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ABSTRACT

SIGNAL PROCESSING BASED SOLUTIONS FOR

HOLOGRAPHIC DISPLAYS THAT USE BINARY

SPATIAL LIGHT MODULATORS

Erdem Ulusoy

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Haldun M. Özaktaş

January 2012

Holography is a promising method to realize satisfactory quality three-

dimensional (3D) video displays. Spatial light modulators (SLM) are used in

holographic video displays. Usually SLMs with higher dynamic ranges are pre-

ferred. But currently existing multilevel SLMs have important drawbacks. Some

of the associated problems can be avoided by using binary SLMs, if their low

dynamic range is compensated for by using appropriate signal processing tech-

niques. In the first solution, the complex-valued gray level SLM patterns that

synthesize light fields specified in the non-far-field range are halftoned into bi-

nary SLM patterns by solving two decoupled real-valued constrained halftoning

problems. As the synthesis region, a sufficiently small sub-region of the central

diffraction order region of the SLM is chosen such that the halftoning error is

acceptable. The light fields are synthesized merely after free space propagation

from the SLM plane and no other complicated optical setups are needed. In this

respect, the theory of halftoning for ordinary real-valued gray scale images is ex-

tended to complex-valued holograms. Simulation results indicate that light fields

that are given either on a plane or within a volume can be successfully synthesized

iii



by our approach. In the second solution, a new full complex-valued combined

SLM is effectively created by forming a properly weighted superposition of a

number of binary SLMs where the superposition weights can be complex-valued.

The method is a generalization of the well known concepts of bit plane decom-

position and representation for ordinary images and actually involves a trade-off

between dynamic range and pixel count. The coverage of the complex plane by

the complex values that can be generated is much more satisfactory than that is

achieved by those methods available in the literature. The design is also easy to

customize for any operation wavelength. As a result, we show that binary SLMs,

with their robust nature, can be used for holographic video display designs.

Keywords: Three-Dimensional Holographic Video Displays, Binary Spatial Light

Modulators, Light Field Synthesis, Computer Generated Holography, Halftoning,

Full-Complex Modulation
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ÖZET

İKİLİ UZAMSAL IŞIK MODÜLATÖRLERİ KULLANAN

HOLOGRAFİK EKRANLAR İÇİN SİNYAL İŞLEME TABANLI

ÇÖZÜMLER

Erdem Ulusoy

Elektrik ve Elektronik Mühendisligi Bölümü Doktora

Tez Yöneticisi: Prof. Dr. Haldun Özaktaş

Ocak 2012

Holografi, yeterli kalitedeki üç boyutlu video gösterimi için ümit verici bir

yöntemdir. Holografik video gösterimi için uzamsal ışık modülatörleri (SLM)

kullanılır. Genellikle pikselleri geniş bir aralıktaki pek çok ayrık değeri alabilen

SLMler tercih edilmektedir. Ancak mevcut bu tür çok seviyeli SLMlerin önemli

sorunları vardır. Pikselleri ikili değer alan SLMler kullanarak, bu sorunların

bir kısmından kaçınılabilir. Ancak bunun için, uygun sinyal işleme tekniklerinin

kullanılması gerekir. İlk çözümde, büyük olması gerekmeyen uzaklıklarda be-

lirtilmiş ışık alanlarını sentezleyen karmaşık değerli gri SLM örüntüleri, ikili

SLM örüntüleri içine kodlanmaktadır. Bu kodlama sırasında, birbirinden ayrı

iki reel değerli yarım tonlama problemi çözülmüştür. Işık alanı, SLMin merkezi

kırınım bölgesinin yeterince küçük bir alt bölgesinde sentezlenmektedir. Bu

sayede, yarım tonlama hatası kabul edilebilir düzeyde kalmaktadır. Işık alan-

ları sentezlenirken, doğrudan uzaya yayılım yeterli olmakta ve başka bir optik

düzeneğe gerek duyulmamaktadır. Bu bağlamda, sıradan reel değerli gri re-

simler için kullanılagelen yarım tonlama teknikleri, karmaşık değerli hologramlar

için de kullanılmak üzere genişletilmektedir. Simülasyon sonuçları, bir düzlem
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üzerinde ya da bir hacim içerisinde verilen ışık alanlarının, bizim yaklaşımımız

ile başarıyla sentezlenebildiğini göstermektedir. İkinci çözümde, fiilen, karmaşık

değerler üretebilen yeni bir SLM oluşturulmaktadır. Bu kombine SLM, bir dizi

ikili değerler alan SLMin uygun ağırlıklı toplamı oluşturularak elde edilmek-

tedir. Buradaki ağırlıklar karmaşık değerli de olabilmektedir. Bu yöntem,

sıradan görüntüler için iyi bilinen bit düzlemi ayrıştırımı ve gösterimleri kavram-

larının genelleştirilmiş biçimidir ve seviye sayısı ile piksel sayısı arasındaki bir

ödünleşimi içerir. Elde edilen karmaşık değerlerin karmaşık düzlemdeki yayılımı,

literatürdeki yöntemlerle elde edilenlere göre çok daha iyidir. Tasarım, iste-

nilen herhangi bir optik dalga boyu için de kolayca uyarlanabilir. Sonuç olarak,

gürbüz yapılı ikili SLMlerin holografik gösterim sistemlerinde kullanılabileceği

gösterilmiştir.

Anahtar Kelimeler: Üç Boyutlu Holografik Video Ekranı, İkili Uzamsal Işık

Modülatörleri, Işık Alanı Sentezi, Bilgisayarda Üretilmiş Holografi, Yarım Ton-

lama, Tam Karmaşık Modülasyon
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Chapter 1

INTRODUCTION

In this thesis, we study the signal processing problems related to the holographic

three-dimensional (3D) video displays constructed using binary spatial light mod-

ulators (SLM). Binary SLMs have some important advantages over existing mul-

tilevel SLMs that make them quite attractive to use in holographic displays.

However, minor work has been done to provide satisfactory solutions to the re-

lated signal processing problems, perhaps due to the fact that these problems

seem challenging at a first glance due to the binary nature of the SLMs. With

this work, we try to fill this gap. In the first part of our work, we develop the

true approach for synthesizing desired light fields with binary SLMs from a sig-

nal processing perspective [1]. This part can be considered as the extension of

the classical halftoning theory for two dimensional gray scale real-valued digital

images to gray level complex-valued digital holograms. We show through our

simulations that, when properly configured, for an observer standing sufficiently

far away, a binary SLM can be made indistinguishable from a lower resolution

multilevel SLM, resembling the indistinguishability of a standard halftoned 2D

image from its original. In the second part of our work, we propose a method for

effectively creating a satisfactory full-complex SLM out of binary SLMs [2, 3].

The proposed method is developed using simple signal processing concepts and
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can be considered as the generalization of the familiar concepts of bit plane rep-

resentation and decomposition for ordinary images to holograms. Again we show

through our simulations that with the proposed method, it is possible to effec-

tively obtain new SLMs the pixels of which have a better coverage of the complex

plane than any existing multilevel SLM, where the new SLMs can function over

a broad range of wavelengths within the visual spectrum. We believe that our

solutions will provide strong guidance to designers who wish to exploit the ad-

vantages of the binary SLMs for constructing a satisfactory quality 3D display.

The advantages of binary SLMs are discussed in Sec. 1.3 and the organization

of the thesis is detailed in Sec. 1.4. Here, we continue with a review of different

approaches for a 3D display and elaborate on the importance of SLMs within

this framework.

1.2 Three-Dimensional Displays

To look into images that invoke a depth perception has proven to be an exciting

experience for many people. Different methods for capturing and displaying still

3D images have been developed since 1840s [4, 5, 6, 7, 8, 9], and now, thanks to

the advances in display and computing technology, it is the time for satisfactory

quality 3D video [10, 11, 12, 13, 14, 15], which has already become the rising

trend in the visual entertainment industry: every day, an increasing fraction of

movies are captured in 3D, more movie theaters improve their infrastructure to

deliver these movies, virtually all popular computer games are being designed to

deliver 3D graphics, and 3D liquid crystal device (LCD) screens constitute the

fashion product on the shelves of consumer electronics stores with the premise

that TV channels will be broadcasting 3D content in a few years. All these

developments are based mainly on the simple technique of stereoscopy, whose

details we briefly explain in the next paragraph.
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Natural depth perception in humans is based on various depth cues, such

as binocular disparity, motion parallax, convergence, accommodation, occlusion,

blurring [16, 17]. 3D display techniques make use of some or all of these depth

cues. The simplest method to display a 3D image is stereoscopy, and in its

raw form, it makes use only of the binocular disparity: naturally, there is a

slight disparity between the images captured by the left and the right eyes of the

same object, and stereoscopy takes advantage of this fact [18]. In particular, in

stereoscopy, two images of a 3D scene are captured using two cameras placed side

by side so as to mimic the two eyes of an observer, and then the image captured

by the left (right) camera is presented to the left (right) eye of the observer. In

this way, the observer perceives a depth variation in the displayed scene [19, 20,

21, 22]. Mostly, the left and right images are placed on the same screen, but

some type of goggles (such as complementary color anaglyphs, polarized glasses

or liquid crystal shutter glasses) are worn by the observers to separate the images

[23]. Or in some cases, the images are displayed on two different screens placed

right in front of each eye, such as in head mounted displays [24]. Stereoscopy is

quite easy to implement, and that is why it is the foregoing 3D display technology

for the time being. However, there are some limitations and drawbacks of it. To

begin with, the necessity to wear the goggles distorts the comfort of the observer.

It is possible to avoid the use of goggles at least within a restricted viewing

zone by using techniques such as placing a parallax barrier or a lenticular sheet

in front of the display. Such techniques are named autostereoscopy [25, 26].

Secondly, in its raw form, stereoscopy only provides binocular disparity, but

other visual stimuli provided by it are incorrect. For instance, if a user moves

while looking into a 3D object displayed on a standard stereoscopic system,

she will recognize that the object will exhibit an unusual parallax. To remedy

such problems, researchers developed techniques such as eye-tracking stereoscopy

[27], in which the 2D images that are displayed are updated as the position of the

observer changes; and multi-view stereoscopy [28], in which several 2D images are
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displayed on the same screen where each image is seen only from a specific angle.

These techniques provide an improvement to motion-parallax related problems of

classical stereoscopy to a certain extent. Yet, there are some intrinsic problems

associated with stereoscopy that can never be remedied. For instance, while

looking at a stereoscopic display, the lenses of the eyes of an observer are focused

at the screen whereas her eyeballs are converged towards the perceived position of

the object. This phenomenon is called the accommodation-convergence conflict.

It may cause a dizziness after watching for a while, and it will be inevitably

present in any stereoscopic system [29, 30].

Actually, a striking peculiarity about stereoscopy that worths mentioning is

that it is an already tried and abandoned technique in 3D display history [31].

Actually, the history of stereoscopy is nearly as old as that of conventional 2D

photography. Stereoscopic photography was invented in 1838, and the stereo-

scopic 3D cinema was available in the early 1900s, but the interest in stereoscopic

video was significantly lost after 1950s [32]. Therefore, in a sense, nowadays we

are experiencing the rebirth of a once-closed era. The advancement in the con-

ventional 2D display technology and the emergence of powerful computers are

no doubt the primary reasons for this rebirth. However, the reason for the first

failure of stereoscopic video was more than the inconvenient displays and poor

computation technology of the day: stereoscopy itself has intrinsic drawbacks

and limitations as explained above. Therefore, it is not possible to claim that

the ultimate stage has been achieved in 3D display technology yet. In particu-

lar, it is well known by scientists for over 60 years that there is an alternative

technique which has the potential to vastly eliminate the intrinsic drawbacks and

limitations of stereoscopy, namely the holography.

As we mentioned above, the stereoscopic approach for 3D displays mainly

takes advantage of a particular depth cue (binocular disparity), and tries to

remedy the problems associated with other depth cues as much as possible. The
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holographic approach, which has been developed and investigated as a strong

candidate to realize the ultimate 3D display following the invention of holography

by Dennis Gabor in 1948 [33, 34], takes a route different than focusing on one

or more of the depth cues. We can broadly describe the holographic approach

for 3D displays as follows: replicate the light that is emanating from the original

3D scene, such that any observer interacting with that light will see the original

3D scene with all its natural depth cues even if the scene is not there physically

[31]. Therefore, neither the presence of the observer nor the properties of her

visual system are of primary concern. In other words, all of the natural depth

cues are aimed to be provided at the same time. As palpably seen, the goals that

the holographic approach sets forth are incomparably more challenging than

those set forth by the stereoscopic approach. This is why we have to wait more

before holographic televisions enter our living rooms. Currently, a holographic

TV is possible in principle, but in practice, both the display technology and the

associated algorithms need to be improved along a long path before we start

seeing satisfactory quality holographic images. But when that path is traveled,

there is no doubt that the rewards will worth it.

