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ABSTRACT

PERCEIVED QUALITY ASSESSMENT IN
OBJECT-SPACE FOR ANIMATED 3D MODELS

Işıl Doğa Yakut
M.S. in Computer Engineering

Supervisor: Assist. Dr. Tolga Çapın
June, 2012

Computational models and methods to handle 3D graphics objects continue to
emerge with the wide-range use of 3D models and rapid development of computer
graphics technology. Many 3D model modification methods exist to improve
computation and transfer time of 3D models in real-time computer graphics
applications. Providing user with the least visually-deformed model is essential
for 3D modification tasks.

In this thesis, we propose a method to estimate the visually perceived differences
on animated 3D models. The model makes use of Human Visual System models
to mimic visual perception. It can also be used to generate a 3D sensitivity map
for a model to act as a guide during the application of modifications.

Our approach gives a perceived quality measure using 3D geometric representa-
tion by incorporating two factors of Human Visual System (HVS) that contribute
to perception of differences. First, spatial processing of human vision model
enables us to predict deformations on the surface. Secondly, temporal effects of
animation velocity are predicted. Psychophysical experiment data is used for both
of these HVS models. We used subjective experiments to verify the validity of
our proposed method.

Keywords: Applied Perceptual Computer Graphics, Quality Evaluation for 3D
Model, Animated 3D Models, Computational Geometry.
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ÖZET

HAREKETLİ 3B MODELLERİN ALGILANAN KALİTE
ÖLÇÜMÜ

Işıl Doğa Yakut
Bilgisayar Mühendisliği, Yüksek Lisans
Tez Yöneticisi: Assist. Dr. Tolga Çapın

Haziran, 2012

Bilgisayar grafiği teknolojisinin hızlı gelişimi ve 3B modellerin yaygın kullanımıyla
birlikte 3B grafik nesnelerini kullanan hesaplamalı model ve yöntemler de gelişmeye
devam etmektedir. Gerçek zamanlı bilgisayar grafiği uygulamalarında, hesaplama
ve aktarım süresini geliştirmek için birçok 3B model modifikasyon yöntemi bulun-
maktadır. 3B modifikasyon işlemlerinde, kullanıcıya modelin görsel olarak en az
deforme olmuş halini sunmak gerekmektedir.

Bu tez kapsamında, hareketli 3B modeller üzerinde görsel olarak algılanan fark-
lılıkları hesaplamak için bir yöntem sunulmaktadır. Yöntem, insan görme sistemini,
görsel algıyı taklit ederek modellemektedir. Ayrıca bu yöntem, modifikasyonların
uygulanması sırasında yardımcı olması amacıyla modelin 3B duyarlılık haritasının
oluşturulmasında da kullanılabilir.

Bu çalışmada sunulan yaklaşım, İnsan Görme Sistemi’nin iki etmenini birleştir-
erek 3B geometrik gösterimin algılanan kalite ölçümünü sağlamaktadır. Birin-
cisi, insan görme modelinin uzamsal işlenmesi, yüzeydeki bozulmaları öngörmeyi
mümkün kılmaktadır. İkincisi ise, hareket hızının zamansal etkileridir. Her iki
etmen için de psikofizik deney verileri kullanılmıştır. Ayrıca kişiye özel deneyler
ile de sunulan yöntemin geçerliliği desteklenmiştir.

Anahtar sözcükler : Uygulamalı Algısal Bilgisayar Grafikleri, Üç Boyutlu Mod-
ellerde Kalite Belirlenmesi, Hareketli Üc Boyutlu Modelleme, Hesaplamali Geome-
try.
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Chapter 1

Introduction

Problem Definition

The fast developing computer graphics field enables commercial applications widely
to use 3D models which can be animated. A large number of these applications
rely on manipulation or transmission of the 3D content to function in real time.
Therefore, a trade-off arises among visual quality and processing time. To reduce
the processing time, numerous modification algorithms on 3D models are used
serving purposes such as smoothing, simplification or compression the original
content. The final quality of a modification method is dependent on the resulting
models visual accuracy with respect to their original model.

In our context, quality assessment in 3D models is a problem of evaluation of a
modified mesh with respect to its original form based on detectability of changes.
Quality metrics are typically given two slightly different models and compute
geometric differences to reach a quality value.

Human visual system (HVS) enables humans to detect robustly the artifacts
and differences in 3D models such as triangular spikes, over-smoothed regions,
variations in roughness and structural distortions. In contrast, HVS has weaknesses
such as masking effect which prevents detection of artifacts. Unfortunately a
unified HVS model does not exist which easily and accurately predict the seeing
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CHAPTER 1. INTRODUCTION 2

experience. However there are several HVS models which serve to mimic sub-
processes of human visual system. One important group of sub-processes is the
seeing after-effects that partially serve to detect differences and distortions. In
our proposed model, we have integrated these subprocesses to mimic perceptual
aspects of the quality assessment.

Motivation

The existing quality assessment methods do not reflect both the characteristics of
the visual system and effect of the 3D nature of the scene. The reason is that,
these methods rely only on either computing a 3D geometric distance without
considering human visual system or base their metric on HVS and disregard
geometric attributes. [?]

HVS models, which are concerned with sensitivity to change in scenes, are
formed by visual psychophysical experiments which typically take place in exper-
iment setups specifically for retinal images. These experiments present data in
image space and serve effectively in image or video quality evaluation or estimation
of 2D imagery artifact detection. HVS models account for contrast sensitivity
function for both spatial and temporal frequencies and in addition the effect of
visual masking can be drawn from the psychophysical experiments. Since our
concern is assessment of perceived quality in 3D models, object-space solution
is needed without disregarding the effect of perception. Our proposed metric
estimates spatial and temporal characteristics after rendering based on geometric
attributes of 3D models and uses them to compute quality map of the modified
mesh.

Challenges & Contributions

Comprehending the relation between the perception of differences and 3D geometric
structure is an important research area which is interdependent on a wide range of
fields including computer graphics, cognitive science and psychophysical research.
Thus, developing a quality metric which takes both geometric attributes and
human visual system models into account is not an easy task.
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Considering that there is not a unified HVS model to identify differences in two
retinal images, human visual system is not fully understood. There exist several
human visual system models acquired from psychophysical experiments which
serve for different purposes. The first challenge is to understand the principles of
human visual system and HVS models to use a proper set of models and serve
our purpose.

The 3D geometric structure of a mesh and velocity of its parts have signifi-
cant impact on the rendered image characteristics. Among these characteristics
frequency map of rendered images, which in effect form our quality perception,
highly depend on geometric structure. Thus, the necessity to create a method
for converting 3D geometric attributes to spatial frequency is essential for the
accuracy of the quality metrics we are to develop.

The contributions of this thesis can be summarized as follows:

• An object-space quality metric based on Human Visual System models to
fully reflect the perceived distances to be used in applications that require a
trade-off between processing time and visual quality.

• A new 3D projection method from geometric attributes of the mesh to
spatial frequency.

• A visual selectivity method on 3D spatial frequency estimation.

• An evaluation of the developed system with subjective evaluation techniques
to reflect its feasibility.

Outline of the Thesis

This chapter served as an introduction to the topic and further chapters gives
details on our method.

• Chapter 2 explains sub-processes of the HVS model to serve as a background.
In addition, related work on quality metrics of 2D and 3D media is given
and a brief survey on modification algorithms is explained.
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• In chapter 3, we explain our proposed object-space solution to quality
assessment and evaluation problem in detail.

