(X), ∂) and G be a

group acting cellularly on X. If enα is an open n-cell in Cn(X), then engα := g(enα)

is again an open n-cell in Cn(X) since the action is cellular. This defines a G-

action on Cn(X), hence Cn(X) becomes a ZG-module for all n. We will see that

the boundary map ∂ respects this ZG-module structure, i.e. (C∗(X), ∂) is a chain

complex of ZG-modules. To see this, we should look what ∂ does.

We will denote the indices of open n-cells in X by α and the indices of open

(n− 1)-cells in X by β. Each open n-cell enα is attached to the (n− 1) -skeleton

Xn−1 of X by an attaching map φα : Sn−1 → Xn−1. Since the action of G

is cellular, we have φgα = gφα. For each open (n − 1)-cell en−1β , we have the

quotient map πβ : Xn−1 → Sn−1 where πβ is the composition of the maps Xn−1 →
Xn−1/(Xn−1 − en−1β ) ∼= Sn−1 where the first map is the quotient map and the

second map comes from the embedding of en−1β in Xn−1. Notice that πgβ =

πβg
−1 since the second map takes en−1gβ to en−1β and collapses all other cells to

a point, hence in total it just collapses all cells except en−1gβ to a point. The

boundary map ∂ is defined by ∂(enα) = Σβdαβe
n
β where dαβ denotes the degree

of the map πβ ◦ φα : Sn−1 → Sn−1 (see [10, p. 140]). We want to show that

∂(engα) = g∂(enα). We have g∂(enα) = Σβdαβe
n−1
gβ = Σβdα(g−1β)e

n−1
β . Hence, to

show the desired equality, we need to show d(gα)β = dα(g−1β). This is true since

d(gα)β = deg(πβ ◦ φgα) = deg(πβ ◦ g ◦ φα) = deg(πg−1β ◦ φα) = dα(g−1β). Therefore,

we have shown that (C∗(X), ∂) is a chain complex of ZG-modules. This implies

that homology groups are also ZG-modules as quotients of ZG-modules.

If X is a connected CW-complex, then any zero cell generates H0(X) ∼= Z as

a Z-module and they are all in the same homology class, hence the action of G

on H0(X) is trivial. For a nonzero chain complex C∗ of ZG-modules, we will call

C∗ connected if H0(C) = Z with trivial G-action.

If the action of G is free and cellular, then (C∗(X), ∂) becomes a chain complex
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of free ZG-modules as we see in the following argument: Let E denote the set of

all n-cells of X. Then E becomes a G-set under the G-action we defined above.

Since Cn(X) is free abelian group generated by E, it is enough to show that the

action of G on E is free. This is true since by the freeness of the action of G on

X, we have genα = enα implies g = 1.

If X is an n-dimensional CW-complex, then the cellular chain complex C∗(X)

satisfies Cn(X) 6= 0 and Ci(X) = 0 for all i > n. A nonnegative chain complex

satisfying these conditions is called an n-dimensional chain complex.

2.3 Tate Cohomology

The Tate cohomology of a finite group G with coefficients in a ZG-module M is

defined by using complete resolutions. A complete resolution of a finite group G

is an acyclic complex (F∗, ∂∗) of free ZG-modules together with maps ε : F0 → Z,

δ : Z → F−1 such that ε is a surjection, δ is an injection, and ∂0 = δ ◦ ε (see

[4, p. 132]). Note that by exactness of F∗ we get · · · ∂2→ F1
∂1→ F0

ε→ Z → 0 is

a free resolution and 0 → Z δ→ F−1
∂−1→ F−2 → · · · is an inverse free resolution

(a free resolution in inverse direction). Conversely if we have a free resolution

and an inverse free resolution, we can obtain a complete resolution by taking

∂0 = δ ◦ ε. We already know that every ZG-module has a free ZG-resolution.

Hence the existence of a complete resolution of a finite group G depends on the

existence of an inverse free ZG-resolution of Z. Such a resolution can be obtained

by taking a free ZG-resolution F∗ of Z such that all Fi’s are finitely generated

ZG-modules (we will see that this is possible when G is finite) and applying

HomZ(−,Z) to it (see [4, p. 133]). The Tate cohomology group of G is defined

by Ĥ∗(G,M) = H∗(HomZG(F∗,M)) where F∗ is a complete resolution of G (see

[4, p. 134]). Since there is a homotopy between any two complete resolutions of

G (see [4, p. 132]), this definition is independent from the complete resolution F∗

that we have chosen.
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We have

Ĥ i(G,M) =

{
H i(G,M) for i ≥ 1

H−i−1(G,M) for i ≤ −2

Multiplying an element in H i(G,M) by the order of G, we obtain zero for i ≥ 1,

hence the group H i(G,M) has a finite exponent for i ≥ 1. This follows from

the composition of transfer and restriction maps and proved in [4, p. 84]. If we

consider the Tate cohomology groups Ĥ i(G,M), then we do not need to make

an exception for i = 0 since Ĥ i(G,M) has a finite exponent for all i. It appears

that to obtain some facts about exponents, it is better to use Tate cohomology

groups. Another advantage of Tate cohomology that simplifies calculations is

that if P is a projective ZG-module, then Ĥ i(G,P ) = 0 (or equivalently we can

say that exp Ĥ i(G,P ) = 1) for all i. This fact is proved as follows: Let F∗ be

a complete resolution of G. An exact sequence K
i→ L

π→ M of ZG-modules

is called an admissible exact sequence if the inclusion map Imπ ↪→ M is Z-split

(see [4, p. 129]). A ZG-module M is called relatively injective if HomG(−,M)

takes admissible exact sequences of ZG-modules to exact sequences of abelian

groups. Projective ZG modules are relatively injective (see [4, p. 130]). Since F∗

is an exact sequence of free ZG modules, the exact sequence Fi+1 → Fi → Fi−1 is

admissible exact for all i. Hence, for a projective module P , we have Ĥ i(G,P ) = 0

for all i.

For a given ZG-module M and an integer m > 0, we say that a ZG-module N

is the m-th syzygy of M if there is an exact sequence of ZG-modules of the form

0→ N → Pm → · · · → P1 →M → 0, where Pi’s are projective ZG-modules (see

[14, p. 47]). We denote the m-th syzygy by ΩmM . For m = 0 we take Ω0M = M .

Notice that ΩmM depends on projective modules we choose, but we handle this

situation as follows. We choose and fix a free resolution for every ZG-module

and define ΩmM according to that resolution. Let · · · ∂2→ F1
∂1→ F0

ε→ M → 0 be

a free resolution of M . We let ΩmM = Im(∂m). Furthermore, if G is finite and

M is finitely generated as a ZG-module (equivalently as a Z-module), then we

can choose Fm’s finitely generated hence ΩmM becomes finitely generated for all

m ≥ 0. We show this as follows: We construct Fm’s inductively. Let m1, ...,mk

be a generating set for M . Let F0 =
⊕k

i=1 ZG and ∂0 : F0 →M be the surjection

taking the identity element of i-th summand to mi for i = 1, . . . , k. Now assume
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that (Fm, ∂m) is defined. Since G is finite and Fm is finitely generated as a ZG-

module, Fm is finitely generated as a Z-module. Hence if we let the ZG-module

K be the kernel of the map ∂m, it is finitely generated as a Z-module since Z is

Noetherian. Therefore K is finitely generated as a ZG-module. Hence we can

find finitely generated free module Fm+1 surjecting onto K by a map ∂m+1 as

we found for M . Continuing this process we can obtain (F∗, ∂∗) which is a free

ZG-resolution of M with Fm’s are finitely generated for all m.

If we fix resolutions as above, then the syzygies ΩmM are completely deter-

mined by m and M , it is finitely generated if M is. Fixing resolutions in these

ways simplifies some results we show later in the thesis. Syzygies satisfy the

following nice properties.

Theorem 2.5. If G is a finite group and M,N are ZG-modules, then

(i) Ĥ i(G,M) ∼= Ĥ i+m(G,ΩmM) for all i ∈ Z,

(ii) ExtiZG(ΩmM,N) ∼= Exti+mZG (M,N) for all i ≥ 1.