In its initial form, holography involves the process of making a coherent

recording (that is, a recording under illumination by laser light) of the inter-

ference pattern between a known reference wave and the object wave emanating

from physically existing objects on a photographic film, which is named after-

wards as the hologram [35, 36, 37, 38, 39, 40]. In this way, all the necessary

physical properties of the object wave (both intensity and phase) can be cap-

tured. During replay, the hologram is illuminated by the same reference wave,

and along with several side beams that propagate to different directions, the

object wave is reconstructed. In this manner, a quite realistic 3D still image is

obtained with all the natural depth cues. In other words, any observer intercept-

ing this reconstructed wave sees the corresponding object as if it is physically

there. Following this line, many scientist devoted their life to the improvement of
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the basic technique and development of better photosensitive materials so that

better quality images are obtained [41]. Thanks to their efforts, still hologra-

phy has enormously excelled in the years that have passed, as can be seen from

the amazingly high quality and quite natural-looking color holographic images

displayed in several museums and exhibitions [42, 43]. The succession in this

area continues to inspire many researchers to channelize their efforts to bring

holographic video into reality. Yet, dynamic holography has not yet managed to

reach the visual quality offered by still holography. But there is no doubt that

when finalized the holographic video display will give a much more fascinating

visual experience to observers than any other present technology, as verified by

the enormous excitement that people feel when they see a still hologram for the

first time.

Though the initial form of holography constitutes the basis on which these

exciting ideas about the ultimate 3D display has flourished, there are many mod-

ifications that need to be considered on that initial form [44]. To understand the

nature of those modifications, let us examine the current trend for the design of

a holographic 3D television system [45]. Though from the capture to the display

end the conventional 2D television systems evolved from a fully analog system

(recording by analog cameras, broadcasting analog TV signals, display using

analog cathode ray tube (CRT) screens) to a fully digital system (recording by

digital cameras, broadcasting over internet or through satellite systems, display

on digital LCD monitors), it seems that the holographic 3D television will emerge

as a full digital system; simply due to the reason that analog holographic record-

ing and display facilities are inconvenient to support dynamic operation, whereas

digital counterparts are much more suitable and flexible. Several recently con-

ducted large scale research projects carried on the topic roughly envision the

following sequence of operations in an end-to-end holographic 3D television sys-

tem [11, 46, 47, 48]:
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• Capture the necessary visual information about a 3D scene using multi-

camera systems

• Prepare an abstract computer graphics representation of the 3D scene

• Transmit that information to the display end

• From the abstract description of the 3D scene, digitally compute the holo-

gram of the 3D scene

• Write this hologram on a convenient dynamic holographic screen and dis-

play it

From the above list, we recognize that most possibly, the principles of holography

will be utilized merely at the display end for delivering the necessary visual signal

to an observer. In particular, examining the first three items of the list, we

recognize that most probably the depth information about a 3D scene will not

be captured through an ordinary holographic recording. Rather, that information

will be captured and conveyed to the display end using straightforward extensions

of already existing capture, computer graphics and communications techniques.

(Actually, we should mention that direct capturing of holographic fringe patterns

is still a living alternative [49]. However, for the time being, this alternative

seems to be somewhat inconvenient compared to the scheme presented above.

One of the main reasons of this inconvenience is that, in this alternative, the 3D

scene must be illuminated by coherent light, and this is impractical especially

for large scale scenes. Also, the recording camera should be accompanied by an

optical setup so that a reference wave is provided. Moreover, current resolution

of digital cameras is much lower than that of photographic films, and this places

a severe limit on the sizes of the objects that are wished to be imaged [50].

In this respect, we will continue with the scheme mentioned above since it is a

stronger alternative.) Then, at the display end, the hologram of the abstractly

described 3D scene will be computed just because that hologram is necessary to
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produce the final light signal that is to be intercepted by observers. (Actually, in

strict terminology, we only need to compute the complex-valued object wave, not

the hologram, which corresponds to the interference pattern between the object

wave and a reference wave. Note that in the holographic method of Gabor,

the interference pattern is formed because the photosensitive materials can only

record intensity patterns, not complex amplitudes. But now, electro-holographic

displays already have the capability to provide complex values. Therefore, there

is no need to form the interference pattern any more, so computation of the object

waves is sufficient. But despite making this remark, for the sake of convenience,

we will keep on saying that the hologram of the 3D scene must be computed,

where it is meant that the cross section of the object wave must be computed

over the hologram plane.) From this discussion, we see the modifications that

need to be considered over the initial form of holography within the context of a

3D display: in ordinary holography

• the hologram is obtained physically, but now it should be computed; and

• the hologram is ready on a piece of photographic material, but now it

should be written on some kind of dynamic device.

Each one of these problems has a unique character and is challenging [51, 52].

Actually, these problems form the bottleneck of holographic video systems for

the time being. It is not possible to claim yet that the developed methods

for these problems fully fulfill the expectations. Regarding the first problem,

the current computational techniques are neither accurate nor fast enough to

enable satisfactory real-time operation [53, 54, 55, 56, 57, 58]. Regarding the

second problem, the spatial resolution of current holographic video displays are

much lower compared to that of photographic films. In addition, the dynamic

range of these displays are much lower or restricted compared to that offered by

photographic films. Such constraints and restrictions place a limit on the quality

of holograms that can be displayed on these devices. These restrictions can be
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partially compensated with computational techniques, but these again are not

developed to their final form yet by any means [59, 60].

Actually, the two problems discussed above emerged long before the technol-

ogy advanced to the level that made a modest holographic television possible.

Beginning from early 1960s, following the formulation of scalar wave optics theory

of light within a signals and systems framework under the name Fourier optics,

holography has also been investigated using signals and systems theory concepts

[61]. And beginning from late 1960s; following the invention of computers and

the development of the digital signal processing tools, holography has been in-

vestigated within a digital signal processing framework [62]. Many new problems

have been defined and studied in this context, and many new sub research fields

emerged. To name the most important ones, in the so called digital holography,

which emerged mainly following the invention of the charged coupled devices

(CCD) and cameras built using them, instead of using a photographic film, the

hologram of a 3D object is captured using a digital CCD camera, and then the

resulting holographic image is processed by a computer to extract the object

wave and perform some diagnostics afterwards [49, 50, 63]. And in the so called

computer generated holography, instead of performing a physical recording, the

holograms that synthesize certain desired beams (that possibly never existed be-

fore) are computed digitally using a computer [64, 65, 66, 67, 68, 69, 70]. Then, a

physical transparency is prepared from these digitally computed holograms and

optical reconstructions are performed. Research is ongoing with increasing pace

in all these fields to improve the quality of optical reconstructions while increas-

ing the computational performance of the related algorithms as much as possible.

And as seen in conjunction with the previous paragraph, there is no doubt that

this research (especially the one on computer generated holography) has quite

direct contributions towards the development of a 3D holographic television sys-

tem. Therefore, we continue with a review of the achievements in computer

generated holography.
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The research on computer generated holography was initiated by Brown and

Lohmann in late 1960s [71]. The goal of these researchers was to compute and

produce optical masks that synthesized certain desired light distributions. They

faced two important problems. The first one was, at that time, they did not

have the required computational power for calculating the hologram that would

synthesize a light field specified over an arbitrarily shaped volume and at an arbi-

trary distance from the hologram. To overcome this difficulty, they concentrated

on small planar regions of space that lied in the far field, so that the relation

between the samples of the hologram and the desired light field is to a very good

approximation given by a discrete Fourier transform, which was rather easy to

compute. The second problem they faced was, the only available devices that

had the spatial resolution required for the physical production of the mask were

black and white ink-jet dot printers, so that the final mask could only be binary.

They resolved this issue by developing their famous detour phase method, which

is actually a method for encoding a complex-valued hologram pattern into a bi-

nary pattern (we briefly explain the details of this method in the introduction of

Chapter 3) [72, 73]. For a quite long time (till early 1980s), only binary masks

could be produced, so the detour phase method was used abundantly in com-

puter generated holography related applications [74, 75, 76, 77, 78, 79]. Later,

following the advancements in both computational and optical technologies, it

become possible to efficiently compute holograms for non-far field light distribu-

tions and write these holograms on pixellated masks (usually named diffractive

optical elements) where more than two values were available for a pixel of the

mask. And following the advancement of spatial light modulator (SLM) technolo-

gies in late 1980s, computer generated holograms were started to be written on

SLMs, which are basically optical masks that can be dynamically programmable

[80, 81, 82, 83]. Actually, it is only after the advent of SLMs that holographic

video has been considered as a state of technology that can be achieved within

several decades. And today, SLMs continue to be the most promising devices
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to be employed during the build-up of a satisfactory quality holographic display.

Understanding the current state of the SLM technology is therefore crucial for

understanding how far away we are from having satisfactory quality holographic

displays.

There are many different types of SLMs working with different mechanisms

[61, 84, 85, 86]. A large number of SLMs exploit the anisotropic nature of twisted

nematic and ferroelectric liquid crystals to modulate the phase of light in a

controlled manner. Some SLMs are mirror based. These SLMs consist of an

array of quite small mirrors which can be tilted or deformed, so that light is

spatially modulated. Yet some other SLMs make use of quantum mechanical

or acoustical effects. We will not delve into a detailed discussion of the physics

behind SLMs, but rather focus on the behavioral properties of SLMs. From a

behavioral perspective, there are a number of different classifications that needs

to be mentioned. One such classification is made according to the structure of the

hologram that can be written on the SLMs: on some SLMs, a continuous function

of position is written. In this case, the SLM is said to be analog. An example

is the surface acoustic wave SLMs. On the other side are SLMs the hologram

on which is of pixellated structure. Such SLMs are named pixellated or digital

SLMs. Today, most SLMs belong to this group. Compared to analog SLMs,

digital SLMs are usually much convenient to use; however, the pixellated nature

of digital SLMs create some undesired effects such as diffraction orders, i.e.,

replicas of the main desired beam that flow in different directions. These effects

may be disturbing especially within the context of holographic displays. Another

classification is according to the nature of the control signals. Some SLMs are

electrically addressed while some others are optically addressed. Though the

optically addressed SLMs have some advantages over the electrically addressed

ones (such as having a shorter response time), it seems that the latter will be

more convenient to use in holographic displays, since with the former, the optical

setups get quite complicated. Yet another classification is made according to the
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way the illumination light is sent to the SLM. Some SLMs are of reflective type,

that is, the SLM modulates and reflects back the incoming light. In this case,

the illumination wave is sent from the front side of the SLM. The other SLMs

are of transmissive type, in which case the illumination wave comes from behind,

passes through the SLM while getting modulated, and then leaves the SLM from

the front side. Though it seems at a first glance that optical setups would be less

complicated with transmissive SLMs, some reflective SLMs (especially mirror

based SLMs) have certain advantages that prevent them from getting excluded

from consideration.

Perhaps, from the standpoint of holographic displays, the most important

behavioral classification among the SLMs is made according to the type of mod-

ulation that they can provide. This classification is especially important because

the richness of the light fields that can be synthesized with an SLM directly de-

pends on the modulation capabilities of the SLM. Note that in general hologram

patterns are complex-valued functions of position, meaning that at each spatial

position, we require simultaneous and independent amplitude and phase control.

Therefore, ideally SLMs should provide full-complex modulation. However, a

satisfactory full complex SLM has not been developed yet. Virtually all SLMs

provide only some restricted type of modulation. For instance, some SLMs can

only provide phase modulation on the incoming light, and they are called phase-

only SLMs. A phase-only SLM therefore places on a designer the restriction

that all holograms must be phase-only. That is, if the hologram that generates

a desired light field is complex-valued, the designer must find a way to encode

that hologram into a phase-only pattern. Similarly, some SLMs provide only

amplitude modulation and called amplitude only SLMs. But as mentioned, it is

nearly impossible to find an SLM that provides both types of modulation simul-

taneously in a satisfactory manner. For the digital SLMs, usually, there is also

the quantization constraint: pixels of most SLMs can be set only to a finite num-

ber of different values. Therefore, it is not possible to cover the complex plane
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in a continuous manner. Rather, hologram values are quantized to the nearest

available level. Altogether, these constraints impose a limit on the range of the

light fields that can be synthesized with these devices. Given a desired field,

determination of the best hologram pattern subject to the SLM constraints is a

widely studied signal processing problem [51, 52, 87, 88, 89, 90, 91, 92, 93, 94].

