
USING SHAPE INFORMATION FROM
NATURAL TREE LANDMARKS FOR
IMPROVING SLAM PERFORMANCE

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Bilal Turan

March, 2012

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Selim Aksoy(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ali Aydın Selc.uk

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uluc. Saranlı

Approved for the Graduate School of Engineering and

Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

USING SHAPE INFORMATION FROM NATURAL

TREE LANDMARKS FOR IMPROVING SLAM

PERFORMANCE

Bilal Turan

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Selim Aksoy

March, 2012

Localization and mapping are crucial components for robotic autonomy. How-

ever, such robots must often function in remote, outdoor areas with no a-priori

knowledge of the environment. Consequently, it becomes necessary for field robots

to be able to construct their own maps based on exteroceptive sensor readings.

To this end, visual sensing and mapping through naturally occurring landmarks

have distinct advantages. With the availability of high bandwidth data provided

by visual sensors, meaningful and uniquely identifiable objects can be detected.

This improves the construction of maps consisting of natural landmarks that are

meaningful for human readers as well.

In this thesis, we focus on the use of trees in an outdoor environment as a

suitable set of landmarks for Simultaneous Localization and Mapping (SLAM).

Trees have a relatively simple, near vertical structure which makes them easily and

consistently detectable. Furthermore, the thickness of a tree can be accurately

determined from different viewpoints. Our primary contribution is the usage

of the width of a tree trunk as an additional sensory reading, allowing us to

include the radius of tree trunks on the map. To this end, we introduce a new

sensor model that relates the width of a tree landmark on the image plane to

the radius of its trunk. We provide a mathematical formulation of this model,

derive associated Jacobians and incorporate our sensor model into a working

EKF SLAM implementation. Through simulations we show that the use of this

new sensory reading improves the accuracy of both the map and the trajectory

estimates without additional sensor hardware other than a monocular camera.

Keywords: Simultaneous Localization and Mapping, Computer Vision, Visual

Tracking.

iii

ÖZET

EKH VERİMİNİ ARTIRMAK İC. İN AĞAC. LARIN BİC. İM

BİLGİSİNİN KULLANILMASI

Bilal Turan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Y. Doc.. Dr. Selim Aksoy

Mart, 2012

Robotların özerk hareketi ic. in konumlanma ve haritalama c.ok önemli birimlerdir.

Lakin, bu tip robotlar genelde yerles.imden uzak, dıs. alanlarda c.evre hakkında

bir önsel bilgi olmadan c.alıs.mak zorundadır. Buna bağlı olarak, saha robot-

ları algılayıcıları doğrultusunda kendi haritalarını c.ıkarmak zorundadırlar. Bu

doğrultuda, görsel algılayıcılar ile haritalamanın c.es.itli avantajları vardır. Yüksek

bant genis.liğine sahip görsel algılayıcılar ile, insanların da anlayabileceği haritalar

anlamlı ve birbirinden ayırt edilebilir nesneler tanımlanarak c.ıkartılabilir.

Bu tezde, Es.zamanlı Konumlanma ve Haritalama (EKH) ic.in uygun

is.aretler grubu olarak, dıs. alanlarda ağac.ların is.aret olarak kullanılması üzerine

yoğunlas.tık. Ağac.lar göreceli olarak kolay, neredeyse dikey bir yapıya sahiptir ve

bu, onların kolay ve istikrarlı olarak tesbit edilebilmelerini sağlar. Daha önemlisi,

ağacın kalınlığı farklı görüs. ac.ılarından hassas ve istikrarlı olarak belirlenebilmek-

tedir. Bizim ana katkımız, ağac. kalınlığı bilgisini algılayıcılar ile algılayarak,

haritadaki her ağaca yarıc.ap bilgisini de dahil edebilmektir. Bu doğrultuda,

görüntüdeki ağac. kalınlığı ile onun yarıc.apını birbirine bağlayan yeni bir algılayıcı

modeli gelis.tirdik. Bu modelin matematiksel formüllerini c.ıkarıp, EKH ic.in

gerekli olan türevlerini aldik. Sonra da, c.alıs.an bir EKH üzerine algılayıcı mode-

lini ve türevleri ekledik. Yeni algılayıcı modelinin yalnızca bir kamera kullanarak,

konumlanma ve haritalama hassasiyetini artırdığını simülasyonlar ile gösterdik.

Anahtar sözcükler : Es.zamanlı Konumlanma ve Haritalama, Görüntü İs.leme,

Görsel Takip.

iv

Acknowledgement

First of all I owe great thanks to my supervisor Uluc. Saranlı for his patience,

encouragement and support through out my studies. It was an honor for me to

work under such a knowledgeable, diligent and insightful mentor. I can truly say

that, I learned a lot through out my academic journey.

I also greatly appreciate the guidance of Selim Aksoy and Ali Aydın Selc.uk

and I thank them for being part of my thesis committee.

I would like to thank Utku C. ulha for always being there for me and being a

friend whom I could always count on, Tolga Özarslan for being a beacon of guid-

ance through out my research and a dear brother. I would also like to thank Ali

Nail İnal, İsmail Uyanık, Tuğba Yıldız, Özlem Gür, Deniz Güven and all mem-

bers of the Bilkent Dexterous Robotics and Locomotion Group and all SensoRHex

members for their moral and academic support.

I am also appreciative of the financial support from TÜBİTAK, the Scientific

and Technical Research Council of Turkey.

Finally I owe my loving thanks to my parents S. erife and Mehmet, and my

sisters Havva and Hatice, and my brothers Ekrem and İbrahim for their patience

and encouragement. I thank Ryoko Yamamoto for always being by my side, for

supporting and comforting me every step of the way. And I thank Alexandra

Zehra Aksu for making me smile when I most needed it and also for helping me

with my English. And I thank Fatih Bilge Atar, Yavuz Mester, Uğur Yılmaz,

Enver Kayaaslan, M. Emin Öztürk, Joy Anna Crow, Minkee Kim, Oğuz S. ahin,

Abdullah Gülle and all my dear friends for being morally supportive and making

this process bearable!

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 The Organization of the Thesis 3

2 Background and Related Work 4

2.1 Autonomous Robot Navigation 4

2.2 Sensors for Mobile Robot Navigation 6

2.2.1 Range Sensors . 6

2.2.2 Visual Sensors . 7

2.3 Object Detection . 8

2.3.1 Artificial Landmarks . 8

2.3.2 Natural Landmarks . 9

2.4 Simultaneous Localization and Mapping with an Extended Kalman

Filter . 9

vi

CONTENTS vii

2.4.1 The Sensor Model . 10

2.4.2 Choosing Landmarks . 10

2.4.3 Motion Model . 11

3 Using Tree Width as a Sensor 13

3.1 Motivation and Framework . 13

3.2 Sensor Model for Tree Width Measurements 15

3.3 The Inverse Tree-Width Sensor Model 18

3.4 The Jacobian of the Tree Width Sensor Model 20

3.5 Putting it all together . 22

4 SLAM Performance Using Tree Widths 24

4.1 Experimental Procedure . 24

4.1.1 The Simulation Environment 25

4.1.2 Map Alignment and Error Metrics 26

4.1.3 EKF SLAM Implementation 30

4.2 Selection of EKF Gain Matrices 31

4.3 Performance Using All Trees, Occlusions ignored 36

4.3.1 Dependence on Noise . 36

4.3.2 Dependence on Tree Density 38

4.4 Performance Using Only Non-occluded Trees 39

4.4.1 Dependence on Noise . 39

CONTENTS viii

4.4.2 Dependence on Tree Density 41

5 Conclusion 43

A Derivations 45

A.1 The Sensor Model Derivations . 45

A.2 Jacobian of The Sensor Model . 48

List of Figures

3.1 An illustration of a monocoular camera traveling in an environment

populated with trees. Each tree landmark is located at tt with

trunk radius rt. 15

3.2 An overview of sensor model for tree width measurements. 16

3.3 Life cycle of a landmark. 23

4.1 Left: Top view of tree trunk landmarks and the predefined Bezier

trajectory. Right: Tree trunk landmarks from the viewpoint of the

camera positioned on the circle marker in the left figure. 25

4.2 Left: Projected ellipses as tree trunk bases. Right: Center and

width of tree trunk bases, obtained using our sensor model. 26

4.3 Left: The mean of the estimated landmarks and real landmarks

are shifted to the origin. Right: Landmarks are scaled in order to

have the same scale. 28

4.4 Left: Estimated landmarks are rotated, to yield an optimally

aligned map. Right: Landmarks are scaled in order to have the

original scale. 29

ix

LIST OF FIGURES x

4.5 Performance analysis for other sensor model which does not use the

radius of tree landmarks. In these experiments we ignore occlusion.

Left: Negative average landmark error for different gain pairs for

10 different maps. Right: Negative average trajectory error. . . . 33

4.6 Performance analysis for other sensor model which does not use

the radius of tree landmarks. In these experiments we only use

non-occluded trees. Left: Negative average landmark error for

different gain pairs for 10 different maps. Right: Negative average

trajectory error. 33

4.7 Performance analysis for our sensor model. In these experiments

we ignore occlusion. Left: Negative average landmark error for

different gain pairs for 10 different maps. Right: Negative average

trajectory error. 34

4.8 Performance analysis for our sensor model. In these experiments

we only use non-occluded trees. Left: Negative average landmark

error for different gain pairs for 10 different maps. Right: Negative

average trajectory error. 35

4.9 An example SLAM run without (left) and with (right) the tree-

width sensor. Plus and cross signs show real and estimated land-

mark locations. The right figure also shows real and estimated

tree radii for those landmarks that have been converted into the

XYZ-R parameterization. In both figures, the jagged curves show

the estimated trajectories. 35

4.10 EKF convergence ratios with (solid) and without (dashed) the tree-

width sensor for different pixel noise levels. Occlusions ignored, all

trees are considered. 37

4.11 Average landmark (left) and trajectory (right) errors for SLAM

with (solid) and without (dashed) the tree-width sensor for differ-

ent pixel noise levels. Occlusions ignored, all trees are considered. 37

LIST OF FIGURES xi

4.12 EKF convergence ratios with (solid) and without (dashed) the tree-

width sensor for different tree densities. Occlusions ignored, all

trees are considered. 38

4.13 Average landmark (left) and trajectory (right) errors for SLAM

with (solid) and without (dashed) the tree-width sensor for differ-

ent tree densities. Occlusions ignored, all trees are considered. . . 39

4.14 EKF convergence ratios with (solid) and without (dashed) the tree-

width sensor for different pixel noise levels. Only non-occluded

trees are considered. 40

4.15 Average landmark (left) and trajectory (right) errors for SLAM

with (solid) and without (dashed) the tree-width sensor for differ-

ent pixel noise levels. Only non-occluded trees are considered. . . 40

4.16 EKF convergence ratios with (solid) and without (dashed) the tree-

width sensor for different tree densities. Only non-occluded trees

are considered. 41

4.17 Average landmark (left) and trajectory (right) errors for SLAM

with (solid) and without (dashed) the tree-width sensor for differ-

ent tree densities. Only non-occluded trees are considered. 42

List of Tables

3.1 Table of Definitions. 14

xii

Chapter 1

Introduction

1.1 Motivation

Autonomous navigation is very important for mobile robotics community. For

autonomy, sensing the environment and estimating relative position within the

environment is very important. Most of the time map of the environment is not

available, thus robot is required to build an estimated map of the environment,

then localize itself in this relative map. To generate a map, we need to know rela-

tive positions of features to be mapped. A camera as a sensor gives large amounts

of information to detect and identify features in any environment, which makes it

a perfect sensor for this purpose. However, it is not possible to derive distance in-

formation directly using a single pixel feature in an image. We know that features

from an image lie on some ray starting from the camera and extending to infinity.

