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ABSTRACT

ESSAYS ON NON-COOPERATIVE INVENTORY
GAMES

Evren Körpeoğlu

Ph.D. in Industrial Engineering

Supervisor: Assist. Prof. Dr. Alper Şen

January, 2012

In this thesis we study different non–cooperative inventory games. In par-

ticular, we focus on joint replenishment games and newsvendor duopoly under

asymmetric information. Chapter 1 contains introduction and motivation be-

hind the research. Chapter 2 is a preliminary chapter which introduce basic

concepts used in the thesis such as Nash equilibrium, Bayesian Nash equilibrium

and mechanism design.

In Chapter 3, we study a non-cooperative game for joint replenishment of

multiple firms that operate under an EOQ–like setting. Each firm decides whether

to replenish independently or to participate in joint replenishment, and how much

to contribute to joint ordering costs in case of participation. Joint replenishment

cycle time is set by an intermediary as the lowest cycle time that can be financed

with the private contributions of participating firms. We consider two variants

of the participation-contribution game: in the single–stage variant, participation

and contribution decisions are made simultaneously, and, in the two-stage variant,

participating firms become common knowledge at the contribution stage. We

characterize the behavior and outcomes under undominated Nash equilibria for

the one-stage game and subgame-perfect equilibrium for the two-stage game.

In Chapter 4, we extend the private contributions game to an asymmetric

information counterpart. We assume each firm only knows the probability dis-

tribution of the other firms’ adjusted demand rates (demand rate multiplied by

inventory holding cost rate). We show the existence of a pure strategy Bayesian

Nash equilibrium for the asymmetric information game and provide its charac-

terization. Finally, we conduct some numerical study to examine the impact of

information asymmetry on expected and interim values of total contributions,

cycle times and total costs.
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In Chapter 5, we study a three–stage non-cooperative joint replenishment

game. In this model, we assume that the intermediary is also a decision maker.

In the first stage, each firm announces his contribution for the ordering cost. In

the second stage, based on the contributions, the replenishment service provider

determines a common cycle time that he can serve the firms. Finally, each firm

decides whether to be a part of the coalition and served under this cycle time or act

independently with an EOQ cost. We analyze each stage and give the conditions

for equilibrium. We show that the subgame-perfect equilibrium cycle time is not

unique. Although minimum and maximum cycle times that arise in equilibrium

straddle the efficient cycle time, in general, whether efficient cycle time can be

reached in equilibrium depends on the parameters of the joint replenishment

environment. For symmetric joint replenishment environments, we show that

whether efficient cycle time is a subgame-perfect equilibrium outcome depends

only on the number of firms and is independent of all other parameters of the

environment.

In Chapter 6, we focus on finding a mechanism that would allocate the joint

ordering costs to the firms based on their reported adjusted demand rates. We

first provide an impossibility result showing that there is no direct mechanism that

simultaneously achieves efficiency, incentive compatibility, individual rationality

and budget-balance. We then propose a general, two-parameter mechanism in

which one parameter is used to determine the joint replenishment frequency;

another is used to allocate the order costs based on firms’ reports. We show

that efficiency cannot be achieved in this two-parameter mechanism unless the

parameter governing the cost allocation is zero. When the two parameters are

identical (a single parameter mechanism), we find the equilibrium share levels

and corresponding total cost. We finally investigate the effect of this parameter

on equilibrium behavior.

In Chapter 7, we study the newsboy duopoly problem under asymmetric cost

information. We extend the Lippman and McCardle [30] model of competitive

newsboys to allow for private cost information. The market demand is initially

split between two firms and the excess demand for each firm is reallocated to the

rival firm. We show the existence and uniqueness of pure strategy equilibrium

and characterize its structure. The equilibrium conditions have an interesting

recursive structure that enables an easy computation of the equilibrium order

quantities. Presence of strategic interactions creates incentives to increase order
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quantities for all firm types except the type that has the highest possible unit

cost, who orders the same quantity as he would as a monopolist newsboy. Con-

sequently, competition leads to higher total inventory in the industry. A firm’s

equilibrium order quantity increases with a stochastic increase in the total in-

dustry demand or with an increase in his initial allocation of the total industry

demand. Finally, we provide full characterization of the equilibrium, correspond-

ing payoffs and comparative statics for a parametric special case with uniform

demand and linear market shares.

Keywords: Joint replenishment problem, Newsvendor problem, Game theory,

Mechanism design, Asymmetric information.



ÖZET

İŞBİRLİKÇİ OLMAYAN ENVANTER OYUNLARI
ÜZERİNE MAKALELER

Evren Körpeoğlu

Endüstri Mühendisliği Bölümü, Doktora

Tez Yöneticisi: Yrd. Doç. Dr. Alper Şen

Ocak, 2012

Bu tezde işbirlikçi olmayan ortak tedarik oyunları ve asimetrik bilgi altında

gazete satıcısı duopolisini de içeren değişik rekabetçi envanter oyunları in-

celenmektedir. Birinci bölüm girişi ve araştırmanın ardındaki motivasyonu

içermektedir. İkinci bölüm bu tezde kullanılmış Nash dengesi, Bayes Nash den-

gesi ve mekanizma tasarımı gibi bir takım ekonomik konuların kısa bir özetini

kapsamaktadır.

Üçüncü bölümde ekonomik sipariş miktarına benzer bir modelde birden çok

firmanın işbirlikçi olmayan ortak tedarik oyunu incelenmektedir. Her firma

siparişini kendi başına mı vereceğine yoksa ortak tedariğe mi katılacağına ve or-

tak tedariğe katılırsa tedarik için ne kadar katkıda bulunacağına karar vermek-

tedir. Ortak tedarik çevrim süresi bir aracı tarafından verilen katkılarla finanse

edilebilecek en düşük çevrim süresi olarak belirlenmektedir. Bu oyun için iki farklı

model incelenmektedir: tek aşamalı modelde katılma ve katkı miktarı kararları

bir arada verilirken, iki aşamalı modelde katılan firmalar ilk aşamada belirlenip

ikinci aşamada ortak tedariğe katılan firmalar katkı miktarlarını açıklamaktadır.

Bu iki model için de firmaların Nash dengesi altındaki davranışları ve maliyetleri

bulunmuştur.

Dördüncü bölümde bir önceki bölümde bulunan bireysel katkı miktarı oyu-

nunun asimetrik bilgi içeren bir modeli incelenmektedir. Her firma sadece diğer

firmalara ait uyarlanmış talep hızlarının (Talep hızı ile envanter maliyet hızının

çarpımı) olasılıksal bir dağılımını bilmektedir. Asimetrik bilgi altındaki bu mod-

elde yalın stratejili Nash dengesinin varlığı gösterilmiş ve bu denge için gerekli

olan şartlar verilmiştir. Ayrıca, bilgi asimetrisinin toplam katkı miktarı, ortak

çevrim süresi ve toplam maliyetlerin beklenen ve ara değerleri üzerine etkilerini
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incelemek için sayısal bir çalışma yapılmıştır.

Beşinci bölümde üç aşamalı bir işbirlikçi olmayan ortak tedarik oyunu incelen-

mektedir. Bu modelde aracının da karar verici olduğu varsayılmaktadır. Birinci

aşamada her firma sipariş için katkı miktarını açıklamaktadır. İkinci aşamada ver-

ilen katkı miktarları doğrultusunda aracı firmalara servis sağlayacağı ortak çevrim

süresini belirlemektedir. Üçüncü aşamada ise verilen çevrim süresine bakan fir-

malar bu çevrim süresiyle ortak tedarikten mi faydalanacaklarına yoksa ekonomik

sipariş miktarı altındaki maliyetle bağımsız mı hareket edeceklerine karar ver-

mektedir. Bu oyunda her aşama ayrı ayrı analiz edilip kusursuz altoyun dengesi

için gerekli şartlar verilmiştir. Ayrıca dengenin eşsiz olmadığı gösterilmiştir. En

verimli çevrim süresi dengede oluşabilecek çevrim sürelerinin en düşüğü ve en

yükseğinin arasında kalsa da dengede bu süreye ulaşılıp ulaşılamayacağı oyu-

nun parametrelerine bağlıdır. Bütün firmaların özdeş olduğu durumda en ver-

imli çevrim süresinin dengenin bir sonucu olup olmadığı sadece oyundaki firma

sayısına bağlı olup diğer parametrelerden bağımsızdır.

Altıncı bölümde firmaların rapor ettiği uyarlanmış talep hızlarına bağlı olarak

ortak tedarik maliyetlerini paylaştıracak bir mekanizma bulmaya yoğunlaşılmıştır.

Öncelikle verimlilik, caziplik, bireysel rasyonellik ve denk bütçeyi sağlayan direk

bir mekanizmanın mümkün olmadığı gösterilmiş, sonrasında ise birinci parame-

tresi ortak tedarik frekansını ikinci parametresi ise sipariş maliyetlerinin firma

raporlarına göre paylaştırılmasını sağlayan iki parametreli genel bir mekanizma

önerilmiştir. Bu mekanizmada maliyet paylaşımını kontrol eden parametrenin

sıfır olmadığı durumlarda verimliliğin sağlanamayacağı gösterilmiştir. İki parame-

trenin de eşit olduğu durumda (tek parametreli bir mekanizma) dengedeki

paylaşım seviyeleri ve bunlara karşılık gelen toplam maliyet bulunmuş ve ayrıca

bu parametrenin dengedeki firma davranışlarına olan etkisi incelenmiştir.

Yedinci bölümde asimetrik bilgi altındaki gazete satıcısı duopolisi problemi

incelenmektedir. Lippman ve McCardle’daki [30] rekabetçi gazete satıcıları mod-

eli asimetrik bilgi de içerecek şekilde genişletilmiştir. Öncelikle toplam pazar

talebi iki firma arasında paylaştırıldıktan sonra firmaların karşılayamadıkları tale-

pleri rakip firmaya atanmaktadır. Bu model için yalın stratejili Nash dengesinin

varlığı ve eşsiz olduğu gösterilmiş ve dengenin yapısı karakterize edilmiştir. Denge

koşullarının özyinelemeli yapısı dengedeki sipariş miktarlarının kolayca hesaplan-

masını sağlamaktadır. Stratejik etkileşimlerin varlığı tekel bir firma gibi hareket
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eden en yüksek birim maliyete sahip firma tipi dışındaki bütün firma tiplerini

daha fazla sipariş vermeye teşvik etmektedir. Bunun bir sonucu olarak, rekabet

endüstride daha yüksek toplam envanter miktarlarına sebep olmaktadır. Bir fir-

manın dengedeki sipariş miktarı toplam talepteki olasılıksal artışla ve kendine

verilen baslangıç market payındaki artışla yükselmektedir. Son olarak tekbiçimli

dağılım ve doğrusal market talebi paylaşımı altında Nash dengesinin tam karak-

terizasyonu, karşılık gelen maliyetler ve model parametrelerinin maliyetler ve

sipariş miktarları üzerine etkileri verilmiştir.

Anahtar sözcükler : Ortak tedarik problemi, Gazete satıcısı problemi, Oyun

teorisi, Mekanizma dizaynı, Asimetrik bilgi.
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support, patience and encouragement throughout my Ph.D. studies. It has been

an honor to be his first Ph.D. student. He taught me how to select a valuable

research topic, to conduct high quality research, and to properly present it. I

appreciate all his contributions of time, ideas, and funding to make my Ph.D.

experience productive and stimulating. I would also like to thank Dr. Kemal
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Körpeoğlu, for her constant care, love and encouragement. To my mother-in-law,

x



xi

Nur Akpolat and my beloved grandmother, Güngör Akpolat, for everything they
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Chapter 1

INTRODUCTION

Inventory management is one of the most important functions in a business since

inventories usually tie up a significant portion of a company’s capital. Inven-

tory is a necessary evil as almost all firms need to position inventory at various

stages of their supply chain to satisfy customer demand. Moreover, it can help

the organization achieve economies of scale and creates a buffer against demand

uncertainty. On the other hand, if not managed properly, it may lead to a huge

financial burden for the business due to product handling, warehouse and capital

costs, obsolescence, rework and returns. Both Nike and Cisco experienced major

decrease in their stock prices due to unsuccessful inventory management. In 2001,

Nike could not establish the necessary inventory levels for its footwear line and

the result was shortages in some footwear models and surpluses in others. This in

turn cost the company over $100 million in a single quarter. Similarly, after not

being able to keep up with the demand, inflated sales forecasts and the economic

downturn in 2001, Cisco had a $2.2 billion inventory write–down for the compo-

nents that were ordered but never used. This resulted in a decrease of its stock

prices from $82 to $14 in just thirteen months [40]. As these examples clearly

demonstrate, inventory management is critical for the success of a firm and this

is the motivation for the increasing amount of academic research on inventory

management in the past four decades.

Firms usually coexist with many other firms in the same market which in
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turn requires them to assess their inventory decisions more carefully considering

the competition and possible cooperation opportunities. Thus, the success of a

firm depends on taking the right decisions in the marketplace and exploiting any

potential to reduce costs. One major source of inventory competition is caused

by the demand spillovers due to the stockouts. According to a survey provided

by Proctor & Gamble [47], in case of a stockout 50% of the customers switch to

another retailer. Another study by Gruen et al. [18] combines the studies over

different retailers over the world with a total of 71000 customer surveys for cer-

tain FMCG products and concludes that when a stockout situation occurs, 32%

of the customers substitute brand and 34% buy the same product at another

store both of which drives inventory competition between manufacturers and re-

tailers respectively. However, it is also possible that the firms in the same market

can benefit from each other. Recently, BMW started an auto-parts purchasing

partnership with Daimler to purchase more than 10 parts together and looking

for ways to expand this partnership. BMW is hoping to generate cost savings of

around 100 million euros per year in 2012 and 2013 through this venture [17].

In this thesis, we consider non–cooperative inventory games. We mainly focus

on the extensions of the economic order quantity (EOQ) problem and the news-

boy problem both of which are well–studied problems in the literature. The EOQ

model is a deterministic demand model where total cost is comprised of two parts.

The first part is the setup or ordering cost associated with production, procure-

ment or transportation of the lot for each order. The second part is the holding

cost of inventory which includes the cost of capital, handling and warehouse costs.

Smaller lot sizes leads to lower average inventory but higher ordering costs. On

the contrary, larger lot sizes lead to lower setup costs but increase the average

inventory cost. Considering this trade–off, the firms determine the efficient lot

size. In real world, any business with a fairly stable and deterministic demand

and a well–defined setup cost may use the EOQ model since the optimal lot size

is not very sensitive to the minor demand changes.

The newsboy problem is a single period model in which a firm should decide

on order or production quantity of a perishable product which has stochastic
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demand. Each unit of the product has a purchasing or production cost and pre-

determined revenue. There is only one ordering opportunity so the firm must

decide on the inventory level before the season starts. This assumption is usually

justified by long lead times, capacity restrictions and relatively short sales seasons.

The sales level of the firm is the smaller of the demand and order quantity. At the

end of the season, the firm either has excess demand which leads to lost sales and

may be penalized by a unit lost sales cost or excess inventory which either perishes

or salvaged at a salvage value lower than the purchasing cost. The objective of the

firm is to determine the inventory level that will maximize his expected profit. At

the optimal inventory level the marginal cost is equal to marginal revenue. There

are many examples for newsboy type products in addition to the newspapers and

magazines. Fashion goods should be sold in a single season since each season

has a different line of clothing. Moreover, they usually have a long lead time

since most of the fashion goods are imported from overseas. Similarly, high–tech

equipment should be sold in a relatively short amount of time due to the risk of

obsolescence. Again, they may have long lead times due to capacity restrictions

of major suppliers.

One major strand of the literature on inventory theory is the joint replen-

ishment problem. Joint replenishment is the problem of coordinating or consoli-

dating the replenishment of multiple items or multiple retailers that are ordered

from the same supplier to minimize total ordering and inventory costs using the

economies of scale. In case of multiple firms or retailers, coordination requires

some type of a centralized decision making by independent firms. However, firms

that are subjects of joint replenishment may be competitors in the same market

or in some cases they may not be in communication so a cooperative solution is

not always viable. In such cases, using a non–cooperative mechanism that coor-

dinates the firms with joint replenishment potential could help them to reduce

inventory and ordering costs without a centralized decision making process. For

example, recently, Istanbul Textile and Apparel Exporters Union founded a joint

ordering platform which aims to decrease the purchasing costs of its members

by 25% [43]. This portal for joint purchasing is not only limited to textile sup-

plies but also includes provisions related to energy, logistics and communication.
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Also, Koç group of companies in Turkey has a subdivision called Zer which aims

to coordinate the purchases of different subgroups under Koç conglomerate and

any outside member [54]. It provides services such as purchasing raw materials,

logistics and services even for the firms that are not part of Koç group. These

examples show that there exist many non-cooperative initiatives to benefit from

the advantages of joint replenishment. There is very limited research in the lit-

erature about the joint replenishment problem that use non-cooperative models.

Thus, in this thesis we attempt to fill this gap with different approaches to this

problem.

It is fair to assume that in systems where joint decisions have to rely on infor-

mation reported by the participants, firms may act strategically and misreport

their characteristics to improve their payoffs. Non–cooperative game theory ap-

proach focuses on how to characterize the equilibrium behavior of self–interested

players in games where each player’s information and strategic options as well

as the outcomes that result from each combination of decisions are explicitly

specified. The non–cooperative approach enables analyses of several broad sets

of research questions: First set concerns analysis of equilibrium outcomes. How

do equilibrium outcomes for a given game relate to players’ characteristics and

how do they vary across environments with different player characteristics? How

do equilibrium outcomes of two games compare for a given environment? How

do outcomes induced by equilibrium behavior under various alternative game

rules perform with respect to a system–optimal solution? Second set deals with

questions such as how can one design rules of the non–cooperative interaction to

achieve “better” outcomes where the notion of “better” reflects concerns related

to system–optimality? As observed by Cachon and Netessine [8], in decentralized

decision making settings obtaining efficiency is regarded as the exception rather

than the rule. Following this philosophy, we consider various non–cooperative

joint replenishment games that differ based on their cost allocation schemes. A

cost allocation scheme distributes the total cost among the firms based on a

reported attribute which may be the independent order frequency, cycle time,

holding cost rate or demand rate. We use some allocation schemes that deter-

mine the joint cycle time only based on monetary contributions of the firms for the
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major setup cost. We also use direct mechanisms to allocate the total cost based

on the reports from the firms. However, these reports may not reflect a firm’s

true characteristics since misreporting an attribute may be beneficial for the firm.

Thus, a direct mechanism should enforce truth–telling among the firms which can

be achieved by using incentive compatibility. Another important property of a

mechanism is individual rationality which guarantees a non-negative profit for the

firms that participate in the mechanism. Incentive compatibility is not necessary

if monetary contributions are used to allocate the total cost allocation however

individual rationality is always essential.

In Chapter 3, we study a non–cooperative game for joint replenishment of

multiple firms that operate under a deterministic demand setting. Each firm de-

cides whether to participate in joint replenishment or to replenish independently,

and each participating firm decides how much to contribute to joint ordering

costs. Joint replenishment cycle time is set by an intermediary as the lowest

cycle time that can be financed with the private contributions of participating

firms. We consider two participation-contribution games: in the single–stage vari-

ant, participation and contribution decisions are made simultaneously, and, in the

two-stage variant, participating firms becomes known at the contribution stage.

We characterize the behavior and outcomes under undominated Nash equilibria

for the one-stage game and subgame-perfect equilibrium for the two-stage game.

Our results show that the joint replenishment is mostly financed by the firm or

group of firms with the highest adjusted demand rate which is the multiplication

of inventory holding cost rate and demand rate and the other firms just pay the

minimum entree fee.

An important factor in non–cooperative games is the information structure.

Information asymmetry is an essential assumption since not all of the game pa-

rameters are known by all the parties. Firms usually do not have complete in-

formation about the demand and cost parameters of the other firms in the same

market. There are companies such as Nielsen, Kantar and Ipsos which provide

market data up to an extent but even this information is not exact. Similarly, ver-

tical partnerships and manufacturer–supplier relations may involve information

asymmetry since suppliers may not be willing to share their cost information in
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order not to loose their bargaining position and the demand of the manufacturer

may not be known by the supplier. A player may know what kind of player he is

i.e., his type, but he may have only some idea about his rivals’ types where the

type of a player may include any parameter such as cost or demand. Thus, in

Chapter 4, we extend the private contributions game to an asymmetric informa-

tion counterpart. We assume each firm only knows the probabilistic distribution

of the other firms’ adjusted demand rates. We assume a continuous type dis-

tribution and all the other parameters are common knowledge. Consequently,

each firm decides on his contribution level without knowing the exact type of his

rivals. Asymmetric information games are modeled as Bayesian games. We show

the existence of a pure strategy Bayesian Nash equilibrium for the asymmetric in-

formation game. We provide conditions for a Bayesian Nash equilibrium. Finally,

we conduct a numerical study to examine the impact of information asymmetry

on expected and interim values of total contributions, cycle times and total costs.

Even though Chapters 3 and 4 focus on non–cooperative joint replenishment solu-

tions and the total cost under these models are lower than the decentralized total

cost, they are unable to deliver an efficient solution i.e., the centralized solution.

In Chapter 5, we study a three–stage non–cooperative joint replenishment

game aiming for a solution with higher efficiency. In this model, we assume that

the intermediary is also a decision maker. In the first stage, each firm announces

his contribution for the ordering cost. In the second stage, based on the con-

tributions, the intermediary determines a common cycle time that he can serve

the firms. Finally, each firm decides whether to be a part of the coalition and

served under this cycle time or act independently with an EOQ cost. We ana-

lyze each stage and derive the conditions for an equilibrium. We show that the

subgame–perfect equilibrium cycle time is not unique. Although the minimum

and maximum cycle times that arise in equilibrium straddle the efficient cycle

time, in general, whether efficient cycle time can be reached in equilibrium de-

pends on the parameters of the joint replenishment environment. For symmetric

joint replenishment environments, we show that whether efficient cycle time is a

subgame–perfect equilibrium outcome depends only on the number of firms and

is independent of all other parameters of the environment. Furthermore, this
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dependence on the number of firms exhibits a highly non–monotone pattern.

In Chapter 6, we consider parametric mechanisms to allocate the setup costs

associated with the joint replenishment problem and measure their performance

for different parameters. First, we first provide an impossibility result showing

that there is no direct mechanism that simultaneously achieves efficiency, incen-

tive compatibility, individual rationality and budget-balance. We then consider a

two–parameter mechanism where initially the firms decide on their contribution

levels. The first parameter determines the corresponding joint replenishment fre-

quency and the second parameter governs the order cost shares. We show that a

non-cooperative joint replenishment mechanism leads to lower order frequencies

than the efficient frequency unless the second parameter is zero. Following this,

we consider a mechanism where the two parameters are equal (a single parameter

mechanism). We derive the best response equations and equilibrium conditions

for a constructive equilibrium. We characterize the equilibrium contributions and

the corresponding comparative statics.

Finally, in Chapter 7 we take a different direction and consider a competitive

newsboy problem under stochastic demand with asymmetric cost information.

In our model, we assume two firms where the stochastic market demand for

the product is initially allocated to the two firms by some split function. The

split function may be linear such as firm 1 gets 60% of market share and firm

2 gets 40% or it can take any form depending on the market share structure.

In case that a firm cannot satisfy his share of the market, all excess demand is

re-allocated to the other firm if the other firm has any available inventory. Thus,

while considering the amount to order or produce, a firm should also consider

the potential excess demand coming from the rival firm. This implies that the

effective demand of a firm depends on the inventory decision of the rival firm.

Hence, we have a competition between the two firms over each others unsatisfied

excess demands.

Similarly, information asymmetry in this setting is also a fair assumption. A

firm knows his exact cost type but only knows the distribution of his rival’s cost

type since a firm may not know his rival’s cost but may have an idea on their cost

7



level depending on his own cost, the technological capacity of his rival or some

general market indications. Companies such as ACNielsen tracks the purchasing

and sales information of many firms and sells them to their rivals. However these

results are not always comprehensive since companies like Walmart no longer

shares their purchasing and sales information with any other company leading to

an information asymmetry between competing retailers [22]. Thus, we investigate

the impact of information asymmetry on the competitive newsboy problem. For

this model we show the existence of pure strategy Bayesian Nash equilibrium

under fairly general assumptions on demand distribution and split function. This

is followed by a characterization of the equilibrium and proof of its uniqueness

under a continuous and strictly increasing probability distribution function for

the demand and a deterministic, increasing split function. Comparative statics

are also derived. Lastly, we provide the full characterization of the equilibrium,

corresponding payoffs and comparative statics for the case of uniform demand.

In the following chapter, we summarize some important game theory concepts

we use throughout the thesis such as Nash equilibrium, Bayesian games and

mechanism design.
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Chapter 2

GAME THEORY REVIEW

2.1 Introduction

Game theory concepts are used in other disciplines for over fifty years but its use

in operations management is relatively new. Game theory provides some powerful

tools to improve on the classical views of the inventory management area. This

chapter reviews some of the concepts we use throughout the thesis. However, we

do not attempt to provide a comrehensive review of the game theory concepts

here and only review the material relevant to the thesis. This chapter is heavily

based on Fudenberg and Tirole [16].

2.2 Definition of a game

A game has three important features: the set of rational players i ∈ N where

N = 1, 2, .., n, the set of pure strategies for each player si ∈ Si where S =

S1 × · · · × Sn is the strategy space and a payoff function for each player ui(s)

where s = (s1, .., sn).
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The players may choose their strategies simultaneously or sequentially de-

pending on the game form. When the players act simultaneously we have a

normal form game and when they act sequentially we have an extensive form

game. However, each normal form game can be expressed as an extensive form

game where decision points are played simultaneously. One of the major assump-

tions is the rationality of the player. A rational player would try to maximize his

payoff regardless of other circumstances. Without the rationality assumption, it

is impossible to predict a player’s move so game theoretic notions cannot find an

answer. Another important assumption is the common knowledge assumption

which states that each player knows the set of players, their strategy sets and

the corresponding payoffs. In other words, as Fudenberg and Tirole [16] state

“Each player knows the structure of the normal form game and know that their

opponents know it, and know that their opponents know that they know, and so

on ad infinitum.”

2.2.1 Mixed Strategies

A mixed strategy ψi is a probability distribution over strategy set Si of a player

i. We denote the mixed strategy space of player i by Ψi and Ψ = Ψ1 × · · · ×Ψn.

Player i’s payoff for a mixed strategy profile ψ is:

∑
s∈S

(∏
j∈N

ψj(sj)

)
ui(s).

Roughly speaking, we can think of a mixed strategy as a randomization of all

strategies of a player since being unpredictable may benefit the player. Clearly,

mixed strategies also include pure strategies.

2.2.2 Dominated Strategies

In order to predict the outcome of a game, one of the useful tools is elimination

of dominated strategies. We can define a dominated strategy as follows:
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Definition 2.1. A pure strategy si is strictly dominated if there exists a mixed

strategy ψi ∈ Ψi such that

ui(ψi, s−i) > ui(si, s−i) ∀s−i ∈ S−i

where −i denotes the set of players other than player i.

A rational player would never use a dominated strategy since using an undom-

inated strategy would guarantee a higher payoff. Thus, iterated elimination of

the dominated strategies is a common tool that is used for dominated strategies

for refinement. It proceeds by eliminating dominated strategies and considering

the new strategy space. This process continues until none of the strategy points

in the current set is dominated.

2.2.3 Best Response functions

Another important concept in game theory is the best response functions. Assume

that all the players play before player i and player i can observe their strategies.

Now, a best response can be thought as the best possible strategy of player i with

the knowledge of other player’s strategies.

Definition 2.2. Player i’s best response (function) to the strategies s−i of the

other players is the strategy s∗i that maximizes player i’s payoff ui(si, s−i) i.e.,

s∗i = argmaxsi ui(si, s−i).

2.2.4 Nash Equilibrium

Using the best response functions we obtain our first important equilibrium con-

cept which is the famous Nash Equilibrium.

Definition 2.3. A strategy profile (s∗1, s
∗
2, ..., s

∗
n) is a Nash equilibrium of the game

if s∗i is a best response to s∗−i for all i = 1, 2, ..., n i.e.,

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) ∀i ∈ N, ∀si ∈ Si.
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A Nash equilibrium is a point in strategy space where none of the players could

profit from unilaterally changing his strategy. It is a point where the strategies

of each player is a best response to the strategies of the other players. Nash [39]

shows that there exists at least one Nash equilibrium in mixed strategies for all

games. However, a Nash equilibrium in pure strategies does not always exist. In

this thesis, we use pure strategy equilibria and prove the corresponding existence

theorem when necessary.

In order to prove the existence of a pure strategy Nash equilibrium, we need

some further definitions. Vives [50] states that a binary relation ≥ on a nonempty

space S is a partial order if it is transitive, reflexive and anti-symmetric. A

supremum (infimum) of S is a least upper bound (greatest lower bound). A lattice

is a partially ordered set (S,≥) in which any two elements has a supremum and

an infimum and it is complete if every nonempty subset of S has a supremum and

an infimum in S. Any compact (closed and bounded) interval in real line with

the usual order or product of compact intervals with vector order is a complete

lattice.

A function u is supermodular if u(x1, x2)+u(y1, y2) ≥ u(x1, y2)+u(y1, x2) for

all (x1, x2) ≥ (y1, y2). A twice continuously differentiable function ui(s1, .., sn) is

supermodular iff ∂2ui/∂si∂sj ≥ 0 for all si, sj where i ̸= j [8]. The corresponding

game is supermodular if the payoffs of all the players are supermodular. In a

supermodular game, a player’s best response is increasing in the strategies of

other players.

Topkis [48] states that a game has a pure strategy Nash equilibrium if the

strategy profile S is a complete lattice, the joint payoff function u is upper–

semicontinuos and the payoff function of each player is supermodular.

There can be many equilibria in a game. A good refinement for the Nash

equilibrium in case of multiple equilibrium is a dominant–strategy equilibrium. A

dominant–strategy equilibrium is an equilibrium point that survives the iterated

elimination of dominated strategies which was explained previously.
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2.2.5 Extensive Form Games

A game may contain more than one stage. In this case each stage is played

sequentially in an extensive form game. An extensive form can be thought as

a decision tree where at each stage or decision node the corresponding players

decide on their new strategies and these strategies are observable by all players.

The outcome or payoff is determined after the final stage. A strategy in an

extensive form consists of the actions at all the decision points.

Assume that we have T stages in a game. At any stage t, the players know

the history ht of the actions by all the players. Thus, we can assume from the

stage t on there is game on its right which can be denoted by Γ(ht). These games

are called the subgames. Thus, the strategy profile in the subgame (s|ht) is just
a restriction of the original profile s using the history of the game until t.

A good example of the games in extensive form is the Stackelberg game where

there are two stages and players act sequentially. There is a leader which plays

in the first stage and there is a follower which plays in the second stage after

observing the action of the leader. Thus, the leader chooses the best possible

strategy considering the best response of the follower. Most of the vertical supply

chain games between suppliers and manufacturer or manufacturers and retailers

are formed of Stackelberg games and the leader is usually the party with more

competitive power or the party that prepares the purchasing contract.

The equilibrium concept used in extensive form games is the subgame perfect

equilibrium. As the name implies, a strategy profile is in subgame perfect equi-

librium if at any stage the corresponding subgame played with the same profile

is a Nash equilibrium.

Definition 2.4. A strategy profile s∗ of a multi-stage game with observed actions

is a sub-game perfect equilibrium if at every decision node t the restricted profile

(s∗|ht) is a Nash equilibrium of the restricted game Γ(ht).

We use the subgame perfect equilibrium concept in Chapter 3.
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2.3 Bayesian Games

Most of the games studied in the supply chain management literature assume that

all the firms involved in the game have common knowledge about the payoff func-

tions of all the firms. This type of games are called the full information games.

The games where all the information is not common knowledge are called in-

complete (asymmetric) information games. These games are also called Bayesian

games.

Usually, in incomplete information games, the players do not know the payoff

functions of other players. Nevertheless, each player has some kind of indication

for his payoff function which we call the type of the player. Players’ types θ =

(θ1, .., θn) are drawn from a probability distribution f(θ1, .., θn) over the type space

Θ = Θ1 × · · · × Θn. The major assumption of the Bayesian games is that the

type distributions of the players are common knowledge, i.e., each player knows

his own type but only knows the distribution of the type of his opponents. Thus,

θi is only observed by player i and we denote f(θ−i|θi) as the conditional type

distribution of other players for given θi. This assumption is viable since each firm

in a market may estimate the parameters of rival firms based on their own cost,

the cost of technology required for production and potential market research.

In case of Bayesian games, a pure strategy of player i is a function si : Θi → Si

from the type space to the strategy space of player i.

For each realization of types θ the ex-post payoff function of player i is

ui((si(θi), s−i(θ−i)), θ). Thus, the interim payoff function of player i is:

Ui(si, θi; s−i) =

∫
θ−i

ui((si(θi), s−i(θ−i)), θ)f(θ−i|θi)dθ−i.

The payoff function of player i can be thought as some kind of expectation over

the types of other players given the conditional probability distribution of the

rivals’ types.

Similarly, we can define the ex–ante payoff of player i, Ui, for a given strat-

egy profile (si, s−i) as the expected payoff of player i over all type realizations
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including his own:

Ui(si, s−i) =

∫
θ

ui((si(θi), s−i(θ−i)), θ)f(θ)dθ.

2.3.1 Bayesian Nash Equilibrium

Definition 2.5. A strategy profile s∗(·) is a Bayesian Nash equilibrium if for all

i ∈ N

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i) ∀si ∈ SΘi

i ,

where SΘi
i is the set of maps from Θi to Si. Since each type has positive probability,

this is equivalent to

Ui(s
∗
i , θi; s

∗
−i) ≥ Ui(si, θi; s

∗
−i) ∀si ∈ Si, ∀θi ∈ Θi

The proof for the existence of pure strategy Bayesian Nash Equilibrium is

more tedious than its full information counterpart and is given in the Chapters

4 and 7. We insist on pure strategy equilibriums since it is not straightforward

to implement a mixed strategy equilibrium in real life situations.

2.4 Mechanism Design

The objective of mechanism design is to implement a given allocation of resources

or costs when the relevant information is not common knowledge in the economy.

A mechanism is basically a specification of how economic decisions are determined

as a function of the information that is known by the players.

In a mechanism design problem, we usually have a resource to allocate. As in

the Bayesian games, each player has a type which is drawn from a probabilistic

distribution. Depending on his type, a player sends a message to the mechanism

and based on these messages the mechanism allocates the resource. Thus, the

mechanism is a function which maps the messages to an allocation scheme.
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Mechanism design problem usually consists of three steps. In step 1, the

mechanism is designed. In step 2, the players accept or reject the mechanism.

A player who rejects the mechanism gets some exogenously specified reservation

utility. In step 3, the players play the game specified by the mechanism.

A direct mechanism is a mechanism where each players sends his true type

as his message. A truth–telling strategy is to report true information about

preferences for all preference possibilities. A direct mechanism should satisfy

incentive compatibility and individual rationality.

Definition 2.6. A mechanism is incentive compatible if for any player i ∈ N

truth-telling is the dominant-strategy.

Thus, incentive compatibility is essential for players to reveal their true types.

Definition 2.7. A mechanism is individually rational if for any player i ∈ N the

mechanism’s resource allocation provides a payoff level that is at least as much

as his reservation utility.

Thus, individual rationality is required for a player to participate in the mech-

anism. Finally, we give an important result about the mechanism design problem

which states that any resource allocation is possible using only direct mechanisms.

Theorem 2.1. Revelation Principle (Dasgupta et al. [12]): Any equilibrium

outcome of an arbitrary mechanism can be replicated by an incentive-compatible

direct mechanism.

Revelation Principle guarantees that one can only focus on direct mechanism

and not be distracted by any other mechanism.

2.5 Game Theory Applications

There is a significant amount of existing research using game theory models in in-

ventory and supply chain management. Leng and Parlar [28] provide an excellent
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review of more than 130 papers that use game theoretic models and summarize

them in five categories including inventory games with fixed unit purchase cost,

inventory games with quantity discounts, production and pricing competition,

games with other attributes and games with joint decisions on inventory, produc-

tion/pricing and other attributes. Dror and Hartman [13] provide another survey

which mainly concentrates on the cooperative inventory games and explain some

of the important concepts such as Shapley value and core allocations.

There are many papers that explain how game theory is used to study in-

ventory, supply chain and operations management problems. Both Cachon and

Netessine [8] and Chinchulum et al. [10] summarize the tools of game theory that

can be used for competitive and cooperative models. These papers mainly focus

on the existence and uniqueness of pure strategy Nash equilibrium and cooper-

ative games. In addition to a game theory review, Erhun and Keskinocak [14]

explain game theory can be used in traditional supply chain contracting models

such as revenue sharing, buyback and quantity discount contracts and two–part

tariffs. Li et al. [29] give a more economic perspective and provides extentions of

the well-known operations management and information systems problems using

game theory.
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Chapter 3

A PRIVATE CONTRIBUTIONS

GAME FOR JOINT

REPLENISHMENT

3.1 Introduction

One of the most fundamental trade–offs in operations is between inventory holding

costs and ordering costs as they both change as a function of lot sizes used

in production, transportation or procurement. Larger lot sizes lead to higher

inventory costs, while smaller lot sizes result in higher ordering costs. Beginning

with Harris’s [20] study of classical economic order quantity (EOQ), a vast body

of literature examined these trade–offs. A second major strand in this literature

focused on the joint replenishment problem – exploring opportunities to exploit

the economies of scale by consolidating or coordinating replenishment of different

items or locations to minimize total ordering and inventory costs. For recent

surveys of these two strands of literature the reader is referred to the reviews by

Jans and Degraeve [23] on lot sizing, and by Aksoy and Erenguc [1] and Khouja

and Goyal [26] on the joint replenishment problem.
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When joint replenishment involves a group of items or locations that are

not controlled centrally, issues arise regarding sharing of joint costs among the

parties. In a series of recent papers, Meca et al. [35], Hartman and Dror [21],

Anily and Haviv [2] and Zhang [56] analyze cooperative game theory formulations

to investigate whether a fair allocation of total costs is possible and if so, how.