For SLMs that have a large number of available values for a pixel (such as an

8-bit phase only or amplitude only SLM), this problem is relatively easy, but for

some other SLMs (especially the ones on which the quantization constraint is

harsh, such as binary SLMs), the problem becomes more interesting and chal-

lenging. Actually, in this thesis, we undertake the signal processing problems

that arise in the case of binary (or harshly quantized) SLMs.

1.3 Binary Spatial Light Modulators

The most constrained SLMs are the binary ones. Pixels of binary SLMs can be

set to only two possible distinct values such as (0,1) or (−1,1). In this case, the

quantization constraint on the SLM is quite harsh. Not surprisingly, when other

parameters such as number of pixels, pixel periods etc. are kept the same, the

range of the light fields that can be synthesized is the most limited when a binary

SLM is used. In addition, determination of a binary hologram that generates a

desired light field is more difficult than determining a multilevel hologram. With

these difficulties in mind, it is natural to question why a binary SLM might be

preferred at all over already existing multilevel SLMs.

Binary SLMs have several important advantages over multilevel SLMs that

make them attractive to be used in holographic displays. To begin with, most

multilevel SLMs work in the prescribed manner around a certain wavelength.

When the wavelength is changed, the pixel values usually change in a drastic
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manner. These changes are hard to keep track of especially in multi-color appli-

cations such as 3D displays. On the other hand, amplitude-only binary SLMs

(such as the digital micromirror devices (DMD) produced by Texas Instruments

[95, 96, 97, 98]) provide the same (0,1) modulation independent of the wavelength

of the illumination wave. In this respect, their behavior is much easier to keep

track of in a multi-color application. (Actually, we show in Chapter 3 that even

if the pixel values of a binary SLM change with the illumination wavelength,

as long as the new values are still distinct, that change is inconsequential for

observers.)

Secondly, most multilevel phase-only (or amplitude-only) SLMs are actually

imperfect in the sense that in addition to the phase (amplitude) modulation that

they provide, they perform an uncontrollable amplitude (phase) modulation, as

can be seen from their operation curves. Therefore, they are not robust in this

sense. On the other hand, since binary SLMs only provide two different complex

values (and these values are not important as long as they are distinct), they are

much more robust.

As a third factor, miniaturization of binary SLMs, that is, manufacturing bi-

nary SLMs with small pixel pitches and high pixel counts seems to have a higher

potential compared to other types of SLMs, especially when the emerging micro-

electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems

(MOEMS) technologies are considered [99]. Actually, it seems that the develop-

ment in the binary SLM technology will most likely be in the form of improvisa-

tions of the DMD concept. DMDs are most popular in current projection systems

for their high light throughput and high contrast ratio. (Actually, DMDs provide

perfect contrast in the sense that a blank pixel sends no light to the output im-

age. This is quite impossible to achieve with an LCD SLM for instance, the blank

pixels of such SLMs always transmit a certain nonzero optical power.) Therefore,
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as additional advantages of binary SLMs, we can list their high contrast ratio

and light throughput.

Despite these important advantages of binary SLMs, we see that until today

the signal processing problems related to the usage of binary SLMs in holo-

graphic displays have not been solved to a satisfactory degree. Especially when

holographic displays are of concern, almost all of the methods developed so far

turn out to be somewhat inadequate, both from a theoretical and a practical

perspective. And to our belief, the poor results obtained with those inadequate

methods caused the binary SLMs to have a bad reputation among scientists and

practitioners. Many designers have mistakenly thought that because of their low

dynamic range, binary SLMs are intrinsically inadequate for holographic display

purposes, especially in terms of the quality and richness of light fields that can

be synthesized. As a result, they mostly abandoned binary SLM based display

designs, and shifted their interest into multilevel SLMs. While doing so, they

also lost the chance to enjoy the many advantages of binary SLMs over multilevel

SLMs. This point stroke our attention when we decided to undertake this thesis

[100, 101, 102, 103]. And we believe that with this thesis, we develop the correct

approaches for the mentioned signal processing problems. We expect that after

this study, researchers will dismiss their negative attitudes towards binary SLMs,

and consider the usage of them more seriously in holographic displays.

1.4 Organization of the Thesis

In accordance with the usual practice in holographic research, we also develop

our solutions in this thesis using the scalar wave optics theory of light. In this

respect, in Chapter 2, we review the basics of scalar wave optics theory and scalar

diffraction theory. Moreover, in that chapter we carry out an analysis of the light

field generated by a finite size SLM. The results of this analysis is important for
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both understanding the solutions we develop for binary SLMs and understanding

the usage of SLMs in a holographic display.

In Chapter 3, we undertake the problem of the computation of a SLM pat-

tern that generates a desired light field. We start by a review of the proposed

methods and algorithms, which are mainly designed for far field or Fourier plane

reconstructions. Then, we develop our approach assuming that the desired light

field is synthesized within a volumetric region in the non-far field range merely

after free space propagation from the SLM plane. In particular, we show that

when the desired field is confined to a sufficiently narrow region of space, the ideal

gray level complex-valued SLM pattern generating it becomes sufficiently low-

pass (oversampled) so it can be successfully halftoned into a binary SLM pattern

by solving two decoupled real-valued constrained halftoning problems, which can

be solved using already existing algorithms for classical image halftoning. Our

simulation results indicate that when the synthesis region is considered, the bi-

nary SLM is indistinguishable from a lower resolution full complex gray level

SLM. In an other sense, by the end of that chapter, we will have extended the

theory of halftoning for classical gray level images to holograms.

In Chapter 4, we take a different route and develop a solution for effectively

creating a full complex SLM using a number of binary SLMs. Again, we start

by reviewing several full complex modulation schemes developed using multilevel

SLMs. Then we discuss our solution which is based on on simple signal processing

concepts. We first propose a generic method, by which, out of K binary (or 1-

bit) SLMs of size M × N , we effectively create a new 2K-level (or K-bit) SLM

of size M × N . The method is a generalization of the well-known concepts of

bit plane representation and decomposition for ordinary gray scale digital images

and relies on forming a properly weighted superposition of binary SLMs. When

K is sufficiently large, the effective SLM can be regarded as a full-complex one.

Then, we discuss a 4f system as a possible and promising optical implementation.
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That 4f system also provides a means for eliminating the undesirable higher

diffraction orders, and the components of the 4f system can easily be customized

for different production technologies. By the end of this chapter, we will have

developed a method for utilizing binary SLMs as efficiently as possible from an

information theoretical perspective towards achieving full complex modulation.

In Chapter 5, we state the conclusions of our work.
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Chapter 2

PRELIMINARIES

2.1 Basics of Scalar Wave Optics

Until today, four major theories have been developed to explain optical phe-

nomena [104]. From the simplest to the most complex, these theories are listed

as

• geometric optics theory, in which light is described by rays that travel

according to Fermat’s principle,

• scalar wave optics theory, in which light is described by a scalar function

of position and time that satisfies the wave equation

• classical electrodynamic theory, in which light is described by four vector-

valued functions of position and time (electric field, magnetic field, electric

flux density, magnetic flux density) that satisfy the Maxwell equations

• quantum electrodynamic theory, in which light is postulated to consist of

photons which exhibit both wave-like and particle like characteristics. The

behavior of photons are governed by quantum mechanical principles.
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The geometric optics theory is adequate in partially explaining phenomena

such as reflection, refraction, imaging; and the behavior of simple optical compo-

nents such as lenses, prisms, mirrors etc. However, it fails to explain phenomena

such as interference and diffraction (“any deviation of light rays from rectilin-

ear paths which cannot be interpreted as reflection of refraction”, as defined by

Sommerfeld) in which the wave nature of light becomes predominant. Scalar

wave optics theory enters the picture at this stage and it accounts for most phe-

nomena related to wave nature of light. Yet, it is not sufficient to fully explain

the nature of energy transport by light waves, it does not accurately describe

diffraction at high angles, it fails to account for the behavior of more advanced

optical components such as polarizers and optical crystals, and it does not estab-

lish the link between the sources of radiation and the radiated waves in a precise

manner. Therefore, in the course of history, it is replaced by the classical elec-

trodynamic theory, which virtually explains all the optical phenomena within

classical confines. Following the development in quantum mechanics, classical

electrodynamic theory is refined to the quantum electrodynamic theory in order

to account for light-matter interactions that occur at the quantum scale as well.

In this thesis, we are only interested in optical phenomena that arise within

the context of holography. Historically, the holographic method was developed

using the scalar wave theory of light. And until today, scalar wave theory has

proven to be sufficient for most holographic applications, making it unnecessary

to resort to a more advanced theory of light. Therefore, here, we use the scalar

wave theory of light as well, and we continue with a brief summary of that theory.

According to the scalar wave theory, light is described by a scalar real-valued

function of space and time that we denote by ũ(x, y, z, t) with x, y, z ∈ R denot-

ing the three spatial cartesian coordinates and t ∈ R denoting the time. It is

postulated that ũ satisfies the so-called wave equation in free-space:

∇2ũ− 1

c2
∂2ũ

∂t2
= 0 (2.1)
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where ∇2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
and c denotes the speed of light in free space.

Mostly, we are interested in purely monochromatic light disturbances. If the

light is monochromatic, at every point in space, ũ takes the form ũ(x, y, z, t) =

A(x, y, z) cos
{
2π c

λ
t− ϕ(x, y, z)

}
where A and ϕ are real-valued functions of po-

sition and λ denotes the wavelength of the monochromatic light disturbance. In

such cases, as well known, it is more convenient to work with phasors. If we

define a complex-valued function of position that we denote by u(x, y, z) such

that u = Aejϕ, then we have ũ = R
{
ue−j2π c

λ
t
}
so that ũ can be recovered easily

if we know u over the spatial region of interest. u is usually named the phasor

that describes the light. In the rest of the thesis, we assume that we are dealing

with monochromatic light disturbances and we use phasors. Note that if ũ is to

satisfy Eq. 2.1, u has to satisfy the so called Helmholtz equation:

∇2u+ k2u = 0 (2.2)

where k is usually named the wave number and is given by

k =
2π

λ
. (2.3)

2.2 Basics of Scalar Diffraction Theory

A well known problem investigated under scalar wave optics theory is the so

called diffraction problem, in which it is assumed that u(x, y, z) is known over a

planar surface, and the objective is to determine it at some other region of space

where there is only free-space propagation in between. Usually, the planar surface

is taken as the z = 0 surface, the light waves are assumed to be propagating from

the z < 0 half-space towards the z > 0 half-space, and the points of interest lie in

the z > 0 half-space. Hence, given u(x, y, 0) for all x, y; the goal is to determine

u(x, y, z) for all x, y and z > 0 such that u(x, y, z) satisfies the Helmholtz equation

given by Eq. 2.2. Though there is fundamentally no difference in between, in most
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references on the subject, the problem is posed as the determination of u(x, y, z)

as a two dimensional function of x and y for some constant z > 0. That form

is also convenient for our purposes in this thesis. When the problem is posed in

that form, it is more convenient to denote the light field over the z = 0 plane by

u0(x, y) instead of u(x, y, 0). Similarly, the light field over an arbitrary z−plane

is more conveniently denoted by uz(x, y). Since this notation is more common,

from now on we also switch to it. To summarize, in the diffraction problem, we

assume that u0(x, y) is specified, and the goal is to determine uz(x, y) for some

constant z > 0.