• Chapter 4 gives detailed information on the method of evaluation of the our
system and analysis of the results.

• Discussion of the overall method is given in Chapter 5.



Chapter 2

Related Work & Background

2.1 Related Work: Mesh Modification

The range of uses and the demand of the market force a widespread use of 3D
graphical elements in applications. The main media in these applications is
animated 3D meshes represented by vertices, edges and faces. In addition these
applications frequently require changes in the topology of the mesh.

Simplification

To create a visually realistic looking scene a large number of vertices and usually
millions of polygons are needed to form detailed models. In contrast, the time
it takes to process these huge meshes gets longer. These processes include
transmission over a network, storage and indexing, computation and display
of these meshes. As a solution to above problems, simplification methods have
been developed which reduce the number of polygons and vertices while trying
not to lose its geometric form. There are a large number of simplification methods
which differ by their use in applications or type of input meshes.

One of the most common simplification algorithms is proposed by Rossignac
& Borrel [33]. The algorithm works on triangulated meshes by subdividing the

5
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Figure 2.1: A mesh (leftmost) and two levels of simplification results using a
popular mesh modification library (CGAL)

volume into a uniform grid. A single vertex point is computed for each of the
grid cells and these vertices are later connected. Low et al. propose a clustering
algorithm where the space is divided into cluster cells providing more accurate
result and improved the weighting criteria [25]. Guéziec et al. purpose a method
based on edge collapsing for manifold meshes [13]. Furthermore this work is
extended by Garland et al. to be used for non-manifold meshes [10]. They
proposed a method for vertex collapsing, where two vertices are not required to
be connected by an edge to be collapsed. Example simplification method applied
on a mesh and its results are shown in Figure 2.1

Smoothing

In the process of generation of 3D meshes, artifacts or noise can be present.
Smoothing is a post-process method to increase the mesh quality where vertex
locations are adjusted while preserving the vertex count and connectivity. There
are many smoothing algorithms presented. The most common of them is Laplacian
smoothing which repositions a vertex by averaging the neighboring vertex coordi-
nates [16]. This approach is extended to handle non-regular grids by equalizing
volume of vertices to adjust. [34]. Knupp et al. present the elliptic smoothing to
work on unstructured and structured meshes [20]. Brewer et al. propose another
approach by moving interior vertices in order to optimize the mean ratio [3]. An
example smoothing algorithm applied on “Stanford bunny” mesh is shown in
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Figure 2.2

Figure 2.2: Smoothed mesh models for noise reduction or reducing artifacts

2.2 Related Work: Quality Assessment Metrics

2.2.1 Overview

Quality assessment metrics aim to estimate a similarity between a given mesh
and its modified version. An original mesh can be modified by simplification,
smoothing, etc. As the quality assessment methods are comprehensively studied,
there exists a wide range of proposed solution criteria.

Existing quality metrics can be divided into two types as object-space and
image-space approaches. Image space based methods typically use a pre-rendered
2D image to compute a quality value whereas object-space approaches operate
on the 3D mesh. This distinction significantly effects the output of the methods
since environment conditions such as lighting position, lighting strength, viewing
angle have great impact on the rendered image. 3D models’ quality should not
depend on these highly varying states.

This section will cover the range of existing methods to that are being used to
measure similarity between two meshes.
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2.2.2 Object Space Approaches

2.2.2.1 Mathematical Difference Measurements

Geometric distance between two objects is commonly used for geometric computa-
tions such as collision detection and motion planning. Fast and efficient algorithms
are developed to suit such needs.

The simplest and most pure mathematical difference between two meshes is
the root mean square computation:

RMS(MA,MB) =
√√√√ n∑
i=1
||vai − vbi||2 (2.1)

where MA and MB are two meshes. va1...van and vb1...vbn are vertices of MA and
MB respectively. Euclidean distance between two vertices vi and vj is denoted by
||vi− vj||. RMS measure requires two meshes to have the same number of vertices
and the same connectivity. RMS is not preferred for most quality assessment
methods since the resulting values do not represent visual characteristics.

vi
a

vi
b

diab

Figure 2.3: Root Mean Squared Distance of a vertex pair of mesh MA and MB.
The average of vertex pair distances give mesh distance value.

Hausdorff distance is a common metric for comparing two meshes. Hausdorff
distance is the maximum distance of a set to the nearest point of another set,
where a set contains only vertices. The distance of MA to MB is given by:

h(MA,MB) = maxvai∈MA
(minvbi∈MB

(d(vai, vbi))) (2.2)

d(vi − vj) = ||vi − vj|| (2.3)

Here, the distance between vertices is denoted as d(vi, vj) is the Euclidean
distance between vertices vi and vj.
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da2b1
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v2
a

v1
b
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b

v3
b
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b

v2
b

v3
b

da2b1

da1b3

v1
a

v2
a

v1
b

v2
b

v3
b

Figure 2.4: Hausdorff algorithm visualization. For each vertex of mesh MA

minimum distance to vertices of mesh MB is computed. Distance between MA

and MB is the maximum of the pair-wise minimum distance

Note that this Hausdorff distance definition is asymmetric [4] and is called
“one-sided Hausdorff distance”. The two-sided Hausdorff distance between two
meshes is the maximum of the one-sided Hausdorff distances of the meshes to
each other:

H(MA,MB) = max(h(MA,MB), h(MB,MA)) (2.4)

The algorithm for the brute force solution of Hausdorff distance is given as:

Algorithm 1 Hausdorff Distance
h← 0
for all vi ∈ V (MA) do
shortest← Inf
for all vj ∈ V (MB) do
dij = d(vi, vj)
if dij < shortest then
shortest← dij

end if
end for
if shortest > h then
h← shortest

end if
end for

2.2.2.2 Curvature Based Measurements

A mesh’s shape is formed by different types of surface patches such as smooth,
rough or edge regions. Types of surface patches influence our sensitivity to changes.
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For instance, subtle changes are prone to be seen when occurring in smooth regions
rather than rough regions. Therefore, determining the structural characteristic
of the mesh is important for quality assessment methods. Curvature of vertices
indicates roughness and structure therefore existing quality measurement methods
integrated curvature attribute in their solutions.

Figure 2.5: Mean curvature estimation of a mesh calculated by [28]

Karni used a Laplacian operator in addition to simple geometric distance to
reflect visual difference better in their mesh compression algorithm [17]. The
Laplacian operator takes into account the geometry and topology and the geometric
Laplacian at vertex vi is:

GL(vi) = vi −

∑
vj∈n(vi)

d(vi, vj)−1vj∑
vj∈n(vi)

d(vi, vj)−1 (2.5)

where d(vi, vj) is the geometric distance between vertices i and j, and n(vi) is the
set of neighboring vertices of vi.

In order to incorporate the above geometric Laplacian, the average of the norm
of the Laplacian distance and the norm of the geometric difference is taken as the
resulting difference between two meshes.

d(MA,MB) = 1
2n(d(vai, vbi) + d(GL(vai), GL(vbi)) (2.6)

The above geometric Laplacian operator (eq 2.5) gives the geometric difference
between the original coordinates of the vertex vi and its position after Laplacian
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smoothed. This results in a form of roughness measurement and gives accurate
results on compressed meshes.

