SCHUBERT CALCULUS, ADJOINT REPRESENTATION AND MOMENT POLYTOPES

A THESIS
SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By

Serkan Sakar
June, 2012

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Alexander Klyachko(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ali Sinan Sertöz

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Konstantin Zheltukhin

Approved for the Graduate School of Engineering and Science:

Director of the Graduate School

ABSTRACT
 SCHUBERT CALCULUS, ADJOINT REPRESENTATION AND MOMENT POLYTOPES

Serkan Sakar
M.S. in Mathematics
Supervisor: Prof. Dr. Alexander Klyachko
June, 2012

Let \mathcal{H}^{ν} denote the irreducible representation of the special unitary group $\mathrm{SU}(n)$ corresponding to Young diagram ν and let $\mathfrak{g}=\mathfrak{s u}(n)$ denote the Lie algebra of $\operatorname{SU}(n)$. One can show that \mathcal{H}^{ν} appears in the symmetric algebra $S^{*} \mathfrak{g}$ if and only if n divides the size of the Young diagram ν. Kostant's problem asks what is the least number N such that \mathcal{H}^{ν} appear in $S^{N} \mathfrak{g}$. The moment polytope of the adjoint representation is the polytope generated by the normalized weights $\tilde{\nu}$ such that \mathcal{H}^{ν} appears in $\mathrm{S}^{*} \mathfrak{g}$ and it helps to put lower bounds on number N in the Kostant's problem. In this thesis, we compute the moment polytope of the adjoint representation of $\mathrm{SU}(n)$ for $n \leq 9$ using the solutions of the classical spectral problem and so-called ν-representability problem.

Keywords: Kostant's problem, level of a representation, moment polytope.

ÖZET
 SCHUBERT CALCÜLÜSÜ, ESLENİK TEMSIL VE MOMENT POLITOPLARI

Serkan Sakar
Matematik, Yüksek Lisans
Tez Yöneticisi: Prof. Dr. Alexander Klyachko
Haziran, 2012

Abstract

ν bir Young diyagramı olsun ve \mathcal{H}^{ν} özel uniter grubun ν 'ye karşılık gelen indirgenemez temsilini göstersin. Ayrıca, $\mathfrak{g}=\mathfrak{s u}(n)$ de $\mathrm{SU}(n)$ 'nin Lie cebrini göstersin. Gösterilebilir ki $\mathcal{H}^{\nu}{ }^{\prime}$ nin $\mathfrak{g}{ }^{\prime}$ nin simetrik cebri $S^{*} \mathfrak{g}^{\prime}$ da görünmesi için gerek ve yeter bir koşul n 'nin ν^{\prime} 'nün boyutunu bölmesidir. Kostant'n problemi, \mathcal{H}^{ν} 'in $\mathrm{S}^{N} \mathfrak{g}^{\prime}$ de görüldüğü en küçük N değerinin ne olduğunu sorar. Eşlenik temsilin moment politopu, \mathcal{H}^{ν} 'nün $\mathrm{S}^{*} \mathfrak{g}$ 'de görüldüğg̈u ν^{\prime} lerin normalize edilmiş halleriyle gerilir. Moment politopu, Kostant'ın probleminde bahsedilen N sayısı için bir alt sınır koymaya yardımcı olur. Bu tezde klasik spektral probleminin ve ν-temsil edilebilirlik problemi adıyla bilinen bir diğer spektral problemin çözümlerini kullanarak $n \leq 9$ için moment politoplarını hesaplıyoruz.

Anahtar sözcükler: Kostant problemi, bir temsilin seviyesi, moment politopu.

Acknowledgement

I cannot thank enough my supervisor Prof. Klyachko for his continuous support, perfect guidance and endless patience. Without him, this work could never see the light.
I would like to thank Prof. Sertöz and Prof. Zheltukhin for reading this thesis.
I am grateful to Prof. Yalçın and Prof. Sezer for their help, support and the courses I took from them in the past two years.
I would like to thank Ms. Sağtürk for her help and suggestions.
I would like to thank my friends Dağhan, Serdar and Cihan for our discussions and their valuable suggestions.
I am grateful to all of my friends for their support and encouragement while writing this thesis.
Last but not least, I would like to thank my parents for their love and support.

Contents

1 Introduction 1
2 A Digest of Lie Groups and Lie Algebras 5
2.1 Lie Groups 5
2.2 Lie Algebras 6
2.3 Group representations 8
2.3.1 Tensor product of representations 8
2.3.2 Symmetric and alternating powers of a representation. 9
2.3.3 Representations of the symmetric and special unitary groups 9
3 Representations and spectra 15
3.1 Statement of the ν-Representability Problem 16
3.2 Invariant theory 16
3.3 Geometric Stability Criteria 18
3.4 Solution of the ν-Representability Problem 22
3.4.1 Calculation of the topological coefficients $c_{w}^{v}(a)$. 23
4 Kostant's Problem 26
4.1 Method 27
4.1.1 Points from smaller polytopes 27
4.1.2 Points of the form $d-\sigma d$ 28
4.1.3 Decomposition of symmetric powers of \mathfrak{g} 28
4.1.4 Computation of moment polytopes as an instance of addi- tive spectral problem 29
4.1.5 Computation of moment polytopes as an instance of ν - representability problem 29
4.1.6 Finding the vertices on a genuine facet 30
4.2 The absolute values of the coordinates of the points in moment polytopes 32
4.3 A related conjecture by Kostant 33
5 Classical Spectral Problem 34
5.1 Representations of $\mathrm{GL}_{n}(\mathbb{C})$, Littlewood-Richardson Coefficients and Spectral Problem 36
5.2 Schubert Calculus 38
5.3 Horn's Conjecture 41
5.4 Hive Model 43
5.5 A Digression of Invariant Factors 44
5.5.1 A Digression of Discrete Valuation Rings 44
5.5.2 Invariant factors of a matrix over a discrete valuation ring 46

A Numbers of the vertices \& the facets of the moment polytopes50

B Facets \& vertices of the moment polytopes 51

Chapter 1

Introduction

A very essential tool to study groups is their representations. A representation of a group G is a linear action of G on a vector space and it allows to see the elements of G as matrices. Then one has the extensive tools of linear algebra to investigate the structure of G.
It is an elementary fact in representation theory that any ordinary irreducible representation of a finite group G appears as a subrepresentation of the group algebra $\mathbb{C} G$. It is desirable to find analogues of the group algebra for a Lie group G. The algebra of analytical functions on G is an analague but let us focus on the special unitary group $\operatorname{SU}(n)$ and consider the symmetric algebra $S^{*} \mathfrak{g}$ of the adjoint representation \mathfrak{g}, where $\mathfrak{g}=\mathfrak{s u}(n)$ is the Lie algebra of $\operatorname{SU}(n)$. The action of $\mathrm{SU}(n)$ on \mathfrak{g} is the differential of the action of $\mathrm{SU}(n)$ on itself by conjugation. It is well known that all irreducible representations of $\mathrm{SU}(n)$ is are parametrized by Young diagrams ν having less than n rows. See Section (2.3.3.2) for this parametrization. The irreducible representation of $\mathrm{SU}(n)$ corresponding to a given Young diagram ν is denoted by \mathcal{H}^{ν}, where the n-dimensional Hilbert space \mathcal{H} is the standard representation of $\mathrm{SU}(n)$ on which $\mathrm{SU}(n)$ acts in the obvious way.
One can prove that a necessary and sufficient condition for a representation \mathcal{H}^{ν} of $\operatorname{SU}(n)$ to appear in $S^{*} \mathfrak{g}$ is that n divides the size $|\nu|$ of the Young diagram ν.

Problem 1.0.1. What is the smallest integer N such that \mathcal{H}^{ν} appears in $\mathrm{S}^{N} \mathfrak{g}$?

This is known as Kostant's problem in the literature. See [10] and [6] for more information.

What is also related to this is the level k of the representation \mathcal{H}^{ν}, which is defined by $k=1+\frac{N n-|\nu|}{n}$.
A seemingly unrelated problem concerns the possible spectrum of a commutator $\left[A, A^{*}\right]=A A^{*}-A^{*} A$ where A is a square matrix normalized with $\operatorname{tr}\left(A A^{*}\right)=1$. The two problems turn out to be related as we will see now. Let H^{λ} be an irreducible representation that appear in $S^{N} \mathfrak{g}$. Adding columns of length n does not change the representation since a column of length n corresponds to the determinant. So, we may assume that size of λ is $N n$. Normalize λ by $\tilde{\lambda}=\lambda / N$ so that it has trace n. In this setting, consider the following theorem, which is a special case of the theorem (3.4.3).

Theorem 1.0.2. Every $\tilde{\lambda}$ is a spectrum of an operator $I+\left[A, A^{*}\right]$ such that $\operatorname{spec}\left(I+\left[A, A^{*}\right]\right)$ is in non-decreasing order and A is a unit complex matrix, i.e., $\operatorname{tr}\left(A A^{*}\right)=1$.
The convex hull of $\tilde{\lambda}$ in the space \mathbb{R}^{n} is a rational convex polytope.
Furthermore, every spectrum $\lambda=\operatorname{spec}\left(I+\left[A, A^{*}\right]\right)$ (in non-decreasing order) can be approximated by the $\tilde{\lambda}$.

The polytope mentioned in the theorem is called the moment polytope of the adjoint representation of $\mathrm{SU}(n)$ and we denote it by P_{n}.
Caution. In the tables of the moment polytopes we supply in the Appendix B, the points in the polytopes are shifted by $(-1,-1, \ldots,-1)$ so that the sum of the components of a point is 0 . This is due to the fact that we consider the spectrum of $\left[A, A^{*}\right]$ instead of the spectrum of $\left[A, A^{*}\right]$ for the sake of simplicity.
Given a representation \mathcal{H}^{ν} of $\mathrm{SU}(n)$, if we have the moment polytope P_{n} then we have some information of the smallest integer N such that \mathcal{H}^{ν} appears in $\mathrm{S}^{N} \mathfrak{g}$: Since adding columns of length n to ν does not change \mathcal{H}^{ν}, we can add such columns to ν until it is contained in P_{n}. Then, the number of columns added gives a lower bound for $k-1$.

Example 1.0.3. Let $n=3$ and consider the representation V with Young diagram $\square \square$. After adding 2 columns of length 3, the corresponding spectrum enters the moment polytope. This gives the lower bound $\frac{2.3+3}{3}=3$ for N and V actually appears in $S^{3} \mathfrak{g}$.

Conjecture 1.0.4. For an arbitrary n and the irreducible representation V of $\mathrm{SU}(n)$ corresponding to a row diagram with n boxes, V appears in $\mathrm{S}^{N} \mathfrak{g}$, where $N=\binom{n}{2}$.

Hence, the computation of the P_{n} becomes important and it is the heart of this thesis.
As the definition suggests, the first step to compute P_{n} is to compute symmetric powers of the adjoint representation. Thanks to the software package LIE this can be accomplished. However, due the complexity of the function which computes the symmetric powers, it is hard to compute P_{n} for $n \geq 7$ on an ordinary computer of today's standards.
As Theorem (1.0.2) suggests, one can try to find all possible spectra of the matrices of the form $\left[A, A^{*}\right]=A A^{*}-A^{*} A$. This is an instance of classical spectral problem since $A A^{*}$ and $A^{*} A$ are Hermitian matrices. We can use the recursively defined inequalities conjectured by Horn or we can make use of hive model invented by Knutson and Tao. However, due to the complexity of algorithms we can compute P_{n} only for $n \leq 6$. We can still proceed by the virtue of a theorem of M. Altunbulak and A. Klyachko. The fact that P_{n} consists of spectra of $I+A A^{*}-A^{*} A$ makes the problem an instance of another spectral problem, the so-called ν-representability problem, the solution of which makes it possible to determine if a given linear inequality determining a halfspace in the space \mathbb{R}^{n} determines a facet of P_{n} or not. Checking every inequality would be impossible so it makes sense to approximate P_{n} from inside by a polytope Q_{n} and check if all facets of Q_{n} is genuine or not.
To approximate P_{n} from inside, one can set A to be $\sqrt{D} P^{-1}$ where D is a nonnegative diagonal matrix and P is a permutation matrix, so that $\left[A, A^{*}\right]=$ $D-P D P^{-1}$. Thus we deal with a spectra of the form $(d-\sigma d)_{i}=d_{i}-d_{\sigma(i)}$ where $\sigma \in S_{n}$. In this way, one gets the polytopes P_{3}, P_{4} and P_{6} but cannot get P_{5}, for
instance. Then, we also use the decomposition of the symmetric powers of the adjoint representation. In this way, we could compute P_{5} and P_{7}. When $n=8$, we were stuck again but by guessing some points in some particular directions and proving that they are inside P_{8} by virtue of the solutions of classical spectral theory, we obtained the moment polytope.
When $n=9$, we could not make a sufficient approximation due to the complexity of algorithms being employed. However, by the fact that the convex hull of the vertices on a facet of a moment polytope forms the moment polytope of the adjoint representation of another group, the genuine facets we obtained enabled us to get the whole moment polytope P_{9}. Due to seemingly exponential complexity of the problem and the limitations on the speed of current computers, it does not seem easy at all to compute P_{n} for $n \geq 10$.

In Chapter 2, we give a digest of the Lie theory and representation theory.
In Chapter 3, we describe the solution of the so-called ν-representability problem, which is due to Klyachko.
In Chapter 4, we discuss Kostant's problem and describe our method to compute the moment polytope P_{n} for $n \leq 9$.
Chapter 5 is devoted to the classical spectral problem, which waited a long time to be given a complete solution by Klyachko. We state Klyachko's solution to the problem in terms Schubert calculus. Furthermore we discuss other answers to the problem including the recursive inequlities conjectured by Horn and Knutson and Tao's hive model. We also describe another problem concerning the invariant factors of matrices which have exactly the same solutions as the classical spectral problem.

Chapter 2

A Digest of Lie Groups and Lie Algebras

2.1 Lie Groups

A real Lie group is a smooth manifold with a smooth structure given by multiplication $\times: G \times G \rightarrow G$ and inversion $i: G \rightarrow G$.

Example 2.1.1. (1) Additive \mathbb{C}^{+}and multiplicative $\mathbb{C}^{*}=\mathbb{C}-\{0\}$ groups of the complex field \mathbb{C}.
(2) The unit circle $\mathbb{S}^{1}=\left\{z \in \mathbb{C}^{*}:|z|=1\right\}$ in \mathbb{C}^{*}.
(3) The unit sphere $\mathbb{S}^{3}=\left\{a+b i+c j+d k \in \mathbb{H}:|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}=1\right\}$ in the division ring of quaternions \mathbb{H}.
(4) The unit quaternions $\left\{q \in \mathbb{H}^{*}:|q|=1\right\}$.

In fact, an element of \mathbb{H} can be considered as a 2×2 complex matrix, identifying i with $\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, j with $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and k with $\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$. So, $x+i y+j z+k t$ can be interpreted as a matrix $\left(-\bar{v} \frac{v}{u}\right)$. This establishes an isomorphism between $\mathrm{SU}(2)$ and \mathbb{S}^{3}.
\mathbb{S}^{1} and \mathbb{S}^{3} are the only spheres which admit a group structure.
(5) Special linear groups, $\mathrm{SL}_{n}(\mathbb{R})=\left\{A \in \mathrm{GL}_{n}(\mathbb{R}): \operatorname{det}(A)=1\right\}$ and $\mathrm{SL}_{n}(\mathbb{C})=\left\{A \in \mathrm{GL}_{n}(\mathbb{C}): \operatorname{det}(A)=1\right\}$.
(6) $\mathrm{SU}(n)=\left\{A \in \mathrm{GL}_{n}(\mathbb{C}): \operatorname{det}(A)=1, A A^{*}=A^{*} A=I\right\}$, the group of unitary transformations of \mathbb{C}^{n} having determinant 1 .
(7) $\mathrm{O}_{n}(\mathbb{R})=\left\{A \in \mathrm{GL}_{n}(\mathbb{R}): A A^{t}=A^{t} A=I\right\}$, the group of orthogonal transformations of \mathbb{R}^{n}.
(8) $\mathrm{SO}(n)$, the group of isometries of \mathbb{E}^{n} with determinant 1 .
(9) $\mathrm{SP}(2 n)$, the group of $2 n \times 2 n$ real matrices M satisfying $M^{T} \Omega M=\Omega$ where $\Omega=\left(\begin{array}{cc}O & -I_{n} \\ I_{n} & 0\end{array}\right)$.

2.2 Lie Algebras

Given a Lie group G, consider the left invariant smooth differential operators X on functions $f: G \rightarrow \mathbb{R}$. This means Leibnez rule $X f h=f X h+(X f) h$ is satisfied and $X f(g x)=\left.(X f)(t)\right|_{t=g x}$. Such operators X and Y are closed under Lie brackets $[X, Y]=X Y-Y X$ and form the Lie Algebra Lie G of the group G, sometimes denoted by \mathfrak{g}. Given X, Y and Z in \mathfrak{g} we

$$
\begin{aligned}
& \text { (i) }[X, X]=0, \forall X \in \mathfrak{g} \\
& (i i)[[X, Y], Z]+[[Y, Z], X]]+[[Z, X], Y]=0, \forall X, Y, Z \in \mathfrak{g}
\end{aligned}
$$

The second property is known as Jacobi identity.
A smooth differentiation operator is locally given by the usual differentiation of a function in a tangent direction τ. Since a smooth differentiation operator X can be identified with a smooth vector field on G and X is taken to be left invariant in our setting, X can be taken to be a left invariant smooth vector field or rather an element of the tangent space T_{e} at the identity e of G. For this reason, Lie algebra of G is often called the tangent algebra of G.

Theorem 2.2.1 (Fundamental Theorem of Lie Theory). The functor $G \mapsto$ Lie $G=\mathfrak{g}$ establishes an equivalence of the category of the simply connected Lie groups and the category of real finite dimensional Lie algebras.

The exponential map $\exp : \operatorname{Lie} G \rightarrow G$ is defined by sending an element $s \tau \in$ Lie G to the end point of the trajectory of length s starting at $e \in G$ which
is determined by the differentiation operator X corresponding to τ. Here, $s \in \mathbb{R}$ and τ is a unit vector in $\operatorname{Lie} G$.

Example 2.2.2. (1) Set $G=\operatorname{SU}(\mathcal{H})$. Then, an operator X on \mathcal{H} is in $\mathfrak{s u}(\mathcal{H})$ if and only if $\exp X=\exp X$ is in $\operatorname{SU}(\mathcal{H})$. This amounts to saying X is a traceless skew-Hermitian operator.
(2) Set $G=\mathrm{U}(\mathcal{H})$. Then, an operator X on \mathcal{H} is in $\mathfrak{u}(\mathcal{H})$ if and only if $\exp X=$ $\exp X$ is in $\mathrm{U}(\mathcal{H})$. In this case, X is a skew-Hermitian operator.
(3) Set $G=\mathrm{SL}(\mathcal{H})$. Then, an operator X on \mathcal{H} is in $\mathfrak{s l}(\mathcal{H})$ if and only if $\exp X=\exp X$ is in $\operatorname{SL}(\mathcal{H})$. This means X is a traceless operator.
(4) Set $G=\mathrm{SO}(\mathcal{H})$. Then, an operator X on \mathcal{H} is in $\mathfrak{s o}(\mathcal{H})$ if and only if $\exp X=\exp X$ is in $\mathrm{SO}(\mathcal{H})$. This means X is a traceless anti-symmetric operator.

A non-abelian Lie algebra \mathfrak{g} is called simple if its only ideals are 0 and itself. A simple Lie algebra \mathfrak{g} either belong to the three families corresponding to the families of Lie groups SL, SO and SP or \mathfrak{g} is one of the exceptional Lie groups $E_{6}, E_{7}, E_{8}, F_{4}$, and G_{2}.
Lie algebra \mathfrak{g} is called semisimple if it has no nonzero abelian ideals. All semisimple Lie algebras are direct sums of the simple ones.
All finite dimensional representations of semisimple Lie algebras and Lie groups are completely reducible. This follows from the fact that representations of compact Lie groups are always completely reducible which can be proven by the averaging argument in the proof of Maschke's theorem for finite groups. The difference in the proof is that one integrates over G instead of summing over the elements of G.

Given a real Lie group G with the Lie algebra L, one may consider the complexification $L \otimes_{\mathbb{R}} \mathbb{C}$ of L, which becomes a complex Lie algebra. Then by the virtue of the fundamental theorem, one defines the complexification $G^{\mathbb{C}}$ of the Lie group G to be the complex Lie group with the Lie algebra $L \otimes_{\mathbb{R}} \mathbb{C}$.
For instance, we have the classical reductive groups $\mathrm{U}(n)^{\mathbb{C}}=\mathrm{GL}(n, \mathbb{C}), \mathrm{SO}(n)^{\mathbb{C}}=$ $\mathrm{SO}(n, \mathbb{C})$ and $\mathrm{SU}(n)^{\mathbb{C}}=\mathrm{SL}(n, \mathbb{C})$.