As explained in [61], the relation between u0(x, y) and uz(x, y) is given as a

linear shift invariant (LSI) system:

uz(x, y) = u0(x, y) ∗ ∗hz(x, y)

=

∫ ∞

−∞

∫ ∞

−∞
u0(x

′, y′)hz(x− x′, y − y′)dx′dy′ (2.4)

where ∗∗ denotes two-dimensional analog convolution operation and hz(x, y) de-

notes the impulse response of free space propagation. According to the Rayleigh-

Sommerfeld (RS) theory, hz(x, y), i.e., the impulse response of free-space propa-

gation, is given as:

hz(x, y) = − 1

2π

z

R
(1− jkR)

ejkR

R2
(2.5)

where R =
√
x2 + y2 + z2. The Fourier transform (FT) of Eq. 2.5, i.e., the

frequency response of free space propagation is given as [105, 106]:

Hz(νx, νy) = F {hz(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
hz(x, y) exp {−j2π (xνx + yνy)} dxdy

= exp

{
jkz

√
1− (λνx)2 − (λνy)2

}
. (2.6)

Note that if U0(νx, νy) and Uz(νx, νy) respectively denote the Fourier transforms

of u0(x, y) and uz(x, y), we have Uz(νx, νy) = Hz(νx, νy)U0(νx, νy).

Eq. 2.5 and Eq. 2.6 are exact solutions of the diffraction problem within the

confines of the scalar wave optics theory. In these equations, in addition to
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the propagating plane wave components, evanescent waves are also taken into

account. Since evanescent waves decay very quickly, for z ≫ λ, their contribution

can be ignored and Eq. 2.5 and Eq. 2.6 can be taken as

hz(x, y) =
z

jλ

ejkR

R2
(2.7)

and

Hz(νx, νy) =

 exp
{
jkz

√
1− (λνx)2 − (λνy)2

}
for (λνx)

2 + (λνy)
2 ≤ 1

0 otherwise
.

(2.8)

Ignoring the effects due to the slowly changing amplitude term z
jλ

1
R2 , we can

see that the instantaneous spatial frequencies of hz(x, y) along x and y directions

are given by

νX(x, y) =
1

2π

∂{kR}
∂x

=
x

λR
(2.9)

and

νY (x, y) =
1

2π

∂{kR}
∂y

=
y

λR
. (2.10)

Note that νX(x, y)
2 + νY (x, y)

2 is always less that 1
λ2 in accordance with the

propagating wave constraint.

Under paraxial cases, that is,

• either u0(x, y) is a sufficiently low-pass function,

• or u0(x, y) is confined to a narrow region around the optical axis and we

are only interested in the portion of uz(x, y) lying close to the optical axis,

we can utilize the commonly used Fresnel diffraction theory, in which the impulse

response is approximated with a chirp (quadratic phase exponential) function:

hz(x, y) =
ejkz

jλz
e

jπ
λz

(x2+y2). (2.11)
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The corresponding frequency response becomes

Hz(νx, νy) = ejkz exp
{
−jπλz(ν2

x + ν2
y)
}

(2.12)

which is also a chirp. Note that under the Fresnel approximation, the instanta-

neous frequencies are also approximated as:

νX(x, y) =
x

λz
(2.13)

and

νY (x, y) =
y

λz
. (2.14)

Hence, under the Fresnel approximation, the instantaneous frequencies are as-

sumed to vary linearly with the spatial coordinates. The impulse response given

in Eq. 2.11 is illustrated in Fig. 2.1 (λ = 632.9nm, z = 1m). From this figure, we

can clearly see that the instantaneous frequencies increase as we get away from

the origin.

Having reviewed the basics of scalar diffraction theory, now we will examine

the output field generated by a special input field in detail since that input field

will be important for our developments in the rest of the thesis, especially during

the analysis of the light fields generated by spatial light modulators (SLMs). In

this respect, we will first concentrate on a useful approximate formula for the

output fields generated by input fields that have a sufficiently narrow spatial

support. We begin the discussion by considering the Fresnel diffraction case.

Substituting hz(x, y) given by Eq. 2.11 into Eq. 2.4, we can explicitly write

uz(x, y) =
ejkz

jλz
e

jπ
λz

(x2+y2)

∫ ∞

−∞

∫ ∞

∞
u0(x

′, y′)e
jπ
λz

(x′2+y′2)e−
j2π
λz

(x′x+y′y)dx′dy′

from which we see the well known fact that chirp convolution is equivalent

to pre-multiplication with a chirp, taking a Fourier transform, and then post-

multiplication with another chirp. Now, suppose the input u0(x, y) is concen-

trated around the origin and has a sufficiently narrow support. Also assume that

z is sufficiently large. In this case, we can write

u0(x
′, y′)e

jπ
λz

(x′2+y′2) ≈ u0(x
′, y′)
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Figure 2.1: Impulse response of free-space propagation under Fresnel approxi-
mation (real part).
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which is essentially equivalent to assuming that over the narrow spatial support

of u0(x
′, y′), the chirp term e

jπ
λz

(x′2+y′2) can be taken as unity. This assumption

leads to the following approximate formula:

uz(x, y) ≈ ejkz

jλz
e

jπ
λz

(x2+y2)U0

( x

λz
,
y

λz

)
≈ hz(x, y)U0

( x

λz
,
y

λz

)
. (2.15)

Actually, using Eq. 2.13 and Eq. 2.14, we can write Eq. 2.15 in the following

form as well:

uz(x, y) ≈ hz(x, y)U0 (νX(x, y), νY (x, y)) . (2.16)

Note that we arrived at the above result by viewing u0(x, y) as the input field

and uz(x, y) as the output field. However, sometimes, it is more convenient to

view u0(x, y) as an arbitrary function (with a narrow spatial support as before)

with which we convolve hz(x, y), and uz(x, y) as the result of that convolution.

In that respect, we write Eq. 2.16 in the following form for easier reference in

future:

u0(x, y) ∗ ∗hz(x, y) ≈ hz(x, y)U0 (νX(x, y), νY (x, y)) . (2.17)

We arrived at Eq. 2.16 using the Fresnel diffraction formula. However, as

long as u0(x, y) is sufficiently narrow, Eq. 2.16 can be used with the Rayleigh-

Sommerfeld diffraction formulas as well, giving

uz(x, y) ≈
z

jλ

ejkR

R2
U0

( x

λR
,
y

λR

)
. (2.18)

Now using these approximate formulas, let us consider the input given as

u0(x, y) = BxBysinc(xBx)sinc(yBy) (2.19)

with

sinc(x) =


sin(πx)

πx
for x ̸= 0

1 for x = 0
.

We assume that B2
x + B2

y < 1
λ2 and B−1

x and B−1
y range between several λ and

several tens of λ (so that the narrow input assumption is valid). As well known,
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the Fourier transform of u0(x, y) is given by

U0(νx, νy) = rect

(
νx
Bx

)
rect

(
νy
By

)
(2.20)

with

rect(x) =


1 for −0.5 < x < 0.5

0.5 for x = ±0.5

0 otherwise

.

Note that u0(x, y) in Eq. 2.19 can also be viewed as the impulse response of an

ideal low-pass filter with a rectangular frequency support and bandwidths Bx

and By. In this respect, we can also view uz(x, y) as the low-pass filtered version

of hz(x, y). In Fig. 2.2, uz(x, y) is displayed for z = 1m, λ = 632.9nm, Bx =

By = 0.01
λ
, and hz(x, y) as given in Eq. 2.11. As seen, uz(x, y) is approximately

equal to a windowed version of hz(x, y) (please compare Fig. 2.2 to Fig. 2.1).

Actually, the approximation in Eq. 2.16 also predicts this result, i.e., when we

apply that approximation, we get

uz(x, y) ≈ hz(x, y)rect

(
νX(x, y)

Bx

)
rect

(
νY (x, y)

By

)
. (2.21)

For a better comparison, in Fig. 2.3, the ratio of uz(x, y) to hz(x, y) is dis-

played, while in Fig. 2.4, a 1D cross-sections of that ratio is shown. From these

figures, we see that the rectangular window predicted by the approximate for-

mula is in fact not a perfect one: there are ripples within the window and there

are nonzero terms outside the window. However, we see that the approximate

formula is quite successful in predicting the support and overall shape of uz(x, y).

Actually, when Bx, By and z are kept within suitable ranges, the approximation

in Eq. 2.21 works fine for our purposes. For instance, the approximation holds

with a normalized mean squared error that is less than 5% when B−1
x and B−1

y

are between λ and 100λ, and z is greater than about 7.5×105λ. These ranges for

Bx, By and z are of interest to us in this thesis, and the indicated approximation
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Figure 2.2: Low pass filtered version of hz(x, y) (real part). First appeared in
[1].
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Figure 2.3: Ratio of uz(x, y) to hz(x, y) (real part).

error is acceptable. Hence, we assume that the approximation is successful and

we will use it frequently from now on.

2.3 Analysis of Light Field Generated by a Spa-

tial Light Modulator

In this section, we analyze the light field generated by a finite size spatial light

modulator (SLM). This analysis is particularly important for understanding the
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Figure 2.4: 1D cross-section of the ratio of uz(x, y) to hz(x, y) (real part).
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restrictions that the SLM structure imposes on the light fields that are wished

to be generated. This chapter is adapted from [1].

SLMs are usually modeled as programmable two-dimensional (2D) thin op-

tical masks. Note that in scalar wave optics theory, a thin optical mask is rep-

resented by a 2D complex transmittance function t(x, y) such that if the mask

is placed to z = 0 plane and illuminated from left with a light wave whose pro-

file on the z = 0− plane (that is, the left side of the mask) is u0−(x, y), the

light field at the z = 0+ plane (that is, the right side of the mask) is given as

u0+(x, y) = t(x, y)u0−(x, y). This simple model is of course only a mathematical

idealization, a more accurate description of the physical behavior of the SLM re-

quires a rigorous electrodynamic analysis. However, the accuracy offered by the

mentioned model is sufficient for our purposes, and we will use it in this thesis.

(Note: The thin mask model mentioned above is actually more suitable to the

nature of transmissive SLMs, in which light really impinges on the SLM from

one side and leaves the SLM from the other side. For reflective SLMs though,

light impinges and outcomes from the same side. However, from a mathematical

viewpoint, this difference is easy to manage. For sake of mathematical conve-

nience, we will assume during the analysis that all the SLMs we are interested

in are transmissive.)

Most of the SLMs today have pixellated structure and in this thesis we are

interested only in such SLMs. Let ∆x and ∆y denote the pixel periods of a

pixellated SLM. Typical values for ∆x and ∆y are 8µm, 10µm etc. Let a(x, y)

denote the pixel aperture function of the SLM. For practical cases, a(x, y) = 0

for |x| > ∆x

2
or |y| > ∆y

2
. Mostly, a(x, y) = rect

(
x
Wx

)
rect

(
y

Wy

)
where Wx ≤ ∆x,

Wy ≤ ∆y. Let s̄[m,n] (m,n ∈ Z) denote the complex value of the (m,n)th SLM

pixel. (In this section, we place no restriction on the values that s̄[m,n] can take.

We assume that each s̄[m,n] can be adjusted to any complex number.) When

viewed as a discrete function of m and n, s̄[m,n] denotes the 2D complex-valued
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pattern that we write on the SLM. We will call s̄[m,n] as the SLM pattern from

now on. We will assume that s̄[m,n] is defined for allm,n ∈ Z, but that the SLM

has only M×N pixels so that s̄[m,n] = 0 for m /∈ [0,M−1] or n /∈ [0, N−1]. For

practical SLMs, M and N are around 1000 − 2000, so the physical dimensions

of the SLM are around 1-2cm by 1-2cm. Suppose we place the SLM at the

z = 0 plane in a symmetric manner around the origin. If we denote the complex

transmittance of the SLM with sa(x, y), we have:

sa(x, y) =
M−1∑
m=0

N−1∑
n=0

s̄[m,n]a(x− xm, y − yn) (2.22)

with

xm =

(
m− M − 1

2

)
∆x (2.23)

and

yn =

(
n− N − 1

2

)
∆y (2.24)

denoting the location of the (m,n)th SLM pixel.

Let us assume that the SLM is illuminated by a normally incident plane wave

of unit amplitude (that is, u0−(x, y) = 1). Then, the light field just to the right

of the SLM plane is given as u0+(x, y) = sa(x, y). We assume that this field will

propagate in free space and form the output field of the SLM at a distance z. If

we denote the output field by ua
z(x, y), we have

ua
z(x, y) = sa(x, y) ∗ ∗hz(x, y) (2.25)

where hz(x, y) denotes the impulse response of free-space propagation as in the

previous section. Our purpose in this section is to understand the nature of

ua
z(x, y).