Proof. Let · · · → F1 → F0 → M → 0 be the free resolution of M that we

fixed. Notice that there is a short exact sequence of the form 0 → Ωm+1M →
Fm → ΩmM → 0 for all m ≥ 0. Corresponding long exact sequences for Tate

cohomology and Ext groups are:

· · · → Ĥ i(G,Fm)→ Ĥ i(G,ΩmM)→ Ĥ i+1(G,Ωm+1M)→

Ĥ i+1(G,Fm)→ · · · (2.1)

· · · → ExtiZG(Fm, N)→ ExtiZG(Ωm+1M,N)→ Exti+1
ZG (ΩmM,N)→

Exti+1
ZG (Fm, N)→ · · · . (2.2)

For a projective ZG-module P , we know that Ĥ i(G,P ) = 0 for all i. Hence by

(2.1) we have Ĥ i(G,ΩmM) ∼= Ĥ i+1(G,Ωm+1M), so Ĥ i(G,M) ∼= Ĥ i+m(G,ΩmM)

for all i. Also if i ≥ 1, then ExtiZG(P,N) = 0. Similarly, by (2.2) we get

ExtiZG(Ωm+1M,N) ∼= Exti+1
ZG (ΩmM,N), so ExtiZG(ΩmM,N) ∼= Exti+mZG (M,N)

for all i ≥ 1.



Chapter 3

A Theorem of Browder and

Habegger’s Method

3.1 A Theorem of Browder

In Chapter 2 we have seen that if a group G acts freely and cellulary on a finite

dimensional connected CW -complex X, then the cellular chain complex C∗(X)

becomes a nonnegative, connected, finite dimensional chain complex of free ZG-

modules. Browder proves the following theorem for such chain complexes.

Theorem 3.1 (Browder [3], p.599). Let G be a finite group and C∗ be a non-

negative, connected, n-dimensional chain complex of free ZG-modules. Then the

order of G divides
∏n

j=1 exp H
j+1(G,Hj(C∗)).

We prove this theorem by using the following lemma.

Lemma 3.2. If K
f→ L

g→ M is an exact sequence of abelian groups where

K,L,M has finite exponents eK , eL, eM respectively, then eL divides eKeM .

Proof. Let l ∈ L. We need to show (eKeM)l = 0. The element eM l is in the kernel

of the map g since g(eM l) = eMg(l) = 0. Since the sequence is exact, there exist

a k ∈ K such that f(k) = eM l. Therefore, (eKeM)l = eKf(k) = f(eKk) = 0.

9
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Now, we can give a proof of Theorem 3.1.

Proof of Theorem 3.1. For each integer j, there are following short exact se-

quences of ZG-modules

0→ Zj → Cj → Bj−1 → 0

0→ Bj → Zj → Hj(C∗)→ 0

where Zj denotes the j-cycles and Bj denotes the j-boundaries of C∗. The long

exact sequence of Tate cohomology groups corresponding to the first short exact

sequence above is

· · · → Ĥ i(G,Cj)→ Ĥ i(G,Bj−1)→ Ĥ i+1(G,Zj)→ Ĥ i+1(G,Cj)→ · · ·

Since Cj is a free ZG-module, Hn(G,Cj) = 0 for all n, so Ĥ i(G,Bj−1) is isomor-

phic to Ĥ i+1(G,Zj) for all i, j.

The long exact sequence of Tate cohomology groups corresponding to the

second short exact sequence above is

· · · → Ĥ i(G,Bj)→ Ĥ i(G,Zj)→ Ĥ i(G,Hj(C∗))→ · · ·

In this sequence we can replace Ĥ i(G,Zj) with Ĥ i−1(G,Bj−1) since they are

isomorphic by the above argument. Now, by Lemma 3.2 we have

exp Ĥ i−1(G,Bj−1)

exp Ĥ i(G,Bj)
divides exp Ĥ i(G,Hj(C∗))

Notice that the quotient above may not be an integer but what we mean is that

the right-hand side is an integer multiple of left-hand side. Letting i = j + 1 and

multiplying both sides of the expression above through j = 1, ..., n, we get

exp Ĥ1(G,B0)

exp Ĥn+1(G,Bn)
divides

n∏
j=1

exp Ĥj+1(G,Hj(C∗))

Since C∗ is n-dimensional, we have Bn = 0, so the denominator of the left hand

side of the above expression is 1. Also, the Tate cohomology groups on the right

hand side of the above expression is the same as the ordinary cohomology groups
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since j + 1 > 1 for j = 1, ..., n. Therefore to prove the theorem, it is enough to

show exp Ĥ1(G,B0) = |G|. We will show that Ĥ1(G,B0) ∼= Z/|G|.

Since C∗ is a nonnegative chain complex, we have Z0 = C0 and there is a short

exact sequence

0→ B0 → C0 → H0(C∗)→ 0

where H0(C∗) ∼= Z. As above, by considering the long exact Tate cohomology

sequence and using the freeness of C0, we get Ĥ1(G,B0) ∼= Ĥ0(G,Z) ∼= Z/|G|.
This completes the proof.

If we have some upper bounds on the exponents of Hj+1(G,Hj(C∗)) in The-

orem 3.1, we can obtain restrictions on the order of the group G. The following

theorem gives us an upper bound for the exponents of Tate cohomology groups

in a particular case.

Theorem 3.3. If G = (Z/p)r and M is a ZG-module where G acts trivially on

M , then exp H i(G,M) divides p for all i ≥ 1.

Proof. We will prove by induction on r. If r = 1, the statement is true since

|G| = p and the exponent of the Tate cohomology groups divides the order of the

group.

Assume r > 1 and the statement is true for rank strictly less than r. We

know that H i(−,−) is a contravariant functor from the category of pairs (K,N)

where K is a group and N is a ZK-module (see [4, p. 78]). In this category, a

morphism from (K,N) to (K ′, N ′) is a pair (α, f) such that α : K → K ′ a group

homomorphism, f : N ′ → N is a Z-module map with f(α(k)n′) = kα(n′) for all

k ∈ K, n′ ∈ N ′. In other words, f is a ZK-module map if we consider N ′ as a

ZK-module by defining kn′ := α(k)n′. Now, let H = (Z/p)r−1, j : H → G be

the inclusion map and π : G→ H be the projection map such that π ◦ j = idH .

M is also a ZH-module with trivial H action and φ := (j, idM) is a morphism

from (H,M) to (G,M). Since the action of G is trivial on M , ψ := (π, idM) is a

morphism from (G,M) to (H,M). Notice that ψ◦φ = id(H,M). If we let φ∗ and ψ∗

be the maps between cohomology groups obtained by applying the contravariant
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functor H∗(−,−) to φ and ψ respectively, we get φ∗ = resGH : H i(G,M) →
H i(H,M) and φ∗ ◦ ψ∗ = (ψ ◦ φ)∗ = idHi(H,M). Therefore the restriction map

splits and H i(G,M) ∼= Ker(resGH)
⊕

H i(H,M). By induction we know that the

exponent of H i(H,M) divides p, hence it is enough to show that the exponent of

Ker(resGH) divides p.

Take any element x in H i(G,M). We know that trGHresGH(x) = [G : H]x = px

(see [4, p. 82]). Hence if x ∈ Ker(resGH), then px = 0. Therefore, the exponent of

Ker(resGH) divides p.

Corollary 3.4. Let G = (Z/p)r and X be a CW-complex homotopy equivalent to

Sn × · · · × Sn︸ ︷︷ ︸
k times

with n ≥ 1. If G acts freely and cellularly on X with trivial action

on homology groups of X, then r ≤ k.

Proof. Let C∗(X) denote the cellular chain complex of X. In Chapter 2

we have seen that C∗(X) is a nonnegative, connected, finite chain complex

of free ZG modules. Homology groups of this chain complex are nonzero

at dimensions 0, n, 2n, ..., kn. Hence by Theorem 3.1, |G| = pr divides∏k
j=1 exp H

jn+1(G,Hjn(X)). By Theorem 3.3, the last expression divides pk.

Therefore, pr divides pk and hence r ≤ k.

3.2 Habegger’s Method

In previous section we have used Theorem 3.1 to show that if G = (Z/p)r acts

freely and cellularly on a CW-complex X homotopy equivalent to Sn1×· · ·×Snk

where n1 = · · · = nk and the action of G on homology groups of X is trivial, then

r ≤ k. However, if the dimensions of spheres are not equal, then their product

has nonzero homology groups at more than k-many dimensions, hence we can not

obtain r ≤ k by applying Theorem 3.1. In this section we present a method such

that for a given chain complex we can glue homologies at different dimensions

and decrease the number of dimensions where the homology groups are nonzero.