Meca et al. [35] show that it is possible to obtain the minimum total joint cost

when the firms share their order frequencies. They propose a cost allocation

mechanism which distributes the total replenishment cost in proportion to the

square of individual order frequencies and show that this allocation is in the core

of the game, i.e., no coalition can decrease its costs by defecting from the grand

coalition. Minner [38] studies a similar problem using a bargaining model which

has only two firms, excludes inventory holding costs and uses net present value

rather than average costs.

In this chapter, we study joint replenishment in the context of non–cooperative

games. It is well–known that, in systems where joint decisions have to rely on

information reported by the participants, firms may act strategically and misre-

port their characteristics. In the last two decades, game theory has been applied

in the analysis of a variety of supply–chain related problems (see Cachon and

Netessine [8]; Leng and Parlar [28]; Chinchulum et al. [10] for recent compre-

hensive surveys). Central question of non–cooperative game theory approach is

characterization of equilibrium behavior of self–interested players in games where

each player’s information and strategic options as well as the outcomes that result

from each combination of decisions are explicitly specified.

Game theoretic formulations of the joint replenishment problem seem to have

adopted almost exclusively the paradigm of cooperative games with transferable

utility. Fiestras-Janeior et al. [15] and Dror and Hartman [13] provide excellent

surveys of cooperative game theory applications in centralized inventory manage-

ment. Despite dozens of papers reviewed in Fiestras-Janeior et al. [15] and Dror

and Hartman [13] using cooperative game formulations, non-cooperative analysis

of joint inventory problems is still in its infancy with many interesting problems

that remain to be explored using the machinery of non-cooperative game theory.

In fact, Bauso et al. [5] and Meca et al. [34] are the only two exceptions that
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look at the joint replenishment problem from a non–cooperative point of view.

Bauso et al. [5] study a finite horizon, periodic setting in which multiple

firms need to determine their order quantities in each period to satisfy their

deterministic, time varying customer demands. The fixed order cost is shared

among multiple firms that order in the same period. Bauso et al. [5] show that

this game admits a set of pure strategy Nash equilibria, one of which is Pareto

optimal. The authors present a consensus protocol that leads the firms converge

to one of Nash equilibria, but not necessarily a Pareto optimal one.

Meca et al. [34] (MGB in the sequel) is more closely related to our work. MGB

studies a non–cooperative reporting game where stand–alone order frequencies of

the firms are observable but not verifiable. Each firm reports an order frequency

(that may be different from its true order frequency) and the joint order frequency

is determined to minimize the total joint costs based on all reports. Each firm

incurs holding cost individually and pays a share of the joint replenishment cost

in proportion to the squares of reported order frequencies. MGB shows that,

while this rule leads to core allocations under cooperative formulations, it en-

tails significant misreporting and inefficient joint decisions in a non–cooperative

framework.

In this chapter, we consider n firms with arbitrary inventory holding cost and

demand rates. The firms’ characteristics are common knowledge, but they are

not verifiable. Each firm decides whether to participate in joint replenishment

or to replenish independently, and each participating firm reports the level of his

private contribution to the joint ordering costs. An intermediary determines the

joint cycle time. The intermediary selects the lowest joint cycle time that can be

financed with the participating firms’ contributions.

We consider two variants of our basic game with respect to the timeline of par-

ticipation and contribution decisions. In the single–stage game, each firm makes

participation and contribution decisions simultaneously. In this game we seek

to characterize the Nash equilibria in undominated strategies. In the two-stage

game, the set of firms participating firms becomes known before each participat-

ing firm decides how much to contribute. The equilibrium notion we use for the
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two–stage game is subgame–perfect Nash equilibrium (SPE).

The games we study differs from the one in MGB in several important ways

with respect to messages the firms can use and with respect to the outcome func-

tions that specify how joint decisions and individual cost shares are determined

based on firms’ messages. MGB considers a game where firms’ messages are their

stand–alone order frequencies. We study games where each firm decides whether

to replenish independently or to participate in joint replenishment and then, if

he participates, reports the level of his private contribution to the joint ordering

cost. With respect to the outcomes functions, while the joint frequency decision

in MGB is the efficient joint decision assuming truthful reporting by the firms, in

our game joint replenishment frequency is determined to cover the replenishment

cost based on the private contributions of participating firms. A participating

firm’s replenishment cost depends on all the reports through a proportional shar-

ing rule in MGB, whereas, in our setting, it is determined by his report directly.

For the one–stage game, we find that equilibrium behavior and outcomes are

determined by a simple property of joint replenishment environment: If there

is a single firm with the lowest stand–alone cycle time, then there is a unique

undominated Nash equilibrium. For the two–stage game with a positive but

small minimum required contribution, participation by all firms is a dominant–

strategy equilibrium in the participation stage. Subgame–perfect equilibrium

path is unique if and only if the lowest stand–alone cycle time among the firms

is strictly less than the second–lowest stand–alone cycle time. For both games,

if there are multiple firms with the lowest stand–alone cycle time, there are mul-

tiple equilibria. However, the only indeterminacy caused by multiple equilibria

concerns how a given aggregate cost share (which is unique) is divided among

participating firms with the lowest stand–alone cycle time. Aggregate contribu-

tions, joint cycle time, aggregate cost rates, as well as cost rates for firms whose

stand–alone cycle times are higher than the lowest stand–alone cycle time are

all unique. Some of the proofs are given in the chapter as they are necessary to

follow the analysis and the rest of the proofs are contained in the Appendix A.
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3.2 The Model and Preliminaries

We consider a stylized EOQ environment with a set of firms N = {1, ..., n}.
Demand rate for firm j is constant and deterministic at βj per unit of time. Time

rate of inventory holding cost for firm j is λj per unit. Major ordering cost is fixed

at κ per order regardless of order size. We assume minor ordering costs (ordering

costs associated with firms included in an order) are zero. 1 Although each firm

is characterized by two parameters (λj, βj), an alternative representation (αj, βj),

obtained by a re–parametrization where αj = λjβj, will be convenient in all the

settings that we consider below. For lack of a more natural term, we refer to the

parameter α as the adjusted demand rate. We assume a strictly positive lower

bound, α > 0,for the adjusted demand rates, so that αj ≥ α for all j ∈ N to

rule out trivial replenishment environments where either the demand rate or the

holding cost rate is zero.

For j ∈ N , the ratio

θj = αj/
∑
k∈N

αk, (3.1)

will prove useful to simplify some comparisons in the sequel.

In a stylized replenishment problem the objective is to minimize the total cost

rate, denoted C, i.e., the sum of replenishment cost rate (R) and holding cost

rate (H): C = R + H. The decision variable can be taken as order cycle time,

t, or order frequency, f = 1/t (number of orders per time unit). We take cycle

time as the decision variable in the sequel.

We use upper–case letters, N,M,L etc., to refer to sets of firms, and use the

lower–case version of the same letter for the cardinality of a set. The letters i, j, k

are used for firm indices. We label the firms so that α1 ≤ α2 ≤ . . . ≤ αn. This

ordering of firm indices is retained for subsets of N . For M ⊆ N , denote the

1Following a stylized EOQ environment, such as one given in Zipkin (2000, §3.2), it is
assumed that the outside supplier that replenishes the orders has no capacity restrictions,
delivers the complete order at once after a deterministic lead time and has perfect yield. It
is also assumed that the outside supplier is not a strategic player. The firms aim to minimize
their long–run average costs over time and backorders are not allowed.
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set of firms in M with the highest values of the parameter α by L(M) = {j ∈
M |αj ≥ αi for all i ∈M}.

We denote vectors by lower–case letters in bold typeface. For a generic

m−tuple x = (x1, . . . , xm) and j ∈ {1, . . . ,m}, the notation (y,x−j) stands

for the vector x with its jth entry xj replaced by y, and the (m − 1)-tuple x−j

stands for the vector x with its jth entry xj removed.

For an endogenous variable X, by Xa
M we refer to the value of X when the set

of firms isM and replenishment operations are governed by a ∈ {c, d, g}, where c
stands for centralized, d stands for decentralized (or independent) replenishment,

and g stands for joint replenishment under rules of the non–cooperative game g.

For instance, T c
M is the joint cycle time of the firms in M when replenishment is

centralized. When the set M is a singleton, e.g., M = {j}, we use Xa
j instead of

Xa
{j}. When we need to refer to the value of an endogenous variable Xa

M faced by

firm j ∈M we use Xa
Mj. Thus, for instance, R

c
Mj is the replenishment cost faced

by firm j ∈M when the firms in M replenish jointly.

The vector e = (N, κ,α,β) summarizes the essential data of the inventory

environment.

3.2.1 Independent (decentralized) replenishment

When the replenishment of the items is controlled by firms operating indepen-

dently, firm j’s total cost rate (Cj) is the sum of replenishment cost rate (Rj)

and the holding cost rate (Hj):

Cj(t) = Rj(t) +Hj(t) =
κ

t
+
t

2
αj. (3.2)

It is well known that firm j’s optimal cycle time is T d
j =

√
2κ/αj. Hence, optimal

frequency and optimal order quantity are F d
j =

√
αj/2κ and Qd

j = βj
√

2κ/αj,

respectively. This leads to a replenishment cost rate of Rd
j =

√
καj/2. Firm

j’s holding cost rate is also Hd
j =

√
καj/2. Thus firm j’s total cost per unit
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of time is Cd
j =

√
2καj. The aggregate total cost rates for n firms under inde-

pendent replenishment are Cd
N =

∑
k∈N

√
2καk, and R

d
N = Hd

N =
∑

k∈N

√
καk/2.

3.2.2 Centralized joint replenishment

Efficient joint replenishment requires the replenishment decisions to be taken

centrally to minimize the aggregate total cost. It is well known that when there

are no minor setup costs, all firms will be replenished in each cycle leading to a

common cycle time (see, for example, Meca et al. [35]). The aggregate cost for

n firms as function of the common cycle time t can be written as

CN(t) = RN(t) +HN(t) =
κ

t
+
t

2

∑
k∈N

αk . (3.3)

The optimal cycle time and the corresponding optimal frequency are T c
N =√

2κ /
∑

k∈N αk and F c
N =

√∑
k∈N αk/2κ, respectively. Then, the optimal cost

rates are Cc
N =

√
2κ
∑

k∈N αk, and Rc
N = Hc

N = Cc
N/2. At each cycle, firm j

orders Qc
Nj = βj T

c
N .

3.2.3 MGB: a direct mechanism for joint replenishment

MGB considers a a direct mechanism where the message set of each player co-

incides with the set of all possible characteristics a player may have and the

outcome function assigns the core allocation for the environment reported by the

players. Specifically, the firms’ stand–alone order frequencies are used as the mes-

sage space – each firm reports an order frequency that may be different from its

true order frequency. Each firm j either reports a positive frequency fj and joins

the coalition for joint replenishment or reports fj = 0 and orders independently.

Each firm incurs holding cost individually and the joint replenishment cost is

allocated by a proportional sharing rule whereby firms share the joint ordering

cost in proportion to the squares of reported order frequencies. For any profile
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of reported frequencies (f1, . . . , fn), if the number of firms reporting strictly pos-

itive frequencies is one or less, all firms replenish independently. With two or

more firms reporting positive frequencies, the joint frequency is determined as

the efficient frequency for the reported stand–alone frequencies.

However, as MGB find, equilibrium behavior in this game entails significant

misreporting. The authors show that the game has multiple equilibria. The strat-

egy profile (f1, . . . , fn) = (0, . . . , 0) is always an equilibrium resulting in all firms

replenishing independently. An equilibrium (dubbed “constructive equilibrium”

by the authors) in which all firms participate in joint replenishment exists if, and

only if, the firms are sufficiently homogeneous, i.e., if and only if

θn <
2

2n− 1
. (3.4)

With straightforward translation of MGB’s notation to our setting, when a con-

structive equilibrium exists, it yields the following cycle time and aggregate total

cost:

TMGB
N =

√
2κ(2n− 1)∑

k∈N αk

=
√
2n− 1T c

N , (3.5)

and

CMGB
N =

√
2κn2

∑
k∈N αk

(2n− 1)
=

n√
2n− 1

Cc
N . (3.6)

Although the rules of the MGB game would give rise to core allocations with

desirable efficiency and fairness properties under truthful reporting, under non–

cooperative behavior, we get substantial efficiency loss. In the remainder of this

chapter, we investigate the equilibrium outcomes and whether more efficient out-

comes can be achieved under an alternative set of rules governing the interaction

of the potential participants in joint replenishment.
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3.3 One–Stage private contributions game for

joint replenishment

The participation–contribution game we consider have the following elements:

each firm makes two decisions: (1) whether to replenish independently or to par-

ticipate in joint replenishment, and (2) how much to contribute to joint ordering

cost in case of participation. We assume a small but strictly positive lower bound

δ on the contributions for participation in joint replenishment.2 Specifically, we

assume

0 < δ < δ̄ =
√
κα/2/n. (3.7)

Formally, the strategy set of players is represented by non–negative real numbers,

M = R+. A message rj from player j codes the participation and contribution

decisions of firm j as follows: If r < δ, firms j stays out and replenishes inde-

pendently, if rj ≥ δ, it represents time rate of private contribution to the joint

ordering cost.

We denote the vector of messages of the n firms r = (r1, . . . , rn). The set of

firms who selected to participate in joint replenishment are denoted by M(r) =

{i ∈ N | ri ≥ δ}. For M ⊆ N , the tuple rM collects the components of the

vector r that correspond to the coordinates in M .

Players move simultaneously and each decides his message. For any message

profile r, the intermediary selects the lowest cycle time that can be financed with

the aggregate collection from the participating firms
∑

k∈M(r) rk, i.e.,

τ(r) =
κ∑

k∈M(r) rk
. (3.8)

2The assumed bound on δ is tighter than needed for the characterization results we present
to hold. However, assuming weaker bounds amounts to assuming that the intermediary has
more detailed information on the firm-specific details of the replenishment environment, specif-
ically, about the parameter vector α. The bound δ̄ involves minimal information about the
environment, namely, n, κ and α. Furthermore, under weaker bounds, equilibrium characteri-
zation involves complications with many cases and subcases to be considered. If the minimum
contribution δ were to be completely independent of the parameter vector α, one could always
find replenishment environments where, in the unique equilibrium, no firm participates in joint
replenishment.
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Implicit in the intermediary’s decision rule is an assumption regarding the

structure of information held by the firms and the intermediary. The intermediary

cannot make use of firm–specific information beyond the contribution decisions

reported by individual firms. To be able to decide the joint cycle time, she also

needs to know the fixed ordering cost κ, in addition to the private contributions

from the participating firms (and, hence, the set of participating firms).

For given n−tuple of messages r, the outcome is determined as follows: If

rj < δ, firm j replenishes independently, and his cost is Cd
j . All firms in M(r)

replenish together with joint cycle time τ(r) selected by the intermediary, and

firm j ∈M(r) pays rj per unit of time as his contribution to joint replenishment

cost. 3 A participating firm’s replenishment cost rate (Rj) is determined directly

by his private contribution, Rj = rj, while his holding cost rate (Hj) depends on

the joint cycle time, Hj = αjτ(r)/2.

The rules of the private contributions mechanism are common knowledge.

The parameters of the replenishment environment, i.e., the elements of the list

(κ,α,β), are also common knowledge among the firms (but not verifiable).

We can now state the total cost per unit of time for firm j, denoted ϕj, as a

function of the firms’ messages:

ϕj(r) =


√
2καj if rj < δ,

rj +
1
2
αj τ(r) if rj ≥ δ.

(3.9)

Taking other firms’ strategies r−j as given, firm j’s decision problem is

min
rj

ϕj(r),

and his best response function, denoted ρj is

ρj(r−j) = argmin
rj

ϕj(rj, r−j).

3Operationally, the payments for replenishment can be made at the time of the ordering
with firm j ∈ M(z) paying rjτM(z)(r) independent of his order size. Or, firm j can pay a flow
of rj per unit of time without any additional payment at replenishment points.
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A Nash equilibrium is a profile r∗ = (r∗1, . . . , r
∗
n) such that r∗j = ρj(r

∗
−j) for all j ∈

N . A strategy y is said to strictly dominate strategy x for player j if ϕj(y, r−j) <

ϕj(x, r−j) for all (n − 1)−tuple r−j of other players’ strategies. A strategy y is

said to weakly dominate strategy x for player j if ϕj(y, r−j) ≤ ϕj(x, r−j) for all

(n−1)−tuple r−j of other players’ strategies, with strict inequality for at least one

r−j. A strategy x is said to be an undominated strategy for player j if there is no

other strategy that weakly dominates it. A profile of strategies r∗ = (r∗1, . . . , r
∗
m)

is a Nash equilibrium in undominated strategies or undominated Nash equilibrium

(UNE) if r∗j is an undominated strategy for player j.

Substituting the rule that determines the joint cycle time, firm j’s total cost

per unit becomes:

ϕj(r) = ϕj(rj, r−j) =


√
2καj if rj < δ,

rj +
καj

2(rj+
∑

k∈M(r)\{j} rk)
if rj ≥ δ.

(3.10)

Before we proceed, we collect several observations each with simple proofs.

Claim 3.1. For all replenishment environments, any strategy profile r with

M(r) = ∅, that is, rj < δ for all j ∈ N , is a Nash equilibrium.

Proof: Given that other firms are not participating, no strategy r ≥ δ yields a

better cost to a player than the cost he gets from independent replenishment.�

Claim 3.2. If r is a Nash equilibrium, then M(r) ∈ {∅, N}. That is, unless r

yields full participation or no participation, it cannot be a Nash equilibrium.

Proof: Suppose M(r) is a non–empty strict subset of N , and consider a firm

j ∈ N \M(r). Since j /∈ M(r) player’s cost is Cd
j . Let w =

∑
k∈M(r) rk. Since

M(r) ̸= ∅, it must be that w > 0. If player j deviates from rj to R
d
j he gets

ϕj(R
d
j , r−j) = Rd

j +
καj

2(Rd
j + w)

< Rd
j +

καj

2(Rd
j )

= 2Rd
j = Cd

j = ϕj(rj, r−j). (3.11)

where the inequality follows from the fact that w > 0, and subsequent equalities

follow from the facts Rd
j =

√
καj/2 and Cd

j = 2Rd
j .�
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Claim 3.3. Any strategy r̂j < δ is weakly dominated by the strategy r̃j = Rd
j .

Proof: This follows from observing that the cost strategy r̂j yields is exactly

Cd
j =

√
2καj while the strategy r̃j yields a cost that is equal to Cd

j when other

players all stay out of joint replenishment, and a cost that is strictly better in all

other cases. �

Claim 3.4. Any strategy r̂j > Rd
j is strictly dominated by the strategy r̃j = Rd

j .

Proof: Let w =
∑

k∈M(r)\{j} rk. Since ϕj(r, r−j) = Φj(r, w) = r +
καj

2(r+w)
is

strictly convex in r, and since the cross–partial
∂2Φj

∂r∂w
= κα

(r+w)3
> 0, it follows

from the Implicit Function Theorem that r(w) = argminr Φj(r, w) is unique and

strictly decreasing in w. Thus, for w > 0, we get

r(w) < r(0) = Rd
j < r̂j,

which implies, because Φj(r, w) is strictly convex in r, that

Φj(r(w), w) < Φj(R
d
j , w) < Φj(r̂j, w).

Hence Rd
j strictly dominates r̂j. �

From Claims 3.3 and 3.4 it follows that the set of undominated strategies is the

interval [δ, Rd
j ]. From Claims 3.1 and 3.3 it follows that if a Nash equilibrium in

undominated strategies exists, it involves full participation in joint replenishment.

We record these observations in the following proposition.

Proposition 3.1. If r∗ is a Nash equilibrium in undominated strategies, then

1. M(r∗) = N and

2. r∗j ∈ [δ, Rd
j ].

It remains to characterize the finer details of structure of best response func-

tions and the equilibrium contribution levels. The foregoing observations greatly

29



simplify our task in that they allow us to focus on the second–piece of the cost

function and take M(r) = N in the remainder of our investigation. That is,

ρj(r−j) = argmin
rj≥δ

rj +
καj

2(rj +
∑

k∈N\{j} rk)
.

In order to find the best response of firm j, we take the derivative of ϕj(rj, r−j)

with respect to rj and re–arrange terms:

∂ϕj

∂rj
= 1− καj

2(rj +
∑

k∈N\{j} rk)
2
. (3.12)

Solving ∂ϕj/∂rj = 0, and incorporating the minimum contribution requirement,

we get:

ρj(r−j) = max

δ,
√
καj

2
−

∑
k∈N\{j}

rk

 . (3.13)

Rewriting (3.13), we obtain:

ρj(r−j) =

{
Rd

j −
∑

k∈N\{j} rk, if
∑

k∈N\{j} rk ≤ Rd
j − δ,

δ, if
∑

k∈N\{j} rk > Rd
j − δ.

(3.14)

which states that firm j’s best response is to contribute such that the aggregate

contributions are equal to firm j’s stand–alone ordering cost, if the aggregate

contributions of other firms are less than firm j’s stand–alone ordering cost minus

the minimum required amount, and contribute the minimum required amount,

otherwise. If firms in N \ {j} each contributed δ, firm j’s best response would

be to contribute Rd
j − (n− 1)δ leading to an aggregate contribution of Rd

j from n

firms and a cycle time τN = T d
j . Note that Rd

j − (n− 1)δ =
√
καj/2− (n− 1)δ

is strictly larger than δ since δ <
√
κα/2/n ≤

√
κα/2/n and α ≤ αj. For every

dollar of contribution from firms in N \{j}, firm j reduces his contribution dollar

for dollar until he reaches the minimum required contribution.

The first pieces of the piecewise–linear best response functions in (3.14)

have the same slope (i.e., −1) and their intercepts (Rd
j for firm j) are ordered.

Equilibrium lies in the intersection of best response functions (i.e., solution of

rj = ρj(
∑

k∈N\{j} rk) for all j).
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In equilibrium, aggregate contributions must be Rd
n = maxj∈N R

d
j . Otherwise,

if aggregate contributions were such that Rd
n−
∑

j∈N rj = Rd
n−
∑

j∈N\{m} rj−rn =

∆ > 0, firm n would increase his contribution from rn to rn+∆, and using (3.17),

this would lead his total cost to decrease from 2Rd
n+∆2/(Rd

n −∆)−
∑

j∈N\{n} rj

to 2Rd
n −

∑
j∈N\{n} rj.

In the next proposition we provide a complete characterization of the Nash

equilibria in undominated strategies.

Proposition 3.2. In the private contributions joint replenishment game with

δ <
√
κα/2/n:

1. A profile of strategies r∗ = (r∗1, . . . , r
∗
n−ℓ, r

∗
n−ℓ+1, . . . r

∗
n) is a Nash equilibrium

in undominated strategies (UNE) if and only if

(a) r∗j = δ for all j ∈ N \ L(N), and

(b) (r∗n−ℓ+1, . . . r
∗
n) ∈{

x ∈ Rℓ|xi ≥ δ, for i = 1, . . . , ℓ, and
∑

i∈L(N) xi =
√
καn/2− (n− ℓ)δ

}
.

2. The equilibrium is unique if and only if L(N) is a singleton, i.e., if and

only if αn−1 < αn. In the unique equilibrium, r∗j = δ for j = 1, . . . , n − 1

and r∗n = Rd
n − (n− 1)δ.

3. In all equilibria, aggregate contributions and the joint cycle time are unique:

(a) Aggregate contributions:
∑

k∈N r
∗
k =

√
καn/2 = Rd

n

(b) Cycle time: T g
N = τN(r

∗) =
√
2κ/αn = T d

n .

4. Equilibrium aggregate cost rates are also unique:

(a) Aggregate replenishment cost: Rg
N =

∑
k∈N r

∗
k =

√
καn/2 = Rd

n

(b) Aggregate holding cost: Hg
N = (

∑
k∈N αk)

√
κ/2αn

(c) Aggregate total cost: Cg
N =

√
κ/2αn

(
αn +

∑
k∈N αk

)
.

5. In equilibrium firm j faces the following cost rates
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(a) Replenishment cost: Rg
Nj = δ if j ∈ N \ L(N), and Rg

Nj ∈ [δ, Rd
n −

(n− 1)δ] if j ∈ L(N).

(b) Holding cost: Hg
Nj = αj

√
κ/2αn

(c) Total cost: Cg
Nj = δ+αj

√
κ

2αn
if j ∈ N \L(N), and Cg

Nj ∈ [
√
καn/2+

δ,
√
καn/2 +Rd

n − (n− 1)δ] if j ∈ L(N).

Equilibrium cycle time depends on the 2n-vector (α1, ..., αn, λ1, ..., λn) of the

firms’ characteristics only through αn – it is invariant to the number of firms

and to the finer details of the firms’ characteristics as long as αn remains fixed.

Similarly, equilibrium total cost depends only on two statistics, namely αn and∑
k∈N αk, of the firms’ characteristics.

In the absence of a minimum contribution requirement (i.e., if δ = 0), the

order cost is paid by the firms in L(N). If the set L(N) is a singleton, i.e.,

L(N) = {n}, in the unique Nash equilibrium, firm n (the firm with the highest

stand–alone replenishment rate in N) pays κ per order and incurs a total cost

equal to his stand–alone cost. Other firms ride free and enjoy free deliveries.

A free–rider’s equilibrium payoff is better than his stand–alone payoff since he

does not contribute to the ordering cost and the joint cycle time is strictly better

than his stand–alone cycle time. When there are multiple firms with the highest

stand–alone replenishment rate, we have multiple equilibria. In some of these

equilibria, free–riding can be at its extreme – one of the firms in L(N) finances

the entire replenishment cost and others ride free which may also mean that the

small firms leave the bigger share of the ordering cost to the larger firms. In any

equilibrium that involves more than one contributor, all firms are strictly better

off compared to independent replenishment.
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3.4 Two-stage private contributions game for

joint replenishment

Next, we investigate a two–stage model where we separate the participation and

contribution decisions to two stages with the following time line. In stage 1, firms

move simultaneously and each firm decides whether to replenish jointly through

an intermediary or independently. Formally, each firm chooses an action z ∈
{“in”, “out”} where “in” stands for participation in joint replenishment through

the intermediary and “out” stands for replenishing independently. We denote the

vector of first–stage actions of the n firms by z = (z1, . . . , zn), the set of firms who

selected to participate in joint replenishment by M(z) = {i ∈ N | zi = “in”}.

If a firm plays “out” in stage 1, he replenishes independently. In stage 2, the

set of participating firms, M = M(z), becomes common knowledge and firms

in M simultaneously submit their time rate of private contributions to the joint

ordering cost. Firm j’s time rate of private contribution is denoted by rj. Again,

we restrict rj to be at least δ with the same properties as in the previous section.

For any profile r of private contributions submitted by the firms in M , all firms

in M replenish together with joint cycle time τM(r) selected by the intermediary.

Given the contributions r = (r1, . . . , rm) submitted by firms in M , the in-

termediary selects the lowest cycle time that can be financed with the aggregate

collection
∑

k∈M rk, i.e.,

τM(r) =
κ∑

k∈M rk
. (3.15)

Let g(δ) denote the two–stage private contributions joint replenishment game

with minimum contribution δ and let g(δ,M) denote the second stage of the

game with participating firms M . Let NE
(
g(δ,M)

)
be the set of Nash equi-

libria in game g(δ,M). A subgame perfect equilibrium (SPE) (Selten [45]) for

the two–stage game is a profile of strategies (z∗, r∗(M(z)) that induces a Nash

equilibrium in every subgame – including the subgames that are not reached due

to first–stage actions.
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3.4.1 Stage 2: Equilibrium contributions in subgame

g(δ,M)

A participating firm’s replenishment cost rate is determined directly by his private

contribution, Rj = rj, while his holding cost rate depends on the joint cycle time,

Hj = αjτM(r)/2. Hence, total cost per unit of time for firm j, denoted ϕj, as a

function of the private contributions is

ϕj(r) = rj +
1

2
αj τM(r). (3.16)

Let g(δ,M) represent the private contributions joint replenishment game with

minimum contribution δ among participating firms M .

In this section we will use the index set {1, . . . ,m} instead of {i1, . . . , im} for

the set of participating firms M ⊆ N . A participating firm’s replenishment cost

rate is determined directly by his private contribution, Rj = rj, while his holding

cost rate depends on the joint cycle time, Hj = αjτM(r)/2. Hence, total cost per

unit of time for firm j, denoted ϕj, as a function of the private contributions is

ϕj(r) = rj +
1

2
αj τM(r). (3.17)

Taking other firms’ contributions r−j as given, firm j’s optimization problem is

minrj≥δ ϕj(r), and his best response function is ρj(r−j) = argminrj≥δ ϕj(rj, r−j).

A Nash equilibrium is a profile r∗ = (r∗1, . . . , r
∗
m) such that r∗j = ρj(r

∗
−j) for all

j ∈ M . Noting that τM(r) and firm j’s cost depends on r−j only through∑
k∈M\{j} rk, aggregate contributions to joint replenishment from the other firms,

we re–write firm j’s objective function as:

ϕj(rj,
∑

k∈M\{j}

rk) = rj +
καj

2(rj +
∑

k∈M\{j} rk)
. (3.18)

The best response function of this stage is the same as the one–stage game

for N = M . In the next proposition we provide a complete characterization of

the Nash equilibria of the game g(δ,M).

34



Proposition 3.3. In the private contributions joint replenishment game g(δ,M)

with M = {1, . . . ,m} and δ <
√
κα/2/n, the Nash equilibrium NE

(
g(δ,M)

)
is

the Nash equilibrium of the one–stage game with M = N .

Proof: By definition M ̸= ∅. Thus, for any M we can treat this as a one–

stage game where N =M . Thus, the results of the one–stage game when all the

firms participate in the joint replenishment holds here. �

3.4.2 Stage 1: Equilibrium participation

If a firm plays “out” in stage 1, he acts independently and selects his optimal

stand–alone cycle time T d
j and incurs a total cost rate Cd

j =
√

2καj. For a firm

who selects “in”, the payoff depends on the set of other firms who participate in

joint replenishment and on the equilibrium bidding strategies in stage 2. If firm

j is the only firm who selects “in”, in the resulting subgame g(δ, {j}) there is

a unique bidding equilibrium: firm j submits a contribution equal to his stand–

alone replenishment cost Rd
j =

√
καj/2, and incurs a total cost rate Cd

j =
√
2καj.

When there are two or more firms inM but L(M) is a singleton, we have a unique

equilibrium in stage 2. In cases where L(M) has multiple firms, we have multiple

equilibria in stage 2. Although the stage–2 payoff for a player in M \ L(M) is

unique (same in all equilibria), for the players in L(M), the payoff to participation

depends on which of the stage–2 equilibria is expected to be played. Formally,

for j ∈ N , firm j’s payoff in the participation stage is:

Φj(zj, z−j) =

Cd
j if zj = “out”

{ϕj(r) | r ∈ NE
(
g
(
δ,M(z)

))
} if zj = “in”.

(3.19)

In the discussion of first–stage strategies it will be necessary to keep track of

the firm indices more carefully in the set N and in the subsets M(z) and

L(M(z)). Thus, we use subscripted indices M(z) = {i1, .., im−ℓ, im−ℓ+1, .., im},
and L(M(z)) = {im−ℓ+1, .., im}.

Using part 5.(c) of Proposition 3.1, we can write the first–stage game payoffs
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as:

Φj(zj, z−j) =


√

2καj if zj = “out” or M(z) = {j}

δ + αj

√
κ/2αim if j ∈M(z) \ L(M(z))

Φ̂, such that Φ̂ ∈ [Φ,Φ] if j ∈ L(M(z))

(3.20)

where [Φ,Φ] with Φ = δ +
√
καim/2 and Φ =

√
2καim − (m − 1)δ denotes the

closed interval for the second–stage payoffs for firms in L(M(z)) as any value in

this interval can arise as an equilibrium outcome in stage 2.

Proposition 3.4. For private contribution games g(δ) with 0 < δ <
√
κα/2/n,

the strategy profile z∗ = (z∗1 , . . . , z
∗
n), where z∗j = “in” for all j ∈ N , is a

dominant–strategy equilibrium in the participation stage.

3.4.3 Subgame–Perfect Equilibria

The following proposition characterizes the SPE of the two–stage game. We omit

the proof as it is straightforward from Propositions 3.3 and 3.4 above.

Proposition 3.5. Let 0 < δ <
√
κα/2/n in the second–stage private contribu-

tions game. SPE of the two–stage game have the following properties:

1. On the SPE path, all firms participate in stage 1 and play a strategy profile

in NE
(
g(δ,N)

)
in stage 2. SPE path is unique if and only if αn > αn−1.

2. SPE outcomes: Cycle time and aggregate cost rates are unique. Equilibrium

payoffs of individual firms are unique if and only if αn > αn−1. Otherwise,

while the payoffs of firms in {j ∈ N |αj < αn} are unique, equilibrium

payoff for a firm in the set {j ∈ N |αj = αn} varies across equilibrium

plays.

(a) Cycle time: T g
N =

√
2κ/αn.

(b) Aggregate total cost: Cg
N =

√
κ/2αn

(
αn +

∑
k∈N αk

)
.

3. In subgames off the SPE path, firms in M ( N play a strategy profile in

NE
(
g(δ,M)

)
.
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Several remarks are in order on the role of minimum contributions, sub–game

perfection and the two–stage structure of the game. These two features play

complementary roles to reduce the set of outcomes to a unique one with full

participation.

Without subgame perfection refinement, Nash equilibrium outcomes of the

two–stage game include outcomes that involve participation by a strictly proper

subset of the firms. All Nash equilibria that are not subgame–perfect are sup-

ported by non–Nash contribution behavior in the second–stage games that are

not reached. For example, a strategy profile in which all firms stay out in the

participation stage is a Nash equilibrium of the two–stage game. Similarly, one

can obtain an arbitrary strict subset M of N as the Nash equilibrium set of par-

ticipants in the first stage by using second–stage strategies rj = δ for all j ∈ M ′

and for all M ′ ̸=M . With these contribution strategies, the resulting cycle time

κ/(m′δ) would be too large since δ is small and the cost for firm j would be

δ 1
2

καj

m′δ
>
√
2καj i.e., resulting cost would be higher than his stand–alone cost,

Cd
j . Subgame perfection eliminates such Nash equilibria in the two–stage game

by requiring that in every subgame, including the ones not reached, players use

Nash equilibrium strategies.

While a minimum contribution requirement in the contribution stage limits

free–riders’ advantage to some extent, its real significance is due to its role in elim-

inating a plethora of subgame–perfect equilibria in the two–stage game. Among

these equilibria is an equilibrium with no participation in joint replenishment.

In absence of a minimum contribution requirement, at least one firm would be

indifferent between participation and staying out, and we would lose the domi-

nant strategy property of first stage equilibrium. To take an example, consider

environments with strictly ordered αs, i.e., α1 < · · · < αn. For this case, we have

a unique Nash equilibrium in every subgame M ⊆ N , and in this equilibrium,

the firm with the highest α, gets his stand–alone payoff. Firm j is indifferent

between the stage 1 strategies “in” and “out” if the firms in {j + 1, . . . , n} all

choose “out”. Thus, the set of first–stage equilibria have the following form: for

any k ∈ N , firms {1, . . . , k − 1} select “in” and firms {k, . . . , n} select “out”. In

particular, there exists an sub–game perfect equilibrium in which all firms choose
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to stay “out”.

3.5 Comparison of cycle times and aggregate

costs

We can now perform a four–way comparison of cycle times and aggregate total

costs under the four modes of joint replenishment: independent, centralized, and

non–cooperative joint replenishment under the private contribution game and

the direct revelation game studied in MGB. Since both one–stage and two–stage

game has the same equilibrium cycle times and agregate costs we do not consider

them separately.

As noted above, the equilibrium cycle time depends on the details of the re-

plenishment environment only through αn, the maximum of the n αs. Similarly,

equilibrium total cost depends only on two statistics, namely αn and
∑

k∈N αk,

of the firms’ characteristics. For comparisons of cycle times and aggregate costs

we obtain a further simplification. Namely, the comparisons depend on the ratios

θj = αj/
∑

k∈N αk, rather than the levels of the parameters. Note that the order-

ing of these n ratios is the same as that of the αjs, that is, θn = max{θj : j ∈ N}.
Furthermore, θn takes values in the interval [1/n, 1], and the two limits are ob-

tained for n firms with common αs and for n = 1, respectively. In particular,

θn < 1 for n ≥ 2.

Straightforward algebraic manipulations yield the following ordering of the

cycle times under independent, centralized and non–cooperative replenishment:

T d
1 ≥ T d

2 ≥ · · · ≥ T d
n = T g

N = T c
N/
√
θn > T c

N . (3.21)

For comparison of aggregate costs, after similar algebraic manipulations, we get

Cd
N >

((√
θn + 1/

√
θn

)
/2
∑
k∈N

√
θk

)
Cd

N = Cg
N (3.22)

=

(
1

2

)(√
θn + 1/

√
θn

)
Cc

N > Cc
N .
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To explore how the degree of dispersion in firm characteristics affects the ratio

of aggregate cost under cooperative replenishment to that under the participation

ante contribution game, we observe that the ratio

Cg
N

Cc
N

=

(
1

2

)(√
θn + 1/

√
θn

)
is strictly decreasing in θn. Thus, for fixed n, the ratio is largest when the firms

have a common α. In this case, the ratio becomes

Cg
N

Cc
N

=

(
1

2

)(√
n+ 1/

√
n
)
,

which increases indefinitely with the number of firms.

Finally we compare the equilibrium cycle times and total cost rates under the

private contribution game and the MGB direct revelation game for environments

where the MGB game has an equilibrium with full participation. Recall, from

(3.4) above, that full participation under the MGB game requires θn < 2/(2n−1).

Under this restriction, using (3.4)

TMGB
N =

√
2n− 1T c

N =
√
2n− 1

√
θnT

g
n > T g

n

since θn ≥ 1/n > 1/ (2n− 1) for n > 1. The condition for existence of an

equilibrium with full participation under the MGB game yields the following

upper bound:
√
2T g

N > TMGB
N .