In addition, roughness variation has been used as a heuristic to quality preser-
vation in mesh simplification schemes. Wu et al. [38] used roughness of a vertex
neighborhood to preserve high-frequency details. Their simplification scheme uses
variances in dihedral angles between triangles to reflect local roughness and weigh
mean dihedral angles according to the variance. G(t) is calculated for each face of
the mesh. Given a triangle t, G(t) is the weighted sum of average dihedral angles
of the neighboring triangles:

G(t) = G1 · V AR1 +G2 · V AR2 +G3 · V AR3

V AR1 + V AR2 + V AR3
(2.7)

G1,2,3 and V AR1,2,3 are mean dihedral angles and variances for each triangle vertex.
Assume that n number of triangles share the vertex of v1 of t. To calculate G(t),
n− 1 number of dihedral angles between t− t1, t1− t2 , . . . , tn−1− t are computed
which are then used to compute G1 and V AR1. Similar computation is conducted
for v2 and v3.

Roughness of a 3D mesh has been also used to measure quality of watermarked
meshes [11] [5]. Drelie Gelasca et al. used roughness to evaluate the difference
between a given mesh and its watermarked version. In their work roughness is
computed for each vertex by calculating the variances in distances of local vertices:

r(v) =
∑
d(v, vi)
Av

(2.8)

where vi is in a pre-defined radius and Av is the total area of the faces for
a given radius. Later, roughness of a mesh is computed by summing up the
roughness values of all vertices. The difference between the original mesh and the
watermarked mesh is given by the formula:

R(MA,MB) = log

(
R(MA)−R(MB)

R(MA) + k

)
− log(k) (2.9)

where MA and MB denote the original and watermarked meshes respectively.

Curvature has also been used to represent structure of a given mesh. Quality
assessment through mesh structure is studied by Lavoué et al [21]. The method
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computes mesh’s roughness using a 3D window definition. Then a visual evaluation
of the masking effect and its relation to proposed roughness measure is conducted.

2.2.2.3 Attribute Based Measurements

3D Meshes typically have non-geometric attributes such as texture, color and
material properties. The appearance of the mesh is controlled by these attributes.
Distortion or defects caused by errors in these attribute values are detected easily
by the human visual system, thus reducing the quality.

Several studies draw attention to this property of 3D meshes [27] [29]. Luebke
et al. focus on difference measurement and point that the Hausdorff distance
does not handle the geometric distance with respect to such attributes [27]. This
study proposed an alternative distance measurement called bijection distance
measurement. Bijection requires a continuous, one to one mapping between
attributes of the meshes at each vertex and the relative distance between them
regarding the mapping.

Another important study bases the quality to be related to texture and
wireframe [29]. This study aims to determine the importance of texture and
wireframe resolutions with respect to each other. In addition, a quantitative
evaluation strategy is proposed for 3D quality.

Q(g, t) = 1
1

m+(M−m)t +
(

1
m
− 1

m+(M−m)t

)
(1− g)c

(2.10)

Here, g and t are graphical and texture components scaled into [0 . . . 1] interval,
m and M are the minimum and maximum bounds of quality, and c is a constant.
All constants and coefficients are determined by experimental data.

2.2.2.4 Saliency Contribution

Saliency is studied in many visual and graphics fields and 3D mesh geometric
characteristics plays an important role when determining saliency. Several quality
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assessments methods are purely based on weighting geometric distance based
salient regions of the mesh. Mesh simplification methods integrate saliency to the
algorithm to preserve saliency parts of meshes. Studies by Howlett et al. [14] and
Lee et al. [22] focus on saliency effects on mesh simplification.

2.2.3 Image Space Approaches

2.2.3.1 Mathematical Difference

Mathematical difference computation of single images or sequence of images
has been sought as a quality assessment method. These methods rely only on
Euclidean distances between corresponding pixels on images in color space and
determine a quality value or a reach a difference map between two sets Figure 2.6.

Figure 2.6: An example distance map between two images for luminance and color
channels summation

In their study, Turk et al. used root mean squared (RMS) as image error
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for 3D mesh simplification. The quality of the mesh is determined by taking
several viewpoints, rendering the original and the simplified mesh from the same
viewpoints and calculated the RMS between two images. The distance between
two images is given by:

dRMS(Y 0, Y 1) =
√√√√ 1
mn

m∑
i=1

n∑
j=1

(y0
ij − y1

ij)
2 (2.11)

This measure does not take into account human visual system and does not give
accurate results. Therefore it is seldom used as a perceptual quality metric for 3D
meshes.

Peak signal-to-noise ratio (PSNR) is a method that is widely used to estimate
the difference and error between two images. This quality metric calculates the
PSNR of an image against its reference image. Using root mean squared (RMS)
error in Eq. 2.11, PSNR is calculated as:

PSNR = 20 log10

(
Imax
dRMS

)
(2.12)

where Imax is the maximum possible pixel luminance value. This metric gives
good error indications for images of natural spaces. In contrast, this measure is
not a good metric for images of human-made objects and places. [35]

2.2.3.2 Visual Sensitivity Measurements

Psychophysical experiments operate on 2D image and are concerned with retinal
images which are in image space. Therefore, quality measurement or estimation
methods working on image space solutions are able to take full advantage of HVS
models.

Most used and known of image-based measurement methods is “Visible Dif-
ferences Predictor (VDP) ” proposed by Daly [6]. VDP algorithm describes the
human visual system response by image-processing approach. Preserving the
phase information is crucial in VDP algorithm for calculation of masking effects.
HVS response to the image is relative value of a test image with respect to a
reference image, rather than an absolute value of a single image. The value of
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quality or probability of detection is not collapsed to a single value as in other
image-quality methods. Instead, the value is preserved as a 2D “probability of
detection“ map. An example quality difference map is shown in Figure 2.7

Figure 2.7: Prediction of detection map by Visual Differences Predictor by [6].

Longhurst et al. measured the fidelity of VDP method [24]. In their psy-
chophysical experiment, they have measured the correlation between the methods’
prediction and the subjective evaluations of the users.

A similar quality metric is Sarnoff Visual Discrimination Model (Sarnoff VDM)
proposed by Lubin [26]. Sarnoff VDM is aimed for fast and accurate distortion
prediction on large number of image quality rating tasks. VDM also produces a
probability of detection map. Li et al. compared VDP and Sarnoff VDM with
their own implementation of the algorithms [23] . Analysis of the two algorithms
showed that the VDP takes place in feature space and takes advantage of FFT
algorithms but lack of evidence of these feature space transformations in HVS
gives VDM an advantage. Also FFT takes most of the processing time during
VDP algorithm.

Bolin and Meyer based their vision model on Sarnoff VDM with reduced
processing time and addition of color adaptations [2]. Chromatic and Achromatic
contrast sensitivity functions Figure 2.8 were used for color extension to the VDM
model. Bolin and Meyer’s (BM) solution models the early human vision stages.
They have used this new vision model for their global illumination algorithm.
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Fidelity of the proposed method is measured, and naming time and quality
difference was the most reliable among other methods [37] . It is also noted that
Bolin & Meyer’s method is a ”severe simplification“ of human visual system.

Figure 2.8: Chromatic and Achromatic Contrast and Frequency Images

Ramasubramanian et al. [31] introduced a error detection metric that handles
luminance and spatial processing independently. Pre-processing spatial compo-
nents increases efficiency of the algorithm. The study incorporates the proposed
perceptual model to their global illumination method for image synthesis.