We say that a chain complex C∗ is freely equivalent to D∗ if there is a short
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exact sequence of chain complexes of the form 0 → C∗ → D∗ → F∗ → 0 or

0 → F∗ → C∗ → D∗ → 0, where F∗ is a finite complex of free ZG-modules. In

this case, if C∗ is a finite chain complex, then D∗ is also finite chain complex and

if C∗ is a chain complex of free ZG-modules, then also D∗ is.

Now we can state the main theorem of this section that gives us a method

such that for a given chain complex C∗, we can obtain a new chain complex whose

nonzero homologies occurs at fewer dimensions while it is still very similiar to C∗.

This method can be found in Habegger’s article [8, p. 433-434].

Theorem 3.5. Let C∗ be a chain complex and n,m are integers such that n < m.

If for all k with n < k < m we have Hk(C∗) = 0, then C∗ is freely equivalent to

a chain complex D∗ such that

(i) Di = Ci for every i ≤ n or i > m;

(ii) Hi(D∗) = Hi(C∗) for every i 6= n,m;

(iii) Hn(D∗) = 0;

(iv) there is an exact sequence of ZG-modules

0→ Hm(C∗)→ Hm(D∗)→ Ωm−nHn(C∗)→ 0.

Proof. Let Fm−1 → ...→ Fn → Hn(C∗)→ 0 be an exact sequence where all Fi’s

are free ZG-modules. Let Zn be the set of cycles in Cn, which also a subgroup of

Cn. Consider the following diagram:

... −−→ 0 −−→ Fm−1 −−→ ... −−→ Fn −−→ Hn(C∗) −−→ 0 −−→ ...

id

y y
... −−→ Cm −−→ Cm−1 −−→ ... −−→ Zn −−→ Hn(C∗) −−→ 0 −−→ ...

Since all Fi’s are projective and the bottom row has no homology below dimension

m, the identity map extends to a chain map between rows.

... −−→ 0 −−→ Fm−1 −−→ ... −−→ Fn −−→ Hn(C∗) −−→ 0 −−→ ...

fm−1

y fn

y id

y y
... −−→ Cm −−→ Cm−1 −−→ ... −−→ Zn −−→ Hn(C∗) −−→ 0 −−→ ...
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Notice that this chain map is still a chain map if we consider it between f∗ : F∗ →
C∗, as shown in the following diagram.

... −−→ 0 −−→ Fm−1 −−→ ... −−→ Fn −−→ 0 −−→ ...y fm−1

y fn

y y
... −−→ Cm −−→ Cm−1 −−→ ... −−→ Cn −−→ Cn−1 −−→ ...

Now let D∗ be the mapping cone of f∗. We can immediately see that Di = Ci

if i ≤ n or i > m. We have the following short exact sequence:

0→ C∗ → D∗ → ΣF∗ → 0

where ΣF∗ denotes the chain complex (ΣF∗)i = Fi−1 and the boundary map is

equal to -1 times the boundary of F∗. So C∗ is freely equivalent to D∗. Corre-

sponding long exact sequence of homology groups is

... −−→ Hi(F∗)
f∗−−→ Hi(C∗) −−→ Hi(D∗) −−→ Hi−1(F∗) −−→ ...

Notice that f∗ : Hn(F∗) → Hn(C∗) is a surjection, furthermore it is an iso-

morphism if m > n+ 1.

If i > m or i < n, then Hi(F∗) = Hi−1(F∗) = 0, hence Hi(C∗) = Hi(D∗).

If n < i < m, then we have 0 → Hi(D∗) → Hi−1(F∗) → Hi−1(C∗) exact. If

n+ 1 < i < m, then Hi−1(F∗) = 0, so Hi(D∗) = 0. If i = n+ 1, then m > n+ 1,

hence f∗ : Hn(F∗) → Hn(C∗) is an isomorphism. This implies that Hi(D∗) = 0.

Therefore, if n < i < m, then Hi(D∗) = Hi(C∗) = 0. By combining with the

above paragraph, we conclude that Hi(D∗) = Hi(C∗) for all i 6= m,n.

If i = n, then we have the exact sequence Hn(F∗)→ Hn(C∗)→ Hn(D∗)→ 0.

Since the first map is a surjection, Hn(D∗) = 0. It remains to show that we have

an exact sequence 0 → Hm(C∗) → Hm(D∗) → Ωm−nHn(C∗) → 0. If m = n + 1,

we have 0→ Hm(C∗)→ Hm(D∗)→ Fn → Hn(C)→ 0. Hence the result follows.

If m > n + 1, then the sequence 0 → Hm(C∗) → Hm(D∗) → Hm−1(F∗) → 0 is

exact, and this proves the result since Hm−1(F∗) = Ωm−n(Hn(C∗)).



Chapter 4

Tate Hypercohomology

In this chapter we give another proof of Theorem 3.1 by using Habegger’s method.

To do this, we generalize the concept of Tate cohomology and obtain Tate hy-

percohomology where coefficients of the cohomology groups comes from a chain

complex. One can skip this chapter and read the last chapter to see the proof the

main theorem since material of this chapter will not be used in the last chapter.

Many definitions and theorems that we will prove for chain complexes of ZG-

modules in this chapter are valid for arbitrary chain complexes, but for our pur-

poses we will restrict our attention to chain complexes of ZG-modules. Through-

out this section, every chain complex will be a chain complex of ZG-modules.

4.1 Extended Hom Functor

Recall that for a finite group G and a ZG-module M , the i-th Tate cohomology

group is defined by Ĥ i(G,M) = H i(HomZG(F∗,M)) where F∗ is a complete

resolution of G (see [4, p. 134]). Notice that HomZG(−,M) is a functor from the

category of chain complexes of ZG-modules to the category of cochain complexes

of abelian groups. If we can generalize this functor to the functor HomZG(−, C∗)
from the category of chain complexes of ZG-modules to the category of cochain

15
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complexes of abelian groups where C∗ is a chain complex, then we obtain Tate

cohomology groups with coefficients in a chain complex.

A graded module homomorphism f∗ of degree n from a chain complex C∗ to

a chain complex D∗ is a family of module homomorphisms (fk)
∞
k=−∞ such that

fk : Ck → Dk+n for all k. The group Homn
ZG(C∗, D∗) is defined to be the set of

all graded module homomorphisms of degree −n from C∗ to D∗. This set has

an abelian group structure under addition of graded module homomorphisms.

Define the boundary map δn : Homn
ZG(C∗, D∗) → Homn+1

ZG (C∗, D∗) by δn(f) =

f∂ − (−1)n∂f (see [4, p. 5]). By these definitions, (HomZG(C∗, D∗), δ) becomes

a cochain complex of abelian groups.

Let us show that HomZG(C∗,−) is a covariant functor from the category of

chain complexes of ZG-modules to the category of cochain complexes of abelian

groups. Let E∗, E
′
∗ be two chain complexes of ZG-modules and f∗ be a chain

map from E∗ to E ′∗. Let g∗ be a graded module homomorphism of degree n from

C∗ to E∗. Define the graded module homomorphism (fg)∗ : C∗ → E ′∗ such that

(fg)k = fk+n ◦ gk. If we define HomZG(C∗, f∗) in this way, then HomZG(C∗,−)

becomes a covariant functor from the category of chain complexes of ZG-modules

to the category of cochain complexes of abelian groups. Similarly, HomZG(−, D∗)
is a contravariant functor from the category of chain complexes of ZG-modules

to the category of cochain complexes of abelian groups.

If D∗ is a chain complex concentrated at 0, then HomZG(C∗, D∗) ∼=
HomZG(C∗, D0). Hence the contravariant functor HomZG(−, D∗) extends the

functor HomZG(−,M) if we consider a module as a chain complex concentrated

at 0. Now let us define Tate hypercohomology of a finite group G with coefficients

in a ZG-module C∗ as Ĥ∗(G,C∗) := H∗(HomZG(F∗, C∗)) where F∗ is a complete

resolution of G. This is well defined since if F ′∗ is another complete resolution of

G then it is homotopic to F∗ and by functoriality of HomZG(−, C∗) the cochain

complex HomZG(F∗, C∗) is homotopic to the cochain complex HomZG(F ′∗, C∗).