To compare the aggregate total cost rates that obtain in the constructive equi-

librium of the MGB game and the undominated Nash equilibrium of the private

contributions game we use (3.6) and (3.22) to get

CMGB
N =

n√
2n− 1

Cc
N =

n√
2n− 1

2√
θn + 1/

√
θn
Cg

N ,

Hence,
CMGB

N

Cg
N

=
2n√
2n− 1

1√
θn + 1/

√
θn
. (3.23)

For fixed n, the right–hand–side of (3.23) is strictly increasing in θn, and, it

reaches its minimum and maximum when θn = 1/n and θn = 2/(2n − 1), re-

spectively. Substituting these values for θn and simplifying we get the following
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bounds:
2n√
2n− 1

1√
n+ 1/

√
n
<

CMGB
N

Cg
N

<
2
√
2n

2n+ 1
. (3.24)

To establish that the lower bound is strictly greater than 1, we note the fact that

x(n) = 2n√
2n−1

1√
n+1/

√
n
is strictly increasing in n and x(2) = 1.0866. Finally, taking

limits of the lower and upper bounds, we find that as n increases indefinitely, the

lower and upper bounds both converge to
√
2. That is, for large n, total cost

under the direct mechanism studied in MGB is more than 40% higher than the

total cost under the private contribution mechanism. We conclude by noting

that the comparisons would be much more dramatic for situations in which the

players’ adjusted demand shares are more dispersed than condition (3.4) allows.

3.6 Concluding Remarks

In this chapter, we consider a non–cooperative private contributions game for

joint replenishment of n firms that operate under an infinite horizon determin-

istic demand model. Firms may replenish independently or participate in joint

replenishment. In case of participation, the firms should decide how much to

contribute to the joint ordering cost. The joint cycle time is determined by an

intermediary as the lowest cycle time that can be achieved using the collected

contributions. We study two variations of this problem: in the single–stage vari-

ant, participation and contribution decisions are made simultaneously, and, in the

two-stage variant, participating firms becomes known at the contribution stage.

We characterize the behavior and outcomes under undominated Nash equilibria

for the one-stage game and subgame-perfect equilibrium for the two-stage game.

Our results show that the joint replenishment is mostly financed by the firm or

group of firms with the highest adjusted demand rate which is the multiplication

of inventory holding cost rate and demand rate and the other firms just pay the

minimum entree fee. However, even this result is better than the MGB result in

most of the cases.

40



In the following chapter, we explore an extension of the model in this chap-

ter to study situations where the firms are asymmetrically informed about each

other’s α values and characterize the Bayesian equilibrium, along with a numer-

ical study that investigates the impact of information asymmetry on equilibrium

contributions.
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Chapter 4

PRIVATE CONTRIBUTIONS

GAME WITH ASYMMETRIC

INFORMATION

4.1 Introduction

An important assumption used in the analysis of non-cooperative games is that

all information is common knowledge. This assumption is used in many of the

articles in supply chain management literature, as well as in Chapter 3. How-

ever, information asymmetries exist in many practical settings due to lack of

communication or incentives of hiding information especially among competing

firms. Neglecting the impact of incomplete information among different parties

may misguide the decision makers in supply chain which would affect the overall

performance of the business. Moreover, the results of the Chapter 3 indicate that

in equilibrium the firm with the highest adjusted demand pays for most of the

replenishment cost (all of it if the minimum contribution is 0). Thus, if a firm

knows that he does not have the highest adjusted demand rate, he tends to ride

free. However, if we have asymmetric information i.e., the firms do not know the

ranking of demands, then we may expect positive contributions from the firms
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with lower adjusted demand rates. Thus, examining the effects of asymmetric

information is important.

We extend the one–stage game in Chapter 3 and introduce private informa-

tion regarding adjusted demand rates. In this case, we assume that the minimum

necessary contribution is 0 to focus only on the role of asymmetric information

where each firm’s adjusted demand can take values from a continuum of types.

Each firm learns its type prior to announcing its contribution level, but does

not reveal this information to other firms. Our solution concept in this case is

Bayesian Nash equilibrium. A Bayesian Nash equilibrium is a Nash equilibrium

where each player, given its type, selects a best response against the average best

responses of the competing players. We show the existence of a pure–strategy

Bayesian Nash equilibrium and derive the necessary equilibrium conditions. In

this case, the gain from the contribution game is due to the fact that more in-

formation about the demand rates is making its way to the joint replenishment

decisions of the intermediary. A numerical study is conducted to show that the

performance of the competitive solution behaves similar to the case of full infor-

mation as n increases, but information asymmetry tends to offer improvements

as n and variability in demand rates increase.

The rest of this chapter is organized as follows. In Section 4.2, we simplify

the model in Chapter 3 for the case of full information and derive the equilibrium

conditions. In Section 4.3, we model the competitive game under asymmetric in-

formation, show the equilibrium existence and derive the equilibrium conditions.

In Section 4.4, we report the findings of a numerical study that compares the full

information and asymmetric information models to the decentralized model. The

proofs for the propositions are contained in the Appendix B.

4.2 Preliminaries

We consider a stylized EOQ environment with a set of firms N = {1, ..., n}
(|N | = n). Each firm is facing a constant deterministic demand with rate βj per
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unit of time. Inventory holding cost rate is γj per unit per unit of time. Major

ordering cost is fixed at κ per order regardless of order size and we assume minor

ordering costs are zero. We define αj = γjβj, which will be convenient in all the

settings that we consider below. We will refer αj as adjusted demand rate. We

assume that αj > 0 to rule out trivial replenishment environments where either

the demand rate or the holding cost rate is zero. We label the firms so that

α1 ≤ α2 ≤ . . . ≤ αn. Let L = {j ∈ N |αj = αn} and ℓ = |L|. We follow the same

notation as the Chapter 3 where we also show the optimal cycle times and total

costs for both independent and centralized models.

We now briefly review the model and results for the competitive game. This

is simply the one–stage game described in Chapter 3 with minimum contribution

δ = 0. The following mechanism is proposed. There is an intermediary who

has a simple role of coordinating the replenishment. Each firm submits a private

contribution rj to the intermediary. This contribution specifies the amount of

money the firm will be paying per unit of time for the joint replenishment service.

Based on these contributions, the intermediary determines the minimum feasible

cycle length. Let r1, r2, ..., rn be the contributions that are submitted by firms.

Then the cycle length that is determined by the intermediary will be

t =
κ∑n

k=1 rk
.

Proposition 3.2 in Chapter 3 can be used in this game by setting δ = 0.

Proposition 4.1. In the private contributions joint replenishment game,

1. A profile of strategies r∗ = (r∗1, . . . , r
∗
n−ℓ, r

∗
n−ℓ+1, . . . r

∗
n) is a NE if and only

if

(a) r∗j = 0 for all j ∈ N \ L, and

(b) (r∗n−ℓ+1, . . . r
∗
n) ∈

{
x ∈ Rℓ |

∑
i∈L xi =

√
καn/2

}
.

2. The equilibrium is unique if and only if L is a singleton, i.e., if and only

if αn−1 < αn. In the unique equilibrium, r∗j = 0 for j = 1, . . . , n − 1 and

r∗n =
√
καn/2.
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3. In all equilibria, aggregate contributions and the joint cycle time are unique:

(a) Aggregate contributions:
∑

j∈N r
∗
j =

√
καn/2 = R d

n

(b) Cycle time: T f =
√
2κ/αn.

4. Equilibrium aggregate cost rates are also unique:

(a) Aggregate replenishment cost: R f =
∑

j∈N r
∗
j =

√
καn/2

(b) Aggregate holding cost: Hf = (
∑

j∈N αj)
√
κ/2αn

(c) Aggregate total cost: Cf =
√
κ/2αn

(
αn +

∑
j∈N αj

)
.

5. In equilibrium firm j faces the following cost rates

(a) Replenishment cost: R f
j = 0 if j ∈ N \ L, and R f

j ∈ [0,
√
καn/2] if

j ∈ L.

(b) Holding cost: Hf
j = αj

√
κ/2αn

(c) Total cost: Cf
j = αj

√
κ/2αn if j ∈ N \L, and Cf

j ∈ [
√
καn/2,

√
2καn]

if j ∈ L.

The proposition gives the equilibrium cycle times and total costs for the non–

cooperative joint replenishment game. Thus, we can move to the non–cooperative

joint replenishment game with asymmetric information.

4.3 Asymmetric Information

We now turn our attention to the case of private information. We assume that

each firm’s adjusted demand rate αj is an independent draw from a common

continuous prior distribution function F with support A = [α, α] with 0 < α <

α < +∞ and density function f . Note that this captures having uncertainty on

demand rate or inventory holding cost rate (given that the other is same across

firms) or on both demand rate and inventory holding cost rate.
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We first review the impact of uncertainty of adjusted demand rates on in-

dependent replenishment, cooperative joint replenishment and non–cooperative

joint replenishment under full information. In the case of independent replenish-

ment, each firm learns its adjusted demand rate (type) prior to determining its

cycle length. This leads to the following expected cycle length, expected aggre-

gate total cost and expected aggregate replenishment cost expressions:

E[T d
j ] =

∫
A

√
2κ/αf(α)dα, ∀j ∈ N,

E[Cd] = n

∫
A

√
2καf(α)dα,

E[Rd] =
1

2
E[Cd].

In the case of joint ordering with cooperation, we assume that adjusted de-

mand rates of all firms are known prior to establishing the joint replenishment

cycle length. Under this assumption, expected joint cycle length, expected ag-

gregate total cost and expected aggregate replenishment cost can be calculated

as follows:

E[T c] =

∫
An

√
2κ∑
j∈N αj

fn(α)dα,

E[Cc] =

∫
An

√
2κ
∑
j∈N

αj f
n(α)dα,

E[Rc] =
1

2
E[Cc]

where An is the nth Cartesian power of the interval A, α = (α1, .., αn) and

fn(α) =
∏

j∈N f(αj).

Under non–cooperative joint replenishment, we adopt the game in Chapter

3 which is briefly reviewed in Section 4.2. First, each firm learns its adjusted

demand rate (type). Then the firms submit their private contributions that spec-

ify their payment rate for the replenishment service. Based on the contributions,

the intermediary determines the minimum cycle length of the joint replenishment

such that would finance the fixed cost κ. Finally, the firms incur their costs ac-

cording to this cycle length. If the firms reveal their types to other firms before
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they disclose their contributions, then we have a full information game. Note

that the equilibrium described in Proposition 4.1 is determined by the largest

adjusted demand rate. Since adjusted demand rates are independent and iden-

tically distributed random variables, this correspond to α(n) = maxj∈N αj , the

largest order statistic. Thus we have the following expressions for the expected

joint cycle length, expected aggregate replenishment cost, and expected aggregate

total cost:

E[T f ] = n

∫
A

√
2κ

α
f(α)[F (α)]n−1dα, (4.1)

E[Rf ] = n

∫
A

√
κα

2
f(α)[F (α)]n−1dα, (4.2)

E[Cf ] = n!

∫ α

α

∫ αn

α

...

∫ α2

α

∑
j∈N

αj

√
κ/2αnf

n(α)dα+ E[Rf ] (4.3)

The expressions in (4.1) and (4.2) are due to the fact that largest order statistic

α(n) has a probability density function equal to nf(α)[F (α)]n−1. The expression

in (4.3) is due to the fact that
∑

j∈N αj

√
κ/2maxj∈N αj =

∑
j∈N α(j)

√
κ/2α(n)

and α(1), α(2), . . . , α(n) have a joint density n!fn(α).

If the firms do not reveal their type, then we have an asymmetric information

game which is the main topic of this chapter. Let rj : A→ Θ be the contribution

function where Θ = [0, r] and rj(αj) is the contribution that firm j makes if its

type is αj. We assume an upper bound r =
√
2κα on the action space since a

contribution level higher than this value gives a payoff worse than the stand–alone

payoff regardless of the replenishment rate realizations. Moreover, we exclude

negative contributions. Then, for a given α the intermediary will set the cycle

length

t(α) =
κ∑n

k=1 rj(αj)
.

Consider a firm j with type αj. Denote r−j(α−j) as the vector of contributions

of the firms except that of firm j under realization α−j. The payoff for firm j

under this realization can be written as

ϕj(rj, r−j, αj,α−j) =
1

2
αjt(αj,α−j) + rj(αj), (4.4)
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and the expected payoff for this firm is

Φj(rj(αj), r−j) =

∫
An−1

ϕ(rj, r−j, αj,α−j)f
n−1(α−j)dα−j

=
1

2
καj

∫
An−1

1∑n
k=1 rj(αj)

fn−1(α−j)dα−j + rj(αj). (4.5)

We establish the existence of a pure–strategy Nash equilibrium with the next

proposition (All proofs are provided in Appendix).

Proposition 4.2. A pure–strategy Bayesian Nash equilibrium exists for the joint

replenishment game under asymmetric information.

The next proposition characterizes the Bayesian Nash equilibrium for the

asymmetric information game.

Proposition 4.3. Any collection of functions (r∗1(α1), r
∗
2(α2), ..., r

∗
n(αn)) that sat-

isfy (4.6) is a Bayesian Nash equilibrium.∫
An−1

1

(r∗1(α1) + r∗2(α2) + ...+ r∗n(αn))2
f n−1(α−j)dα−j =

2

καj
, for all j ∈ N. (4.6)

As stated in Proposition 4.3, finding an equilibrium requires solving n func-

tional equations simultaneously.

The characterization in (4.6) of Proposition 4.3 allows multiple equilibria with

different contribution functions for each player. However, if we restrict ourselves

to symmetric equilibrium, we have the following lemma.

Lemma 4.1. The symmetric Bayesian Nash equilibrium r satisfies the following∫
An−1

1

(r∗(αj) +
∑

i̸=j r
∗(αi))2

f n−1(α−j)dα−j =
2

καj

for all αj. (4.7)

Now consider the symmetric equilibrium r∗. For a given realization α =

(α1, .., αn), the cycle length that is set by the intermediary is given as

T a(α) =
κ∑

j∈N r
∗(αj)

.
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This leads to an aggregate total cost expression as follows

Ca(α) =
1

2

κ
∑

j∈N αj∑
j∈N r

∗(αj)
+
∑
j∈N

r∗(αj).

Therefore expected cycle length, expected replenishment cost, and expected

aggregate total cost rate can be written as:

E[T a] =

∫
An

κ∑
j∈N r

∗(αj)
fn(α) dα,

E[Ra] = n

∫ α

α

r∗(α)f(α)dα, and

E[Ca] =
1

2
κ

∫
An

∑
j∈N αj∑

j∈N r
∗(αj)

fn(α) dα+ E[Ra].

4.4 Numerical Study

We conduct a computational study to understand the impact of competition

and information asymmetry on firm behavior and total costs. We first start

with understanding equilibrium contributions under non–cooperative asymmetric

information game. In Figure 4.1, we assume that the adjusted demand rate α has

a discrete uniform distribution between α = 1 and α = 5. The fixed cost κ = 10.

We consider only the symmetric equilibrium. The figure shows the contribution

of a single firm as a function of its adjusted demand rate when there are 1, 2, 3,

or 4 firms with 1–firm case corresponding to independent ordering.

Clearly, a firm’s contribution increases in equilibrium as its adjusted demand

rate increase regardless of the number of firms participating in joint replenish-

ment. Also, as expected, the firms reduce their contributions as there are more

firms in the joint replenishment. The marginal reductions, as also expected, are

diminishing in the number of firms.

Figure 4.2 shows the impact of asymmetric information on equilibrium under

the same settings when there are 2 firms. The solid line in Figure 4.2 represents

the expected contribution by a firm as a function of its own adjusted demand
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Figure 4.1: Equilibrium contribution vs. demand rate with 1, 2, 3 and 4 firms
under asymmetric information

rate, given that it knows the adjusted demand rates of other firms in the joint

replenishment program (full information). The dotted line shows the equilibrium

contributions under asymmetric information.

2 3 4 5
Α

1

2

3

4

5

r

Asymmetric Info

Full Info

Figure 4.2: The graph of contribution vs. demand rate for two firms under full
and asymmetric information

For lower values of adjusted demand rate, a firm that is not informed about

its rivals’ adjusted demand rates would contribute more than what it would con-

tribute on the average under full information. However, the full information con-

tribution surpass asymmetric information for higher levels of adjusted demand

rate.

Figure 4.3 shows the impact of asymmetric information on equilibrium under
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the same settings for 3 firms. We observe that the rate of increase of contributions

is even higher for 3 firms and for lower adjusted demand values asymmetric

information contributions are closer to full information contributions.

2 3 4 5
Α

1

2

3

4

5

r

Asymmetric Info

Full Info

Figure 4.3: The graph of contribution vs. demand rate for three firms under full
and asymmetric information

In order to understand the impact of competition and information asymmetry

on cycle times, aggregate contributions to replenishment service and aggregate

total costs, we carried out a more detailed study in Table 4.1. We assume that the

adjusted demand rate of each firm is independently and identically distributed

with a discrete uniform distribution in the interval [µ−∆, µ+∆] with 51 points.

The mean µ takes on 3 values, 3, 6 and 9. ∆ takes on various values up to 2/3’s

of the mean. We consider cases with 2, 3, and 4 players. In order to provide

a benchmark, we also show the results for cooperative joint replenishment and

independent ordering. Since cooperative joint replenishment leads to lowest ag-

gregate total costs, we use its expected aggregate replenishment cost, expected

cycle length and expected aggregate total costs in Columns 4-6. of Table 4.1.

Columns 7-9, 10-12, 13-15 show the percentage deviation from the base case,

of independent ordering, non–cooperative joint replenishment under asymmetric

information and non–cooperative joint replenishment under full information, re-

spectively. In Table 4.1 we provide ex–ante performance comparisons, i.e., if Xy

is the performance variable X’s performance under policy y, we report

100× E[Xy]− E[Xc]

E[Xc]
.
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As also demonstrated in Section 3.5, independent ordering leads to higher

cycle times, and higher aggregate costs than cooperative joint ordering. The

gaps increase as the number of firms n increases. Using the results in Section 3.5,

when ∆ = 0, the gap can be represented as
√
n−1 where n denotes the number of

firms. While the mean demand has no effect, increasing the uncertainty (captured

by ∆) reduces the gaps in costs and increases the gap in cycle times.

As expected, under asymmetric information, firms contribute less than what

they would in a cooperative setting. This leads to a cycle length larger than the

cooperative (and optimal) case. As a result, aggregate total costs are also higher.

The gap increases as the number of firms increase. Increasing uncertainty leads

to expected aggregate contributions that are closer to the cooperative case. The

expected aggregate total costs also decline as uncertainty increases. The impact

of (scaled) uncertainty is more pronounced, when the mean demands are larger.

Expected aggregate contributions under full information are larger than those

under the asymmetric information case. This leads to cycle times closer the

cooperative case and a better expected aggregate total cost performance. The

performance of non–cooperative joint ordering under full information compared

to asymmetric information (and compared to cooperative joint ordering) improves

as uncertainty increases.

Figure 4.4: Ex-ante performance of cycle times vs. ∆/µ for n = 2

We can also see the comparison of independent, asymmetric information and

full information ex-ante cycle times with respect to the ∆/µ ratio for 2 and 3
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Figure 4.5: Ex-ante performance of cycle times vs. ∆/µ for n = 3

firm cases in Figures 4.4 and 4.5. These comparisons are given as a percentage of

the efficient cycle times. ∆/µ ratio gives an idea about the variance of the type

distributions. We see that for both figures as ∆/µ increases, the full information

cycle time decreases but asymmetric information cycle time increases.

Figure 4.6: Ex-ante performance of total costs vs. ∆/µ for n = 2

We also compare the expected total cost under independent, full information

and asymmetric information cases in Figures 4.6 and 4.7. The performance of

asymmetric information case is slightly worse than that of the full information

case but both outperforms the independent ordering case. For asymmetric infor-

mation, even though as ∆/µ ratio increases the cycle time increases, we see that

the total cost decreases.
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Figure 4.7: Ex-ante performance of total costs vs. ∆/µ for n = 3

It can be observed both from the table and the figures that the costs for

asymmetric information model are getting closer to optimal as ∆ increases while

in fact cycle time is getting further away from the optimal.

In Table 4.2, we provide interim performance comparisons, i.e., if Xy is the

performance variable X’s performance under policy y, we report

100× E
[
Xy −Xc

Xc

]
.

Figure 4.8: Interim performance of cycle times vs. ∆/µ for n = 2

The results are mostly similar to those obtained in Table 4.1. However, the

uncertainty now has a less pronounced impact on performance gaps. In addition,

while increasing uncertainty consistently leads to better expected aggregate to-

tal cost performance in Table 4.1, this is not the case in Table 4.2. For n = 2,
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Figure 4.9: Interim performance of cycle times vs. ∆/µ for n = 3

increasing uncertainty leads to worse performance for non-cooperative joint re-

plenishment under asymmetric information.

Figures 4.8 and 4.9 show that for asymmetric information contrary to the

ex-ante case, the cycle time decreases as the ∆/µ ratio increases. Moreover,

the cycle time for full information case also decreases and the cycle time for the

independent case increases.

For the total cost comparison shown in Figures 4.10 for the asymmetric infor-

mation case we observe that the total cost slowly increases as the ratio increases.

However, in Figure 4.11 we see that it has a similar structure to ex-ante case but

the decrease in total cost with respect to ∆/µ is slower.

Figure 4.10: Interim performance of total costs vs. ∆/µ for n = 2

55



Figure 4.11: Interim performance of total costs vs. ∆/µ for n = 3

4.5 Concluding Remarks

In this chapter, we extend the game in Chapter 3 to incorporate the asymmetric

information on adjusted demands of the firms. We do not assume any mini-

mum contribution level and consider a one–stage game. Even though low type

firms tend to contribute more, we see that the on average full information costs

are lower than the asymmetric information costs. Moreover, we do not observe

significant improvements in the total contribution levels due to information asym-

metry. Finally, when we increase the variance of the type distribution, we see

that the ex-ante cycle time for asymmetric information increases for the case with

two firms. In both full information and asymmetric information cases, the private

contribution game performs better as the variance increases. However, there is

still a gap between the efficient total costs and the equilibrium total costs.

In the next chapter, the investigate a three–stage game for joint replenishment

where intermediary is also a decision maker and analyze the implications of this

assumption and observe whether the efficient cycle time is attainable in this

setting.
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Table 4.1: Ex-ante Performance Comparisons

Cooperative Independent Non-cooperative AI Non-cooperative FI

n µ ∆ E[Rc] E[Tc] E[Cc] E[Rd] E[Td
j ] E[Cd] E[Ra] E[Ta] E[Ca] E[Rf ] E[Tf ] E[Cf ]

2 3 0 5.477 1.826 10.955 41.42 41.42 41.42 -29.29 41.42 6.07 -29.29 41.42 6.07
0.5 5.474 1.829 10.948 41.34 41.68 41.34 -29.08 41.51 6.05 -27.32 37.64 5.16
1 5.464 1.839 10.928 41.07 42.51 41.07 -28.43 41.78 5.97 -25.41 34.19 4.42
1.5 5.447 1.858 10.893 40.59 44.09 40.59 -27.32 42.29 5.84 -23.53 30.93 3.80
2 5.421 1.888 10.842 39.85 46.93 39.84 -25.74 43.16 5.60 -21.65 27.73 3.28

6 0 7.746 1.291 15.492 41.42 41.42 41.42 -29.29 41.42 6.07 -29.29 41.42 6.07
0.5 7.745 1.292 15.490 41.40 41.49 41.40 -29.24 41.44 6.06 -28.30 39.48 5.59
1 7.741 1.293 15.483 41.34 41.68 41.34 -29.08 41.51 6.04 -27.32 37.64 5.16
1.5 7.735 1.296 15.471 41.23 42.02 41.23 -28.81 41.62 6.02 -26.36 35.88 4.77
2 7.727 1.301 15.454 41.07 42.51 41.07 -28.43 41.78 5.97 -25.41 34.19 4.42
3 7.703 1.314 15.405 40.59 44.09 40.59 -27.32 42.29 5.84 -23.53 30.93 3.80
4 7.666 1.335 15.333 39.84 46.93 39.85 -25.74 43.16 5.60 -21.65 27.73 3.28

9 0 9.487 1.054 18.974 41.42 41.42 41.42 -29.29 41.42 6.07 -29.29 41.42 6.07
0.5 9.486 1.054 18.972 41.41 41.45 41.41 -29.27 41.43 6.06 -28.63 40.11 5.74
1 9.484 1.055 18.969 41.38 41.54 41.38 -29.19 41.46 6.06 -27.97 38.85 5.44
1.5 9.481 1.056 18.962 41.34 41.68 41.34 -29.08 41.51 6.04 -27.32 37.64 5.16
2 9.477 1.058 18.953 41.27 41.89 41.27 -28.91 41.58 6.03 -26.68 36.46 4.90
3 9.464 1.062 18.927 41.07 42.51 41.07 -28.43 41.78 5.97 -25.41 34.19 4.42
4.5 9.434 1.073 18.867 40.59 44.09 40.59 -27.32 42.29 5.84 -23.53 30.93 3.80
6 9.389 1.090 18.779 39.84 46.93 39.85 -25.74 43.16 5.60 -21.65 27.73 3.28

3 3 0 6.708 1.491 13.416 73.20 73.21 73.21 -42.27 73.21 15.47 -42.27 73.21 15.47
0.5 6.706 1.493 13.411 73.07 73.63 73.07 -41.89 73.20 15.38 -39.87 66.32 13.25
1 6.697 1.498 13.395 72.63 74.98 72.63 -40.80 73.20 15.08 -37.56 60.19 11.41
1.5 6.683 1.508 13.367 71.86 77.55 71.86 -39.02 73.20 14.53 -35.30 54.56 9.86
2 6.663 1.523 13.326 70.66 82.13 70.66 -36.77 73.21 13.64 -33.09 49.22 8.56

6 0 9.487 1.054 18.974 73.21 73.21 73.21 -42.27 73.21 15.47 -42.26 73.21 15.47
0.5 9.486 1.054 18.972 73.17 73.31 73.17 -42.17 73.20 15.45 -41.05 69.65 14.30
1 9.483 1.055 18.966 73.06 73.63 73.07 -41.90 73.20 15.38 -39.87 66.32 13.25
1.5 9.478 1.057 18.956 72.89 74.17 72.89 -41.43 73.20 15.26 -38.70 63.18 12.29
2 9.471 1.059 18.943 72.63 74.98 72.63 -40.80 73.20 15.08 -37.56 60.19 11.41
3 9.452 1.066 18.903 71.86 77.55 71.86 -39.02 73.20 14.53 -35.30 54.56 9.86
4 9.423 1.077 18.846 70.66 82.13 70.66 -36.77 73.21 13.64 -33.09 49.22 8.56

9 0 11.619 0.861 23.238 73.21 73.20 73.20 -42.26 73.20 15.47 -42.26 73.20 15.47
0.5 11.618 0.861 23.237 73.19 73.25 73.19 -42.22 73.20 15.46 -41.45 70.81 14.68
1 11.617 0.861 23.234 73.14 73.39 73.14 -42.10 73.20 15.43 -40.65 68.52 13.94
1.5 11.614 0.862 23.229 73.06 73.63 73.06 -41.90 73.21 15.38 -39.87 66.32 13.25
2 11.611 0.863 23.221 72.95 73.97 72.95 -41.61 73.20 15.30 -39.09 64.21 12.60
3 11.600 0.865 23.200 72.63 74.98 72.63 -40.80 73.20 15.08 -37.56 60.19 11.41
4.5 11.576 0.871 23.152 71.86 77.55 71.86 -39.02 73.20 14.53 -35.30 54.56 9.86
6 11.541 0.879 23.082 70.66 82.13 70.66 -36.77 73.21 13.64 -33.09 49.22 8.56

4 3 0 7.746 1.291 15.492 100.00 100.00 100.00 -50.00 100.00 25.00 -50.00 100.00 25.00
0.5 7.744 1.292 15.487 99.81 100.57 99.81 -49.49 99.81 24.79 -47.47 90.38 21.48
1 7.736 1.296 15.472 99.23 102.40 99.23 -48.00 99.22 24.12 -45.05 81.96 18.59
1.5 7.724 1.302 15.448 98.19 105.88 98.19 -45.77 98.15 22.92 -42.71 74.39 16.17
2 7.706 1.312 15.412 96.57 112.11 96.57 -43.36 96.68 21.20 -40.42 67.39 14.13

6 0 10.954 0.913 21.909 100.00 100.00 100.00 -50.00 100.00 25.00 -50.00 100.00 25.00
0.5 10.954 0.913 21.907 99.95 100.14 99.95 -49.87 99.95 24.95 -48.72 95.01 23.15
1 10.951 0.914 21.902 99.81 100.57 99.81 -49.49 99.81 24.79 -47.47 90.38 21.48
1.5 10.947 0.915 21.893 99.57 101.31 99.57 -48.86 99.57 24.51 -46.25 86.05 19.97
2 10.941 0.916 21.881 99.23 102.39 99.23 -48.00 99.22 24.12 -45.05 81.96 18.59
3 10.923 0.921 21.846 98.19 105.88 98.19 -45.77 98.15 22.92 -42.71 74.39 16.17
4 10.898 0.928 21.795 96.57 112.11 96.57 -43.36 96.68 21.20 -40.42 67.39 14.13

9 0 13.416 0.745 26.833 100.00 100.00 100.00 -50.00 100.00 25.00 -50.00 100.00 25.00
0.5 13.416 0.745 26.832 99.98 100.06 99.98 -49.94 99.98 24.98 -49.14 96.63 23.75
1 13.415 0.746 26.829 99.92 100.25 99.92 -49.77 99.92 24.91 -48.30 93.43 22.58
1.5 13.412 0.746 26.824 99.81 100.57 99.81 -49.49 99.81 24.79 -47.47 90.38 21.48
2 13.409 0.747 26.818 99.66 101.03 99.66 -49.09 99.66 24.62 -46.65 87.46 20.46
3 13.399 0.748 26.799 99.23 102.39 99.23 -48.00 99.22 24.12 -45.05 81.96 18.59
4.5 13.378 0.752 26.756 98.19 105.88 98.19 -45.77 98.15 22.92 -42.71 74.39 16.17
6 13.347 0.758 26.694 96.57 112.11 96.57 -43.36 96.67 21.20 -40.42 67.39 14.13
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Table 4.2: Interim Performance Comparisons

Cooperative Independent Non-cooperative AI Non-cooperative FI

n µ ∆ E[Rc] E[Tc] E[Cc] E[Rd] E[Td
j ] E[Cd] E[Ra] E[Ta] E[Ca] E[Rf ] E[Tf ] E[Cf ]

2 3 0 5.477 1.826 10.955 41.42 41.42 41.42 -29.29 41.42 6.07 -29.29 41.42 6.07
0.5 5.474 1.829 10.948 41.34 41.68 41.34 -29.16 41.34 6.09 -27.32 37.64 5.16
1 5.464 1.839 10.928 41.07 42.51 41.07 -28.77 41.07 6.15 -25.39 34.21 4.41
1.5 5.447 1.858 10.893 40.58 44.07 40.58 -28.09 40.59 6.25 -23.46 31.01 3.77
2 5.421 1.888 10.842 39.80 46.83 39.80 -27.08 39.83 6.37 -21.48 27.93 3.22

6 0 7.746 1.291 15.492 41.42 41.42 41.42 -29.29 41.42 6.07 -29.29 41.42 6.07
0.5 7.745 1.292 15.490 41.40 41.49 41.40 -29.26 41.40 6.07 -28.30 39.48 5.59
1 7.741 1.293 15.483 41.34 41.68 41.34 -29.16 41.34 6.09 -27.32 37.64 5.16
1.5 7.735 1.296 15.471 41.23 42.02 41.23 -29.00 41.23 6.11 -26.36 35.89 4.77
2 7.727 1.301 15.454 41.07 42.51 41.07 -28.77 41.07 6.15 -25.39 34.21 4.41
3 7.703 1.314 15.405 40.58 44.07 40.58 -28.09 40.59 6.25 -23.46 31.01 3.77
4 7.666 1.335 15.333 39.80 46.83 39.80 -27.08 39.83 6.37 -21.48 27.93 3.22

9 0 9.487 1.054 18.974 41.42 41.42 41.42 -29.29 41.42 6.07 -29.29 41.42 6.07
0.5 9.486 1.054 18.972 41.41 41.45 41.41 -29.28 41.41 6.07 -28.63 40.11 5.74
1 9.484 1.055 18.969 41.38 41.54 41.38 -29.23 41.38 6.08 -27.97 38.86 5.44
1.5 9.481 1.056 18.962 41.34 41.68 41.34 -29.16 41.34 6.09 -27.32 37.64 5.16
2 9.477 1.058 18.953 41.27 41.89 41.27 -29.06 41.27 6.10 -26.68 36.47 4.89
3 9.464 1.062 18.927 41.07 42.51 41.07 -28.77 41.07 6.15 -25.39 34.21 4.41
4.5 9.434 1.073 18.867 40.58 44.07 40.58 -28.09 40.59 6.25 -23.46 31.01 3.77
6 9.389 1.090 18.779 39.80 46.83 39.80 -27.08 39.83 6.37 -21.48 27.93 3.22

3 3 0 6.708 1.491 13.416 73.21 73.21 73.21 -42.27 73.21 15.47 -42.27 73.21 15.47
0.5 6.706 1.493 13.411 73.06 73.63 73.06 -41.99 72.93 15.47 -39.86 66.34 13.24
1 6.697 1.498 13.395 72.63 74.97 72.63 -41.16 72.06 15.45 -37.52 60.28 11.38
1.5 6.683 1.508 13.367 71.84 77.51 71.84 -39.80 70.55 15.37 -35.20 54.78 9.79
2 6.663 1.523 13.326 70.59 81.97 70.59 -38.07 68.33 15.13 -32.85 49.69 8.42

6 0 9.487 1.054 18.974 73.21 73.21 73.21 -42.27 73.21 15.47 -42.27 73.21 15.47
0.5 9.486 1.054 18.972 73.17 73.31 73.17 -42.20 73.14 15.47 -41.05 69.66 14.30
1 9.483 1.055 18.966 73.06 73.63 73.06 -41.99 72.93 15.47 -39.86 66.34 13.24
1.5 9.478 1.057 18.956 72.89 74.17 72.89 -41.64 72.57 15.46 -38.68 63.23 12.27
2 9.471 1.059 18.943 72.63 74.97 72.63 -41.16 72.06 15.45 -37.52 60.28 11.38
3 9.452 1.066 18.903 71.84 77.51 71.84 -39.80 70.55 15.37 -35.20 54.78 9.79
4 9.423 1.077 18.846 70.59 81.97 70.59 -38.07 68.33 15.13 -32.85 49.69 8.42

9 0 11.619 0.861 23.238 73.21 73.21 73.21 -42.27 73.21 15.47 -42.27 73.21 15.47
0.5 11.618 0.861 23.237 73.19 73.25 73.19 -42.23 73.17 15.47 -41.45 70.81 14.68
1 11.617 0.861 23.234 73.14 73.39 73.14 -42.14 73.08 15.47 -40.65 68.53 13.94
1.5 11.614 0.862 23.229 73.06 73.63 73.06 -41.99 72.93 15.47 -39.86 66.34 13.24
2 11.611 0.863 23.221 72.95 73.97 72.95 -41.77 72.70 15.47 -39.07 64.24 12.59
3 11.600 0.865 23.200 72.63 74.97 72.63 -41.16 72.06 15.45 -37.52 60.28 11.38
4.5 11.576 0.871 23.152 71.84 77.51 71.84 -39.80 70.55 15.37 -35.20 54.78 9.79
6 11.541 0.879 23.082 70.59 81.97 70.59 -38.07 68.33 15.13 -32.85 49.69 8.42

4 3 0 7.746 1.291 15.492 100.00 100.00 100.00 -50.00 100.00 25.00 -50.00 100.00 25.00
0.5 7.744 1.292 15.487 99.81 100.57 99.81 -49.58 99.43 24.93 -47.46 90.41 21.47
1 7.736 1.296 15.472 99.22 102.39 99.22 -48.36 97.71 24.67 -45.01 82.09 18.54
1.5 7.724 1.302 15.448 98.17 105.83 98.17 -46.51 94.77 24.13 -42.59 74.71 16.06
2 7.706 1.312 15.412 96.49 111.90 96.49 -44.53 90.87 23.17 -40.18 68.03 13.92

6 0 10.954 0.913 21.909 100.00 100.00 100.00 -50.00 100.00 25.00 -50.00 100.00 25.00
0.5 10.954 0.913 21.907 99.95 100.14 99.95 -49.89 99.86 24.98 -48.72 95.02 23.15
1 10.951 0.914 21.902 99.81 100.57 99.81 -49.58 99.43 24.93 -47.46 90.41 21.47
1.5 10.947 0.915 21.893 99.57 101.31 99.57 -49.06 98.72 24.83 -46.23 86.12 19.94
2 10.941 0.916 21.881 99.22 102.39 99.22 -48.36 97.71 24.67 -45.01 82.09 18.54
3 10.923 0.921 21.846 98.17 105.83 98.17 -46.51 94.77 24.13 -42.59 74.71 16.06
4 10.898 0.928 21.795 96.49 111.90 96.49 -44.53 90.87 23.17 -40.18 68.03 13.92

9 0 13.416 0.745 26.833 100.00 100.00 100.00 -50.00 100.00 25.00 -50.00 100.00 25.00
0.5 13.416 0.745 26.832 99.98 100.06 99.98 -49.95 99.94 24.99 -49.14 96.63 23.75
1 13.415 0.746 26.829 99.92 100.25 99.92 -49.81 99.75 24.97 -48.30 93.44 22.57
1.5 13.412 0.746 26.824 99.81 100.57 99.81 -49.58 99.43 24.93 -47.46 90.41 21.47
2 13.409 0.747 26.818 99.66 101.03 99.66 -49.26 98.99 24.87 -46.64 87.51 20.44
3 13.399 0.748 26.799 99.22 102.39 99.22 -48.36 97.71 24.67 -45.01 82.09 18.54
4.5 13.378 0.752 26.756 98.17 105.83 98.17 -46.51 94.77 24.13 -42.59 74.71 16.06
6 13.347 0.758 26.694 96.49 111.90 96.49 -44.53 90.87 23.17 -40.18 68.03 13.92
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Chapter 5

A THREE-STAGE GAME FOR

JOINT REPLENISHMENT

WITH PRIVATE

CONTRIBUTIONS

5.1 Introduction

In this chapter we study a three–stage non–cooperative game of joint replen-

ishment where the intermediary is also a decision maker. We follow the same

direction as the other chapters and consider non–cooperative behavior. Our goal

is to understand what the impact of a profit-maximizer intermediary on equilib-

rium behavior is and whether this new approach would lead to equilibrium total

cost levels closer to efficient total cost.