Using stereo vision however, distance information can be found using disparity

between images from the two cameras by finding the intersection of the two rays

from these cameras. However, this method doubles the processing time of images

and the distance information for distant landmarks may be erroneous. Another

method is using only one camera while using measurements from different loca-

tions to estimate distance information of a feature. If two images from different

locations have enough disparity, then distance to a feature can be estimated.

1

CHAPTER 1. INTRODUCTION 2

This delays initialization of a feature in the estimated map, and complicates the

process. This method is more difficult to use in a SLAM environment.

Stereo vision seems to be the only way to immediately derive depth informa-

tion and is used by many animals and humans to estimate how far away objects

are. Using two eyes and utilizing the parallax from their separation, we can com-

pute the distance of objects which are not too distant. When we do not use both

eyes, our depth perception dramatically decreases but we can still recover some

depth information by looking at objects we are already familiar with. Size gives

important information to guess the distance of objects. If we can extract infor-

mation concerning the shape of an object, we could obtain additional information

that we can utilize in a SLAM environment.

Extracting depth information from an object using only one camera hence

requires the knowledge of its structure. If the structure is known beforehand,

then we could measure some features of the object using its image to estimate

depth information. To be able to do this, we must be able to estimate the shape

of the object of interest after detecting it in the image.

Knowing the structure of an object and estimating its shape in real time

might be difficult depending on the type of the object. Once we detect the

object, we have to determine its orientation, since some features to be measured

might depend on orientation. Particularly while extracting depth information,

small errors in features will result in large differences. These two reasons make

the problem even harder, and the processing time they add to our implementation

might be too long for us to consider within a SLAM framework. A solution to

this might be using objects which have known simple structures that can be easily

defined and detected. We choose to use tree trunks for this purpose, since they

have a well defined shape whose properties can be estimated consistently from

different viewpoints. Moreover, we can simply measure the width of the tree

trunk in an image, which indirectly gives us depth information if we know the

actual thickness of the tree.

CHAPTER 1. INTRODUCTION 3

1.2 Contributions

In this thesis, we introduced a new sensor model for use in a SLAM framework,

which relies on the observed widths of tree trunks in the image plane. We use

tree trunks as landmarks and show that we can use the position and the radius

of a tree landmark to find the corresponding width of a tree trunk in the image

using a projective camera model. Width information enables us to use monocular

vision as both a range and a bearing sensor. Compared to other sensor models

which do not use this width information, we see significant improvements.

We have derived and implemented a limited but adequate SLAM environment

to test our new sensor model. We have derived mathematical models for the width

sensor, its inverse and the Jacobians for both models. Our sensor model gives

the position and the width information of a tree trunk visible in the image plane

using structural parameters of a tree located in the 3D world. The inverse sensor

model is used to find the radius of a tree whose position is known in the 3D world,

using the tree width from image. We also created a simulation environment to

emulate visual measurements for use in our SLAM environment. Using data from

this simulation environment, we have been able to test the performance of our

new method.

1.3 The Organization of the Thesis

In Chapter 2, we review existing research and basic background to help the reader

familiarize with SLAM problems and our work. Then in Chapter 3, we present

the details of our sensor model. In Chapter 4, we give details about how we test

our new model and show results for its use within a SLAM environment. Finally,

in Chapter 5, we conclude our work and discuss possible future directions.

Chapter 2

Background and Related Work

2.1 Autonomous Robot Navigation

Autonomous operation has been one of the central goals for the mobile robotics

community. This goal naturally encompasses numerous components, including

challenges in achieving adequate mobility [31, 7] and sufficiently accurate sensing

of both the robot and environment state [36] to support decision making for goal-

oriented behavioral control. In this thesis, we focus on the latter, investigating

how visual sensing could be used to track the movement of a mobile robot.

Traversability is one of the most fundamental components of autonomous nav-

igation. A mobile robot has to know which part of the map it can pass through,

and which parts it should avoid. For large scale navigation in the outdoors, fea-

sible paths can be identified using laser scanner data, a method often used by

autonomous vehicles [37]. In indoor goal-based navigation, a mobile robot can

plan its trajectory towards a goal by segmenting the image of the environment

and identifying components such as the floor, the wall, doors and so on [29].

In forest like outdoor environments where bushes and thick and thin trees are

present as obstacles. If the width of the trees can be estimated, it can be used to

decide which trees can be run over to identify a feasible path [18]. Most of the

time, traversability information is not used alone, but used as a part of a bigger

4

CHAPTER 2. BACKGROUND AND RELATED WORK 5

framework.

Another basic component in this context is the knowledge of displacement.

Estimation of the displacement of a robot in a given time interval is called odom-

etry. Integration of these differences can be used to estimate the trajectory of the

robot. However, integrating over different odometry measurements results in an

increasing position error over time, also known as drift. Odometry is generally

used with localization in a known map which in return prevents drifting [21].

Knowing a robot’s absolute position in a given map enables trajectory plan-

ning. A mobile robot, can locate itself in a known map using its sensors if one is

given. Localization can also be used with odometry whenever possible, but if not

then tracking the pose of the robot over time and deciding most likely location

is still possible [33].

Most of the time, the map of the environment cannot be given to the robot.

However, a robot can sense its environment and start building a local map if it has

knowledge of its own position, which is called mapping. However, if the position

of the robot is also not known, it can try to localize itself with respect to a local

map it is building. A robot’s act of building a local map of the environment and

localizing itself in the same map is called Simultaneous Localization and Mapping

(SLAM), which received substantial attention in the mobile robotics community.

Many approaches are available, but we focus on a probabilistic approach where

the location of the robot is defined by a Gaussian probability density function

[36].

The Extended Kalman Filter (EKF) SLAM is one of the most frequently used

methods for SLAM problem [9, 4, 38]. EKF SLAM defines the robot and land-

mark positions as multi variate Gaussian distributions, and correlations between

landmarks and robot trajectories are defined as a covariance matrix. Moreover,

different landmarks are correlated with each other, which results in a big covari-

ance matrix in computations, resulting in O[n2)] complexity, where n is the total

number of parameters used for landmarks. This complexity limits the number of

landmarks in the environment. To solve this problem, different solutions are avail-

able. Fast SLAM is one of these, where the robot location is tracked through a

CHAPTER 2. BACKGROUND AND RELATED WORK 6

particle filter where each particle has its own landmark map with a local EKF in-

stance inside [23]. Fast SLAM extends the limitation in the number of landmarks

compared with EKF SLAM, but the correlation information between landmarks

are now lost. Two layered approaches are also used to have EKF SLAM running

on lower layers and a higher, topological layer defining different maps connected

together. This addresses limitations of the EKF SLAM approach without losing

correlation information between landmarks [32].

2.2 Sensors for Mobile Robot Navigation

Autonomous robots uses sensor to sense the environment and decide on the

traversibility of a path, locate themselves in known maps and build new maps ac-

cordingly. Many different sensors can be used in a mobile robot, and every sensor

type has a different sensor model which informs the robot how to use them. In

this thesis, we focus on sensors which can be divided into two categories: range

sensors and visual sensor - only bearing sensors.

Raw sensor data may not be useful as it is in some cases. Particularly for

sensors with high bandwidth data, such as laser range scanners and cameras, it is

impossible to use raw data as is. One of the passible ways in which semantically

relevant information can be extracted from such raw data is through the definition

of landmarks. A landmark could be based on computational criteria as image

saliencies [22], meaningful structures as corners or curvatures [27] or based on

objects with known geometries [42, 17].

2.2.1 Range Sensors

Range sensors are sensors which can measure distance to objects in the environ-

ment n a given direction. Using a range sensor, the position of a landmark can

be known relative to the robot. Range sensors are active sensors, in that they

emit sound, light or other signals. Calculating the time between emission and

CHAPTER 2. BACKGROUND AND RELATED WORK 7

reception of a signal gives the distance of the object. The active nature of range

sensors makes them energy inefficient.

Laser range scanners are one of the most commonly used sensors in this cat-

egory. They give quite accurate position information and have high data band-

width, which in turn is very valuable for detecting objects by covering large fields

of view [37]. When acquired data is treated as a point cloud, scan-matching

methods can be used to match a part of the laser scan data into an estimated

map within SLAM [26]. If laser range data is processed into landmarks, it can

give very useful data to use in localization and mapping [27, 21].

Sonars are another type of range sensor that rely on sound emission. Unfortu-

nately, they do not give very accurate position information. However, recognizing

natural landmarks like trees through sequential echolocation and acoustic image

analyzing is possible [40], which makes sonar sensor is a possible option for SLAM.

2.2.2 Visual Sensors

Cameras are bearing only sensors, in that each pixel on the image plane defines a

semi-infinite ray starting from the focal point of the camera. Distance information

cannot be directly computed from raw data provided by the camera. However,

if the same pixel could be seen from two different locations, we could compute

the distance to that pixel by intersecting two different rays from the two differ-

ent images. This angle difference between the two rays is called parallax. With

increasing parallax, accuracy of distance computations increase. Wrongly using

raw data from the camera is computationally infeasible, so landmark based meth-

ods are preferred. Image data can be segmented in order to find traversability

maps [29]. Image saliencies [12, 11] or detected objects [2, 1] can also be used as

landmarks.