Example 2.2.3. (1) Consider the Lie algebra $\mathfrak{u}(n)$ of the unitary group $\mathrm{U}(n)$, which consists of skew-Hermitian matrices. Its complexification is the full matrix
algebra. Indeed, every complex matrix $X \in \operatorname{Mat}(n, \mathbb{C})=\operatorname{Lie} G L(n, \mathbb{C})$ can be written as $X=A+i B$ for Hermitian matrices $A=\frac{1}{2}\left(X+X^{*}\right)$ and $B=\frac{1}{2 i}(X-$ $\left.X^{*}\right)$. Therefore we have $\mathrm{U}(n) \otimes \mathbb{C}=\mathrm{GL}(n, \mathbb{C})$.
(2) By the same argument above, $\mathrm{SU}(n) \otimes \mathbb{C}=\operatorname{SL}(n, \mathbb{C})$.
(3) Since any element $X \in \mathfrak{s o}(n, \mathbb{C})$ can be written as $X=A+i B$, where A and B are in $\mathfrak{s o}(n)$, it follows that $\mathrm{SO}(n) \otimes \mathbb{C}=\mathrm{SO}(n, \mathbb{C})$.

2.3 Group representations

To study the properties of a given group, it is usually quite useful to study its representations.
A representation of a group G is a linear action of G on a finite dimensional vector space V over a field k (in our study $k=\mathbb{R}$ or \mathbb{C}). In the case G is a Lie group, we also want the resulting homomorphism $G \rightarrow \mathrm{GL}(V)$ to be smooth.

2.3.1 Tensor product of representations

Given two groups G and K and representations V and W of G and $K, V \otimes W$ becomes a representation of the direct product $G \times K$. The action of $G \times K$ on $V \otimes W$ is given by

$$
(g, k) \cdot(v \otimes w)=g \cdot v \otimes k \cdot w
$$

In fact, every irreducible representation of $G \times K$ is of the form $V \otimes W$, where V is an irreducible representation of G and W is an irreducible representation of K.
If we take $G=K$ then $V \otimes W$ becomes a representation of G as well as a representation of $G \otimes G$, considering the diagonal embedding $g \mapsto(g, g)$ of G into $G \times G$. Taking $V=W$ and proceeding inductively, we obtain tensor powers $V^{\otimes n}$ of V which are again representations of G. The tensor power $V^{\otimes n}$ also becomes a representation of the symmetric group S_{n}, where an element $\sigma \in S_{n}$ acts by permuting the tensor factors:

$$
\sigma .\left(v_{1} \otimes v_{2} \otimes \ldots \otimes v_{n}\right)=v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \ldots \otimes v_{\sigma(n)}
$$

2.3.2 Symmetric and alternating powers of a representation.

The elements of $V^{\otimes n}$ fixed under the action of S_{n} form a subrepresentation $\mathrm{S}^{n} V$ and is called the $n^{\text {th }}$ symmetric power of V.
The elements v of $V^{\otimes n}$ satisfying $\sigma v=\operatorname{sgn}(\sigma) v$ for all $\sigma \in S_{n}$ form a subrepresentation $\wedge^{n} V$ and is called the $n^{\text {th }}$ symmetric power of V. This shows that $V^{\otimes n}$ is not irreducible for $n>1$.

2.3.3 Representations of the symmetric and special unitary groups

2.3.3.1 Representations of the symmetric groups

A partition ν of a natural number n, denoted $\nu \vdash n$, is a non-increasing sequence ν_{1}, ν_{2}, \ldots of natural numbers such that $\sum_{i} \nu_{i}=n$. The condition $\sum_{i} \nu_{i}=n$ forces ν to stabilize at 0 after some point k, thus we may write ν as a k-tuple. Sometimes we write $\nu=\left(1^{\alpha_{1}}, 2^{\alpha_{2}}, \ldots\right)$ and it is understood that the number of occurences of a number m in the sequence $\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right)$ is α_{m}.
The cycle type of an element $\sigma \in S_{n}$ is the non-increasing sequence of the lengths of the cycles in the decomposition of σ into disjoint cycles, which is a partition of n.

Example 2.3.1. $\nu=(4,3,2)$ is the cycle type of $(1234)(567)(89) \in S_{9}$.

Under conjugacy, the cycle type does not change and any two elements having the same cycle type are conjugate. Therefore, the conjugacy classes of a symmetric group S_{n} are determined by the cycle types of the elements.

A Young diagram D is a visualization of a partition $\nu \vdash n . i^{\text {th }}$ row of D has ν_{i} boxes.

Example 2.3.2. The Young diagram corresponding to the partition (4, 2, 1, 1) of 8 is

A nice property of S_{n} is that its irreducible representations have a nice description in terms of the conjugacy classes, or equivalently, in terms of the partitions ν of n :
Let $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right)$ be a partition of n. Consider the Young diagram D of shape ν filled with the numbers $1,2, \ldots, n$ such that when the numbers are read row by row starting from the first row to the last one, the sequence obtained is $1,2, \ldots, n$.

Example 2.3.3. The Young diagram corresponding to the partition $\nu=(2,1)$ is $\frac{{ }^{1 \frac{1}{3}}{ }^{2}}{}$.

Let P (resp. Q) be the subgroup of S_{n} consisting of the permutations which fix each row (resp. column) setwise. Let $\mathbb{C} S_{n}$ denote the group algebra, $a_{\nu}=\sum_{\sigma \in P} \sigma$, $b_{\nu}=\sum_{\sigma \in Q} \operatorname{sgn}(\sigma) \sigma$ and $c_{\nu}=a_{\nu} b_{\nu} . c_{\nu}$ is called the Young symmetrizer.
The following theorem gives a characterization of the irreducible representations of the symmetric groups.

Theorem 2.3.4. Given a partition ν of n, the image $S^{\nu}=\mathbb{C} S_{n} c_{\nu}$ of the element c_{ν} is an irreducible representation of S_{n} and every irreducible representation of S_{n} occurs this way.

If the Young diagram is filled with the numbers $1,2, \ldots, n$ in another way, one gets a representation isomorphic to S^{ν}.
S^{ν} has the following characterization. S^{ν} is the unique (up to isomorphism) irreducible representation of S_{n} such that
(i) S^{ν} contains an invariant element under the action of P,
(ii) S^{ν} contains a skew-symmetric element x under the action of Q, i.e., the action of an element $\sigma \in Q$ on x is multiplication by $\operatorname{sgn}(\sigma)$.

Example 2.3.5. (1) If $\nu=(n)$, i.e., the Young diagram D is a row diagram (for $n=4, \square \square \square)$, then S^{ν} is the trivial representation.
(2) If the diagram is taken to be a column diagram \square with n boxes, then S_{ν} is the signed representation. The tensor product of an irreducible representation S^{ν} with the signed representation is $S^{\nu^{t}}$, where ν^{t} stands for the transpose of ν. For example,

(3) Let U be an n-dimensional vector space with the basis $\left\{e_{i}\right\}_{1 \leq i \leq n}$ and consider the action of S_{n} on U by permuting the basis elements and extended linearly. In this way U becomes a representation of S_{n} and $V=\left\{\sum_{i=1}^{n} c_{i} e_{i}: \sum_{i=1}^{n} c_{i}=0\right\}$ is an irreducible subrepresentation of $U . V$ is called the standard representation of S_{n} and corresponds to the Young diagram of shape $(n-1,1)$. The standard representation V of S_{4} corresponds to \square^{\square}.
(4) $k^{\text {th }}$ exterior power $\wedge^{k} V$ of the standard representation S_{n} is again an irreducible one and has Young diagram \quad with shape $\left(1^{N},(n-N)^{1}\right)$.
(5) Consider the irreducible representation of S_{4} corresponding to Young diagram \boxminus. It has dimension 2 by the hook length formula below and comes from the standard representation of $S_{3} \cong S_{4} / V_{4}$, where V_{4} is the subgroup of S_{4} which consists of double transpositions and the identity.

Define the hook length of a box B in a Young diagram of shape ν is the number of boxes which are either on the right of B or below B, including B.

Example 2.3.6. Let $\nu=(4,2,1)$. Then the following is Young diagram where

The dimension of the representation S^{ν} can be calculated via the Hook length formula.

Theorem 2.3.7.

$$
\operatorname{dim} S^{\nu}=\frac{n!}{\prod \text { Hook lengths }}
$$

Example 2.3.8. For $\nu=(4,2,1)$, $\operatorname{dim} S^{\nu}=\frac{7!}{6.4 .2 .1 .3 .1 .1}$. For $\nu=(n-1,1)$, $\operatorname{dim} S^{\nu}=\frac{n!}{n .(n-2)!}=n-1$, which is consistent with the definition of the standard representation of S_{n}.

2.3.3.2 Representations of $\operatorname{SU}(\mathcal{H})$

Let \mathcal{H} be a finite dimensional Hilbert space. Then, studying the representations of $\mathrm{SU}(\mathcal{H})$ amounts to studying the complexified Lie algebra $\mathfrak{s u}(\mathcal{H}) \otimes \mathbb{C}=\operatorname{sl}(\mathcal{H})$, which are simply the traceless complex $n \times n$ matrices, where n is the dimension of the space \mathcal{H}.
$\mathfrak{s l}(\mathcal{H})$ can be decomposed as $\mathfrak{s l}(\mathcal{H})=D \oplus T^{+} \oplus T^{-}$, where D is the Cartan subalgebra consisting of traceless diagonal matrices and T^{+}and T^{-}are the uppertriangular and lower-triangular matrices, respectively.

Irreducible representations of $\mathrm{SU}(\mathcal{H})$ are parametrized by Young diagrams having less than n rows and the irreducible representation corresponding to a Young diagram ν is denoted by \mathcal{H}^{ν}.
Given an irreducible representation \mathcal{H}^{ν} of $\operatorname{SU}(\mathcal{H})$, one can recover the Young diagram ν as follows. The space $V=\left\{x \in \mathcal{H}^{\nu}: T^{+} x=0\right\}$ is one-dimensional and is invariant under the action of $D \oplus T^{+}$. A non-zero element $x \in V$ is called a highest vector. Since V is one-dimensional, action of an element $d \in D$ is multiplication by a scalar $\omega(d)$, where ω is a weight. The point is that ω can be written as a linear combination $\sum_{i=1}^{n-1} a_{i} \omega_{i}$ of fundamental weights ω_{i}. Then, the a_{i} determine ν via $\nu_{i}-\nu_{i-1}=a_{i}$.

Example 2.3.9. (1) The action of $\mathrm{SU}(\mathcal{H})$ on \mathcal{H} in the obvious way makes \mathcal{H} a representation of $\mathrm{SU}(\mathcal{H})$, which is called the standard representation. The standard representation corresponds to the Young diagram containing a single box,
(2) A row diagram $\square \square$ with k boxes describes the symmetric power $\mathrm{S}^{k} \mathcal{H}$ of the standard representation \mathcal{H}.
(3) A column diagram \square having k boxes corresponds to the exterior power $\wedge^{k} \mathcal{H}$ of \mathcal{H}.
(4) The irreducible representation of $\mathrm{SU}(n)$ corresponding to the Young diagram \square describes the space of Riemann curvature tensors $R(i, j ; k, l)$ in space \mathcal{H}, which satisfy

$$
\begin{aligned}
& R(\alpha, \beta ; \gamma, \delta)=-R(\beta, \alpha ; \gamma, \delta) \\
& R(\alpha, \beta ; \gamma, \delta)=R(\gamma, \delta ; \beta, \alpha) \\
& R(\alpha, \beta ; \gamma, \delta)+R(\alpha, \gamma ; \delta, \beta)+R(\alpha, \delta ; \beta, \gamma)=0
\end{aligned}
$$

We examine the adjoint representation of $\mathrm{SU}(n)$ in a separate section.

2.3.3.3 Adjoint representation of $\mathrm{SU}(n)$

The Lie group $\mathrm{SU}(\mathcal{H})$ acts on itself by conjugation and the differential of this action is the adjoint representation of $\mathrm{SU}(n)$ on its Lie algebra $\mathfrak{g}=\mathfrak{s u}(n)$ The respective representation of \mathfrak{g} is given by

$$
\operatorname{ad} y: x \mapsto[y, x]
$$

and is also named the adjoint representation. The Young diagram corresponding to the adjoint representation is \square and the corresponding partition is $\left(1^{n-2}, 2^{1}\right)$. The adjoint representation is irreducible if and only if the Lie algebra \mathfrak{g} is simple.

2.3.3.4 Schur's duality

As discussed above, the tensor power $\mathcal{H}^{\otimes N}$ of the standard representation \mathcal{H} of $\mathrm{SU}(n)$ is a representation of both $\mathrm{SU}(n)$ and the symmetric group S_{n}, whose actions commute with each other. Hence, $\mathcal{H}^{\otimes N}$ is a direct sum of irreducible representations of the direct product $\mathrm{SU}(n) \times S_{n}$. The explicit decomposition is
given by Schur's duality.

$$
\mathcal{H}^{\otimes N}=\sum_{|\nu|=N} \mathcal{H}^{\nu} \otimes S^{\nu}
$$

Chapter 3

Representations and spectra

Having discussed the classical spectral problem in the previous chapter, we now discuss the so-called ν-representability problem.

The problem has its roots in physics and is a generalization of N-representability problem, which is concerned with the relationship between a state in an N fermion system and its reduced state. In 2008, M. Altunbulak and A. Klyachko [1] gave a solution to this problem using the machinaries of algebraic geometry, representation theory and geometric invariant theory.
To state the problem in mathematical language, let us first introduce tensor contraction. Firstly, let us start with the space $\mathcal{H} \otimes \mathcal{H}^{*}$, where \mathcal{H} is a Hilbert space and \mathcal{H}^{*} stands for its dual. Using the isomorphism $\mathcal{H} \otimes \mathcal{H}^{*} \cong \operatorname{Hom}(\mathcal{H}, \mathcal{H})$ and fixing a basis of \mathcal{H}, an element A of $\mathcal{H}^{*} \otimes \mathcal{H}$ (a rank $(1,1)$ tensor) can be considered as a matrix $\left(a_{i}^{j}\right)$, where the lower index i corresponds to rows and the upper index j corresponds the columns. In this case, The contraction of $A=\left(a_{i}^{j}\right)$ is $\sum_{i} a_{i}^{i}=\operatorname{tr}(A)(\mathrm{a}(0,0)$ tensor $)$. Sometimes one writes simply a_{i}^{i} in lieu of $\sum_{i} a_{i}^{i}$ using Einstein's convention: It is understood that we sum up over the repeating indices.
More generally, fixing a basis of \mathcal{H}, if we have a rank (m, n)-tensor, i.e., an element A of $\left(\mathcal{H}^{*}\right)^{\otimes m} \otimes \mathcal{H}^{\otimes n}$ we can consider A as a "multidimensional" matrix $\left(a_{i_{1} i_{2} \ldots i_{m}}^{j_{1} j_{2} \ldots j_{n}}\right)$. Then given $1 \leq m_{0} \leq m$ and $1 \leq n_{0} \leq n$, the contraction of A on the indices m_{0} and n_{0} is defined similarly. Contraction is defined by fixing a basis of \mathcal{H} but it
can be shown that it is independent of this choice.
Example 3.0.10. Consider the Ricci tensor $R(\vec{A}, \vec{B})$ obtained by the contraction of the Riemann tensor $R\left(\tilde{e}^{\kappa}, \vec{A}, e_{\lambda}, \vec{B}\right)$. This can be stated as $R_{\mu \nu}=R_{\mu \lambda \nu}^{\lambda}$.

3.1 Statement of the ν-Representability Problem

Let \mathcal{H}_{A} and \mathcal{H}_{B} be finite dimensional complex Hilbert spaces and set $\mathcal{H}_{A B}=$ $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Let $\rho: \mathcal{H}_{A B} \rightarrow \mathcal{H}_{A B}$ be an Hermitian operator. Then, the reduced operators $\rho_{A}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{A}$ and $\rho_{B}: \mathcal{H}_{B} \rightarrow \mathcal{H}_{B}$ are defined to be the contractions of $\rho_{A B}$: Considering $\rho_{A B}$ as a matrix $\left(a_{i k}^{j l}\right), \rho_{A}=a_{i k}^{j k}$ and $\rho_{B}=a_{i k}^{i l}$.
Now, consider Schur's duality

$$
\mathcal{H}^{\otimes N}=\sum_{|\nu|=N} \mathcal{H}^{\nu} \otimes \mathcal{S}^{\nu}
$$

where the sum is over all the Young diagrams ν of size N and \mathcal{S}^{ν} is the irreducible representation of the symmetric group S_{N} corresponding to the Young diagram ν. An Hermitian operator ρ^{ν} on \mathcal{H}^{ν} can be considered as an operator on $\mathcal{H}^{\otimes N}$ which equals $\left(\rho^{\nu} \otimes 1\right) / \operatorname{dim} \mathcal{S}^{\nu}$ on $\mathcal{H}^{\nu} \otimes \mathcal{S}^{\nu}$ and zero on the other components. Let $\rho=\rho_{i}: \mathcal{H} \rightarrow \mathcal{H}$ be the $i^{\text {th }}$ reduced state. ρ turns out to be independent of i since $\rho^{\nu} \otimes 1$ and the action of S_{N} commutes.

In ν-representability problem, one studies the relationship between the spectrum μ of an operator ρ^{ν} and the spectrum λ of its reduced operator ρ. The spectrum λ is called the occupation numbers.

3.2 Invariant theory

Let k be an algebraically closed field and V a finite dimensional vector space over k. Let $V^{*}=\operatorname{Hom}_{k}(V, k)$ be the dual of V. Then V^{*} generates a subalgebra
$S(V)=S$ of the k-algebra of all k-valued functions on V.
Then there is an isomorphism of k-algebras $\phi: S(V) \rightarrow k\left[T_{1}, \ldots, T_{n}\right]$ such that $\phi\left(f_{i}\right)=T_{i}$.
$S(V)$ is a representation of G via

$$
(g . f)(v)=f\left(g^{-1} \cdot v\right)
$$

Then, V^{*} is a subrepresentation of $S(V)$. We call $S(V)^{G}:=\{f \in S(V): g \cdot f=f\}$ the G-invariant polynomial functions on V. In invariant theory, one studies the properties of $S(V)^{G}$. Note that the elements of $S(V)^{G}$ are the elements of $S(V)$ which are constants the orbits in V under the action of G. An invariant is said to separate two orbits if it takes different values on those orbits.
Since a polynomial $S(V)$ is determined by its roots, which are points in $\mathbb{P} k$, one can regard invariants as geometric configurations which stay unchanged under the action of the given group.
In fact, according to the Erlangen program of Felix Klein, the study of invariant theory is nothing but the study of geometry. Invariant quantities of a geometric object are those which do not depend on the choice of a coordinate system for the space.

Example 3.2.1. (1) The volume of a parallelepiped formed by n vectors in the space \mathbb{R}^{n} is given by the determinant $\operatorname{det}(A)$, where A is the matrix whose columns are the given vectors. The fact that special linear group respects volume is reflected by $\operatorname{det}(A)=\operatorname{det}(g A)$. Also, $\operatorname{det}\left(g A g^{-1}\right)=\operatorname{det}(A)$ says the volume of the parallelepiped formed by the column vectors of a remains unchanged if the basis is changed, provided the volume of the parallelepiped formed by the vectors in the basis is taken to be 1 after the change of basis.
(2) Another invariant associated to an endomorphism of a vectors space is its trace. It is related to the determinant via $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$. Setting $\mathfrak{g}=s u(\mathcal{H})$, define an inner product on $s u(\mathfrak{g})$ by $(a, b)=\operatorname{tr}(a b)$. Then $([x, a], b)+(a,[x, b])=0$ and the metric induced by this inner product is the so called invariant metric in adjoint representation.

As noted above, to a d-dimensional subspace W of \mathcal{H} corresponds a unique point (up to a nonzero scalar) in $\wedge^{d} \mathcal{H}$. Generalizing this, we can consider a
configuration of subspaces W_{i} in \mathcal{H} as a point in $X=\otimes_{\alpha} \wedge^{d_{\alpha} \mathcal{H}}$. Consider the orbit of a point $\phi \in X$. If its closure contains 0 , then we can find no invariant polynomial on X which is nonzero at ϕ. We call such ϕ unstable configurations. If the orbit of a non-zero ϕ is closed, we call ϕ a stable configuration. The remaining configurations are called semistable.

3.3 Geometric Stability Criteria

In this section we discuss the geometric stability criteria which is needed in the solution of the ν-representability problem. Let $S L(\mathcal{H})$ be the group of transformations on \mathcal{H} in the following discussion.
The following theorem is due to Mumford.
Theorem 3.3.1 ([15]). A configuration of subspaces \mathcal{F}_{α} in \mathcal{H} is semistable if and only if for any proper subspace $E \subset \mathcal{H}$ the following inequality is satisfied.

$$
\begin{equation*}
\frac{1}{\operatorname{dim} E} \sum_{\alpha} \operatorname{dim}\left(\mathcal{F}_{\alpha} \cap E\right) \leq \frac{1}{\operatorname{dim} \mathcal{H}} \sum_{\alpha} \operatorname{dim} \mathcal{F}_{\alpha} \tag{3.1}
\end{equation*}
$$

If inequalities are strict, then the configuration is stable.

Roughly speaking, the theorem says that a semistable configuration is not concentrated in a subspace E of \mathcal{H}.

Theorem 3.3.2 (Kempf-Ness Unitary Trick). Fix a metric in \mathcal{H} and the induced metric on $\otimes_{\alpha} \wedge^{d_{\alpha} \mathcal{H}}$. Then, the following conditions on a Plücker vector $\phi \in$ $\otimes_{\alpha} \wedge^{d_{\alpha} \mathcal{H}}$ are equivalent:
(1) ϕ is stable.
(2) The orbit of ϕ contains a unique (up to a unitary transformation) vector ϕ_{0} of minimal length.