We consider n firms with arbitrary inventory holding cost and demand rates,

which are publicly known by all parties in the game. Each firm bids how much

he is willing to contribute for the replenishment to an intermediary, henceforth

referred to as the “replenishment service provider” (RSP) to prevent confusion
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with the intermediary in the previous chapters which is not a decision maker.

The RSP may be a transportation service provider if the setup costs are due

to transportation, or a manufacturing company if the setup costs are due to

switchovers in manufacturing. The RSP sets the order frequency to maximize her

profits and the firms are allowed to opt out consequently. Since this is a multi-

stage game, we analyze the characteristics of the subgame–perfect equilibrium

outcomes.

In this chapter, we show that the subgame–perfect equilibrium cycle time is

not unique. Additional cycle times – including inefficiently low and inefficiently

high cycle times – can arise as subgame–perfect equilibrium outcomes. Although

the minimum and maximum cycle times that arise in equilibrium straddle the

efficient cycle time, in general, whether efficient cycle time can be reached in

equilibrium depends on the parameters of the joint replenishment environment.

For symmetric joint replenishment environments, whether efficient cycle time is

a subgame–perfect equilibrium outcome depends only on the number of firms –

it is independent of all other parameters of the environment. Furthermore, this

dependence on the number of firms exhibits a highly non–monotone pattern –

e.g. efficient joint replenishment is possible with three firms but not with four

firms; eleven firms cannot cooperate efficiently but twelve firms can, etc. All the

proofs are contained in the Appendix C.

5.2 The Model and Preliminaries

We consider a stylized EOQ environment with a set of firms N = {1, ..., n}.
Demand rate for firm j is constant and deterministic at βj per unit of time.

Time rate of inventory holding cost for firm j is γj per unit. Major ordering

cost is fixed at κ per order regardless of order size. We assume minor ordering

costs are zero. Although each firm is characterized by two parameters (γj, βj),

an alternative representation (αj, βj), obtained by a re–parametrization where

αj = γjβj, will be convenient in all the settings that we consider below. We

assume a strictly positive lower bound α > 0 such that αj ≥ α for all j ∈ N to

60



rule out trivial replenishment environments where either the demand rate or the

holding cost rate is zero.

We investigate a three–stage model where first, the firms simultaneously de-

clare their private contributions for each replenishment cycle. Then, the RSP

selects a cycle time to maximize her profit, and each firm is allowed to opt out

if they are not satisfied with the RSP’s cycle time offer. The time line of the

game is as follows. In stage 1, firms move simultaneously and each firm j ∈ N

announces his private contribution rj. In stage 2, the RSP decides on the cycle

time T that will maximize her profit for given contributions. In stage 3, firms

again move simultaneously and each firm chooses an action ω ∈ {0, 1} where 0

denotes “Out” and 1 denotes “In”. We denote the vector of third–stage actions

of the n firms by ω = (ω1, ω2, ..., ωn). If firm j plays 1 in the third stage, he

accepts the cycle time T and is served by the RSP with cost rj +
1
2
αjT which

the sum of his contribution and the corresponding inventory holding cost. If he

plays 0, he replenishes independently with cost Cd
j =

√
2καj which is the EOQ

or stand–alone cost. We denote the set of firms that choose to be served by the

RSP in stage 3 as M.

Second–stage subgames are parameterized by the vector of contributions r =

(r1, .., rn) that may be selected by the firms in the first stage. Similarly, the third–

stage subgames are parameterized by the actions of the players in the preceding

stages, that is, by (r, T ). We denote firm j’s third–stage strategy as a function

that assigns an action in {0, 1} to every third–stage subgame (r, T ): ωj(r, T ) ∈
{0, 1}. Similarly, a strategy for the RSP specifies a cycle time T (r) for each

second–stage subgame r. A subgame–perfect equilibrium for the three–stage

game is a profile of strategies that induces a Nash equilibrium in every subgame

–including the subgames not reached due to actions taken in previous stages.

We start with some observations on the equilibrium strategies in the third– and

second–stage subgames.
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5.2.1 Stage 3: Participation

In a generic third–stage subgame (r, T ), firm j’s total cost rate, denoted

ψj(r, T,ω), is:

ψj(r, T,ω) =

{ √
2καj if ωj = 0,

rj +
1
2
αjT if ωj = 1.

(5.1)

Once the RSP’s cycle time T is fixed, firm j’s cost rate depends only on his

first–stage contribution rj and his third–stage action ωj. Hence his optimal third–

stage action depends only on rj and the RSP’s cycle time choice T . Suppressing

the obvious dependence on exogenous model variables κ and α, we define

ω∗
j (rj, T ) = 1 ⇔ rj +

1

2
αjT ≤

√
2καj , (5.2)

and

τ ∗j (rj) = max{T | ω∗
j (rj, T ) = 1} = 2

√
2κ

αj

− 2
rj
αj

. (5.3)

By definition, τ ∗j (rj) is the threshold cycle time below which the firm j plays 1

given his price, i.e., ω∗
j (rj, T ) = 1 ⇔ T ≤ τ ∗j (rj)). τ

∗
j (rj) is the highest acceptable

cycle time offer for firm j. Since ψj is non–decreasing with T , any cycle time offer

above τj will be rejected.

Two straightforward properties of firm j’s threshold cycle time, τ ∗j (rj), are

worth noting. First, τ ∗j (0) = 2
√

2κ
αj

= 2T d
j , i.e., twice his stand–alone cycle

time. Thus, firm j’s third–stage response will be “out” if T exceeds 2T d
j . Second,

τ ∗j (rj) < 0 if rj exceeds
√

2καj = 2rdj , i.e., his stand–alone per–unit replenishment

price. Hence, firm j’s optimal third–stage response will also be “out” if his first–

stage contribution rj exceeds 2r
d
j .

To summarize, for all third–stage subgames (r, T ), the equilibrium strategies

are given by the vector ω∗(r, T ) = (ω∗
1(r1, T ), ω

∗
2(r2, T ), ..., ω

∗
n(rn, T )).
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5.2.2 Stage 2: RSP’s cycle time decision

In a second–stage subgame r, the RSP’s profit, denoted by πRSP (r, T,ω), antici-

pating the firms’ optimal behavior in stage 3, is

πRSP (r, T,ω
∗(r, T )) =

n∑
k=1

rkω
∗
k(rk, T )−

κ

T
. (5.4)

which is the sum of all the contributions from the firms accepting the cycle time

offer minus the average serving cost. Thus, the RSP’s optimization problem in

the second–stage subgame r is

max
T

n∑
k=1

rk ω
∗
k(rk, T )−

κ

T
. (5.5)

In equilibrium, the RSP’s optimal cycle time decision in subgame r is

T ∗(r) = argmax
T

n∑
k=1

rk ω
∗
k(rk, T )−

κ

T
. (5.6)

To simplify the explicit characterization of T ∗(r) we introduce a fictitious

player n + 1 with rn+1 = 0, αn+1 = 0, ω∗
n+1(rn+1, T ) = 0, and τ ∗n+1(rn+1) = ∞.

We first note that any finite T that exceeds maxj∈N τ
∗
j (rj) yields zero revenue

for the RSP since all firms stay out in stage 3. Thus such T yields negative

profit for the RSP and it is dominated by τ ∗n+1 which guarantees zero profit.

Second, any T that falls strictly between two consecutive thresholds, say τ ∗i (ri)

and τ ∗j (rj) > τ ∗i (ri), is strictly dominated by τ ∗j (rj) since τ
∗
j (rj) yields the same

revenue as T but costs less than T . Therefore, the RSP selects either one of the

firms’ threshold cycle times as her cycle time and serves all firms with higher

threshold cycle times or selects τ ∗n+1 = ∞ and does not serve any firm. Thus, the

optimal cycle time offer of the RSP in stage 2 given the bids r (the maximizer of

(5.5)) can be written formally as

T ∗(r) = {τ ∗ℓ (rℓ)| ℓ = arg max
j∈{1,...,n+1}

∑
k|τ∗k (rk)≥τ∗j (rj)

rk − κ

τ ∗j (rj)
}. (5.7)

If the RSP is indifferent between several threshold cycle times we assume that

she selects the lowest among these cycle times.
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5.2.3 Stage 1: Private Contribution

In stage 1, each firm j decides on the replenishment bid rj that will minimize his

cost. Stage 1 payoff of firm j taking the equilibrium behavior in later stages into

account becomes:

ψj(rj, r−j) =
1

2
αj T (rj, r−j) + rj =

{ √
2καj if τj(rj) ≤ T (rj, r−j),

1
2
αj T (rj, r−j) + rj if τj(rj) > T (rj, r−j).

(5.8)

By taking the second and third stage responses into account, any first–stage

contribution rj that exceeds 2r
d
j is dominated by rj = 0 for firm j.

Each firm j’s payoff depends on other firms’ bids r−j only through τ−j =

(τ1(r1), .., τj−1(rj−1), τj+1(rj+1), .., τn(rn), τn+1(rn+1)). Given that the RSP’s op-

timal behavior is to select one of τi(ri), i ̸= j or τj(rj), firm j’s best response

problem reduces to selecting a price to induce the RSP to choose a cycle time in

(τj(rj), τ−j) that is best from firm j’s point of view. If rj induces the RSP to

select τj(rj), by definition, firm j’s payoff is his stand–alone payoff.

5.2.4 Subgame–Perfect Equilibrium

We collect the observations above in the following proposition that characterizes

the subgame–perfect equilibria of the three–stage game.

Proposition 5.1. A strategy profile (r∗, T ∗(r),ω∗(r, T )) is a subgame–perfect

equilibrium if and only if the following conditions are satisfied

i. ω∗
j (r, T ) = 1 ⇔ rj +

1
2
αjT ≤

√
2καj , ∀j ∈ N ,

ii. T ∗(r) = {τ ∗ℓ (rℓ)| ℓ = argmaxj
∑

k|τ∗k (rk)≥τ∗j (rj)
r k − κ/τ ∗j (rj)},

iii. (a) ∀ i, j ∈ N such that r∗i > 0 and τ ∗i (r
∗
i ) ≤ 2T d

j
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r∗j +
∑

k ̸=j,τ∗k (r
∗
k)≥τ∗i (r

∗
i )
r∗k

≤ 1
2
αj(τ

∗
i (r

∗
i )− T ∗(r∗)) + κ/τ ∗i (r

∗
i ) if τ ∗i (r

∗
i ) ≥ τ ∗j (r

∗
j ) ≥ T ∗(r∗),

or τ ∗j (r
∗
j ) ≥ T ∗(r∗) ≥ τ ∗i (r

∗
i ),∑

k ̸=j,τ∗k (r
∗
k)≥τ∗i (r

∗
i )
r∗k

≤ 1
2
αjτ

∗
i (r

∗
i )−

√
2καj + κ/τ ∗i (r

∗
i ) if τ ∗j (r

∗
j ) ≤ T ∗(r∗),

(b)
∑

j∈N r
∗
j ω

∗
j (r

∗, T (r∗)) = κ/T ∗(r∗).

Condition iii(b), shows that in equilibrium the RSP makes zero profit (The

RSP serves for a fixed fee). This is straightforward since for any r vector if

the RSP makes a positive profit, then at least one of the firms may reduce his

contribution and still get the same cycle time.

For any firm, inducing his own τ results in the same payoff with the stand–

alone payoff thus he will be indifferent between choosing ”in” or ”out” in the

third stage. However, a firm is forced to induce his own τ if there is no better

alternative i.e., all the other τ levels result in worse payoffs. A firm may induce

the τ of another firm by adjusting his contribution level r however this depends on

the system parameters and the actions of the other players. Thus, in equilibrium

none of the firms should want to change his current τ level and induce a τ other

than the equilibrium. Condition iii(a) guarantees that none of the firms has any

incentive to do so.

A wide range of equilibria is possible under Proposition 5.1. Each equilibrium

involves a “coalition” of firms that accept to be served by the RSP by playing

“In” in stage 3 of the game. Next, we characterize the minimum and maximum

cycle times that can be obtained for a given coalition.

Proposition 5.2. The minimum and maximum SPE cycle times for a given

coalition S are given by

Tmin
S =

√
2κ

∑
j∈S

√
αj −

√
(
∑

j∈S

√
αj)2 −

∑
j∈S αj∑

j∈S αj
, (5.9)

Tmax
S = min

min
j∈S

{
2

√
2κ

αj

}
,
√
2K

∑
j∈S

√
αj +

√
(
∑

j∈S

√
αj)2 −

∑
j∈S αj∑

j∈S αj

 .(5.10)

The minimum equilibrium cycle time in Proposition 5.2 is supported by first
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stage contributions r∗j = 0 for j /∈ S and r∗j =
√

2καj − 1
2
αjT

min
S for j ∈ S.

In particular, for S = {i} we see that Tmin
{i} = T d

i is an SPE outcome. In this

equilibrium, firm i finances the order cost and other firms either ride free or

replenish independently. Similarly, the maximum cycle time is supported as an

SPE outcome by the first stage bids r∗j =
√

2Kαj− 1
2
αjT

max
S for j ∈ S and r∗j = 0

for j /∈ S.

We can now characterize the minimum and maximum SPE cycle times that

can be obtained in Game 2. We define Pk as the set of firms in N with the k

smallest αj where 1 ≤ k ≤ n = |N | (i.e., Pn = N).

Proposition 5.3. The minimum and maximum SPE cycle times that can be

obtained in Game 2 are given by

Tmin =
√
2κ

∑
j∈N

√
αj −

√
(
∑

j∈N
√
αj)2 −

∑
j∈N αj∑

j∈N αj
, (5.11)

Tmax = max
1≤k≤n

√
2κ

∑
j∈Pk

√
αj +

√
(
∑

j∈Pk

√
αj)2 −

∑
j∈Pk

αj∑
j∈Pk

αj

 . (5.12)

Using Γ(N) =
∑

i,j∈N, i ̸=j αiαj, T
min, Tmax

N and T c
N can be written as

Tmin =

√
2κ∑

j∈N αj +
√

2Γ(N)
,

Tmax
N = min

{
2

√
2κ

αn

,

√
2K∑

j∈N αj −
√
2Γ(N)

}
,

T c
N =

√
2κ√∑
j∈N α

2
j

.

Since αj > 0 for all j ∈ N , we have (
∑

j∈N αj)
2 >

∑
j∈N α

2
j . Thus,

∑
j∈N αj−√

2Γ(N) <
√∑

j∈N α
2
j <

∑
j∈N αj+

√
2Γ(N). We also have αn/2 <

√∑
j∈N α

2
j .

Therefore, TC
N is in the interval [Tmin, Tmax

N ]. Since Tmax ≥ Tmax
N , we establish

that TC
N is in the interval [Tmin, Tmax].

The observation above may suggest a conjecture that any cycle time in the

interval [Tmin, Tmax], in particular the efficient cycle time T c
N , can arise as an SPE
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outcome. However, in general, this is not the case; the SPE cycle times do not

form a connected interval and the efficient cycle time may or may not be an SPE

outcome.

We demonstrate this using symmetric joint replenishment environments where

αi = α and βi = β for all i ∈ N . For this setting the efficient, minimum

and maximum SPE cycle times are 1√
n

√
2κ
α
,

√
n−

√
n−1√
n

√
2κ
α
, and

√
n+

√
n−1√
n

√
2κ
α
,

respectively. Asymptotically, both efficient and minimum SPE cycle times go to

zero and the maximum SPE cycle time approaches twice the stand–alone cycle

time.

We seek necessary and sufficient conditions for the efficient cycle time T c
N to

arise as an SPE outcome. In Proposition 5.4, we show that, for symmetric joint

replenishment environments, whether efficient cycle time is a subgame–perfect

equilibrium outcome depends only on the number of firms – it is independent of

all other parameters of the environment.

Proposition 5.4. For all symmetric joint replenishment environments with n

firms, efficient cycle time T c
N is an SPE outcome if and only if

(b(n)−⌊b(n)⌋)(1− 1

2
√
n
)(1+

1

n− ⌊b(n)⌋
)− 1

4(1− b(n)−⌊b(n)⌋
n−⌊b(n)⌋ (1− 1

2
√
n
))

≤ 0, (5.13)

where

b(n) =
n

2
√
n− 1

. (5.14)

Interestingly, this dependence on the number of firms exhibits a highly non–

monotone pattern – e.g. efficient joint replenishment is possible with three firms

but not with four firms; eleven firms cannot cooperate efficiently but twelve firms

can, etc. The set of industry sizes for which efficient joint replenishment arises

as an SPE outcome for n less than 100 is as follows: {2, 3, 12, 13, 14, 15, 30,
31, 32, 33, 34, 35, 56, 57, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 94, 95, 96,

97, 98, 99}. Although the efficient cycle time and minimum SPE cycle time

asymptotically converge, the efficient cycle time is not guaranteed to be an SPE.

For any N such that the T c
N is (respectively, is not) an SPE outcome, there exists

N̂ with |N̂ | > |N | such that T c
N̂

is not (respectively, is) an SPE outcome, i.e.,

SPE property of the efficient cycle time oscillates indefinitely.
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5.3 Concluding Remarks

In this chapter, we considered a three–stage non–cooperative joint replenishment

game where the intermediary is also a decision maker. In the first stage the

firms announce their contribution levels. In the second stage, the intermediary

announces the cycle time he is willing to provide given the contributions and in

the final stage the firms announce whether they will joint the coalition or act

independently. We see that this game leads to many equilibrium cycle times

and a list of conditions that the contributions should satisfy for an equilibrium.

The minimum cycle time that as the result of the equilibrium is smaller than

the efficient cycle time and the maximum cycle time larger than any stand–alone

cycle time of the firms. At the minimum and maximum, all the firms served

by the intermediary have cost levels equal to their stand–alone costs. Moreover,

we show that for the identical firms case, whether the efficient cycle time is an

outcome of the game depends only on the number of firms.

In the next chapter, we consider direct and parametric mechanisms for non–

cooperative joint replenishment.
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Chapter 6

DESIGN AND ANALYSIS OF

MECHANISMS FOR

DECENTRALIZED JOINT

REPLENISHMENT

6.1 Introduction

In the previous chapters we have considered direct contribution schemes for fi-

nancing the setup or transportation costs. The firms announce only a per order

monetary contribution to an intermediary and intermediary decides on the cycle

time. In Chapters 3 and 4 intermediary is not a profit maximizer. In Chapter 5

intermediary is also a player in the game and tries to maximize his profit. We

observed that the first approach never leads to an efficient joint cycle time and

the second approach may lead to an efficient cycle time depending on the number

of firms.

In this chapter, instead of relying on direct contribution methods, we consider

direct and parametric mechanisms that will allocate the setup costs associated
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with the joint replenishment problem and investigate their performance for dif-

ferent parameters.

We generalize the non–cooperative reporting game studied by Meca et al. [34]

(MGB in the sequel) which is embedded in the cooperative joint replenishment

game where stand-alone order frequencies of the firms are observable but not

verifiable. Each firm reports an order frequency (that may be different from its

true order frequency) and the joint order frequency is determined to minimize

the total joint costs based on all the reports. Each firm incurs holding cost

individually and pays a share of the joint replenishment cost in proportion to

the squares of reported order frequencies as in Meca et al. [35]. MGB show

that, while this rule leads to core allocations under cooperative formulations, it

entails significant misreporting and inefficient joint decisions in a non-cooperative

framework. The authors show that the game has multiple equilibria. In one

equilibrium none of the firms participate in joint replenishment. If the firms are

sufficiently homogeneous, there also exists a (unique) “constructive equilibrium”

(an equilibrium in which all firms participate in joint replenishment).

In this chapter, we study the mechanism design problem for the joint re-

plenishment of decentralized firms which have private information about their

adjusted demand rates. We first use a direct mechanism where each firm reports

an adjusted demand rate and joint replenishment cycle time and allocation of the

joint order costs between the firms are decided based on these reports. We show

that a direct mechanism which satisfies the efficiency, incentive compatibility and

individual rationality constraints cannot satisfy the budget–balance constraint,

i.e., a truth telling direct mechanism cannot finance the joint replenishment for

efficient cycle times. Next, we study other mechanisms and generalize the non–

cooperative reporting game studied by MGB where stand-alone order frequencies

of the firms are observable but not verifiable. While the mechanism in MGB

determines the joint order frequency and the order cost allocation both based

on the squares of the reported stand–alone order frequencies, we use a general

formulation in which two separate parameters govern these decisions. For this

two–parameter sharing mechanism, we show that the joint frequency is always

lower than the efficient frequency unless the order cost is allocated uniformly. We
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then study the one-parameter mechanism, where the parameters are same. This

is a generalization of the game considered in MGB which uses a parameter value

2. We find the conditions necessary and for a constructive equilibrium and char-

acterize this equilibrium. We also provide necessary conditions for convexity at

the equilibrium point. We analyze the comparative statics of the one–parameter

model and show that using smaller values of this single parameter leads to bet-

ter mechanisms in terms of fairness and efficiency. All proofs as well as detailed

derivations are contained in the Appendix D.

6.2 The Model and Preliminaries

We consider a stylized EOQ environment with a set of firms N = {1, ..., n}.
Demand rate for firm i is constant and deterministic at βi per unit of time.

Inventory holding cost per unit time for firm i is γi per unit. We denote the

adjusted demand rate of firm i as αi = γiβi. We assume that adjusted demand

rates are strictly positive, αi > 0 for all i ∈ N to rule out trivial replenishment

environments where either the demand rate or the holding cost rate is zero. Major

ordering cost is fixed at κ per order regardless of order size. Minor ordering costs

(ordering costs associated with firms included in an order) are assumed to be

zero. We assume that the outside supplier that replenishes the orders has infinite

capacity. The firms aim to minimize their long–run average costs over time and

backorders are not allowed.

In any setting, the objective is to minimize the total cost rate, denoted by C,

i.e., the sum of replenishment cost rate (R) and holding cost rate (H): C = R+H.

The decision variable can be taken as order cycle time, t, or order frequency,

f = 1/t (number of orders per time unit). We take frequency as the decision

variable in the sequel.

Vectors are denoted by lower–case letters in bold typeface. For a generic

m−tuple vector x = (x1, . . . , xm) and i ∈ {1, . . . ,m}, the notation (y,x−i) stands

for the vector x with its ith entry xi replaced by y, and the (m − 1)-tuple x−i
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stands for the vector x with its ith entry xi removed which in our case includes

all the firms but firm i.

For an endogenous variable X, by Xa
M we refer to the value of X when the set

of firms isM and replenishment operations are governed by a ∈ {c, d, dm, 2p, 1p},
where c stands for centralized, d stands for decentralized (or independent) re-

plenishment, dm stands direct mechanism for joint replenishment, 2p stands for

two–parameter mechanism and 1p stands for the single–parameter mechanism.

For instance, T c
M is the joint cycle time of the firms in M when replenishment is

centralized. When the set M is a singleton, e.g., M = {i}, we use Xa
i instead

of Xa
{j}. Exceptions to this notation are used for fi, the optimal frequency of

the decentralized replenishment for firm i and for f∗, the optimal frequency of

centralized replenishment.

6.2.1 Independent (decentralized) replenishment

When the replenishment of the items is controlled by firms operating indepen-

dently, firm i’s total cost rate (Ci) is the sum of replenishment cost rate (Ri) and

the holding cost rate (Hi):

Ci(f) = Ri(f) +Hi(f) = κf +
αi

2f
. (6.1)

Using the first order condition and convexity, it can be found that firm i’s optimal

frequency is fi =
√
αi/2κ. With this frequency, optimal replenishment cost rate

and optimal inventory holding cost rate are equal at Rd
i = Hd

i = κfi. The

aggregate total cost rate for all firms under independent replenishment is therefore

Cd
N =

∑
i∈N 2κfi.

6.2.2 Centralized joint replenishment

When all firms cooperate, they order with a joint order frequency to achieve the

efficiency. [35] show that when there are no minor setup costs, it is optimal for all
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firms to be replenished in each cycle and this leads to a common order frequency.

Denoting the joint order frequency by f , the total cost under cooperation is given

by

CN(f) = RN(f) +HN(f) = κf +

∑
i∈N αi

2f
= κf + κ

∑
i∈N f

2
i

f
.

Using the first order condition, we obtain the efficient frequency as

f∗ = (f 2
1 + ...+ f 2

n)
1/2

. The efficient total cost is then Cc
N = 2κf∗.

We use the proportional rule of [35] which simply allocates the order costs

based on the proportion of adjusted demand rate of firm i to the sum of adjusted

demand rates. This rule is in the core of the cooperative game. With this

proportional rule, the cost share of firm i is αi/ (α1 + ...+ αn). Since, f 2
i =

αi/(2κ), we can rewrite the cost share as f 2
i / (f

2
1 + ...+ f 2

n). Thus the cost of

firm i under cooperation is given by

Cc
i = 2κ

f 2
i√

f 2
1 + ...+ f 2

n

.

6.3 Direct Mechanisms

We consider the design of a mechanism for the joint replenishment problem. A

mechanism is a specification of how economic decisions should be taken for a set of

players who are privately informed about their preferences based on the messages

they provide to an intermediary. Mechanism design problem usually consists of

three steps. In step 1, the mechanism is designed. In step 2, the players accept

or reject the mechanism. If a firm rejects the mechanism, it gets an exogenously

specified reservation utility. In step 3, the players play the game specified by the

mechanism and economic outcomes and payoffs for each player are determined.

A mechanism is efficient if it maximizes the sum of player’s payoffs. A truth–

telling strategy is to report true information about preferences, for all possible

preferences. A mechanism is incentive compatible if for any player, truth–telling

is a dominant–strategy. A mechanism is individually rational if for any player the

mechanism leads to a payoff that is at least as much as his reservation utility. A
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direct mechanism is a mechanism where each player sends a message regarding

his preference.

We consider designing a mechanism to allocate the jointly incurred setup costs.

We assume that each firm’s adjusted demand rate, αi for firm i, is observable, but

not verifiable. Each firm’s reservation utility is equal to its independent optimal

ordering cost, Cd
i = 2κfi for firm i. We consider a direct mechanism, therefore

firms report their adjusted demand rates simultaneously and the joint cycle time

and the allocation of joint setup costs is accomplished using these reports. An

efficient mechanism for this problem should generate total costs to be equal to

the total costs for the centralized problem, i.e., 2κf∗ where f∗ = (f 2
1 + ...+ f 2

n)
1/2

is the optimal frequency for the centralized problem. A necessary condition for a

mechanism in this setting is budget–balance. This condition requires that the sum

of allocations through the mechanism should finance the joint setup or ordering

cost. The main question that we investigate in this section is whether there is a

direct mechanism for the joint replenishment problem that is efficient, incentive

compatible, individually rational and budget–balanced.

Let α̂i be firm i’s report of its adjusted demand rate (which can be different

from the true adjusted demand rate αi) and let α̂ = (α̂1, α̂2, . . . , α̂n) be the

vector of reported adjusted demand rates. We denote σi(α̂i, α̂−i) to be the setup

cost allocated to firm i if its own reported adjusted demand rate is α̂i and its

competitors’ reported adjusted demand rates are given by the vector α̂−i. Since

firms’ adjusted demand rates are not verifiable, the allocation function should

be identical for all firms, i.e., σi = σ for all i = 1, 2, . . . , n. In this setting, the

allocation function σ alone defines the direct mechanism that we use for the joint

replenishment problem. Since we are pursuing a mechanism to achieve efficiency,

we use
√

2κ∑
i∈N α̂i

for the cycle time. Note that if all the firms report their adjusted

demand rates truthfully i.e. α̂i = αi for all i ∈ N this formulation would give the

efficient cycle time.

The cost of firm i as a function of its own report α̂i and competing firms’
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reports α̂−i can be written as

Cdm
i (α̂i, α̂−i) =

1

2
αi

√
2κ

α̂i +
∑

j ̸=i α̂j

+ σ(α̂i, α̂−i)

√
(α̂i +

∑
j ̸=i α̂j)

2κ

=

√
κ

2
αi(α̂i +

∑
j ̸=i

α̂j)
−1/2 +

√
1

2κ
σ(α̂i, α̂−i)(α̂i +

∑
j ̸=i

α̂j)
1/2.

The first equation on the right hand side is the average inventory holding cost

of firm i which is found by multiplying αi/2 by the joint cycle time calculated

using the reported adjusted demand rates. The second equation is the average

replenishment cost share of firm i which is determined by multiplying the share

function σi(α̂i, α̂−i) by the average order cost.

The next proposition states that does not exist a function σ, thus no direct

mechanism, that simultaneously satisfies the efficiency, incentive compatibility,

individual rationality and budget balance constraints (All proofs are provided in

Appendix).

Proposition 6.1. There is no direct mechanism for the joint replenishment prob-

lem that simultaneously satisfies efficiency, incentive compatibility, individual ra-

tionality and budget balance constraints.

Given this impossibility result for direct mechanisms, we explore alternative

mechanisms and investigate their efficiency in the next two sections.

6.4 Two–Parameter Mechanisms

In the previous section we showed that there is no truth–telling direct mechanism

that can achieve efficiency, individual rationality and budget–balance simultane-

ously. In this section we consider a class of indirect mechanisms and investigate

their ability to reach an efficient outcome. We again assume that adjusted de-

mand rates, thus independent frequencies are observable by all firms, but not

verifiable. We assume that each firm reports a frequency denoted by ŝi for firm
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i and a mechanism determines the joint order frequency and the allocation of

the setup cost based on these reports. We consider a two–parameter mechanism

where one parameter (ξ ≥ 0) governs the joint order frequency decision and an-

other parameters (θ ≥ 0) governs the allocation decision. In particular, the joint

frequency under the two parameter mechanism is
(
ŝξ1 + ...+ ŝξn

)1/ξ
, and replen-

ishment setup cost share of firm i is ŝθi /
(
ŝθ1 + ...+ ŝθn

)
. Since we allocate all of

the setup cost using the parameter ξ, the budget–balance condition is trivially

satisfied for this mechanism.

Using these values we can easily find the total cost rate C2p
i for firm i as

C2p
i (ŝ) =

1

2
αi

(∑
j∈N

ŝ ξ
j

)− 1
ξ

+
κŝ θ

i

(∑
j∈N ŝ

ξ
j

) 1
ξ∑

j∈N ŝ
θ
j

. (6.2)

The first term on the right hand side of (6.2) is the average inventory holding cost

and is found by multiplying adjusted demand rate αi (the demand rate multiplied

by the holding cost rate) by the joint order frequency. The second term is the

time averaged order cost that is allocated to firm i. Note that the cost of firm

i depends on its reported frequency as well as its rivals’. Therefore, we have a

non–cooperative game where each firm’s strategy is its reported frequency and

we can use Nash equilibrium as a solution concept.

In order to find the best response function of firm i to the strategies of other

firms, we obtain the first order condition. Denoting the equilibrium strategy

vector as s = {s1, .., sn}, the first order condition at the equilibrium is given by:

∂C2p
i (ŝ)

∂ŝi

∣∣∣∣
ŝ=s

= −1

2
αis

ξ−1
i

(∑
j∈N

sξj

)− 1
ξ
−1

− κθs2θ−1
i

(∑
j∈N

sξj

) 1
ξ
(∑

j∈N

sθj

)−2

+ κθsθ−1
i

(∑
j∈N

sξj

) 1
ξ
(∑

j∈N

sθj

)−1

+ κsθ+ξ−1
i

(∑
j∈N

sξj

) 1
ξ
−1(∑

j∈N

sθj

)−1

= 0.

We can simplify this equation by multiplying by κ−1s1−θ
i

(∑
j∈N s

θ
j

)2 (∑
j∈N s

ξ
j

)1− 1
ξ

and substituting for f 2
i = αi/2κ which yields

f2
i s

ξ−θ
i

∑
j∈N

sθj

2∑
j∈N

sξj

− 2
ξ

= θ

∑
j∈N

sθj

∑
j∈N

sξj

+ sξi

∑
j∈N

sθj

− θsθi

∑
j∈N

sξj

 .
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By rearranging the terms, we obtain

f2
i = θsθ−ξ

i

∑
j∈N

sθj

−1∑
j∈N

sξj


2+ξ
ξ

+sθi

∑
j∈N

sθj

−1∑
j∈N

sξj

 2
ξ

−θs2θ−ξ
i

∑
j∈N

sξj


2+ξ
ξ
∑

j∈N

sθj

−2

(6.3)

This implicit function gives the equilibrium reported frequencies si, but no fur-

ther simplification is possible and a closed form solution for the equilibrium is

not available. However, we can determine the performance (with respect to its

ability to reach the efficient solution) of the two–parameter mechanism by the

following proposition.

Proposition 6.2. The ratio of the efficient frequency and the equilibrium fre-

quency under the two–parameter mechanism is given by: (
∑

i∈N f
2
i )

1/2(∑
i∈N s

ξ
i

)1/ξ


2

= 1+

(∑
i∈N

sθi

)−2

θ

(
2
∑
i̸=j

sθi s
θ
j +

∑
i̸=j

sθ+ξ
i sθ−ξ

j +
∑

i̸=j,j ̸=k

sθi s
ξ
js

θ−ξ
k

)
.

(6.4)

Proposition 6.2 shows that unless θ = 0, the efficient joint frequency is always

larger than the joint frequency in the constructive equilibrium (if it exists) which

in turn implies that cooperative solutions would give smaller costs for all firms.

This is formally given in the following corollary.

Corollary 6.1. For the two–parameter allocation mechanism, the joint frequency

is always less than the efficient frequency unless the order cost allocation param-

eter θ = 0, i.e., the order cost is allocated uniformly.

However, an equilibrium under a uniform cost allocation is not guaranteed as

we will show next.

A special case: (ξ, θ) = (2, 0)

We consider a two–parameter mechanism with joint frequency parameter as (ξ =

2) and sharing parameter as (θ = 0) which corresponds to a uniform sharing
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(replenishment cost share of firm i = 1/n).

In this case, the payoff for firm i is:

C2p
i (ŝ) =

1

n
κ

(∑
j∈N

ŝ2j

) 1
2

+
αi

2

(∑
j∈N

ŝ2j

)− 1
2

=
κ

n

(∑
j∈N

ŝ2j

) 1
2

+ nf 2
i

(∑
j∈N

ŝ2j

)− 1
2

 .

First order condition for optimal response is:

∂C1p
i (ŝ)

∂ŝi

∣∣∣∣
ŝ=s

=
κsi
n

(∑
j∈N

s2j

)− 1
2

− nf 2
i

(∑
j∈N

s2j

)− 3
2


=

κsi
n

(∑
j∈N

s2j

)− 3
2
(
s2i +

∑
j ̸=i

s2j − nf 2
i

)
= 0.

We obtain the best responses as s2i = nf 2
i −

∑
j ̸=i s

2
j and derive the equilibrium

frequency as ∑
j∈N

s2j = n
∑
j∈N

f 2
j − (n− 1)

∑
j∈N

s2j

⇒
∑
j∈N

s2j =
∑
j∈N

f 2
j

⇒
√∑

j∈N

s2j =

√∑
j∈N

f 2
j

⇒ fξ = f∗,

which is equal to the cooperative joint frequency. However, the major drawback

here is, in order to have an equilibrium, all firms should have the same stand–

alone frequency f since using the best response function of firm i we should have

−
∑

j∈N s
2
j = nf 2

i which is true for all i ∈ N . Otherwise, there is no constructive

equilibrium and each firm replenishes independently.

Since further analysis of the two–parameter mechanisms is not tractable, in

the next section, we explore one parameter mechanisms in detail.

78



6.5 One–Parameter Mechanisms

In this section, we consider a single parameter mechanism where we set the value

of the parameters for determining the joint order frequency and allocating the

ordering costs equal to each other. When we assume that θ = ξ, the resulting

cost function for a given vector of reports ŝ is

C1p
i (ŝ) = κfi

(∑
j∈N

ŝξj

)− 1
ξ

+ κŝξi

(∑
j∈N

ŝξj

) 1
ξ
−1

.

In this case, equation (6.3) simplifies to

f 2
i = ξ

(∑
j∈N

sξj

) 2
ξ

+ sξi (1− ξ)

(∑
j∈N

sξj

) 2
ξ
−1

, (6.5)

and (6.4) can be written as (
∑

i∈N f2
i )

1/2(∑
i∈N sξi

)1/ξ


2

= 1 +

(∑
i∈N

sξi

)−2

ξ

2
∑
i ̸=j

sξi s
ξ
j + (n− 1)

∑
i∈N

s2ξi + 2(n− 2)
∑
i ̸=j

sξi s
ξ
j


= 1 +

(∑
i∈N

sξi

)−2

ξ(n− 1)

∑
i∈N

s2ξi + 2
∑

i,j∈N,i ̸=j

sξi s
ξ
j


= 1 + ξ(n− 1). (6.6)

Denoting the joint frequency in equilibrium fξ =
(∑

i∈N s
ξ
i

)1/ξ
, we obtain

f∗
fξ

=
√
ξ(n− 1) + 1, (6.7)

which shows that the deviation of the equilibrium joint frequency from the ef-

ficient joint frequency depends only on the parameter ξ and n. In particular,

f∗ > fξ for all ξ > 0 and f∗/fξ is an increasing function of ξ. This means that

the one parameter mechanisms are never perfectly efficient in general, but their

efficiency improves as ξ gets smaller.
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Best Response Functions

In order to find the equilibrium allocation in the model, we first obtain the best

response function for firm i. The expression in (6.6) can be written as:( ∑
j∈N f

2
j

ξ(n− 1) + 1

) ξ
2

=
∑
j∈N

sξj . (6.8)

Therefore, the best response of firm i is given by

sξi =

( ∑
j∈N f

2
j

ξ(n− 1) + 1

) ξ
2

−
∑

j∈N\{i}

sξj , for i = 1, . . . , n. (6.9)

Constructive Equilibrium

Clearly, there can be equilibria in which a firm reports 0 and stays out of the joint

replenishment. However, since our focus is efficiency, we are mainly interested in

constructive equilibria where each firm reports a positive frequency.