Similarly, Tate hypercohomology extends Tate cohomology if we consider a mod-

ule as a chain complex concentrated at 0. Now let us obtain some properties of

Hom and Tate hypercohomology.
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For a chain complex (C∗, ∂∗), the n-fold suspension of C∗ is the chain complex

denoted by (ΣnC∗,Σ
n∂) such that (ΣnC)k := Ck−n and (Σn∂)k := (−1)n∂k−n.

We write ΣC∗ instead of Σ1C∗. With this notation we have the equality ΣnC∗ =

Σ(Σn−1C∗) (see [4, p. 5]). The n-fold suspension of a cochain complex is defined

similarly.

Proposition 4.1. Let G be a group and C∗, D∗ be chain complexes of ZG-

modules.

(i) HomZG(ΣnC∗, D∗) = ΣnHomZG(C∗, D∗),

(ii) HomZG(C∗,Σ
nD∗) ∼= Σ−nHomZG(C∗, D∗).

Proof. (i) Let f∗ : ΣnC∗ → D∗ be a graded module homomorphism of degree

−i. The ZG-module homomorphism fk : ΣnCp → Dp−i can be considered as

fk : Cp−n → Dp−i. Hence f∗ is a graded module homomorphism of degree

−(i − n) from C∗ to D∗, implying Homi
ZG(ΣnC∗, D∗) = Homi−n

ZG (C∗, D∗) =

(ΣnHomZG(C∗, D∗))
i. If we denote the boundary map of HomZG(C∗, D∗) by

δ, then Σnδi(f) = (−1)nδi−n(f) = (−1)n[f∂ − (−1)i−n∂f ] = fΣn∂ − (−1)i∂f ,

which is equal to the boundary map of HomZG(ΣnC∗, D∗). This proves (i).

(ii) Let f∗ : C∗ → ΣnD∗ be a graded module homomorphism of degree

−i. The ZG-module homomorphism fk : Cp → (ΣnD∗)p−i can be considered

as fk : Cp → Dp−i−n. Hence f∗ is a graded module homomorphism of de-

gree −(i + n) from C∗ to D∗, implying f∗ is an element of Homi+n
ZG (C∗, D∗) =

(Σ−nHomZG(C∗, D∗))
i. Define Φ∗ : HomZG(C∗,Σ

nD∗) → Σ−nHomZG(C∗, D∗)

such that Φi : Homi
ZG(C∗,Σ

nD∗) → (Σ−nHomZG(C∗, D∗))
i is the isomorphism

sending f to (−1)inf . It is enough to show that Φ∗ is a chain map. Let α∗, β∗

denote the boundary maps of HomZG(C∗,Σ
nD∗) and Σ−nHomZG(C∗, D∗) respec-

tively and let δ∗ denote the boundary map of HomZG(C∗, D∗). We need to show

that Φi+1 ◦ αi = βi ◦ Φi, in other words, (−1)in+nαi = (−1)inβi that means
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αi = (−1)nβi. But this is true since

βi(f) = (−1)nδi+n(f)

= (−1)n[f∂ + (−1)i+n∂f ]

= (−1)n[f∂ + (−1)i(Σn∂)f ]

= (−1)nαi(f).

Let us consider the cycles, boundaries, and the cohomology groups of the

cochain complex HomZG(C∗, D∗). We shall start with cycles and boundaries at

dimension zero. Let f∗ : C∗ → D∗ be a graded module homomorphism of degree

0. It is a 0-cycle if δ0(f) = f∂ − ∂f = 0, in other words if it is a chain map. A

0-cycle is a boundary if it is equal to δ1(h) = h∂ + ∂h for some h∗ : C∗ → D∗ a

graded module homomorphism of degree −1. Since two 0-cycles (or equivalently

chain maps) f and g belongs to the same homology class if f − g = δh = h∂+∂h

for some h : C∗ → D∗ a graded module homomorphism of degree 1, they have the

same homology class if they are homotopic. Hence there is a bijection between

H0(HomZG(C∗, D∗)) and the homotopy classes of chain maps from C∗ to D∗.

Homotopy classes of chain maps from C∗ to D∗ is denoted by [C∗, D∗] (see [4,

p. 5]). There is a natural way to give an abelian group structure to this set

since if a chain map f is homotopic to f ′ and a chain map g is homotopic to g′

then f + g is homotopic to f ′ + g′. With this abelian group structure we have

H0(HomZG(C∗, D∗)) ∼= [C∗, D∗]. By using this result and Proposition 4.1, we

have the following corollary.

Corollary 4.2. Let C∗, D∗ be a chain complexes of ZG-modules. We have iso-

morphisms Hn(HomZG(C∗, D∗)) ∼= [Σ−nC∗, D∗] ∼= [C∗,Σ
nD∗].

Proof. By the definition of suspension, we have an isomorphism

Hn(HomZG(C∗, D∗)) ∼= H0(Σ−nHomZG(C∗, D∗)).

Theorem 4.1 implies that

H0(Σ−nHomZG(C∗, D∗)) ∼= H0(HomZG(Σ−nC∗, D∗))

∼= [Σ−nC∗, D∗]
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and

H0(Σ−nHomZG(C∗, D∗)) ∼= H0(HomZG(C∗,Σ
nD∗))

∼= [C∗,Σ
nD∗].

These prove the statement.

Corollary 4.3. Let P∗ be a chain complex of projective ZG-modules. Then

(i) If C∗ is an acyclic nonnegative chain complex of ZG-modules, then the

cochain complex HomZG(P∗, C∗) is acyclic.

(ii) If P∗ is nonnegative and C∗ is an acyclic chain complex of ZG-modules,

then the cochain complex HomZG(P∗, C∗) is acyclic.

Proof. By Corollary 4.2, it is enough to show that [P∗,Σ
nC∗] = 0 for all n. This is

true in both of the cases (i),(ii) by the fundamental lemma of homological algebra

(see [4, p. 22]).

Let f∗ : D∗ → D′∗ be a chain map. We know that the mapping cone of f∗ gives

important informations about f∗. The following theorem says that the mapping

cone of the HomZG(C∗, f) is isomorphic to the HomZG(C∗, E∗) where E∗ is the

mapping cone of f∗. In other words it says that it is same if you first take mapping

cone and then apply Hom or if you first apply Hom and then take mapping cone.

Theorem 4.4. Let C∗, D∗, D
′
∗ be chain complexes of ZG-modules and f∗ : D∗ →

D′∗ be a chain map. If we denote the mapping cone of f∗ by E∗, then the mapping

cone of HomZG(C∗, f∗) is isomorphic to HomZG(C∗, E∗).

Before proving this theorem let us recall the definition of the mapping cone

for chain complexes and cochain complexes. Let f : D∗ → D′∗ be a chain map

and ∂, ∂′ be the boundary maps of D∗, D
′
∗ respectively. The mapping cone of f

is a chain complex (E∗, ∂
′′) such that Ei = D′i

⊕
Di−1 and ∂′′(d′, d) = (∂′d′ +

f(d),−∂d). We can write ∂′′ in matrix notation as follows (see [4, p. 6])
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∂′′ =

(
∂′ f

0 −∂

)

Mapping cones of chain maps between cochain complexes defined similarly.

Let g∗ : D∗ → D′∗ be a chain map and δ, δ′ be the boundary maps of D∗, D′∗

respectively. The mapping cone of g is a cochain complex E∗, δ′′ such that Ei =

D′i
⊕

Di+1 and δ(d′, d) = (δ′d′ + g(d),−δd). We can write δ′′ in matrix notation

as follows

δ′′ =

(
δ′ g

0 −δ

)

Now let us prove Theorem 4.4.

Proof of Theorem 4.4. Let δ, δ′ denote the boundary maps of cochain complexes

HomZG(C∗, D∗) and HomZG(C∗, D
′
∗) respectively. We have the chain map

HomZG(C∗, f∗) : HomZG(C∗, D∗)→ HomZG(C∗, D
′
∗)

If we denote the mapping cone of this map by (A∗, δ′′), then

Ai = Homi
ZG(C∗, D

′
∗)
⊕
Homi+1

ZG (C∗, D∗)

and we can write δ′′ in matrix form as follows

(δ′′)i =

(
(δ′)i f

0 −δi+1

)

Let ∂E denote the boundary map of E∗ and γ denote the boundary map of

HomZG(C∗, E∗). If h : C∗ → E∗ is a graded module homomorphism of degree −i,
then since hp : Cp → D′p−i

⊕
Dp−i−1, we can consider h as a pair of graded module

homomorphisms (g′, g) where g′ : C∗ → D′∗ a graded module homomorphism of

degree −i and g : C∗ → D∗ is a graded module homomorphism of degre −(i+ 1).