In other words, a stable configuration ϕ determines a unique (up to) proportionality matric on \mathcal{H} such that ϕ has minimal length in its orbit.
The stability of ϕ can be restated as in terms of the projection operators P_{α} onto
\mathcal{F}_{α} via

$$
\sum_{\alpha} P_{\alpha}=\text { scalar }
$$

Given a Hermitian operator X_{α} with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{k}$, one can consider the filtration \mathcal{F}_{α} given by

$$
\mathcal{F}_{\alpha}(s)=\text { the sum of eigenspaces of } X_{\alpha} \text { with eigenvalues } \geq s
$$

instead of subspaces \mathcal{F}_{α} of \mathcal{H}. This can be considered as a flag

$$
0 \subset \mathcal{F}_{\alpha}\left(\lambda_{1}\right) \subset \mathcal{F}_{\alpha}\left(\lambda_{2}\right) \subset \ldots \subset \mathcal{F}_{\alpha}\left(\lambda_{k}\right)=\mathcal{H}
$$

For simplicity, assume X_{α} is a nonnegative operator. Note that X_{α} can be recovered via

$$
\begin{aligned}
X_{\alpha} & =\int_{0}^{\infty} P_{\alpha}(s) d s \\
& =\left(\lambda_{1}^{\alpha}-\lambda_{2}^{\alpha}\right) P_{\alpha}\left(\lambda_{1}^{\alpha}\right)+\left(\lambda_{2}^{\alpha}-\lambda_{3}^{\alpha}\right) P_{\alpha}\left(\lambda_{2}^{\alpha}\right)+\ldots+\left(\lambda_{k-1}^{\alpha}-\lambda_{k}^{\alpha}\right) P_{\alpha}\left(\lambda_{k-1}^{\alpha}\right)+\lambda_{k}^{\alpha} P_{\alpha}\left(\lambda_{k}\right)
\end{aligned}
$$

where $P_{\alpha}(s)$ is the projection operator onto the subspace $\mathcal{F}_{\alpha}(s)$. Considering $\mathcal{F}_{\alpha}\left(\lambda_{i}\right)$ as a subspace of multiplicity $\lambda_{i}^{\alpha}-\lambda_{i+1}^{\alpha}$ we get the following stability criterion.

Theorem 3.3.3. A system of filtrations \mathcal{F}_{α} is semistable if and only if for any proper subspace $E \subset \mathcal{H}$ the following inequality is satisfied.

$$
\begin{equation*}
\frac{1}{\operatorname{dim} E} \sum_{\alpha} \int_{0}^{\infty} \operatorname{dim}\left(\mathcal{F}_{\alpha}(s) \cap E\right) d s \leq \frac{1}{\operatorname{dim} \mathcal{H}} \sum_{\alpha} \int_{0}^{\infty} \operatorname{dim} \mathcal{F}_{\alpha}(s) d s \tag{3.2}
\end{equation*}
$$

If the inequalities are strict, then the system of filtrations is stable.

Stability have a metric characterization again.
Theorem 3.3.4. A system of filtrations \mathcal{F}_{α} is stable if and only if there exists a metric on \mathcal{H} such that

$$
\sum_{\alpha} X_{\alpha}=s c a l a r
$$

where $X_{\alpha}=\int_{0}^{\infty} P_{\alpha}(s) d s$ and $P_{\alpha}(s)$ is the projection operator onto $\mathcal{F}_{\alpha}(s)$.

The geometric stability criterion (3.2)) can be restated for a test filtration instead of a test space.

Theorem 3.3.5. A system of filtrations \mathcal{F}_{α} is semistable if and only if for any test filtration $E(t)$ the following inequality is satisfied.

$$
\begin{equation*}
\sum_{\alpha} \iint\left(\operatorname{dim}\left(\mathcal{F}_{\alpha}(s) \cap E(t)\right)-\frac{\operatorname{dim} \mathcal{F}_{\alpha} \operatorname{dim} E(t)}{\operatorname{dim} \mathcal{H}}\right) d s d t \leq 0 \tag{3.3}
\end{equation*}
$$

where the integration is over the whole (s, t)-plane.
If the inequalities are strict, then the system is filtrations is stable.

Let $G \subset S U(\mathcal{H})$ be a connected subgroup and $\mathfrak{g} \subset s u(\mathcal{H})$ be its Lie algebra. Here, $s u(\mathcal{H})$ consists of traceless Hermitian operators with the Lie bracket $[X, Y]=i(X Y-Y X)$. Let $G^{\mathrm{c}} \subset S L(\mathcal{H})$ be the complexification of G. Then, we have the following geometric stability criterion.

Theorem 3.3.6. A system of filtrations \mathcal{F}_{α} is G^{c}-semistable if and only if for any non-zero operator $x \in \mathfrak{g}$ with spectral filtration $E_{x}(t)$ the following inequality is satisfied.

$$
\begin{equation*}
\sum_{\alpha} \iint\left(\operatorname{dim}\left(\mathcal{F}_{\alpha}(s) \cap E_{x}(t)\right)-\frac{\operatorname{dim} \mathcal{F}_{\alpha} \operatorname{dim} E_{x}(t)}{\operatorname{dim} \mathcal{H}}\right) d s d t \leq 0 \tag{3.4}
\end{equation*}
$$

where the integration is over the whole (s, t)-plane. If the inequalities are strict, then the system is filtrations G^{c}-stable.

The metric characterization of stability is as follows.
Theorem 3.3.7. A system of filtrations \mathcal{F}_{α} is G^{c}-stable if and only if there exists a metric such that

$$
\sum_{\alpha} X_{\alpha} \in \mathfrak{g}^{\perp}
$$

where $X_{\alpha}=\int_{0}^{\infty} P_{\alpha}(s) d s, P_{\alpha}(s)$ is the projection operator onto $\mathcal{F}_{\alpha}(s)$ and \mathfrak{g}^{\perp} is the orthogonal complement of \mathfrak{g} in the space of all Hermitian operators with the trace norm $(X, Y)=\operatorname{tr}(X Y)$.

Suppose $\mathcal{F}(s)$ and $E(t)$ are complete filtrations, i.e., the dimension drops are at most one at any point. Then,

$$
\begin{equation*}
\iint \operatorname{dim}(\mathcal{F}(s) \cap E(t)) d s d t=\sum t_{i} s_{w(i)} \tag{3.5}
\end{equation*}
$$

where s_{i}, t_{j} are eigenvalues of the respective operators and w is the permutation which describes the relative position of the respective flags

$$
0 \subset \mathcal{F}_{\alpha}\left(s_{1}\right) \subset \mathcal{F}_{\alpha}\left(s_{2}\right) \subset \ldots \subset \mathcal{F}_{\alpha}\left(s_{k}\right)=\mathcal{H}
$$

and

$$
0 \subset E_{\alpha}\left(t_{1}\right) \subset E_{\alpha}\left(t_{2}\right) \subset \ldots \subset E_{\alpha}\left(t_{k}\right)=\mathcal{H}
$$

When w is considered as a permutation matrix, it is the unique permutation matrix such that the rank of its principal $i j^{\text {th }}$ submatrix equals $\operatorname{dim}\left(\mathcal{F}_{\alpha}\left(s_{i}\right) \cap\right.$ $\left.E_{\alpha}\left(t_{j}\right)\right)$.
Flags in a position w with respect to a reference flag form a Schubert cell s_{w}. In the geometric setting (3.5)), $E_{x}=\cap_{\alpha} s_{w_{\alpha}} \neq \emptyset$.

When the filtrations \mathcal{F}_{α} are in generic position, only the topologically inevitable intersection survives. This leads to the constraint on the corresponding Schubert cocycles $\sigma_{w}=\left[\overline{s_{w}}\right]$

$$
\cap_{\alpha} \phi_{x}^{*} s_{w_{\alpha}} \neq \emptyset
$$

where $\phi_{x}: \mathcal{F}_{x}(\mathcal{H}) \rightarrow \mathcal{F}_{x}(\mathfrak{g})$ is the natural inclusion of the flag varieties and $\phi_{x}^{*}: H^{*}\left(\mathcal{F}_{x}(\mathfrak{g})\right) \rightarrow H^{*}\left(\mathcal{F}_{x}(\mathcal{H})\right)$ is the respective map between the cohomologies.

Now, let us consider a representation \mathcal{H}^{ν} of $S U(N)$ and an operator X^{ν} on \mathcal{H}^{ν} with its projection X into $s u(\mathcal{H}) \subset s u\left(\mathcal{H}^{\nu}\right)$. Then, (3.4) enhanced by (3.5) gives all constraints on the spectra of X and X^{ν}.

Let $x \in \operatorname{su}(\mathcal{H})$ and let x^{ν} denote the operator on \mathcal{H}^{ν} induced by x. Denote by a and a^{ν} the respective spectra. Then, we may consider the flag varieties \mathcal{F}_{a} and $\mathcal{F}_{a_{\nu}}$ consisting of Hermitian operators of spectra a and a^{ν}, respectively. We have maps $\phi_{a}: \mathcal{F}_{a} \rightarrow \mathcal{F}_{a^{\nu}}$, sending x to x^{ν}, and $\phi_{a}^{*}: H^{*}\left(\mathcal{F}_{a^{\nu}}\right) \rightarrow H^{*}\left(\mathcal{F}_{a}\right)$ such that $\phi_{a}^{*}: \sigma(w) \mapsto \sum_{v} c_{w}^{v}(a) \sigma(v)$. The following theorem is from [2] which was put in another form in [1] and we state the modified version.

Theorem 3.3.8. All constraints on the spectra $\lambda=\operatorname{spec}\left(X^{\nu}\right)$ and $\mu=\operatorname{spec}(X)$ are given by the inequalities

$$
\sum_{i} a_{i} \mu_{v(i)} \leq \sum_{j} a_{j}^{\nu} \lambda_{w(j)} \quad(a w v)
$$

where v and w are permutations and a is a test spectrum such that $c_{w}^{v}(a) \neq 0$.

3.4 Solution of the ν-Representability Problem

Given a diagonal operator $z=\operatorname{diag}\left(z_{1}, z_{2}, \ldots, z_{r}\right) \in U\left(\mathcal{H}_{r}\right)$, its character on \mathcal{H}_{r}^{ν} is the Schur's function $S_{\nu}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ which has a nice combinatorial description: By a semistandard tableau of shape ν, we mean a Young diagram of shape ν filled with the numbers $1,2, \ldots, r$ such that the numbers weakly increase in rows and strictly increase in columns.
 is not since the numbers in the third column do not strictly increase.

Then, Schur's function is the sum of monomials

$$
\begin{equation*}
S_{\nu}(z)=\sum_{T} z_{T} \tag{3.6}
\end{equation*}
$$

where the sum is over all the semistandard tableaux of shape ν and z_{T} stands for $\prod_{i \in T} z_{i}$.

Example 3.4.2. Let $\nu=(2,1)$ and $r=3$. Then, the semistandard tableaux of shape ν are

Hence, in this case $S_{\nu}(z)=z_{1}^{2} z_{2}+z_{1}^{2} z_{3}+z_{1} z_{2}^{2}+2 z_{1} z_{2} z_{3}+z_{1} z_{3}^{2}$.

Actually, the monomials appearing in (3.6) are weights of the representation \mathcal{H}_{r}^{ν}, which means

$$
\begin{equation*}
z \cdot e_{T}=z^{T} e_{T} \tag{3.7}
\end{equation*}
$$

for a basis e_{T} of \mathcal{H}_{r}^{ν} indexed by the semistandard tableaux of shaped ν. Let \mathfrak{t} and \mathfrak{t}^{ν} denote the Cartan subalgebras of $u(\mathcal{H})$ and $u\left(\mathcal{H}_{r}^{\nu}\right)$, which consist of real diagonal operators. Then the differential of the group action (3.7) gives the morphism

$$
\begin{equation*}
f_{*}: \mathfrak{t} \rightarrow \mathfrak{t}^{\nu}, \quad f_{*}(a): e_{T} \mapsto a_{T} e_{T} \tag{3.8}
\end{equation*}
$$

where by a_{T} we mean $\sum_{i \in T} a_{i}$. Given a spectrum $a=a_{1} \geq a_{2} \geq \ldots \geq a_{r}$ and a semistandard tableau T of shape ν, denote by a^{ν} the spectrum consisting of the quantites a_{T} arranged in non-increasing order:

$$
\begin{equation*}
a^{\nu}=\left\{a_{T}: \mathrm{T} \text { is a semistandard tableau of shape } \nu\right\}^{\downarrow} \tag{3.9}
\end{equation*}
$$

We have morphisms

$$
\begin{aligned}
\phi_{a} & : \mathcal{F}\left(\mathcal{H}_{r}\right) \rightarrow \mathcal{F}\left(\mathcal{H}_{r}^{\nu}\right) \\
\phi_{a}^{*} & : H^{*}\left(\mathcal{F}\left(\mathcal{H}_{r}^{\nu}\right)\right) \rightarrow H^{*}\left(\mathcal{F}\left(\mathcal{H}_{r}\right)\right) \\
\phi_{a}^{*} & : \sigma(w) \mapsto \sum_{v} c_{w}^{v}(a) \sigma(v)
\end{aligned}
$$

so we have the following:
Theorem 3.4.3. In the above notations, all constraints on the spectra λ and ν are given by the inequalities

$$
\sum_{i} a_{i} \lambda_{v_{i}} \leq \sum_{k} a_{k}^{\nu} \mu_{w(k)}
$$

for all spectra a and permutations v and w with the topological coefficient $c_{w}^{v}(a) \neq$ 0 .

3.4.1 Calculation of the topological coefficients $c_{w}^{v}(a)$.

The coefficients $c_{w}^{v}(a)$ also has a combinatorial description which uses the Schubert polynomials which were first introduced in [12].
Fix some positive integer n and consider the so-called divided difference operators ∂_{i} on the polynomial ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, which are defined by

$$
\partial_{i}: f \mapsto \frac{f\left(\ldots, x_{i}, x_{i+1}, \ldots\right)-f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)}{x_{i}-x_{i+1}}
$$

Note that ∂_{i} satisfies
(i) $\partial_{i}(m f+g)=m \partial_{i}(f)+\partial_{i}(g)$ for $m \in \mathbb{Z}$ and polynomials f and g,
(ii) $\partial_{i}(f g)=\partial_{i}(f) g+f^{\sim i} \partial_{i} g$
where $f^{\sim i}$ denotes the polynomial $f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)$.
Let $w \in S_{n}$ be a permutation and let s_{i} denote the transposition $(i, i+1)$. Write w as a product of minimal number of transpositions

$$
\begin{equation*}
w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{l(w)}} \tag{3.10}
\end{equation*}
$$

$l(w)$ is called the length of the permutation w. It turns out that the operator $\partial_{w}:=\partial_{i_{1}} \partial_{i_{2}} \ldots \partial_{i_{l(w)}}$ is well-defined, i.e., it remains the same if one chooses a different minimal decomposition instead of (3.10)).
Let $w_{0}=(1, n)(2, n-1)(3, n-2) \ldots$ be the permutation of maximal length. Then, the Schubert polynomial $S_{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is defined to be

$$
\begin{equation*}
S_{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\partial_{w^{-1} w_{0}}\left(x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n-1}\right) \tag{3.11}
\end{equation*}
$$

Then S_{w} has positive coefficients and has degree $l(w)$. See [11] for more details. The following is a list of Schubert polynomials for $n=4$. The permutation $1 \mapsto i, 2 \mapsto j, 3 \mapsto k, 4 \mapsto l$ is denoted by $i j k l$ for the sake of simplicity of the table. x, y and z stands for x_{1}, x_{2} and x_{3}. The list is borrowed from [11], where it appears as a lattice of polynomials. Two polynomials are connected in the lattice if one is obtained from the other by an operator ∂_{i}. In the list below, the permutations $i j k l$ are ordered lexicographically.

1234	0	2134	x	3124	x^{2}	4123	x^{3}
1243	$x+y+z$	2143	$x^{2}+x y+y z$	3142	$x^{2} y+x^{2} z$	4132	$x^{3} y+x^{3} z$
1324	$x+y$	2314	$x y$	3214	$x^{2} y$	4213	$x^{3} y$
1342	$x y+x z+y z$	2341	$x y z$	3241	$x^{2} y z$	4231	$x^{3} y z$
1423	$x^{2}+x y+y^{2}$	2413	$x^{2} y+x y^{2}$	3412	$x^{2} y^{2}$	4312	$x^{3} y^{2}$
1432	$x^{2} y+x^{2} z+x y^{2}$ $+x y z+y^{2} z$	2431	$x^{2} y z+x y^{2} z$	3421	$x^{2} y^{2} z$	4321	$x^{3} y^{2} z$

Example 3.4.4. Let $n=4$ and $w=1432=(24)$. Then $w^{-1} w_{0}=(1234)=$ $s_{1} s_{2} s_{3}$ and $\partial_{w^{-1} w_{0}}\left(x^{3} y^{2} z\right)=\partial_{1} \partial_{2} \partial_{3}\left(x^{3} y^{2} z\right)=\partial_{1} \partial_{2}\left(x^{3} y^{2}\right)=\partial_{1}\left(x^{3}(y+z)\right)=$ $\partial_{1}\left(x^{3} y+x^{3} z\right)=x y(x+y)+z\left(x^{2}+x y+y^{2}\right)=x^{2} y+x^{2} z+x y^{2}+x y z+y^{2} z$.

Theorem 3.4.5 ([1]). The topological coefficients $c_{w}^{v}(a)$ in the ν-representability problem is given by the formula

$$
\begin{equation*}
c_{v}^{w}(a)=\partial_{v}\left(\left.S_{w}\left(x^{\nu}\right)\right|_{x_{k}^{\nu} \mapsto x_{T}}\right) \tag{3.12}
\end{equation*}
$$

where T is a tableau such that $a_{k}^{\nu}=a_{T}$.

Remark. The right hand side of (3.12) is independent of the tableaux which satisfy $a_{k}^{\nu}=a_{T}$.

Chapter 4

Kostant's Problem

In this chapter, $\wedge^{*} \mathfrak{g}$ and $S^{*} \mathfrak{g}$ will denote the exterior and symmetric algebras of the adjoint representation of the group $S U(n)$, respectively.
Note that the center Z of the group $\mathrm{SU}(n)$ consists of the multiples of the identity ξI such that $\xi^{n}=1$. Also note that Z acts on $\mathfrak{g}=\mathfrak{s u}(n)$ trivially. Then, its action on a symmetric power $S^{N} \mathfrak{g}$ must be also trivial. This implies n must divide $|\nu|$ since the action of ξI on \mathcal{H}^{ν} is multiplication by $\xi^{|\nu|}$ and ξ can be taken to have order n. In fact, the converse is also true, hence this characterizes the irreducible representations of $\operatorname{SU}(n)$ which can appear in $S^{*} \mathfrak{g}$.

Problem 4.0.6. Kostant's problem asks what is the smallest integer N such that a given irreducible representation of \mathcal{H}^{ν} appears in $S^{N} \mathfrak{g}$.

Given a representation \mathcal{H}^{ν} where $|\nu|$ is a multiple of n, adding ν columns of length n does not change the representation ν since those columns corresponds to the determinant of elements in $\operatorname{SU}(n)$, which is just 1 . Then ν can be taken to have at most $n-1$ rows and one defines the level of \mathcal{H}^{ν} as $k=1+\frac{N n-|\nu|}{n}$.

4.1 Method

In the introduction, we discussed the difficulties while trying to compute the moment polytopes. Now, we restate our current method to obtain the moment polytope.
The idea is to produce many points which are known to be in the polytope and obtain a polytope $Q_{n} \subset P_{n}$ such that it has at least one correct facet, by which we mean a facet whose corresponding linear inequality has a nonzero topological coefficient c_{w}^{v} in Theorem (3.4.3). Then we find all vertices of P_{n} lying on this facet (see section (4.1.6)) and add them to R_{n}, then repeat this procedure until we obtain P_{n}. Depending on the initial inner approximation R_{n}, this method may take some time. We have obtained P_{n} for $n \leq 9$.