Stereo vision is widely used both in computer vision and robotics. The base-

line separation of two cameras enables direct distance measurements for pixels.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

However, due to errors in pixel locations, the range in which this distance re-

mains accurate is quite limited. Yet, it is very useful to have direct access to such

distance measurements. Measured landmarks could be directly incorporated into

map [4, 3].

In contrast, monocular vision has the disadvantage of delay in computing dis-

tance of the features since a mobile robot needs to move until sufficient parallax

is observed. However for a variety of practical reasons such as power and compu-

tational efficiency, it might be preferable to only use a single camera [12, 9, 13].

2.3 Object Detection

Image saliency is a good starting point for identifying features to be used in

SLAM, but even with the best descriptors there is still a significant data associ-

ation problem. In an image, there may be many salient features with the same

descriptor. A better approach for defining landmarks is through objects, which

are associated with semantic meanings. This way, the detection and identification

of object type landmarks becomes more feasible. Many salient features together

could define an object [5, 1]. Another approach is to segment an image and use

texture or color information to identify individual regions as objects. If necessary,

segments can be refined afterwards [24, 35]. Using a line detector, and connecting

lines accordingly an object can also be created from a set of lines. For example a

tree can be defined as collection of two vertical nearby lines [6, 43].

2.3.1 Artificial Landmarks

Artificial landmarks are generally simple engineered objects placed manually in

an environment. They should be designed to make object detection very easy.

Moreover, since their size and shape is known, the information they represent

is more than natural landmarks. Artificial landmarks can be used to accurately

localize a robot [41]. However, artificial landmarks are not always available and

CHAPTER 2. BACKGROUND AND RELATED WORK 9

placing them may be costly. They are primarily useful when the robot system

has limited computational resources.

2.3.2 Natural Landmarks

Natural landmarks are preferred over artificial landmarks, because they are al-

ready in the environment and it is not always possible to place artificial landmarks

in remote outdoor environments. Image saliencies are provide simplest natural

landmarks. Nevertheless, any object that can be found naturally in an indoor or

outdoor environment can be defined as natural landmark.

In this thesis, we focus on trees as natural landmarks. Trees are easily de-

tectable and their position on image plane is well defined [43, 18, 6], which makes

them a good landmark choice for SLAM [4]. Moreover, bark surfaces associated

with each tree are distinct enough to allow identification of each tree to address

the data association problem for SLAM implementations. However, having a lim-

ited number of trees in the environment makes the SLAM problem harder, which

is the main reason why the method in [4] failed. The first obvious extension

to this idea is to consider the radius of the tree trunk as an additional feature

to be measured. Measuring tree radius is not a new idea [18, 2], but it is not

used in SLAM framework yet. In this thesis, we focus on utilizing tree radius

information, within EKF SLAM framework.

2.4 Simultaneous Localization and Mapping

with an Extended Kalman Filter

EKF SLAM uses multivariate Gaussian distributions to parametrize the state

within the whole SLAM framework and associated uncertainties. EKF yields

an optimal solution for SLAM, when the sensors and the motion model of a

system can be expressed through linear equations, provideing the best way to

fuse different Gaussian distributions. EKF maintains mean vectors for the robot

CHAPTER 2. BACKGROUND AND RELATED WORK 10

pose and landmark parameters. Correlations between the elements of this mean

vector are stored in a covariance matrix. EKF SLAM has two main components:

A sensor model and a motion model. These are used to update the multivariate

Gaussian function at each step during the operation of the filter.

2.4.1 The Sensor Model

The sensor model provides an interface between sensor measurements and the

EKF SLAM algorith. Intrinsic parameters of this sensor model should be decided,

based on landmarks in a map and measurements from sensors. Using the mean

vector of EKF SLAM, the sensor model predicts measurements. The difference

between predicted and actual measurements is called innovation and is used to

update EKF state predictions. To be able to use the innovation for this update,

we need to have Jacobians associated with the sensor model.

Adding new landmarks into the EKF requires the inverse of the sensor model.

When adding new landmarks, both the mean vector and the covariance matrix

of the EKF must be extended. To do this properly, the Jacobian of the inverse

of the sensor model is also required.

2.4.2 Choosing Landmarks

The choice of landmarks is a very important component in SLAM. The sensor

model uses the parameters of the landmark for predicting measurements. The

parametrization of a landmark and the type of a landmark are different in this

context. Here, we focus on the minimum representation of a point type, which

are the most common type of landmarks. A point landmark can be specified as

a point in 3D. Most image saliency landmarks [22, 14] and some object-based

landmarks [4] are point type landmarks. Another type of landmark is the line

landmark [39]. The difference between line landmarks and point landmarks is

that, line landmarks represent a line in 3D, their projection to the image plane

would also yield to a line under most circumstances. Other, more specialized type

CHAPTER 2. BACKGROUND AND RELATED WORK 11

of landmarks could also be introduced according to corresponding sensor models.

For instance, using laser range scanners, edges, corners and curve segments could

be used as special types of landmarks [28]. Two intersecting lines could define a

landmark, which in return would yield better SLAM performance than separate

point and line type landmarks [25]. In this thesis, we also introduce a special

type of landmark for tree trunks. Every tree landmark will have an associated

radius parameter making them circle landmarks.

Landmark parametrization, on the other hand, is an orthogonal issue. For

point type landmarks, we can have XYZ, inverse depth, homogeneous point and

anchored homogeneous point representations all of which have different consis-

tency and complexity values for SLAM [34]. The XYZ parametrization is the

most commonly used parametrization, particularly with a range sensor model

[23]. However, since the location of landmarks cannot be initialized when they

are first seen, in monocular vision SLAM, a delayed initialization approach is

required [12]. In such cases, the Inverse Depth Parametrization (IDP) can be

used, enabling EKF to initialize a landmark at first sight [9]. The Inverse depth

parametrization initializes a ray, which starts at the position of the robot where

the landmark is first seen, and the direction of the ray is towards the landmark.

The point landmark lies on this ray, with its position defined by an inverse depth

parameter. The inverse depth parametrization has a 4 times more increased

complexity relative to an XYZ parametrization. However, EKF can start to use

landmarks in update equations at first sight.

2.4.3 Motion Model

The motion model in an EKF framework is used to derive the expected position

of the robot in the current time step. This expected position is important be-

cause it is used for predicting landmark observations using the sensor model. If a

mobile platform has wheels, then odometry is the most obvious choice for the mo-

tion model. Using measurements from sensors connected to wheels, the turning

angle could be measured. Using these angles displacement and new orientation

of the robot can be calculated [4]. However, odometry is still a very approximate

CHAPTER 2. BACKGROUND AND RELATED WORK 12

method, since it leads to errors in the orientation of the robot. However, if odom-

etry is used with a vision system, the orientation of the robot can be corrected

easily [20].

Unfortunately, odometry is not an option for legged robots. In such cases iner-

tial sensors can also be used [19]. An inertial sensor gives acceleration and angular

velocities in all dimensions, which can be integrated to get position and orien-

tation information. If the robot system also has a vision system, displacement

information could be derived from from an image sequence. Tracking landmarks

in an environment gives displacement information for robot [30]. And yet another

way to succeed same thing is optical flow [14].

But in some cases an extra sensor for motion model might not be preferred.

And also, if using extra computation time on visual odometry is infeasible, then

pure vision SLAM with a simple motion model is possible [9]. Having constant

velocity motion model, and having impulse like acceleration noises, it is possible

to make SLAM.

Chapter 3

Using Tree Width as a Sensor

3.1 Motivation and Framework

In stereo vision, point coordinates of the same landmark in two images can be

used to calculate the depth of that landmark. Accuracy of this depth estimation

depends on the baseline separation of these two cameras as well as the distance

of the landmark from these cameras. Depth estimation is more accurate if the

separation of cameras increases and the distance of the landmark from the cam-

eras decreases. However, the separation of cameras has certain physical limits

when building robotic systems. In contrast, when using monocular vision, one

can know in which direction the landmark really is, but cannot exactly estimate

its distance. However, we can still use the shape of a known object to calculate

its distance from the camera. In our case, we are using the width of a tree trunk

to estimate its depth in an image. Given the position and the radius of a tree

and using a projective camera model, we can find the width of the tree trunk in

the image plane. As an additional piece of information, the tree width can also

directly be used in a SLAM based system. We do not directly measure depth

using the radius and the visible width of a tree from the image, but we rely on

the SLAM procedure to indirectly estimate depth.

To be able to find the width of a tree trunk, our sensor model requires the

13

CHAPTER 3. USING TREE WIDTH AS A SENSOR 14

Symbol Definition
tWr Robot position.
qWC
r Robot orientation as quaternion.

RWC
r Robot orientation as rotation matrix.
tt Tree position.
rt Tree radius.

Table 3.1: Table of Definitions.

knowledge of the tree radius as an extra information compared to other sensor

models which give only the position of the tree trunk in an image. This can be

done by estimating the tree radius over time in a SLAM framework. Intuitively,

using our sensor model, if we can find the width of the tree trunk in the image

plane and if our sensor model is a one-to-one function, then we could find the

unknown radius by using the inverse of our sensor model. Our inverse sensor

model hence can give an estimate of the radius of tree trunk. Then, within the

SLAM framework, the radius of tree trunk can be updated and will hopefully

converge to its real value.

Our sensor model and its inverse give us the ability to predict the width

of a tree trunk and initialize its radius. We need the Jacobian of these sensor

models to integrate them into a SLAM based system. The Jacobian of the sensor

model will be used to update the landmark information using innovation values,

and the Jacobian of the inverse sensor model is required to initialize covariance

components within the SLAM algorithm.

In our framework, we have two coordinate systems, one is the world frame W

and the other one is a moving camera frame C as shown in Figure 3.1. The moving

camera frame C can be defined as an orientation and a displacement defined in

the world frame W . In addition to the camera frame, we also have the image

plane I and the conversion between these two frames is done through a projective

camera model. We assume that tree trunks as landmarks sit on a plane parallel

to the x-y plane in W , and a tree trunk can be defined as a coordinate system in

the world frame together with a radius value. Table 3.1 shows definitions we use

in subsequent sections.

CHAPTER 3. USING TREE WIDTH AS A SENSOR 15

Camera path

landmark "forest"

W x

y
z

y
x

z

C

u
v
I

qWC
r

tt

rt

Figure 3.1: An illustration of a monocoular camera traveling in an environment
populated with trees. Each tree landmark is located at tt with trunk radius rt.