Under these identifications, we have

Homi
ZG(C∗, E∗) = Homi

ZG(C∗, D
′
∗)
⊕
Homi+1

ZG (C∗, D∗) = Ai
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and

γi(g′, g) = (g′, g)∂ − (−1)i∂E(g′, g)

= (g′∂, g∂)− (−1)i(∂g′ + fg,−∂g)

= (g′∂ − (−1)i∂g′ + (−1)i+1fg, g∂ − (−1)i+1∂g)

= ((δ′)ig′ + (−1)i+1fg, δi+1g)

Therefore, we can write γ in matrix notation as follows

γi =

(
(δ′)i (−1)i+1f

0 δi+1

)

Now define Φ∗ : A∗ → HomZG(C∗, E∗) such that Φi is the isomorphism

sending (g′, g) to (g′, (−1)i+1g). It is enough to show this is a chain map, i.e.

γi ◦ φi = φi+1 ◦ (δ′′)i. Let us see that this is true by calculating both of them.

γi ◦ φi(g′, g) = γi(g′, (−1)i+1g)

= ((δ′)ig′ + fg, (−1)i+1δi+1g)

and

φi+1 ◦ (δ′′)i(g′, g) = φi+1((δ′)ig′ + fg,−δi+1g)

= ((δ′)ig′ + fg,−(−1)i+2δi+1g)

= ((δ′)ig′ + fg, (−1)i+1δi+1g)

Therefore γi ◦ φi = φi+1 ◦ (δ′′)i, implying that A∗ ∼= HomZG(C∗, E∗).

We have the following corollary (see [4, p. 29]).

Corollary 4.5. Let D∗, D
′
∗ be nonnegative chain complexes ZG-modules and

f : D∗ → D′∗ be a weak equivalence. If P∗ is a chain complex of projective

ZG-modules, then HomZG(P∗, f∗) : HomZG(P∗, D∗)→ HomZG(P∗, D
′
∗) is a weak

equivalence.

Proof. A chain map is a weak equivalence if and only if its mapping cone is

acyclic. Hence by Theorem 4.4 it is enough to show that HomZG(P∗, E∗) is

acyclic where E∗ is the mapping cone of f . Since f is a weak equivalence, E∗ is

acyclic. Therefore, by Corollory 4.3, HomZG(P∗, E∗) is acyclic.
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Let us return back to Tate hypercohomology. This corollary implies that if

G is a finite group and C∗, D∗ are nonnegative chain complexes of ZG-modules

such that C∗ is weakly equivalent to D∗, then Ĥ i(G,C∗) ∼= Ĥ i(G,D∗).

Proposition 4.6. If C∗ is a nonnegative chain complex of ZG-modules whose

homology concentrated at dimension n, then H i(G,C∗) = H i+n(G,Hn(C∗)) for

all i.

Proof. Let Zn denote the n-cycles of C∗. Define the chain complex D∗, E∗ as

follows:

Di =


Ci if i > n

Zn if i = n

0 if i < n

where D∗ has same boundary map with C∗, and let E∗ be the chain complex

concentrated at dimension n with En = Hn(C∗). If we consider Hn(C∗) as a

chain complex concentrated at 0, then E∗ = Σn(Hn(C∗)). Hence by Proposition

4.1, we have H i(G,E∗) = H i+n(G,Hn(C∗)) for all i.

Define a chain map from D∗ to C∗ as follows

D∗ :... −−→ Cn+1 −−→ Zn −−→ 0 −−→ ...

id

y y y
C∗ :... −−→ Cn+1 −−→ Cn −−→ Cn−1 −−→ ...

where the map Zn → Cn is the inclusion map. This is a weak equivalence, hence

H i(G,D∗) ∼= H i(G,C∗) for all i. Now define a chain map from D∗ to E∗ as follows

D∗ :... −−→ Cn+1 −−→ Zn −−→ 0 −−→ ...y y y
E∗ :... −−→ 0 −−→ Hn(C∗) −−→ 0 −−→ ...

where the map Zn → Hn(C∗) is the quotient map. This is also a weak equiv-

alence, hence H i(G,D∗) ∼= H i(G,E∗), implying H i(G,C∗) ∼= H i(G,E∗) ∼=
H i+n(G,Hn(C∗)) for all i.
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We know that if P is a projective ZG-module, then HomZG(P,−) is an exact

functor, i.e., it takes exact sequences to exact sequences. We have a generalization

of this fact for Hom.

Proposition 4.7. Let C∗
α−→ D∗

β−→ E∗ be a short exact sequence of chain com-

plexes of ZG-modules. If P∗ is a chain complex of projective ZG-modules, then

the following sequence of cochain complexes is exact

HomZG(P∗, C∗)
HomZG(P∗,α)−−−−−−−−→ HomZG(P∗, D∗)

HomZG(P∗,β)−−−−−−−−→ HomZG(P∗, E∗).

Proof. Let f : P∗ → D∗ be a graded module homomorphism of degree n. We

need to show that if β ◦ f = 0, then there is a graded module homomorphism

g : P∗ → C∗ of degree n such that α ◦ g = f . For all i, we have the following

diagram:

Pi

fi
��

0

##

Ci+n
α // Di+n

β
// Ei+n

By the projectivity of Pi, there is a module homomorphism gi : Pi → Ci+n such

that α ◦ gi = fi. Therefore, there is a graded module homomorphism g : P∗ → C∗

of degree n such that α ◦ g = f .

By using this proposition, we can obtain the long exact sequence for Tate

hypercohomology.

Proposition 4.8. Let G be a finite group and 0 → C∗ → D∗ → E∗ → 0 be a

short exact sequence of chain complexes of ZG-modules. Then, there is a long

exact sequence of the form

· · · → Ĥ i(G,C∗)→ Ĥ i(G,D∗)→ Ĥ i(G,E∗)→ Ĥ i+1(G,C∗)→ · · · .

Proof. Let F∗ be a complete resolution of group G. By Proposition 4.7 we have

the following short exact sequence of cochain complexes

0→ HomZG(F∗, C∗)→ HomZG(F∗, D∗)→ HomZG(F∗, E∗)→ 0.
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Corresponding long exact sequence for cohomology groups is

· · · → Ĥ i(G,C∗)→ Ĥ i(G,D∗)→ Ĥ i(G,E∗)→ Ĥ i+1(G,C∗)→ · · · .

In Chapter 2, we have mentioned that for a finite group G and a projective

ZG-module P , Ĥ i(G,P ) = 0 for all i. We will generalize this result to Tate

hypercohomology, not for arbitrary but finite chain complexes of projective ZG-

modules.

Proposition 4.9. Let G be a finite group. If P∗ is a finite chain complex of

projective modules, then Ĥ i(G,P∗) = 0 for all i.

Proof. Without loss of generality we can assume that P∗ is nonnegative. Let

P∗ = · · · 0→ Pn → · · · → P0 → 0→ · · · .

We will prove the proposition by induction on n.

If n = 0, then we have Ĥ i(G,P∗) = Ĥ i(G,P0) = 0 for all i.

Assume n > 0 and the statement is true for all k with 0 ≤ k < n. Let

Q∗ := · · · → 0→ Pn−1 → · · · → P0 → 0→ · · ·

and Q′∗ = Σn−1Pn where we consider the module Pn as a chain complex concen-

trated at 0. By inductive step Ĥ i(G,Q∗) = Ĥ i(G,Q′∗) = 0 for all i. If ∂∗ denote

the boundary map of P∗, then we have the following chain map from Q′∗ to Q∗

Q′∗ : · · · // 0 //

��

Pn //

∂n
��

· · · // 0 //

��

0 //

��

· · ·

Q∗ : · · · // 0 // Pn−1 // · · · // P0
// 0 // · · · .

P∗ is the mapping cone of this chain map. Hence there is a short exact sequence

0→ Q∗ → P∗ → ΣQ′∗ → 0

By Proposition 4.8, we have the following long exact sequence

· · · → Ĥ i(G,Q∗)→ Ĥ i(G,P∗)→ Ĥ i+1(G,Q′∗)→ · · ·

which gives that Ĥ i(G,P∗) = 0 for all i.
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This proposition gives us the following corollary.