4.1.1 Points from smaller polytopes

Notice that if a point $p_{n-1}=\left(p_{1} \geq p_{2} \geq \ldots \geq p_{n-1}\right)$ is in P_{n-1}, then adding a component with value 0 to p_{n-1} without disturbing the order of the components we get a point in P_{n}. The same is true for P_{n-i}, where one adds i zeros. The reason is that if p_{n-i} is the spectrum of $\left[A, A^{*}\right]$ then p_{n} is the spectrum of the commutator of $\left[B, B^{*}\right]$ where B is the matrix with i additional rows and columns.

$$
\left(\begin{array}{cccc}
A & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

4.1.2 Points of the form $d-\sigma d$

Since $A A^{*}$ is Hermitian, it is unitarily similar to a diagonal matrix D. So, let us write $A A^{*}=U D U^{*}$ for some unitary matrix U. Since $A A^{*}$ must have nonnegative eigenvalues, $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ for some nonnegative $\left(d_{i}\right)_{1 \leq i \leq n}$ with $\sum_{i=1}^{n} d_{i}=1$. Then letting $\sqrt{D}=\operatorname{diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$ and $B=\sqrt{D} U^{*}$ for an arbitrary unitary matrix U, we have $\left[B, B^{*}\right]=D-U D U^{*}$. So we have a subset of matrices of type $\left[A, A^{*}\right]$.
Generating all matrices of the form $D-U D U^{*}$ by a computer is obviously impossible since there are infinitely many unitary matrices. However, we can consider the finite subset of $U(n)$ consisting of permutation matrices, i.e., the matrices which have exactly one 1 in each row and column and 0 elsewhere. So we deal with the diagonal matrices $D-P D P^{-1}$ whose spectra are of the form $d-\sigma d$ where $d-\sigma d$ is defined by $(d-\sigma d)_{i}=d_{i}-d_{\sigma(i)}$.
But still there are infinitely many spectra d and we want $d-\sigma d$ to be in nondecreasing order. To solve this problem, firstly note that the image of the convex hull of points p_{1}, \ldots, p_{k} in the space under a linear map L is nothing but the convex hull of the points $L\left(p_{1}\right), \ldots, L\left(p_{k}\right)$. In other words, the operations of taking convex hull of points and applying a linear operator commute with each other. We fix a permution σ and the corresponding permutation matrix P. We set $L=I-P, R_{P}=\left\{\left(d_{1}, \ldots, d_{n}\right): d_{i} \leq 0, \sum_{i=1}^{n} d_{i}=1\right\}$ and $R_{P}^{\prime}=L(R)$. Taking the convex hull of the intersections of the R_{P}^{\prime} with the positive Weyl chamber $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1} \geq x_{2} \geq \ldots \geq x_{n}\right\}$ as P ranges over all permutation matrices, we obtain an inner approximation to the polytope P_{n}.

4.1.3 Decomposition of symmetric powers of \mathfrak{g}

By the very definition of the problem, we can decompose the symmetric powers of \mathfrak{g} to get points in the moment polytope P_{n} until it stabilizes. This can be done thanks to LIE, a software package for Lie group theoretical computations. However, this has fairly high computational complexity and even worse, one does
not know when to stop without the aid of ν-representability problem. Nevertheless, this helps to approximate the moment polytope from inside.

4.1.4 Computation of moment polytopes as an instance of additive spectral problem

For small values of n we can compute P_{n} by treating the problem as an additive spectral problem since the matrices $A A^{*}$ and $-A^{*} A$ are Hermitian and we are interested in the constraints on the spectra of their sum $\left[A, A^{*}\right]$. One can either use the inequalities in the sets $T_{r, n}$ for $1 \leq r<n$ or the inequalities supplied by the Hive model to produce a polytope Q_{n} which keeps the information of constraints on all of the variables appear in the inequalities, and obtain P_{n} by projecting Q_{n} to the subspace spanned by the variables corresponding to the spectra of $\left[A, A^{*}\right]$. On a typical PC , this allows one to compute P_{n} up to $n=6$ via the former inequalities and up to $n=5$ via the latter. For $n \geq 7$, we estimate that it would take at least weeks to compute the polytope. This is possibly due to exponential growth of the cardinality of $\cup_{r} T_{r, n}$ and quadratic increase of the number of variables in the inequalities given by Hive model.
Therefore, we need another way to proceed.

4.1.5 Computation of moment polytopes as an instance of ν-representability problem

Note that the problem described above becomes a ν-representability problem. Let $A \in \operatorname{sl}(\mathcal{H})$ and consider the projection operator $\rho^{\nu}=|A\rangle\langle A|$. Then the contraction of ρ^{ν} turns out to be the commutator $\left[A, A^{*}\right]$.

Now we illustrate how the topological coefficients $c_{w}^{v}(a)$ related to a facet (genuine or not) can be calculated. Note that the Young diagram corresponding to adjoint representation is $\bar{\square}$, where the first column has length $n-1$. Also note
that the spectrum μ in Theorem (3.4.3) is $(1,0,0, \ldots)$ since we have a projection operator $|A\rangle\langle A|$.

Example 4.1.1. Consider the facet of P_{3} given by the inequality $\lambda_{1}-\lambda_{2} \leq 1$. We want to put it in the form

$$
\sum_{i} a_{i} \lambda_{v(i)} \leq \sum_{k} a_{k}^{\nu} \mu_{w(k)}
$$

So, the test spectrum a in the Theorem (3.4.3) is $(1,0,-1)$ and v must be (23). All semistandard tableaux of shape ν are

Hence $a^{\nu}=(2,1,1,0,0,-1,-1,-2)$. We want v and w have the same length, so we must have $w=(12)$. We can read $S_{w}\left(x^{\nu}\right)$ from the table in the previous chapter as x_{1}^{ν}. Now we replace x_{1}^{ν} with $2 x_{1}+x_{2}$ as dictated by Theorem (3.4.5). Upon applying ∂_{v} we get $c_{w}^{v}(a)=1$. Hence, $\lambda_{1}-\lambda_{2} \leq 1$ is a true inequality.

4.1.6 Finding the vertices on a genuine facet

Here is a precise description of a facet of the moment polytope for representation \mathcal{H}^{ν} via a moment polytope of a representation of a subgroup $G \subset \mathrm{SU}(\mathcal{H})$. Let a genuine facet be given by the equation

$$
\begin{equation*}
c_{1} \lambda_{1}+c_{2} \lambda_{2}+\cdots+c_{n} \lambda_{n}=b \tag{4.1}
\end{equation*}
$$

Consider the tensor algebra $T \mathcal{H}=\sum_{n \geq 0} \mathcal{H}^{\otimes n}$ and for every $\alpha \in \mathcal{H}$ define the annihilation operator

$$
\alpha: x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n} \mapsto \sum_{1 \leq i \leq n}\left(\alpha, x_{i}\right) \cdot x_{1} \otimes x_{2} \otimes \cdots \otimes \widehat{x_{i}} \otimes \cdots \otimes x_{n}
$$

and its conjugate creation operator

$$
\alpha^{\dagger}: x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n} \mapsto \sum_{0 \leq i \leq n} x_{1} \otimes x_{2} \otimes \cdots \otimes x_{i-1} \otimes \alpha \otimes x_{i} \otimes \cdots \otimes x_{n}
$$

The composition

$$
\alpha^{\dagger} \alpha: \mathcal{H}^{\otimes n} \rightarrow \mathcal{H}^{\otimes n}
$$

commutes with the action of the symmetric group S_{n} and via the Schur's decomposition $\mathcal{H}^{\otimes n}=\sum_{\nu \vdash n} \mathcal{H}^{\nu} \otimes \mathcal{S}^{\nu}$ induces an action in \mathcal{H}^{ν}.
Now, let $\left(\alpha_{i}\right)$ be an orthonormal basis of \mathcal{H} and consider the operator $A=$ $c_{1} \alpha_{1}^{\dagger} \alpha_{1}+c_{2} \alpha_{2}^{\dagger} \alpha_{2}+\cdots+c_{n} \alpha_{n}^{\dagger} \alpha_{n}$ where c_{i} are coefficients of the equation (4.1). Then the centralizer $\mathfrak{g}_{A}=\{x \in \mathfrak{s u}(\mathcal{H}) \mid A x=x A\}$ acts in the space $\mathcal{H}_{A}^{\nu}=\left\{\psi \in \mathcal{H}^{\nu} \mid A \psi=b \psi\right\}$, where b is the right hand side of the equation (4.1). In this setting, we have the following theorem, due to Klyachko (private communication).

Theorem 4.1.2. The facet (4.1) is the part of the moment polytope of the representation $\mathfrak{g}_{A}: \mathcal{H}_{A}^{\nu}$ cut out by the ordering condition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ (the ordering conditions in \mathfrak{g}_{A} are weaker than that of $\mathfrak{s u}(\mathcal{H})$).

Let us see how this works for the adjoint representation. To recover vertices of a facet from the coefficients of its equation

$$
\begin{equation*}
a_{1} \lambda_{1}+a_{2} \lambda_{2}+. .+a_{n} \lambda_{n}=1 \tag{4.2}
\end{equation*}
$$

we have to consider the diagonal matrix $A=\operatorname{diag}\left(a_{1}, a_{2}, . ., a_{n}\right)$ in the space $M=\mathfrak{g}_{A}$ of all $n \times n$ matrices X s.t. $A X-X A=X$. They form a two-sided module M over the centralizer Z_{A} of A. Clearly, Z_{A} is a direct sum of matrix algebras whose ranks are equal to multiplicities of the coefficients in the sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and M is spanned by the matrix units $E_{i j}$ s.t. $a_{i}-a_{j}=1$. We observe the experimental fact that for a genuine constraint (4.2) the successive terms of the sequence a_{i} arranged in non-increasing order either coincide or differ by 1. According to the above theorem, the facet is a part of the moment polytope of the adjoint action $X \mapsto Z X-X Z$, of Z_{A} in the two-sided module M. The respective moment polytope is formed by spectra of commutators $\left[X, X^{*}\right], X \in$ $M, \operatorname{Tr} X X^{*}=1$ arranged in decreasing order within every block. This imposes the ordering conditions only on the eigenvalues λ_{i}, λ_{j} in (4.2) with equal coefficient $a_{i}=a_{j}$. The facet itself is obtained from the moment polytope by imposing the global ordering condition $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$.

Example 4.1.3. Let us consider the inequality $\lambda_{2}+\lambda_{3}-\lambda_{6} \leq 1$ of a facet F of P_{6}. The multiplicity of the coefficients 1,0 and -1 are 2,3 and 1 , respectively.

Then M consists of block matrices X of the form

$$
\left(\begin{array}{lll}
0 & A & 0 \\
0 & 0 & B \\
0 & 0 & 0
\end{array}\right)
$$

where A is a 2×3 matrix and B is a 3×1 matrix.
Then, $X X^{*}-X^{*} X=\left(\begin{array}{ccc}A A^{*} & 0 & 0 \\ 0 & B B^{*}-A^{*} A & 0 \\ 0 & 0 & -B^{*} B\end{array}\right)$ So we need to deal with an additive spectral problem with the matrices having dimension 3 to find the vertices of P_{6} in F.

4.2 The absolute values of the coordinates of the points in moment polytopes

Note that we use the normalization $\operatorname{tr}\left(A A^{*}\right)=1$ and the eigenvalues of a matrix of the form $A A^{*}$ are nonnegative. Thus, $A A^{*}$ has spectrum

$$
1 \geq \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq 0
$$

and $-A^{*} A$ has spectrum

$$
0 \geq-\lambda_{n} \geq-\lambda_{n-1} \geq \ldots \geq-\lambda_{1} \geq-1
$$

since $A A^{*}$ and $A^{*} A$ are isospectral matrices.
Then, the inequality (5.2) in the next chapter says that the largest eigenvalue of $\left[A, A^{*}\right]$ is not larger than 1 . By symmetry, the smallest eigenvalue of $\left[A, A^{*}\right]$ is not less than -1 . Thus we have

Theorem 4.2.1. The absolute values of the coordinates of the points in the moment polytopes are not larger than 1.

4.3 A related conjecture by Kostant

We finish this section by the following remark. One may also ask which irreducible representations of $S U(n)$ appear in $\wedge^{*} \mathfrak{g}$ and $S^{*} \mathfrak{g}$. B. Kostant conjectured that an irreducible representation of weight μ appear in $\wedge^{*} \mathfrak{g}$ if and only if $2 \rho-\mu$ is a linear combination of simple roots, where ρ stands for half sum of all positive roots of \mathfrak{g}.
This condition can be restated as $\mu \preceq 2 \rho$ where $\alpha \preceq \beta$ is a shorthand notation for the majorization inequalities

$$
\begin{aligned}
& \alpha_{1} \leq \beta_{1} \\
& \alpha_{1}+\alpha_{2} \leq \beta_{1}+\beta_{2} \\
& \alpha_{1}+\alpha_{2}+\alpha_{3} \leq \beta_{1}+\beta_{2}+\beta_{3} \\
& \vdots \\
& \alpha_{1}+\alpha_{2}+\ldots+\alpha_{n} \leq \beta_{1}+\beta_{2}+\ldots+\beta_{n}
\end{aligned}
$$

This result was proven by Berenstein and Zelevinsy for the group $S L(n)$ in [3].

Chapter 5

Classical Spectral Problem

One may ask the following question: Given Hermitian square matrices A, B and C in $\mathbb{C}^{n \times n}$ with $C=A+B$, what are the constraints on the spectra of the matrices?
Firstly note that Hermitian matrices have real spectrum. Hence we can write the spectra of A, B and C as $\lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}, \mu=\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}$, $\nu=\nu_{1} \geq \nu_{2} \geq \ldots \geq \nu_{n}$, respectively.
An immediate observation is regarding the traces of the matrices:

$$
\begin{equation*}
\sum_{i} \nu_{i}=\sum_{i} \lambda_{i}+\sum_{i} \mu_{i} \tag{5.1}
\end{equation*}
$$

Another observation is the inequality (5.2) below. Note that if $A \in \mathbb{C}^{n \times n}$ is Hermitian and $v \in \mathbb{C}^{n}$ is a column vector then the entry of the 1×1 matrix $v^{*} A v$ is real. Therefore, $v^{*} A v$ can be regarded as a real number. Then, one may try to find the value $\sup _{|v|=1} v^{*} A v$. Since A is Hermitian, A is unitarily diagonalizable, hence there exists a unitary matrix U such that $D:=U^{*} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. We may assume $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ by multiplying U by a permutation matrix, if necessary. Since U is unitary, it respects the inner product $(v \mid w)=v^{*} w$ so multiplication by U on the set of unit column vectors is a bijection. Hence,

$$
\sup _{|v|=1} v^{*} A v=\sup _{|v|=1} v^{*} D v=\sup _{\substack{c_{i} \geq 0 \\ c_{1}+c_{2}+\ldots+c_{n}=1}} c_{1} \lambda_{1}+c_{2} \lambda_{2}+\ldots+c_{n} \lambda_{n}=\lambda_{1}
$$

Thus, the largest eigenvalue of an Hermitian square matrix A is $\sup _{|v|=1} v^{*} A v$. So, the inequality

$$
\begin{equation*}
\nu_{1} \leq \lambda_{1}+\mu_{1} \tag{5.2}
\end{equation*}
$$

follows. Note that the supremum $\sup _{|v|=1} v^{*} A v$ is attained exactly when v is a unit eigenvector of A associated to the eigenvalue λ_{1}. So, (5.2) becomes an equality if and only if the intersection of the eigenspaces of matrices A and B associated to the eigenvalues λ_{1} and μ_{1} is nonzero.
In 1912 H. Weyl proved that

$$
\begin{equation*}
\nu_{i+j-1} \leq \lambda_{i}+\mu_{j} \tag{5.3}
\end{equation*}
$$

holds if $i+j-1 \leq n$. Note that the inequality (5.2) is among this inequalities. Later, other inequalities of the type

$$
\sum_{k \in K} \nu_{k} \leq \sum_{i \in I} \lambda_{i}+\sum_{j \in J} \mu_{j} \quad(* I J K)
$$

were found, where $I, J, K \subset\{1,2, \ldots, n\}$ have the same cardinality r for some $r<n$.

In 1949, K. Fan found inequalities of the form

$$
\begin{equation*}
\sum_{i=1}^{r} \nu_{r} \leq \sum_{i=1}^{r} \lambda_{r}+\sum_{i=1}^{r} \mu_{r} \tag{5.4}
\end{equation*}
$$

where $1 \leq r<n$.
In 1950, V.B. Lindskii found a geometric condition on the spectra: When a spectrum $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n}$ is considered as a point $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ in the space \mathbb{R}^{n}, ν must be inside the convex hull of the points $\lambda+\sigma \nu$ where σ is a permutation of the n indices and $(\sigma \nu)_{i}=\nu_{\sigma(i)}$. Later H. Wielandt proved that this condition was similar to the ones above, since it could be rephrased as

$$
\begin{equation*}
\sum_{i \in I} \nu_{r} \leq \sum_{i \in I} \lambda_{r}+\sum_{i=1}^{r} \mu_{r} \tag{5.5}
\end{equation*}
$$

where $1 \leq r<n$ and I is a subset of $\{1,2, \ldots, n\}$ of cardinality r.
In 1962, A.Horn conjectured that all the necessary and sufficient constraints other than the trace inequality must be of this form and must satisfy a recurrence
relation as n grows. We will describe these recurrence relations below.
In 1998, A.Klyachko gave a complete solution of this problem in [8] using the machinary of Schubert calculus, vector bundles and representation theory. In 1999, A.Knutson and T.Tao proved Horn's conjecture.
To draw attention to the importance of the problem, we quote them:
"...Weyl's partial answers to this problem have since had many direct applications to perturbation theory, quantum measurement theory, and spectral theory of self-adjoint operators. The purpose of this article is to describe the complete resolution to this problem, based on recent breakthroughs [Kl], [HR], [KT], [KTW]."
A.Knutson and T.Tao also provided two other methods to solve the problem. One is called the hive model and the other is called honeycomb model. We will discuss how one can use the hive model to get all the necessary constraints on the spectra of A, B and C.
Another matter of interest is the possible values of the $k^{t h}$ largest eigenvalue ν_{k} of C. The following inequality, which is proven in [7], fully decribes the possible values.

$$
\max _{i+j=n+k} \lambda_{i}+\mu_{j} \leq \nu_{k} \leq \min _{i+j=k+1} \lambda_{i}+\mu_{j}
$$

5.1 Representations of $\mathrm{GL}_{n}(\mathbb{C})$, LittlewoodRichardson Coefficients and Spectral Problem

The group $G:=\mathrm{GL}_{n}(\mathbb{C})$ has the canonical representation $V:=\mathbb{C}^{n}$, called the standard representation and this representation is obviously irreducible. One can tensor V by itself a number of times to get new representations $V^{\otimes n}$ of G but there is no reason for them to be irreducible. However, given a partition λ of n, on can apply the Schur functor to $V^{\otimes n}$ to get an irreducible representation of G.

A partition $\lambda=\lambda_{1} \geq \ldots \geq \lambda_{k}$ of n can be interpreted as a Young diagram with rows of length $\lambda_{1}, \ldots, \lambda_{k}$.

Example 5.1.1. The Young diagram corresponding to the partition $9=4+3+$ $1+1$ is \square.

Note that the symmetric group S_{n} naturally acts on a Young diagram D with n boxes. Let a_{λ} be the sum $\sum_{\sigma \in P} \sigma$ and b_{λ} be the $\operatorname{sum} \sum_{\sigma \in Q} \operatorname{sgn}(\sigma) \sigma$ in the group algebra $\mathbb{C} S_{n}$, where P consists of the elements of S_{n} fixing each row of D and Q consists of the elements of S_{n} fixing each column of D. Then, V_{λ} is given by $V_{\lambda}=a_{\lambda} b_{\lambda} V^{\otimes n}$. So the Schur functor symmetrizes $V^{\otimes n}$ with respect to each row and antisymmetrizes it with respect to each column. In particular, row diagrams correspond to symmetric powers and column diagrams correspond to alternating powers.
It turns out that the V_{λ} are all of the irreducible representations of G. In fact, λ is nothing but the highest weight of the representation V_{λ}.
Since $G=\mathrm{GL}_{n}(\mathbb{C})$ is reductive, the representations of G must be written as a direct sum of irreducible ones. In particular, $V_{\lambda} \otimes V_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} V_{\nu}$ must hold for some nonnegative integers $c_{\lambda \mu}^{\nu}$. The $c_{\lambda \mu}^{\nu}$ are called the Littlewood-Richardson coefficients and has a nice combinatorial description. So, let us write $\lambda \otimes \mu=\sum_{\nu} c_{\lambda \mu}^{\nu} \nu$ referring to this description which is explained below. Let us first consider the case when μ is a row diagram with m boxes. Then, the Pieri rule states that $c_{\lambda \mu}^{\nu}$ is the number of ways to add m boxes to the Young diagram of λ to get the Young diagram of ν such that none of the new boxes are in the same column. So this number is either 1 or 0 .

Example 5.1.2. Let $\lambda=(2,1)$ and $\mu=(2)$. Then,

where the boxes labeled with a \bullet are the newly added ones according to the Pieri rule.

For an arbitrary μ, the description of $c_{\lambda \mu}^{\nu}$ is a little bit more complicated. By a μ-expansion of λ, we mean the process of adding μ_{1} boxes to the Young diagram
of λ obeying the Pieri rule described above (let us call this the first step) and continuing this with the remaining rows of μ (let us call the $i^{\text {th }}$ step if the $i^{\text {th }}$ row of μ is the row that is processed). By a strict μ-expansion of λ, we mean a μ expansion of λ such that the boxes added in the $i^{\text {th }}$ step is labelled with the integer i and when the labels of the newly added boxes are listed as a sequence read from the diagram row-by-row from the top to the bottom, at no point of the sequence the number of occurences of a number p so far is larger than that of a smaller number $q<p$ so far.

Example 5.1.3. Let $\lambda=\mu=(2,1)$. The strict μ-expansions of λ are

Note that there are no boxes labelled with 1 (resp. 2) in the same column and the sequences read from the diagrams are either $1,1,2$ or $1,2,1$. In both cases, the number of occurences of 2 never exceeds that of $1 . \frac{\frac{1}{1}^{2}}{}$ is a μ-expansion of λ but it is not a strict one since the first occurence of 2 is before that of 1 . We may write

The Littlewood-Richardson rule says that $c_{\lambda \mu}^{\nu}$ is the number of ways the Young diagram of ν can be obtained from the Young diagram of λ by a strict μ-expansion.