A framework measuring visual equivalence is proposed by Ramanarayanan
et al. [30] (VEP). Visual impressions of scene appearance is analyzed and the
method output a visual equivalence map. Geometry, material and illumination
effects on visual impressions are studied by conducted experiments. The output
maps of the method can indicate visual equivalence even the regions are visibly
different because of visual impressions phenomena. The study focuses on two
types of transformation of illumination; blurring and wrapping. Lastly, their
study presents examples of how VEP can be used to improve existing modification
algorithms.

An extension of these image-space solutions to applications in 3D is examined
by Ferwerda et al. [9]. The study showed relationship between mesh structure
and contrast masking. Effects of masking are shown by example where one visual
pattern (texture) masks another pattern (contrast due to structural distortions).
The study also computed VDP values of textures and gave visual examples how
VDP values can be used to relate to masking effects. In a similar point of view
Lavoué [21] measured 3D roughness values of mesh and linked roughness to visual
masking. Relationship between roughness values and masking effects were shown
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by visual examples and 3D computation of the work is solely considered object-
space. Both these studies focuses on masking effects on 3D surfaces but did not
extend their method to link 3D structure to the HVS viewing models.

2.3 Background: Human Visual System

Perceptual Computer Graphics has drawn attention from researchers due to
the fact that what is perceived is as significant as what is displayed on the
screen. Studies showed that generation, evaluation and usage of graphics can take
advantage of human visual system’s characteristics. Therefore, understanding
human visual system is essential for perception-based computer graphics research.

Human visual system is a complex mechanism and has not been fully under-
stood by psychophysics researchers. Human visual system handles a wide-range
of tasks such as object-recognition to motion, color and depth perception. Each of
these tasks are accomplished by going through human visual system sub-processes.
For example, object recognition is accomplished by cortex cell’s adaptations for
edge detection, figure from background and matching alignment and stored objects.
Similarly, difference detection goes through several sub-processes.

The three psychophysical concepts affecting sensitivity to changes are:

• Spatial Frequency Sensitivity

• Bandpass Filters

• Temporal Adjustments

All three sub-processes are categorized as aftereffects of seeing. These are
neurological phenomena which appear for constant stimuli. It is known that
such effects occur widely in sensory systems. Following subsections explain these
phenomena and explain computational approaches to them.
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2.3.1 Spatial Frequency Sensitivity

Intensity values across two dimensional space construct spatial features of an
image. The sensitivity to change in spatial features has been experimentally
studied starting from late 1960s [1]. Studies focusing on this phenomena measure
the response of the observer to varying parameters; contrast, frequency, orientation
and phase.

Psychophysical experiments measuring HVS responses to spatial frequency
use grating of sine waves (sinusoid) that appear as a stimuli. Psychophysical
experiments measure the spatial frequency in cycle per degree (in visual angle
metric). The wave is described as frequency for its oscillation between high and
low luminance levels Figure 2.9. The metric is defined where 1o visual angle is
described as 1 cm portion of image viewed at 57.3cm distance.

Figure 2.9: Sample stimuli and the luminance oscillation profiles

The spatial frequency experiments are in a test-adapt-test manner, where the
subjects are first tested without adaptation and later tested for adaptation to a
stimuli. Appendix gives a sample experiment setup for spatial frequency tests and
experience the difference detection mechanisms.

The stimuli to these experimental studies are typically luminance gratings.
These gratings are laboratory stimulus with strips of light and dark bars with
varying contrast and frequency. In these gratings, sine wave is used as the pattern
to strips. Below is Pelli-Robson chart where frequency detection is experienced as
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an aftereffect.

Figure 2.10: Pelli-Robson chart. This image has spatial frequency decreasing from
right to left and grating contrasts increasing from top to bottom. When viewed
from a distance there appears to be a distinct silhouette of the grating and the
uni-colored portion. This silhouette indicates our relative sensitivity to different
spatial frequencies.

The experiment input stimuli vary in four parameters:

• Frequency: the number of cycles per degree of visual angle. The spatial
frequency depends on viewing distance because the grating that falls into
one degree changes.

• Contrast: the brightness or the darkness of the object with respect to its
neighborhood (field of view).

• Orientation: the tilt angle of the stripes in clockwise direction. The origin
orientation is taken to be vertical tilt.

• Phase: the alignment of a fixed reference with the grating cycle.

The classical and basic experiment results by Blakemore et al. [1] are given
in Figure 2.11. The data obtained from the experiment is measured without
adaptation effects.
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Figure 2.11: Blakemore’s frequency sensitivity graph for gratings of varying bar
width previous before adaptation

This CSF given by Blakemore et al. [1] shows detection of a change luminance
depends on both frequency and contrast. Spatial frequency sensitivity starts to
decrease after 10 cpd and significantly drops after 20-30 cpd. Frequencies higher
than 40 cpd are undetectable even with higher contrast values. Also, gratings
with 1.0 cpd have lower sensitivities than 10 cpd and sensitivity to change in
luminance gradually increases from 1.0 cpd to 10 cpd.

Effect of Adaptation

Further experiments measuring the effects of adaptation to a fixed cycle per
degree are conducted. The resulting responses are given in Figure 2.12. The
results show an obvious decrease in sensitivity post-adaptation experiment results.
The black squares represent mean subject responses and the adaptation frequency
in the experiment is 7 cpd. The drop obviously occurs around selected adaptation
spatial frequency. This is interpreted as more contrast is needed to be seen at the
same grating. The adaptation experiment indicates that there is a set of channels,
each one tuned for a narrow range of spatial frequencies. Next subsection explains
tuning in detail.

The tuning of each channel can be measured neuro-physiologically by using
microelectrodes to measure the responses of neurons to gratings of different spatial
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Figure 2.12: (a) Adaptation grating and test gratings (b) Sensitivity function
graph after adaptation to grating of 7 cyc deg. The continuous line gives the
sensitivity before adaptation. The line is fitted to Figure 2.11’s data.

frequencies.

2.3.2 Bandpass Filters

Adaptation experiments reflect responses of tuning mechanisms to spatial frequency.
Mathematical analysis of these tuning mechanisms results in computationally de-
rived bandpass filters or equivalently channels. Further experiments on orientation
result in a similar tuning for oriented gratings. Therefore, computational HVS
models generate internal representation composed of channel responses where
each channel has an orientation and frequency tuning.

The tuning to frequency and orientation is limited to a certain cycle per
degree and orientation giving rise to gabor filter representations of images. Cortex
transformation is another important model for frequency and orientation selectivity
proposed by Watson [36]. Frequency tuning is modeled by difference of mesa
filters and orientation tuning is modeled by fan filters, as shown in Figure 2.13.
Cortex transform of an image is computed by using steps:
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1. Transform: Cortex transformation filters are applied to the image

2. Quantize: Reduction to finite numbers of the filters

3. Reconstruct: Cortex response of the cells are computed.

Figure 2.13: Cortex filter formation from frequency and orientation varying filters
[6]. Difference of Mesa(DOM) filters represent frequency tuning cortex cells and
fan filters represent orientation tuning cortex cells. Cortex filters are formed by
multiplication of the DOM and fan filters.

Below subsections explain the cortex transformation applied to the image.

Frequency Tuning
Frequency tuning is achieved by a set of difference of mesa filter (DOM Filters).
Mesa filters are defined as blurry disks in the frequency domain. This filter is
formed by Gaussian filtered cylinder and is given by the formula:

m(u, v) = (γ
f

)
2
exp[−π(rγ

f
)
2
] ∗ Π( r2f ) (2.13)

where u,v are x y coordinates and relative to origin, r is the distance to origin.
Π is the rectangular response of unit height and width. The Gaussian can be
controlled by the γ which is a sharpness parameter. The scale parameter (s) of
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the mesa filter can be added by multiplication of u and v values with s. Difference
of mesas can be found by subtraction of adjacent mesa filters.