Corollary 4.10. Let G be a finite group and C∗, D∗ be chain complexes of ZG-

modules. If C∗ is freely equivalent to D∗, then Ĥ i(G,C∗) ∼= Ĥ i(G,D∗) for all

i.

Proof. Since C∗ is freely equivalent to D∗, there is a short exact sequence

0→ C∗ → D∗ → F∗ → 0

where F∗ is a finite chain complex of free ZG-modules. Corresponding long exact

sequence of Tate hypercohomology groups is

· · · → Ĥ i−1(G,F∗)→ Ĥ i(G,C∗)→ Ĥ i(G,D∗)→ Ĥ i(G,F∗)→ · · ·

which implies Ĥ i(G,C∗) ∼= Ĥ i(G,D∗) since by Proposition 4.9 Ĥ i(G,F∗) = 0 for

all i.

4.2 Another Proof of Browder’s Theorem

A nonnegative chain complex C∗ is said to have homological dimension n, if

Hi(C∗) = 0 for i > n and Hn(C∗) 6= 0. The following theorem says that for such

a chain complex of ZG-modules where G is a finite group, there is a ZG-module

M such that the Tate hypercohomology of C∗ can be understood in terms of Tate

cohomology of M . By using this theorem, we will be able to give a new proof of

Browder’s Theorem.

Theorem 4.11. (Habegger [8], p. 433) Let G be a finite group and C∗ be a

nonnegative chain complex of ZG-modules. If C∗ has homological dimension at

most n, then there is a ZG-module M such that

(i) Ĥ i(G,C∗) ∼= Ĥ i+n(G,M),

(ii) M has a filtration 0 ⊆M0 ⊆ · · · ⊆Mn = M such that

Mi/Mi−1 ∼= ΩiHn−1(C∗).
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Proof. We can apply Theorem 3.5 to C∗ for the pair of integers (n − 1, n), and

obtain the chain complex C
(1)
∗ freely equivalent to C∗ with the properties men-

tioned in Theorem 3.5. Notice that now we can apply Theorem 3.5 to C
(1)
∗ for the

pair of integers (n − 2, n) and obtain the chain complex C
(2)
∗ again. Continuing

this way, we obtain a sequence of chain complexes C
(1)
∗ , . . . , C

(n)
∗ , where C

(i)
∗ is

obtained from C
(i−1)
∗ by applying Theorem 3.5 for pair of integeres (n− i, n). Let

us denote C
(0)
∗ := C∗. By Corollary 4.10 Ĥk(G,C

(i)
∗ ) = Ĥk(G,C∗) for all i, k since

C
(i−1)
∗ is freely equivalent to C

(i)
∗ by Theorem 3.5. For all i, we have C

(i)
k = Ck

and Hk(C
(i)
∗ ) = Hk(C∗) = 0 if k is not in the set {0, 1, . . . , n} by Theorem 3.5.

By the construction above, C
(n)
∗ becomes a chain complex whose homology is

concentrated at n. If we let M := Hn(C
(n)
∗ ), then

Ĥ i(G,C∗) ∼= Ĥ i(G,C(n)
∗ )

∼= Ĥ i+n(G,M)

by Proposition 4.6, which proves (i).

Let Mi denote the homology group Hn(C
(i)
∗ ). By Theorem 3.5, there is a short

exact sequence

0→Mi−1 →Mi → ΩiHn−i(C
(i−1)
∗ )→ 0

We can show Hk(C
(i)
∗ ) = Hk(C∗) if k < n − i by induction on i. If i = 0, it

is obvious. Now assume i > 0 and the statement is true up to i. We know

that Hk(C
(i)
∗ ) = Hk(C

(i−1)
∗ ) if k < n − i < n − (i − 1), hence by inductive step

Hk(C
(i)
∗ ) = Hk(C∗) if k < n− i. This completes the induction. Therefore, we can

rewrite the short exact sequence above as follows

0→Mi−1 →Mi → ΩiHn−i(C∗)→ 0

If we consider Mi−1 ⊆Mi with the injection above, then we have the filtration

0 ⊆M0 ⊆ · · · ⊆Mn = M

with sections

Ω0Hn(C∗)− Ω1Hn−1(C∗)− · · · − ΩnH0(C∗)

which proves (ii) and completes the proof.
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We will give another proof of Theorem 3.1 after proving the following lemma.

Lemma 4.12. Let G be a finite group and M be a ZG-module. If M has a

filtration 0 ⊆M0 ⊆M1 ⊆ · · · ⊆Mn = M with sections A0 −A1 − · · · −An, then

exp Ĥ i(G,M) divides
n∏
j=0

exp Ĥ i(G,Aj)

for all i.

Proof. For each j ≥ 0, we have the following short exact sequence

0→Mj−1 →Mj → Aj → 0

Corresponding long exact Tate cohomology sequence is

· · · → Ĥ i(G,Mj−1)→ Ĥ i(G,Mj)→ Ĥ i(G,Aj)→ · · ·

By Lemma 3.2, we have

exp Ĥ i(G,Mj)

exp Ĥ i(G,Mj−1)
divides exp Ĥ i(G,Aj)

Multiplying both sides through j = 0 to n, we get

exp Ĥ i(G,M) divides
n∏
j=0

exp Ĥ i(G,Aj)

Theorem 3.1 says that if G is a finite group and C∗ is a nonnegative, connected,

n-dimensional chain complex of free ZG-modules, then the order of G divides∏n
j=1 exp H

j+1(G,Hj(C∗)).

Another proof of Theorem 3.1. Let M be the module obtained from C∗ by ap-

plying Theorem 4.11. By Theorem 4.11 and Proposition 4.9, we have

Ĥ i(G,M) ∼= Ĥ i−n(G,C∗) = 0
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for all i. Furthermore, M has a filtration 0 ⊆M0 ⊆ · · · ⊆Mn = M with sections

Ω0Hn(C∗)− Ω1Hn−1(C∗)− · · · − ΩnH0(C∗).

There is a short exact sequence

0→Mn−1 →Mn → ΩnH0(C∗)→ 0

and ΩnH0(C∗) = ΩnZ since C∗ is connected. Corresponding long exact sequence

for Tate cohomology groups is

· · · → Ĥ i(G,M)→ Ĥ i(G,ΩnZ)→ Ĥ i+1(G,Mn−1)→ Ĥ i+1(G,M) · · ·

Hence, Ĥ i+1(G,Mn−1) ∼= Ĥ i−n(G,Z) for all i by Theorem 2.5. Letting i = n, we

get

Ĥn+1(G,Mn−1) ∼= Ĥ0(G,Z) ∼= Z/|G|Z.

Mn−1 has a filtration 0 ⊆M0 ⊆ · · · ⊆Mn−1 with sections

Ω0Hn(C∗)− Ω1Hn−1(C∗)− · · · − Ωn−1H1(C∗)

By Lemma 4.12 we have

exp Ĥn+1(G,Mn−1) = |G| divides
n∏
j=1

exp Ĥn+1(G,Ωn−jHj(C∗))

and by Theorem 2.5 we have

n∏
j=1

exp Ĥn+1(G,Ωn−jHj(C∗)) =
n∏
j=1

exp Ĥj+1(G,Hj(C∗))

=
n∏
j=1

exp Hj+1(G,Hj(C∗))

This completes the proof.



Chapter 5

Main Result

5.1 Exponents of the Tate Cohomology Groups

In Theorem 3.3 we have seen that for a ZG-module M with a trivial G action,

exp H i(G,M) divides p for all i ≥ 1. In the previous chapter, we have obtained

a method to glue homologies of a chain complex at different dimensions. Even

if the original homology groups have trivial G-action, the new homology group

at the glued dimension may not be a trivial ZG-module, hence it may not have

exponent dividing p. The following is an example of a ZG-module such that

exp H i(G,M) does not divide p for some i ≥ 1.

Example 5.1. Let G = (Z/p)r for some r > 1 and M := ΩZ where Z is a ZG-

module under the trivial action of G. Then we have H1(G,M) = Ĥ1(G,ΩZ) =

Ĥ0(G,Z) = Z/|G|. Therefore, exp H1(G,M) = pr does not divide p. Notice that

H i(G,M) = H i−1(G,Z) for i ≥ 2, hence H i(G,M) has exponent dividing p for

i ≥ 2.