5.2 Schubert Calculus

In the progress of the solution of the classical spectral problem, a subject called Schubert calculus played an extremely important role. Let us give a brief exposition of Schubert calculus in this section.
Let $G(n, V)$ denote the set of n-dimensional subspaces of an m-dimensional vector space V over $K . G(n, V)$ is called a Grassmannian. We want to see $G(n, V)$ as a subvariety of $\mathbb{P}\left(\wedge^{n} V\right)$. Let W be an n-dimensional subspace of V and fix a
basis $\left(w_{i}\right)_{1 \leq i \leq n}$ of W. Then $w_{1} \wedge w_{2} \wedge \ldots \wedge w_{n}$ is a point in $\wedge^{n} V$ and it is determined up to a nonzero scalar in K since it is multiplied by the determinant of the matrix of the change of basis when another basis of W is chosen. Conversely, when $w=w_{1} \wedge w_{2} \wedge \ldots \wedge w_{n}$ corresponding to a W is given, W can be recovered by $W=\left\{v \in V: v \wedge w=0 \in \wedge^{*} V\right\}$. Hence, $G(n, V)$ can be embedded into $\mathbb{P}\left(\wedge^{n} V\right)$. This is called the Plücker embedding and the homogeneous coordinates on $\mathbb{P}\left(\wedge^{n} V\right)$ are called the Plücker coordinates. If M_{W} is the $n \times m$ matrix whose rows are the w_{i} considered as row vectors in K^{m}, then the Plücker coordinates of W corresponds to the maximal minors of the matrix M_{W}. In this case, the maximal minors are nothing but the determinants of $n \times n$ submatrices of M_{W}.

Now fix a basis $\mathcal{B}=\left\{e_{i}\right\}_{1 \leq i \leq m}$ for V. Write each e_{i} is written as a row vector $(0, \ldots, 0,1,0 \ldots, 0)$ where 1 appears in the $i^{\text {th }}$ position. Then, we have a complete flag

$$
0=F_{0} \subset F_{1} \subset \ldots \subset F_{m}=V
$$

where F_{i} denotes the span of the first i basis vectors.
For any subset $P=\left\{p_{1} \leq p_{2} \leq \ldots \leq p_{n}\right\}$ of $\{1,2, \ldots, m\}$ having cardinality n,

$$
\Omega_{P}^{0}(F)=\left\{W \in X: \operatorname{dim}\left(F_{p_{i}} \cap W\right)=i, i=1,2, \ldots, n\right\}
$$

is called a Schubert cell.
Its closure is

$$
\Omega_{P}(F)=\left\{W \in X: \operatorname{dim}\left(F_{p_{i}} \cap W\right) \geq i, i=1,2, \ldots, n\right\}
$$

and is called a Schubert variety.
Let W be an n-dimensional subspace of V and choose a basis \mathcal{B}^{\prime} of W. Write the elements of \mathcal{B}^{\prime} as row vectors R_{i} with respect to the basis \mathcal{B} and consider the $n \times m$ matrix M having the R_{i} as its rows. It is a fundamental fact in linear algebra that M is row equivalent to a matrix of the form

$$
\left(\begin{array}{ccccccccccccccc}
* & \ldots & * & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
* & \ldots & * & 0 & * & \ldots & * & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
* & \ldots & * & 0 & * & \ldots & * & 0 & * & \ldots & * & 1 & 0 & \ldots & 0
\end{array}\right)
$$

Therefore, n-dimensional subspaces of V are in one-to-one correspondence with the matrices in the form above. Letting p_{i} be the position of the last nonzero entry in $i^{\text {th }}$ row, we see that the subspaces of V in the same Schubert cell are those whose corresponding matrices have the same position indices p_{i}.
Corresponds to the Schubert variety $\Omega_{P}(F)$, a Young diagram $\alpha=\alpha_{1} \geq \alpha_{2} \geq$ $\ldots \geq \alpha_{n}$ where $\alpha_{i}=m-n+i-p_{i}$. The size of the Young diagram is the codimension of the Schubert cell in the Grassmanian.

Example 5.2.1. The Young diagram corresponding to the Schubert variety determined by the row reduced matrix

$$
\left(\begin{array}{llllll}
* & 1 & 0 & 0 & 0 & 0 \\
* & 0 & * & 1 & 0 & 0 \\
* & 0 & * & 0 & 1 & 0
\end{array}\right)
$$

is \square

Let σ_{α} denote the cocyle corresponding to $\Omega_{P}(F)$ in the cohomology ring. Then the σ_{α} form a \mathbb{Z}-basis for the cohomology ring. Hence, a product $\sigma_{\alpha} \cdot \sigma_{\beta}$ has a decomposition

$$
\sigma_{\alpha} \cdot \sigma_{\beta}=\sum d_{\alpha \beta}^{\gamma} \sigma_{\gamma}
$$

where the sum is taken over all γ such that $\sum \alpha_{i}+\sum \beta_{i}=\sum \gamma_{i}$. The coefficients $d_{\alpha \beta}^{\gamma}$ are nonnegative by the virtue of the transitive action of $\mathrm{GL}_{m}(\mathbb{C})$ on X.
In 1947, L. Lesieur proved in [13] that the coefficients $d_{\alpha \beta}^{\gamma}$ are nothing but the Littlewood-Richardson coefficients $c_{\alpha \beta}^{\gamma}$.
Now, we state Klyachko's theorem, which gives a complete solution to the classical spectral problem.

Theorem 5.2.2. Consider a triple of subsets $I, J, K \subset\{1,2, \ldots, n\}$ such that the Schubert cycle σ_{K} is a component of $\sigma_{I} \cdot \sigma_{K}$. Then,
(1) The inequality (*IJK) holds.
(2) Together with the trace identity, this inequalities form a complete set of restrictions on spectra of A, B and $A+B$.

An application of Schubert Calculus.

Consider 4 lines l_{1}, l_{2}, l_{3} and l_{4} in \mathbb{R}^{3} in general position. What is the number of
the lines in \mathbb{R}^{3} intersecting all l_{i} ?
Firstly, considering the embedding of \mathbb{R}^{3} in \mathbb{P}^{3}, we can interpret a line in \mathbb{R}^{3} as a plane through origin in \mathbb{R}^{4}. Then, if two lines in \mathbb{R}^{3} intersect at one point, the codimension of their span is one. Therefore the set of lines intersecting a given line at one point form a Schubert cell with Young diagram \square.
To find the intersection of Schubert cells corresponding to the lines l_{i}, we can look at the product of the corresponding Scubert cocycles in the cohomology ring: Noting that a Young diagram corresponding to a Schubert cell must be contained in $2 . \square$ we get

$$
\otimes \square \otimes \square \otimes \square=2 . \square
$$

using Pieri's rule. But since the size of \square is 4 , the corresponding Schubert cell has codimension 4 , which means it describes a point in \mathbb{R}^{4}. Therefore, we conclude that there are two lines in \mathbb{R}^{3} which intersect given 4 lines in \mathbb{R}^{3} in general position.

5.3 Horn's Conjecture

The linear inequalities mentioned above has the form

$$
\begin{equation*}
\sum_{l=1}^{r} \nu_{k_{l}} \leq \sum_{l=1}^{r} \lambda_{i_{l}}+\sum_{l=1}^{r} \mu_{j_{l}} \tag{5.6}
\end{equation*}
$$

where $1 \leq \lambda_{1}<\lambda_{2}<\ldots<\lambda_{r} \leq n, 1 \leq \mu_{1}<\mu_{2}<\ldots<\mu_{r} \leq n, 1 \leq \nu_{1}<\nu_{2}<$ $\ldots<\nu_{r} \leq n$ and $1 \leq r<n$. For a fixed $1 \leq r<n$, let $T_{r, n}$ denote the set of such indices such that the inequality (5.6) is a necessary condition.
Horn showed that an element in $T_{r, n}$ satisfies the following trace condition:

$$
\begin{equation*}
\sum_{l=1}^{r} i_{l}+\sum_{l=1}^{r} j_{l}=\sum_{l=1}^{r} k_{l}+\frac{r(r+1)}{2} \tag{5.7}
\end{equation*}
$$

Horn's conjecture was settled by A. Klyachko ([8]), A. Knutson and T. Tao ([9]) and provides a recurrence relation between the sets $T_{r, n}$:

Theorem 5.3.1 (Horn's conjecture). $T_{r, n}$ is the set of all indices $1 \leq \lambda_{1}<\lambda_{2}<$ $\ldots<\lambda_{r} \leq n, 1 \leq \mu_{1}<\mu_{2}<\ldots<\mu_{r} \leq n$ and $1 \leq \nu_{1}<\nu_{2}<\ldots<\nu_{r} \leq n$ which satisfy (5.7) and the condition

$$
\begin{equation*}
\sum_{l=1}^{s} i_{a_{l}}+\sum_{l=1}^{s} j_{b_{l}}=\sum_{l=1}^{s} k_{c_{l}}+\frac{s(s+1)}{2} \tag{5.8}
\end{equation*}
$$

for any $1 \leq s<r$ and for any element $1 \leq a_{1}<a_{2}<\ldots<a_{s} \leq r, 1 \leq b_{1}<$ $b_{2}<\ldots<b_{s} \leq r$ and $1 \leq c_{1}<c_{2}<\ldots<c_{s} \leq r$ in $T_{s, r}$.

The inequalities in the set $T_{1,2}$ are

$$
\begin{aligned}
& \lambda_{1}+\mu_{1} \geq \nu_{1} \\
& \lambda_{1}+\mu_{2} \geq \nu_{2} \\
& \lambda_{2}+\mu_{1} \geq \nu_{1}
\end{aligned}
$$

The inequalities in the sets $T_{1,3}$ and $T_{2,3}$ are

$$
\begin{aligned}
& \lambda_{1}+\mu_{1} \geq \nu_{1} \\
& \lambda_{1}+\mu_{2} \geq \nu_{2} \\
& \lambda_{1}+\mu_{3} \geq \nu_{3} \\
& \lambda_{2}+\mu_{1} \geq \nu_{2} \\
& \lambda_{2}+\mu_{2} \geq \nu_{3} \\
& \lambda_{3}+\mu_{1} \geq \nu_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{2} \geq \nu_{1}+\nu_{2} \\
& \lambda_{1}+\lambda_{2}+\mu_{1}+\mu_{3} \geq \nu_{1}+\nu_{3} \\
& \lambda_{1}+\lambda_{2}+\mu_{2}+\mu_{3} \geq \nu_{2}+\nu_{3} \\
& \lambda_{1}+\lambda_{3}+\mu_{1}+\mu_{2} \geq \nu_{1}+\nu_{3} \\
& \lambda_{1}+\lambda_{3}+\mu_{1}+\mu_{3} \geq \nu_{2}+\nu_{3} \\
& \lambda_{2}+\lambda_{3}+\mu_{1}+\mu_{2} \geq \nu_{2}+\nu_{3}
\end{aligned}
$$

5.4 Hive Model

Another answer to the problem can be given by using the Hive Model. This answer consists of $3\binom{n}{2}$ linear inequalities in terms of $\binom{n+2}{2}$ variables as well as the trace condition (5.1) stated in an equivalent form.
To state the theorem, let us first change the setting a little bit. Let us consider Hermitian matrices A, B and C with $A+B+C=0$ so that the situation is symmetric with respect to the three matrices. Again, let $\lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$, $\mu=\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}, \nu=\nu_{1} \geq \nu_{2} \geq \ldots \geq \nu_{n}$ be the spectra of A, B and C respectively.
Roughly speaking, there exists Hermitian matrices A, B, C satisfying $A+B+C=$ 0 with spectra λ, μ and ν if and only if there is a "convex dome standing on the arc formed by the λ, μ and ν ". Let us make this statement more rigorous.
Consider the set $H_{n}=\{(i, j, k): 0 \leq i, j, k \leq n, i+j+k=n\}$ consisting of $\binom{n+2}{2}$ points. Let T be an equilateral triangle in the plane with height n. Then, an element $P=(i, j, k)$ of H_{n} can be seen as a point in the plane considering i, j and k as the distances of P to the three sides of T . Let $H_{n}^{\prime} \subset H_{n}$ be the set of points whose coordinates are not all nonzero. So H_{n}^{\prime} consists of points in H_{n} which are on one side of the triangle. Define a function $f_{\lambda, \mu, \nu}^{\prime}: H_{n}^{\prime} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& (0, n-i, i) \mapsto \sum_{l=0}^{i} \lambda_{l} \\
& (i, 0, n-i) \mapsto \operatorname{tr}(A)+\sum_{l=0}^{i} \mu_{l} \\
& (n-i, i, 0) \mapsto \operatorname{tr}(A)+\operatorname{tr}(B)+\sum_{l=0}^{i} \nu_{l}
\end{aligned}
$$

i.e., the partial sums of the sequence $\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}, \nu_{1}, \ldots, \nu_{n}$ are the images of the elements of H_{n}^{\prime} when they are traversed clockwise starting from the point ($0, n, 0$).

Definition 5.4.1. Call a function $f: H_{n} \rightarrow \mathbb{R}$ a convex n-dome if it satisfies the following condition which has cyclic symmetry in terms of the coordinates of elements of H_{n} :
Whenever $2 \leq k \leq n$ and $0 \leq i \leq n-k$,
(i) $f(i, j+1, k-1)+f(i+1, j, k-1) \geq f(i, j, k)+f(i+1, j+1, k-2)$
(ii) $f(k-1, i, j+1)+f(k-1, i+1, j) \geq f(k, i, j)+f(k-2, i+1, j+1)$
(iii) $f(j+1, k-1, i)+f(j, k-1, i+1) \geq f(j, k, i)+f(j+1, k-2, i+1)$

This condition can be restated as follows: The sum of values of f at the two points with acute angles must not exceed the sum of the values of f at the two points with obtuse angles whenever we consider the subsets of H_{n} of shapes

Now we are ready to rigorously state the answer.
Theorem 5.4.2. Given n-tuples of real numbers $\lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$, $\mu=\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}$ and $\nu=\nu_{1} \geq \nu_{2} \geq \ldots \geq \nu_{n}$; there exists Hermitian matrices A, B, C satisfying $A+B+C=0$ with spectra λ, μ and ν if and only if $f_{\lambda, \mu, \nu}^{\prime}$ is defined and can be extended to an n-dome $f: H_{n} \rightarrow \mathbb{R}$.

5.5 A Digression of Invariant Factors

In this section, we describe a problem which has exactly the same solution as the additive spectral problem we described above, although it is still not clear why this is the case.

Firstly we discuss the elementary properties of discrete valuation rings to state the problem.

5.5.1 A Digression of Discrete Valuation Rings

Given a field K, a group epimorphism $\nu: K^{*} \rightarrow \mathbb{Z}$ is called a discrete valuation on K if it satisfies

$$
\nu(a+b) \geq \min \{\nu(a), \nu(b)\} \text { for all } a, b \in K^{*} \text { with } a+b \neq 0
$$

Then, $\{0\} \cup \nu^{-1}\left(\mathbb{Z}_{\geq 0}\right)$ is a subring of K and is called the valuation ring of ν. A valuation ring is an integral domain being a subring of a field.
An integral domain R is called a discrete valuation ring if there is a discrete valuation ν on its field of fractions such that R is the valuation ring of ν. If this is the case, then
(1) R is a Euclidean Domain with the norm N which is given by $N(0)=0$ and $N(x)=\nu(x)$ for $x \neq 0$.
(2) R is a Noetherian local ring with the maximal ideal \mathfrak{m}. Furthermore, \mathfrak{m} is principal, say $\mathfrak{m}=(\pi)$, and any nonzero ideal of R is some power of \mathfrak{m}. In fact, $\mathfrak{m}^{k}=\{x \in R: \nu(x) \geq k\}$. Any generator of \mathfrak{m} is called a uniformizing parameter. The set of uniformizing parameters are exactly the set $\nu^{-1}(\{1\})$.
(3) Any nonzero element of R can be uniquely written as $c \pi^{k}$ where $c \in R$ is a unit and k is a nonnegative integer.
Without dealing with possible valuations on its field of fractions, it may be possible to decide if a commutative ring with identity is a discrete valuation ring by the virtue of the following theorem, which is borrowed from [4].

Theorem 5.5.1. For a commutative ring R with identity the following are equivalent.
(1) R is a discrete valuation ring.
(2) R is a P.I.D. with a unique nonzero maximal ideal.
(3) R is a U.F.D. with a unique (up to associates) irreducible element.
(4) R is a Noetherian integral domain which is at the same time a local ring whose maximal ideal is nonzero and principal.
(5) R is an integrally closed Noetherian integral domain which is at the same time a local ring with Krull dimension 1.

Example 5.5.2. (1) Given a prime p, the ring of p-adic integers is a discrete valuation ring which has p as a uniformizing parameter.
(2) The ring of convergent power series over the complex numbers is a discrete valuation ring, having the function z as a uniformizing parameter.

5.5.2 Invariant factors of a matrix over a discrete valuation ring

In this section we introduce a problem described in [5]. Now, if A is an invertible $n \times n$ matrix with entries in R, then A can be reduced to a diagonal matrix $\operatorname{diag}\left(\pi^{\alpha_{1}}, \pi^{\alpha_{2}}, \ldots, \pi^{\alpha_{n}}\right)=P A Q$ by elementary row and column operations such that $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n}$ are nonnegative integers. Elementary row operations are interchanging two rows, multiplying a row by a unit in R or adding a multiple of a row to another one. Elementary column operations are described similarly. Hence, the determinants of the elementary matrices corresponding to the elementary row and column operations are units in R.
To see the existence of such $\left(\alpha_{i}\right)_{1 \leq i \leq n}$, let $A_{i j}=c \pi^{\alpha}$ be a nonzero entry of A such that α is minimal. Then, all the entries of A which are in the same column or in the same row as $A_{i j}$, excluding $A_{i j}$, can be made 0 by elementary row and column operations of the third type explained above. Then, by interchanging the $n^{\text {th }}$ row with the $i^{\text {th }}$ one, interchanging the $n^{\text {th }}$ column with the $j^{\text {th }}$ one and finally multiplying the bottom row by c^{-1}, we get a block matrix $\left(\begin{array}{cc}A^{\prime} & 0 \\ 0 & \pi^{\alpha}\end{array}\right)$. Now, one argues inductively to obtain the desired diagonal matrix.
To see the uniqueness of $\left(\alpha_{i}\right)_{1 \leq i \leq n}$, consider P, A and Q as elements of the endomorphism ring $E n d_{R}\left(R^{n}\right)$ of a free R-module of rank n. We can apply "The Five Lemma" in [14] to the commutative diagram below with exact rows, where the π stand for the projections and ϕ is the map sending the coset $[x]$ to the coset [$P x]$.

The Five Lemma says ϕ is an isomorphism. Then, the theory of modules over P.I.D.s gives the uniqueness of $\left(\alpha_{i}\right)_{1 \leq i \leq n} .\left(\alpha_{i}\right)_{1 \leq i \leq n}$ are called the invariant factors of A.
Note that α_{1} is given by

$$
\begin{equation*}
\alpha_{1}=\min \left\{\alpha \in \mathbb{Z}_{\geq 0}: p^{\alpha} \operatorname{coker} A=0\right\} \tag{5.9}
\end{equation*}
$$

One can ask how the invariant factors $\left(\alpha_{i}\right)_{1 \leq i \leq n},\left(\beta_{i}\right)_{1 \leq i \leq n}$ and $\left(\gamma_{i}\right)_{1 \leq i \leq n}$ of $n \times n$ matrices A, B and C over R are related if $C=A B$. Note that in this case we have a commutative diagram with exact rows

Applying the "Snake Lemma", Lemma II.5.2. in [14], we obtain an exact sequence

$$
0 \longrightarrow \operatorname{coker}(B) \xrightarrow{i} \operatorname{coker}(C) \xrightarrow{\pi} \operatorname{coker}(A) \longrightarrow 0
$$

which gives an isomorphism $\operatorname{coker}(C) / i(\operatorname{coker}(B)) \cong \operatorname{coker}(A)$. Now, we employ (5.9). $p^{\alpha_{1}}$ maps coker (C) into $i(\operatorname{coker}(B))$. Since $p^{\beta_{1}}$ annihilates coker (B), $p^{\alpha_{1}+\beta_{1}}$ annihilates coker (C). Therefore, we have

$$
\begin{equation*}
\gamma_{1} \leq \alpha_{1}+\beta_{1} \tag{5.10}
\end{equation*}
$$

analogous to (5.3). Note that this is one of the inequalities of the type (*IJK) in the additive spectral problem discussed above. It turns out that all the necessary and sufficient constraints on the triple $\left(\alpha_{i}\right)_{1 \leq i \leq n},\left(\beta_{i}\right)_{1 \leq i \leq n}$ and $\left(\gamma_{i}\right)_{1 \leq i \leq n}$ are Horn's inequalities and the same trace condition 5.11 as (5.3) proven below, so the two problems have exactly the same solutions.
From $\operatorname{det}(C)=\operatorname{det}(A) \operatorname{det}(B)$, it follows that

$$
c \pi^{\sum_{i} \alpha_{i}}=\pi^{\sum_{i} \beta_{i}+\sum_{i} \gamma_{i}}
$$

for some unit $c \in R$. This is possible only if $c=1$ and

$$
\begin{equation*}
\sum_{i} \alpha_{i}=\sum_{i} \beta_{i}+\sum_{i} \gamma_{i} \tag{5.11}
\end{equation*}
$$

Bibliography

[1] M. Altunbulak and A. Klyachko. Pauli principle revisited. Commun. Math. Phys., 282:287-322, 2008.
[2] A. Berenstein and R. Sjamaar. Coadjoint orbits, moment polytope and Hilbert-Mumford criterion. Journal of the American Mathematical Society, 13:133-166, 2000.
[3] A. Berenstein and A. Zelevinsky. Triple multiplicities for $s l(r+1)$ and the spectrum of the exterior algebra of the adjoint representation. Journal of the Algebraic Combinatorics, 1:7-22, 1992.
[4] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley and Sons, Inc., 2004.
[5] W. Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bulletin of the American Mathematical Society, 37:209-249, 2000.
[6] R. K. Gupta. Generalized exponents via Hall-Littlewood symmetric functions. Bulletion of the American Mathematical Society, 16:287-291, 1987.
[7] C. R. Johnson. Precise intervals for specific eigenvalues of a product of a positive definite and a Hermitian matrix. Linear Algebra Appl., 117:159-164, 1989.
[8] A. Klyachko. Stable bundles, representation theory and Hermitian operators. Selecta Math, 4:419-445, 1998.
[9] A. Knutson and T. Tao. Honeycombs and sums of Hermitian matrices. Notices of $A M S, 48: 175-186,2001$.
[10] B. Kostant. Lie group representations on polynomial rings. Amer. J. Math., 85:327-404, 1963.
[11] A. Lascoux and M.-P. Schützenberger. Symmetry and flag manifolds. Lecture Notes in Mathematics, 25:159-198, 1974.
[12] A. Lascoux and M.-P. Schützenberger. Polynômes de Schubert. Journal of the American Mathematical Society, 13:133-166, 1982.
[13] L. Lesieur. Les problémes d'intersection sur une variété de Grassmanian. C. R. Acad. Sci., 225:916-917, 1947.
[14] S. MacLane. Homology. Springer-Verlag, 1995.
[15] D. Mumford. Projective invariants of projective structures. Proc. Int. Congress of Math., Stockholm, Almquist and Wiksells, Uppsala, pages 526530, 1963.