We can use the best response functions (6.8) in (6.5) and re–arrange the terms

to get the following equality for the equilibrium reports:

sξi =
ξ
∑

j∈N f
2
j − ((n− 1)ξ + 1) f 2

i

((n− 1)ξ + 1) (ξ − 1)

( ∑
j∈N f

2
j

(n− 1)ξ + 1

)ξ/2−1

. (6.10)

If ξ ≥ 1, the argument in (6.10) is positive if and only if ξ
∑

j∈N f
2
j − ((n− 1)ξ + 1)f 2

i ≥ 0.

On the other hand, if ξ < 1, the argument in (6.10) is positive if and only if

ξ
∑

j∈N f
2
j − ((n− 1)ξ + 1)f 2

i < 0. We formalize these conditions in the follow-

ing proposition without proof.

Proposition 6.3. The necessary and sufficient condition for a constructive equi-

librium for the one–parameter mechanism is given by

f 2
i∑

j∈N f
2
j

≤ ξ

(n− 1)ξ + 1
for all i = 1, . . . , n,

80



if ξ ≥ 1, and
f 2
i∑

j∈N f
2
j

>
ξ

(n− 1)ξ + 1
for all i = 1, . . . , n,

if ξ < 1.

Proposition 6.3 shows that the constructive equilibrium exists if firms’ stand–

alone optimal frequencies are close to each other. In fact, one can simplify the con-

ditions in Proposition 6.3 such that the maximum (minimum) frequency among

n frequencies should have a bounded from above (below) for ξ > 1 (ξ < 1). Thus,

instead of n conditions for each case, we can guarantee constructive equilibrium

with only one condition using the following corollary.

Corollary 6.2. The necessary and sufficient condition for a constructive equilib-

rium for the one–parameter mechanism is given by

maxj∈N f
2
j∑

j∈N f
2
j

≤ ξ

(n− 1)ξ + 1
,

if ξ ≥ 1, and
minj∈N f

2
j∑

j∈N f
2
j

>
ξ

(n− 1)ξ + 1
,

if ξ < 1.

Convexity of Payoff Function

In order to show that the the solution in (6.10) is in fact the equilibrium, we

need to show that the payoff function is convex at this point. We provide the

conditions for this in the following proposition.

Proposition 6.4. The cost function is convex at (6.10) and the solution in (6.10)

is a Nash equilibrium if and only if

ξ
∑
j∈N

f 2
j − (ξ − 2) ((n− 1)ξ + 1) f 2

i ≥ 0, for all i = 1, . . . , n. (6.11)

An consequence of this result is that for ξ > 3, we do not have convexity at

the equilibrium point regardless of the frequency distribution and for ξ ≤ 2 we

always have convexity.
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Equilibrium Payoffs

For the single parameter joint replenishment mechanism, the cost of firm i in

equilibrium can be found by using the equilibrium reports s = {s1, .., sn}.

C1p
i (s) = κf 2

i

(∑
j∈N

sξj

)− 1
ξ

+ κsξi

(∑
j∈N

sξj

) 1
ξ
−1

.

In equilibrium, using (6.8) and (6.10):

C1p
i (s) = κf 2

i

( ∑
j∈N f

2
j

(n− 1)ξ + 1

)− 1
2

+ κ
ξ
∑

j∈N f
2
j − ((n− 1)ξ + 1) f 2

i

((n− 1)ξ + 1) (ξ − 1)

( ∑
j∈N f

2
j

(n− 1)ξ + 1

)− 1
2

.

Taking the terms to
(∑

j∈N f2
j

(n−1)ξ+1

)− 1
2

parenthesis and rearranging the terms gives

the equilibrium cost of firm i as:

C1p
i (s) = κ

(
ξ
∑

j∈N f
2
j + (ξ − 2) ((n− 1)ξ + 1) f 2

i

((n− 1)ξ + 1) (ξ − 1)

)( ∑
j∈N f

2
j

(n− 1)ξ + 1

)− 1
2

.

Summing over all the firms, we obtain the total cost as

C1p
N (s) =

∑
j∈N

C1p
j (s) = κ

(
ξn+ (ξ − 2) ((n− 1)ξ + 1)

ξ − 1

)( ∑
j∈N f

2
j

ξ(n− 1) + 1

) 1
2

,

and the cost ratio of firm i is given by

C1p
i (s)

C1p
N (s)

=

(
ξ
∑

j∈N f
2
j + (ξ − 2) ((n− 1)ξ + 1) f 2

i

ξn+ (ξ − 2) ((n− 1)ξ + 1)

)(∑
j∈N

f 2
j

)−1

.

A special case: ξ = 2

A special case of our one–parameter mechanisms is the mechanism used in [34]

where the parameter is ξ = 2. In this case, the necessary and sufficient condition

for a constructive equilibrium given in Proposition 6.3 simplifies to

f 2
i ≤ 2

2n− 3

∑
j ̸=i

f 2
j , for all i = 1, 2, . . . , n.
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as is also shown in Theorem 2 of [34]. The equilibrium joint frequency simplifies

to:

fξ =
1√

2n− 1
f∗ < f∗.

The cost of firm i in this case is:

C1p
i = κ

(
2
∑

j∈N f
2
j

(2(n− 1) + 1)

)( ∑
j∈N f

2
j

2(n− 1) + 1

)− 1
2

= 2κ

( ∑
j∈N f

2
j

2(n− 1) + 1

) 1
2

,

which shows that each firm has the same cost under joint replenishment regardless

of their stand–alone frequencies or adjusted demand rates.

Impact of ξ and Comparative Statics

We now investigate how the equilibrium behavior and efficiency change as a func-

tion of ξ and stand–alone frequencies. For this purpose we obtain the comparative

statics for the game.

First remember that Equation (6.7) states f∗
fξ

=
√
ξ(n− 1) + 1, and therefore

we know that the efficiency of the one parameter mechanism improves as ξ gets

smaller. One can also derive an expression for the difference between reported

frequencies of two firms i, k with fi > fk as follows:

sξi − sξk =
f 2
k − f 2

i

(ξ − 1)

( ∑
j∈N f

2
j

(n− 1)ξ + 1

)ξ/2−1

, (6.12)

which shows that for ξ > 1, we have si < sj. Therefore, the firm with higher

stand–alone frequency reports a lower frequency than a firm with lower stand–

alone frequency. For ξ < 1, the firm with higher stand–alone frequency reports a

higher frequency. A similar expression can be derived for equilibrium cost of two

firms as follows:

C1p
i − C1p

k = κ

(
(ξ − 2)(f 2

i − f 2
k )

(ξ − 1)

)( ∑
j∈N f

2
j

(n− 1)ξ + 1

)− 1
2

. (6.13)
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Equation (6.13) can be used to show that for 1 < ξ < 2, C1p
i < C1p

k , i.e., the

firm with higher stand–alone frequency has a lower equilibrium cost. For 1 < ξ

or ξ > 2, the reverse is true and we have C1p
i > C1p

k .

We demonstrate these results in a test problem with three firms with

(f1, f2, f3)=(0.95, 1, 1.05) in Figures 6.1 and 6.2 as ξ varies between 0 and 3.

Note that the efficient joint frequency for this problem is f ∗ = 1.733. Figure

6.1 shows the equilibrium frequency reports and resulting joint frequency as a

function of ξ. Notice that we have a region of ξ for which there is no constructive

equilibrium.
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fΞ

Figure 6.1: Reported Frequencies and Equilibrium Joint frequency as a function
of ξ for (f1, f2, f3)=(0.95, 1, 1.05)

Corresponding costs (as a percentage of total efficient costs) for each firm

and total costs are shown in Figure 6.2. Since the equilibrium joint frequency ap-

proaches the efficient joint frequency as ξ gets smaller, total costs also approaches

to the efficient total costs in this direction. Also notice that in the first region

of ξ which contains constructive equilibrium (ξ < 1), the equilibrium cost of a

higher stand–alone frequency (or higher adjusted demand rate) firm is always

larger than the equilibrium cost of a firm with a lower stand–alone frequency.

This simple sense of “fairness” is not guaranteed in the second region (ξ > 1).
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Figure 6.2: Equilibrium individual costs and total cost as a percentage of efficient
cost as a function of ξ for (f1, f2, f3)=(0.95, 1, 1.05)

Based on the equations (6.7), (6.12), and (6.13), and Figures 6.1 and 6.2, we

can conclude that, if one can guarantee a constructive equilibrium, using smaller

values of ξ than 2 (as used in [34]) is more desirable from an efficiency and fairness

perspective.

Figures 6.3, 6.4 and 6.5 show equilibrium reported frequencies, individual

firm costs and total costs, respectively, for two other test problems: (f1, f2, f3) =

(0.9, 1, 1.1) and (f1, f2, f3) = (1, 1.05, 1.1). The results are similar to the results

for the first problem, except that the region for which no constructive equilibrium

can be obtained expands (shrinks) as stand–alone frequencies get closer to (further

away from) each other.

It is also important to understand how a firm’s equilibrium frequency report

changes as its own true stand–alone frequency or its competitor’s stand–alone

frequency changes. We can derive the partial derivative of the equilibrium re-

ported frequency of firm i, si with respect to its own stand–alone frequency fi as

follows:

∂si
∂fi

=
fisi
ξ

(
(ξ2 − 2 ((n− 1)ξ + 1))

∑
j∈N f2

j − (ξ − 2) ((n− 1)ξ + 1) f2
i )

ξ
∑

j∈N f2
j − ((n− 1)ξ + 1) f2

i

)∑
j∈N

f2
j

−1

.(6.14)

Similarly, the partial derivative with respect to a rival firm j’s true frequency is

∂si
∂fk

=
fksi
ξ

(
ξ2
∑

j∈N f2
j − (ξ − 2) ((n− 1)ξ + 1) f2

i

ξ
∑

j∈N f2
j − ((n− 1)ξ + 1) f2

i

)∑
j∈N

f2
j

−1

. (6.15)
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Figure 6.3: Reported frequencies as a function of ξ for (f1, f2, f3) = (0.9, 1, 1.1)
and (f1, f2, f3) = (1, 1.05, 1.1)
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Figure 6.4: Equilibrium firms costs as a percentage of efficient cost as a function
of ξ for (f1, f2, f3) = (0.9, 1, 1.1) and (f1, f2, f3) = (1, 1.05, 1.1)

Corresponding changes in equilibrium costs are given by the following

∂C1p
i

∂fi
= κfi

(
(ξ + 2(ξ − 2) ((n− 1)ξ + 1))

∑
j∈N f2

j − (ξ − 2) ((n− 1)ξ + 1) f2
i

((n− 1)ξ + 1)1/2 (ξ − 1)

)∑
j∈N

f2
j

− 3
2

,(6.16)

∂C1p
i

∂fj
= κfj

(
ξ
∑

j∈N f2
j − (ξ − 2) ((n− 1)ξ + 1) f2

i

((n− 1)ξ + 1)
1/2

(ξ − 1)

)∑
j∈N

f2
j

− 3
2

. (6.17)

In Figure 6.6, we compute the comparative statics given in (6.14) and (6.15)

for the test problem with (f1, f2, f3)=(0.95, 1, 1.05). Figure 6.6 shows that when

ξ < 1, the firm should report higher frequencies as its true frequency increases.

This is in contrast to the second region of constructive equilibrium, where the

firm report lower frequency as its true frequency increases. For the same problem,
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Figure 6.5: Equilibrium total cost as a percentage of efficient cost as a function
of ξ for for (f1, f2, f3) = (0.9, 1, 1.1) and (f1, f2, f3) = (1, 1.05, 1.1)
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Figure 6.6: Rate of change of firm 1’s equilibrium reports with f1 and f2 as a
function of ξ for (f1, f2, f3)=(0.95, 1, 1.05)

the comparative statics given in (6.16) and (6.17) are shown in Figure 6.7. Figure

6.7 shows that equilibrium cost for a firm is increasing in its own frequency and

decreasing in its rival’s frequency when ξ < 1 and and the signs are reversed

when ξ > 1. The results in Figures 6.6 and 6.7 confirm that using ξ < 1 leads to

a more desirable mechanism in terms of fairness.

One can also consider the effect of an additional firm, firm n + 1, entering

the joint replenishment, to the reported frequency of firm i. For brevity, we only

consider the difference of the ξth power of the reported frequencies.

sξi (N ∪ {n+ 1})− sξi (N) =
ξ(
∑

j∈N f2
j + f2

n+1)− (nξ + 1) f2
i

(nξ + 1) (ξ − 1)

(∑
j∈N f2

j + f2
n+1

nξ + 1

)ξ/2−1

−
ξ
∑

j∈N f2
j − ((n− 1)ξ + 1) f2

i

((n− 1)ξ + 1) (ξ − 1)

( ∑
j∈N f2

j

(n− 1)ξ + 1

)ξ/2−1

. (6.18)
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Figure 6.7: Rate of change of firm 1’s cost with f1 and f2 as a function of ξ for
(f1, f2, f3)=(0.95, 1, 1.05)

Correspondingly, the change in equilibrium costs can be shown as follows

C1p
i (N ∪ {n+ 1})− C1p

i (N) = κ

(
ξ(
∑

j∈N f2
j + f2

n+1) + (ξ − 2) (nξ + 1) f2
i

(nξ + 1)
1/2

(ξ − 1)

)∑
j∈N

f2
j + f2

n+1

− 1
2

−κ

(
ξ
∑

j∈N f2
j + (ξ − 2) ((n− 1)ξ + 1) f2

i

((n− 1)ξ + 1)
1/2

(ξ − 1)

)∑
j∈N

f2
j

− 1
2

. (6.19)

6.6 Concluding Remarks

In this chapter, we consider jointly replenishing multiple, decentralized firms un-

der an EOQ like environment. We assume that the adjusted demand rates are

observable, but not verifiable and therefore investigate the use of direct and indi-

rect mechanisms to determine a joint replenishment frequency and allocate setup

costs. First, we show that there is no direct mechanism that is efficient, incentive

compatible, individually rational, and budget–balanced. Hence, we explore indi-

rect mechanisms where each firm reports its stand–alone replenishment frequency

and propose general, two–parameter mechanisms in which one parameter governs

the joint frequency decision and the other governs the setup cost allocation. We

show that it is not possible to achieve efficiency unless the setup costs are allo-

cated uniformly. When these two parameters are equal, we derive conditions for
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the constructive equilibrium and characterize the equilibrium and comparative

statics. We show that mechanisms with smaller values of this single parameter

leads to more efficient outcomes and are more defendable in terms of fairness.
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Chapter 7

NEWSBOY DUOPOLY WITH

ASYMMETRIC

INFORMATION

7.1 Introduction

The newsboy problem has played a central role at the conceptual foundations

of stochastic inventory theory, and variants of it have been used in analysis of

decision problems – such as capacity, allocation and overbooking – under demand

uncertainty. In the classical newsboy problem, a firm facing uncertain demand

orders a quantity of a perishable item prior to observing demand. If the de-

mand realization is less than the ordered quantity, then the firm will have excess

inventory in hand that will perish. If demand turns out to be more than the

ordered quantity, then the firm will miss the opportunity of additional profit. In

the well–known characterization, the optimal order quantity, which balances the

marginal expected cost of ordering one more unit against the marginal expected

revenue from satisfying an additional demand, is a critical quantile of the demand

distribution.

In the standard newsboy model, strategic interactions are assumed away by
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taking the demand faced by a firm as a model primitive. In many practical

situations, however, the details of the market interaction does matter for the

order quantity decisions. Some or all of a firm’s unsatisfied demand can be

served by other firms offering substitutes; and, vice versa, a firm may be able

to sell more than its initial market share in case the rival firm is understocked.

Under such conditions, a firm’s payoff depends on rival firms’, as well as its own,

order quantities and appropriate analysis of optimal inventory decisions requires a

game theoretic approach. The resulting model, dubbed the competitive newsboy

model, has been studied in the literature starting with the seminal works of

Parlar [44], who study the case where the firms’ initial demands are statistically

independent, and Lippman and McCradle [30], who study the cases where the

demands faced by competing firms are derived from a general class of rationing

rules applied to the total industry demand.

A natural extension of the competitive newsboy analysis involves incorpo-

rating information asymmetry. Asymmetric information adds a new dimension

to the competitive newsboy problem. Firms may be asymmetrically informed

in a competitive newsboy setting due to two broad reasons. The firms may be

privately informed about their cost and/or revenue structures. Alternatively,

there may be asymmetric information regarding the market demand. Alternative

specifications for the key structural elements – e.g., the nature of information

asymmetry, the structure of the market and firm demands – span a number of

interesting classes of models. Among these are models of newsboy oligopoly, and

models that allow arbitrary statistical dependence in firm demands, and in cost

structures.

In this chapter, we study the competitive newsboy problem with asymmetric

cost information. The competitive newsboy model we study is built on Parlar

[44] and Lippman and McCardle [30]. The industry demand is random. There

are two firms among whom the industry demand is split. Each firm has private

information about their costs. If the demand that is allocated to one firm exceeds

the order quantity of that firm, a portion of the excess demand spills over to the

rival firm. As standard in analysis of games of incomplete information, we use

the Bayesian–Nash equilibrium as the solution concept. In a Bayesian–Nash
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equilibrium each player’s strategy is a best response against the strategies of the

competing players.

The rest of this chapter is organized as follows. In Section 7.2, we review the

related literature. In Section 7.3, we introduce a model of inventory competition

under asymmetric information. Section 7.4 presents our main results on the

characterization of equilibrium and comparative statics analysis. We present the

full characterization of equilibrium in a parametric version of the model under

uniform demand distribution and a linear split rule in Section 7.5. All proofs as

well as detailed derivations are contained in the Appendix E.

7.2 Literature Review

The literature on multiple item inventory problem with substitution dates back

to the paper by Mcgillivray and Silver [33]. However, the role of competition

has not been studied until the pioneering work of Parlar [44]. Parlar studies a

competitive newsboy problem with two firms managing two substitutable items

facing independent demands. A deterministic fraction of unsatisfied demand for

each item can be substituted to the other item, if that item has excess stock. It

is shown that a unique Nash equilibrium exists. It is also shown that total profits

of two competing firms are less than that would have been obtained if they were

to cooperate. [51] and Karjalainen [25] generalize the results of Parlar for the 3

and n firms cases, respectively.

Lippman and McCardle [30] consider the competitive newsboy problem un-

der a general setting with respect to how initial demands are generated and how

excess demand is reallocated. It is assumed that each firm’s initial demand is a

result of an allocation of the industry demand which is a random variable. In

deterministic rules, a specific deterministic function of the industry demand is

allocated to each firm in competition. In stochastic rules, a firm’s initial alloca-

tion depends on the outcome of a random variable (independent demands as in

[44] can be shown to be a special case of stochastic splitting). If a firm’s initial
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demand exceeds its order quantity, a non–decreasing function of the excess de-

mand is reallocated to each other firm. Lippman and McCardle [30] show the

existence of an equilibrium in the general setting. For the case of symmetric

firms and continuous distributions of effective demand for each firm, they also

show the uniqueness of the equilibrium. For the case of two firms, they show that

competition leads to higher inventory in the system.

Netessine and Rudi [41] characterize the equilibrium for the case of n firms

when the initial demands follow a multi–variate continuous distribution and ex-

cess demands spill over fractionally to other firms. The uniqueness of the equi-

librium is shown with further conditions and a comparison of centralized and

competitive order quantities is provided.

Mahajan and Van Ryzin [32] study a model where the firms’ demands are

generated by a dynamic process – heterogeneous consumers arrive sequentially

and choose a vendor based on a utility maximization criterion and availability

at the time of their arrival. They characterize the equilibrium and show its

uniqueness for the case of symmetric firms. They also show that competition

leads to overstocking.

Serin [46] considers the possibility of a Stackelberg game in the competitive

newsboy problem. She considers both Nash equilibrium solutions and Stackelberg

equilibrium solution and gives conditions under which these two lead to the same

inventory levels.

Anupindi and Bassok [3] study the impact of competition and centralization

among two retailers on the performance of a supplier in the upper echelon. Under

the optimal wholesale pricing mechanism, they show that there is a threshold for

the level of substitution, above which the supplier may prefer a decentralized

system.

There are other papers in operations literature where competition carries on

for multiple periods and backordering is possible. In Hall and Porteus [19] and Liu

et al. [31], two firms compete on product availability which impacts the market

share in future periods. However, within each period that is modeled as a newsboy
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problem, no substitution occurs. Netessine et al. [42] model substitution to a

competing firm in the current period as well as backordering in future periods.

We restricted our literature review on the horizontal inventory competition

where the competition is between the parties in the same echelon. There is a

growing body of operations literature where inventory competition takes place

between different echelons in the supply chain (vertical inventory competition).

These models are usually solved using a principal-agent model and menu of con-

tracts that the leader party offers to the follower. Examples include Cachon [7],

Cachon and Zipkin [9], Corbett [11], Zhang et al. [55] and Kostamis and Duenyas

[27].

Jiang et al. [24] consider a horizontal inventory competition setting under

asymmetric demand information. They use an absolute regret minimization ob-

jective from the robust optimization literature. They show the existence of the

equilibrium and give a close form solution. Yan and Zhao [53] also consider

the asymmetric demand information in a decentralized inventory-sharing system

consisting of a manufacturer and two independent retailers.

Our model focuses on horizontal inventory competition model under asym-

metric cost information. In a recent paper, Wu and Parlar [52] study the games

of asymmetric information with inventory management applications. They re-

view static and dynamic games under asymmetric information. They extend the

Parlar [44] model for each different setting they use. They only give the equi-

librium conditions however do not focus on the existence and uniqueness of the

equilibrium. They also do not pursue a detailed investigation of the equilibrium.

Our model in spirit is similar to Parlar [44] and Lippman and McCardle [30].

We extend the model in Lippman and McCardle [30] for the case of non–identical

firms and asymmetric cost information. We show the existence of an equilibrium

and show its uniqueness under fairly general assumptions.

The asymmetric information newsboy duopoly game we study can be trans-

formed to a supermodular game. Supermodular games were first introduced by
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Topkis [48] who show that there exists at least one pure strategy Nash equi-

librium in a full information supermodular game. Milgrom and Roberts [37]

show that a large class of games in economics literature are supermodular and

thus have equilibrium. Supermodularity is also used recently to study games in

operations literature. Examples include [30], [6] and [7]. Vives [50] uses super-

modularity to show the existence of pure strategy Nash equilibrium for compact

action spaces and complete separable metric type spaces. This work is recently

extended by Athey [4] to include a larger class of type and strategy spaces which

satisfy the single crossing condition. Van Zandt and Vives [49] shows the ex-

istence of Bayesian–Nash equilibrium for supermodular asymmetric information

games when type sets are discrete and action sets are continuous. Our model of

asymmetric information newsboy duopoly is an instance of the general class of

incomplete information games studied in [49].

7.3 A Model of Newsboy Duopoly

We consider an industry served by two firms i = 1, 2 that offer two substitutable

items. Throughout, we assume that the two firms are risk–neutral.

7.3.1 Industry and Firm Demands

The total industry demand D is a continuous positive random variable with an

everywhere positive density function g(). Thus, the distribution function G(),

and the survival function G(), where G(x) = 1−G(x) = Pr(D ≥ x), are strictly

monotonic.

As in Lippman and McCardle [30], demand faced by each firm is determined

in a two-step rationing process. First, for any realization, d, of random market

demand, initial market shares of the two firms are determined by a deterministic

function s such that firm 1’s initial market share is s(d) and that of firm 2 is
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ŝ(d) = d−s(d). The share function s satisfies 0 ≤ s(d) ≤ d for all d. To guarantee

that both market shares are non–decreasing in market demand realization, we

assume 0 ≤ s′(d) ≤ 1.

A given initial market share function s induces random demands faced by

firm 1, D1 = s(D), and firm 2, D2 = ŝ(D) = D − s(D). By construction, the

initial demands faced by the two firms, (D1, D2), are comonotonic since both are

deterministic monotone functions of the industry demand.

In the second step, given realized market demand and the order quantities of

the two firms, if firm j is stocked out, then some portion, ai, of firm j’s underage

goes to firm i. Thus, the effective demand Ri for firm i is the sum of initial

allocation and the reallocation:

Ri(Qj) = Di + ai(Dj −Qj)
+.

where (x)+ denotes max{x, 0} and ai ∈ [0, 1] for i = 1, 2 is the demand substi-

tution rate from firm j to i and is assumed to be deterministic. For notational

simplicity, we suppress the dependence of the effective demand on other argu-

ments. The effective demand of firm i, Ri, is a continuous random variable and

its distribution is induced by the distributions of initial demands.

As a first attempt to incorporate private information into the competitive

newsboy problem, we take the two items produced by the two firms as perfect

substitutes: a1 = a2 = 1. Despite obvious reduction in model dimensions and

notational economy that come with this assumption, this is not without loss

of generality. We leave many interesting and important issues related to finer

details of the substitution possibilities to future work. However, our main findings

(equilibrium existence and qualitative features of the equilibrium) are not affected

by this assumption1.

1For example, by taking share functions parameterized by the substitution parameters,
z1(D, a1) = s(D) + a1ŝ(D) and z2(D, a2) = ŝ(D) + a2s(D), the analysis below can be ex-
tended to the more general case.
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7.3.2 Cost and Information Structures

Firm i pays a unit cost for the items that he purchases. We take the type set

of firm i, denoted Ci, as the set of values his unit cost can take. Firm i’s type

is governed by a probability measure pi over Ci. Type distributions of the two

firms are independent. Each firm observes his own cost prior to deciding his order

quantity, but he does not observe the other firm’s cost. From firm j’s perspective,

firm i’s unit cost is a random variable Ci with support Ci and distribution pi.

In this chapter, we focus on the case with discrete type sets. Specifically, the

unit cost of each firm can take one of two values, i.e., Ci = {ciL, ciH} with ciL <

ciH . We assume that firm 1’s unit cost is c1H with probability p1(c1H) = p and c1L

with probability p1(c1L) = 1−p1(c1H) = (1−p ) and firm 2’s unit cost is c2H with

probability p2(c2H) = q and c2L with probability p2(c2L) = 1− p2(c2H) = (1− q).

With appropriate relabeling of the players, we take c1H ≤ c2H .

We assume that salvage prices and back–order costs are 0. (The analysis can

easily be extended to relax this assumption.) We also assume, without loss of

generality, that each firm earns a normalized revenue of 1 per unit of good he

sells. This normalization can be achieved by changing the unit of measurement

for costs. Under this normalization, we have c2H ≤ 1. In fact, all our results

remain unchanged if one were to take per unit revenues, instead of unit costs, as

the source of private information.

Finally, all elements of the model except the cost realizations such as split func-

tion, unit revenues and total market demand distributions are common knowledge

at the time the order quantity decisions are made.

7.3.3 Actions, Strategies and Payoffs

For each player i the order quantities are the action sets, Qi = [0, Qi], where Qi

is the optimal order quantity of firm i assuming that he gets all of the industry
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demand D with the smallest possible value of ci. Finally, firm i’s expected payoff

is Πi : Q× C → ℜ where C = C1 × C2 and Q = Q1 ×Q2.

A pure strategy for player i is a function which maps his type into his action

set, Qi : Ci → Qi where Qi(ci) is the strategy choice for type ci of player i. Player

i’s interim2 expected payoff Πi is his expected profit conditional on his realized

type ci and order quantity Q, when his rival follows the strategy Qj():

Πi(ci, Q) = ECj
[πi(Q,Qj(Cj), ci)] =

∑
cj∈Cj

pj(cj)πi(Q,Qj(cj), ci),

where, conditional on Cj = cj,

πi(Q,Qj(cj), ci) = ERi(Qj(cj))

[
min{Ri(Qj(cj)), Q}

]
− ciQ

is the player’s ex post profit when his unit cost is ci and his order quantity Q.

7.4 Equilibrium Order Quantities

A strategy profile Q∗ = (Q∗
1(), Q

∗
2()) is a Bayesian–Nash equilibrium if, for each

player i, and each type ci ∈ Ci of player i,

Q∗
i (ci) ∈ arg max

Q∈Qi

∑
cj∈Cj

pj(cj)πi(Q,Qj(cj), ci).

Let QiL = Qi(ciL) be the order quantity of player i if his cost is ciL and

let QiH = Qi(ciH) be the order quantity of player i if his cost is ciH . Let

(Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) denote a Bayesian–Nash equilibrium. Interim expected

2The terms ex ante, interim and ex post refer to conditioning with respect to the realizations
of firm types. Throughout, demand remains uncertain. That is, no new information becomes
available about market demand, and, thus, all expressions are ex ante with respect to demand.
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payoffs conditional on own cost realizations are:

Π1(c1L, Q1L) = q E[min{R1(Q2H), Q1L}] + (1− q)E[min{R1(Q2L), Q1L}]− c1LQ1L,

Π1(c1H , Q1H) = q E[min{R1(Q2H), Q1H}] + (1− q)E[min{R1(Q2L), Q1H}]− c1HQ1H ,

Π2(c2L, Q2L) = pE[min{R2(Q1H), Q2L}] + (1− p)E[min{R2(Q1L), Q2L}]− c2LQ2L,

Π2(c2H , Q2H) = pE[min{R2(Q1H), Q2H}] + (1− q)E[min{R2(Q1L), Q2H}]− c2HQ2H .

A standard property used in newsboy models is that ∂ER[min{R,Q}]/∂Q =

Pr(R ≥ Q). Thus, taking the derivative of each type’s payoff with respect to

his action, the Bayesian–Nash equilibrium order quantities (Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H)

satisfy the following conditions:

q Pr(R1(Q2H) ≥ Q1L) + (1− q)Pr(R1(Q2L) ≥ Q1L)− c1L = 0, (7.1)

q Pr(R1(Q2H) ≥ Q1H) + (1− q)Pr(R1(Q2L) ≥ Q1H)− c1H = 0, (7.2)

pPr(R2(Q1H) ≥ Q2L) + (1− p)Pr(R2(Q1L) ≥ Q2L)− c2L = 0, (7.3)

pPr(R2(Q1H) ≥ Q2H) + (1− p)Pr(R2(Q1L) ≥ Q2H)− c2H = 0. (7.4)

7.4.1 Equilibrium Existence

Van Zandt and Vives [49] show the existence of Bayesian–Nash equilibrium for

supermodular asymmetric information games when type sets are discrete and

action sets are continua. Our model of asymmetric information newsboy duopoly

is an instance of the general class of incomplete information games studied in Van

Zandt and Vives [49]. To establish the existence of pure strategy equilibrium we

verify that the equilibrium existence conditions in Van Zandt and Vives [49]

are satisfied in our setting. These conditions are: (i) the payoff function πi is

supermodular in Qi, (ii) it has increasing differences in (Qi, Qj), and (iii) it has

increasing differences in (Qi, ti), where ti = −ci.

Theorem 7.1. A pure strategy Nash equilibrium exists for the newsboy duopoly

game with asymmetric information.

Equilibrium exists under more general assumptions than we make. For in-

stance, the theorem above is valid for arbitrary type sets, not only discrete types
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since the existence theorem in Van Zandt and Vives [49] can be generalized for

any type set. Furthermore, as noted by Lippman and McCardle [30] in their

model of complete information, the existence of equilibrium does not require any

assumption on the split functions, or on the joint distribution of the initial de-

mands.

7.4.2 Preliminary Observations on the Equilibrium

In characterizing the structure of equilibrium, some preliminary remarks will be

useful. We start with some observations on the best response functions. We

then examine optimal order quantities in the absence of strategic interactions to

establish a baseline.

Our first claim exploits the assumption that the split functions s(·) and ŝ(·)
are deterministic and increasing, thus invertible.

Claim 7.1. min{s−1(x), ŝ−1(y)} ≤ x+ y ≤ max{s−1(x), ŝ−1(y)}.

The best response functions of the two types of firm 1, (Q∗
1L(Q2L, Q2H), Q

∗
1H(Q2L, Q2H)),

and those of firm 2, (Q∗
2L(Q1L, Q1H), Q

∗
2H(Q1L, Q1H)), solve:

q Pr(R1(Q2H) ≥ Q∗
1L) + (1− q)Pr(R1(Q2L) ≥ Q∗

1L)− c1L = 0,

q Pr(R1(Q2H) ≥ Q∗
1H) + (1− q)Pr(R1(Q2L) ≥ Q∗

1H)− c1H = 0,

p Pr(R2(Q1H) ≥ Q∗
2L) + (1− p)Pr(R2(Q1L) ≥ Q∗

2L)− c2L = 0,

p Pr(R2(Q1H) ≥ Q∗
2H) + (1− p)Pr(R2(Q1L) ≥ Q∗

2H)− c2H = 0.

Since Ri(Q) and, hence, Pr(Ri(Q) ≥ Qi) are non–increasing in Q, best response

functions for both types of both players are non–increasing in both arguments.

Stand–alone order quantities in the absence of competitive interactions will

play a useful role as a baseline. We denote by (Qo
1L, Q

o
1H , Q

o
2L, Q

o
2H) the vector

of optimal order quantities for the case with no spillovers (i.e., no competitive

interaction).
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Lemma 7.1. The vector of stand–alone order quantities (Qo
1L, Q

o
1H , Q

o
2L, Q

o
2H) is

the unique solution to the system of equations:

Pr(D1 ≥ Q1L) = c1L, P r(D1 ≥ Q1H) = c1H ,

P r(D2 ≥ Q2L) = c2L, P r(D2 ≥ Q2H) = c2H .

The ranking of optimal order quantities of the two types of a player is straight-

forward – the higher a firms’ unit cost the lower his stand–alone order quantity:

Qo
1L ≥ Qo

1H and Qo
2L ≥ Qo

2H .

In contrast, comparison of the order quantities across firms is complicated by

the fact that relative rankings of the firms’ market shares and unit costs are not a

priori restricted. In general, depending on the relative orderings of market shares

and unit costs, all rankings of the four order quantities (Qo
1L, Q

o
1H , Q

o
2L, Q

o
2H) that

are compatible with the orderings Qo
1L ≥ Qo

1H and Qo
2L ≥ Qo

2H are possible.

One needs further assumptions on market shares and unit costs to be able to

rank the stand–alone order quantities of the two firms. For example, if unit costs

and initial market shares are perfectly negatively correlated (so that the initial

market share of the firm with the lower unit cost exceeds that of the firm with

higher unit cost for all demand realizations) then stand–alone order quantities

are ordered in the same way as initial market shares.

Note, on the other hand, that stock–out levels, (Pr(Di ≥ Qo
ix) : i ∈ {1, 2}, x ∈

{L,H}), are ordered the same way as the unit costs. This simple observation,

combined with our assumption that initial demands of the two firms are mono-

tone functions of a common market demand, allows a complete ordering of the

transformed order quantities:

Claim 7.2. For x, y ∈ {L,H}, c1x ≤ c2y if and only if s−1(Qo
1x) ≥ ŝ−1(Qo

2y).
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Returning to the analysis of the equilibrium conditions, we first note an ob-

servation on the stock–out probability of firm i with order level Qi. For firm 1:

Pr(R1(Q2) ≥ Q1) = Pr(D1 + (D2 −Q2)
+ ≥ Q1)

= Pr(s(D) + (ŝ(D)−Q2)
+ ≥ Q1)

= Pr(D ≥ ŝ−1(Q2), D ≥ Q1 +Q2) + Pr(D ≤ ŝ−1(Q2), D ≥ s−1(Q1)).

Similarly, for firm 2:

Pr(R2(Q1) ≥ Q2) = Pr(D2 + (D1 −Q1)
+ ≥ Q2)

= Pr(ŝ(D) + (s(D)−Q1)
+ ≥ Q2)

= Pr(D ≥ s−1(Q1), D ≥ Q2 +Q1) + Pr(D ≤ s−1(Q1), D ≥ ŝ−1(Q2)).

Second, we observe that low–cost type of each player orders a larger quantity

than his high–cost type in equilibrium.

Claim 7.3. (i) Q∗
1L > Q∗

1H , (ii) Q
∗
2L > Q∗

2H .

Using stand–alone order quantities as a baseline, the next claim shows that

order quantities strictly less than the stand–alone order quantities are dominated.

Thus, presence of spillovers leads to order quantities that are no less than the

order quantities without spillovers. This means that competition does not lead

to a decrease in total industry inventory.

Claim 7.4. (i) Q∗
1L ≥ Qo

1L, (ii) Q
∗
1H ≥ Qo

1H , (iii) Q
∗
2L ≥ Qo

2L, (iv) Q
∗
2H ≥ Qo

2H .

The following lemma identifies a useful boundary condition that ties the equi-

librium order quantity of one of the players to the stand–alone order quantity for

the high–cost type of that player.

Lemma 7.2. In a Bayesian–Nash equilibrium either (i) Q∗
2H = Qo

2H or (ii)

Q∗
1H = Qo

1H .

Next, equilibrium order quantities of high–cost types of the two firms are

ordered up to transformation by initial market shares:
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Lemma 7.3. If c1H ≤ c2H , then s
−1(Q∗

1H) ≥ ŝ−1(Q∗
2H).

Finally, in equilibrium, the firm with highest possible unit cost orders his

optimal quantity under no competition.

Lemma 7.4. If c1H ≤ c2H , then Q
∗
2H = Qo

2H = ŝ(G
−1
(c2H)).

When c1H = c2H , high–cost types of both firms order their optimal quantities

under no competition, i.e., Q∗
2H = Qo

2H and Q∗
1H = Qo

1H .

As a final observation, we note that the best response function of the second

firm’s high–cost type is flat at its stand–alone level when the order quantities of

the first firm’s two types exceed their respective stand–alone levels:

Lemma 7.5. For c1H ≤ c2H , Q
∗
2H(x, y) = Qo

2H for all (x, y) ≥ (Qo
1L, Q

o
1H).

7.4.3 Structure of the Equilibrium

Summarizing the observations in the previous sub–section, under the player la-

beling with c1H ≤ c2H , the conditions for equilibrium can be stated as follows:

q Pr(R1(ŝ(G
−1
(c2H))) ≥ Q∗

1L) + (1− q)Pr(R1(Q
∗
2L) ≥ Q∗

1L) = c1L,

q Pr(R1(ŝ(G
−1
(c2H))) ≥ Q∗

1H) + (1− q)Pr(R1(Q
∗
2L) ≥ Q∗

1H) = c1H ,

p Pr(R2(Q
∗
1H) ≥ Q∗

2L) + (1− p)Pr(R2(Q
∗
1L) ≥ Q∗

2L) = c2L,

Q∗
2H = ŝ(G

−1
(c2H)).