3.2 Sensor Model for Tree Width Measure-

ments

Our sensor model, for measuring the width of a tree trunk uses the position and

the radius of the tree trunk and finds the coordinates of its center as well as the

width of its trunk base in the image plane. We rely on the fact that the base of

a tree is easily observable and relatively well defined. Figure 3.1 represents the

robot and the tree trunk landmarks. Existing work enables us to extract this

information from an image [43]. In order to derive a mathematical model for this

sensor, we begin by assuming that the tree trunk can be approximated by an

upright cylinder with the base coincident with the ground plane. We also assure

that the root of the tree lies parallel to the x-y plane of the world coordinate

system. Using only the bottom circle of the tree trunk cylinder, we can then find

the center coordinates and the width of the tree trunk in the image plane. An

overview of our sensor model is shown in Figure 3.2.

Mathematically, if a 2D conic section lies on a plane in 3D, it can easily be pro-

jected onto the image plane using a projective camera model [16]. Consequently,

the projection of the base circle of the tree trunk will be an ellipse in the image

plane. Since this projection occurs between two planes in space, it simplifies into

CHAPTER 3. USING TREE WIDTH AS A SENSOR 16

 W xx

yy
zz

T

w

u

Figure 3.2: An overview of sensor model for tree width measurements.

a homography. Therefore, all we need is to find a relative homography between

these two planes. Firstly, we need to have a transformation matrix which relates

the tree plane to the image plane defined as

T :=

[

(RWC
r)T −(RWC

r)T tWr

0 1

][

I tt

0 1

]

, (3.1)

where RWC
r is orientation matrix corresponding to the quaternion qWC

r . Since

this equation already incorporates the position of the tree trunk base tWr , the

matrix defining the conic for the base of the tree trunk simplifies into

Cc :=









1 0 0

0 1 0

0 0 −r2t









. (3.2)

Using the transformation matrix in (3.1), we obtain the desired homography

matrix as

H := KA1TA2 , (3.3)

where K is the camera matrix [16]. Desired rows and columns of T are selected

using extraction matrices A1 and A2. Since we now have a homography between

two planes, we do not need all rows and colums of the transformation matrix T

CHAPTER 3. USING TREE WIDTH AS A SENSOR 17

and A1 and A2 are defined as

A1 :=









1 0 0 0

0 1 0 0

0 0 1 0









, A2 :=













1 0 0

0 0 0

0 1 0

0 0 1













. (3.4)

Using this homography matrix H , we can project the base circle of tree trunk

into the corresponding ellipse in the image plane [16] by

Ce = H−TCcH
−1 . (3.5)

After projecting the base circle of the tree trunk into the image plane, we get

an ellipse equation of the form xTCex = 0. A generic ellipse equation like this

one can be represented in matrix form as

Ce :=









a b/2 d/2

b/2 c e/2

d/2 e/2 f









. (3.6)

We now wish to find the center point of this ellipse so that we can transform its

center point to the origin. Using the generic equation of an ellipse we can find

its center point as
[

uc

vc

]

= −

[

a b/2

b/2 c

]

−1 [

d/2

e/2

]

. (3.7)

Our sensor model uses this point as the position of the landmark in the image

plane. Using this point we can translate the center of the ellipse to the origin to

yield

Cce =









a b/2 0

b/2 c 0

0 0 f + dxc+eyc
2









. (3.8)

After centralizing ellipse we scale it first as

Cce =









a b/2 0

b/2 c 0

0 0 −1









. (3.9)

CHAPTER 3. USING TREE WIDTH AS A SENSOR 18

From this point on, we can find the extrema of this ellipse in the x axis using the

solution

xext = ±

√

−4c

b2 − 4ac
, (3.10)

which will be used to find horizontal length of ellipse as

w = 2

√

−4c

b2 − 4ac
. (3.11)

In summary, this sensor model first uses the homography from the tree base

plane to the image plane to project the base circle of a tree trunk into an ellipse,

then finds extreme points of this new ellipse to get the width of the tree trunk.

Unfortunately, we have a problem when the camera and the base circle of tree

trunk lies on same plane, which makes H singular. If the camera even slightly

away from the plane of the base circle, this is not a important problem in the

sensor model, but when we take the jacobian using these equations derivatives

became quite erroneous due to numerical issues. To solve this problem, we decided

not to take the inverse of the homography matrix H , but instead solved equations

using the inverse of the ellipse matrix. Detailed formulation of our sensor model

which uses the inverse of the ellipse matrix could be found in the Appendix A.1.

3.3 The Inverse Tree-Width Sensor Model

Our sensor model requires knowledge of the radius for the tree landmark. There-

fore, we have to initialize the radius of the tree landmark at some point. When

the position of a tree landmark is known with enough certainty, we can initialize

the radius of the tree landmark using the position of the tree landmark in world

coordinates and the width measurement from the image sensor. We estimate the

inverse of the centered ellipse matrix in the image plane, which we then project

back to a circle in the world coordinate frame to give us the radius of the tree

landmark. Using the width from the sensor, we can calculate the inverse of the

CHAPTER 3. USING TREE WIDTH AS A SENSOR 19

centered ellipse using (A.19)

C−1

ce =









−w2

4
b 0

b c 0

0 0 1









, (3.12)

where w is the width from the image sensor. Since width information does not

give us an exact ellipse, b and c are unknown. Fortunately these values can be

estimated using the position of the landmark in world coordinates. We assume

that the radius of the tree landmark does not affect the orientation of the ellipse

in the image plane. Using this assumption, we can get the inverse of an ellipse

using our sensor model as

C−1

rce =









A B 0

B C 0

0 0 F









. (3.13)

Then, using the ratios from this ellipse, we can compute an estimation of the

inverse of the centered ellipse as

C−1

ece =









−w2

4
−w2B

4A
0

−w2B
4A

−w2C
4A

0

0 0 1









. (3.14)

Subsequently, we use the position of the ellipse in image coordinates to get the

inverse of the ellipse as

C−1

ee =









1 0 uc

0 1 vc

0 0 1









C−1

ece









1 0 uc

0 1 vc

0 0 1









T

, (3.15)

where uc and vc are the coordinates of the ellipse in the image. We can then

project back this inverse ellipse into an inverse circle using the homography of

(3.3), to yield

C−1

ec = H−1C−1

ee H
−T , (3.16)

where this inverse circle has the form

C−1

ec =









1 0 0

0 k 0

0 0 − 1

r2









, (3.17)

CHAPTER 3. USING TREE WIDTH AS A SENSOR 20

with r the radius of tree landmark we are interested in and k a constant very

close to 1. This makes this 2D conic section an ellipse, that it is very close to a

circle.

3.4 The Jacobian of the Tree Width Sensor

Model

In a SLAM framework, the Jacobian of the sensor model is required in the update

step. Since we formulated a new sensor model, we also need to find its Jacobian.

This Jacobian has an extra row for the width sensor and an extra column for

the radius of tree trunk, compared to the Jacobian of a sensor model which only

incorporates the position of the tree trunk. Since inputs to our sensor model do

not depend on each other, we can divide our Jacobian into four pieces. It can

hence be written in the most general form as

∂h

∂x
=
[

∂h
∂tWr

∂h
∂qWC

r

∂h
∂tt

∂h
∂rt

]

, (3.18)

where ∂h
∂tWr

, ∂h
∂qWC

r
, ∂h

∂tt
and ∂h

∂rt
are Jacobians of our sensor model with respect to

the robot position, the robot orientation, the tree position and the tree radius,

respectively. These Jacobians can be formulated as

∂h

∂tWr
=

∂h

∂iCe

∂iCe

∂H

∂H

∂T

∂T

∂tWr
, (3.19)

∂h

∂qWC
r

=
∂h

∂iCe

∂iCe

∂H

∂H

∂T

∂T

∂RWC
r

∂RWC
r

∂qWC
r

, (3.20)

∂h

∂tt
=

∂h

∂iCe

∂iCe

∂H

∂H

∂T

∂T

∂tt
, (3.21)

∂h

∂tWr
=

∂h

∂iCe

∂iCe

∂rt
. (3.22)

Detailed derivation of this Jacobian matrix can be found in the Appendix A.2.

SLAM implementations also require the Jacobian of the inverse sensor model.

We could directly calculate the Jacobian of the inverse sensor model, but since we

CHAPTER 3. USING TREE WIDTH AS A SENSOR 21

already have the Jacobian of the sensor model, we can take its inverse to obtain

the same result. Our sensor model can be defined as

[

u v w
]T

= f(tWr , qWC
r , tt, rt) , (3.23)

and inverse of it can be defined as

rt = f−1(tWr , qWC
r , tt, u, v, w) . (3.24)

We compute the inverse of the Jacobian approximately using simplified func-

tions. We do not need to calculate ∂r
∂u

and ∂r
∂v
, which simplifies these formulas

to

w = f(x, rt) , (3.25)

rt = f−1(x, w) , (3.26)

where x is includes tWr , qWC
r and tt. With this reduction, we do not have to take

pseudo inverse of the Jacobian matrix.

We take derivatives of (3.25) and (3.26), which yields

[

∂w
∂x

∂w
∂r

]

= Jf

[

∂x
∂x

∂x
∂r

∂r
∂x

∂r
∂r

]

, (3.27)

[

∂r
∂x

∂r
∂w

]

= J−1

f

[

∂x
∂x

∂x
∂w

∂w
∂x

∂w
∂w

]

. (3.28)

We use part of (3.27), and extend it as

∂w

∂x
= Jfx

∂x

∂x
+ Jfr

∂r

∂x
, (3.29)

where Jfr is the last element of Jf and Jfx is the rest. This function yields to

∂r

∂x
= −

Jfx

Jfr

∂x

∂x
+

1

Jfr

∂w

∂x
, (3.30)

which can be rewritten in matrix form as

∂r

∂x
=
[

−
Jfx
Jfr

1

Jfr

]

[

∂x
∂x

∂w
∂x

]

, (3.31)

CHAPTER 3. USING TREE WIDTH AS A SENSOR 22

which is part of (3.28). Hence, J−1

f can be computed using

J−1

f =
[

−
Jfx
Jfr

1

Jfr

]

. (3.32)

Using simplified formula of the sensor model and its inverse makes calculations

simple and we only need a fraction of the Jacobian. This estimation is close

enough to use for initialization of the radius of tree landmarks.