Although exp H i(G,M) does not divide p for all i ≥ 1, it divides p for i ≥ 2

in the example above. We will prove that for a finitely generated ZG-module M ,

exp H i(G,M) divides p for i large enough. To prove this result, we will use the

graded ring structure of H∗(G,Z) and the graded module structure of H∗(G,M).

29
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Let us first review these structures.

A ring R is called a graded ring if there are abelian subgroups (A0, A1, ...) of R

such that R is isomorphic to
⊕∞

i=0Ai as an abelian group and aiaj ∈ Ai+j for all

ai ∈ Ai, aj ∈ Aj. A nonzero element of a graded ring is called homogeneuous with

degree i if it is an element of Ai. An R-module M over a graded ring R is called

a graded module if there are abelian subgroups (M0,M1, ...) of M such that M

is equal to
⊕∞

i=0Mi as an abelian group and rimj ∈ Mi+j for ri ∈ Ai,mj ∈ Mj.

A nonzero element of a graded module is called homogeneous with degree i if it

is an element of Mi.

A graded ring structure on H∗(G,Z) and a graded module structure on

H∗(G,M) over H∗(G,Z) are given by cup product (see [4, p. 109]). Cup

product is a bilinear map H i(G,M) ⊗Z H
j(G,N) → H i+j(G,M ⊗Z N). No-

tice that when we take M = N = Z, then the cup product takes the form

H i(G,Z) ⊗Z H
j(G,Z) → H i+j(G,Z). If we let H∗(G,Z) =

⊕∞
i=0H

i(G,Z),

then it becomes a graded ring. Take N = Z, then the cup product takes the

form H i(G,M) ⊗Z H
j(G,Z) → H i+j(G,M). Similarly if we let H∗(G,M) =⊕∞

i=0H
i(G,M), then it becomes a graded module over H∗(G,Z). The following

theorem implies that if G is a finite group and M is finitely generated ZG-module,

then H∗(G,M) is a finitely generated as an H∗(G,Z) module.

Theorem 5.2 (Evens [7], p.87). Let G be a finite group and k a commutative

ring on which G acts trivially, and M a kG-module. If M is Noetherian as a

k-module, then H∗(G,M) is noetherian over H∗(G, k).

We will not prove this theorem but use it to prove the following theorem.

Theorem 5.3 (Pakianathan [11]). Let G = (Z/p)r and M is a finitely generated

ZG module. There is an integer N such that if i > N , then the exponent of

H i(G,M) divides p.

Proof. M is finitely generated as a Z-module since it is finitely generated as a

ZG-module and G is finite. Since all finitely generated Z-modules are Noethe-

rian, M is Noetherian as a Z-module. By Theorem 5.2 the module H∗(G,M) is

Noetherian, hence finitely generated over the ring H∗(G,Z).
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Let m1, ...,mk be elements generating H∗(G,M) over H∗(G,Z). Without loss

of generality we can assume that all of them are homogeneous. Let N be the

maximum of the degrees of mi’s. Assume i > N and x ∈ H i(G,M) is a nonzero

element. We want to show px = 0. We know that x = Σk
j=1αjmj for some αj’s in

H∗(G,Z). Since x is homogeneous, we can assume αj’s are homogeneous too and

αjmj ∈ H i(G,M) for all j. The degree of mj is strictly less than i for all j, so the

degree of αj is greater than or equal to 1. Since Z is a ZG-module with trivial G

action, pαj = 0 for all j by Theorem 3.3. Hence px = Σk
j=1pαjmj = 0.

Notice that if we have a finite collection of finitely generated ZG-modules,

then we can obtain an integer for each module in that collection by Theorem 5.3.

Since there are finitely many, we can take the maximum of these integers and

call this maximum N . If M is a ZG-module which is isomorphic to one of the

modules in the finite collection and if i > N , then exp H i(G,M) divides p. The

last two theorems of this section are finiteness theorems that enables us to say

that up to isomorphism there are finitely many modules satisfying some certain

conditions.

Theorem 5.4 (Curtis and Reiner [6] p.563). If G is a finite group, then for each

n ≥ 1, there are finitely many Z-free ZG-modules of Z-rank n up to isomorphism.

We do not prove Theorem 5.4 but use it in the proof of the main theorem.

Now, we prove another useful result.

Theorem 5.5. Let G be a finite group, and M,N are finitely generated ZG
modules. If M is Z-free, then ExtiZG(M,N) is finite for i > 0.

To prove Theorem 5.5, let us review some properties of Ext. Let F∗ be a free

ZG resolution of M . The group ExtiZG(M,N) is defined as the i-th cohomology

group of the chain complex HomZG(F∗, N). Notice that if F∗ is a free ZG reso-

lution of M , then it is also a free Z resolution of M . Also if f : Fi → N is a ZG-

module homomorphism, then it is also a Z-module homomorphism. There is a ho-

momorphism res : ExtiZG(M,N) → ExtiZ(M,N), called the restriction map, in-

duced from the inclusion HomZG(F∗,M) ↪→ HomZ(F∗,M). If G is a finite group,
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then we have a map in the reverse direction tr : ExtiZ(M,N) → ExtiZG(M,N),

called the transfer map, induced from the homomorphism HomZ(F∗,M) →
HomZG(F∗,M) taking f to

∑
g∈G gfg

−1. One can easily see that for all i ≥ 0

and for all x in ExtiZG(M,N), we have tr ◦ res(x) = |G|x. Now we can prove

Theorem 5.5.

Proof of Theorem 5.5. We will show that if i ≥ 1, then ExtiZG(M,N) is a finitely

generated Z-module and has finite exponent. Notice that by the classification

of finitely generated Z-modules such a module has finite order. Actually we can

see this without classification. Let x1, ..., xk be a generating set and m be the

exponent. Then every element can be written in the form n1x1+· · ·+nkxk, where

0 ≤ ni ≤ m for all i, and there are finitely many elements in this form. Hence to

prove the theorem it is enough to show that ExtiZG(M,N) is finitely generated

and has finite exponent for all i ≥ 1.

Let i ≥ 1. Since M is Z-free, ExtiZ(M,N) = 0. Hence for an element x in

the ExtiZG(M,N) we have |G|x = tr ◦ res(x) = 0. Therefore ExtiZG(M,N) has

finite exponent. Since M is finitely generated, we can take a free ZG-resolution

F∗ of M such that all Fi’s are finitely generated. Since G is finite, Fi’s are finitely

generated as a Z-module. Let Fi ∼=
⊕

ZG be a finite direct sum of ZG’s. Then

HomZG(Fi, N) ∼=
⊕

N , which is also finitely generated as a Z-module. Therefore,

as a quotient module of a finitely generated module, ExtiZG(M,N) is also finitely

generated.

5.2 Explanation of the Main Ideas of the Proof

on Small Cases

The aim of this section is to show how the main ideas in the proof of the main

theorem evolve from the simple cases. One can skip this section and directly read

the proof of the main theorem since the proof does not refer to any material in

this section.
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Assume that two positive integers r, k are given. Let us show that there is an

integer N such that if n > N and G = (Z/p)r act freely and cellularly on a CW-

complex X homotopy equivalent to Sn1 × · · · × Snk where n1 = . . . nk = n, then

r ≤ k. We know thatX has nonzero homologies at dimensions n, 2n, . . . , kn where

Hjn(X) is a Z-free ZG-module with Z-rank
(
k
j

)
for j = 1, . . . , k. By Theorem

5.4 there are finitely many ZG-modules of Z-rank
(
k
j

)
up to isomorphism. By

Theorem 5.3, there is an integer Nj such that if i > Nj and M is a ZG-module

of Z-rank
(
k
j

)
, then exp H i(G,M) divides p. Let N := max{Nj : j = 1, ..., k}. If

n > N then jn+ 1 > N ≥ Nj, so exp Hjn+1(G,Hjn(X)) divides p. Therefore, if

n > N , then by Theorem 3.1 |G| = pr divides
∏k

j=1 exp H
jn+1(G,Hjn(X)) which

divides pk. This implies r ≤ k.

Now let us consider a case where the dimensions of spheres are not equal.