We can now state the main theorem of this chapter that characterizes the

structure of equilibrium order quantities.
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Theorem 7.2. Assume, without loss of generality, that c1H ≤ c2H .

(Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) is a Bayesian–Nash equilibrium if and only if

1) Q∗
2H = ŝ(G

−1
(c2H))

2) Q∗
1L,Q

∗
1H and Q∗

2L satisfy one of the following sets of conditions:

(i) q G(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q) G(s−1(Q∗

1L)) = c1L (i1)

q G(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q) G(s−1(Q∗

1H)) = c1H (i2)

p G(Q∗
2L +Q∗

1H) + (1− p) G(Q∗
2L +Q∗

1L) = c2L (i3)

ŝ−1(Q∗
2L) ≥ s−1(Q∗

1L) (i4)

(ii) q G(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q) G(Q∗

2L +Q∗
1L) = c1L (ii1)

q G(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q) G(s−1(Q∗

1H)) = c1H (ii2)

p G(Q∗
2L +Q∗

1H) + (1− p) G(ŝ−1(Q∗
2L)) = c2L (ii3)

s−1(Q∗
1L) > ŝ−1(Q∗

2L) ≥ (s−1(Q∗
1H) (ii4)

(iii) q G(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q) G(Q∗

1L + ŝ(G
−1
(c2L))) = c1L (iii1)

q G(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q) G(Q∗

1H + ŝ(G
−1
(c2L))) = c1H (iii2)

Q∗
2L = ŝ(G

−1
(c2L)) (iii3)

s−1(Q∗
1H) > ŝ−1(Q∗

2L) (iii4)

Before we proceed with discussion of properties of the equilibrium, we first

show that it is unique.

104



Theorem 7.3. The vector of order quantities (Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) in Theorem

7.2 is unique.

Uniqueness of solutions for each block of equations is a straightforward con-

sequence of the continuity of the demand distribution. To establish uniqueness

of the equilibrium, we rule out the possibility that the two or more blocks of

equations may have solutions that also satisfy the corresponding inequality. This

is done in the Appendix E.4.

A notable pattern in the equilibria across the model space is the recursive

structure of the order quantities. This pattern greatly simplifies the computation

of equilibrium order quantities. The order quantity of the player type with highest

unit cost is determined based on the demand distribution, the split function and

his unit cost, independently of other parameters of the game. The remaining

equilibrium quantities are obtained recursively. At each step, substituting for the

previously computed equilibrium values, a single equation is solved for a single

unknown equilibrium quantity. For example if an equilibrium satisfying the first

block can be solved recursively by solving first Q∗
1L from (i1) and Q

∗
1H from (i2),

since they are the only variables in those equations, and then solving Q∗
2L from

(i3) using the values of Q∗
1L and Q∗

1H .

The recursive pattern of the equilibrium quantities reflect the fact that the

equilibrium is partially dominance–solvable, which in turn is a consequence of

the supermodular structure of the game. By Claim 4 above, any quantity strictly

less than the stand–alone order quantity is strictly dominated by the stand–alone

order quantity for every type. Given this fact and Lemma 5, order quantities

strictly greater than the stand–alone order quantity are also dominated by the

stand–alone order quantity for the highest cost type (c2H). Thus, a two–step

reasoning pins the equilibrium behavior of the highest cost type.
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7.4.4 Special Cases

In this sub–section we consider several corollaries of Theorem 7.2 for special cases

of the general model. Corollary 7.1 considers a model with ex ante symmetric

cost structures without restricting the initial market shares. Corollary 7.2, we

impose a restriction on the initial market share function so that one of the firms

has larger initial market share for all demand realizations. Corollary 7.3 presents

the equilibrium for the case with fully symmetric firms where both initial market

shares and ex ante cost structures are identical. In Corollary 7.4, we remove the

restrictions on the initial market shares and consider an extreme form of ex ante

cost asymmetry: one firm’s unit costs are uniformly higher than the other firm’s

unit costs for all type realizations. Finally, in Corollary 7.5, we consider a model

with symmetric initial market shares and unrestricted ex ante asymmetries in

the cost structures. As these corollaries are obtained through straightforward

substitutions, we omit the proofs.

Corollary 7.1. Assume that the two firms are ex ante symmetric with respect

to costs. That is, c1H = c2H = cH , c1L = c2L = cL, and p = q. Then

(Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) is a Bayesian–Nash equilibrium if and only if

1) Q∗
2H = ŝ(G

−1
(cH)) and Q

∗
1H = s(G

−1
(cH))

2) Q∗
1L and Q∗

2L satisfy one of the following sets of conditions:

(i) q G(Q∗
1L + ŝ(G

−1
(cH))) + (1− q) G(s−1(Q∗

1L)) = cL (i1)

p G(Q∗
2L + s(G

−1
(cH))) + (1− p) G(Q∗

2L +Q∗
1L) = cL (i2)

ŝ(Q∗
2L) ≥ s−1(Q∗

1L) (i3)

(ii) q G(Q∗
1L + ŝ(G

−1
(cH))) + (1− q) G(Q∗

2L +Q∗
1L) = cL (ii1)

p G(Q∗
2L + s(G

−1
(cH))) + (1− p) G(ŝ−1(Q∗

2L)) = cL (ii2)

s−1(Q∗
1L) > ŝ(Q∗

2L) (ii3)
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Further simplification is possible under the assumption that initial market

shares of the two firms are uniformly ranked, i.e., one firm’s initial market share

is higher than the other’s for all demand realizations. By relabeling firms if

necessary, we can take initial market shares to favor firm 1: s(d) ≥ d/2.

Corollary 7.2. Assume that the two firms are ex ante symmetric with respect

to costs. That is, c1H = c2H = cH , c1L = c2L = cL, and p = q. Furthermore,

assume s(d) ≥ d/2 for all demand levels d. Then (Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) is a

Bayesian–Nash equilibrium if and only if

Q∗
2H = ŝ(G

−1
(cH)), Q

∗
1H = s(G

−1
(cH)) and (Q∗

1L, Q
∗
2L) solves:

q G(Q∗
1L + ŝ(G

−1
(cH))) + (1− q) G(s−1(Q∗

1L)) = cL,

p G(Q∗
2L + s(G

−1
(cH))) + (1− p) G(Q∗

2L +Q∗
1L) = cL.

When the two firms are fully symmetric in terms of cost structures and initial

market shares, we get a fully symmetric equilibrium.

Corollary 7.3. Assume that the two firms are ex ante symmetric with respect

to costs. That is, c1H = c2H = cH , c1L = c2L = cL, and p = q. Furthermore,

let s(d) = ŝ(d) = d/2 for all demand levels d. Then (Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) is a

Bayesian–Nash equilibrium if and only if

Q∗
1H = Q∗

2H = Q∗
H = (1/2)(G

−1
(cH)) and Q

∗
1L = Q∗

2L = Q∗
L where Q∗

L solves

q G(Q∗
L + (1/2)G

−1
(cH)) + (1− q) G(2Q∗

L) = cL.

The next corollary looks at the case where one firm has a cost disadvantage

for all cost realizations.

Corollary 7.4. Assume that c1H ≤ c2L. Then (Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) is a

Bayesian–Nash equilibrium if and only if

Q∗
2H = ŝ(G

−1
(c2H))

Q∗
2L = ŝ(G

−1
(c2L))

q G(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q) G(Q∗

1L + ŝ(G
−1
(c2L))) = c1L

q G(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q) G(Q∗

1H + ŝ(G
−1
(c2L))) = c1H .
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As a final corollary, we present the equilibrium order quantities for symmetric

initial market shares. In this special case, the equilibrium conditions can be

stated explicitly in terms of the exogenous cost parameters, in contrast to the

implicit characterization in Theorem 7.2. For each of the three possible orderings

of the unit cost parameters, we have a different set of equilibrium conditions.

Corollary 7.5. Assume that s(d) = ŝ(d) = d/2 and, without loss of generality,

that c1H ≤ c2H . Then (Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) is a Bayesian–Nash equilibrium if

and only if

1) Q∗
2H = (1/2)G

−1
(c2H)

2) Q∗
1L,Q

∗
1H and Q∗

2L satisfy one of the following sets of conditions:

(i) If c2L ≤ c1L ≤ c1H ≤ c2H

q G(Q∗
1L + (1/2)G

−1
(c2H)) + (1− q) G(2Q∗

1L) = c1L (i1)

q G(Q∗
1H + (1/2)G

−1
(c2H)) + (1− q) G(2Q∗

1H) = c1H (i2)

p G(Q∗
2L +Q∗

1H) + (1− p) G(Q∗
2L +Q∗

1L) = c2L (i3)

(ii) If c1L ≤ c2L ≤ c1H ≤ c2H

q G(Q∗
1L + (1/2)G

−1
(c2H))) + (1− q) G(Q∗

2L +Q∗
1L) = c1L (ii1)

q G(Q∗
1H + (1/2)G

−1
(c2H)) + (1− q) G(2Q∗

1H) = c1H (ii2)

p G(Q∗
2L +Q∗

1H) + (1− p) G(2Q∗
2L) = c2L (ii3)

(iii) If c1L ≤ c1H ≤ c2L ≤ c2H

q G(Q∗
1L + (1/2)G

−1
(c2H)) + (1− q) G(Q∗

1L + (1/2)G
−1
(c2L)) = c1L (iii1)

q G(Q∗
1H + (1/2)G

−1
(c2H)) + (1− q) G(Q∗

1H + (1/2)G
−1
(c2L)) = c1H (iii2)

Q∗
2L = (1/2)G

−1
(c2L) (iii3)
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7.4.5 Intra–equilibrium Comparisons

As noted in Claim 3 above, equilibrium is monotone: low–cost type of a firm

orders a larger quantity than his high–cost type. Without further restrictions on

the initial market shares and the level of unit costs, this is about the extent of what

can be said regarding intra–equilibrium comparisons. That is, no general ranking

of order quantities across firms is possible without imposing further structure on

the model. Furthermore, even under normalization an analog of Claim 2 does

not hold for equilibrium order quantities. The only possible ranking is the one

provided in Lemma 3 that ranks the normalized equilibrium order quantities of

the high–cost types of the two firms.

An interesting observation can be made using the characterization in Corol-

lary 4 in the previous section to illustrate a general phenomenon of inter–type

externality. The equilibrium characterization there remains valid for a range of

unit costs with c2L < c1H < c2H . In this equilibrium, both types of firm 2 choose

an order quantity equal to his stand–alone quantity while it is common knowl-

edge that firm 1 may have larger unit cost. That is, low–cost type firm 2 ignores

spillover from the less efficient type of the rival firm. This is due to the fact that

high–cost type of firm 1, while less efficient than the low–cost type firm 2, selects

a large order quantity expecting spillover demand from the high cost type of firm

2. The increased order quantity of the firm 1H forces firm 2L to stick to Qo
2L.

7.4.6 Comparative Statics

Comparative static analysis of the equilibrium and payoffs with respect to the

exogenous parameters of the model is done in two parts. We first establish general

comparative statics results with respect to two exogenous functions in the model,

namely, the demand and the market share function. Then we derive explicit

comparative static expressions for the scalar parameters.

Theorem 7.4. Let DA and DB be two positive random variables such that DA

dominates DB under first order stochastic dominance. Then, the equilibrium
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order quantities with industry demand DA are larger than the equilibrium order

quantities with industry demand DB.

Theorem 7.5. If sA(d) > sB(d) for all positive real numbers d, then the equi-

librium order quantities of both types of firm 1 (firm 2) are larger (respectively,

smaller) under the split function sA than the order quantities under sB.

In Table 7.1, we provide the signs of all first order derivatives of equilibrium

order quantities with respect to the exogenous scalar parameters, c1L, c1H , p,

c2L, c2H and q. The explicit expressions for the comparative statics derivatives

themselves are provided in Appendix E.7. Cases (i), (ii) and (iii) correspond to

the cases in Theorem 7.2.

Table 7.1: Comparative Statics
Cases Quantities Conditions c1L c1H p c2L c2H q

Q∗
2H 0 0 0 0 − 0

Q∗
1L − 0 0 0 + +

(i) Q∗
1H 0 − 0 0 + +

Q∗
2L G(Q∗

1L +Q∗
2L) > 0 + + + − − −

Q∗
2L G(Q∗

1L +Q∗
2L) = 0 0 + + − − −

Q∗
1L G(Q∗

1L +Q∗
2L) > 0 − − − + + +

(ii) Q∗
1L G(Q∗

1L +Q∗
2L) = 0 − 0 0 0 + +

Q∗
1H 0 − 0 0 + +

Q∗
2L 0 + + − − −

Q∗
1L G(Q∗

1L +Q∗
2L) > 0 − 0 0 + + +

Q∗
1L G(Q∗

1L +Q∗
2L) = 0 − 0 0 0 + +

(iii) Q∗
1H G(Q∗

1H +Q∗
2L) > 0 0 − 0 + + +

Q∗
1H G(Q∗

1H +Q∗
2L) = 0 0 − 0 0 + +

Q∗
2L 0 0 0 − 0 0

As expected, the equilibrium order quantities for both players are non–

increasing with respect to their own costs and non–decreasing with respect to

their rival’s costs. In equilibrium, each player orders more as his rival’s prob-

ability of being high type increases. Conversely, each player orders less as his

110



own probability of being high type increases. This is due to information asym-

metry between players and can be explained as follows. Suppose the probability

of being high type for firm 1 is increasing. In this case, firm 2 will be ordering

more since he will anticipate a higher chance of low order quantity from firm 1.

This will lead firm 1 to expect less spillover from firm 2 and hence order less

himself. Whether these monotonicities are strict or not depend on specific cases

and conditions as given in Table 7.1. The only exception to these results is that

firm 2’s (the firm with larger high cost) equilibrium order quantity when his type

is high only depends on its own cost as shown in Theorem 7.2.

7.5 A Special Case: Uniform Demand and Lin-

ear Market Shares

In this section, we present the full explicit characterization of the equilibrium and

the corresponding payoff functions for uniformly distributed demand and linear

market share functions: D ∼ Uniform(0, 1), and s(D) = sD and ŝ(D) = (1−s)D.

Under uniform demand and linear market shares, an instance of the model is

represented by 7 parameters: (c1L, c1H , c2L, c2H , p, q, s).

As shown in Section 7.4, while Q∗
2H = (1− s)(1− c2H), solution to Q∗

1L, Q
∗
1H

and Q∗
2L (and the corresponding payoffs) requires a detailed analysis.

7.5.1 A Partition of the Parameter Space

Detailed analysis, provided in Appendix E.8, lead to 8 regions in the parameter

space. In each of the 8 regions, different equilibrium quantities and payoff func-

tions are valid. In other words, in each of these regions the equilibrium structure

(functional form) of at least one of endogenous variable is different from its from

in other regions. The conditions that determine the partition of the parameter
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space are as follows: Denoting p̂ = sp and q̂ = (1− s)q,

(1− q̂) c2L < c1H −q̂ c2H (CA)

c1L < q̂ c2H (CB)

(1− q̂) c2L < p̂ c1H −p̂ q̂ c2H (CC)

q̂ c2L < −c1H + q̂ c2H (CD)

−(1− p̂) c1L +(1− q̂) c2L < p̂ c1H −q̂ c2H (CE)

p̂ c1L +(1− q̂) c2L < p̂ c1H (CF )

(1− p̂) (1− q̂) c1L + q̂ (1− q̂) c2L < p̂ q̂ c1H +q̂ (1− p̂− q̂) c2H (CG)

c1L + q̂ c2L < q̂ c2H (CH)

The 8 different regions that these equilibrium conditions lead to are given in

Figure 1.

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8

CAC B      CC CB      CC
CA CD CH

CF CGCF CG
CE CHCDCE

Figure 7.1: Conditions characterizing the partition of the parameter space
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7.5.2 Equilibrium Order Quantities

Q∗
1L,Q

∗
1H and Q∗

2L and payoffs π1(c1L, c2L), π1(c1H , c2L), π2(c1L, c2L) and

π2(c1H , c2L) in these regions can be found using the following table:

Table 7.2: Functional forms of endogenous variables by parameter region
Region Q1L Q1H Q2L π1(c1L, c2L) π1(c1H, c2L) π2(c1L, c2L) π2(c1H, c2L)

1 Qα
1L Qα

1H Qα
2L πα

1 (c1L, c2L) πα
1 (c1H , c2L) πα

2 (c1L, c2L) πα
2 (c1H , c2L)

2 Qβ
1L Qα

1H Qα
2L πβ

1 (c1L, c2L) πα
1 (c1H , c2L) πβ

2 (c1L, c2L) πα
2 (c1H , c2L)

3 Qβ
1L Qα

1H Qβ
2L πβ

1 (c1L, c2L) πα
1 (c1H , c2L) πγ

2 (c1L, c2L) πα
2 (c1H , c2L)

4 Qα
1L Qα

1H Qγ
2L πγ

1 (c1L, c2L) πα
1 (c1H , c2L) πδ

2(c1L, c2L) πα
2 (c1H , c2L)

5 Qγ
1L Qα

1H Qγ
2L πδ

1(c1L, c2L) πα
1 (c1H , c2L) πδ

2(c1L, c2L) πα
2 (c1H , c2L)

6 Qα
1L Qβ

1H Qδ
2L πγ

1 (c1L, c2L) πβ
1 (c1H , c2L) πδ

2(c1L, c2L) πβ
2 (c1H , c2L)

7 Qα
1L Qγ

1H Qδ
2L πγ

1 (c1L, c2L) πγ
1 (c1H , c2L) πδ

2(c1L, c2L) πβ
2 (c1H , c2L)

8 Qδ
1L Qγ

1H Qδ
2L πδ

1(c1L, c2L) πγ
1 (c1H , c2L) πδ

2(c1L, c2L) πβ
2 (c1H , c2L)

The equilibrium order quantity for firm 1 when his type is low takes four different

functional forms:

Qα
1L = 1− c1L

q
− (1− s)(1− c2H),

Qβ
1L =

(1− c1L − q(1− s)(1− c2H))

(q + (1− q)/s)
,

Qγ
1L = 1− c1L − q(1− s)(1− c2H)−

(1− q)(1− c2L)

(p+ (1− p)/(1− s))

+
(1− q)p(1− c1H − q(1− s)(1− c2H))

(q + (1− q)/s)(p+ (1− p)/(1− s))
,

Qδ
1L = 1− c1L − q(1− s)(1− c2H)− (1− q)(1− s)(1− c2L).

When firms 1’s type is high, his equilibrium order quantity takes three possible

forms:

Qα
1H =

(1− c1H − q(1− s)(1− c2H))

(q + (1− q)/s)
,

Qβ
1H = 1− c1H

q
− (1− s)(1− c2H),

Qγ
1H = 1− c1H − q(1− s)(1− c2H)− (1− q)(1− s)(1− c2L).
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Finally, the low type of firm 2 has four different functional forms for his equilib-

rium order quantity:

Qα
2L = 1− c2L

p
− (1− c1H − q(1− s)(1− c2H))

(q + (1− q)/s)
,

Qβ
2L = 1− c2L − p (1− c1H − q (1− s)(1− c2H))

(q + (1− q)/s)
− (1− p)(1− c1L − q(1− s)(1− c2H))

(q + (1− q)/s)
,

Qγ
2L =

(1− c2L)

(p+ (1− p)/(1− s))
− p (1− c1H − q(1− s)(1− c2H))

(q + (1− q)/s)(p+ (1− p)/(1− s))
,

Qδ
2L = (1− s)(1− c2L).

7.5.3 Equilibrium Payoffs

When both firms have low costs, Firm 1’s ex post payoff can take four different

functional forms:

πα
1 (c1L, c2L) =

1

2
s− c1LQ1L,

πβ
1 (c1L, c2L) = Q1L(1− c1L)−

(Q1L)
2

2s
,

πγ
1 (c1L, c2L) =

1

2
+

(Q2L)
2

2(1− s)
−Q2L − c1LQ1L,

πδ
1(c1L, c2L) = Q1L(1− c1L) +

(Q2L)
2

2(1− s)
− (Q1L +Q2L)

2

2
.

Firm 2’s payoff, similarly, has four possible functional forms when both firms have

low cost:

πα
2 (c1L, c2L) =

1

2
(1− s)− c2LQ2L,

πβ
2 (c1L, c2L) =

1

2
+

(Q1L)
2

2s
−Q1L − c2LQ2L,

πγ
2 (c1L, c2L) = Q2L(1− c2L) +

(Q1L)
2

2s
− (Q1L +Q2L)

2

2
,

πδ
2(c1L, c2L) = Q2L(1− c2L)−

(Q2L)
2

2(1− s)
.
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When firms 1 and 2 have low and high costs, respectively, we have three possi-

bilities for the payoff for firm 1’s payoff:

πα
1 (c1H , c2L) = Q1H(1− c1H)−

(Q1H)
2

2s
,

πβ
1 (c1H , c2L) =

1

2
+

(Q2L)
2

2(1− s)
−Q2L − c1HQ1H ,

πγ
1 (c1H , c2L) = Q1H(1− c1H) +

(Q2L)
2

2(1− s)
− (Q1H +Q2L)

2

2
;

and two possible forms for the payoff for firm 2:

πα
2 (c1H , c2L) = Q2L(1− c2L) +

(Q1H)
2

2s
− (Q1H +Q2L)

2

2
,

πβ
2 (c1H , c2L) = Q2L(1− c2L)−

(Q2L)
2

2(1− s)
.

When firm 2 has a high cost, the payoffs of the two players are same in all regions:

π1(c1L, c2H) = Q1L(1− c1L) +
Q2

2H

2(1− s)
− (Q1L +Q2H)

2

2
,

π1(c1H , c2H) = Q1H(1− c1H) +
Q2

2H

2(1− s)
− (Q1H +Q2H)

2

2
,

π2(c1L, c2H) = π2(c1H , c2H) = (1− s)(1− c2H)
2/2.

7.5.4 Comparative Statics

We present the explicit expressions for comparative static derivatives for the equi-

librium order quantities for the uniform demand and linear split case in Appendix

E.9. Comparative static sign patterns are summarized in Table 7.3. This is a

specific version of Table 7.1 for the uniform demand and linear split function.

Since s characterize the whole split function in this case, we also provide the

comparative statics with respect to s in this table.
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Table 7.3: Comparative Statics for Uniform Demand Case
Qα

1L Qβ
1L Qγ

1L Qδ
1L Qα

2L Qβ
2L Qγ

2L Qδ
2L Qα

1H Qβ
1H Qγ

1H Q2H

c1L − − − − 0 + 0 0 0 0 0 0

c1H 0 0 − 0 + + + 0 − − − 0

p 0 0 − 0 + + + 0 0 − − 0

c2L 0 0 + + − − − − 0 0 + 0

c2H + + + + − − − 0 + + + −
q + + + + − − − 0 + + + 0

s + + + + − − − − + + + −

7.6 Concluding Remarks

We studied a model of inventory competition in a newsboy duopoly under asym-

metric cost information. We showed that a pure strategy Bayesian–Nash equilib-

rium exists under fairly general assumptions. We characterized the equilibrium

for the case where the industry demand is allocated between two firms using a

deterministic split function and show its uniqueness. We showed that presence

of strategic interactions creates incentives to increase order quantities for all firm

types except the type that has the highest possible unit cost, who orders the same

quantity as he would as a monopolist newsboy facing scaled version of the market

demand. Therefore, competition leads to higher total inventory in the industry.

The equilibrium conditions have an interesting recursive structure that enables

an easy computation of the equilibrium order quantities. Comparative statics

analysis shows that a stochastic increase in market demand or an increase in one

firm’s initial allocation of the total industry demand lead to higher inventory for

that firm. We finally derived a complete characterization of the equilibrium and

its comparative statics for the case of uniform demand and linear split rule.
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Chapter 8

CONCLUSIONS

It is imperative to consider the effect of non–cooperative behavior on inventory

games since it may lead to results not foreseen by the classical inventory models.

In this thesis we investigate the impact of non–cooperative behavior in joint

replenishment games and the effect of asymmetric information in newsvendor

duopolies. We consider various models through the thesis.

In Chapter 3, we study a non–cooperative private contributions game for

multiple firm. The firms contribute to the ordering cost and an intermediary

determines the order cycle time as the minimum cycle time that can be financed

with these contributions. Our results show that for both the single–stage and two–

stage variant of this game the firm or group of firms with the highest adjusted

demand rate finance most of the joint replenishment and the other firms just pay

the minimum entree fee.

In Chapter 4, we extend the private contributions game to an asymmetric

information counterpart to investigate whether asymmetric information would

lead the firms with low adjusted demand rates to contribute more. We show

the existence of a pure strategy Bayesian Nash equilibrium for the asymmetric

information game and provide the equilibrium conditions. Finally, we conduct

some numerical study to examine the impact of information asymmetry on ex-

pected and interim values of total contributions, cycle times and total costs. The
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results show that firms with low adjusted demand rates contribute more under

asymmetric information. However full information case performs better.

In Chapter 5, we study a three-stage joint replenishment game. In this model,

we assume that the intermediary is also a decision maker. We analyze each

stage and give the conditions for equilibrium. We show that the subgame-perfect

equilibrium cycle time is not unique. We find the minimum and maximum cycle

times attainable under equilibrium. Even though efficient cycle time is in between

minimum and maximum equilibrium cycle time, it is not always an equilibrium

outcome. For symmetric joint replenishment environments, we show that whether

efficient cycle time is a subgame-perfect equilibrium outcome depends only on the

number of firms and is independent of all other parameters of the environment.

In Chapter 6, we consider finding a mechanism that would allocate the joint or-

dering costs to multiple firms based on their reported independent order frequen-

cies. We first show that there is no direct mechanism that simultaneously achieves

efficiency, incentive compatibility, individual rationality and budget-balance. We

then propose a two–parameter mechanism that would take the reported frequen-

cies of the firms and determine the joint replenishment frequency using the first

parameter and allocate the order cost using the second parameter. We show

that unless the parameter governing the cost allocation is zero efficiency cannot

be achieved. For the single parameter mechanism, we find the equilibrium share

levels and corresponding total cost. We finally investigate the effect of this param-

eter on equilibrium behavior. We show that properly adjusting this parameter

leads to mechanisms that are better than suggested earlier in the literature in

terms of fairness and efficiency.

In Chapter 7, we examine the Lippman and McCardle (1997) model of com-

petitive newsboys under private cost information. The stochastic market demand

is initially allocated between two firms and any unsatisfied demand is reallocated

to the rival firm. We show the existence and uniqueness of pure strategy Bayesian

Nash equilibrium and characterize its structure. The equilibrium conditions have

an interesting recursive structure that enables an easy computation of the equi-

librium order quantities. A firm’s equilibrium order quantity increases with a
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stochastic increase in the total industry demand or with an increase in his initial

allocation of the total industry demand. Finally, for a special case with uni-

form demand and linear market shares, we provide full characterization of the

equilibrium, corresponding payoffs and comparative statics.

For Chapters 3 to 6, a number of important research directions remain to be

explored to build an analytical foundation that captures the details of realistic

operational management settings. First group of research directions include ex-

plorations of alternative mechanisms such as sequential contributions, alternative

message spaces (e.g. contribution schedules r(T ) stating a firm’s contribution as

a function of joint cycle time), and alternative outcome functions mapping the

firms’ messages to the joint cycle time and cost allocation decisions. A second

group includes extensions along the environment dimension include models that

allow minor setup costs, and models that incorporate uncertainty. Also, consid-

ering different coalition structures for the firms is also an interesting dimension

since we can have models where firms with similar attributes can form coalitions

for better performance.

For Chapter 7, the newsvendor duopoly with asymmetric information, certain

extensions of the current model are relatively straightforward and not likely to

change the structure of the equilibrium qualitatively. For instance, allowing more

than two levels for the unit costs, will lead to more complicated but qualitatively

similar equilibrium characterization in that many of the claims, the recursive

structure of the equilibrium order quantities, and, particularly, the behavior of

the highest–cost type will remain valid with this extension. However, continuous

type distributions may also be considered. Alternative specifications for the key

structural elements of the current model – e.g., the the nature of information

asymmetry, and the structure of the market and firm demands – span a num-

ber of interesting classes of models we intend to explore in the future. Among

these are models of newsboy oligopoly, and models that allow arbitrary statistical

dependence in firm demands, and in cost structures.
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APPENDIX A

A Private Contributions Game

For Joint Replenishment

A.1 Proof of Proposition 3.2:

For part 1 we provide detailed arguments. Parts 2-5 of the proposition are ob-

tained by straightforward algebraic manipulations. For part 1 we provide detailed

arguments. Parts 2-5 of the proposition are obtained by straightforward algebraic

manipulations.

1. Given other firms’ contributions, each firm j’s optimization problem is

min
rj

rj +
καj

2
∑

k∈N rk
subject to rj ≥ δ. (A.1)

Karush–Kuhn–Tucker conditions for optimality are given by

1− καj

2(
∑

k∈N rk)
2
− µj = 0, (A.2)

µj(rj − δ) = 0, (A.3)

µj ≥ 0, (A.4)

rj ≥ δ. (A.5)
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By definition, any strategy profile r∗ = (r∗1, . . . , r
∗
n) is a Nash equilibrium

if and only if it is a solution to (A.2)-(A.5) for j = 1, . . . , n. Conditions

(A.2)-(A.5) ensure that there is at least one firm i such that r∗i > δ and

µi = 0. Because, if r∗j = δ for all j, we would have µj = 1 − καj

2n2δ2
for all

j. Since µj ≥ 0 for all j, this requires that δ ≥
√
καj/2/n for all j, which

contradicts with the fact that δ <
√
κα/2/n, as α ≤ αj for all j. Using

(A.2),

µi = 1− καi

2(
∑

k∈N r
∗
k)

2
= 0. (A.6)

Now firm i that satisfies (A.6) has to belong to the set L(N). Otherwise, for

any k with αk > αi, we have µk < 0 violating condition (A.4). Conditions

(A.6) and (A.2) also show that µj > 0 for all j ∈ N \ L(N). Therefore,

using (A.3), we have, for j ∈ N \ L(N),

r∗j = δ,

and, for j ∈ L(N),

r∗j ≥ δ and
∑

i∈L(N)

r∗j =

√
καn

2
− (n− ℓ)δ.

The following chain of inequalities show that the conditions on the vector

(r∗n−ℓ+1, . . . r
∗
n) are consistent:

δ <

√
κα/2

n
≤
√
κα1/2

n
≤
√
καn/2

n
<

√
καn/2

n− 1
≤
√
καn/2

n− ℓ
. (A.7)

2. Straightforward from 1.(b).

3. In equilibrium, aggregate contributions from the n firms is
∑

i∈N r
∗
i =∑

i∈N\L(N) r
∗
i +
∑

i∈L(N) r
∗
i = (n−ℓ)δ+

√
καn/2−(n−ℓ)δ =

√
καn/2 = Rd

n.

The resulting cycle time is T g
N = τN(r

∗) = κ/
∑

i∈N r
∗
i = κ

√
καn/2 =√

2κ/αn = T d
n .

4. Since equilibrium total replenishment cost for the n firms is equal to the

aggregate contributions, the claim in 4.(a) follows from 3.(a) above. The

claim in 4.(b) results from straightforward substitution and summing over

n firms. Part 4.(c) is obtained by summing the results in parts (a) and (b)

and combining terms.
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5. Part 5.(a) follows from 1.(a) directly for j ∈ N \L(N). For a firm j ∈ L(N),

we note that his maximum equilibrium contribution is obtained when other

firms in N each contribute δ. Part 5.(b) follows from substituting the

equilibrium cycle time in the expression for j’s holding cost rate. Part 5.(c)

follows from adding the replenishment and holding costs in parts 5.(a) and

5.(b). �

A.2 Proof of Proposition 3.4:

In order to show that the strategy “out” is weakly dominated by the strategy

“in” for all firms, we re–write (3.20) separating the replenishment and holding

cost components in Φj(z)

Φj(zj,z−j) =
√
καj/2 +

√
καj/2 if zj = “out” or M(z) = {j}

δ + (
√
αj/αim)

√
καj/2 if j ∈M(z) \ L(M(z))

R̂ +
√
καim/2, such that R̂ ∈ [R,R] if j ∈ L(M(z)).

(A.8)

where [R,R] with R = δ and R =
√
καim/2−(m−1)δ denotes the closed interval

for the replenishment cost of the players in L(M(z)).

First, from the first line of (A.8), the strategy “out” yields a payoff indepen-

dent of other firms’ participation strategies. Also from the first line, the two

strategies give the same payoff when zk = “out” for all k ∈ N \ {j}. To see that

participation yields a strictly better total cost for player j in all other cases, we

compare lines 2 and 3 to line 1. Take any z with zj =“in”. If zj is such that

j ∈ M(z) \ L(M(z)), then αj < αim . In this case, both components of firm

j’s total cost in line 2 are strictly less than their counterparts in line 1, because

δ <
√
καj/2 by (A.7), and

√
αj/αim < 1. If zj is such that j ∈ L(M(z)), then

αj = αim . In this case, holding cost component of firm j’s total cost is
√
καim/2

for both strategies. However, the worst possible replenishment cost from partici-

pating,
√
καim/2− (m−1)δ, is strictly lower than the stand–alone replenishment
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cost,
√
καim/2. Thus, zj =“in” weakly dominates strategy zj =“out”. Since this

is true for all firms, the claim follows. �
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APPENDIX B

Private Contributions Game For

Joint Replenishment with

Asymmetric Information

B.1 Proof of Proposition 4.2

In order to prove the existence we invoke the following proposition by Meirowitz

[36]:

Proposition B.1. A Bayesian game has a pure strategy BNE if for each j ∈ N

1. A and Θ are nonempty, convex and compact subsets of Euclidean space.

2. uj(r,α) = −ϕj(r,α) is continuous.

3. For every α and measurable function f n−1(α−j)

Uj(rj(αj), r
∗
−j) = −Φj(rj(αj), r

∗
−j) =

∫
An−1

uj(rj, r
∗
−j, αj,α−j)f

n−1(α−j)dα−j

is strictly quasi–concave in rj.

4. For every εj > 0 there exists some constant δj s.t. if

r∗j (αj) ∈ arg max
rj∈Rj

{∫
An−1

uj(rj, r
∗
−j, αj,α−j)f

n−1(α−j)dα−j

}
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for some , r∗
−j(α−j) then sup{(αj ,α′

j)∈A:|αj−α′
j |<δj}|r∗j (αj)− r∗j (α

′
j)| < εj.

5. f n−1(α−j) is continuous.

Now, A and Θ are both closed, bounded and consists of a single interval by

assumption. Thus, they are nonempty, convex and compact. Thus, condition (1)

is satisfied. Similarly, the belief function f n−1(α−j) is continuous since it is the

multiplication of continuous probability density functions f(α) by assumption so

condition (5) is satisfied.

Assume that

uj(r,α) = −ϕj(r,α) = −1

2
καj

1

rj +
∑

i̸=j ri
− rj

which is the negative of our cost function. This assumption is necessary for a

utility maximization model.

uj(r,α) is obviously continuous.

The first order condition for Uj(rj(αj), r
∗
−j) = −Φj(rj(αj), r

∗
−j) is:

∂Uj

∂rj
= −∂Φj

∂rj
=

1

2
καj

∫
An−1

1

(rj +
∑

i̸=j r
∗
i (αi))2

f n−1(α−j)dα−j − 1 for all j.

and the second order condition is:

∂2Uj

∂r2j
= −∂

2Φj

∂r2j
= −καj

∫
An−1

1

(rj +
∑

i̸=j r
∗
i (αi))3

f n−1(α−j)dα−j < 0 for all j.

Thus, Uj is strictly concave in rj which implies Uj is strictly quasi–concave in rj

which shows that condition (3) is satisfied.