Pixellated SLMs are inherently associated with sampling and re-interpolation

of light fields. Fig. 2.5 depicts this association. As seen, the complex trans-

mittance sa(x, y) of the SLM is viewed as being obtained by sampling and re-

interpolating a light field denoted by s(x, y). In particular, s(x, y) is first sampled
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∆x,∆y
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a(x, y) hz(x, y)s(x, y) s̄[m,n] sa(x, y) ua

z
(x, y)

s(x, y) hz(x, y) uz(x, y)

Figure 2.5: The sampling and interpolation scheme for pixellated SLMs.

at the pixel locations xm and yn of the SLM and as a result of this sampling,

the SLM pattern s̄[m,n] is obtained. Then, sa(x, y) is obtained from s̄[m,n]

by using a discrete to analog converter whose interpolating function is taken as

the pixel aperture function a(x, y) of the SLM. This scheme will facilitate our

understanding of the nature of ua
z(x, y).

Actually, in the depicted scheme, the only constraint on s(x, y) is that

s(xm, yn) = s̄[m,n] for all m,n ∈ Z. Therefore, infinitely many possibilities

exist for the selection of s(x, y). However, in order to facilitate our analysis of

ua
z(x, y), we impose the additional constraint that s(x, y) is to be bandlimited to

the |νx| ≤ 1
2∆x

and |νy| ≤ 1
2∆y

band. In this respect, the only remaining choice

for s(x, y) turns out to be:

s(x, y) =
M−1∑
m=0

N−1∑
n=0

s̄[m,n]sinc

(
x− xm

∆x

)
sinc

(
y − yn
∆y

)
. (2.26)

Note that since s(x, y) is bandlimited to the |νx| ≤ 1
2∆x

and |νy| ≤ 1
2∆y

band, dur-

ing the analog to discrete conversion step in Fig., there is no aliasing. Actually,

for an arbitrary s̄[m,n], s(x, y) is sampled at the Nyquist rate.

Let uz(x, y) denote the light field produced by s(x, y). Then we have

uz(x, y) = hz(x, y) ∗ ∗s(x, y). (2.27)

Note that since s(x, y) is bandlimited, uz(x, y) is also bandlimited to the |νx| ≤
1

2∆x
and |νy| ≤ 1

2∆y
band. uz(x, y) will be useful in our analysis of ua

z(x, y).
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In mathematical terms, we can write the following relation between s(x, y)

and sa(x, y):

sa(x, y) = a(x, y) ∗ ∗

{
s(x, y)

∞∑
m=−∞

∞∑
n=−∞

δ(x− xm, y − yn)

}
(2.28)

Using the well known identity

∞∑
m=−∞

∞∑
n=−∞

δ(x−m∆x, y − n∆y) =
1

∆x∆y

∞∑
p=−∞

∞∑
q=−∞

exp

{
j2π

(
px

∆x

+
qy

∆y

)}
we can write Eq. 2.28 as:

sa(x, y) = c0,0a(x, y) ∗ ∗s(x, y)

+
∞∑

p=−∞
(p,q)

∞∑
q=−∞
̸=(0,0)

cp,qa(x, y) ∗ ∗
[
s(x, y)e

j2π
(

px
∆x

+ qy
∆y

)]
(2.29)

with

cp,q =
1

∆x∆y

ejπ[p(M−1)+q(N−1)]. (2.30)

Note that if we had a(x, y) = sinc
(

x
∆x

)
sinc

(
y
∆y

)
, the terms at the bottom line

of Eq. 2.29 would disappear and we would have sa(x, y) = s(x, y). And thus,

we would simply have ua
z(x, y) = uz(x, y). However, this is not the case for the

interpolating function a(x, y) of a practical SLM. Thus, the terms at the bottom

line remain and at the output they give rise to the well known diffraction orders.

Examining Eq. 2.29, we see that the term at the top line produces

u0,0
z (x, y) = c0,0hz(x, y) ∗ ∗a(x, y) ∗ ∗s(x, y)

= c0,0a(x, y) ∗ ∗uz(x, y) (2.31)

at the output plane. u0,0
z (x, y) is usually called the central diffraction order. The

terms in the bottom line of Eq. 2.29 produce the so called higher diffraction

orders. In particular, the (p, q)th diffraction order of the SLM output is given as

up,q
z (x, y) = cp,qhz(x, y) ∗ ∗a(x, y) ∗ ∗

[
s(x, y)e

j2π
(

px
∆x

+ qy
∆y

)]
. (2.32)

Note that Eq. 2.31 is actually a special case of Eq. 2.32 with (p, q) = (0, 0).
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Since we chose s(x, y) to be bandlimited to the |νx| ≤ 1
2∆x

and |νy| ≤ 1
2∆y

band, up,q
z (x, y) is limited to the

∣∣∣νx − p
∆x

∣∣∣ ≤ 1
2∆x

and
∣∣∣νy − q

∆y

∣∣∣ ≤ 1
2∆y

band.

Hence, with our convention for choosing s(x, y), diffraction orders are strictly

separated from each other in the frequency domain.

To facilitate the discussion, we will first assume that a(x, y) = δ(x, y). In this

case, the (p, q)th diffraction order becomes

up,q
z (x, y) = cp,qhz(x, y) ∗ ∗

[
s(x, y)e

j2π
(

px
∆x

+ qy
∆y

)]
, (2.33)

and in particular, the central order becomes

u0,0
z (x, y) = c0,0uz(x, y). (2.34)

In [107] it is shown that the up,q
z (x, y) given in Eq. 2.33 essentially turns out

to be the translated, modulated and dispersed version of the u0,0
z (x, y) given in

Eq. 2.34 when RS diffraction model is used. In [108], it is shown that under the

Fresnel approximation, up,q
z (x, y) can be written in terms of u0,0

z (x, y) as

cp,q
c0,0

e
−jπλz

(
p2

∆2
x
+ q2

∆2
y

)
u0,0
z

(
x− p

λz

∆x

, y − q
λz

∆y

)
exp

{
j2π

(
px

∆x

+
qy

∆y

)}
(2.35)

from which we see that up,q
z (x, y) is essentially a shifted and modulated version

of u0,0
z (x, y).

By Eq. 2.34 and Eq. 2.35, we see that the SLM output ua
z(x, y) consists of

diffraction orders which are all related to uz(x, y). Thus, we can get more insight

about ua
z(x, y) if we examine uz(x, y) in detail. Using Eq. 2.26 and Eq. 2.27, we

can write

uz(x, y) = hz(x, y) ∗ ∗
M−1∑
m=0

N−1∑
n=0

s̄[m,n]sinc

(
x− xm

∆x

)
sinc

(
y − yn
∆y

)
=

{
hz(x, y) ∗ ∗sinc

(
x

∆x

)
sinc

(
y

∆y

)}
∗ ∗

M−1∑
m=0

N−1∑
n=0

s̄[m,n]δ(x− xm, y − yn). (2.36)
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Next, let us apply the approximation in Eq. 2.17 to the second line of the above

equation, and in particular to the term within the curly brackets. Assuming that

Fresnel diffraction model is applicable, we get

uz(x, y) ≈
{
∆x∆yhz(x, y)rect

(
x

λz/∆x

)
rect

(
y

λz/∆y

)}
∗ ∗

M−1∑
m=0

N−1∑
n=0

s̄[m,n]δ(x− xm, y − yn)

≈ ∆x∆y

M−1∑
m=0

N−1∑
n=0

s̄[m,n]hz(x− xm, y − yn)

rect

(
x− xm

λz/∆x

)
rect

(
y − yn
λz/∆y

)
. (2.37)

From Eq. 2.37, we see that uz(x, y) is approximately confined in space to the

region given as |x| < λz
2∆x

+ M∆x

2
and |y| < λz

2∆y
+ N∆y

2
. At this point, let us

consider some practical values for λ, ∆x, ∆y, M , N and z to see some further

simplification possibilities. Assume that we take λ = 632.9nm, ∆x = ∆y = 8µm,

M = N = 1024 and z = 1.5m. Then, we get λz
2∆x

= 11.87cm and M∆x

2
= 0.41cm.

To facilitate our analytical work, we can ignore the M∆x

2
term in comparison to

the λz
2∆x

term. Hence, we can approximate the support of uz(x, y) as

|x| < λz

2∆x

and |y| < λz

2∆y

(2.38)

and within the above region, we can simply write uz(x, y) as

uz(x, y) ≈ ∆x∆yrect

(
x∆x

λz

)
rect

(
y∆y

λz

)M−1∑
m=0

N−1∑
n=0

s̄[m,n]hz(x− xm, y − yn).

(2.39)

We will call the region specified by Eq. 2.38 as the central diffraction order

region. When z is viewed as a varying parameter, Eq. 2.38 defines a 3D pyramid

(whose tip is at origin and base expands in +z direction), which we will name as

the central diffraction order pyramid (see Fig. 2.6). However, since the approxi-

mations we made in arriving at Eq. 2.38 hold only after a certain distance from

the SLM (approximately a meter), we will not be interested in the portion of the

central order pyramid that lies too close to the SLM.
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Having seen that the central diffraction order of the SLM output approx-

imately lies in the region specified in Eq. 2.38, we turn our attention to the

higher diffraction orders. By Eq. 2.35, we can see that (p, q)th diffraction order

of the SLM is approximately centered around
(

pλz
∆x

, qλz
∆y

)
, and has dimensions

of λz
∆x

and λz
∆y

. Therefore, for sufficiently large distances, diffraction orders of

the SLM do not overlap in space (approximately), meaning that higher diffrac-

tion orders make no contribution to the the central diffraction order region (see

Fig. 2.6). Hence, we can write

ua
z(x, y) ≈

1

∆x∆y

uz(x, y) for |x| <
λz

2∆x

and |y| < λz

2∆y

. (2.40)

Since higher diffraction orders do not contain any new information, it suffices to

examine the SLM output only in the central diffraction order region. And we

will do so from now.

As an illustration of the analysis until this point, Fig. 2.7 displays an SLM

pattern which produces the output field displayed in Fig. 2.8 when written on

an SLM with M = N = 1024, ∆x = ∆y = 8µm. The output field is displayed

at z = 1m and we took λ = 632.9nm. In Fig. 2.8, nine diffraction orders

are displayed where the central order is the one in the middle. The output

field is computed using the Fresnel diffraction model. Note that for the given

parameters, Eq. 2.38 predicts the size of the central diffraction order region as

7.91cm× 7.91cm, which is also verified by Fig. 2.8.

Assuming that the Fresnel approximation is valid within the central diffrac-

tion order region, using Eq. 2.11, Eq. 2.39 and Eq. 2.40, we can write:

ua
z(x, y) =

ejkz

jλz
e

jπ
λz

(x2+y2)

M−1∑
m=0

N−1∑
n=0

s̄[m,n]e
jπ
λz

(x2
m+y2n)e−j 2π

λz
(xxm+yyn) (2.41)

for |x| < λz
2∆x

and |y| < λz
2∆y

. Since s̄[m,n] has M×N degrees of freedom, ua
z(x, y)

also has M ×N degrees of freedom as well. In fact, it can be shown that ua
z(x, y)

of Eq. 2.41 can fully be represented by its M×N samples taken uniformly within
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Figure 2.8: Output field produced by the SLM pattern in Fig. 2.7 (magnitude).
Pixels are assumed to be impulsive.
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the central diffraction order region. These samples can be computed as:

ūa
z [m,n] = ua

z (x̃m, ỹn)

=
ejkz

jλz
e

jπ
λz

(x̃2
m+ỹ2n)

M−1∑
m′=0

N−1∑
n′=0

s̄[m′, n′]e
jπ
λz

(x2
m′+y2

n′ )e−j 2π
λz

(x̃mxm′+ỹnyn′ ) (2.42)

where m,n ∈ Z; 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1 and

x̃m =

(
m− M − 1

2

)
λz

M∆x

, (2.43)

ỹn =

(
n− N − 1

2

)
λz

N∆y

. (2.44)

From Eq. 2.23, Eq. 2.24, Eq. 2.43, Eq. 2.44 and Eq. 2.42, we see that computation

of the samples of SLM output within the central diffraction order region involves

multiplying the SLM pattern s̄[m,n] with a discrete chirp, taking a centered

2D-DFT, and then multiplying with another discrete chirp [109, 110, 111]. In-

terpolation of ua
z(x, y) from ūa

z [m,n] is discussed in [112] and is slightly different

than classical sinc interpolation. In light field synthesis problems, desired fields

are usually specified through ūa
z [m,n]. For a given ūa

z [m,n], the required SLM

pattern s̄[m,n] can be computed as:

s̄[m,n] =
jλze−jkz

MN
e−

jπ
λz

(x2
m+y2n)

M−1∑
m′=0

N−1∑
n′=0

ūa
z [m

′, n′]e−
jπ
λz

(x̃2
m′+ỹ2

n′ )ej
2π
λz

(xmx̃m′+ynỹn′ ) (2.45)

for 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. Indeed, Eq. 2.45 is just the inverse of

Eq. 2.42.