Figure 2.14: (a) Cross-section of adjacent mesa filters and subtraction of them.
(b) 2D DOM filters with computed as differences of mesa filter Eq.2.13 [36].

Orientation Tuning
Orientation tuning mechanism is modeled by fan filters which are obtained by
bisection of space. Orientation bandwidth can be different degrees. Watson used
45o degrees to form 4 orientations (Ω = 4) [36].

fi = biδ(1− b(i+1)δ) + b(i+Ω)δ(1− b(i+1+Ω)δ) (2.14)

where i = 0, ..., (Ω− 1).

Cortex Filter
For each one of DOM filters, a fan filter is generated Figure 2.15 Each row forms
a frequency and columns form orientation filters.

2.3.3 Temporal Adjustments

Temporal features of an image are differences in intensity across time. The
detectability of change in temporal features has been studied starting from late
1950s [8]. One notable study on temporal sensitivity is conducted by Kelly et al.
[18]. To measure temporal sensitivity, a simple shape is shown to observers while
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Figure 2.15: Cortex filters generated by multiplication of each DOM and fan filter
pair [6]

switching between black and white. This switching behavior is called the flicker
and the speed of flicker is ”flicker rate” or ” temporal frequency”. A ”cycle” is the
change from black to white and black again and the ”period” is the time that one
cycle takes. The intensity of luminance of the shape changes depending on the
contrast.

Figure 2.16: An example flicker (temporal frequency) used in measuring temporal
sensitivity

The stimulus for temporal sensitivity experiments is a simple shape with
alternating luminance, the intensity of luminance is changes with contrast. An
example temporal frequency is given in Fig. 2.16. The change of two parameters
are tested:

• Contrast: the brightness or the darkness of the object with respect to its
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neighborhood (field of view).

• Temporal Frequency: the number of cycles elapsing over 1 sec (Hz). The
sequence should be alternating between a darker and a lighter tone of
luminance.

Figure 2.17: Temporal Contrast Function from Kelly’s [18] temporal adaptation
data.

The results of this experiment can be plotted in temporal contrast sensitivity
function, as can be seen in Figure 2.17. Similar to spatial CSF, the sensitivity
depends on both contrast and temporal frequency. The sensitivity is at its highest
value around 8 Hz and decreases rapidly on both directions. After 50 Hz the
change in luminance is undetectable even with higher contrasts.

Eye Movements Adaptations
The sensitivity decrease to high temporal frequency stimulus enables to expand
existing HVS models. In addition to temporal frequency sensitivity, the eye’s
tracking ability is another important factor. This phenomena is known by eye’s
ability to track objects of interest where salient parts is higher than the remaining
scene. This ability compensates for the loss of sensitivity due to motion. Eye’s
tracking ability is also known as Smooth Pursuit.

The eye can track objects with speeds up to 80 deg/sec. Until that point,
smooth pursuit reduces the speed of object in interest to a certain degree. There
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are experiments to measure the compensation and draw a heuristic. The result of
measurements by Daly is shown in Figure 2.18.

Figure 2.18: Smooth pursuit compensation and eye tracking velocity graph, from
data [7]. Subjects eye’s velocity while tracking a target is shown as open circles.
The actual velocity is in horizontal axis and the tracking velocities are shown in
vertical axis. Solid represents the Daly’s heuristic for eye’s tracking ability.

According to the results of the experiment, Daly introduced a heuristic for
smooth pursuit. The equation of the heuristic is:

vR = vI −min(0.82vI + vmin, vmax) (2.15)

where vR is the retinal velocity, vI is the actual velocity, vmin and vmax is drift
velocity of the eye and maximum tracking speed respectively.
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The System

3.1 Overview

Our approach presents a quality metric for animated 3D meshes and comprises
human visual system models, which based on empirical research on cortex cell
adaptations. To compute the quality of a mesh, attributes of a mesh are used, such
as geometric placement and temporal change at each vertex. Moreover, in contrast
to quality metrics solely using geometric information, when perceptual differences
are calculated, human visual system models are needed. Accordingly, our proposed
object-space solution integrates an HVS model and has three main stages and uses
two animated 3D meshes as input and predicts perceived differences as a 3D map.
Integrated HVS prediction method evaluation of a single mesh can also serve as
a guide for modification methods or weight factor similar to saliency integrated
modification models.

An overview of the system architecture is given in Fig. 3.1. The proposed
method starts with calculation of spatial frequency sensitivities. The relation
between geometric characteristics impacts the resulting spatial frequency on
rendered images. Our method estimates spatial frequency for each vertex by
finding mean curvature and a local window definition. To find the sensitivity
values, the CSF equation is calibrated to 3D viewing conditions with several

27
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Figure 3.1: Overview of system architecture

assumptions. Later CSF is applied to estimated frequency values at each vertex.

On the second module, the method mimics visual selectivity of the HVS
models by use of Difference of Mesa (DOM) filters. Visual selectivity is the HVS
adaptation of tuning to narrow ranges of frequency as explained in Section 2.3.2.
Filters operate on local neighborhood/window area for each vertex, therefore each
vertex sums the neighboring filter effects. Since DOM filter effects are similar to a
Gaussian operation, the resulting 3D map at this point is very similar to blurred
roughness values on visual inspection.

Temporal adaptations are the last HVS model module in our proposed method.
Vertex velocity values are adjusted accordingly to smooth pursuit, eye’s object
tracking ability. Temporal sensitivity experiment data is used to weigh the
selectivity results in previous step as a last operation. To measure the differences
between models, value differences are calculated for each vertex to form a unified
3D prediction of distortion detectability map.

3.2 Spatial Frequency Sensitivity

A computational HVS model uses spatial frequency values to find visual sensitivi-
ties. Thus, quality assessment metrics typically expects a 2D image, transforms it
into luminance and chromatic channel representations and lastly uses a Gaussian
pyramid to compute frequency for that specific image. This approach is suitable
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for media that is in image-space, such as videos and pictures. When dealing with
3D media, such as 3D meshes, the above approach is not applicable. Thus, we
have adopted a heuristic which evaluates characteristics of 3D meshes effecting
spatial frequencies of rendered 3D images.

3D meshes have several attributes contributing to spatial frequency when
visualized. Curvature, texture, surface material types and color all contribute to
spatial frequency. Curvature has been related to spatial frequency most often as
a roughness measure and structure indicator. Previous studies indicate and refer
to the relationship between the curvature and spatial frequency. We based our
spatial frequency estimator on curvature and studied its effects.

Spatial frequency is peak to peak distance by definition, so our 3D spatial
frequency bases curvature calculations on defining a new 3D peak to peak distance
value estimation method. Local peaks in 3D are local areas where curvature
changes are greater than any smooth patch. Therefore, mean curvature value
changes with weight factor as inverse distance gives a 3D peak estimation along
with 3D spatial frequency estimation.

Planes of principle
curvatures of v

Point v

Normal Vector at v

Tangent 
plane at v

Figure 3.2: An example point v on a surface and its main components

Curvature of a vertex on a 3D mesh is the deviation of that vertex’s flatness
from neighboring vertices. Components such as normal vector, tangent plane and
principle curvatures are computed to reach a curvature value a given point υ on a
surface as can be seen in Fig 3.2.