3.5 Putting it all together

In our SLAM environment, a tree trunk landmark is parameterized in three dif-

ferent parametrizations from when it is first seen to the end of the SLAM run as

shown in Figure 3.3. These three parametrizations are: Inverse depth, XYZ and

XYZ-R.

When a landmark is first seen, it is initialized in an inverse depth parametriza-

tion [9]. This enables us to start using landmarks at the beginning of the algo-

rithm without knowledge of their depth. In time, their depth estimation will

be good enough and they can be safely turned into an XYZ parametrization as

described in [8].

When a landmark uses an inverse depth parametrization, its position estimate

is very weak and cannot be used to estimate the radius of the tree. But when

their position estimate becomes good enough, they can be converted to an XYZ

parametrization. At this point, we can also estimate the radius of the tree land-

mark using our inverse sensor model. Using the radius from the inverse sensor

model, the landmark can be converted into what we call an XYZ-R parametriza-

tion. However, to be able to convert a landmark into XYZ-R parametrization,

we also need to find the uncertainty associated with the radius, which can be

computed using the Jacobian of our inverse sensor model for the tree radius.

Once a landmarks is in an XYZ-R parametrization, we can start to use the

tree-width sensor. Now we have extra width information from tree landmarks,

CHAPTER 3. USING TREE WIDTH AS A SENSOR 23

Inverse Depth
Parametrization

XYZ
Parametrization

XYZ−R
Parametrization

Inverse
Sensor Model

landmark
first seen

time
sufficient accuracy in

landmark position

the width observed

xyz

xy
z r

Figure 3.3: Life cycle of a landmark.

which we can use in SLAM update equations. The Jacobian of our new sensor

model can similarly be used in the update equations.

Chapter 4

SLAM Performance Using Tree

Widths

4.1 Experimental Procedure

For our experimental results, we use synthetic data that we generated in a sim-

ulation environment we created for that purpose. Our simulation environment

includes a virtual camera moving along a user defined path while taking images of

a virtual world populated with cylindrical “trees” at every time step. In Section

4.1.1, we describe the details of this simulation system.

Using the EKF SLAM of Civera [10], we perform SLAM using measurements

from our simulation environment. To be able to use the tree trunk width as an

extra sensory information incorporated to the EKF SLAM implementation, we

added an additional sensor model and its Jacobian to the implementation.

Using ground truth locations of landmarks and camera trajectory from the

simulation environment, together with the output of the EKF SLAM that gives

estimated landmark locations and the camera trajectory we can evaluate the

performance of our SLAM algorithm.

24

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 25

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Figure 4.1: Left: Top view of tree trunk landmarks and the predefined Bezier
trajectory. Right: Tree trunk landmarks from the viewpoint of the camera posi-
tioned on the circle marker in the left figure.

4.1.1 The Simulation Environment

Our simulation environment implements a virtual forest of tree trunks, generated

randomly in a predefined area. We do this on a predefined grid, using Gaussian

noise on tree locations. With some probability, we add a tree to a grid cell, and

then add Gaussian noise on the placement of the tree. The radius of the tree also

chosen randomly using a separate Gaussian distribution. As for the height of the

root of the tree, we predefine a ground elevation map using simple functions. As

a result, we have a randomly generated but realistic and uniformly distributed

forest to use in our simulations. An example forest generated in this manner is

shown in Figure 4.1.

Using the map of trees we randomly generated, we choose a trajectory through

the forest. It is important that this trajectory is continuous and defined in a

flexible way. To this end we select a number of points in the map and have the

trajectory pass from these points, defining an associated Bezier curve. We then

get samples from this Bezier curve to use as the position and orientation of the

camera along the trajectory. An example trajectory is shown in Figure 4.1.

After generating random trees and defining the trajectory, we take images of

the world along the trajectory. In every sample we get from the trajectory, we

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 26

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Figure 4.2: Left: Projected ellipses as tree trunk bases. Right: Center and width
of tree trunk bases, obtained using our sensor model.

have a position and an orientation for camera. Our sensor model then determines

which trees are visible on the image plane. We decide if a tree landmark is visible

in the image plane or not using the camera properties. If the tree landmark is

completely inside of the image area, then we add it into the array of measured

trees which will be fed to the EKF SLAM. We also need to decide if a tree is

occluded behind other trees or not. Since we know how far a tree is away from

the camera, we say that a tree is occluded if it is behind another tree and they

overlap in the x-axis. When we use only non-occluded trees in EKF SLAM these

occluded trees are ignored. Finally, every tree landmark has a specific ID number

to be used in EKF SLAM, so we do not address the data association problem.

An example image and the corresponding tree locations and widths are shown in

Figure 4.2.

4.1.2 Map Alignment and Error Metrics

EKF SLAM gives us a map of estimated landmark positions and an approximate

trajectory. We need to compare these estimated values with the ground truth in

order to be able to assess the performance of our algorithm. Unfortunately, the

estimated map and the trajectory have an unknown scale, position and orientation

due to the monocular nature of our framework. We need to correctly transform

estimated map points and the trajectory to compute estimation errors. Using

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 27

different values of scaling, translation and rotation we will get different error

values. Let the transformation be parameterized with the vector

v := [p, R, s]T , (4.1)

where p is a translation, R is a rotation and s is a scale. Using v, we can define

a map mismatch formula for a specific map M using the landmark error as

eMl (v) :=
1

N

∑

i

∥

∥Tv(p
M
mi)− pM

ri

∥

∥

2
, (4.2)

where Tv(p) function defines a specific alignment of map using variable set v,

pM
mi is estimated landmark position and pM

ri is real landmark position. We define

Tv(pi) as

Tv(pi) := sR(pi + p) . (4.3)

We need to find the transformation which minimizes map mismatch value as in

vMo := argmin
v

(

eMl (v)
)

. (4.4)

We will use the optimum transformation to align landmarks and trajecto-

ries. For this optimization we will use Procrustes Analysis, which is a simple

method which aligns two 3D point clouds where point-to-point correspondences

are known [15]. We only align landmarks in our case, since we have a one-to-one

point correspondence. This method follows three steps: translation, scaling and

rotation. At the first step, mean values of landmarks are translated to the origin

for both maps as in Figure 4.3 using

p∗

i = pi − p̄ , (4.5)

where p̄ is the mean value of points. At the second step, root mean square

distances are calculated and the maps are scaled accordingly to have same scale

as in Figure 4.3. The root mean square error can be found using

s :=

√

∑

i ‖p
∗

i ‖
2

k
, (4.6)

where k is the number of landmarks. Using s ground truth and estimated land-

marks will be scaled to have unit scale, with each point scaled as

p∗∗

i =
p∗i
s

. (4.7)

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 28

−10
−5

0
5

10

−1

−0.5

0

0.5

1
−10

−5

0

5

10

15

−1.5
−1

−0.5
0

0.5
1

1.5

−0.1

0

0.1

0.2

0.3
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.3: Left: The mean of the estimated landmarks and real landmarks are
shifted to the origin. Right: Landmarks are scaled in order to have the same
scale.

Finally, using the Kabsch Algorithm, an optimal rotation can be found. Using

paired point sets in both maps, we can find a covariance matrix such as

A := P TQ , (4.8)

where P and Q are n-by-3 matrices representing the translated and scaled points

of the estimated landmarks and the real landmarks. Calculating the SVD of the

covariance matrix A gives us

A = V SW T . (4.9)

We also need to decide whether we need to correct our rotation matrix to ensure

a right hand coordinate system

d = sign(det(A)) . (4.10)

Finally we can get our rotation matrix as,

R := W









1 0 0

0 1 0

0 0 d









V T . (4.11)

Using this rotation matrix, we rotate estimated landmarks as in Figure 4.4.

Procrustes Analysis aligns the maps, but it translates and scales both esti-

mated map and ground truth. At this point, estimated map and trajectory are

aligned with the ground truth. However, ground truth does not have original

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 29

−1.5
−1

−0.5
0

0.5
1

−0.1

−0.05

0

0.05

0.1

0.15
−1.5

−1

−0.5

0

0.5

1

1.5

−5
0

5
10

15
20

−5

−4.5

−4

−3.5

−3

−2.5
−5

0

5

10

15

20

Figure 4.4: Left: Estimated landmarks are rotated, to yield an optimally aligned
map. Right: Landmarks are scaled in order to have the original scale.

scale and mean position. Therefore, our maps needs to be scaled and translated,

in order to regain the scale and mean position of the ground truth as in Figure

4.4.

Using aligned landmarks and trajectories, we can now compute error metrics.

We have two different error metrics: Landmark error and Trajectory error. For

computing the landmark error, we use the squared mean distance using pairs from

real landmarks and estimated landmarks, as defined by (4.2). For the trajectory

error, we take the position of the camera in every time step for both the estimated

trajectory and the real trajectory; and find the mean squared distance error using

pairs of positions as

eMt (v) :=
1

N

∑

i

∥

∥Tv(p
M
eti)− pM

rti

∥

∥

2
, (4.12)

where pM
eti is the estimated trajectory position and pM

rti is the real trajectory

position at the time step i for map M . In both error metrics we use Euclidian

distance between points.

During initial stages of EKF SLAM, landmarks may not converge to their real

positions right away. Consequently, the estimated trajectory of the camera might

not overlap with the actual trajectory. However, after some time, the trajectory

estimate becomes closer to the real trajectory. Using an inaccurate and transient

trajectory in our error analysis would give results that are not very meaningful.

To prevent this, we choose a circular path and a trajectory to travel around this

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 30

path twice. At the end of the first lap, we compute the landmark error, and

during the second lap, we use the estimated trajectory to find the trajectory

error. This way we can get more meaningful, steady state error definitions.

4.1.3 EKF SLAM Implementation

In order to evaluate our sensor model, we need a functional SLAM environment.

For this purpose, we use the EKF SLAM implementation by Civera [10]. In his

work they implement a sensor model which takes information from landmarks

in either inverse depth or XYZ parametrization and estimates the positions of

landmarks in the image plane. This work also includes relevant Jacobians for the

sensor model. An image sequence is fed into the EKF SLAM system, which is

processed to find features to be used as specific landmarks.