Finally, up to now, we assumed that a(x, y) = δ(x, y). In practice, a(x, y)

extends over a nonzero area but is confined to the |x| ≤ ∆x

2
and |y| ≤ ∆y

2

region. Mostly, a(x, y) = rect
(

x
Wx

)
rect

(
y

Wy

)
with Wx ≤ ∆x and Wy ≤ ∆y. In

such a case, in a strict analysis, convolution with a(x, y) must be incorporated in

Eq. 2.35, Eq. 2.39, Eq. 2.40 and Eq. 2.41. The result will be a blurring in the SLM
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output relative to the a(x, y) = δ(x, y) case. Usually, A(νx, νy) = F {a(x, y)} is

a decaying function of νx and νy, so that higher diffraction orders suffer more

from this blurring and are attenuated relative to the central diffraction order.

But the locations and spatial supports of diffraction orders will not change since

a(x, y) is narrow. Actually, a narrow a(x, y) also implies that A(νx, νy) can be

considered as constant over the |νx| ≤ 1
2∆x

and |νy| ≤ 1
2∆y

band — which is the

band occupied by the central diffraction order. Therefore, we can assume that

the central diffraction order is only modified by a constant multiplicative factor.

The conclusion of this discussion is that, a finite a(x, y) has no drastic effect on

our analysis. Therefore, we can (and will) assume that Eq. 2.38 through Eq. 2.45

are valid in the case of a practical a(x, y) as well. (In Fig. 2.9, we display the

output produced by the SLM pattern shown in Fig. 2.7 assuming that the pixels

of the SLM are rectangular. Upon comparing this figure to Fig. 2.8, we indeed

see that the central order is virtually not affected by the finite extent of the pixel

aperture function.)
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Figure 2.9: Output field produced by the SLM pattern in Fig. 2.7 (magnitude).
Pixels are assumed to be rectangular.
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Chapter 3

SYNTHESIS OF

THREE-DIMENSIONAL

LIGHT FIELDS WITH

BINARY SPATIAL LIGHT

MODULATORS

In Chapter 1, we pointed that binary SLMs have certain properties that make

them quite attractive to be used in holographic display applications. In this

chapter, we develop the theory of three-dimensional light field synthesis with

a finite-size binary SLM. From another perspective, we develop the theory of

halftoning for complex-valued gray scale holograms. We start by reviewing the

methods that have been proposed until now.

The research on the computation of binary patterns that synthesize desired

light fields initially emerged within the context of computer generated holography
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[64, 65, 69, 70]. In computer generated holography, one first computes the holo-

gram of a mathematically described and possibly physically non-existing object,

and then prepares an optical mask on which the computed hologram is written.

Holograms obtained in this manner are named computer generated holograms

(CGH). With CGHs, it has been possible to synthesize light fields whose holo-

grams have never been recorded optically. In the early days in which dynamic

SLMs were not available, the CGHs were printed on one-time fabricated optical

masks named diffractive optical elements (DOEs) [113, 114]. Actually, the first

DOEs were binary. These DOEs were prepared using the so called detour phase

method [71, 72, 73, 74, 75, 76, 77, 78, 79]. Using this method, it was possible

to synthesize desired complex-valued monochromatic light fields within a small

region (centered around the optical axis) of the far field or on the Fourier plane of

a 2f setup. In particular, in the detour phase method, the DOE is broken down

into a number of cells and in each cell, a rectangular hole is placed. The position

and the dimensions of this hole are adjusted such that when illuminated with

an oblique wave, the cell behaves no different than a gray level complex-valued

pixel when the synthesis region is considered. Hence, the entire DOE behaves

like a gray level DOE. Later, the basic method was improved and modified to

operate in the non-far field range where Fresnel diffraction model is applicable

[115, 116]. Such methods are called cell oriented methods.

With the advancement in the pixellated SLM technologies, the research on

binary CGHs shifted towards pixel oriented methods since direct application of

cell oriented methods became difficult. In these methods, the SLM is taken as

a collection of binary pixels and the goal is to determine the discrete binary

CGH pattern to be written on the SLM. Similar to the cell oriented case, the

research initially focused on reconstructions at the far field or on the Fourier

plane of a 2f setup. The reason is that in the far field or the 2f setup case, the

relation between the SLM pixels and output field samples are simply given by a

discrete Fourier transform, which is easy to understand and manipulate. Many
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iterative and non-iterative algorithms have been designed or adapted and applied

to this problem [117, 118, 119, 120, 121, 122, 123, 124]. Exploiting the intrinsic

connection to the classical halftoning problem of image processing, researchers

also adapted and applied halftoning algorithms such as error diffusion [125, 126,

127, 128, 129] and direct binary search [130, 131, 132, 133, 134]. In addition,

projection onto convex sets (POCS) or Gercshberg-Saxton like algorithms such

as iterative Fourier transform algorithm have been proposed [135, 136, 137].

Such algorithms have been extensively analyzed in terms of reconstruction error,

diffraction efficiency, computational performance, etc [138, 139, 140, 141, 142].

However, minor work has been done to develop algorithms for the non-far field

range where Rayleigh-Sommerfeld or Fresnel diffraction models are valid, perhaps

due to the difficulty in the involved analytical relations [143, 92].

We assume in the upcoming discussions that the binary SLM is illuminated

by a plane wave and the desired field is synthesized within a volumetric region in

the non-far field range after merely free space propagation from the SLM plane.

We start the discussion with Sec. 3.1, in which we show that in the case of a

finite-sized SLM, an arbitrary SLM pattern essentially produces the same light

field with its low-pass filtered version within a certain region of space. We use

this observation in Sec. 3.2 to find binary SLM patterns that generate desired

light fields specified within an appropriately defined volumetric region. Using

computer simulations, we show that binary SLM patterns computed with our

approach successfully generate planar as well as volumetric (three-dimensional)

light fields. What is presented in this chapter is a follow-up to the work presented

in [1].
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3.1 Effects of Applying a Low-Pass Filter to the

SLM Pattern

In Sec. 2.3, we analyzed the light field generated by a finite sized SLM. In this

section, we consider the effects of applying a discrete low-pass filter to the pattern

that we write on the SLM. The results of this section will be quite useful for the

next section in which we determine binary patterns which synthesize desired light

fields.

Let s̄[m,n] denote some pattern that we write on the SLM and let ua
z(x, y)

denote the resulting light field, as in Sec. 2.3. Recall that ua
z(x, y) consists of

diffraction orders which are approximately non-overlapping in space for suffi-

ciently large distances from the SLM plane (about a meter), and the central

order (the order in which we are interested in) approximately lies within the

region given by Eq. 2.38; where within this region, ua
z(x, y) is related to s̄[m,n]

through the relation given in Eq. 2.41. (We still assume a finite sized SLM so

that s̄[m,n] = 0 for m /∈ [0,M−1] or n /∈ [0, N−1]. Also, we continue to assume

that each s̄[m,n] can be adjusted to any desired complex number.)

Now, suppose instead of s̄[m,n], we write on the same SLM (that is, we do

not assume any change in the physical parameters of the SLM) a new pattern

that we denote by s̄L[m,n], such that

s̄L[m,n] = s̄[m,n] ⋆ ⋆ḡ[m,n]

=
∞∑

m′=−∞

∞∑
n′=−∞

s̄[m′, n′]ḡ[m−m′, n− n′]

=
M−1∑
m′=0

N−1∑
n′=0

s̄[m′, n′]ḡ[m−m′, n− n′] (3.1)

where ḡ[m,n] denotes the impulse response of a discrete low-pass filter and ⋆⋆

denotes two-dimensional discrete convolution operation. In this respect, we mod-

ify the scheme depicted in Fig. 2.5 as in Fig. 3.1. As also illustrated in Fig. 3.1,
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∆x,∆y
s̄[m,n] ḡ[m,n] s̄L[m,n]
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(x, y)

s(x, y) hz(x, y) uz(x, y) g(x, y)
A/D

∆x,∆y
ḡ[m,n]

Figure 3.1: Modified scheme for the application of a discrete filter to the SLM
pattern.

let ua
zL
(x, y) denote the new SLM output, i.e., the SLM output generated by

s̄L[m,n]. Our purpose in this section is to establish the relation between ua
z(x, y)

and ua
zL
(x, y).

Before going any further, we should mentioned that though on our SLM we

can write s̄[m,n] without any problem, in strict sense, we will be unable to

write s̄L[m,n] exactly, since our SLM has (by our assumption) M by N pixels,

but s̄L[m,n] can theoretically have an infinite number of nonzero values due to

the possible tails of ḡ[m,n] . Therefore, in reality, we can only write a clipped

version of s̄L[m,n]. However, the particular ḡ[m,n] that we will be interested in

this section will have a small compact support around (m,n) = (0, 0), so that

the support of s̄L[m,n] will be only slightly larger than the region specified as

m ∈ [0,M − 1] and n ∈ [0, N − 1]. Hence, we will assume that the clipping

will not cause significant deviation from the presented results and we will not

attempt any analysis of its effects in order not to complicate the discussion.

Now, recall that in Sec. 2.3, we viewed s̄[m,n] as being obtained by sampling

a continuous signal s(x, y) with the pixel periods ∆x and ∆y of the SLM (See

Fig. 2.5 and Eq. 2.26). Similar to that, we can also view ḡ[m,n] as being obtained

by sampling a continuous signal g(x, y) with the pixel periods ∆x and ∆y of the

SLM (see Fig. 3.1). For sake of simplicity, let us take g(x, y) as

g(x, y) = BxBysinc(xBx)sinc(yBy) (3.2)

which is actually the impulse response of the ideal low-pass filter (with rectan-

gular frequency support) with bandwidths Bx and By. Note that the Fourier
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transform of g(x, y) is given as

G(fx, fy) = rect

(
fx
Bx

)
rect

(
fy
By

)
. (3.3)

With the current selection for g(x, y), we get

ḡ[m,n] = g(m∆x, n∆y)

= BxBysinc(m∆xBx)sinc(n∆yBy). (3.4)

As we did for s̄[m,n], let us also impose the no aliasing condition for ḡ[m,n]. In

this respect, the bandwidth parameters Bx and By should satisfy

Bx <
1

∆x

, By <
1

∆y

. (3.5)

Under the above condition, g(x, y) is bandlimited to the |νx| ≤ 1
2∆x

and |νy| ≤ 1
2∆y

band.

Now, let sL(x, y) =
1

∆x∆y
g(x, y)∗∗s(x, y) where s(x, y) is as given in Eq. 2.26.

We can explicitly write

sL(x, y) =
1

∆x∆y

g(x, y) ∗ ∗s(x, y)

=
1

∆x∆y

g(x, y) ∗ ∗
M−1∑
m=0

N−1∑
n=0

s̄[m,n]sinc

(
x− xm

∆x

)
sinc

(
y − yn
∆y

)

=
M−1∑
m=0

N−1∑
n=0

s̄[m,n]g(x− xm, y − yn) (3.6)

where the last line follows from the fact that under the condition in Eq. 3.5, we

have

g(x, y) ∗ ∗sinc
(

x

∆x

)
sinc

(
y

∆y

)
= ∆x∆yg(x, y).