Assume that positive integers r, l are given. Let us show that there is an integer

N such that if n > N and G = (Z/p)r act freely and cellularly on a CW-complex

X homotopy equivalent to Sn × Sn+l, then r ≤ 2. The space X has nonzero

homologies at dimensions n, n+ l, 2n+ l and all of the homologies are Z-free and

have Z-rank 1. By Theorem 5.4 there are finitely many ZG-modules of Z-rank 1

up to isomorphism. By Theorem 5.3, there is an integer N1 such that if i > N1

and M is a ZG-module of Z-rank 1, then exp H i(G,M) divides p. Let C∗(X) be

the cellular chain complex of X. We can obtain another chain complex D∗(X)

by applying Theorem 3.5 to chain complex C∗(X) for tuple of integer n, n + l.

Hence D∗(X) is a nonnegative, finite dimensional, connected chain complex of

free ZG-modules. Furthermore, D∗(X) has nonzero homologies at dimensions

n+ l, 2n+ l where H2n+l(D∗(X)) = H2n+l(X) and there is a short exact sequence

of the form

0→ Hn+l(X)→ Hn+l(D∗(X))→ ΩlHn(X)→ 0

By Theorem 5.4 both Hn+l(X) and ΩlHn(X) have finitely many possibili-

ties up to isomorphism. Therefore, to show that there are finitely many

possibilities for Hn+l(D∗(X)) up to isomorphism, it is enough to show that

Ext1ZG(ΩlHn(X), Hn+l(X)) is finite. This is true since

Ext1ZG(ΩlHn(X), Hn+l(X)) ∼= Extl+1
ZG (Hn(X), Hn+l(X))

which is finite by Theorem 5.5. By Theorem 5.3 there is an integer N2 such that
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if i > N2, then exp H i(G,Hn+l(D∗(X))) divides p for all n (notice that the space

X depends on n). Let N = max{N1, N2}. By Theorem 3.1 we have

|G| = pr divides exp Hn+l+1(G,Hn+l(D∗(X))).exp H2n+l+1(G,H2n+l(D∗(X)))

which divides p2. This implies r ≤ 2.

By using the result in the previous paragraph, we can prove a generalization

of it. Assume that positive integers r, l is given. Let us show that there is an

integer N such that if n > N and G = (Z/p)r act freely and cellularly on a

CW-complex X homotopy equivalent to Sm × Sn where |n−m| < l, then r ≤ 2.

This is true since we can find an integer for all of the cases Sn−l×Sn, Sn−l+1×Sn,

. . . , Sn+l × Sn and then we can take N as the maximum of these integers.

The following case shows us why our methods do not apply for arbitrary

Sn × Sm without an upper bound to the difference |n − m|. Consider the case

Sn × S2n. Let us further assume that the action of G = (Z/p)r on homology

groups is trivial, which simplifies our calculations. Similarly, we have D∗(X) but

we should change l with n. Hence we have a short exact sequence of the form

0→ H2n(X)→ H2n(D∗(X))→ ΩnHn(X)→ 0

and we want to show that there are finitely many possibilities for H2n(D∗(X))

although n may take infinitely many different values. Therefore, it is not enough

to show that Ext1ZG(ΩnZ,Z), which is isomorphic to Extn+1
ZG (Z,Z), is finite for

all n; but we need to find an integer N0 such that |Extn+1
ZG (Z,Z)| ≤ N0 for n is

large enough. Let us show this is not the case for G = (Z/p)2.

Notice that ExtnZG(Z,Z) ∼= Hn(G,Z). By Kunneth formula for cohomology

groups (see [14, p. 166]) there is a split exact sequence

0→
⊕
p+q=n

Hp(Z/p,Z)⊗Hq(Z/p,Z)→ Hn(Z/p× Z/p,Z)→⊕
p+q=n+1

TorZ1 (Hp(Z/p,Z), Hq(Z/p,Z))→ 0

This gives us H2k+1(Z/p× Z/p,Z) ∼= H2k(Z/p× Z/p,Z) ∼= (Z/p)k. Hence there

is no upper bound for |Hn(Z/p × Z/p,Z)| as n → ∞. We can easily generalize
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this result to (Z/p)r for r ≥ 2, since in this case if we apply Kunneth formula

by considering (Z/p)r = (Z/p)2 × (Z/p)r−2, we can see that there is an injection

from Hn((Z/p)2,Z) to Hn((Z/p)r,Z).

5.3 Proof of the Main Theorem

Let G = (Z/p)r and k, l are positive integers. We want to show that there is an

integer N such that if G acts freely and cellularly on a CW-complex X homotopy

equivalent to Sn1 × · · · × Snk where ni > N for all i and |ni − nj| < l for all i, j,

then r ≤ k.

Let n := max{n1, ..., nk} and ai := n − ni. If we let C∗(X) denote the

cellular chain complex of X, then it has nonzero homology groups at the following

dimensions

kn− (a1 + · · ·+ ak) (k)
...

jn− (a1 · · ·+ aj), ..., jn− (ak−j+1 + · · ·+ ak) (j)
...

2n− (a1 + a2), 2n− (a1 + a3), ..., 2n− (ak−1 + ak) (2)

n− a1, n− a2, ..., n− ak (1)

If n > lk, then every dimension d on the (j)-th row satisfies (j − 1)n < d ≤ jn.

Hence every dimension on the (j′)-th row is strictly greater then every dimension

on the (j)-th row whenever j′ > j. By taking N > lk, we can guarantee that

n > lk. In the remaining part of the proof, we will assume that n > lk.

By applying Theorem 3.5 to C∗(X), we can glue all the homologies at di-

mensions on the (j)-th row to the dimension jn. Let D∗(X) denote this new

chain complex. Hence D∗(X) is a nonnegative, finite dimensional, connected

chain complex of free ZG-modules and it has nonzero homologies at dimensions

0, n, 2n, . . . , kn. Let Mj := Hjn(D∗(X)). We will show that there are finitely

many possilibities for Mj up to isomorphism. We know that |ni − nj| < l for all

i, j, so without loss of generality we can fix a k-tuple a1, . . . , ak since there are
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finitely many k-tuples of nonnegative integers where each coordinate is less than

l.

Let D be the set of dimensions on the (j)-th row and m = |D|. The integer

m depends only on a1, . . . , ak and if we let D = {jn − s1, ..., jn − sm}, then

si’s depends only on a1, ..., ak. Assume s1 < · · · < sk and let Ai := Hjn−si(X)

for i = 1, . . . ,m. The ZG-module Ai is finitely generated, Z-free and its Z-

rank is less than
(
k
j

)
for all i = 1, . . . ,m. By Theorem 3.5 Mj has a filtration

0 ⊆ N1 ⊆ · · · ⊆ Nm = Mj with sections Ωs1A1 − · · · − ΩskAk. Let us inductively

show that Ni is finitely generated and there are finitely many possibilities for Ni

up to isomorphism. For i = 1, we have N1 = Ωs1A1 which is finitely generated,

so it is enough to show that A1 has finitely many possibilities up to isomorphism.

This is true by Theorem 5.4 since A1 is finitely generated, Z-free and it is Z-rank

is independent of n. For i > 1, we have a short exact sequence of the form

0→ Ni−1 → Ni → ΩsiAi → 0

By inductive step we know that Ni−1 is finitely generated and there are finitely

many possibilities for Ni−1 up to isomorphism. Similarly, ΩsiAi is finitely gen-

erated and there are finitely many possibilities for it up to isomorphism by

rank arguments. Therefore, Ni is finitely generated and to show that there are

finitely many possibilites for Ni up to isomorphism, it is enough to show that

Ext1ZG(ΩsiAi, Ni−1) is finite. This is true since

Ext1ZG(ΩsiAi, Ni−1) ∼= Ext1+siZG (Ai, Ni−1)

which is finite by Theorem 5.5. This completes the induction.

We have seen that Mj is finitely generated and there are finitely many

possibilities for it up to isomorphism. Therefore, by Theorem 5.3 there is

an integer Nj such that if i > Nj, then exp H i(G,Mj) divides p. Now let

N = max{N1, . . . , Nk}. By Theorem 3.1 we have

|G| = pr divides
k∏
j=1

exp Hjn+1(G,Hjn(D∗(X))) =
k∏
j=1

exp Hjn+1(G,Mj)

Hence if n > N , then pr divides pk, implying r ≤ k. This completes the proof.
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