Spatial frequency is linked to variance in 3D discrete curvature and studies
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have used this curvature as a 3D perceptual measures [19], [22]. To fully capture
the relationship between curvatures and frequencies an example is given based on
simple sine waves. In Fig. 3.3 visualizations of 2D sine waves which are extended
to 3D with varying wavelengths (ω = 15, 20, 30) and amplitudes (A = 0.2, 0.5)
with phase ϕ = 0. Curvatures are calculated with the method which will be
explained in detail later.

(a) ω = 15&A = 0.2 (b) ω = 15&A = 0.2

(c) ω = 30&A = 0.2 (d) ω = 30&A = 0.2

Figure 3.3: Visualization of spatial frequency and curvature relationship through
different grating sine waves

Fig. 3.3a and Fig. 3.3b are two views of the same sine wave. Perspective and
top views visualize the meshes and present a possible rendering scheme. In Fig.
3.3a curvature is visualized by hue coloring and frequency is expected to decrease
slowly with time, as can be seen from the sample rendering (Fig. 3.3b). Latter two
images (Fig. 3.3c, 3.3d) show the same sine wave but with different amplitude and
wavelength. Here the wavelength decreases greatly with time and it is expected
to have greater curvature and spatial frequency. In Fig. 3.3c curvature values are
given and as expected curvature values are greater, also from the sample rendering
it is obvious that the frequency is higher.

The mapping between curvature and spatial frequency is calculated by finding



CHAPTER 3. THE SYSTEM 31

weighted curvature variance values for each vertex. This value serves as an
estimation of spatial frequency at each specific point on the mesh. Our spatial
frequency estimator computes mean curvatures for each vertex of the mesh and
weighted curvature variances are computed according to these values. Spatial
Frequency Sensitivity functions are later applied to 3D spatial frequency values
with adaptations to 3D viewing assumptions.

The algorithm of spatial-frequency estimation is given below:

1. The mean curvature Ki is calculated for each vertex i by using normal
vectors and Voronoi area at 1-neighborhood of vertex vi

2. Weighted variance is calculated for the local window for each vertex.

• Weight of a neighboring vertex vj of vertex vi corresponds to the
distance between vi and vj’s projection to tangent plane of vi.

• The radius of local window is taken to be %2 of cubic bounding box of
the mesh.

3. Spatial Frequency Sensitivity Function (SFS) is applied on 3D spatial fre-
quency values with adaptations to 3D viewing environment.

3.2.1 Curvature Computation

Gaussian and mean curvatures represent important local properties of a sur-
face. On an isosurface, curvatures are computed in infinitely small regions with
continuous formula:

2κHn = lim
diam(A)→0

∇A
A

(3.1)

where A represents a small region around a point and diam(A) denotes diameter
of the area.

In triangulated surface with voronoi cells, neighboring triangular areas summed
to be these infinitely small regions, thus curvature computation is done by discrete
equations.
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Figure 3.4: Voronoi region around a point xi on a triangular surface

In Fig. 3.4, a vertex xi and one of its neighboring vertices xj is shown. Voronoi
region of xi is than:

Avoronoi = 1
8

∑
j∈N1(i)

(cot(αij) + cot(βij))||xi − xj||2 (3.2)

where xj is a direct neighbor of xi, αij and βij is the angles looking towards the
edge defined by xi and xj vertices.

Mean curvature is then calculated by formula and the pseudocode is given in
Algorithm 2:

K(xi) = 1
2Avoronoi

∑
j∈N1(i)

(cot(αj) + cot(βj))(xj − xi) (3.3)

3.2.2 Weighted Curvature Variance Computation

To estimate the spatial frequency, we use the variance in discrete curvature values
in 3D meshes at each vertex. Variance value of a vertex is calculated by using
neighboring vertices’ curvatures and determining the weight of a neighboring
vertex by the distance. The neighborhood of a vertex is local windows with a
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Algorithm 2 Calculate Mean Curvature
for all xi ∈ V (S) do
Axi
← 0

Kxi
← 0

for all xj ∈ N1(xi) do
Axi
← Axi

+ (cotαij + cotβij)||xi − xj||2
end for
for all xj ∈ N1(xi) do
Kxi
← Kxi

+ (cotαj + cotβj)(xj − xi)
end for
Kxi
← Kxi

2Axi

end for

threshold radius. This neighborhood definition is explained in below paragraph
3.2.2. The neighborhood (local window) radius determines the size of the detail
which effect the frequency.

3D Neighborhood

The proposed method uses a scale parameter which defines the 3D neighbor-
hood. Scale parameter enables to determine different variances to be considered as
contribution to spatial frequency. The scale parameter is chosen to be %2 of the
cubic bounding box for each mesh. Then, the definition of the 3D neighborhood
with radius r for a vertex vi is the set of neighboring vertices and edges:

• Neighbor vertex is a vertex whose distance to vi is smaller or equal to radius
r and is connected to a neighboring vertex or vi. (in Fig. 3.5: blue vertices)

• Neighbor edge is an edge whose one end is a neighboring vertex and the
other end is an ”out vertex” whose distance to vi exceeds radius r . These
edges are treated as a vertex with curvature value equals to scale of the
curvature value of the ”out vertex”. (in Fig. 3.5: yellow vertices)

The contribution of neighbor edge is:

Kej
= Kj

r

||vi − vj||
(3.4)
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Figure 3.5: A local neighborhood of vertex

where vj is the ”out vertex” with ej as the edge connecting it to a neighbor vertex.
Kj is the curvature value at vj.

Algorithm 3 Weighted Curvature Variance
for all xi ∈ V (S) do
Vxi
← 0

snxi
← 0

nc← # of xj(, xj ∈ Nlocalxi)
for all xj ∈ Nlocalxi do
snxi

← snxi
+ nxj

end for
snxi

← snxi
/nc

for all xj ∈ Nlocalxi do
xjp← projection of xj to 2D plane of snxi

dij ← |xi − xjp|
if nxj

· nxi
6= 0 then

Vxi
← Vxi

+ (dij ∗Kxj
)

end if
end for
Vxi
← Vxi

/nc)
end for

3.2.3 3D Spatial Frequency Senstivity Function

Constrast Sensitivity Function is a sensitivity threshold vs. spatial frequency
function defined by experimental data, as described in section 2.3.1. Psychophysical
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experiments show that CSF is highly sensitive to image size, noise, color, etc. due
to the optics and adaptations of the eye. According to data gathered by the study
of Ginsberg et al [12], CSF is formulated as

S(ρ, θ, l, i2, d, e) = P ·min
[
S1

(
ρ

ra · re · rθ
, l, i2

)
, S1(ρ, l, i2)

]
(3.5)

where ρ is radial spatial frequency, θ is orientation, l is light adaptation, i is image
size due to distance d and eccentricity e. ra, re, rθ are parameters for distance,
eccentricity and orientation respectively. In order to use CSF, proper assumptions
and calibrations should be established for an application. Viewing distance d can
be different for each application but the observer’s viewing distance is to remain in
a certain range. We did not adapt to range fitting. Instead we have taken viewing
distance as average viewing distance of users. Other parameter formulations are
as follows:

ra = 0.856 · d0.14

re = 1
1 + 0.24e

rθ =
(

(1− ob)
2

)
cos(4θ) + (1 + ob)

2

(3.6)

where ob = 0.78. Effects of the image size and light adaptation level leaves the
formulation as:

S1(ρ, l, i2) = ((3.23(ρ2i2)0
.3)