Let us now sample sL(x, y) at (xm, yn) where xm and yn are as given in Eq. 2.23

and Eq. 2.24 (recall that xm and yn denote the location of the (m,n)th pixel of
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Figure 3.2: Equivalent scheme to the one displayed in Fig. 3.1.

our SLM). From Eq. 3.1, Eq. 3.4 and Eq. 3.6 , we can see that

sL(xm, yn) =
M−1∑
m′=0

N−1∑
n′=0

s̄[m′, n′]g(xm − xm′ , y − yn′)

=
M−1∑
m′=0

N−1∑
n′=0

s̄[m′, n′]g {(m−m′)∆x, (n− n′)∆y}

=
M−1∑
m′=0

N−1∑
n′=0

s̄[m′, n′]ḡ[m−m′, n− n′]

= s̄L[m,n]. (3.7)

Hence, we see that the new SLM pattern s̄L[m,n] is obtained by sampling

sL(x, y) = 1
∆x∆y

g(x, y) ∗ ∗s(x, y). In this respect, we can replace the scheme

depicted in Fig. 3.1 by the equivalent scheme depicted in Fig. 3.2. Note that

just as s(x, y) and g(x, y), sL(x, y) is also bandlimited to the |νx| ≤ 1
2∆x

and

|νy| ≤ 1
2∆y

. Therefore, s̄L[m,n] is also alias free. Now, let uzL(x, y) denote the

diffraction field produced by sL(x, y) such that

uzL(x, y) = sL(x, y) ∗ ∗hz(x, y). (3.8)

Then, by the analysis in the previous section, we know that within the central

diffraction order region given by Eq. 2.38, we have

ua
zL
(x, y) ≈ 1

∆x∆y

uzL(x, y). (3.9)

We can understand the relation between ua
z(x, y) and ua

zL
(x, y) if we examine

uzL(x, y) in detail.

49



Using Eq. 3.6 and Eq. 3.8, we can explicitly write

uzL(x, y) = hz(x, y) ∗ ∗
M−1∑
m=0

N−1∑
n=0

s̄[m,n]g(x− xm, y − yn)

= {hz(x, y) ∗ ∗g(x, y)}

∗ ∗
M−1∑
m=0

N−1∑
n=0

s̄[m,n]δ(x− xm, y − yn). (3.10)

Next, let us apply the approximation in Eq. 2.17 to the second line of the above

equation, and in particular to the term within the curly brackets. Assuming that

Fresnel diffraction model is applicable, we get

uzL(x, y) ≈
{
hz(x, y)rect

(
x

λzBx

)
rect

(
y

λzBy

)}
∗ ∗

M−1∑
m=0

N−1∑
n=0

s̄[m,n]δ(x− xm, y − yn)

≈
M−1∑
m=0

N−1∑
n=0

s̄[m,n]hz(x− xm, y − yn)

rect

(
x− xm

λzBx

)
rect

(
y − yn
λzBy

)
. (3.11)

From the above equation, we can see that uzL(x, y) is approximately confined in

space to the region given as |x| < λzBx

2
+ M∆x

2
and |y| < λzBy

2
+ N∆y

2
. Again,

when practical values are considered for λ, ∆x, ∆y, M , N and z, this region can

be approximated as:

|x| < λzBx

2
and |y| < λzBy

2
. (3.12)

Note that because of Eq. 3.5, the region given above is a subregion of the central

diffraction order region given in Eq. 2.38. With the recent approximation for its

support, we can simply write uzL(x, y) as

uzL(x, y) ≈ rect

(
x

λzBx

)
rect

(
y

λzBy

) M∑
m=−M

N∑
n=−N

s̄[m,n]hz(x− xm, y − yn)

≈ rect

(
x

λzBx

)
rect

(
y

λzBy

)
1

∆x∆y

uz(x, y) (3.13)

where the second line follows from Eq. 2.39. (Recall that uz(x, y) denotes the

light field produced by s(x, y), which is sampled to give s̄[m,n].)

50



Next, from Eq. 3.9 and Eq. 3.13, within the central diffraction order region,

we can write

ua
zL
(x, y) ≈ 1

∆2
x∆

2
y

uz(x, y)rect

(
x

λzBx

)
rect

(
y

λzBy

)
. (3.14)

Finally, by Eq. 3.14 and Eq. 2.40, within central diffraction order region we get

the following relation:

ua
zL
(x, y) ≈ 1

∆x∆y

ua
z(x, y)rect

(
x

λzBx

)
rect

(
y

λzBy

)
. (3.15)

Eq. 3.15 is the result we have been seeking for. This equation says that within

the region specified by Eq. 3.12, s̄[m,n] and s̄L[m,n] approximately produce the

same field. Moreover, s̄L[m,n] approximately produces nothing in the rest of

central order diffraction region.

As an illustration of this effect, consider the SLM pattern s̄[m,n] shown in

Fig. 3.3. This pattern produces the output field displayed in Fig. 3.4. (Here,

the SLM size is 1024 × 1024, ∆x = ∆y = 8µm, λ = 632.9nm and z = 1m;

so the physical size of the SLM is 8.2mm × 8.2mm and the physical size of

the central diffraction order is 7.91cm × 7.91cm. In Fig. 3.4, only the central

diffraction order is displayed. Visually, other diffraction orders are essentially

replicas of the central order.) As seen, the light field in Fig. 3.4 consists of an

image in the middle surrounded by texts. If only the image were present, s̄[m,n]

would be a low-pass pattern, because only low-angle rays from the SLM would

be sufficient to produce the image. However, the presence of the texts, which

require high-angle rays from the SLM, causes s̄[m,n] to be a full-band discrete

signal. Next, consider Fig. 3.5, which shows the SLM pattern s̄L[m,n] obtained

with filtering the SLM pattern in Fig. 3.3 with ḡ[m,n] (Bx and By are taken

such that Bx∆x = By∆y = 0.375). The resulting output is shown in Fig. 3.6.

Also shown in Fig. 3.6 are the borders of the region specified in Eq. 3.12. As

seen, the image is preserved, while the texts are eliminated. Hence, as predicted,

output approximately remains unchanged within the region specified in Eq. 3.12

and approximately vanishes outside this region.
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Figure 3.3: An SLM pattern (real part). First appeared in [1]
.
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Figure 3.4: Output produced by the SLM pattern in Fig. 3.3 (magnitude). First
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Figure 3.5: Low pass filtered version of the SLM pattern in Fig. 3.3 (real part).
First appeared in [1].
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In the next section, we exploit the result stated by Eq. 3.15 to find binary

SLM patterns that generate desired light fields confined to the region specified in

Eq. 3.12 for appropriate selections of the parameters Bx and By. For a single z,

Eq. 3.12 defines a rectangular region, which we will call as the synthesis region.

For varying z, Eq. 3.12 defines a pyramid lying inside the central diffraction order

pyramid and we will call it as the synthesis pyramid (see Fig. 3.7). However, since

the approximations we made in arriving at Eq. 3.12 hold only after a certain

distance from the SLM (approximately a meter), we will not be interested in

the portion of the synthesis pyramid that lies too close to the SLM (recall from

Sec. 2.3 that we do the same for the central diffraction order pyramid as well).
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The dimensions of the synthesis region increase as Bx and By increase. There-

fore, as the low-pass effect of the filter gets stronger, the region that the stated

result holds gets narrower. On the other side, as bandwidths approach the upper

limits allowed by Eq. 3.5 (Bx → 1
∆x

and By → 1
∆y

), the borders approach the

borders of the central diffraction order given in Eq. 2.38. When light fields are

to be synthesized with binary SLMs, a rational choice is to take Bx ≈ 1
4∆x

and

By ≈ 1
4∆y

so that the area of the synthesis region is about 1
16

th
of the area of the

central diffraction order region.

3.2 Encoding Complex-Valued Oversampled

Holograms on Binary SLMs

Now we have all the necessary insights to tackle the main problem of this chap-

ter: How can we find a binary SLM pattern that synthesizes a desired three-

dimensional light field? Findings of the previous section will guide us.

First consider a gray level SLM pattern s̄[m,n] of size M×N , that is, s̄[m,n]

can be equal to any complex value for m ∈ [0,M − 1] and n ∈ [0, N − 1], but

s̄[m,n] = 0 for other (m,n). Suppose we write this pattern on an SLM that

has M ×N pixels, and suppose we illuminate the SLM with a normally incident

plane wave. Let ūa
z [m,n] for m ∈ [0,M−1] and n ∈ [0, N−1] denote the samples

of the output field taken uniformly within the central diffraction order region.

We know from Sec. 2.3 that the relation between ūa
z [m,n] and s̄[m,n] is as given

by Eq. 2.42.

Now suppose we wish to determine s̄[m,n] such that the output samples

within the synthesis region specified by Eq. 3.12 are equal to some desired discrete

signal d̄[m,n]. In this section, it is important for the synthesis region to be

sufficiently small, and the reason will become evident as we continue. For now,
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let us simply assume that Bx and By parameters in Eq. 3.12 are chosen as

Bx = 1
4∆x

and By =
1

4∆y
so that the area of the synthesis region is about 1

16

th
of

the area of the central diffraction order region. Hence, we wish to control about

1
16

th
of the output field samples. Suppose we are not concerned about the values

of output samples that fall outside the synthesis region, i.e., they are “don’t care”

samples. Let us call the part of central diffraction order outside the synthesis

region as the don’t care region. Since the number of samples that we wish to

control is less than the degrees of freedom that we have in s̄[m,n], this problem

does not have a unique solution but has many solutions. An easy solution can

be found simply by setting

ūa
z [m,n] =

 d̄[m,n] for samples within the synthesis region

0 for samples within the don’t care region
(3.16)

and then finding s̄[m,n] according to Eq. 2.45. Let us denote this particular

solution as s̄i[m,n] and call it the ideal SLM pattern since it produces d̄[m,n]

within the synthesis region with maximum efficiency, i.e., output samples within

the don’t care region are zero so essentially no power is spent on the don’t care

region.

The ideal SLM pattern s̄i[m,n] found as above is a low-pass (oversampled)

discrete signal. To see this, suppose we apply a real-valued discrete low-pass

filter ḡ[m,n] with bandwidth parameters Bx = 1
4∆x

and By =
1

4∆y
to s̄i[m,n]. As

shown in the previous section, at the output, nothing will change in the synthesis

region, and the field will vanish in the don’t care region. But the field produced

by s̄i[m,n] already vanishes in the don’t care region. Therefore, we should have

s̄i[m,n] ⋆ ⋆ḡ[m,n] ≈ s̄i[m,n], indicating that s̄i[m,n] is the output of a low-pass

filter, hence it is a low-pass (oversampled) SLM pattern.

Now let us try to reconstruct d̄[m,n] within the same synthesis region with

a binary SLM pattern s̄b[m,n] whose size is again M × N . Let us assume for

now that s̄b[m,n] = ±1 for m ∈ [0,M − 1] and n ∈ [0, N − 1], but s̄b[m,n] = 0
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for other (m,n). We now have a harsh constraint on the SLM pattern. Solving

this problem is not as straightforward as for the gray level s̄[m,n]. For instance,

it is common experience that direct point-wise quantization of s̄i[m,n] does not

produce satisfactory results. Smarter strategies are necessary.

From the previous section, we know that s̄b[m,n] and its low-pass filtered ver-

sion s̄Lb [m,n] = s̄b[m,n] ⋆ ⋆ḡ[m,n] produce approximately the same field within

the synthesis region. Hence, if s̄b[m,n] is to produce d̄[m,n] within the synthe-

sis region, s̄Lb [m,n] should also produce d̄[m,n] within the synthesis region. In

particular, suppose we find s̄b[m,n] such that s̄Lb [m,n] is equal to s̄i[m,n]. (This

is possible since s̄i[m,n] is already a low-pass pattern as we discussed above.)

Since s̄i[m,n] already generates the desired field within the synthesis region, we

see that s̄b[m,n] performs the desired synthesis as well. Therefore, if we can find

s̄b[m,n] such that

s̄b[m,n] ⋆ ⋆ḡ[m,n] ≈ s̄i[m,n] (3.17)

we can achieve the desired synthesis.

Above, we use ≈ instead of = for two reasons. The first reason is to stress

that in general, the problem may not have an exact solution, i.e, there may be

no s̄b[m,n] that exactly gives s̄i[m,n] when low-pass filtered, so we may need to

seek for the best solution instead of an exact solution. The second reason is, as

also indicated in Sec. 3.1, according to our definitions s̄i[m,n] and s̄b[m,n] are

finite sized patterns of size M ×N , but strictly speaking s̄b[m,n]⋆⋆ḡ[m,n] is not

because of the infinite extent tails of low-pass filter ḡ[m,n]. Therefore, it is not

possible to strictly achieve s̄b[m,n] ⋆ ⋆ḡ[m,n] = s̄i[m,n]. However, again as we

indicated in Sec. 3.1, since ḡ[m,n] has a compact support around (m,n) = (0, 0),

we will assume that it is sufficient for Eq. 3.17 to hold only over the support of

s̄i[m,n] and s̄b[m,n], i.e., for m ∈ [0,M − 1] and n ∈ [0, N − 1].