The only remaining condition is (4). In order to prove it, we take two different

types αj and α′
j for firm j and use the difference between their respective first
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order conditions:

2

καj
− 2

κα′
j

=

∫
An−1

1

(r∗j (αj) +
∑

i̸=j r
∗
i (αi))2

f n−1(α−j)dα−j

−
∫
An−1

1

(r∗j (α
′
j) +

∑
i̸=j r

∗
i (αi))2

f n−1(α−j)dα−j

=

∫
An−1

1

(r∗j (αj) +
∑

i̸=j r
∗
i (αi))2

− 1

(r∗j (α
′
j) +

∑
i ̸=j r

∗
i (αi))2

f n−1(α−j)dα−j

=

∫
An−1

(r∗j (α
′
j) +

∑
i̸=j r

∗
i (αi))

2 − (r∗j (αj) +
∑

i ̸=j r
∗
i (αi))

2

(r∗j (αj) +
∑

i ̸=j r
∗
i (αi))2(r∗j (α

′
j) +

∑
i ̸=j r

∗
i (αi))2

f n−1(α−j)dα−j

= [r∗j (α
′
j)− r∗j (αj)]

∫
An−1

r∗j (αj) + r∗j (α
′
j) + 2

∑
i ̸=j r

∗
i (αi)

(r∗j (αj) +
∑

i ̸=j r
∗
i (αi))2(r∗j (α

′
j) +

∑
i̸=j r

∗
i (αi))2

f n−1(α−j)dα−j

= [r∗j (α
′
j)− r∗j (αj)]

∫
An−1

1

(r∗j (αj) +
∑

i ̸=j r
∗
i (αi))(r∗j (α

′
j) +

∑
i̸=j r

∗
i (αi))2

+
1

(r∗j (αj) +
∑

i ̸=j r
∗
i (αi))2(r∗j (α

′
j) +

∑
i ̸=j r

∗
i (αi))

f n−1(α−j)dα−j

Using the first order conditions and rj(αj) ≤ r for all j ∈ N , we can write∫
An−1

1

(r∗j (α
′
j) +

∑
i ̸=j r

∗
i (αi))(r∗j (αj) +

∑
i̸=j r

∗
i (αi))2

f n−1(α−j)dα−j ≥∫
An−1

1

2r(r∗j (αj) +
∑

i̸=j r
∗
i (αi))2

f n−1(α−j)dα−j =
1

rκαj

A similar result can be obtained for α′
j. Taking the absolute values on both sides,

we have

| 2

καj

− 2

κα′
j

| ≥ |r∗j (α′
j)− r∗j (αj)|

(
1

rκαj

+
1

rκα′
j

)
Rearranging the terms and using αj ≥ α > 0 and α′

j ≥ α > 0, we obtain:

|α′
j − αj| ≥ |r∗j (α′

j)− r∗j (αj)|
(

1

2r
(α′

j + αj)

)
≥ |r∗j (α′

j)− r∗j (αj)|
(α
r

)
Now, assume that εj > 0 and let δ = ε(α/r). Then |α′

j − αj| < δj implies

|r∗j (α′
j)−r∗j (αj)|(α/r) < δj or |r∗j (α′

j)−r∗j (αj)| < εj. This is true for all αj and α
′
j

so condition (4) is satisfied which shows that all the conditions of the proposition

are met. �
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B.2 Proof of Proposition 4.3

A given firm j’s optimization problem can be formulated as follows, if the firm is

type αj

min
rj

ϕj(rj(αj), r−j) =

∫
An−1

κ∑
j∈N rj(αj)

f n−1(α−j)dα−j + rj(αj)(B.1)

subject to rj(αj) ≥ 0. (B.2)

Following the same arguments in the proof of Proposition 3.2, one gets (4.6) as

a necessary condition. It can easily be verified that the function ϕj is convex in

rj which shows that these conditions are also sufficient. �
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APPENDIX C

A Three-Stage Game for Joint

Replenishment With Private

Contributions

C.1 Proof of Proposition 5.1:

The first and second conditions are necessary and sufficient for equilibrium in

stages 3 and 2, respectively, as shown in (5.2) and (5.7). The third condition

concerns the equilibrium in stage 1. First consider condition iii (a). In equilib-

rium, each firm’s price bid should be his best response to others’ price bids, i.e.,

a firm cannot decrease his costs by unilaterally changing his price. First, note

that no firm will change his bid price to induce the RSP to select his threshold

cycle time as the new replenishment cycle time because inducing his threshold

cycle time would lead to a cost equal to his stand–alone cost and he may achieve

a lower cost level if the threshold cycle time of another firm is chosen. Moreover,

for any i with r∗i = 0, firm j cannot force the RSP to select T ∗ = τ ∗i (0) since

the RSP cannot improve his payoff by doing so. Similarly, if τ ∗i (r
∗
i ) > 2T d

j then

firm j has no incentive to induce τ ∗i (r
∗
i ), as this will lead to higher costs than his
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stand–alone cost. Now consider a firm j and the case in which he is served by the

RSP (τ ∗j (r
∗
j ) ≥ T ∗(r∗)). His cost is therefore r∗j +

1
2
αjT

∗(r∗). First, since T ∗(r∗)

is optimal for RSP we have∑
k|τ∗k (r

∗
k)≥τ∗i (r

∗
i )

r∗kλk − κ/τ ∗i (r
∗
i ) ≤

∑
k|τ∗k (r

∗
k)≥T ∗(r∗)

r∗k − κ/T ∗(r∗) ∀i ∈ N. (C.1)

Thus there does not exist a r′j that will lead to T ∗(r′j, r
∗
−j) = τ ∗i (r

∗
i ) for which

T ∗(r∗) ≤ τ ∗i (r
∗
i ) < τ ∗j (r

∗
j ).

In order for firm j not to deviate from r∗j , each r
′
j should lead to a higher cost,

so we should have

r′j +
1

2
αjT

∗(r′j, r
∗
−j)− r∗j −

1

2
αjT

∗(r∗) ≥ 0, for all r′j ̸= r∗j . (C.2)

However, T ∗(r′j, r
∗
−j) is equal to a threshold cycle time i.e., τ ∗i (r

∗
i ) for some i ∈

N \ {j} as stated in condition ii. This implies that,

T ∗(r′j, r
∗
−j) = τ ∗i (r

∗
i ) ⇒ r′j +

∑
k ̸=j,τ∗k (r

∗
k)≥τ∗i (r

∗
i )

r∗k ≥ κ/τ ∗i (r
∗
i ). (C.3)

Combining (C.2) and (C.3), we have

r∗j +
∑

k ̸=j,τ∗k (r
∗
k)≥τ∗j (r

∗
i

r∗k ≤
1

2
αj(τ

∗
i (r

∗
i )− T ∗(r∗)) + κ/τ ∗i (r

∗
i ), (C.4)

for all i, j for which τ ∗i (r
∗
i ) ≥ τ ∗j (r

∗
j ) ≥ T ∗(r∗) or τ ∗j (r

∗
j ) ≥ T ∗(r∗) ≥ τ ∗i (r

∗
i ).

Now consider a firm which is not served by the RSP (τ ∗j (r
∗
j ) < T ∗(r∗)). His

cost is
√
2καj. Since r

∗
j is a best response to r∗−j, we have,

r′j +
1

2
αjT

∗(r′j, r
∗
−j)−

√
2καj ≥ 0, for all r′j ̸= r∗j . (C.5)

Combining (C.5) and (C.3), we have,∑
k ̸=j,τ∗k (r

∗
k)≥τ∗i (r

∗
i )

r∗k ≤
1

2
αjτ

∗
i (r

∗
i )−

√
2καj + κ/τ ∗i (r

∗
i ) ∀i, j : τ ∗j (r∗j ) < T ∗(r∗).

(C.6)

Combining (C.4) and (C.6) yields condition iii (a). Now consider condition iii

(b). If T ∗(r∗) = τ ∗n+1(r
∗
n+1) = ∞ then condition iii.(b) is trivially satisfied.
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Now, let T ∗(r∗) = τ ∗ℓ (r
∗
ℓ ) for some ℓ ∈ N . Then, ω∗

k = 1 for all k ∈ N

with τ ∗k (r
∗
k) ≥ τ ∗ℓ (r

∗
ℓ ). In this case,

∑
j∈N r

∗
j ω

∗
j (r

∗, T (r∗)) ≥ κ/T ∗(r∗) should

be satisfied since otherwise, the RSP would not select τ ∗ℓ (r
∗
ℓ ) as T ∗(r∗). How-

ever,
∑

j∈N r
∗
j ω

∗
j (r

∗, T (r∗)) > κ/T ∗(r∗) cannot be true, since any firm k with

τ ∗k (r
∗
k) ≥ τ ∗ℓ (r

∗
ℓ ) and r∗k > 0 can decrease his price without changing the cycle

time and incur a smaller cost. �

C.2 Proof of Proposition 5.2:

We first show (5.9). The minimum cycle time for coalition S can be found by

solving the following optimization problem:

min T (C.7)

subject to T − κ∑
j∈S rj

= 0, (C.8)

T − 2
√

2κ
αj

+ 2
rj
αj

≤ 0, ∀j ∈ S (C.9)

−rj ≤ 0, ∀j ∈ S (C.10)

If we relax the constraint (C.10), the Karush–Kuhn–Tucker conditions for opti-

mality are given as follows:

1 + ν +
∑
j∈S

µj = 0, (C.11)

νκ

(
∑

j∈S rj)
2
+ 2

µj

αj

= 0, ∀j ∈ S (C.12)

T − κ∑
j∈S rj

= 0, (C.13)

T − 2

√
2κ

αj

+ 2
rj
αj

≤ 0, ∀j ∈ S (C.14)

µj

(
T − 2

√
2κ

αj

+ 2
rj
αj

)
= 0, ∀j ∈ S (C.15)

µj ≥ 0, ∀j ∈ S (C.16)
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Due to (C.11) and since µj ≥ 0, we have ν ≤ −1. Since ν < 0, κ > 0 and αj > 0

we have µj > 0 due to (C.12). This shows that the constraint (C.9) in the relaxed

problem is always binding in an optimal solution. Therefore it suffices to solve

T − κ∑
j∈S rj

= 0, (C.17)

T − 2

√
2κ

αj

+ 2
rj
αj

= 0, ∀j ∈ S (C.18)

to find the minimum equilibrium cycle time for the relaxed problem. The system

(C.17-C.18) leads to a quadratic equation for T . The smaller root of this equation

is

T̃min
S =

√
2κ

∑
j∈S

√
αj −

√
(
∑

j∈S
√
αj)2 −

∑
j∈S αj∑

j∈S αj

. (C.19)

Now, denote aj =
√
αj. We can rewrite T̃min

S as

T̃min
S =

√
2κ

∑
j∈S aj −

√
2
∑

i,j∈S, i̸=j aiaj

(
∑

j∈S aj)
2 − 2

∑
i,j∈S, i ̸=j aiaj

=
√
2κ

1∑
j∈S aj +

√
2
∑

i,j∈S, i ̸=j aiaj
, (C.20)

which is clearly smaller than 2
√

2κ
αj

= 2
√
2κ
aj

for all j ∈ S and thus, T̃min
S also

satisfies the constraint (C.10). This shows that T̃min
S is also the optimal solution

of the original problem as given in (5.9).

We now turn to proving (5.10). The maximum cycle time for coalition S can

be found by solving the same optimization problem in (C.7-C.10), but this time

using a maximization objective. Again, if we relax the constraint (C.10), we now

have the same Karush–Kuhn–Tucker conditions (C.12–C.16), but now (C.11) is

replaced with

− 1 + ν +
∑
j∈S

µj = 0. (C.21)

Using (C.21) and (C.12) and denoting cj =
κ

(
∑

j∈S rj)2
, we have

cj(1−
∑
i∈S

µi) + 2
µj

αj

= 0, ∀j ∈ S. (C.22)
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Summing (C.22) over the set S, we get

∑
j∈S

cj

(
1−

∑
j∈S

µj

)
+ 2

∑
j∈S

µj

αj

= 0, (C.23)

which shows that
∑

j∈S µj > 1 since hj > 0 and µj ≥ 0, ∀j ∈ S. Using this and

(C.22), we have µj > 0, ∀j ∈ S which shows that the constraint (C.8) in the

relaxed maximization problem is also binding for all j ∈ S. Thus, the maximum

cycle time for the relaxed problem is the larger root of the system (C.17–C.18)

which is given by

T̃max
S =

√
2κ

∑
j∈S

√
αj +

√
(
∑

j∈S
√
αj)2 −

∑
j∈S αj∑

j∈S αj

. (C.24)

The solution in (C.24) satisfies the constraint (C.10) if T̃max
S ≤ 2

√
2κ
αj

for all

j ∈ S. Otherwise, minj∈S 2
√

2κ
αj

is the maximum cycle time for coalition S as

(C.9) with j = argminj∈S

√
2κ
αj

is the tightest constraint for the maximization

problem. Then the solution in (5.10) follows. �

C.3 Proof of Proposition 5.3:

For (5.11), we need to show that Tmin = minS⊂N T
min
S = Tmin

N . Denoting aj =
√
αj, we have the expression (C.20) which is clearly minimized when S = N ,

which results in (5.11).

In order to find the maximum cycle time, we need to solve Tmax =

maxS⊂N T
max
S which potentially requires to search over 2n−1 subsets of N . How-

ever, we next show that it suffices to search over the subsets Pk, k = 1, 2, . . . , n.

This is equivalent to showing

Tmax
Pk

= max
S⊂N,|S|=k

Tmax
S . (C.25)
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We will show (C.25) by induction. First Tmax
S can be shown to be equal to

Tmax
S = min

min
j∈S

{
2

√
2κ

aj

}
,
√
2κ

1∑
j∈S aj −

√
2
∑

i,j∈S, i̸=j aiaj

 . (C.26)

The statement (C.25) is certainly true for k = 1. Assume (C.25) is true for k.

Denoting Γ(Pk) =
∑

i,j∈Pk, i ̸=j aiaj, we can write the maximum cycle time for the

set Pk ∪ {ℓ} as

Tmax
Pk∪{ℓ} = min

2

√
2κ

aℓ
,
√
2κ

1∑
j∈Pk

aj + aℓ −
√
2 Γ(Pk) + 2aℓ

∑
j∈Pk

aj

 .

(C.27)

Now let us consider the two cases: ℓ = k + 1 and ℓ = h for some h > k + 1. If

Tmax
Pk∪{k+1} = Tmax

Pk+1
= 2

√
2κ

ak+1
. Then, Tmax

Pk+1
≥ Tmax

Pk∪{h} since 2
√
2κ

ak+1
≥ 2

√
2κ
ah

≥ Tmax
Pk∪{h}.

If Tmax
Pk+1

is realized at the second part of the minimum expression in (C.26), then

we can write the difference of denominators of the second parts of the minimum

expression in (C.26) for ℓ = k + 1 and ℓ = h > k + 1 as

ak+1 − ah +

√
2 Γ(Pk) + 2ah

∑
j∈Pk

aj −
√

2 Γ(Pk) + 2ak+1

∑
j∈Pk

aj. (C.28)

Multiplying with
√

2 Γ(Pk) + 2ah
∑

j∈Pk
aj +

√
2 Γ(Pk) + ak+1

∑
j∈Pk

aj), we get

(ak+1−ah)

√2 Γ(Pk) + 2ah
∑
j∈Pk

aj) +

√
2 Γ(Pk) + 2ak+1

∑
j∈Pk

aj

+2(ah−ak+1)
∑
j∈Pk

aj,

(C.29)

which is non–positive since ah ≥ ak+1 ≥ maxj∈Pk
aj and 2Γ(Pk)+2ah

∑
j∈Pk

aj ≥
2 Γ(Pk) + 2ak+1

∑
j∈Pk

aj ≥ (
∑

j∈Pk
aj)

2. This also leads to Tmax
Pk∪{k+1} ≥ Tmax

Pk∪{ℓ},

for all ℓ > k + 1 which completes the induction.

Now consider the case where Tmax
Pk

= 2
√
2κ
ak

. This means that pk = 0, and the

constraint (C.9) for firm k sets an upper bound for Tmax
Pk

. Since pk = 0, removing

firm k will only result in a larger maximum cycle time as this would remove the

upper bound. Thus Tmax
Pk

≤ Tmax
Pk−1

. Thus it is sufficient to search over T̃max
Pk

for

Tmax. However, since T̃max
Pk

is not monotone in k, one needs to find the k value

that maximizes T̃max
Pk

which leads to (5.12). �
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C.4 Proof of Proposition 5.4:

Let r∗ = (r∗1, ..., r
∗
n) be the first–stage contributions that yield the efficient cycle

time T c
N =

√
2κ
nα

as a SPE outcome. By part (iii.b) of Proposition 5.1,
∑

j∈N r
∗
j =

κ
T c
N
. By part (ii) of Proposition 5.1, there should be at least one firm j with

τ ∗j (r
∗
j ) = T c

N . LetM be the set of firms j such that τ ∗j (r
∗
j ) = T c

N . For each j ∈M ,

firm j’s first–stage bid r∗j must be such that his contribution to the order cost is

r∗j =
√
2κα(1− 1/2

√
n).

For a firm in N \M , say firm i, his first stage contribution r∗i must be such

that τ ∗i (r
∗
i ) > T c

N , i.e., firm i selects ”In” in stage 3. If this is not the case, that is,

if τ ∗i (r
∗
i ) < T c

N , firm i’s optimal action in stage 3 is ”Out” and, thus, his total cost

is his stand–alone cost. But this cannot be part of a SPE since firm i can improve

his payoff by bidding 0 in stage 1 and selecting ”In” in stage 3, getting a better

cycle time T c
N < T d

i than his stand–alone cycle time at a lower replenishment

cost. Therefore, in a SPE outcome that yields T c
N , all firms must be served.

In summary, by relabeling firm indices, we have

T ∗(r∗) = T c
N = τ ∗1 (r

∗
1) = ... = τ ∗m(r

∗
m) < τ ∗m+1(r

∗
m+1) ≤ ... ≤ τ ∗n(r

∗
n), (C.30)

and

πRSP (r
∗, T c

N ,ω
∗(r∗, T c

N)) = 0 ≥ (C.31)

πRSP (r
∗, τ ∗m+1(r

∗
m+1),ω

∗(r∗, τ ∗m+1(r
∗
m+1))) ≥ (C.32)

... ≥ πRSP (p
∗, τ ∗n(r

∗
n),ω

∗(r∗, τ ∗n(r
∗
n))). (C.33)

Second, no firm i ∈ N has any incentive to deviate from r∗i to a higher bid.

This is because, for a firm i ∈ M , a bid r̂i > r∗i (hence a lower τ ∗i (r̂i) leads the

RSP to select τ ∗i (r̂i) or a strictly higher cycle time than T c
N since the contributions

from other firms are no longer sufficient to cover the cost of T c
N . In either case,

firm i’s total cost is unaffected. Thus, no firm i ∈M can improve his total cost by

increasing his bid above r∗i . For a firm i ∈ N \M , deviating to higher bid r̂i > r∗i ,

can lead to one of two possible cases depending on r̂i: the RSP’s stage–two cycle

time response may be τ ∗i (r̂i) or T c
N . In either case, firm i’s total cost becomes
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worse. Therefore, no firm in N \M has an incentive to deviate to a higher bid

either.

As the RSP’s revenue just covers the order cost in a SPE outcome, we can also

rule out profitable deviations to a lower price for firm n since the RSP’s response

to a lower bid r̂n < r∗n by firm n would be to select τn+1 = ∞.

We start with identifying the conditions for ruling out possible deviations to

lower bids for firms in M . Define τN\M = minj∈N\M τ ∗j (r
∗
j ). For a firm j ∈ M

inducing τN\M is better than inducing any τ ∗i (ri) for i ∈ N \M by lemma C.1.

Thus, maximizing τN\M minimizes the deviation possibility of firms in M . To

obtain the maximum possible τN\M value, we must assign as many firms j ∈ N

as possible to setM and distribute the remaining payment equally to the firms in

N \M . The former follows since increasing the number of firms in M decreases

the remaining payment to firms in N \M thus increases τN\M and latter follows

since dividing the remaining payment equally leads to equal τ values for all firms

in N \M thus maximizes τN\M .

Define b(n) as the solution to

κ

T c
N

− b(n)
(√

2κα(1− 1

2
√
n
)
)
= 0. (C.34)

Straightforward substitutions yield b(n) = n/(2
√
n − 1). Since b(n) is not

necessarily an integer, the maximum possible number of firms in set M is

⌊b(n)⌋, that is, M = {1, .., ⌊b(n)⌋}. Since ⌊b(n)⌋ firms in M each contribute
√
2κα(1 − 1/2

√
n), the firms in N \ M need to contribute a total payment of

(
√

nκα
2

− ⌊b(n)⌋(
√
2κα(1− 1/2

√
n)))⌋) to satisfy condition (iii)-b in Proposition

5.1. Dividing this total payment equally, each of the n− ⌊b(n)⌋ firms in N \M ,

contributes r∗j = (
√

nκα
2

− ⌊b(n)⌋(
√
2κα(1− 1/2

√
n)))/(n− ⌊b(n)⌋) and the cor-

responding threshold cycle time is

τ ∗j (r
∗
j ) = τN\M = 2

√
2κ

α
− 2

(
√

nκα
2

− ⌊b(n)⌋(
√
2κα(1− 1

2
√
n
))

(n− ⌊b(n)⌋)α
. (C.35)

For any firm j ∈ M a deviation to τN\M is not profitable if and only if
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condition (iii)-a of Proposition 5.1 is satisfied, i.e.,

r∗j +
∑

k∈N\M

r∗k ≤
1

2
α(τN\M − T c

N) +
κ

τN\M
. (C.36)

Substituting for r∗j and r
∗
k on the left–hand side of (C.36) and rearranging, we get

√
2κα +

√
nκα

2
− ⌊b(n)⌋(

√
2κα(1− 1

2
√
n
))− 1

2
ατN\M − κ

τN\M
≤ 0. (C.37)

Plugging the value of τN\M from (C.35) in (C.37) and rearranging terms, we

obtain

(

√
nκα

2
− ⌊b(n)⌋

√
2κα(1− 1

2
√
n
))(1 +

1

n− ⌊b(n)⌋
)

− κ

2
√

2κ
α
− 2

(
√

nκα
2

−⌊b(n)⌋(
√
2κα(1− 1

2
√
n
))

(n−⌊b(n)⌋)α

≤ 0.

Finally, using
√

nκα
2

= b(n)(
√
2κα(1−1/2

√
n)) and dividing both sides by

√
2κα

we obtain

(b(n)− ⌊b(n)⌋)(1− 1

2
√
n
))(1 +

1

n− ⌊b(n)⌋
)− 1

4(1− b(n)−⌊b(n)⌋
n−⌊b(n)⌋ (1− 1

2
√
n
))

≤ 0.

(C.38)

�

Lemma C.1. For a firm j ∈M inducing τN\M is better than inducing any τ ∗i (ri)

for i ∈ N \M .

Proof: In order to prove the lemma we only need to show that deviating to the

firm with the smallest cycle time is always better than deviating to the others.

Assume that firms k, ℓ ∈ N \M satisfy τk(rk) < τℓ(rℓ) so rk > rℓ and further

assume that τk = τN\M and τℓ < τi for all i ∈ N \ (M
∪
k). Thus,∑

i∈N\M |τ∗i (ri)≥τ∗k

ri = (

√
nκα

2
− ⌊b(n)⌋(

√
2κα(1− 1/2

√
n)))⌋) (C.39)

and ∑
i∈N\M |τ∗i (ri)≥τ∗ℓ

ri = (

√
nκα

2
− ⌊b(n)⌋(

√
2κα(1− 1/2

√
n)))⌋)− rk (C.40)
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If we can show that deviating to k is always better than deviating to ℓ we are

done. For τk > T d
k this is definitely true since the cost function is increasing in

cycle time.

Consider the deviation of firm j ∈ M and let r′j and r′′j be the necessary

contributions of firm j for the RSP to select τk and τℓ respectively. For the firm

j to prefer τℓ we must have:

r′′j +
1

2
ατℓ < r′j +

1

2
ατk

using rk =
√
2κα− 1

2
ατk and rℓ =

√
2κα− 1

2
ατℓ we obtain

0 < rk − rℓ < r′j − r′′j (C.41)

Now, for the RSP to select τℓ we should have

r′′j +
∑

i̸=j|τ∗i (ri)≥τ∗ℓ

ri −
κ

τ ∗ℓ (rℓ)
≥ 0

and

r′j +
∑

i ̸=j|τ∗i (ri)≥τ∗k

ri −
κ

τ ∗k (rk)
< r′′j +

∑
i̸=j|τ∗i (ri)≥τ∗ℓ

ri −
κ

τ ∗ℓ (rℓ)

By plugging (C.39) and (C.40) and making the obvious simplifications we obtain:

r′j −
κ

τ ∗k (rk)
< r′′j − rk −

κ

τ ∗ℓ (rℓ)

Rearranging the terms and adding (C.41) yield:

rk − rℓ < r′j − r′′j <
κ

τ ∗k (rk)
− rk −

κ

τ ∗ℓ (rℓ)

Further rearranging yields:

2rk −
κ

τ ∗k (rk)
< rℓ −

κ

τ ∗ℓ (rℓ)

which forms a contradiction. �
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APPENDIX D

Design and Analysis of

Mechanisms for Decentralized

Joint Replenishment

D.1 Proof of Proposition 6.1

In order for firm i to be truth telling its cost should be minimized at α̂i = αi

when all other firms are truth telling, i.e, α̂j = αj for j ∈ N \ {i}. The first order
condition in this case is:

dCdm
i (α̂i,α−i)

dα̂i

∣∣∣∣
α̂i=αi

= −1

2

√
κ

2
αi(
∑
j∈N

αj)
−3/2 +

√
1

2κ
σ′(αi,α−i)(

∑
j∈N

αj)
1/2

+
1

2

√
1

2κ
σ(αi,α−i)(

∑
j∈N

αj)
−1/2 = 0

where σ′(αi,α−i) =
dσ(α̂i,α−i)

dα̂i
|α̂i=αi

.

Rearranging the terms yield√
1

2κ
σ′(αi,α−i)(

∑
j∈N

αj)
1/2 +

1

2

√
1

2κ
σ(αi,α−i)(

∑
j∈N

αj)
−1/2 =

1

2

√
κ

2
αi(
∑
j∈N

αj)
−3/2.
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Multiplying both sides by
√
2κ, we get

σ′(αi,α−i)(
∑
j∈N

αj)
1/2 +

1

2
σ(αi,α−i)(

∑
j∈N

αj)
−1/2 =

κ

2
αi(
∑
j∈N

αj)
−3/2. (D.1)

The left hand side of the equation (D.1) is the derivative of σ(αi,α−i)(
∑

j∈N αj)
1/2

with respect to αi. Thus the first order condition takes the form

d[σ(αi,α−i)(
∑

j∈N αj)
1/2]

dαi

=
κ

2
αi(
∑
j∈N

αj)
−3/2.

Solving the differential equation gives

σ(αi,α−i)(αi +
∑
j ̸=i

αj)
1/2 =

κ

2

∫ αi

t=0

t(t+
∑
j ̸=i

αj)
−3/2dt+ c =

κ(t+ 2
∑

j ̸=i αj)

(t+
∑

j ̸=i αj)1/2

∣∣∣∣∣
t=αi

t=0

+ c.

The cost share function a is then given by

σ(αi,α−i) =
κ(αi + 2

∑
j ̸=i αj)

(αi +
∑

j ̸=i αj)
−

2κ(
∑

j ̸=i αj)
1/2

(αi +
∑

j ̸=i αj)1/2
+ c.

The integration constant c can be found by using the fact σ(0,α−i) = 0.

σ(0,α−i) =
κ(0 + 2

∑
j ̸=i αj)

(0 +
∑

j ̸=i αj)
−

2κ(
∑

j ̸=i αj)
1/2

(0 +
∑

j ̸=i αj)1/2
+ c = c,

which shows that the constant c = 0. Therefore, the cost share function is given

by

σ(αi,α−i) =
κ(αi + 2

∑
j ̸=i αj)

(αi +
∑

j ̸=i αj)
−

2κ(
∑

j ̸=i αj)
1/2

(αi +
∑

j ̸=i αj)1/2
.

Using the share function σ(α̂i,α−i) we can find the cost of firm i as

Cdm
i (α̂i,α−i) =

√
κ

2

(αi + α̂i + 2
∑

j ̸=i αj)

(α̂i +
∑

j ̸=i αj)1/2
−
√
2κ(
∑
j ̸=i

αj)
1/2.

In order to show that incentive compatibility constraint is globally satisfied, we

first need to prove that the cost function is strictly quasi–convex. By definition,

Cdm
i (α̂i,α−i) is quasi–convex in α̂i if the set Q(b) = {α̂i : C

dm
i (α̂i,α−i) ≤ b} is a
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convex set for any b ∈ R. Now, take any {α′
i, α

′′
i } ∈ Q(b). First, since α′

i ∈ Q(b),

we have Cdm
i (α′

i,α−i) ≤ b, or√
κ

2

(αi + α′
i + 2

∑
j ̸=i αj)

(α′
i +
∑

j ̸=i αj)1/2
−
√
2κ(
∑
j ̸=i

αj)
1/2 ≤ b

⇒
√
κ

2

(αi + α′
i + 2

∑
j ̸=i αj)

(α′
i +
∑

j ̸=i αj)1/2
≤ b+

√
2κ(
∑
j ̸=i

αj)
1/2

⇒
(αi + α′

i + 2
∑

j ̸=i αj)

(α′
i +
∑

j ̸=i αj)1/2
≤
√

2

κ

(
b+

√
2κ(
∑
j ̸=i

αj)
1/2

)
.

Denoting
√

2
κ

(
b+

√
2κ(
∑

j ̸=i αj)
1/2
)
= b we have

(αi + α′
i + 2

∑
j ̸=i αj)

(α′
i +
∑

j ̸=i αj)1/2
≤ b. (D.2)

Similarly, Cdm
i (α′′

i ,α−i) < b and using the same steps we obtain:

(αi + α′′
i + 2

∑
j ̸=i αj)

(α′′
i +

∑
j ̸=i αj)1/2

≤ b. (D.3)

For Q(b) to be a convex set, for any λ ∈ [ 0, 1], λα′
i + (1 − λ)α′′

i ∈ Q(b) should

be satisfied, i.e., we must have

(αi + λα′
i + (1− λ)α′′

i + 2
∑

j ̸=i αj)

(λα′
i + (1− λ)α′′

i +
∑

j ̸=i αj)1/2
≤ b. (D.4)

Now, we first take the square of (D.2) and (D.3) and then multiply the first one

with λ and second one with 1− λ. Finally we sum them up to get:

λ(αi + α′
i + 2

∑
j ̸=i

αj)
2 + (1− λ)(αi + α′′

i + 2
∑
j ̸=i

αj)
2 ≤ (b)2(λα′

i + (1− λ)α′′
i +

∑
j ̸=i

αj).

Simplifying the left hand side yields

(α + λα′
i + (1− λ)α′′

i + 2
∑
j ̸=i

αj)
2 + (α′

i − α′′
i )

2λ(1− λ) ≤ (b)2(λα′
i + (1− λ)α′′

i +
∑
j ̸=i

αj),

which can be written as:

(α + λα′
i + (1− λ)α′′

i + 2
∑

j ̸=i αj)
2

(λα′
i + (1− λ)α′′

i +
∑

j ̸=i αj)
+

(α′
i − α′′

i )
2λ(1− λ)

(λα′
i + (1− λ)α′′

i +
∑

j ̸=i αj)
≤ (b)2.(D.5)
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Since the second term on the left hand side of equation (D.5) is non–negative we

have

(α + λα′
i + (1− λ)α′′

i + 2
∑

j ̸=i αj)
2

(λα′
i + (1− λ)α′′

i +
∑

j ̸=i αj)
≤ (b)2.

This shows that (D.4) is satisfied and λα′
i + (1 − λ)α′′

i ∈ Q(b). Thus, Q(b) is a

convex set and Cdm
i (α̂i, α−i) is a quasi–convex function.

The second order derivative of Cdm
i (α̂i,α−i) at the point α̂i = αi is

d2Cdm
i (α̂i,α−i)

dα̂2
i

∣∣∣∣
α̂i=αi

=
1

2

√
κ

2
(αi +

∑
j ̸=i

αj)
−3/2

which is always positive. Therefore Cdm
i (α̂i,α−i) is convex at αi. Since

Cdm
i (α̂i,α−i) is also strictly quasi–convex, it has a global minimum at α̂i = αi.

Thus, global incentive compatibility is satisfied.

Next, we show that the individual rationality constraint is satisfied. For this

purpose, we need to show that a firm should not have a better payoff if it rejects

the mechanism. In other words, its decentralized cost should be higher that the

cost it would obtain through the mechanism. At the point α̂i = αi the cost

function takes the form

Cdm
i (αi,α−i) =

√
κ

2
αi(αi +

∑
j ̸=i

αj)
−1/2 +

√
κ

2

(αi + 2
∑

j ̸=i αj)

(αi +
∑

j ̸=i αj)1/2
−

√
2κ(
∑
j ̸=i

αj)
1/2.

Further manipulation yields:

Cdm
i (αi,α−i) =

√
2κ(αi +

∑
j ̸=i

αj)
1/2 −

√
2κ(
∑
j ̸=i

αj)
1/2,

which is definitely less than Cd
i =

√
2καi by the concavity of the square root

function. Thus, individual rationality is satisfied.

Our final step is to determine whether the budget–balance condition is sat-

isfied, i.e., whether the sum of the contributions determined through the direct
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mechanism is enough to finance the fixed order cost κ. Total contributions col-

lected from the firms is∑
i∈N

σ(αi,α−i) =
∑
i∈N

κ(αi + 2
∑

j ̸=i αj)

(
∑

j∈N αj)
−
∑
i∈N

2κ(
∑

j ̸=i αj)
1/2

(
∑

j∈N αj)1/2

= (2n− 1)κ−
∑
i∈N

2κ(
∑

j ̸=i αj)
1/2

(
∑

j∈N αj)1/2

= (2n− 1)κ−
∑
i∈N

2κ(
∑

j ̸=i αj)
1/2(
∑

j∈N αj)
1/2

(
∑

j∈N αj)

< (2n− 1)κ−
∑
i∈N

2κ(
∑

j ̸=i αj)

(
∑

j∈N αj)
= (2n− 1)κ− 2(n− 1)κ = κ,

which shows that sum of the allocations is smaller than κ so budget–balance con-

straint is not satisfied. �

D.2 Proof of Proposition 6.2

Summing (6.3) over all i ∈ N yields:

∑
i∈N

f2
i =

(∑
i∈N

sθi

)−1(∑
i∈N

sξi

)2/ξ
θ
∑
i∈N

sξi
∑
i∈N

sθ−ξ
i +

∑
i∈N

sθi − θ
∑
i∈N

s2θ−ξ
i

∑
i∈N

sξi

(∑
i∈N

sθi

)−1


=

(∑
i∈N

sθi

)−2(∑
i∈N

sξi

)2/ξ
θ
∑
i∈N

sξi
∑
i∈N

sθ−ξ
i

∑
i∈N

sθi +

(∑
i∈N

sθi

)2

− θ
∑
i∈N

s2θ−ξ
i

∑
i∈N

sξi


=

(∑
i∈N

sθi

)−2(∑
i∈N

sξi

)2/ξ
θ

2
∑
i ̸=j

sθi s
θ
j +

∑
i ̸=j

sθ+ξ
i sθ−ξ

j +
∑

i ̸=j,j ̸=k

sθi s
ξ
js

θ−ξ
k

+

(∑
i∈N

sθi

)2


=

(∑
i∈N

sξi

)2/ξ
(∑

i∈N

sθi

)−2

θ

2
∑
i ̸=j

sθi s
θ
j +

∑
i ̸=j

sθ+ξ
i sθ−ξ

j +
∑

i ̸=j,j ̸=k

sθi s
ξ
js

θ−ξ
k

+ 1

 .

Dividing both sides by
(∑

i∈N s
ξ
i

)2/ξ
leads to the desired result. �
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D.3 Proof of Proposition 6.4

For the single parameter case the second derivative of the payoff function is as

follows:

∂C1p
i (ŝ)

∂ŝi

∣∣∣∣∣
ŝ=s

= −κf2
i (ξ − 1)sξ−2

i

∑
j∈N

sξj

− 1
ξ−1

− κf2
i (−1− ξ)s2ξ−2

i

∑
j∈N

sξj

− 1
ξ−2

+κξ(ξ − 1)sξ−2
i

∑
j∈N

sξj

 1
ξ−1

+ κξ(1− ξ)s2ξ−2
i

∑
j∈N

sξj

 1
ξ−2

+κ(1− ξ)(2ξ − 1)s2ξ−2
i

∑
j∈N

sξj

 1
ξ−2

+ κ(1− ξ)(1− 2ξ)s3ξ−2
i

∑
j∈N

sξj

 1
ξ−3

.

Factoring the expression, we obtain

∂C1p
i (ŝ)

∂ŝi

∣∣∣∣∣
ŝ=s

= κsξ−2
i

∑
j∈N

sξj

− 1
ξ
−3

f2
i

∑
j∈N

sξj

(1− ξ)

∑
j∈N

sξj

+ (1 + ξ)sξi

+ (ξ − 1)

∑
j∈N

sξj

 2
ξ
∑

j ̸=i

sξj

ξ

∑
j∈N

sξj

− (2ξ − 1)sξi


 .

For convexity, the argument above should be non–negative. Using this, we get

the following condition:

(ξ − 1)

∑
j∈N

sξj

 2
ξ−1∑

j ̸=i

sξj

ξ

∑
j∈N

sξj

− (2ξ − 1)sξi

 ≥ f2
i

(ξ − 1)

∑
j∈N

sξj

− (1 + ξ)sξi

 .

Using (6.8) and (6.10) in the inequality, we get

(ξ − 1)

( ∑
j∈N f2

j

ξ(n− 1) + 1

) ξ
2


2
ξ
−1( ∑

j∈N f2
j

ξ(n− 1) + 1

) ξ
2

−
ξ
∑

j∈N f2
j − ((n− 1)ξ + 1) f2

i

((n− 1)ξ + 1) (ξ − 1)

( ∑
j∈N f2

j

(n− 1)ξ + 1

)ξ/2−1


ξ

( ∑
j∈N f2

j

ξ(n− 1) + 1

) ξ
2

− (2ξ − 1)
ξ
∑

j∈N f2
j − ((n− 1)ξ + 1) f2

i

((n− 1)ξ + 1) (ξ − 1)

( ∑
j∈N f2

j

(n− 1)ξ + 1

)ξ/2−1


≥ f2
i

(ξ − 1)

( ∑
j∈N f2

j

ξ(n− 1) + 1

) ξ
2

− (1 + ξ)
ξ
∑

j∈N f2
j − ((n− 1)ξ + 1) f2

i

((n− 1)ξ + 1) (ξ − 1)

( ∑
j∈N f2

j

(n− 1)ξ + 1

)ξ/2−1
 .

Simplifying the terms yields

(ξ − 1)

(
((n− 1)ξ + 1) f2

i −
∑

j∈N f2
j

((n− 1)ξ + 1) (ξ − 1)

)(
(2ξ − 1) ((n− 1)ξ + 1) f2

i − ξ2
∑

j∈N f2
j

((n− 1)ξ + 1) (ξ − 1)

)

≥ f2
i

(
(ξ + 1) ((n− 1)ξ + 1) f2

i − (3ξ − 1)
∑

j∈N f2
j

((n− 1)ξ + 1) (ξ − 1)

)
.
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Next, we consider the cases for ξ > 1 and ξ < 1 separately since the equilib-

rium conditions for both cases are different. For ξ > 1 the condition is:(
((n− 1)ξ + 1) f 2

i −
∑
j∈N

f 2
j

)(
(2ξ − 1) ((n− 1)ξ + 1) f 2

i − ξ2
∑
j∈N

f 2
j

)

≥ f 2
i ((n− 1)ξ + 1)

(
(ξ + 1) ((n− 1)ξ + 1) f 2

i − (3ξ − 1)
∑
j∈N

f 2
j

)
.

Denote E = ((n− 1)ξ + 1) f 2
i and F =

∑
j∈N f

2
j and the condition simplifies to:

(E − F )
(
(2ξ − 1)E − ξ2F

)
≥ E ((ξ + 1)E − (3ξ − 1)F )

⇒ (2ξ − 1)E2 − ξ2EF − (2ξ − 1)EF + ξ2F 2 ≥ (ξ + 1)E2 − (3ξ − 1)EF

⇒ (ξ − 2)E2 − (ξ2 − ξ)EF + ξ2F 2 ≥ 0

⇒ (ξF − (ξ − 2)E)(ξF − E) ≥ 0.