5
+ 1)

−1/5
· A1ερe

B1ερ
√

1 + 0.06eB1ερ

where A1 = 0.801
(1 + 0.7

l

)−0.2

and B1 = 0.3
(1 + 100

l

)0.15

(3.7)

where l is light adaptation and i2 is image area. Since our problem involves
not a single rendered image, light adaptation is assumed to be a constant value.
Equations 3.5, 3.6 and 3.7 are fitted to psychophysical data from study of Ginsberg
et al [12] illustrated in Fig. 3.6.
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Figure 3.6: Typical Normalized CSF model used by our proposed method

Figure 3.7: Output sensitivity map of a horse model

3.3 Visual Selectivity Model

Human Visual System is tuned to narrow ranges of spatial frequency and found out
by neurophysiological studies of Hubel et al. [15]. This radial frequency selectivity
can be modeled using Difference of Mesa filters. A Mesa filter is low-pass filter,
with Gaussian boundary beyond a frequency f . The end result of the filter is a
disc with blurry edges. The image can be generated with the formula:

m0(r) = (γ/f)2exp[−π(rγ/f)2] ∗ Π(r/2f) (3.8)

where r is the distance of the point to the origin, Π is rectangular response which
can be defined as 0 values except a given range where the response gets the value
1. The effect of Gaussian is obvious as blurry boundary of the disc. The level
of blur is controlled by γ. f is defined as corner frequency and in our case it is
propositioned to the average edge length.
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Figure 3.8: A set of mesa filter generated with given equation 3.8

Difference of Mesa (DOM) Filters

Difference of mesa filters are calculated by subtraction of smaller filter from
larger adjacent filter. Continuous subtraction of adjacent filters gives progressively
smaller DOM filters. Each DOM filter equation is calculated as:

dk(r) = mk(r)−mk+1(r) (3.9)

where mi(r) is given by equation 3.8 Next, we apply DOM filters to vertex values
from previous Spatial Frequency Sensitivity calculations. It is important to note
that since a 3D model does not have a specific orientation at a given time, we
have excluded fan filters from cortex transformation adaptation.

DOM Filters on 3D surfaces

We apply the set of DOM filters to each vertex at local window area.

Figure 3.9: Selectivity map after DOM filter locally application to each vertex
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3.4 Temporal Adaptations

The human visual system models use in not only spatial frequency but also
temporal frequency as well. Weight of the neighboring curvatures indicate the
rate that spatial frequency is effected by the variance. Kelly [18] has studied
this effect by measuring threshold contrast for viewing traveling sine waves.
Kelly’s experiment used a special technique to stabilize the retinal image during
measurements and therefore his models use the retinal velocity, the velocity of
the target stimulus with respect to the retina.

The loss of sensitivity to high frequency spatial patterns in motion gives an
opportunity to extend existing perceptually-based rendering techniques from static
environments to dynamic environments. The eye, however, is able to track objects
in motion to keep objects of interest in the foveal region where spatial sensitivity
is at its highest. This tracking capability of the eye, also known as smooth pursuit,
reduces the retinal velocity of the tracked objects and thus compensates for the
loss of sensitivity due to motion. Therefore the temporal adaptation is processed
as follows:

Algorithm 4 Temporal Adaptation
for all xi ∈ V (S) do
velxi

← ||xi − xj||2
end for
for all xi ∈ V (S) do
velxi

← velxi
−min(0.82 ∗ velxi

+ velmin, velmax)
Gxi
← sxi

/velxi

end for

Temporal Adjustments

First we calculate the 3D speed at each vertex by the distance difference
between consecutive frames. This is then adapted with N1 frames to reduce the
erroneous mesh computations:

Vit = ||vit − vi(t−1)|| (3.10)



CHAPTER 3. THE SYSTEM 39

Vit = Vi(t−1) + Vit + Vi(t+1)

3 (3.11)

Where Vit is the velocity value of vertex vi at frame t.

Evidently, it is crucial that we compensate for smooth pursuit movements
of the eye when calculating spatio-temporal sensitivity. The following equation
describes a motion compensation heuristic proposed by Daly [7]:

vR = vI −min(0.82vI + vmin, vmax) (3.12)

where vR is the compensated retinal velocity, vI is the physical velocity, vmin
is 0.15 deg/sec (the drift velocity of the eye), vmax is 80 deg/sec (which is the
maximum velocity that the eye can track efficiently). The value 0.82 accounts for
Daly’s data fitting that indicates the eye tracks all objects in the visual field with
an efficiency of 82%.

Temporal Weight Factor

In section 2.3.3, temporal contrast sensitivity shown that with increased speed
of the object, sensitivity to changes decreases accordingly. Using this analogy
adjusted velocity values of the mesh are used as weight factors. The distance
traversed by a vertex is assumed to linearly increase with growing value of speed.
Thus the adjusted velocity values are used to directly as reverse weight factors
and multiplied by Visual Selectivity results of the mesh.

At the end of this step 3D perception maps are fully computed and ready to be
used for either difference computation or integrated into modification methods.
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Evaluation

To evaluate the fidelity of our perceptual quality estimation method, we opted for
experiments. In this chapter, we explain the conducted experiments and discuss
the results in detail. In section 4.1 we explain our experiment design and setup,
and in Section 4.2 we present and analyze the experiment results.

4.1 Experimental Design

In this experiment, the correlation between the subjective evaluation results and
the proposed method’s predictions are tested. Our fidelity measure for 3D quality
on models was marking distortions that measures the perceived distortions by the
subject. The experimental setup is an SDSCE category experiment (Simultaneous
Double Stimulus for Continuous Evaluation).

In addition, we have computationally compared the relation between the
modeled visual modules and change in correlation with respect to these modules.
There are two main contributing modules of the method, spatial cortex and
temporal adjustments modules.

40
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4.1.1 User Test Procedure

The reference meshes are prepared as 28 to 50 frame long animated models. For
modified versions, random noise offset is applied to each frame of a reference model.
Test subjects were shown both the reference and modified versions simultaneously
and were able to manipulate the viewing point by means of rotation and zooming.
By problem definition, viewing 3D mesh in a static manner would defeat the
purpose, thus we have conducted evaluation process after the animation was
stopped and test mesh was removed from the viewing panel. This brings unwanted
memorizing strain to the viewer. However, we have conducted a survey after
the experiment and 82% of the subjects stated they did not feel restrained from
memorizing. Remaining subjects stated they felt that memorization affected their
response below 5%.

Marking

For marking on modified mesh, the viewer was supplied with a simple mark
tool with tip intensity. Paint tool and view-point manipulation enabled the viewer
to correctly locate and mark the perceived distortions. The marked vertex patches
were represented as color changes on the mesh. Figure 4.1 shows the viewer
test setup. On left panel, the reference model shown to the viewers to prevent
drawbacks of memorizing a complex 3D form. On the right panel the modified
mesh was given and the viewer can paint on faces of the mesh by mark tool.
Scale of tip was represented as a bar on top and viewer was able to control the
animation by using a button widget.

At the start of the experiments the viewers were only given the instruction as
“Distortion on mesh was defined by spatial artifacts. Cfonsider relative scale of
distortions and mark the distortions accordingly using the intensity tool”.
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(a) The experiment setup and environment at
viewing stage. Both images are in animation
and interaction is simultaneous.

(b) Evaluation stage of experiment with refer-
ence mesh without animation and marking is
enabled (left mesh panel). Test mesh continue
animation (right mesh panel). Interaction is
simultaneous.