Appendix A

Numbers of the vertices \& the facets of the moment polytopes

In this appendix, we provide the data of the moment polytopes P_{n} of the adjoint representation of $\mathrm{SU}(n)$ for $n \leq 9$.
Here are the numbers of the vertices and facets of the polytopes which seem to grow exponentially in terms of n :

n	Number of vertices	Number of facets
3	4	4
4	7	7
5	15	16
6	20	27
7	48	62
8	69	105
9	139	220

Appendix B

Facets \& vertices of the moment polytopes

An inequality $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b$ in terms of the coordinates x_{1}, \ldots, x_{n} is denoted by $\left[a_{1}, a_{2}, \ldots, a_{n}\right] \leq b$.

Facets of P_{3}		
$[-1,1,0] \leq 0$	$[0,-1,1] \leq 0$	$[0,1,-1] \leq 1$
$[1,-1,0] \leq 1]$		

Vertices of P_{3}		
$(0,0,0)$	$(1,0,-1)$	$(1 / 3,1 / 3,-2 / 3)$
$(2 / 3,-1 / 3,-1 / 3)$		

Facets of P_{4}		
$[-1,1,0,0] \leq 0$	$[0,-1,1,0] \leq 0$	$[0,0,-1,1] \leq 0$
$[0,1,0,-1] \leq 1$	$[1,0,-1,0] \leq 1$	$[0,1,2,-1] \leq 1$
$[2,-1,0,1] \leq 1$		

Vertices of P_{4}		
$(0,0,0,0)$	$(1,0,0,-1)$	$(1 / 3,1 / 3,0,-2 / 3)$
$(2 / 3,0,-1 / 3,-1 / 3)$	$(1 / 2,1 / 2,-1 / 2,-1 / 2)$	$(1 / 6,1 / 6,1 / 6,-1 / 2)$
$(1 / 2,-1 / 6,-1 / 6,-1 / 6)$		

Facets of P_{5}		
$[-1,1,0,0,0] \leq 0$	$[0,-1,1,0,0] \leq 0$	$[0,0,-1,1,0] \leq 0$
$[0,0,0,-1,1] \leq 0$	$[-1,0,1,2,-2] \leq 1$	$[2,-2,-1,0,1] \leq 1$
$[0,1,1,0,-1] \leq 1$	$[1,1,-1,0,0] \leq 1$	$[1,0,1,-1,0] \leq 1$
$[2,0,-1,0,1] \leq 1$	$[0,1,2,-1,0] \leq 1$	$[0,1,2,1,-1] \leq 1$
$[1,2,-1,0,1] \leq 1$	$[2,1,0,0,1] \leq 1$	$[1,2,0,1,0] \leq 1$
$[1,1,2,0,0] \leq 1$		

APPENDIX B. FACETS \& VERTICES OF THE MOMENT POLYTOPES 52

Vertices of P_{5}			
$(1,0,0,0,-1)$	$(1 / 2,1 / 2,0,-1 / 2,-1 / 2)$	$(1 / 3,1 / 3,0,0,-2 / 3)$	
$(2 / 3,0,0,-1 / 3,-1 / 3)$	$(1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 2)$	$(1 / 2,1 / 4,-1 / 4,-1 / 4,-1 / 4)$	
$(2 / 5,2 / 5,-1 / 5,-1 / 5,-2 / 5)$	$(2 / 5,1 / 5,1 / 5,-2 / 5,-2 / 5)$	$(0,0,0,0,0)$	
$(1 / 6,1 / 6,1 / 6,0,-1 / 2)$	$(1 / 2,0,-1 / 6,-1 / 6,-1 / 6)$	$(2 / 9,2 / 9,2 / 9,-1 / 3,-1 / 3)$	
$(1 / 3,1 / 3,-2 / 9,-2 / 9,-2 / 9)$	$(1 / 10,1 / 10,1 / 10,1 / 10,-2 / 5)$	$(2 / 5,-1 / 10,-1 / 10,-1 / 10,-1 / 10)$	

Facets of P_{6}		
$[-1,1,0,0,0,0] \leq 0$	$[0,-1,1,0,0,0] \leq 0$	$[0,0,-1,1,0,0] \leq 0$
$[0,0,0,-1,1,0] \leq 0$	$[0,0,0,0,-1,1] \leq 0$	$[0,0,1,1,-1,-1] \leq 1$
$[1,1,-1,-1,0,0] \leq 1$	$[0,1,1,0,0,-1] \leq 1$	$[1,1,0,-1,0,0] \leq 1$
$[1,0,1,0,-1,0] \leq 1$	$[2,1,1,0,0,1] \leq 1$	$[1,2,1,0,1,0] \leq 1$
$[1,1,2,1,0,0] \leq 1$	$[-1,0,1,2,1,-2] \leq 1$	$[2,0,-1,-1,0,1] \leq 1$
$[2,1,-1,0,0,1] \leq 1$	$[0,1,1,2,0,-1] \leq 1$	$[0,1,2,0,1,-1] \leq 1$
$[2,0,1,-1,0,1] \leq 1$	$[0,1,2,1,-1,0] \leq 1$	$[1,0,1,2,-1,0] \leq 1$
$[1,2,0,-1,0,1] \leq 1$	$[1,2,-1,0,1,0] \leq 1$	$[-1,0,1,2,3,-2] \leq 1$
$[3,-2,-1,0,1,2] \leq 1$	$[0,1,2,2,1,-1] \leq 1$	$[3,0,-1,0,1,2] \leq 1$

Vertices of P_{6}	
$(1,0,0,0,0,-1)$	$(1 / 2,1 / 2,0,0,-1 / 2,-1 / 2)$
$(1 / 3,1 / 3,1 / 3,-1 / 3,-1 / 3,-1 / 3)$	$(1 / 3,1 / 3,0,0,0,-2 / 3)$
$(2 / 3,0,0,0,-1 / 3,-1 / 3)$	$(1 / 4,1 / 4,1 / 4,0,-1 / 4,-1 / 2)$
$(1 / 2,1 / 4,0,-1 / 4,-1 / 4,-1 / 4)$	$(1 / 6,1 / 6,1 / 6,1 / 6,-1 / 3,-1 / 3)$
$(1 / 3,1 / 3,-1 / 6,-1 / 6,-1 / 6,-1 / 6)$	$(2 / 5,2 / 5,0,-1 / 5,-1 / 5,-2 / 5)$
$(2 / 5,1 / 5,1 / 5,0,-2 / 5,-2 / 5)$	$(1 / 6,1 / 6,1 / 6,0,0,-1 / 2)$
$(1 / 2,0,0,-1 / 6,-1 / 6,-1 / 6)$	$(1 / 7,1 / 7,1 / 7,1 / 7,-1 / 7,-3 / 7)$
$(3 / 7,1 / 7,-1 / 7,-1 / 7,-1 / 7,-1 / 7)$	$(0,0,0,0,0,0)$
$(1 / 10,1 / 10,1 / 10,1 / 10,0,-2 / 5)$	$(2 / 5,0,-1 / 10,-1 / 10,-1 / 10,-1 / 10)$
$(1 / 15,1 / 15,1 / 15,1 / 15,1 / 15,-1 / 3)$	$(1 / 3,-1 / 15,-1 / 15,-1 / 15,-1 / 15,-1 / 15)$

Facets of P_{7}				
$[0,0,0,-1,1,0,0] \leq 0$	$[0,0,-1,1,0,0,0] \leq 0$	$[0,2,1,1,1,1,1] \leq 0$	$[0,0,0,0,0,-1,1] \leq 0$	
$[0,-1,1,0,0,0,0] \leq 0$	$[0,0,0,0,-1,1,0] \leq 0$	$[0,0,-3,-2,-2,-1,-1] \leq 1$	$[0,0,1,1,2,-1,-1] \leq 1$	
$[0,0,1,-2,-1,0,-1] \leq 1$	$[0,-1,0,1,-2,-1,-1] \leq 1$	$[0,-2,-4,-3,-3,-2,-1] \leq 1$	$[0,1,2,2,3,1,-1] \leq 1$	
$[0,1,1,2,0,-1,0] \leq 1$	$[0,1,0,-2,-1,-1,0] \leq 1$	$[0,-1,-1,0,-2,-2,-1] \leq 1$	$[0,1,1,-1,0,0,-1] \leq 1$	
$[0,1,0,1,-1,0,-1] \leq 1$	$[0,-1,0,-2,-1,-2,-1] \leq 1$	$[0,0,1,1,0,-1,-1] \leq 1$	$[0,0,-1,-2,-2,-1,-1] \leq 1$	
$[0,1,-1,-1,-2,-1,0] \leq 1$	$[0,1,2,1,1,-1,0] \leq 1$	$[0,1,1,1,0,0,-1] \leq 1$	$[0,1,1,2,1,0,-1] \leq 1$	
$[0,1,2,3,1,2,-1] \leq 1$	$[0,1,2,1,0,1,-1] \leq 1$	$[0,1,2,2,1,1,-1] \leq 1$	$[0,-1,-2,-3,-2,-2,-1] \leq 1$	
$[0,-1,-1,-2,-2,-2,-1] \leq 1$	$[0,-3,-2,-4,-3,-2,-1] \leq 1$	$[0,-2,-2,-3,-3,-2,-1] \leq 1$	$[0,-2,-1,-2,-3,-2,-1] \leq 1$	
$[0,1,-1,-2,-1,0,-1] \leq 1$	$[0,1,0,-1,-1,0,-1] \leq 1$	$[0,-1,0,1,0,-2,-1] \leq 1$	$[0,-1,0,0,-1,-2,-1] \leq 1$	
$[0,0,1,-1,0,-1,-1] \leq 1$	$[0,0,0,-2,-1,-1,-1] \leq 1$	$[0,1,2,0,1,-1,0] \leq 1$	$[0,0,0,1,-1,-1,-1] \leq 1$	
$[0,0,-1,0,-2,-1,-1] \leq 1$	$[0,1,-1,0,-2,-1,0] \leq 1$	$[0,1,2,0,0,1,-1] \leq 1$	$[0,-2,-1,-1,-3,-2,-1] \leq 1$	
$[0,-1,-3,-3,-2,-2,-1] \leq 1$	$[0,1,1,2,2,0,-1] \leq 1$	$[0,1,-2,-2,-1,0,-1] \leq 1$	$[0,-1,0,1,1,-2,-1] \leq 1$	
$[0,1,2,3,4,3,-1] \leq 1$	$[0,1,2,3,3,2,-1] \leq 1$	$[0,-4,-5,-4,-3,-2,-1] \leq 1$	$[0,-3,-4,-4,-3,-2,-1] \leq 1$	
$[0,0,1,2,-1,-1,0] \leq 1$	$[0,1,1,-2,-1,0,0] \leq 1$	$[0,1,2,1,2,-1,0] \leq 1$	$[0,1,-2,-1,-2,-1,0] \leq 1$	
$[0,1,2,3,-1,0,1] \leq 1$	$[0,1,2,-2,-1,0,1] \leq 1$	$[0,-6,-5,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,4,5,-1] \leq 1$	
$[0,1,-3,-2,-1,-1,0] \leq 1$	$[0,1,1,2,3,-1,0] \leq 1$			

APPENDIX B. FACETS \& VERTICES OF THE MOMENT POLYTOPES 53

Vertices of P_{7}	
$(0,0,0,0,0,0,0)$	$(1,0,0,0,0,0,-1)$
$(1 / 2,1 / 2,0,0,0,-1 / 2,-1 / 2)$	$(1 / 3,1 / 3,1 / 3,0,-1 / 3,-1 / 3,-1 / 3)$
$(2 / 3,0,0,0,0,-1 / 3,-1 / 3)$	$(1 / 3,1 / 3,0,0,0,0,-2 / 3)$
$(1 / 6,1 / 6,1 / 6,0,0,0,-1 / 2)$	$(1 / 4,1 / 4,1 / 4,0,0,-1 / 4,-1 / 2)$
$(1 / 2,1 / 4,0,0,-1 / 4,-1 / 4,-1 / 4)$	$(2 / 5,2 / 5,0,0,-1 / 5,-1 / 5,-2 / 5)$
$(2 / 5,1 / 5,1 / 5,0,0,-2 / 5,-2 / 5)$	$(1 / 3,1 / 3,0,0,-2 / 9,-2 / 9,-2 / 9)$
$(2 / 9,2 / 9,2 / 9,0,0,-1 / 3,-1 / 3)$	$(1 / 10,1 / 10,1 / 10,1 / 10,0,0,-2 / 5)$
$(2 / 5,0,0,-1 / 10,-1 / 10,-1 / 10,-1 / 10)$	$(1 / 7,1 / 7,1 / 7,1 / 6,0,-1 / 3,-1 / 3)$
$(1 / 3,1 / 3,0,-1 / 6,-1 / 6,-1 / 6,-1 / 6)$	$(1 / 15,1 / 15,1 / 15,1 / 15,-1 / 15,0,-1 / 3)$
$(3 / 7,1 / 7,0,-1 / 7,-1 / 7,-1 / 7,-1 / 7)$	$(2 / 5,1 / 5,1 / 5,-1 / 5,-1 / 5,-1 / 5,-1 / 5)$
$(1 / 3,0,-1 / 15,-1 / 15,-1 / 15,-1 / 15,-1 / 15)$	$(1 / 3,1 / 6,1 / 6,1 / 6,-1 / 6,-1 / 3,-1 / 3)$
$(1 / 5,1 / 5,1 / 5,1 / 5,-1 / 5,-1 / 5,-2 / 5)$	$(2 / 7,2 / 7,1 / 7,1 / 7,-2 / 7,-2 / 7,-2 / 7)$
$(1 / 3,1 / 3,1 / 6,-1 / 6,-1 / 6,-1 / 6,-1 / 3)$	$(1 / 9,1 / 8,1 / 8,1 / 8,-1 / 4,-1 / 4,-1 / 4)$
$(2 / 7,2 / 7,2 / 7,-1 / 7,-1 / 7,-2 / 7,-2 / 7)$	$(1 / 5,1 / 10,1 / 10,1 / 9,1 / 9,-2 / 9,-1 / 3)$
$(1 / 4,1 / 4,1 / 4,-1 / 8,-1 / 8,-1 / 8,-3 / 8)$	$(2 / 11,2 / 11,2 / 11,2 / 11,-2 / 11,-3 / 11,-3 / 11)$
$(1 / 3,2 / 9,-1 / 9,-1 / 9,-1 / 9,-1 / 9,-1 / 9)$	$(4 / 11,1 / 11,-1 / 11,-1 / 11,-1 / 11,-1 / 11,-1 / 11)$
$(3 / 10,3 / 10,-1 / 10,-1 / 10,-1 / 10,-1 / 10,-1 / 5)$	$(1 / 4,1 / 4,1 / 4,-1 / 6,-1 / 6,-1 / 6,-1 / 4)$
$(3 / 11,3 / 11,2 / 11,-2 / 11,-2 / 11,-2 / 11,-2 / 11)$	$(4 / 13,4 / 13,-1 / 13,-1 / 13,-2 / 13,-2 / 13,-2 / 13)$
$(1 / 11,1 / 11,1 / 11,1 / 11,1 / 11,-1 / 11,-4 / 11)$	$(2 / 9,2 / 9,2 / 9,-1 / 6,-1 / 6,-1 / 6,-1 / 6)$
$(1 / 4,1 / 6,1 / 6,1 / 6,-1 / 4,-1 / 4,-1 / 4)$	$(1 / 21,1 / 21,1 / 21,1 / 21,1 / 21,1 / 21,-2 / 7)$
$(2 / 13,2 / 13,2 / 13,1 / 13,1 / 13,-4 / 13,-4 / 13)$	$(2 / 19,2 / 19,2 / 19,2 / 19,2 / 19,-5 / 19,-5 / 19)$
$(1 / 6,1 / 6,1 / 6,1 / 6,-2 / 9,-2 / 9,-2 / 9)$	

Facets of P_{8}			
$[0,0,0,-1,1,0,0,0] \leq 0$	$[0,-1,1,0,0,0,0,0] \leq 0$	$[0,0,0,0,0,-1,1,0] \leq 0$	$[0,2,1,1,1,1,1,1] \leq 0$
$[0,0,0,0,0,0,-1,1] \leq 0$	$[0,0,-1,1,0,0,0,0] \leq 0$	$[0,0,0,0,-1,1,0,0] \leq 0$	$[0,-2,-2,-1,-3,-3,-2,-1] \leq 1$
$[0,1,2,2,0,1,1,-1] \leq 1$	$[0,1,1,2,2,-1,0,0] \leq 1$	$[0,1,0,1,2,-1,-1,0] \leq 1$	$[0,0,1,-2,-2,-1,-1,0] \leq 1$
$[0,1,1,-2,-1,0,-1,0] \leq 1$	$[0,-3,-5,-4,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,3,4,2,-1] \leq 1$	$[0,-1,-4,-3,-3,-2,-2,-1] \leq 1$
$[0,1,1,2,2,3,0,-1] \leq 1$	$[0,0,-1,0,1,-2,-1,-1] \leq 1$	$[0,0,1,-2,-1,0,-1,-1] \leq 1$	$[0,-1,0,-3,-2,-2,-1,-1] \leq 1$
$[0,0,1,1,2,-1,0,-1] \leq 1$	$[0,1,1,-1,-2,-1,0,0] \leq 1$	$[0,0,1,2,1,-1,-1,0] \leq 1$	$[0,0,-2,-3,-2,-2,-1,-1] \leq 1$
$[0,0,-3,-3,-2,-2,-1,-1] \leq 1$	$[0,1,-1,-2,-1,-2,-1,0] \leq 1$	$[0,0,1,1,2,1,-1,-1] \leq 1$	$[0,0,1,1,2,2,-1,-1] \leq 1$
$[0,1,2,1,2,1,-1,0] \leq 1$	$[0,-1,0,1,1,0,-2,-1] \leq 1$	$[0,1,-1,-2,-2,-1,0,-1] \leq 1$	$[0,1,-1,0,-1,-2,-1,0] \leq 1$
$[0,1,2,1,0,1,-1,0] \leq 1$	$[0,-1,-1,0,-1,-2,-2,-1] \leq 1$	$[0,-1,-1,0,0,-2,-2,-1] \leq 1$	$[0,-2,-1,-1,-2,-3,-2,-1] \leq 1$
$[0,-1,0,1,0,-2,-1,-1] \leq 1$	$[0,1,1,0,-1,0,0,-1] \leq 1$	$[0,1,1,-1,-1,0,0,-1] \leq 1$	$[0,1,2,1,0,0,1,-1] \leq 1$
$[0,0,1,-1,-2,-1,0,-1] \leq 1$	$[0,-2,-3,-4,-3,-3,-2,-1] \leq 1$	$[0,1,2,2,3,2,1,-1] \leq 1$	$[0,-1,-2,-3,-3,-2,-2,-1] \leq 1$
$[0,1,1,2,2,1,0,-1] \leq 1$	$[0,-1,-1,-3,-2,-2,-2,-1] \leq 1$	$[0,0,0,-2,-2,-1,-1,-1] \leq 1$	$[0,1,1,1,2,0,0,-1] \leq 1$
$[0,0,0,1,1,-1,-1,-1] \leq 1$	$[0,-1,-2,-1,-3,-2,-2,-1] \leq 1$	$[0,1,1,2,0,1,0,-1] \leq 1$	$[0,0,1,1,0,0,-1,-1] \leq 1$
$[0,0,1,1,1,0,-1,-1] \leq 1$	$[0,0,-1,-1,-2,-2,-1,-1] \leq 1$	$[0,0,-1,-2,-2,-2,-1,-1] \leq 1$	$[0,1,0,1,0,-1,0,-1] \leq 1$
$[0,-1,0,-1,-2,-1,-2,-1] \leq 1$	$[0,1,1,1,0,0,0,-1] \leq 1$	$[0,-1,-1,-1,-2,-2,-2,-1] \leq 1$	$[0,0,1,0,-1,0,-1,-1] \leq 1$
$[0,0,-1,0,-1,-2,-1,-1] \leq 1$	$[0,1,0,-2,-1,-1,0,-1] \leq 1$	$[0,1,0,-1,-2,-1,-1,0] \leq 1$	$[0,1,-1,0,-2,-1,0,-1] \leq 1$
$[0,1,0,0,-1,-1,0,-1] \leq 1$	$[0,0,0,-1,-2,-1,-1,-1] \leq 1$	$[0,1,1,2,1,0,-1,0] \leq 1$	$[0,-1,0,1,-1,0,-2,-1] \leq 1$
$[0,-1,0,0,1,-1,-2,-1] \leq 1$	$[0,0,0,1,0,-1,-1,-1] \leq 1$	$[0,-1,0,0,-1,-1,-2,-1] \leq 1$	$[0,1,2,1,2,0,1,-1] \leq 1$
$[0,1,2,2,2,1,1,-1] \leq 1$	$[0,-2,-1,-3,-2,-3,-2,-1] \leq 1$	$[0,-2,-2,-3,-3,-3,-2,-1] \leq 1$	$[0,1,2,3,2,1,2,-1] \leq 1$
$[0,-3,-2,-3,-4,-3,-2,-1] \leq 1$	$[0,1,0,1,1,-1,0,-1] \leq 1$	$[0,-1,0,-2,-2,-1,-2,-1] \leq 1$	$[0,1,2,3,3,2,2,-1] \leq 1$
$[0,-3,-3,-4,-4,-3,-2,-1] \leq 1$	$[0,1,2,-1,0,0,1,-1] \leq 1$	$[0,-2,-1,-1,0,-3,-2,-1] \leq 1$	$[0,1,-3,-2,-2,-1,0,-1] \leq 1$
$[0,-1,0,1,1,2,-2,-1] \leq 1$	$[0,1,1,2,3,2,-1,0] \leq 1$	$[0,1,2,1,2,3,-1,0] \leq 1$	$[0,1,-3,-2,-1,-2,-1,0] \leq 1$
$[0,1,-2,-3,-2,-1,-1,0] \leq 1$	$[0,1,2,3,4,2,3,-1] \leq 1$	$[0,-4,-3,-5,-4,-3,-2,-1] \leq 1$	$[0,1,2,-1,0,1,-1,0] \leq 1$
$[0,1,-1,0,1,-2,-1,0] \leq 1$	$[0,1,2,2,3,3,1,-1] \leq 1$	$[0,-2,-4,-4,-3,-3,-2,-1] \leq 1$	$[0,1,2,3,4,4,3,-1] \leq 1$
$[0,-4,-5,-5,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,1,1,2,-1] \leq 1$	$[0,-3,-2,-2,-4,-3,-2,-1] \leq 1$	$[0,-5,-6,-5,-4,-3,-2,-1] \leq 1$
$[0,1,2,3,4,5,4,-1] \leq 1$	$[0,-7,-6,-5,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,4,5,6,-1] \leq 1$	$[0,1,2,-2,-1,-1,0,1] \leq 1$
$[0,1,2,2,3,-1,0,1] \leq 1$			