In this thesis we adopt this implementation as a starting point. First, we need

to feed the EKF SLAM our sensor data from the simulation environment, so we

changed the implementation accordingly to make it read data from our image

files. Using our data the EKF SLAM implementation works well using only

inverse depth and XYZ parametrizations. However, when landmarks turn into

the XYZ parametrization, we use our inverse sensor model to estimate landmark

radius and add it to the landmark representation through its mean vector and

covariance matrix. With our XYZ-R parametrization, we have a mean vector for

landmarks defined as

p :=
[

x y z r
]T

, (4.13)

where with additional radius parameter, we now have four parameters instead

of three. This change corresponds to an increase in time complexity about 1.8.

After changing to this new parametrization, we use our own sensor model to

predict these XYZ-R parameterized landmarks. To update these landmarks, we

used the Jacobian of our sensor model we formulated in previous sections.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 31

4.2 Selection of EKF Gain Matrices

Incorporating our sensor model into the EKF SLAM requires us to define how

much we trust our new sensor. In EKF SLAM, we normally define gain matrices

for the sensor model that show how much trust we put in the sensor model and

the motion model, respectively. We use diagonal gain matrices where diagonal

entries determine how much relative trust we place in measurements of the sensor.

However, before we can find an optimal gain matrix for our sensor model, we need

to first find an optimal gain matrix for a sensor model without width measure-

ments from tree trunks. We will use this limited sensor model until a landmark

changes into the XYZ-R parametrization. Therefore, we need to optimize gain

matrix for it first.

The limited sensor model yields the position of the tree trunk landmark in

the image plane. This gives two measurements, which intuitively should have the

same gain, leading to one gain value overall. Gain matrix for this sensor model

thus becomes

K1 :=

[

w 0

0 w

]

. (4.14)

We performed systematic experiments, using different values for w. Two

different sets of experiments were performed. First, using all trees by ignoring

occlusion, and then only using non-occluded trees. We have used the following

weight settings:

w ∈ {0.5, 1, 2, 4, 8, 16, 32, 48, 64, 80, 96, 128} . (4.15)

To select the optimum weight, we tested every different weight setting for 10

different maps. We defined negative average landmark error and negative average

trajectory error to be able to evaluate results. Negative average landmark error

is defined as

Aal :=
1

n

n
∑

M=1

max(−10,−eMl (vo)) , (4.16)

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 32

and negative average trajectory error is defined as

Aat :=
1

n

n
∑

M=1

max(−3,−eMt (vo)) . (4.17)

These error functions let us take the average of errors from different maps where

we saturate errors at some certain level to have smoother results. We choose the

values 10 for landmark error and 3 for trajectory error to be maximum error that

can be classified as converged test runs. Diverged runs may have tremendous

error values, averaging them yields meaningless results.

In Figure 4.5, we show negative average landmark error and negative average

trajectory error where we ignore occlusion. In Figure 4.6, the only difference

is that we use only non-occluded trees. Looking at these error values, we can

clearly see that when w is smaller than 20, the negative average errors are very

big, showing that SLAM diverges most of the time. But for bigger w values

above 60, it seems that there was no big difference between different values. But

as we can see even if the difference is small after some point, the performance

of the algorithm gets worse with increasing w. From both of these observations,

we can select w as 80, which gives one of the best results. After selecting w, we

can proceed with evaluations for selecting the optimal gains for our new sensor

model. Until we estimate the radius of the tree landmarks, we will use this gain

matrix with the other sensor model which does not uses radius of tree landmarks.

Then we will switch to our sensor model using the gain matrix which is optimal

for it.

Our sensor model yields position and width measurements from the tree trunk

landmark, so we need to define three values for each measurement. The position

measurements should have the same gain, leading to two gain values overall. Our

gain matrix thus becomes

K2 :=









w1 0 0

0 w1 0

0 0 w2









. (4.18)

We have performed similar experiments to the ones we done for finding the

optimal gain matrix for the limited sensor model. Once again we used different

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 33

10
0

10
1

10
2

−7

−6

−5

−4

−3

−2

−1

w

A
a
l(
m
)

10
0

10
1

10
2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

w

A
a
t
(m

)
Figure 4.5: Performance analysis for other sensor model which does not use
the radius of tree landmarks. In these experiments we ignore occlusion. Left:
Negative average landmark error for different gain pairs for 10 different maps.
Right: Negative average trajectory error.

10
0

10
1

10
2

−10

−9

−8

−7

−6

−5

−4

−3

−2

w

A
a
l(
m
)

10
0

10
1

10
2

−3

−2.5

−2

−1.5

−1

−0.5

0

w

A
a
t
(m

)

Figure 4.6: Performance analysis for other sensor model which does not use the
radius of tree landmarks. In these experiments we only use non-occluded trees.
Left: Negative average landmark error for different gain pairs for 10 different
maps. Right: Negative average trajectory error.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 34

10
0

10
1

10
0

10
1

−3

−2.5

−2

−1.5

−1

w1

w2

A
a
l(
m
)

10
0

10
1

10
0

10
1

−0.5

−0.4

−0.3

−0.2

−0.1

0

w1

w2

A
a
t
(m

)

Figure 4.7: Performance analysis for our sensor model. In these experiments we
ignore occlusion. Left: Negative average landmark error for different gain pairs
for 10 different maps. Right: Negative average trajectory error.

weight settings for these experiments as

w1 ∈ {0.5, 1, 2, 4, 8, 16, 32, 48, 64}, (4.19)

w2 ∈ {0.5, 1, 2, 4, 8, 16, 32} . (4.20)

To select the optimum pair of weights we tested every combination of weights

w1 and w2 for 10 different maps. In Figure 4.7, we show negative average landmark

error and negative average trajectory errors with occlusions ignored. In Figure

4.8, the only difference is that we use only non-occluded trees. In Figure 4.7,

when we ignore occlusion, we can see that selecting smaller values for w1 and

w2 gives better results. When w2 gets bigger the performance of the algorithm

gets worse, but as we see w1 is not affected much until it passes over 30. On

the other hand in Figure 4.8, we can see that if there is occlusion then selecting

very small values for w1 and w2 makes results in bad performance. Using the

information from these two different set of experiments selecting w1 16 and w2 4

seems promising, but many other parameters could be used as well.

Figure 4.9 illustrates an example with the left and right figures generated with

and without the tree-width sensor. Note that our new sensor is also capable of

estimating the radii of trees.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 35

10
0

10
1

10
0

10
1

−6

−5

−4

−3

−2

w1 w2

A
a
l(
m
)

10
0

10
1

10
0

10
1

−1.5

−1

−0.5

0

w1 w2

A
a
t
(m

)
Figure 4.8: Performance analysis for our sensor model. In these experiments we
only use non-occluded trees. Left: Negative average landmark error for different
gain pairs for 10 different maps. Right: Negative average trajectory error.

−5 0 5 10 15 20
−5

0

5

10

15

20

−5 0 5 10 15 20
−5

0

5

10

15

20

Figure 4.9: An example SLAM run without (left) and with (right) the tree-width
sensor. Plus and cross signs show real and estimated landmark locations. The
right figure also shows real and estimated tree radii for those landmarks that have
been converted into the XYZ-R parameterization. In both figures, the jagged
curves show the estimated trajectories.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 36

4.3 Performance Using All Trees, Occlusions ig-

nored

We evaluate SLAM performance through two sets of systematic experiments.

First, we compare performance with and without the tree-width sensor under

different levels of pixel noise on the image. Second, we evaluate algorithm perfor-

mance for different tree densities in the forest. In both cases, we use the average

landmark error

Eal :=
1

n

n
∑

M=1

eMl (vo) , (4.21)

and the average trajectory error

Eat :=
1

n

n
∑

M=1

eMt (vo) . (4.22)

as performance metrics, taking only convergent runs with eMl (vo) < 10 and

eMt (vo) < 3 into account. We also report the ratio of convergent runs to the

total number of runs as an additional performance metric.

4.3.1 Dependence on Noise

Figure 4.10 compares the convergence ratios with (solid) and without (dashed) the

tree-width sensor considering all trees, under noise levels with standard deviations

ranging from 1 pixel to 10 pixels. For each noise level, 10 different noise vectors

with the same variance are used for each of the 10 maps for a total of 100 runs to

ensure statistical validity. Our results show that under noise levels with standard

deviation larger than 5 pixel, better convergence ratios has been seen with the

proposed tree-width sensor.

Average trajectory and landmark errors associated for these experiments are

shown in Figure 4.11, which also show standard error bars. Our results show

that the incorporation of the tree-width as an additional sensor results in notable

improvements for trajectory error. As for landmark error it does not affect much.

The relatively large magnitude of these error figures results from our thresholds

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 37

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise std. dev.(pixels)

co
nv

er
ge

nc
e

ra
tio

With width sensor
Without width sensor

Figure 4.10: EKF convergence ratios with (solid) and without (dashed) the tree-
width sensor for different pixel noise levels. Occlusions ignored, all trees are
considered.

2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

3.5

4

4.5

noise std. dev.(pixels)

With width sensor
Without width sensor

E
a
l

2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

noise std. dev.(pixels)

With width sensor
Without width sensor

E
a
t

Figure 4.11: Average landmark (left) and trajectory (right) errors for SLAM with
(solid) and without (dashed) the tree-width sensor for different pixel noise levels.
Occlusions ignored, all trees are considered.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 38

5060708090100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tree density (%)

co
nv

er
ge

nc
e

ra
tio

With width sensor
Without width sensor

Figure 4.12: EKF convergence ratios with (solid) and without (dashed) the tree-
width sensor for different tree densities. Occlusions ignored, all trees are consid-
ered.

for divergence, but this does not invalidate the relative improvements resulting

from the tree-width sensor.

4.3.2 Dependence on Tree Density

Our second set of experiments consider the effect of tree density in the environ-

ment on algorithm performance. Having chosen equal tree densities for each of

the 10 maps being considered, we randomly remove individual trees from each

map to achieve a fraction of this original density. To achieve statistical validity,

we repeat this 3 times for each lower density for each map, averaging the results

across 90 runs, also using 3 different noise vectors in each case. Convergence

performances are shown in Figure 4.12, establishing that the use of tree-width

measurements improves filter performance at lower tree densities.

Similarly, Figure 4.13 shows average landmark and trajectory errors for the

same experiments. The tree-width sensor improves SLAM accuracy in general,

with erratic results below 70% tree density observed primarily due to the very low

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 39

707580859095100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tree density (%)

With width sensor
Without width sensor

E
a
l

707580859095100
0.05

0.1

0.15

0.2

0.25

0.3

tree density (%)

With width sensor
Without width sensor

E
a
t

Figure 4.13: Average landmark (left) and trajectory (right) errors for SLAM with
(solid) and without (dashed) the tree-width sensor for different tree densities.
Occlusions ignored, all trees are considered.

convergence ratios (lower than 10%) for both with and without the new sensor.