Figure 4.1: Experimental setup for viewing stage and marking stages

4.1.2 Setup

Experimental environment setup has a significant impact on subjective results
in computer generated scene tests. Therefore parameters of the experiment was
carefully considered. Each parameter is explained below.

• Lighting: Type, position and direction of the lighting are significant factors
in experimental setup. We have chosen stationary left-above, center directed
lighting [32].

• Background: We have adopted chess lines design on x-z plane for a sense
of up vector of the mesh and also to prevent overestimation of the mesh
boundaries.

• Materials and Shading: To prevent highlighting effects and accentuate
distortions unpredictably, we have chosen smooth-shaded rendering in ex-
periments.

• Animation and Interaction: Free-viewpoint was enabled to the viewers for
interaction. Animation was used by the nature of the problem. Furthermore,
since inspection of the mesh during paused state was contradictory to exper-
iment’s purpose, evaluation of the mesh was conducted after the animation
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was stopped and test mesh was removed from the test environment.

• Stimuli order: Each modified and reference model combination was shown
successively allowing for more accurate comparisons.

4.1.3 Subjects

For the pyschovisual experiments, 17 subjects participated with different level
of computer abilities. Most of the subjects were moderate computer the viewers
with knowledge on computer science but with limited background on computer
graphics field. All of the participants were tested with every animated model.

4.1.4 Data

We have 3 reference meshes with two modified versions for each, totaling 6 mesh
pairs. Statistics of these meshes are explained in an Table 4.1 below.

MD1 MD2 MH1 MH2 MS1 MS2

#ofV (M) 3423 3423 8321 8321 8431 8431

|eM | .01015 .00981 .01208 .01170 .01336 .01290

d(fM0 , fM1) .00099 .00059 .00124 .00073 .00136 .00080

Table 4.1: Statistics of modified meshes; vertex count, mean edge length and
mean face distortions

MD1, MD2, MH1, MH2, MS1 and MS2 are modified meshes, and first line of
the table represents the vertex count of each mesh. The second row is average edge
length and third row is average distance between faces of original and modified
mesh. As can be seen from Table 4.1, distortions on the faces are not significantly
larger than average edge length.
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4.2 Results & Analysis

The marked meshes are stored as vertex color maps. User response for a modified
mesh was a set of vertices with color values between [0 . . . 1]. Sample viewer
responses are shown in figure 4.2c, 4.2d, 4.2e, 4.3c, 4.3d and 4.3e for mesh pairs
shown in figure 4.2a and 4.3a respectively. To calculate a unified subjective
response for each mesh we calculate a mean subjective response.

For each animated model, mean subjective response is computed per vertex
given by the equation :

µ(vi,M ′) =
∑N
s=0Rs(vi,M ′)

N
(4.1)

where N is the test subject count for the mesh M ′. Rs,f (vi,M ′) represents the given
response to a single vertex, mesh and subject combination.

Next, the proposed method is computed for each mesh pair. Sample evaluations
are shown in Figures 4.3b and 4.2b for mesh pairs 4.3a and 4.2a respectively.

Analysis

The relationship between the viewers responses and quality estimations of
each conditions is analyzed using correlation method. We opted for Pearson’s
product-moment correlation coefficient r. This method is suitable for measuring
correlation between two variables, giving a value between [−1 . . . 1]. If the resulting
value of r is close to 1 there exists a linear correlation, meaning the variables’
correlation is higher. The formulation for Pearson’s correlation coefficient r is
given in equation.

r = 1
n− 1

n∑
i=1

(
Xi − X̄
sx

)(
Yi − Ȳ
sy

)
(4.2)

where X̄ is sample mean and sx is sample standart deviation.

Our variables are method evaluation values and mean subjective responses.
Each variable spans vertices, therefore, sample size is equal to number of vertices



CHAPTER 4. EVALUATION 45

(a) Reference and modified meshes

(b) Difference map of horse
mesh pair

(c) User Evaluation No. 1

(d) User Evaluation No. 2 (e) User Evaluation No. 3

Figure 4.2: Horse mesh quality assessment experiment: Sample viewer evaluations,
difference map and visual comparison of reference and test mesh is given



CHAPTER 4. EVALUATION 46

(a) Reference and modified meshes

(b) Difference map of hand
mesh pair

(c) User Evaluation No. 1

(d) User Evaluation No. 2 (e) User Evaluation No. 3

Figure 4.3: Hand mesh quality assessment experiment: Sample viewer evaluations,
difference map and visual comparison of reference and test mesh is given
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for a mesh. Thus, total number of samples is 40350.

The correlation between method evaluation values and mean subjective re-
sponses is 0.28 and correlation graph is shown in Figure 4.4

Figure 4.4: Correlation map for all samples combined

Given the proposed method gives an estimation and 3D marking tool lim-
itations, correlation between our proposed method’s estimates and the viewer
responses are high. Furthermore, the correlation graph indicates that our proposed
method accurately estimates high distortion areas where values are higher. Lower
distortions are harder to identify by the viewers and therefore there is a greater
inconsistency between the viewer responses and method estimation. This effect is
better observed when correlation is measured separately for each model.

(a) Correlation map and pearson correlation
value r ≈ 0.32 for mesh MD1

(b) Correlation map and pearson correlation
value r ≈ 0.12 for mesh MD2

Figure 4.5: Correlation map for each modified mesh of Doll is given.
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(a) Correlation map and pearson correlation
value r ≈ 0.12 for mesh MH1

(b) Correlation map and pearson correlation
value r ≈ 0.15 for mesh MH2

Figure 4.6: Correlation map for each modified mesh of Hand is given.

(a) Correlation map and pearson correlation
value r ≈ 0.37 for mesh MS1

(b) Correlation map and pearson correlation
value r ≈ 0.33 for mesh MS2

Figure 4.7: Correlation map for each modified mesh of Horse is given.
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Conclusion

In this work, we proposed a quality assessment framework with emphasis on
perception combining spatial and temporal aspects of seeing. Our system works
on 3D animated meshes but can also be used for static 3D mesh pairs. To create an
object-space solution while standing by perceptual nature of the problem, we have
devised a method for estimation of image-space attributes using solely geometrical
information. In addition, we have applied image space filters to surfaces in 3D
using HVS visual selectivity models as a guide. Lastly, temporal information of
animated models was adjusted to visual system adaptations and limitations for
more accurate representation of a mesh from a perceptual point of view. To test
our method, we have conducted subjective evaluations of modified models and
measured the correlation between results from the proposed model and by user
evaluation. During user tests, the viewers were asked to mark the defects on 3D
mesh by painting. Evaluation results showed that our model was successful at
prediction of detectability of artifacts in animated 3D models.

To further represent a quality estimation, other perceptual contributors can
be integrated. One important contributing factor to perceptual quality would
be saliency. Saliency and spatial frequency sensitivity are two opposite effects of
similar structural phenomena. Addition of saliency consideration would reduce
misleading quality increase caused by spatial frequency. It is worth noting that
subjects usually marked only easily visible regions such as sides and top of the
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mesh, and needed reminding of examining the mesh from hard to see angles such
as below. Thus, 3D meshes with an up direction can benefit from point-of-view
reductions in computation.

Overall, our proposed method computed suitable perceptual results to the
given mesh pair and upon conducting the user test, strong correlations between
automated results and viewers’ responses were observed. Thus, we conclude that
the method provides a suitable solution for estimating the perceived quality of
animated 3D meshes.
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