APPENDIX B. FACETS \& VERTICES OF THE MOMENT POLYTOPES 54

Vertices of P_{8}	
(1, 0, 0, 0, 0, 0, 0, -1)	$(1 / 2,1 / 2,0,0,0,0,-1 / 2,-1 / 2)$
$(1 / 3,1 / 3,1 / 3,0,0,-1 / 3,-1 / 3,-1 / 3)$	$(1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,-1 / 4)$
(1/3, 1/3, 0, 0, 0, 0, 0, -2/3)	$(2 / 3,0,0,0,0,0,-1 / 3,-1 / 3)$
$(1 / 4,1 / 4,1 / 4,0,0,0,-1 / 4,-1 / 2)$	(1/2, 1/4, 0, 0, 0, -1/4, -1/4, -1/4)
$(1 / 5,1 / 5,1 / 5,1 / 5,0,-1 / 5,-1 / 5,-2 / 5)$	$(2 / 5,1 / 5,1 / 5,0,-1 / 5,-1 / 5,-1 / 5,-1 / 5)$
$(2 / 5,2 / 5,0,0,0,-1 / 5,-1 / 5,-2 / 5)$	$(2 / 5,1 / 5,1 / 5,0,0,0,-2 / 5,-2 / 5)$
$(1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,-1 / 7,-2 / 7,-2 / 7)$	$(2 / 7,2 / 7,1 / 7,-1 / 7,-1 / 7,-1 / 7,-1 / 7,-1 / 7)$
$(1 / 6,1 / 6,1 / 6,1 / 6,0,0,-1 / 3,-1 / 3)$	$(1 / 3,1 / 3,0,0,-1 / 6,-1 / 6,-1 / 6,-1 / 6)$
$(1 / 6,1 / 6,1 / 6,0,0,0,0,-1 / 2)$	$(1 / 2,0,0,0,0,-1 / 6,-1 / 6,-1 / 6)$
$(2 / 7,2 / 7,2 / 7,0,-1 / 7,-1 / 7,-2 / 7,-2 / 7)$	$(2 / 7,2 / 7,1 / 7,1 / 7,0,-2 / 7,-2 / 7,-2 / 7)$
$(1 / 4,1 / 4,1 / 4,-1 / 8,-1 / 8,-1 / 8,-1 / 8,-1 / 4)$	$(1 / 4,1 / 8,1 / 8,1 / 8,1 / 8,-1 / 4,-1 / 4,-1 / 4)$
$(1 / 3,1 / 3,1 / 6,0,-1 / 6,-1 / 6,-1 / 6,-1 / 3)$	$(1 / 3,1 / 6,1 / 6,1 / 6,0,-1 / 6,-1 / 3,-1 / 3)$
$(1 / 7,1 / 7,1 / 7,1 / 7,0,0,-1 / 7,-3 / 7)$	$(3 / 7,1 / 7,0,0,-1 / 7,-1 / 7,-1 / 7,-1 / 7)$
$(1 / 8,1 / 8,1 / 8,1 / 8,1 / 8,-1 / 8,-1 / 8,-3 / 8)$	$(3 / 8,1 / 8,1 / 8,-1 / 8,-1 / 8,-1 / 8,-1 / 8,-1 / 8)$
$(1 / 10,1 / 10,1 / 10,1 / 10,0,0,0,-2 / 5)$	$(2 / 5,0,0,0,-1 / 10,-1 / 10,-1 / 10,-1 / 10)$
$(2 / 9,2 / 9,1 / 9,1 / 9,1 / 9,-2 / 9,-2 / 9,-1 / 3)$	$(1 / 3,2 / 9,2 / 9,-1 / 9,-1 / 9,-1 / 9,-2 / 9,-2 / 9)$
$(1 / 9,1 / 9,1 / 9,1 / 9,1 / 9,0,-2 / 9,-1 / 3)$	$(1 / 3,2 / 9,0,-1 / 9,-1 / 9,-1 / 9,-1 / 9,-1 / 9)$
$(1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,-1 / 4,-1 / 4)$	$(1 / 4,1 / 4,-1 / 12,-1 / 12,-1 / 12,-1 / 12,-1 / 12,-1 / 12)$
$(1 / 11,1 / 11,1 / 11,1 / 11,1 / 11,0,-1 / 11,-4 / 11)$	$(4 / 11,1 / 11,0,-1 / 11,-1 / 11,-1 / 11,-1 / 11,-1 / 11)$
$(1 / 4,1 / 4,1 / 4,0,-1 / 8,-1 / 8,-1 / 8,-3 / 8)$	$(3 / 8,1 / 8,1 / 8,1 / 8,0,-1 / 4,-1 / 4,-1 / 4)$
$(2 / 9,2 / 9,2 / 9,0,0,0,-1 / 3,-1 / 3)$	$(1 / 3,1 / 3,0,0,0,-2 / 9,-2 / 9,-2 / 9)$
$(3 / 10,3 / 10,0,-1 / 10,-1 / 10,-1 / 10,-1 / 10,-1 / 5)$	$(1 / 5,1 / 10,1 / 10,1 / 10,1 / 10,0,-3 / 10,-3 / 10)$
$(2 / 13,2 / 13,2 / 13,1 / 13,1 / 13,0,-4 / 13,-4 / 13)$	$(4 / 13,4 / 13,0,-1 / 13,-1 / 13,-2 / 13,-2 / 13,-2 / 13)$
(1/15, 1/15, 1/15, 1/15, 1/15, 0, 0, -1/3)	$(1 / 3,0,0,-1 / 15,-1 / 15,-1 / 15,-1 / 15,-1 / 15)$
(2/13, 2/13, 2/13, 2/13, 1/13, -3/13, -3/13, -3/13)	$(3 / 13,3 / 13,3 / 13,-1 / 13,-2 / 13,-2 / 13,-2 / 13,-2 / 13)$
$(2 / 15,2 / 15,2 / 15,2 / 15,2 / 15,-1 / 5,-1 / 5,-4 / 15)$	$(4 / 15,1 / 5,1 / 5,-2 / 15,-2 / 15,-2 / 15,-2 / 15,-2 / 15)$
$(1 / 4,1 / 4,1 / 4,-1 / 12,-1 / 12,-1 / 12,-1 / 4,-1 / 4)$	(1/4, 1/4, 1/12, 1/12, 1/12, -1/4, -1/4, -1/4)
$(1 / 13,1 / 13,1 / 13,1 / 13,1 / 13,1 / 13,-2 / 13,-4 / 13)$	$(4 / 13,2 / 13,-1 / 13,-1 / 13,-1 / 13,-1 / 13,-1 / 13,-1 / 13)$
$(1 / 16,1 / 16,1 / 16,1 / 16,1 / 16,1 / 16,-1 / 16,-5 / 16)$	$(5 / 16,1 / 16,-1 / 16,-1 / 16,-1 / 16,-1 / 16,-1 / 16,-1 / 16)$
$(4 / 17,4 / 17,4 / 17,-2 / 17,-2 / 17,-2 / 17,-3 / 17,-3 / 17)$	(3/17, 3/17, 2/17, 2/17, 2/17, -4/17, -4/17, -4/17)
(0, 0, 0, 0, 0, 0, 0, 0)	$(2 / 13,2 / 13,2 / 13,2 / 13,-1 / 13,-1 / 13,-1 / 13,-5 / 13)$
$(5 / 13,1 / 13,1 / 13,1 / 13,-2 / 13,-2 / 13,-2 / 13,-2 / 13)$	$(2 / 7,0,-1 / 21,-1 / 21,-1 / 21,-1 / 21,-1 / 21,-1 / 21)$
$(1 / 21,1 / 21,1 / 21,1 / 21,1 / 21,1 / 21,0,-2 / 7)$	$(1 / 4,-1 / 28,-1 / 28,-1 / 28,-1 / 28,-1 / 28,-1 / 28,-1 / 28)$
$(1 / 28,1 / 28,1 / 28,1 / 28,1 / 28,1 / 28,1 / 28,-1 / 4)$	$(5 / 24,5 / 24,5 / 24,-1 / 8,-1 / 8,-1 / 8,-1 / 8,-1 / 8)$
$(1 / 8,1 / 8,1 / 8,1 / 8,1 / 8,-5 / 24,-5 / 24,-5 / 24)$	

APPENDIX B. FACETS \& VERTICES OF THE MOMENT POLYTOPES 55

Facets of P_{9}			
$[0,0,-1,1,0,0,0,0,0] \leq 0$	$[0,0,0,0,0,-1,1,0,0] \leq 0$	$[0,-1,1,0,0,0,0,0,0] \leq 0$	$[0,0,0,0,0,0,-1,1,0] \leq 0$
$[0,2,1,1,1,1,1,1,1] \leq 0$	$[0,0,0,0,0,0,0,-1,1] \leq 0$	$[0,0,0,-1,1,0,0,0,0] \leq 0$	$[0,0,0,0,-1,1,0,0,0] \leq 0$
$[0,0,1,1,2,0,1,-1,-1] \leq 1$	$[0,0,1,1,1,0,0,-1,-1] \leq 1$	$[0,0,-2,-1,-3,-2,-2,-1,-1] \leq 1$	$[0,0,-1,-1,-2,-2,-2,-1,-1] \leq 1$
$[0,0,1,1,-1,0,0,-1,-1] \leq 1$	$[0,0,-1,-1,0,-2,-2,-1,-1] \leq 1$	$[0,0,-4,-3,-3,-2,-2,-1,-1] \leq 1$	$[0,0,1,1,2,2,3,-1,-1] \leq 1$
$[0,0,-2,-3,-3,-2,-2,-1,-1] \leq 1$	$[0,0,1,1,2,2,1,-1,-1] \leq 1$	$[0,0,1,1,1,2,0,-1,-1] \leq 1$	$[0,0,-1,-3,-2,-2,-2,-1,-1] \leq 1$
$[0,0,0,1,1,0,-1,-1,-1] \leq 1$	$[0,0,0,-1,-2,-2,-1,-1,-1] \leq 1$	$[0,1,1,0,-1,-1,0,0,-1] \leq 1$	$[0,-1,-1,0,0,-1,-2,-2,-1] \leq 1$
$[0,1,1,1,2,2,0,0,-1] \leq 1$	$[0,-1,-1,-3,-3,-2,-2,-2,-1] \leq 1$	$[0,1,1,1,-1,0,0,0,-1] \leq 1$	$[0,-1,-1,-1,0,-2,-2,-2,-1] \leq 1$
$[0,-1,-1,0,1,-2,-2,-1,-1] \leq 1$	$[0,0,1,-2,-2,-1,0,-1,-1] \leq 1$	$[0,0,-1,0,1,1,-2,-1,-1] \leq 1$	$[0,0,1,1,-2,-1,0,0,-1] \leq 1$
$[0,0,1,2,1,1,-1,-1,0] \leq 1$	$[0,1,1,-1,-1,-2,-1,0,0] \leq 1$	$[0,0,1,1,2,0,-1,-1,0] \leq 1$	$[0,1,1,2,2,1,-1,0,0] \leq 1$
$[0,1,1,0,-2,-1,-1,0,0] \leq 1$	$[0,0,1,-1,-2,-2,-1,-1,0] \leq 1$	$[0,-1,-1,0,0,1,-2,-2,-1] \leq 1$	$[0,1,1,-2,-1,-1,0,0,-1] \leq 1$
$[0,0,1,0,1,-1,0,-1,-1] \leq 1$	$[0,0,-1,0,-2,-1,-2,-1,-1] \leq 1$	$[0,-1,0,0,-2,-1,-1,-2,-1] \leq 1$	$[0,1,0,0,1,-1,-1,0,-1] \leq 1$
$[0,1,2,2,3,3,2,1,-1] \leq 1$	$[0,-2,-3,-4,-4,-3,-3,-2,-1] \leq 1$	$[0,-1,-2,-2,-3,-3,-2,-2,-1] \leq 1$	$[0,1,1,2,2,1,1,0,-1] \leq$
$[0,-2,-2,-1,-1,-3,-3,-2,-1] \leq 1$	$[0,1,2,2,0,0,1,1,-1] \leq 1$	$[0,-1,0,-1,-2,-2,-1,-2,-1] \leq 1$	$[0,-1,-1,0,-2,-1,-2,-2,-1] \leq 1$
$[0,1,0,1,1,0,-1,0,-1] \leq 1$	$[0,1,1,0,1,-1,0,0,-1] \leq 1$	$[0,-1,-2,-3,-3,-3,-2,-2,-1] \leq 1$	$[0,1,1,2,2,2,1,0,-1] \leq 1$
$[0,-2,-1,-1,0,-3,-2,-2,-1] \leq 1$	$[0,1,1,2,-1,0,0,1,-1] \leq 1$	$[0,1,1,1,2,0,0,-1,0] \leq 1$	$[0,1,0,0,-2,-1,-1,-1,0] \leq 1$
$[0,-1,0,0,1,-1,-2,-1,-1] \leq 1$	$[0,0,1,0,-2,-1,-1,0,-1] \leq 1$	$[0,0,0,1,-2,-1,0,-1,-1] \leq 1$	$[0,0,-1,0,1,-2,-1,-1,-1] \leq 1$
$[0,1,2,2,3,3,4,1,-1] \leq 1$	$[0,-2,-5,-4,-4,-3,-3,-2,-1] \leq 1$	$[0,1,1,2,2,3,2,0,-1] \leq 1$	$[0,-1,-3,-4,-3,-3,-2,-2,-1] \leq 1$
$[0,-2,-2,-4,-3,-3,-3,-2,-1] \leq 1$	$[0,1,2,2,2,3,1,1,-1] \leq 1$	$[0,-1,0,0,1,1,-1,-2,-1] \leq 1$	$[0,1,0,-2,-2,-1,-1,0,-1] \leq 1$
$[0,1,1,1,2,1,0,0,-1] \leq 1$	$[0,-1,-1,-2,-3,-2,-2,-2,-1] \leq 1$	$[0,0,1,-1,-2,-1,0,-1,-1] \leq 1$	$[0,0,-1,0,1,0,-2,-1,-1] \leq 1$
$[0,-1,0,-1,0,-2,-1,-2,-1] \leq 1$	$[0,1,0,1,-1,0,-1,0,-1] \leq 1$	$[0,0,0,-2,-2,-2,-1,-1,-1] \leq 1$	$[0,0,0,1,1,1,-1,-1,-1] \leq 1$
$[0,1,1,2,2,3,3,0,-1] \leq 1$	$[0,-1,-4,-4,-3,-3,-2,-2,-1] \leq 1$	$[0,1,2,2,-2,-1,0,1,1] \leq 1$	$[0,-1,0,1,2,-2,-1,-1,0] \leq 1$
$[0,1,1,2,-2,-1,0,1,0] \leq 1$	$[0,0,1,2,0,1,-1,-1,0] \leq 1$	$[0,1,1,-1,0,-2,-1,0,0] \leq 1$	$[0,1,2,1,-2,-1,0,0,1] \leq 1$
$[0,0,1,2,3,-1,-1,0,1] \leq 1$	$[0,1,1,2,3,0,-1,0,1] \leq 1$	$[0,1,1,2,2,0,1,-1,0] \leq 1$	$[0,1,-1,0,-2,-2,-1,-1,0] \leq 1$
$[0,1,0,-1,0,-2,-1,-1,0] \leq 1$	$[0,1,0,-1,-1,-2,-1,-1,0] \leq 1$	$[0,1,0,-2,-1,-2,-1,-1,0] \leq 1$	$[0,-1,0,1,-1,0,-2,-1,-1] \leq 1$
$[0,-1,0,1,0,0,-2,-1,-1] \leq 1$	$[0,-1,0,1,0,1,-2,-1,-1] \leq 1$	$[0,1,2,1,2,1,1,-1,0] \leq 1$	$[0,1,2,1,1,0,1,-1,0] \leq 1$
$[0,1,-1,-1,-2,-1,-2,-1,0] \leq 1$	$[0,1,-1,0,-1,-1,-2,-1,0] \leq 1$	$[0,1,2,3,4,4,5,3,-1] \leq 1$	$[0,-4,-6,-5,-5,-4,-3,-2,-1] \leq 1$
$[0,1,2,3,3,4,3,2,-1] \leq 1$	$[0,-3,-4,-5,-4,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,2,1,1,2,-1] \leq 1$	$[0,1,2,3,3,1,2,2,-1] \leq 1$
$[0,-3,-2,-2,-3,-4,-3,-2,-1] \leq 1$	$[0,-3,-3,-2,-4,-4,-3,-2,-1] \leq 1$	$[0,1,2,2,3,1,2,1,-1] \leq 1$	$[0,-2,-3,-2,-4,-3,-3,-2,-1] \leq 1$
$[0,1,0,1,2,1,-1,-1,0] \leq 1$	$[0,0,1,1,2,1,-1,0,-1] \leq 1$	$[0,1,1,-1,-2,-1,0,-1,0] \leq 1$	$[0,-1,0,-2,-3,-2,-2,-1,-1] \leq 1$
$[0,-2,-1,-1,-1,-2,-3,-2,-1] \leq 1$	$[0,-2,-1,-1,-2,-2,-3,-2,-1] \leq 1$	$[0,-2,-2,-1,-2,-3,-3,-2,-1] \leq 1$	$[0,1,2,1,0,0,0,1,-1] \leq 1$
$[0,1,2,1,1,0,0,1,-1] \leq 1$	$[0,1,2,2,1,0,1,1,-1] \leq 1$	$[0,-1,0,1,1,0,0,-2,-1] \leq 1$	$[0,1,-1,-1,-2,-2,-1,0,-1] \leq 1$
$[0,1,1,2,0,0,1,0,-1] \leq 1$	$[0,1,1,2,1,0,1,0,-1] \leq 1$	$[0,-1,-2,-1,-1,-3,-2,-2,-1] \leq 1$	$[0,-1,-2,-1,-2,-3,-2,-2,-1] \leq 1$
$[0,-1,0,0,1,0,-1,-2,-1] \leq 1$	$[0,1,0,-1,-2,-1,-1,0,-1] \leq 1$	$[0,1,-1,0,0,-1,-2,-1,0] \leq 1$	$[0,1,2,1,0,0,1,-1,0] \leq 1$
$[0,1,1,2,0,1,0,-1,0] \leq 1$	$[0,0,1,-1,0,-2,-1,0,-1] \leq 1$	$[0,0,1,-1,-1,-2,-1,0,-1] \leq 1$	$[0,1,1,2,1,1,0,-1,0] \leq 1$
$[0,1,-1,-2,-2,-1,-2,-1,0] \leq 1$	$[0,1,2,1,2,2,1,-1,0] \leq 1$	$[0,1,-1,-2,-2,-2,-1,0,-1] \leq 1$	$[0,-1,0,1,1,1,0,-2,-1] \leq 1$
$[0,0,1,-2,-1,-2,-1,0,-1] \leq 1$	$[0,-1,0,-3,-2,-2,-1,-2,-1] \leq 1$	$[0,1,1,2,1,2,0,-1,0] \leq 1$	$[0,1,0,1,1,2,-1,0,-1] \leq 1$
$[0,-3,-5,-5,-4,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,3,4,4,2,-1] \leq 1$	$[0,1,1,2,3,1,2,-1,0] \leq 1$	$[0,1,1,2,3,2,2,-1,0] \leq 1$
$[0,1,1,2,3,2,3,-1,0] \leq 1$	$[0,1,-2,-1,-3,-2,-1,-1,0] \leq 1$	$[0,1,-2,-2,-3,-2,-1,-1,0] \leq 1$	$[0,1,-3,-2,-3,-2,-1,-1,0] \leq 1$
$[0,1,1,2,2,3,4,-1,0] \leq 1$	$[0,1,-4,-3,-2,-2,-1,-1,0] \leq 1$	$[0,-2,-1,-1,0,0,-3,-2,-1] \leq 1$	$[0,1,2,-1,-1,0,0,1,-1] \leq 1$
$[0,0,0,1,2,-1,-1,-1,0] \leq 1$	$[0,1,0,1,2,-1,0,-1,0] \leq 1$	$[0,1,1,1,-2,-1,0,0,0] \leq 1$	$[0,1,0,1,-2,-1,0,-1,0] \leq 1$
$[0,1,1,2,-1,0,1,-1,0] \leq 1$	$[0,1,-1,0,1,-2,-1,-1,0] \leq 1$	$[0,-1,0,1,-1,-1,0,-2,-1] \leq 1$	$[0,1,-1,0,0,-2,-1,0,-1] \leq 1$
$[0,0,-1,0,0,-1,-2,-1,-1] \leq 1$	$[0,0,1,0,-1,-1,0,-1,-1] \leq 1$	$[0,1,0,0,-1,-1,-1,0,-1] \leq 1$	$[0,-1,0,0,0,-1,-1,-2,-1] \leq 1$
$[0,0,0,1,-1,0,-1,-1,-1] \leq 1$	$[0,0,0,-1,0,-2,-1,-1,-1] \leq 1$	$[0,1,-1,0,1,0,-2,-1,0] \leq 1$	$[0,1,2,0,-1,0,1,-1,0] \leq 1$
$[0,-1,0,1,0,-1,0,-2,-1] \leq 1$	$[0,1,-1,0,-1,-2,-1,0,-1] \leq 1$	$[0,1,1,1,1,0,0,0,-1] \leq 1$	$[0,0,0,0,1,-1,-1,-1,-1] \leq 1$
$[0,0,0,0,-2,-1,-1,-1,-1] \leq 1$	$[0,-1,-1,-1,-2,-2,-2,-2,-1] \leq 1$	$[0,1,2,0,-1,0,0,1,-1] \leq 1$	$[0,-2,-1,-1,0,-1,-3,-2,-1] \leq 1$
$[0,-2,-2,-2,-3,-3,-3,-2,-1] \leq 1$	$[0,-2,-1,-3,-3,-2,-3,-2,-1] \leq 1$	$[0,-2,-1,-2,-3,-2,-3,-2,-1] \leq 1$	$[0,1,2,2,2,1,1,1,-1] \leq 1$
$[0,1,2,1,2,2,0,1,-1] \leq 1$	$[0,1,2,1,2,1,0,1,-1] \leq 1$	$[0,-3,-2,-2,-1,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,0,1,1,2,-1] \leq 1$
$[0,1,2,3,3,3,2,2,-1] \leq 1$	$[0,1,1,2,2,3,0,1,-1] \leq 1$	$[0,1,2,3,2,3,1,2,-1] \leq 1$	$[0,-3,-3,-4,-4,-4,-3,-2,-1] \leq 1$
$[0,-2,-1,-4,-3,-3,-2,-2,-1] \leq 1$	$[0,-3,-2,-4,-3,-4,-3,-2,-1] \leq 1$	$[0,1,1,2,2,3,1,-1,0] \leq 1$	$[0,1,2,1,2,3,3,-1,0] \leq 1$
$[0,1,2,1,2,3,2,-1,0] \leq 1$	$[0,-1,0,1,1,2,1,-2,-1] \leq 1$	$[0,1,-1,-3,-2,-2,-1,-1,0] \leq 1$	$[0,1,-3,-3,-2,-1,-2,-1,0] \leq 1$
$[0,1,-2,-3,-2,-1,-2,-1,0] \leq 1$	$[0,1,-2,-3,-2,-2,-1,0,-1] \leq 1$	$[0,1,-3,-3,-2,-2,-1,0,-1] \leq 1$	$[0,-1,0,1,1,2,2,-2,-1] \leq 1$
$[0,1,2,3,4,2,2,3,-1] \leq 1$	$[0,1,2,3,4,3,2,3,-1] \leq 1$	$[0,1,2,3,4,4,3,3,-1] \leq 1$	$[0,-4,-3,-3,-5,-4,-3,-2,-1] \leq 1$
$[0,-4,-3,-4,-5,-4,-3,-2,-1] \leq 1$	$[0,-4,-4,-5,-5,-4,-3,-2,-1] \leq 1$	$[0,-5,-4,-6,-5,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,4,5,3,4,-1] \leq 1$
$[0,-5,-6,-6,-5,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,4,5,5,4,-1] \leq 1$	$[0,1,2,3,4,5,6,5,-1] \leq 1$	$[0,-6,-7,-6,-5,-4,-3,-2,-1] \leq 1$
$[0,-8,-7,-6,-5,-4,-3,-2,-1] \leq 1$	$[0,1,2,3,4,5,6,7,-1] \leq 1$	$[0,1,-1,0,1,1,-2,-1,0] \leq 1$	$[0,1,2,-1,-1,0,1,-1,0] \leq 1$