These results show that the use of tree-width measurements and the estimation

of the radii associated with tree landmarks in an outdoor environment helps with

convergence and accuracy issues for the use of these natural landmarks in a SLAM

framework.

4.4 Performance Using Only Non-occluded

Trees

We have repeated both test again, this time considering only non-occluded trees.

4.4.1 Dependence on Noise

Figure 4.14 compares the convergence ratios with (solid) and without (dashed)

the tree-width sensor only considering non-occluded trees. Our results show that

close to a 10% improvement on convergence ratios has been possible with the

proposed tree-width sensor. Comparing with the convergence ratios in Figure

4.10, we can see that under noise levels with standard deviation larger than 2

pixel, better convergence ratios has been seen when occlusions are considered.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 40

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise std. dev.(pixels)

co
nv

er
ge

nc
e

ra
tio

With width sensor
Without width sensor

Figure 4.14: EKF convergence ratios with (solid) and without (dashed) the tree-
width sensor for different pixel noise levels. Only non-occluded trees are consid-
ered.

2 4 6 8 10

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

noise std. dev.(pixels)

With width sensor
Without width sensor

E
a
l

2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

noise std. dev.(pixels)

With width sensor
Without width sensor

E
a
t

Figure 4.15: Average landmark (left) and trajectory (right) errors for SLAM with
(solid) and without (dashed) the tree-width sensor for different pixel noise levels.
Only non-occluded trees are considered.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 41

5060708090100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tree density (%)

co
nv

er
ge

nc
e

ra
tio

With width sensor
Without width sensor

Figure 4.16: EKF convergence ratios with (solid) and without (dashed) the tree-
width sensor for different tree densities. Only non-occluded trees are considered.

Average trajectory and landmark errors associated for these experiments are

shown in Figure 4.15, which also show standard error bars. Our results show

that the incorporation of the tree-width as an additional sensor results in no-

table improvements for both error metrics. Comparing with the Figure 4.11, we

could see that when occlusions are considered our algorithm shows much better

improvements.

4.4.2 Dependence on Tree Density

Convergence performances are shown in Figure 4.16, establishing that the use of

tree-width measurements improves filter performance at lower tree densities as

similar to the performances in Figure 4.12.

Similarly, Figure 4.17 shows average landmark and trajectory errors for the

same experiments. We have seen similar results as in Figure 4.13.

CHAPTER 4. SLAM PERFORMANCE USING TREE WIDTHS 42

707580859095100
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

tree density (%)

With width sensor
Without width sensor

E
a
l

707580859095100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

tree density (%)

With width sensor
Without width sensor

E
a
t

Figure 4.17: Average landmark (left) and trajectory (right) errors for SLAM with
(solid) and without (dashed) the tree-width sensor for different tree densities.
Only non-occluded trees are considered.

Chapter 5

Conclusion

In this thesis, we focus on using shape information from landmarks as an addi-

tional input to the SLAM. Our main contribution is to use the width of trees

as an additional sensory input, by means of incorporating radius information to

each tree on the map. To be able to accomplish this we derived a width-sensor

model for the extra width measurement, relevant Jacobians and an inverse sensor

model in order to use within a SLAM framework.

Using a working SLAM implementation, we incorporated our sensor model

and inverse sensor model with the relevant Jacobians. We defined a new

parametrization called XYZ-R, in order to accomplish this. To be able to test our

new sensor model in a SLAM environment we created a simulation environment

which generates data to be used in SLAM simulations. Then using data from

our simulation environment and conducting systematic experiments, we found

optimal gain matrices for the sensor model, which uses width information from

tree trunks as an additional sensory reading and for the sensor model which only

uses the position of landmarks. Using the optimum gain matrices for both sen-

sor models we conducted two different sets of systematic experiments. The first

experiment set shows that with increased noise, our sensor model shows better

performance compared to the other sensor model. The second experiment set

shows that our sensor model works much better than the other sensor model

when the number of available tree landmarks decrease. With our new sensor

43

CHAPTER 5. CONCLUSION 44

model, convergence ratio and localization improved greatly, and the estimation

of landmark position slightly improved.

One of the limitations of our work is that, it requires sufficient certainty in

landmark positions before our sensor model can be used. In future studies, if we

could also incorporate the radius of trees into the inverse depth parametrization,

we would be able to use extra sensory information from the very beginning. We

believe this would improve the convergence rate of the SLAM environment as

well as the convergence ratio.

Appendix A

Derivations

A.1 The Sensor Model Derivations

When the camera and the circle of the trunk base is on the same plane, the

homography matrix become singular. To get the matrix defining the ellipse, we

were applied

Ce = H−TCcH
−1 , (A.1)

where H can be singular. However, we can use the inverse of the ellipse by

applying

C−1

e = HC−1

c HT , (A.2)

where we need inverse of the matrix defining the circle which is

C−1

c :=











1 0 0

0 1 0

0 0 −
1

r2t











. (A.3)

Using the inverse of the ellipse we need to find its center and width. We have

already show how to find these using the ellipse matrix in Section 3.2. Let the

generic formulation of the inverse of the ellipse be

C−1

e :=

[

B V

VT f

]

, (A.4)

45

APPENDIX A. DERIVATIONS 46

where B is a 2-by-2 matrix and V is a 2-by-1 vector. Taking block inversion of

this matrix corresponds to

Ce =









(

B −
1

f
VVT

)

−1

−
1

f

(

B −
1

f
VVT

)

−1

V

−
1

f
VT

(

B −
1

f
VVT

)

−1
1

f
+

1

f 2
VT

(

B −
1

f
VVT

)

−1

V









, (A.5)

where − 1

f

(

B − 1

f
VVT

)

−1

V and − 1

f
VT

(

B − 1

f
VVT

)

−1

are symmetric. For

ease of use we will use

Ce =

[

α β

βT ǫ

]

. (A.6)

Using ellipse matrix we can find center points of ellipse, we need to find a

homography M which moves the center of ellipse to the origin. Applying this to

the ellipse matrix would yield to

Cce = MT

[

α β

βT ǫ

]

M , (A.7)

where M is a translation matrix defined as

M :=

[

I u

0 1

]

. (A.8)

After translation with M we have

Cce =

[

α αu+ β

uTα + βT uTαu+ βTu+ uTβ + ǫ

]

, (A.9)

where αu+β should be 0 for the center point of Ce to be at the origin. Then the

center of ellipse should be

u = −α−1β , (A.10)

incorporating the correspondences from the ellipse matrix we get

u = −

(

B −
1

f
VVT

)

(

−
1

f

(

B −
1

f
VVT

)

−1

V

)

, (A.11)

and finally we found the center of the ellipse using the values from the inverse of

the ellipse matrix as

u =
V

f
. (A.12)

APPENDIX A. DERIVATIONS 47

Now we have the center of the ellipse, and we have the ability to transform

the center of the ellipse to the origin. Inverse of such and ellipse is

C−1

ce = M−1C−1

e M−T , (A.13)

where M−1 is

M−1 =

[

I −u

0 1

]

, (A.14)

which gives

C−1

ce =

[

B − uVT − uTV + uuT f V − fu

VT − fuT f

]

, (A.15)

which simplifies into using (A.12)

C−1

ce =





B −
VVT

f
0

0 f



 . (A.16)

Using the resulting inverse ellipse we could find the width of the ellipse which has

its center point on the origin. Let us define this inverse ellipse as

C−1

ce =









a b 0

b c 0

0 0 f









, (A.17)

taking inverse of this ellipse will give us the ellipse function which we have trans-

lated to the origin,

Cce =











1

ac− b2

[

c −b

−b a

]

0

0
1

f











. (A.18)

Using (3.11) we can find the width as

w = 2

√

−a

f
, (A.19)

To be able to find width of the ellipse intuitively we need to translate the

center of the ellipse to the origin. But we do not need to translate the inverse

APPENDIX A. DERIVATIONS 48

of the ellipse, we can use the inverse of the ellipse directly to find width of the

ellipse. Let us define inverse of the ellipse as

C−1

e =









A B D

B C E

D E F









, (A.20)

then from (A.17) and (A.19), we can find the width of the ellipse by

w = 2

√

−A

F
+

D2

F 2
, (A.21)

A.2 Jacobian of The Sensor Model

∂T
∂tWr

is the jacobian of T with respect to the robot position. In (3.1) lets call first

matrix MR and second one MT , then utilizing the chain rule for derivatives of

matrices
∂T

∂tWr
=
(

MT
T ⊗ I4

) ∂MR

∂tWr
, (A.22)

where ∂MR

∂tWr
could be found as

∂MR

∂tWr
:=



















012x3

−r11 −r21 −r31

−r12 −r22 −r32

−r13 −r23 −r33

0 0 0



















, (A.23)

in which the elements of RWC
r is used. RWC

r is defined as

RWC
r :=









r11 r12 r13

r21 r22 r23

r31 r32 r33









(A.24)

∂T
∂RWC

r
is the jacobian of T with respect to the robot orientation

∂T

∂RWC
r

=
(

MT
T ⊗ I4

) ∂MR

∂RWC
r

, (A.25)

APPENDIX A. DERIVATIONS 49

where ∂MR

∂RWC
r

could be found as

∂MR

∂RWC
r

:=













































































1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

−tr1 −tr2 −tr3 0 0 0 0 0 0

0 0 0 −tr1 −tr2 −tr3 0 0 0

0 0 0 0 0 0 −tr1 −tr2 −tr3

0 0 0 0 0 0 0 0 0













































































, (A.26)

in which the elements of tWr is used. tWr is defined as

tWr :=
[

tr1 tr2 tr3

]T

. (A.27)

Since our implementation uses the quaternion instead of the orientation matrix,

we need ∂RWC
r

∂qWC
r

which is the jacobian of the orientation matrix with respect to the

quaternion. It is defined as

∂RWC
r

∂qWC
r

:=







































r x −y −z

z y x r

−y z −r x

−z y x −r

r −x y −z

x r z y

y z r x

−x −r z y

r −x −y z







































, (A.28)

APPENDIX A. DERIVATIONS 50

in which the elements of a quaternion is used. A quaternion is defined as

q :=
[

r x y z
]T

. (A.29)

∂T
∂tt

is the jacobian of T with respect to the tree position

∂T

∂tt
= (I4 ⊗MR)

∂MT

∂tt
, (A.30)

where ∂MT

∂tt
could be found as

∂MT

∂tt
:=



















012x3

1 0 0

0 1 0

0 0 1

0 0 0



















. (A.31)

∂H
∂T

can be found as

∂H

∂T
= (I3 ⊗ A1)

(

AT
2 ⊗ I4

)

, (A.32)

where A1 and A2 are defined in (3.4).