By Proposition 6.3, ξF − E > 0. Thus we must have:

ξ
∑
j∈N

f 2
j − (ξ − 2) ((n− 1)ξ + 1) f 2

i ≥ 0.

For ξ < 1,

(E − F )
(
(2ξ − 1)E − ξ2F

)
≤ E ((ξ + 1)E − (3ξ − 1)F )

⇒ (2ξ − 1)E2 − ξ2EF − (2ξ − 1)EF + ξ2F 2 ≤ (ξ + 1)E2 − (3ξ − 1)EF

⇒ (ξ − 2)E2 − (ξ2 − ξ)EF + ξ2F 2 ≤ 0

⇒ (ξF − (ξ − 2)E)(ξF − E) ≤ 0.

Again by Proposition 6.3, ξF − E < 0. Thus we must have:

ξ
∑
j∈N

f 2
j − (ξ − 2) ((n− 1)ξ + 1) f 2

i ≥ 0,

which is same as what get for ξ > 1. �
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APPENDIX E

Newsvendor Duopoly With

Asymmetric Information

E.1 Proof of Theorem 7.1

First, define Y2 = −Q2 so that Q1×Y2 is a lattice (This order change is necessary

to form a supermodular game). Moreover, let t1 = −c1, t2 = c2 and define

effective demand functions as Ri : tj → ℜ. Then for

π1(Q1, y2, t1, t2) = E[min{R1(t2), Q1}] + t1Q1,

π2(Q1, y2, t1, t2) = E[min{R2(t1),−y2}] + t2y2.

The supermodularity and continuity of these functions and the increasing dif-

ferences in (Q1, y2) are proved in [30]. The only thing remains is to show

that π1 has increasing differences in (Q1, t1) and π2 has increasing differences

in (y2, t2) (Again, πi is not directly dependent on the type of firm j. Hence,

increasing differences for (Q1, t2) and (y2, t1) are trivially satisfied.). Let ς1(t1) =

π1(Q
′
1, y2, t1, t2)− π1(Q1, y2, t1, t2) where Q

′
1 ≥ Q1 for given y2, t2. Then

ς1(t1) = E[min{R1(t2), Q
′
1}]− E[min{R1(t2), Q1}] + t1[Q

′
1 −Q1].

Define t′1 such that t′1 ≥ t1. It follows that ς(t
′
1)− ς(t1) = [t′1 − t1][Q

′
1 −Q1] ≥ 0.

Thus π1 has increasing differences in (Q1, t1). Similarly, ς2(t2) = π2(Q1, y
′
2, t1, t2)−

145



π2(Q1, y2, t1, t2) where y
′
2 ≥ y2 for given Q1, t1. Then

ς2(t2) = E[min{R2(t1),−y′2}]− E[min{R2(t1),−y2}] + t2[y
′
2 − y2].

Define t′2 such that t′2 ≥ t2. It follows that ς(t′2) − ς(t2) = [t′2 − t2][y
′
2 − y2] ≥ 0.

Thus π2 has increasing differences in (y2, t2). Since our priors over the types

are independent, the condition for priors to be increasing with respect to types

is trivially satisfied. The existence of pure strategy Nash equilibrium follows. �

E.2 Proof of Claims 7.1–7.4 and Lemmas 7.2–

7.5

Proof of Claim 7.1: Let min{s−1(x), ŝ−1(y)} = ŝ−1(y), i.e., s−1(x) ≥ ŝ−1(y).

Suppose, to get a contradiction, that s−1(x) < x + y. Then x < s(x + y) =

x+ y − ŝ(x+ y), since ŝ(x) = x− s(x). Thus, ŝ(x+ y) < y, and x+ y < ŝ−1(y).

Therefore, s−1(x) < ŝ−1(y), yielding a contradiction. The second inequality is

established similarly. �

Proof of Claim 7.2: Pr(D1 ≥ Qo
1H) = Pr(D ≥ s−1(Qo

1H)) = c1H ≤ c2H =

Pr(D ≥ ŝ−1(Qo
2H)).

Hence, s−1(Qo
1H) ≥ ŝ−1(Qo

2H). �

Proof of Claim 7.3: (i) (1) evaluated at Q1L = Q∗
1H is positive.

(ii) Similar argument with (i). �

Proof of Claim 7.4: We will only show (i). Other cases are established

similarly. Evaluating the left hand side of (1) at Q1L = Qo
1L gives:

q Pr(D1 + (D2 −Q2H)
+ ≥ Qo

1L) + (1− q)Pr(D1 + (D2 −Q2L)
+ ≥ Qo

1L)− c1L

≥ q Pr(D1 ≥ Qo
1L) + (1− q)Pr(D1 ≥ Qo

1L)− c1L = Pr(D1 ≥ Qo
1L)− c1L = 0
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Thus, Q∗
1L ≥ Qo

1L. �

Proof of Lemma 7.2: Assume that s−1(Q∗
1H) > ŝ−1(Q∗

2H). First note that,

Pr(D2 + (D1 −Q1)
+ ≥ Q2)

= Pr(D ≥ s−1(Q1), D ≥ Q1 +Q2) + Pr(D ≤ s−1(Q1), D ≥ ŝ−1(Q2)).

By substituting this in (4) we obtain:

pPr(D ≥ s−1(Q∗
1H), D ≥ Q∗

2H +Q∗
1H) + pPr(D ≤ s−1(Q∗

1H), D ≥ ŝ−1(Q∗
2H))

+(1− p)Pr(D ≥ s−1(Q∗
1L), D ≥ Q∗

2H +Q∗
1L)

+(1− p)Pr(D ≤ s−1(Q∗
1L), D ≥ ŝ−1(Q∗

2H))− c2H = 0

Since s−1(Q∗
1H) > ŝ−1(Q∗

2H), s
−1(Q∗

1L) > ŝ−1(Q∗
2H) by Claim 3. By Claim 1,

Pr(D ≥ s−1(Q∗
1H), D ≥ Q∗

2H +Q∗
1H) = Pr(D ≥ s−1(Q∗

1H). In addition, Pr(D ≥
s−1(Q∗

1H)) + Pr(ŝ−1(Q∗
2H) ≤ D ≤ s−1(Q∗

1H)) = Pr(D ≥ ŝ−1(Q∗
2H)). Therefore,

pPr(D ≥ ŝ−1(Q∗
2H)) + (1− p)Pr(D ≥ ŝ−1(Q∗

2H))− c2H = Pr(D ≥ ŝ−1(Q∗
2H))− c2H = 0.

Thus, Q∗
2H = Qo

2H . Using s−1(Q∗
1H) ≤ ŝ−1(Q∗

2H) < ŝ−1(Q∗
2L) in (2) in a similar

fashion gives the result Q∗
1H = Qo

1H . �

Proof of Lemma 7.3: Assume to the contrary that for c1H ≤ c2H ,

s−1(Q∗
1H) < ŝ−1(Q∗

2H). Then, by Lemma 1, Q∗
1H = Qo

1H . By Claims 2 and

3, we get s−1(Q∗
1H) ≥ s−1(Qo

1H) ≥ ŝ−1(Qo
2H) and

Pr(D ≥ Q∗
2H +Q∗

1H) ≤ Pr(D ≥ Qo
2H +Qo

1H)

< Pr(D ≥ Qo
2H + ŝ(s−1(Qo

2H))) = Pr(ŝ(D) ≥ Qo
2H) = c2H . (∗)

Now, we have either s−1(Q∗
1L) > ŝ−1(Q∗

2H) or s−1(Q∗
1L) ≤ ŝ−1(Q∗

2H). In the

first case equilibrium condition (4) simplifies to:

c2H = pPr(D ≥ Q∗
2H +Q∗

1H) + (1− p)Pr(ŝ(D) ≥ Q∗
2H)

≤ pPr(D ≥ Q∗
2H +Q∗

1H) + (1− p)c2H ,
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since Pr(ŝ(D) ≥ Q∗
2H) ≤ Pr(ŝ(D) ≥ Qo

2H) by Claim 4 and Pr(ŝ(D) ≥ Qo
2H) =

c2H by definition. This leads to

c2H ≤ pPr(D ≥ Q∗
2H +Q∗

1H) + (1− p)c2H

≤ Pr(D ≥ Q∗
2H +Q∗

1H),

which is a contradiction to (∗).

For the second case, the equilibrium condition (4) simplifies to:

c2H = pPr(D ≥ Q∗
2H +Q∗

1H) + (1− p)Pr(D ≥ Q∗
2H +Q∗

1L)

< Pr(D ≥ Q∗
2H +Q∗

1H),

since Q∗
1L > Q∗

1H by Claim 3. Again this contradicts (∗). �

Proof of Lemma 7.4: By Lemma 2, c1H ≤ c2H implies s−1(Q∗
1H) ≥

ŝ−1(Q∗
2H). Using this condition in Lemma 1 yields the desired result. �

Proof of Lemma 7.5: First note that Qo
iL and Qo

iH are stand-alone order

levels for firms i = 1, 2. It is important to notice that each firm will at least play

his stand-alone order quantity in the equilibrium. Now, define Q1
2H as the order

level of high type of firm 2 when firm 1 plays his stand-alone quantities for both

his types in the equilibrium i.e.,

pPr(ŝ(D) + (s(D)−Qo
1H)

+

≥ Q1
2H) + (1− p)Pr(ŝ(D) + (s(D)−Qo

1L)
+ ≥ Q1

2H)− c2H = 0.

and Q1
2H ≥ Qo

2H since firm 2 will play at least his stand-alone order level. Rewrit-

ing the equilibrium condition gives,

pPr(D ≥ s−1(Qo
1), D ≥ Qo

1H +Q1
2H) + pPr(D ≤ s−1(Qo

1H), D ≥ ŝ−1(Q1
2H))

+(1− p)Pr(D ≥ s−1(Qo
1L), D ≥ Qo

1L +Q1
2H)

+(1− p)Pr(D ≤ s−1(Qo
1L), D ≥ ŝ−1(Q1

2H))− c2H = 0.

For this equilibrium condition, we have three possibilities: ŝ−1(Q1
2H) ≤ s−1(Qo

1H),

s−1(Qo
1H) < ŝ−1(Q1

2H) ≤ s−1(Qo
1L) and s−1(Qo

1L) < ŝ−1(Q1
2H). First assume
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ŝ−1(Q1
2H) ≤ s−1(Qo

1H), then the equilibrium condition becomes:

pPr(D ≥ ŝ−1(Q1
2H)) + (1− p)Pr(D ≥ ŝ−1(Q1

2H))− c2H = Pr(D ≥ ŝ−1(Q1
2H))− c2H = 0.

Thus, Q1
2H = Qo

2H . Now, we assume that s−1(Qo
1H) < ŝ−1(Q1

2H) < s−1(Qo
1L).

Moreover, if we use the fact that s−1(Qo
1H) < Qo

1H + Q1
2H (by Claim 1), the

condition becomes

0 = pPr(D ≥ Qo
1H +Q1

2H) + (1− p)Pr(D ≥ ŝ−1(Q1
2H))− c2H

< pPr(D ≥ s−1(Qo
1H)) + (1− p)Pr(D ≥ s−1(Qo

1H))− c2H

= Pr(D ≥ s−1(Qo
1H))− c2H = c1H − c2H

Thus, c1H > c2H which is a contradiction to our assumption that c1H ≤ c2H .

A similar proof can be obtained for s−1(Qo
1L) ≤ ŝ−1(Q1

2H). Hence, Q1
2H = Qo

2H

which implies that any order quantity of high type of firm 2 satisfies Q2H ≤ Qo
2H .

Combining this with the fact that Q2H ≥ Qo
2H , we obtain Q2H = Qo

2H . �

E.3 Proof of Theorem 7.2

Under an increasing and deterministic split function, we know that there is a

unique Bayesian–Nash equilibrium and using Lemma 3, our unique equilibrium

conditions take the form:

q Pr(D ≥ Q∗
1L + ŝ(G

−1
(c2H))) + (1− q)Pr(D1 + (D2 −Q∗

2L)
+ ≥ Q∗

1L) = c1L,

q Pr(D ≥ Q∗
1H + ŝ(G

−1
(c2H))) + (1− q)Pr(D1 + (D2 −Q∗

2L)
+ ≥ Q∗

1H) = c1H ,

p Pr(D2 + (D1 −Q∗
1H)

+ ≥ Q∗
2L) + (1− p)Pr(D2 + (D1 −Q∗

1L)
+ ≥ Q∗

2L) = c2L,

Q∗
2H = ŝ(G

−1
(c2H)).

Now, if we use D1 = s(D) and D2 = ŝ(D) and use the fact that,

Pr(D1 + (D2 −Q2)
+ ≥ Q1)

= Pr(D ≥ ŝ−1(Q2), D ≥ Q2 +Q1) + Pr(D ≤ ŝ−1(Q2), D ≥ s−1(Q1)),

P r(D2 + (D1 −Q1)
+ ≥ Q2)

= Pr(D ≥ s−1(Q1), D ≥ Q1 +Q2) + Pr(D ≤ s−1(Q1), D ≥ ŝ−1(Q2)),
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which can be obtained using a simple conditional probability argument, equilib-

rium conditions will become:

q Pr(D ≥ Q∗
1L + ŝ(G

−1
(c2H))) + (1− q)Pr(D ≥ ŝ−1(Q∗

2L), D ≥ Q∗
2L +Q∗

1L)

+(1− q)Pr(D ≤ ŝ−1(Q∗
2L), D ≥ s−1(Q∗

1L)) = c1L, (A1)

q Pr(D ≥ Q∗
1H + ŝ(G

−1
(c2H))) + (1− q)Pr(D ≥ ŝ−1(Q∗

2L), D ≥ Q∗
2L +Q∗

1H)

+(1− q)Pr(D ≤ ŝ−1(Q∗
2L), D ≥ s−1(Q∗

1H)) = c1H , (A2)

pPr(D ≥ s−1(Q∗
1H), D ≥ Q∗

2L +Q∗
1H) + pPr(D ≤ s−1(Q∗

1H), D ≥ ŝ−1(Q∗
2L))

+(1− p)Pr(D ≥ s−1(Q∗
1L), D ≥ Q∗

2L +Q∗
1L)

+(1− p)Pr(D ≤ s−1(Q∗
1L), D ≥ ŝ−1(Q∗

2L)) = c2L, (A3)

Q∗
2H = ŝ(G

−1
(c2H)). (A4)

The proof of part 1 follows since Q∗
2H = ŝ(G

−1
(c2H)) is obviously an equilibrium

condition.

Part 2 has three separate subsets. To prove (i), let ŝ−1(Q∗
2L) ≥ s−1(Q∗

1L).

(A1) becomes (i1):

qG(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q)Pr(D ≥ ŝ−1(Q∗

2L), D ≥ Q∗
2L +Q∗

1L)

+(1− q)Pr(D ≤ ŝ−1(Q∗
2L), D ≥ s−1(Q∗

1L))

= qG(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q)Pr(D ≥ s−1(Q∗

1L))

= qG(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q)G

−1
(s−1(Q∗

1L)) = c1L.

Similarly, using the fact that ŝ−1(Q∗
2L) ≥ s−1(Q∗

1L) implies ŝ−1(Q∗
2L) ≥ s−1(Q∗

1H),

(A2) becomes (i2):

qG(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q)Pr(D ≥ ŝ−1(Q∗

2L), D ≥ Q∗
2L +Q∗

1H)

+(1− q)Pr(D ≤ ŝ−1(Q∗
2L), D ≥ s−1(Q∗

1H))

= qG(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q)Pr(D ≥ s−1(Q∗

1H))

= qG(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q)G

−1
(s−1(Q∗

1H)) = c1H .
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And combining two inequalities, (A3) becomes (i3):

pPr(D ≥ s−1(Q∗
1H), D ≥ Q∗

2L +Q∗
1H) + pPr(D ≤ s−1(Q∗

1H), D ≥ ŝ−1(Q∗
2L))

+(1− p)Pr(D ≥ s−1(Q∗
1L), D ≥ Q∗

2L +Q∗
1L) + (1− p)Pr(D ≤ s−1(Q∗

1L), D ≥ ŝ−1(Q∗
2L))

= pPr(D ≥ Q∗
2L +Q∗

1H) + (1− p)Pr(D ≥ Q∗
2L +Q∗

1L)

= pG
−1
(D ≥ Q∗

2L +Q∗
1H) + (1− p)G

−1
(D ≥ Q∗

2L +Q∗
1L) = c2L.

The proof for (ii) and (iii) follows similarly under s−1(Q∗
1L) > ŝ−1(Q∗

2L) ≥
s−1(Q∗

1H) and s
−1(Q∗

1H) > ŝ−1(Q∗
2L). �

E.4 Proof of Theorem 7.3

First, since the demand has a continuous distribution, the inverse of distribution

function G and G are well-defined. Only one of the (i),(ii) or (iii) given in

Theorem 7.2 can be satisfied since a vector of order quantities satisfying one of

the inequality conditions (i4),(ii4) or (iii4) cannot satisfy others.

Take the region (i). There can be only one Q∗
1L satisfying condition (i1) which

is:

qG(Q∗
1L + ŝ(G

−1
(c2H))) + (1− q)G(s−1(Q∗

1L)) = c1L,

since s−1, ŝ−1 and G
−1

gives unique results and it does not depend on any other

variables. Similarly, only one Q∗
1H satisfies (i2):

qG(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q)G(s−1(Q∗

1H)) = c1H .

Since both Q∗
1L and Q∗

1H are unique, (i3) i.e.,

pG(Q∗
2L +Q∗

1H) + (1− p)G(Q∗
2L +Q∗

1L) = c2L,

also gives a unique Q∗
2L. Thus, the set of order quantities satisfying region (i) is

unique.
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Similar arguments are valid for regions (ii) and (iii). The argument so far

does not rule out multiple equilibria each of which is the unique solution of one

of three blocks of equalities. Finally, we need to show that only one of that three

cases can arise.

Assume to the contrary that case (i) and (ii) gives different solutions. Now, let

(Q∗
1L, Q

∗
1H , Q

∗
2L, Q

∗
2H) and (Q̂1L, Q̂1H , Q̂2L, Q̂2H) be the solutions of cases (i) and

(ii) respectively. First notice that Q∗
1H = Q̂1H = Q1H and Q∗

2H = Q̂2H = Q2H

since they require the same conditions. However, low type quantities should

satisfy:

q G(Q∗
1L +Q2H) + (1− q) G(s−1(Q∗

1L)) = q G(Q̂1L +Q2H) + (1− q) G(Q̂2L + Q̂1L)

p G(Q∗
2L +Q1H) + (1− p) G(Q∗

2L +Q∗
1L) = p G(Q̂2L +Q1H) + (1− p) G(ŝ−1(Q̂2L))

ŝ−1(Q∗
2L) ≥ Q∗

1L + Q∗
2L ≥ s−1(Q∗

1L)

ŝ−1(Q̂2L) < Q̂1L + Q̂2L < s−1(Q̂1L)

where inequalities come from Claim 4. Thus, we have

q G(Q∗
1L +Q2H) + (1− q) G(s−1(Q∗

1L)) > qG(Q̂1L +Q2H) + (1− q) G(s−1(Q̂1L))

p G(Q∗
2L +Q1H) + (1− p) G(ŝ−1(Q∗

2L)) < p G(Q̂2L +Q1H) + (1− p) G(ŝ−1(Q̂2L))

which implies Q∗
1L < Q̂1L and Q∗

2L > Q̂2L (Remember that G is a decreasing

function.). If we use this in equilibrium conditions,

G(s−1(Q∗
1L)) < G(Q̂2L + Q̂1L)

G(Q∗
2L +Q∗

1L) > G(ŝ−1(Q̂2L))

meaning that both Q∗
1L + Q∗

2L > s−1(Q∗
1L) > Q̂2L + Q̂1L and Q̂2L + Q̂1L >

ŝ−1(Q̂2L) > Q∗
2L + Q∗

1L should be true, which is a contradiction. The proof for

other cases are similar.

Thus, the solution given by Theorem 7.2 is unique. �
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E.5 Proof of Theorem 7.4

Let GA and GB be the distribution functions of DA and DB, respectively. DA

stochastically dominates DB. Thus, GA(x) ≤ GB(x) and GA(x) ≥ GB(x) for all

x. Since GA and GB are decreasing functions, G
−1

A (y) ≥ G
−1

B (y) for all y. We

define (QA
1L, Q

A
1H , Q

A
2L, Q

A
2H) and (QB

1L, Q
B
1H , Q

B
2L, Q

B
2H) as the equilibrium order

quantities for DA and DB, respectively.

Returning to the result of Theorem 7.2, we have three possible cases. Consider

the equilibrium conditions in case (i). Now, since ŝ is an increasing function,

there exists δ2H = QA
2H −QB

2H = ŝ(G
−1

A (c2H))− ŝ(G
−1

B (c2H)) ≥ 0. Note that, the

stock–out probability of firm 2 under high type does not change.

Now, by (i2),

q GA(Q
A
1L+Q

A
2H)+(1−q) GA(s

−1(QA
1L)) = q GB(Q

B
1L+Q

B
2H)+(1−q) GB(s

−1(QB
1L)).

Since the stock–out probability of firm 2 under high type does not change and

low type of firm 1 gets spillover only from high type of firm 2, the probability of

firm 1’s getting a spillover should not change.

Let δ1L = QA
1L −QB

1L. We can rewrite the equilibrium condition as,

q GA(Q
A
1L +QA

2H) + (1− q) GA(s
−1(QA

1L))

= q GB(Q
A
1L +QA

2H − δ1L − δ2H) + (1− q) GB(s
−1(QA

1L − δ1L)).

We know that for any {x1, x2}, if GA(x1) = GB(x2) then x1 ≥ x2. Moreover,

since the spillover probability does not change, GA(s
−1(QA

1L)) ≥ GB(s
−1(QA

1L))

should be satisfied. Thus, the difference between order quantities is positive, i.e.,

δ1L ≥ 0 and QA
1L ≥ QB

1L.

By a similar argument for (i2), δ1H = QA
1H −QB

1H ≥ 0.

For (i3), we have

p GA(Q
A
2L +QA

1H) + (1− p) GA(Q
A
2L +Q∗

1L)

= p GB(Q
B
2L +QA

1H − δ1H) + (1− p) GB(Q
B
2L +QA

1L − δ1L).
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From previous argument, we know that the stock–out probability of firm 1 does

not change with a stochastic increase in demand distribution. (Equilibrium order

quantities increase to compensate the change in demand distribution.) Using a

similar argument for (i3), δ2L = QA
2L − QB

2L ≥ 0. Thus all the equilibrium order

quantities increase.

Similar proof for cases (ii) and (iii). �

E.6 Proof of Theorem 7.5

As s increases uniformly, ŝ−1 increase, ŝ and s−1 decreases. From Theorem 7.2,

as s increases, Q∗
2H decreases.

From (i1),

q G
A
(Q∗

1L +Q∗
2H) + (1− q) G

A
(s−1(Q∗

1L)) = c1L.

If s increases uniformly, s−1 decreases. Hence, Q1L should increase to satisfy the

equilibrium condition. Similarly, Q∗
1H increases as s increases.

From (i3),

p G
A
(Q∗

2L +Q∗
1H) + (1− p) G

A
(Q∗

2L +Q∗
1L) = c2L.

Since Q∗
1L and Q∗

1H increase, Q∗
2L should decrease to compensate. Similar argu-

ment applies for cases (ii) and (iii). �

E.7 Comparative Statics

This section summarizes the comparative statics results for general demand dis-

tributions. But we need the following results.
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First note that s′ = ∂s(D)/∂D > 0 and ŝ′ = ∂ŝ(D)/∂D > 0 since we assume

both s and ŝ are increasing and deterministic functions. Then the derivative of

the inverses of the split functions can be found by

(s−1)′ =
∂s−1(Q)

∂Q
=

1

s′(s−1())
> 0

(ŝ−1)′ =
∂ŝ−1(Q)

∂Q
=

1

ŝ′(ŝ−1())
> 0

We use these results to find the signs of derivatives of order quantities with

respect to each parameter in the model.

Table E.1: Derivatives of equilibrium order quantities w.r.t. c1L
Q Conditions c1L Sign

Q2H 0

Q1L G(s−1(Q1L)) > 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1L))
< 0

G(s−1(Q1L)) = 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))
< 0

(i) Q1H 0

Q2L G(Q1L +Q2L) > 0 − (1−p)g(Q1L+Q2L)
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

( ∂Q1L
∂c1L

) > 0

G(Q1L +Q2L) = 0 0

Q1L G(Q1L +Q2L) > 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
< 0

G(Q1L +Q2L) = 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))
< 0

(ii) Q1H 0
Q2L 0

Q1L G(Q1L +Q2L) > 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
< 0

(iii) G(Q1L +Q2L) = 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))
< 0

Q1H 0
Q2L 0

.
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Table E.2: Derivatives of equilibrium order quantities w.r.t. c1H
Q Conditions c1H Sign

Q2H 0
Q1L 0

(i) Q1H − 1

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
< 0

Q2L G(Q1L +Q2L) > 0 − pg(Q1H+Q2L)
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

( ∂Q1H
∂c1H

) > 0

G(Q1L +Q2L) = 0 − ∂Q1H
∂c1H

> 0

Q1L G(Q1L +Q2L) > 0 − (1−q)g(Q1L+Q2L)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
( ∂Q2L
∂c1H

) < 0

G(Q1L +Q2L) = 0 0
(ii) Q1H − 1

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
< 0

Q2L G(ŝ−1(Q2L)) > 0 − pg(Q1H+Q2L)

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
( ∂Q1H
∂c1H

) > 0

G(ŝ−1(Q2L)) = 0 − ∂Q1H
∂c1H

> 0

Q1L 0

(iii) Q1H G(Q1H +Q2L) > 0 − 1

qg(Q1H+ŝ(G
−1

(c2H)))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
< 0

G(Q1H +Q2L) = 0 − 1

qg(Q1H+ŝ(G
−1

(c2H )))
< 0

Q2L 0

.
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Table E.3: Derivatives of equilibrium order quantities w.r.t. c2L
Q Conditions c2L Sign

Q2H 0

Q1L 0
(i) Q1H 0

Q2L G(Q1L +Q2L) > 0 − 1
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

< 0

G(Q1L +Q2L) = 0 − 1
pg(Q1H+Q2L)

< 0

Q1L G(Q1L +Q2L) > 0 − (1−q)g(Q1L+Q2L)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
( ∂Q2L
∂c2L

) > 0

G(Q1L +Q2L) = 0 0
(ii) Q1H 0

Q2L G(ŝ−1(Q2L)) > 0 − 1

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
< 0

G(ŝ−1(Q2L)) = 0 − 1
pg(Q1H+Q2L)

< 0

Q1L G(Q1L +Q2L) > 0
(1−q)ŝ′g(Q1L+Q2L)/g(G

−1
(c2L))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
> 0

G(Q1L +Q2L) = 0 0

(iii) Q1H G(Q1H +Q2L) > 0
(1−q)ŝ′g(Q1H+Q2L)/g(G

−1
(c2L))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
> 0

G(Q1H +Q2L) = 0 0

Q2L − ŝ′

g(G
−1

(c2L))
< 0

.
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Table E.4: Derivatives of equilibrium order quantities w.r.t. c2H
Q Conditions c2H Sign

Q2H − ŝ′

g(G
−1

(c2H ))
< 0

Q1L G(s−1(Q1L)) > 0
ŝ′g(Q1L+ŝ(G

−1
(c2H )))/g(G

−1
(c2H ))

qg(Q1L+ŝ(G
−1

(c2H)))+(1−q)(s−1)′g(s−1(Q1L))
> 0

G(s−1(Q1L)) = 0 ŝ′

qg(G
−1

(c2H ))
> 0

(i) Q1H
ŝ′g(Q1H+ŝ(G

−1
(c2H )))/g(G

−1
(c2H ))

qg(Q1H+ŝ(G
−1

(c2H)))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(Q1L +Q2L) > 0 − pg(Q1H+Q2L)∂Q1H/∂c2H+(1−p)g(Q1L+Q2L)∂Q1L/∂c2H
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

< 0

G(Q1L +Q2L) = 0 − ∂Q1H
∂c1H

< 0

Q1L G(Q1L +Q2L) > 0
qŝ′g(Q1L+ŝ(G

−1
(c2H )))/g(G

−1
(c2H ))+(1−q)g(Q1L+Q2L)(∂Q2L/∂c2H )

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
> 0

G(Q1L +Q2L) = 0 ŝ′

g(G
−1

(c2H ))
> 0

(ii) Q1H
ŝ′g(Q1H+ŝ(G

−1
(c2H )))/g(G

−1
(c2H ))

qg(Q1H+ŝ(G
−1

(c2H)))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(ŝ−1(Q2L)) > 0 − pg(Q1H+Q2L)

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
( ∂Q1H
∂c2H

) < 0

G(ŝ−1(Q2L)) = 0 − ∂Q1H
∂c2H

< 0

Q1L G(Q1L +Q2L) > 0
qŝ′g(Q1L+Q2H )/g(G

−1
(c2H ))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
> 0

G(Q1L +Q2L) = 0 ŝ′

g(G
−1

(c2H ))
> 0

(iii) Q1H G(Q1H +Q2L) > 0
qŝ′g(Q1H+Q2H )/g(G

−1
(c2H))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
> 0

G(Q1H +Q2L) = 0 ŝ′

g(G
−1

(c2H ))
> 0

Q2L 0

.
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Table E.5: Derivatives of equilibrium order quantities w.r.t. p
Q Conditions p Sign

Q2H 0
Q1L 0

(i) Q1H 0

Q2L G(Q1L +Q2L) > 0
G(Q1H+Q2L)−G(Q1L+Q2L)

pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)
> 0

G(Q1L +Q2L) = 0
G(Q1H+Q2L)
pg(Q1H+Q2L)

> 0

Q1L G(Q1L +Q2L) > 0 − (1−q)g(Q1L+Q2L)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
( ∂Q2L

∂p
) < 0

G(Q1L +Q2L) = 0 0
(ii) Q1H 0

Q2L G(ŝ−1(Q2L)) > 0
G(Q1H+Q2L)−G(ŝ−1(Q2L))

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
> 0

G(ŝ−1(Q2L)) = 0
G(Q1H+Q2L)
pg(Q1H+Q2L)

> 0

Q1L 0
(iii) Q1H 0

Q2L 0

E.8 Equilibrium under Uniform Demand and

Linear Market Shares

The equilibrium conditions under the assumption D ∼ Uniform(0, 1) are as fol-

lows:

q(1−min{1, Q1H +Q2H}) + (1− q)(1−min{1,max{Q2L/(1− s), Q1H +Q2L}})
+(1− q)(max{min{1, Q2L/(1− s)} −min{1, Q1H/s}, 0}) = c1H

q(1−min{1, Q1L +Q2H}) + (1− q)(1−min{1,max{Q2L/(1− s), Q1L +Q2L})
+(1− q)(max{min{1, Q2L/(1− s)} −min{1, Q1L/s}, 0}) = c1L

Q2H/(1− s) = 1− c2H

p(1−min{1,max{Q1H/s,Q1H +Q2L}}+max{min{1, Q1H/s} −min{1, Q2L/(1− s)}, 0})
+(1− p)(1−min{1,max{Q1L/s,Q1L +Q2L}})

+(1− p)(max{min{1, Q1L/s} −min{1, Q2L/(1− s)}, 0}) = c2L

Solution for Q2H = (1 − s)(1 − c2H) is straight forward. However in order

to obtain the solutions for Q1L,Q1H and Q2L we have to know the ordering for

Q1L/s, Q1H/s, Q2L/(1− s), 1 and whether Q1L+Q2L, Q1H +Q2L,Q1L+Q2H and

Q1H +Q2H are greater than 1 or not. We can summarize all the possibilities as:
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Table E.6: Derivatives of equilibrium order quantities w.r.t. q
Q Conditions q Sign

Q2H 0

Q1L G(s−1(Q1L)) > 0
G(Q1L+ŝ(G

−1
(c2H )))−G(s−1(Q1L))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1L))
> 0

G(s−1(Q1L)) = 0
G(Q1L+ŝ(G

−1
(c2H )))

qg(Q1L+ŝ(G
−1

(c2H )))
> 0

(i) Q1H
G(Q1H+ŝ(G

−1
(c2H )))−G(s−1(Q1H ))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(Q1L +Q2L) > 0 − pg(Q1H+Q2L)∂Q1H/∂q+(1−p)g(Q1L+Q2L)∂Q1L/∂q
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

< 0

G(Q1L +Q2L) = 0 − ∂Q1H
∂q

< 0

Q1L G(Q1L +Q2L) > 0
G(Q1L+ŝ(G(c2H )))−G(Q1L+Q2L)−(1−q)g(Q1L+Q2L)(∂Q2L/∂q)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
> 0

G(Q1L +Q2L) = 0
G(Q1L+ŝ(G(c2H )))

qg(Q1L+ŝ(G
−1

(c2H )))
> 0

(ii) Q1H
G(Q1H+ŝ(G

−1
(c2H )))−G(s−1(Q1H ))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(ŝ−1(Q2L)) > 0 − pg(Q1H+Q2L)

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
( ∂Q1H

∂q
) < 0

G(ŝ−1(Q2L)) = 0 − ∂Q1H
∂q

< 0

Q1L G(Q1L +Q2L) > 0
G(Q1L+ŝ(G(c2H )))−G(Q1L+ŝ(G(c2L)))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
> 0

G(Q1L +Q2L) = 0
G(Q1L+ŝ(G(c2H )))

qg(Q1L+ŝ(G
−1

(c2H )))
> 0

(iii) Q1H G(Q1H +Q2L) > 0
G(Q1H+ŝ(G(c2H )))−G(Q1H+ŝ(G(c2L)))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
> 0

G(Q1H +Q2L) = 0
G(Q1H+ŝ(G(c2H )))

qg(Q1H+ŝ(G
−1

(c2H )))
> 0

Q2L 0

{Q1L

s > 1, Q1L

s ≤ 1} {Q1H

s > 1, Q1H

s ≤ 1} { Q2L

(1−s) > 1, Q2L

(1−s) ≤ 1}
{Q1L

s > Q2L

(1−s) ,
Q1L

s ≤ Q2L

(1−s)} {Q1H

s > Q2L

(1−s) ,
Q1H

s ≤ Q2L

(1−s)}
{Q1L +Q2L > 1, Q1L +Q2L ≤ 1} {Q1H +Q2L > 1, Q1H +Q2L ≤ 1}
{Q1L +Q2H > 1, Q1L +Q2H ≤ 1} {Q1H +Q2H > 1, Q1H +Q2H ≤ 1.}

We have 512 different possibilities for Q1L,Q1H and Q2L each leading to a

different region in the 7 dimensional space. However, the number of regions can

be reduced to 8 regions as shown below.

First, if both of the players have a high type, then the total inventory cannot

exceed 1 and if second firm has high type since he does not expect any spillover.

This is simply due to the suboptimality of all values greater than 1. Second, some

of the conditions imply the others. For example, if Q1L/s > 1 and Q2L/(1− s) >

1 then Q1L + Q2L > 1. Third, Q2L/(1 − s) > Q1L/s implies Q2L/(1 − s) >

Q1H/s since low type of a firm orders as much as high type of the firm due to

submodularity. Similarly, Q2L/(1− s) ≤ Q1H/s implies Q2L/(1− s) ≤ Q1L/s.
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Using these kind of arguments we reduce the conditions to form 8 different

regions. It can be shown that it is not possible to reduce the conditions further

without making additional assumptions on the parameters.

Region Conditions

1 Q1L

s
> 1 , Q2L

(1−s)
> 1

2 Q1L +Q2L > 1 , Q1L

s
≤ 1

3 Q1L +Q2L ≤ 1 , Q1L

s
≤ Q2L

(1−s)

4 Q1L +Q2L > 1 , Q2L

(1−s)
≤ 1 , Q1H

s
≤ Q2L

(1−s)

5 Q1L +Q2L ≤ 1 , Q1L

s
> Q2L

(1−s)
, Q1H

s
≤ Q2L

(1−s)

6 Q1H +Q2L > 1 , Q1H

s
> Q2L

(1−s)

7 Q1L +Q2L > 1 , Q1H +Q2L ≤ 1 , Q1H

s
> Q2L

(1−s)

8 Q1L +Q2L ≤ 1 , Q1H

s
> Q2L

(1−s)

In each of the regions, the given inequalities simplify the equilibrium condi-

tions leading to an easy computation of the equilibrium order quantities.

For Region 1, we reduce the equilibrium conditions to the following form:

q(1−Q1H −Q2H) + (1− q)(1−Q1H/s) = c1H ,

q(1−Q1L −Q2H) = c1L,

Q2H/(1− s) = 1− c2H ,

p(1−Q1H −Q2L) = c2L.

It is straightforward to find the order quantities for this region:

Q1H = (1−c1H−q(1−s)(1−c2H))
(q+(1−q)/s)

Q1L = 1− c1L
q

− (1− s)(1− c2H),

Q2H = (1− s)(1− c2H) Q2L = 1− c2L
p

− (1−c1H−q(1−s)(1−c2H))
(q+(1−q)/s)

.

Now, by plugging these quantities into necessary inequalities, we obtain:

Q1L

s
> 1 ⇒ 1− c1L

q
− (1− s)(1− c2H) > s

⇒ c1L
q

− (1− s)(1− c2H) < 1− s ⇒ c1L
q

− (1− s)c2H < 0

⇒ c1L < q(1− s)c2H
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Q2L

(1− s)
> 1 ⇒ 1− c2L

p
− (1− c1H − q(1− s)(1− c2H))

(q + (1− q)/s)
> 1− s

⇒ c2L
p

+
s(1− c1H − q(1− s)(1− c2H))

(1− (1− s)q)
< s ⇒ c2L

p
− s(c1H − q(1− s)(c2H))

(1− (1− s)q)
< 0

⇒ c2L <
sp(c1H − q(1− s)c2H)

1− (1− s)q

Thus, Region 1 can be characterized by two inequalities:

c1L < q(1− s)c2H ,

c2L <
sp(c1H − q(1− s)c2H)

1− (1− s)q
.

These conditions are necessary and sufficient, i.e., if these inequalities are satisfied,

then equilibrium order quantities take the values in Region 1.

In a similar fashion, we can obtain the conditions for all 8 regions. This is

summarized in Figure 1.
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