APPENDIX B. FACETS \& VERTICES OF THE MOMENT POLYTOPES 56

Vertices of P_{9}	
(1/2, 1/2, 0, 0, 0, 0, 0, -1/2, -1/2)	$(1 / 3,1 / 3,1 / 3,0,0,0,-1 / 3,-1 / 3,-1 / 3)$
(1/4, 1/4, 1/4, 0, 0, 0, 0, -1/4, -1/2)	(2/5, 1/5, 1/5, 0, 0, 0, 0, -2/5, -2/5)
(2/9, 2/9, 2/9, 0, 0, 0, 0, -1/3, -1/3)	(2/7, 2/7, 2/7, 0, 0, -1/7, -1/7, -2/7, -2/7)
(1/4, 1/4, 1/4, 0, -1/12, -1/12, -1/12, -1/4, -1/4)	(1/2, 1/4, 0, 0, 0, 0, -1/4, -1/4, -1/4)
(2/5, 2/5, 0, 0, 0, 0, -1/5, -1/5, -2/5)	(1/3, 1/3, 0, 0, 0, 0, -2/9, -2/9, -2/9)
(2/7, 2/7, 1/7, 1/7, 0, 0, -2/7, -2/7, -2/7)	(1/4, 1/4, 1/12, 1/12, 1/12, 0, -1/4, -1/4, -1/4)
(1, 0, 0, 0, 0, 0, 0, 0, -1)	(1/3, 1/3, 0, 0, 0, 0, 0, 0, -2/3)
(1/6, 1/6, 1/6, 0, 0, 0, 0, 0, -1/2)	(1/10, 1/10, 1/10, 1/10, 0, 0, 0, 0, -2/5)
(1/15, 1/15, 1/15, 1/15, 1/15, 0, 0, 0, -1/3)	(1/21, 1/21, 1/21, 1/21, 1/21, 1/21, 0, 0, -2/7)
(2/3, 0, 0, 0, 0, 0, 0, -1/3, -1/3)	(1/2, 0, 0, 0, 0, 0, -1/6, -1/6, -1/6)
(2/5, 0, 0, 0, 0, -1/10, -1/10, -1/10, -1/10)	(1/3, 0, 0, 0, -1/15, -1/15, -1/15, -1/15, -1/15)
(2/7, 0, 0, -1/21, -1/21, -1/21, -1/21, -1/21, -1/21)	(3/11, $1 / 22,-1 / 22,-1 / 22,-1 / 22,-1 / 22,-1 / 22,-1 / 22,-1 / 22)$
(1/22, 1/22, 1/22, 1/22, 1/22, 1/22, 1/22, -1/22, -3/11)	(1/16, 1/16, 1/16, 1/16, 1/16, 1/16, 0, -1/16, -5/16)
(5/16, 1/16, 0, -1/16, -1/16, -1/16, -1/16, -1/16, -1/16)	(1/12, 1/12, 1/12, 1/12, 1/12, 1/12, -1/12, -1/12, -1/3)
$(1 / 3,1 / 12,1 / 12,-1 / 12,-1 / 12,-1 / 12,-1 / 12,-1 / 12,-1 / 12)$	(1/11, 1/11, 1/11, 1/11, 1/11, 0, 0, -1/11, -4/11)
(1/7, 1/7, 1/7, 1/7, 0, 0, 0, -1/7, -3/7)	(1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 0, -2/13, -4/13)
(1/18, 1/18, 1/18, 1/18, 1/18, 1/18, 1/18, -1/9, -5/18)	(4/11, 1/11, 0, 0, -1/11, -1/11, -1/11, -1/11, -1/11)
(3/7, 1/7, 0, 0, 0, -1/7, -1/7, -1/7, -1/7)	(4/13, 2/13, 0, -1/13, -1/13, -1/13, -1/13, -1/13, -1/13)
(5/18, 1/9, -1/18, -1/18, -1/18, -1/18, -1/18, -1/18, -1/18)	(3/8, 1/8, 1/8, 0, -1/8, -1/8, -1/8, -1/8, -1/8)
(1/8, 1/8, 1/8, 1/8, 1/8, 0, -1/8, -1/8, -3/8)	$(1 / 3,1 / 3,0,0,0,-1 / 6,-1 / 6,-1 / 6,-1 / 6)$
(1/4, 1/4, 0, -1/12, -1/12, -1/12, -1/12, -1/12, -1/12)	(1/3, 2/9, 0, 0, -1/9, -1/9, -1/9, -1/9, -1/9)
(1/4, 3/16, -1/16, -1/16, -1/16, -1/16, -1/16, -1/16, -1/16)	$(1 / 6,1 / 6,1 / 6,1 / 6,0,0,0,-1 / 3,-1 / 3)$
(1/12, 1/12, 1/12, 1/12, 1/12, 1/12, 0, -1/4, -1/4)	(1/9, 1/9, 1/9, 1/9, 1/9, 0, 0, -2/9, -1/3)
(1/16, 1/16, 1/16, 1/16, 1/16, 1/16, 1/16, -3/16, -1/4)	(1/5, 1/10, 1/10, 1/10, 1/10, 0, 0, -3/10, -3/10)
(2/17, 1/17, 1/17, 1/17, 1/17, 1/17, 1/17, -4/17, -4/17)	(3/10, 3/10, 0, 0, -1/10, -1/10, -1/10, -1/10, -1/5)
(4/17, 4/17, -1/17, -1/17, -1/17, -1/17, -1/17, -1/17, -2/17)	(3/11, 3/11, 1/11, -1/11, -1/11, -1/11, -1/11, -1/11, -2/11)
(4/13, 4/13, 0, 0, -1/13, -1/13, -2/13, -2/13, -2/13)	(2/7, 2/7, 1/14, -1/14, -1/14, -1/14, -1/7, -1/7, -1/7)
$(1 / 4,1 / 4,-1 / 20,-1 / 20,-1 / 20,-1 / 20,-1 / 10,-1 / 10,-1 / 10)$	(3/10, 1/5, 1/10, -1/10, -1/10, -1/10, -1/10, -1/10, -1/10)
(2/9, 2/9, 2/9, -1/9, -1/9, -1/9, -1/9, -1/9, -1/9)	(2/7, 2/7, 1/7, 0, -1/7, -1/7, -1/7, -1/7, -1/7)
(2/11, 1/11, 1/11, 1/11, 1/11, 1/11, -1/11, -3/11, -3/11)	(2/13, 2/13, 2/13, 1/13, 1/13, 0, 0, -4/13, -4/13)
(1/7, 1/7, 1/7, 1/14, 1/14, 1/14, -1/14, -2/7, -2/7)	(1/10, 1/10, 1/10, 1/20, 1/20, 1/20, 1/20, -1/4, -1/4)
(1/10, 1/10, 1/10, 1/10, 1/10, 1/10, -1/10, -1/5, -3/10)	(1/9, 1/9, 1/9, 1/9, 1/9, 1/9, -2/9, -2/9, -2/9)
(1/7, 1/7, 1/7, 1/7, 1/7, 0, -1/7, -2/7, -2/7)	$(2 / 5,1 / 5,1 / 5,0,0,-1 / 5,-1 / 5,-1 / 5,-1 / 5)$
(5/14, 1/7, 1/7, -1/14, -1/14, -1/14, -1/7, -1/7, -1/7)	$(1 / 5,1 / 5,1 / 5,1 / 5,0,0,-1 / 5,-1 / 5,-2 / 5)$
(1/7, 1/7, 1/7, 1/14, 1/14, 1/14, -1/7, -1/7, -5/14)	(1/6, 1/6, 1/6, 1/6, -1/12, -1/12, -1/12, -1/12, -1/3)
(2/13, 2/13, 2/13, 2/13, 0, -1/13, -1/13, -1/13, -5/13)	(1/3, 1/12, 1/12, 1/12, 1/12, -1/6, -1/6, -1/6, -1/6)
(5/13, 1/13, 1/13, 1/13, 0, -2/13, -2/13, -2/13, -2/13)	(2/9, 2/9, 1/9, 1/9, 1/9, 0, -2/9, -2/9, -1/3)
(1/3, 1/6, 1/6, 1/6, 0, 0, -1/6, -1/3, -1/3)	(1/4, 1/8, 1/8, 1/8, 1/8, 0, -1/4, -1/4, -1/4)
(2/11, 2/11, 2/11, 2/11, 0, 0, -2/11, -3/11, -3/11)	(1/3, 2/9, 2/9, 0, -1/9, -1/9, -1/9, -2/9, -2/9)
(1/3, 1/3, 1/6, 0, 0, -1/6, -1/6, -1/6, -1/3)	(1/4, 1/4, 1/4, 0, -1/8, -1/8, -1/8, -1/8, -1/4)
(1/4, 1/4, 1/4, 0, 0, -1/8, -1/8, -1/8, -3/8)	(1/4, 1/4, 1/4, 0, 0, -1/6, -1/6, -1/6, -1/4)
(1/6, 1/6, 1/6, 1/6, 1/6, -1/6, -1/6, -1/6, -1/3)	(1/3, 1/6, 1/6, 1/6, -1/6, -1/6, -1/6, -1/6, -1/6)
(1/3, 1/9, 1/9, 1/9, 1/9, -1/9, -2/9, -2/9, -2/9)	(3/8, 1/8, 1/8, 1/8, 0, 0, -1/4, -1/4, -1/4)
(2/9, 2/9, 2/9, 1/9, -1/9, -1/9, -1/9, -1/9, -1/3)	(1/4, 1/4, 1/4, 1/4, 0, -1/4, -1/4, -1/4, -1/4)
(2/7, 2/7, 1/7, 1/7, -1/7, -1/7, -1/7, -1/7, -2/7)	(1/4, 1/4, 1/4, 1/8, -1/8, -1/8, -1/8, -1/4, -1/4)
(2/9, 2/9, 2/9, 2/9, -1/9, -1/9, -2/9, -2/9, -2/9)	(2/7, 1/7, 1/7, 1/7, 1/7, -1/7, -1/7, -2/7, -2/7)
(1/4, 1/4, 1/8, 1/8, 1/8, -1/8, -1/4, -1/4, -1/4)	(2/9, 2/9, 2/9, 1/9, 1/9, -2/9, -2/9, -2/9, -2/9)
(3/10, 1/5, 1/10, 1/10, 1/10, -1/5, -1/5, -1/5, -1/5)	(1/5, 1/5, 1/5, 1/5, -1/10, -1/10, -1/10, -1/5, -3/10)
(2/25, 2/25, 2/25, 2/25, 2/25, 1/25, 1/25, -6/25, -6/25)	(6/25, 6/25, -1/25, -1/25, -2/25, -2/25, -2/25, -2/25, -2/25)
(3/11, 3/11, 1/11, 1/11, 1/11, -2/11, -2/11, -2/11, -3/11)	(3/11, 2/11, 2/11, 2/11, -1/11, -1/11, -1/11, -3/11, -3/11)
(3/10, 3/10, 1/10, 1/10, -1/10, -1/10, -1/5, -1/5, -1/5)	(4/15, 4/15, 1/15, 1/15, -2/15, -2/15, -2/15, -2/15, -2/15)
(1/5, 1/5, 1/5, 1/10, 1/10, -1/10, -1/10, -3/10, -3/10)	(2/15, 2/15, 2/15, 2/15, 2/15, -1/15, -1/15, -4/15, -4/15)
(1/4, 1/6, 1/6, 1/6, 0, 0, -1/4, -1/4, -1/4)	(3/11, 3/11, 2/11, 0, 0, -2/11, -2/11, -2/11, -2/11)
(1/5, 1/5, 2/15, 2/15, 2/15, -1/5, -1/5, -1/5, -1/5)	(1/5, 1/5, 1/5, 1/5, -2/15, -2/15, -2/15, -1/5, -1/5)
(3/14, 3/14, 3/14, 1/7, -1/7, -1/7, -1/7, -1/7, -3/14)	(3/14, 1/7, 1/7, 1/7, 1/7, -1/7, -3/14, -3/14, -3/14)
(3/13, 3/13, 2/13, 2/13, -2/13, -2/13, -2/13, -2/13, -2/13)	(2/13, 2/13, 2/13, 2/13, 2/13, -2/13, -2/13, -3/13, -3/13)
(3/14, 3/14, 3/14, 1/14, -1/7, -1/7, -1/7, -1/7, -1/7)	(1/7, 1/7, 1/7, 1/7, 1/7, -1/14, -3/14, -3/14, -3/14)
(3/16, 3/16, 3/16, 3/16, -1/8, -1/8, -1/8, -1/8, -1/4)	(5/19, 5/19, 0, 0, -2/19, -2/19, -2/19, -2/19, -2/19)
(2/19, 2/19, 2/19, 2/19, 2/19, 0, 0, -5/19, -5/19)	$(1 / 4,1 / 8,1 / 8,1 / 8,1 / 8,-3 / 16,-3 / 16,-3 / 16,-3 / 16)$
(5/29, 5/29, 5/29, 5/29, -4/29, -4/29, -4/29, -4/29, -4/29)	($0,0,0,0,0,0,0,0,0$)
(2/11, 2/11, 2/11, 2/11, -3/22, -3/22, -3/22, -3/22, -2/11)	(2/33, 2/33, 2/33, 2/33, 2/33, 2/33, 2/33, -7/33, -7/33)
(3/17, 3/17, 3/17, 3/17, 0, 0, -4/17, -4/17, -4/17)	(7/33, 7/33, -2/33, -2/33, -2/33, -2/33, -2/33, -2/33, -2/33)
(4/17, 4/17, 4/17, 0, 0, -3/17, -3/17, -3/17, -3/17)	(4/21, 4/21, 4/21, 1/7, -1/7, -1/7, -1/7, -1/7, -1/7)
(2/11, 3/22, 3/22, 3/22, 3/22, -2/11, -2/11, -2/11, -2/11)	(4/29, 4/29, 4/29, 4/29, 4/29, -5/29, -5/29, -5/29, -5/29)
($1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,-1 / 7,-4 / 21,-4 / 21,-4 / 21)$	(2/7, 1/14, 1/14, 1/14, 1/14, 1/14, -3/14, -3/14, -3/14)
(3/14, 3/14, 3/14, -1/14, -1/14, -1/14, -1/14, -1/14, -2/7)	($1 / 10,1 / 10,1 / 10,1 / 10,1 / 10,-1 / 20,-1 / 20,-1 / 20,-7 / 20)$
(7/20, 1/20, 1/20, 1/20, -1/10, -1/10, -1/10, -1/10, -1/10)	(1/4, 0, -1/28, -1/28, -1/28, -1/28, -1/28, -1/28, -1/28)
(2/9, -1/36, -1/36, -1/36, -1/36, -1/36, -1/36, -1/36, -1/36)	(1/28, 1/28, 1/28, 1/28, 1/28, 1/28, 1/28, 0, -1/4)
(1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/36, -2/9)	(4/17, 4/17, 1/17, 1/17, 1/17, 1/17, -4/17, -4/17, -4/17)
(4/17, 4/17, 4/17, -1/17, -1/17, -1/17, -1/17, -4/17, -4/17)	