∂iCe
∂H

can be found by taking partial derivative of (A.2)

∂iCe

∂H
=
((

C−1

c HT
)

⊗ I3
)

+ (I3 ⊗H)
(

I3 ⊗ C−1

c

)

T33 , (A.33)

where T33 is

T33 :=







































1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1







































. (A.34)

APPENDIX A. DERIVATIONS 51

∂iCe
∂rt

can be found as

∂iCe

∂rt
= (I3 ⊗H) (H ⊗ I3)

∂C−1
c

∂rt
, (A.35)

where ∂C−1
c

∂rt
is

∂C−1
c

∂rt
:=
[

0 0 0 0 0 0 0 0 2

r3

]T

. (A.36)

∂h
∂iCe

can be found as

∂h

∂iCe
:=









0 0 0 0 0 0 1

F
0 − D

F 2

0 0 0 0 0 0 0 1

F
− E

F 2

− 1

F

√

F 2

D2
−AF

0 0 0 0 0 2D
F 2

√

F 2

D2
−AF

0 AF−2D2

F 3

√

F 2

D2
−AF









,

(A.37)

in which the elements of the inverse of an ellipse is used. Inverse of an ellipse is

defined as

C−1

e =









A B C

B C E

D E F









, (A.38)

Bibliography

[1] S. Ahn, M. Choi, J. Choi, and W. K. Chung. Data association using visual

object recognition for EKF-SLAM in home environment. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, Vols 1-12, pages

2588–2594, 2006.

[2] W. Ali, F. Georgsson, and T. Hellstrom. Visual tree detection for au-

tonomous navigation in forest environment. In IEEE Intelligent Vehicles

Symposium, VOLS 1-3, pages 1144–1149, 2008.

[3] H. J. Andersen, T. L. Dideriksen, C. Madsen, and M. B. Holte. Investigating

the potential combination of GPS and scale invariant visual landmarks for

robust outdoor cross-country navigation. In VISAPP 2006: Proceedings of

the First International Conference on Computer Vision Theory and Appli-

cations, Vol 2, pages 349–356, 2006.

[4] D. C. Asmar, S. M. Abdallah, and J. S. Zelek. Vision SLAM maps: Towards

richer content. In Liu, D and Wang, L and Tan, KC, editor, Design and

Control of Intelligent Robotic Systems, volume 177, pages 303–329. Springer-

Verlag Berlin, 2009.

[5] D. C. Asmar, J. S. Zelek, and S. M. Abdallah. Seeing the trees before the

forest. Computer and Robot Vision, Canadian Conference, 0:587–593, 2005.

[6] D. C. Asmar, J. S. Zelek, and S. M. Abdallah. Tree trunks as landmarks for

outdoor vision SLAM. Computer Vision and Pattern Recognition Workshop,

0:196, 2006.

52

BIBLIOGRAPHY 53

[7] M. Buehler, R. Playter, and M. Raibert. Robots step outside. In Proc. of

the Int. Symp. on Adaptive Motion of Animals and Machines, pages 1–4,

September 2005.

[8] J. Civera, A. J. Davison, and J. M. M. Montiel. Inverse depth to depth con-

version for monocular SLAM. In IEEE International Conference on Robotics

and Automation, volume 1-10, pages 2778–2783, 2007.

[9] J. Civera, A. J. Davison, and J. M. M. Montiel. Inverse depth parametriza-

tion for monocular SLAM. IEEE Transaction on Robotics, 24(5):932–945,

OCT 2008.

[10] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel. 1-point

RANSAC for extended kalman filtering: Application to real-time structure

from motion and visual odometry. Journal of Field Robotics, 27(5):609–631,

Sep-Oct 2010.

[11] A. J. Davison. Real-time simultaneous localization and mapping with a

single camera. International Conference on Computer Vision, 2003.

[12] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM: Real-

time single camera SLAM. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(6):1052–1067, JUN 2007.

[13] E. Eade. Monocular Simultaneous Localization and Mapping. PhD thesis,

Cambridge University, 2008.

[14] P. Elinas, R. Sim, and J. J. Little. sigma SLAM: Stereo vision SLAM using

the Rao-Blackwellised Particle Filter and a novel mixture proposal distribu-

tion. In 2006 IEEEInternational Conference on Robotics and Automation,

volume 1-10, pages 1564–1570, 2006.

[15] J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University

Press, USA, 2004.

[16] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.

Cambridge University Press, 2003.

BIBLIOGRAPHY 54

[17] S. Hirtle. Landmarks for navigation in human and robots. In M. Jefferies and

W.-K. Yeap, editors, Robotics and Cognitive Approaches to Spatial Mapping,

volume 38, pages 203–214. Springer Berlin / Heidelberg, 2008.

[18] A. Huertas, L. Matthies, and A. Rankin. Stereo-based tree traversability

analysis for autonomous off-road navigation. Applications of Computer Vi-

sion and the IEEE Workshop on Motion and Video Computing, 1:210–217,

2005.

[19] J. Kim and S. Sukkarieh. Real-time implementation of airborne inertial-

SLAM. Robotics and Autonomous Systems, 55(1):62 – 71, 2007.

[20] T. Krajnik, J. Faigl, V. Vonasek, K. Kosnar, M. Kulich, and L. Preucil. Sim-

ple yet stable bearing-only navigation. Journal of Field Robotics, 27(5):511–

533, SEP-OCT 2010.

[21] R. Madhavan and H. Durrant-Whyte. Natural landmark-based autonomous

vehicle navigation. Robotics and Autonomous Systems, 46(2):79–95, FEB 29

2004.

[22] J. Miro, G. Dissanayake, and W. Zhou. Vision-based SLAM using natural

features in indoor environments. In Intelligent Sensors, Sensor Networks &

Information Processing Conference, pages 151–156, 2005.

[23] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with

unknown data association using FastSLAM. In IEEE Robotics and Au-

tonomous Systems, volume 1-3, pages 1985–1991, 2003.

[24] R. Murrieta-Cid, C. Parra, and M. Devy. Visual navigation in natural en-

vironments: From range and color data to a landmark-based model. Au-

tonomous Robots, 13(2):143–168, SEP 2002.

[25] X.-D. Nguyen, B.-J. You, and S.-R. Oh. A simple landmark model for vision-

based simultaneous localization and mapping. In SICE-ICASE International

Joint Conference, volume 1-13, pages 2659–2664, 2006.

[26] J. Nieto, T. Bailey, and E. Nebot. Recursive scan-matching SLAM. Robotics

and Autonomous Systems, 55(1):39 – 49, 2007.

BIBLIOGRAPHY 55

[27] P. Nunez, R. Vazquez, J. C. del Toro, A. Bandera, and F. Sandoval. A curva-

ture based method to extract natural landmarks for mobile robot navigation.

In Urena, JU and Dominguez, JJG, editor, IEEE International Symposium

on Signal Processing, pages 759–764, 2007.

[28] P. Nunez, R. Vazquez-Martin, J. C. del Toro, A. Bandera, and F. Sandoval.

Natural landmark extraction for mobile robot navigation based on an adap-

tive curvature estimation. Robotics and Autonomous Systems, 56(3):247–264,

MAR 31 2008.

[29] M. Rous, H. Lupschen, and K. Kraiss. Vision-based indoor scene analysis for

natural landmark detection. In IEEE International Conference on Robotics

and Automation, volume 1-4, pages 4642–4647, 2005.

[30] P. Saeedi, P. Lawrence, and D. Lowe. Vision-based 3-D trajectory tracking

for unknown environments. IEEE Transaction on Robotics, 22(1):119–136,

FEB 2006.

[31] U. Saranli, M. Buehler, and D. E. Koditschek. RHex: A simple and highly

mobile robot. International Journal of Robotics Research, 20(7):616–631,

July 2001.

[32] D. Schleicher, L. M. Bergasa, M. Ocana, R. Barea, and E. Lopez. Real-

time hierarchical stereo visual slam in large-scale environments. Robotics

and Autonomous Systems, 58(8):991–1002, AUG 31 2010.

[33] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette. A mapping and

localization framework for scalable appearance-based navigation. Computer

Vision and Image Understanding, 113(2):172–187, FEB 2009.

[34] J. Sola. Consistency of the monocular EKF-SLAM algorithm for three differ-

ent landmark parametrizations. In Rakotondrabe, M and Ivan, IA, editor,

IEEE International Conference on Robotics and Automation, pages 3513–

3518, 2010.

[35] C.-H. Teng, Y. sheng Chen, and W. hsing Hsu. Tree segmentation from an

image. Machine VIsion Applications, 2005.

BIBLIOGRAPHY 56

[36] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[37] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,

M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,

C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessan-

drini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Ma-

honey. Stanley: The robot that won the DARPA Grand Challenge. Journal

of Field Robotics, 23(9):661–692, SEP 2006.

[38] S. Tully, H. Moon, G. Kantor, and H. Choset. Iterated filters for bearing-

only SLAM. In IEEE International Conference on Robotics and Automation,

volume 1-9, pages 1442–1448, 2008.

[39] T. Vidal-Calleja, C. Berger, J. Sola, and S. Lacroix. Large scale multiple

robot visual mapping with heterogeneous landmarks in semi-structured ter-

rain. Robotics and Autonomous Systems, 2011.

[40] M. Wang, H. Tamimi, and A. Zell. Robot navigation using biosonar for natu-

ral landmark tracking. In IEEE International Symposium on Computational

Intelligence in Robotics and Automation, pages 3–7, 2005.

[41] J. Weingarten, G. Lopes, M. Buehler, R. Groff, and D. Koditschek. Auto-

mated gait adaptation for legged robots. In IEEE International Conference

on Robotics and Automation, volume 1- 5, pages 2153–2158, 2004.

[42] E. Yeh and D. J. Kriegman. Toward selecting and recognizing natural land-

marks. In International Conference on Intelligent Robots and Systems, vol-

ume 1, pages 47–53, 1995.

[43] T. Yildiz. Detection of tree trunks as visual landmarks in outdoor environ-

ments. Master’s thesis, Bilkent University, 2010.