From the discussion preceding Eq. 3.17, we can realize that actually the low-

pass component of s̄b[m,n] (that is, s̄Lb [m,n]) is responsible for generating d̄[m,n]
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within the synthesis region. The high-pass component (s̄b[m,n]−s̄Lb [m,n]) affects

only the output samples in the don’t care region. Note that when ḡ[m,n] is ap-

plied to s̄b[m,n], the high-pass component is eliminated, so nothing is generated

within the don’t care region. Actually, we can think that high-pass component

is added to s̄Lb [m,n] just to satisfy the binary SLM pattern constraint.

We recognize that the problem stated in Eq. 3.17 is quite similar to the well

known halftoning problem of image processing in which one tries to compute a

binary image which produces a desired low-pass (oversampled) gray level image

when low-pass filtered. However, there is a slight difference in general. Notice

that in Eq. 3.17, with our definitions, both s̄b[m,n] and ḡ[m,n] are real-valued,

hence their convolution is also real-valued. If s̄i[m,n] is also real-valued, then

there is no difference with the classical halftoning problem and we can easily find

s̄b[m,n] using any of the well-established halftoning algorithms, such as ordered

dither, error diffusion, direct binary search, etc [144]. The problem is that, in

general, s̄i[m,n] is complex-valued. Hence, the problem stated in Eq. 3.17 is

not directly equivalent to a classical halftoning problem, and we need to find a

method for handling the case of a complex-valued s̄i[m,n].

The solution we propose in this thesis is to partition the pixels of s̄b[m,n]

into two groups, such that the first group pixels are responsible for halftoning

the real part of s̄i[m,n] and the second group pixels are responsible for halftoning

the imaginary part of s̄i[m,n]. In the next three subsections, we propose three

successively easier methods to achieve such partitions.

60



3.2.1 Thin Mask Based Solution

As a first solution , suppose that we place an optical thin mask with complex

transmittance t(x, y) just after the SLM such that t(x, y) has the following form:

t(x, y) =
M−1∑
m=0

N−1∑
n=0

t̄[m,n]rect

(
x− xm

∆x

)
rect

(
y − yn
∆y

)
. (3.18)

If we still assume a normally incident plane wave illumination (u0−(x, y) = 1),

then the light field just after the SLM can be written as:

u0+(x, y) = t(x, y)sa(x, y). (3.19)

Using Eq. 2.22 and Eq. 3.18, we can explicitly write

u0+(x, y) = t(x, y)sa(x, y)

=

{
M−1∑
m=0

N−1∑
n=0

t̄[m,n]rect

(
x− xm

∆x

)
rect

(
y − yn
∆y

)}

×

{
M−1∑
m′=0

N−1∑
n′=0

s̄[m′, n′]a(x− xm′ , y − yn′)

}

=
M−1∑
m=0

N−1∑
n=0

M−1∑
m′=0

N−1∑
n′=0

t̄[m,n]s̄[m′, n′]

rect

(
x− xm

∆x

)
rect

(
y − yn
∆y

)
a(x− xm′ , y − yn′). (3.20)

Noting that a(x, y) = 0 for |x| > ∆x

2
or |y| > ∆y

2
, we have

rect

(
x− xm

∆x

)
rect

(
y − yn
∆y

)
a(x− xm′ , y − yn′)

=

 a(x− xm′ , y − yn′) when m = m′, n = n′

0 otherwise

from which we can rewrite Eq. 3.20 as:

u0+(x, y) =
M−1∑
m=0

N−1∑
n=0

s̄[m,n]t̄[m,n]a(x− xm, y − yn). (3.21)

Upon comparing Eq. 2.22 and Eq. 3.21, we see that placing the mask t(x, y) is

equivalent to writing on the SLM a new pattern s̄t[m,n], which is given as

s̄t[m,n] = s̄b[m,n]t̄[m,n], (3.22)
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which we call the effective SLM pattern.

Now suppose t̄[m,n] is given as:

t̄[m,n] =

 1 when m+ n is even

j when m+ n is odd
. (3.23)

With this selection for t̄[m,n], we now have the following constraint on s̄t[m,n]:

s̄t[m,n] =

 ±1 when m+ n is even

±j when m+ n is odd
. (3.24)

Therefore, though s̄b[m,n] can only be adjusted to real binary values, i.e. ±1,

we have more flexibility in s̄t[m,n] since the even pixels of it can be adjusted to

±1 while odd pixels can be adjusted to ±j.

Note that we can write s̄t[m,n] as s̄t[m,n] = s̄Rt [m,n] + js̄It [m,n] where

s̄Rt [m,n] =

 ±1 when m+ n is even

0 when m+ n is odd

s̄It [m,n] =

 0 when m+ n is even

±1 when m+ n is odd
. (3.25)

Actually, s̄Rt [m,n] and s̄It [m,n] can be considered as binary SLM patterns some

of whose pixels are eliminated. In particular, odd pixels (pixels for which m+ n

is odd) of s̄Rt [m,n] and even pixels (pixels for which m + n is even) of s̄It [m,n]

are eliminated.

Now, we can encode the real part of s̄i[m,n] on s̄Rt [m,n] and the imaginary

part on s̄It [m,n]. In other words, we can try to find s̄Rt [m,n] and s̄It [m,n] such

that

s̄Rt [m,n] ⋆ ⋆ḡ[m,n] ≈ R
{
s̄i[m,n]

}
s̄It [m,n] ⋆ ⋆ḡ[m,n] ≈ I

{
s̄i[m,n]

}
(3.26)

where s̄Rt [m,n] and s̄It [m,n] are subject to the constraints of Eq. 3.25. Once we

find s̄Rt [m,n] and s̄It [m,n], we can add them up to obtain a complete binary SLM
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pattern such that s̄b[m,n] = s̄Rt [m,n] + s̄It [m,n]. This binary pattern performs

the desired synthesis when written on an SLM just after which the mask t(x, y)

is placed. Note that in this manner, we have converted the complex-valued

halftoning problem of Eq. 3.17 (which was problematic in that form) into two

decoupled real-valued constrained halftoning problems as in Eq. 3.26 (which can

now easily be solved with standard halftoning algorithms).

The eliminated pixel constraints on s̄Rt [m,n] and s̄It [m,n] given in Eq. 3.25 will

not cause a significant halftoning error if s̄i[m,n] (hence its real and imaginary

components) is sufficiently low-pass. This is the case if the synthesis region is

selected sufficiently small.

Let us illustrate these ideas. Suppose Fig. 3.8 shows the desired field within

the central diffraction order region. Only the samples within the synthesis region

are nonzero. Fig. 3.9 and Fig. 3.10 respectively show the real and imaginary

parts of the ideal gray level SLM pattern s̄i[m,n] that exactly reconstructs the

desired field of Fig. 3.8. As discussed above, the ideal gray level SLM pattern

is a low-pass (oversampled) discrete signal. (In this example, the SLM size is

1024 × 1024, ∆x,∆y = 8µm, λ = 632.9nm and z = 1m; so the physical size of

the SLM is 8.2mm× 8.2mm and the physical size of the central diffraction order

region is 7.91cm × 7.91cm. The synthesis region consists of 200 × 200 samples

which corresponds to a physical size of 1.55cm× 1.55cm.)

Next, we considered the computation of a binary pattern that generates the

desired field. As the halftoning algorithm, we used the standard error diffusion

algorithm [144]. As in Eq. 3.25 and Eq. 3.26, we separately halftoned the real

and imaginary parts of s̄i[m,n] and computed s̄Rt [m,n] and s̄It [m,n], which are

displayed in Fig. 3.11 and Fig. 3.12, respectively (black pixels have value −1,

gray pixels have value 0, and white pixels have value 1). Note that as imposed

by Eq. 3.25, in Fig. 3.11, odd pixels are 0 while even pixels are either −1 or

1. Similarly, in Fig. 3.12, even pixels are 0 while odd pixels are either −1 or 1.
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Fig. 3.13 shows the binary pattern obtained as s̄b[m,n] = s̄Rt [m,n] + s̄It [m,n].

Note that this pattern contains only −1 or 1; as it should. Next we multiply

this pattern by t̄[m,n] given by Eq. 3.23. The resulting output field is shown in

Fig. 3.14. As seen, the desired field is generated successfully within the synthesis

region, where we also see the noise components that appear in the don’t care

region due to high-pass component of s̄b[m,n]. We can see that the signal beam

and the noise beam are well separated in space.

In the solution presented in this subsection, we obtained imaginary values

using a mask placed just after the SLM. This option theoretically works, but

complicates the optical setup in the sense that the mask should be physically

produced and aligned properly with the SLM. Actually, now we are aware of

the fact that the main purpose of using the mask is to obtain the effective SLM

pattern of Eq. 3.24. But this pattern can be obtained with alternative physical

arrangements. In the next subsection, we will consider an easier alternative.

3.2.2 Oblique Illumination Based Solution

In this subsection, we will not use any mask as in the previous subsection, but

instead illuminate the SLM with an oblique (or tilted) plane wave instead of a

normally incident plane wave. We will show that with a clever selection for the

incidence angle of the oblique wave, it is possible to effectively accomplish the

task managed by the mask of the previous subsection. We will start by examining

the effects of tilted illumination on the SLM output.

We derived all the results in Sec. 2.3 (in which we analyzed the light field

generated by an SLM) by assuming that the illumination wave of the SLM is

normally incident. Now, instead of a normally incident wave, suppose the illu-

mination wave is given as

i(x, y) = I0 exp
{
j2π

(
ν0
xx+ ν0

yy
)}

(3.27)
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Figure 3.8: Desired light field (magnitude). First appeared in [1].
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Figure 3.9: Ideal SLM pattern (real part). First appeared in [1].
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Figure 3.10: Ideal SLM pattern (imaginary part).

67



s̄
R
t [m,n]

m

n

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Figure 3.11: Three level SLM pattern for the real part. First appeared in [1].
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Figure 3.12: Three level SLM pattern for the imaginary part.
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Figure 3.13: Binary SLM pattern obtained by adding the three level SLM pat-
terns in Fig. 3.11 and Fig. 3.12. First appeared in [1].
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which is an oblique wave (of course unless ν0
x = ν0

y = 0). In this case, the field

on the z = 0+ plane can be written as

u0+(x, y) = i(x, y)sa(x, y)

= i(x, y)
M−1∑
m=0

N−1∑
n=0

s̄[m,n]a(x− xm, y − yn)

=
M−1∑
m=0

N−1∑
n=0

s̄[m,n]i(x, y)a(x− xm, y − yn)

=
M−1∑
m=0

N−1∑
n=0

s̄[m,n]I0 exp
{
j2π

(
ν0
xx+ ν0

yy
)}

a(x− xm, y − yn)

=
M−1∑
m=0

N−1∑
n=0

I0s̄[m,n] exp
{
j2π

(
ν0
xxm + ν0

yyn
)}

a(x− xm, y − yn)

exp
{
j2π

(
ν0
x(x− xm) + ν0

y(y − yn)
)}

=
M−1∑
m=0

N−1∑
n=0

s̄1[m,n]a1(x− xm, y − yn) (3.28)

with

s̄1[m,n] = I0s̄[m,n] exp
{
j2π

(
ν0
xxm + ν0

yyn
)}

(3.29)

and

a1(x, y) = a(x, y) exp
{
j2π

(
ν0
xx+ ν0

yy
)}

. (3.30)

Therefore, oblique illumination of an SLM whose SLM pattern is s̄[m,n] and

aperture function is a(x, y) is equivalent to a new SLM (which is illuminated

with a normally incident wave) whose SLM pattern is s̄1[m,n] and whose aperture

function is a1(x, y). Let us now examine the meaning of these modifications.

Recall that until the very end of Sec. 2.3, we neglected the effect of a practical

pixel aperture function (that is, we assumed a(x, y) = δ(x, y)). We explained at

the end of Sec. 2.3 that the modifications that we should make to the derived

results due to a practical (finite extent) a(x, y) can be neglected as long as we are

only interested in the central diffraction order, and if a(x, y) has a sufficiently

narrow spatial support such that A(νx, νy) is approximately constant over the
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|νx| ≤ 1
2∆x

and |νy| ≤ 1
2∆y

band. Now, in this respect, consider the new SLM

whose pixel aperture function is a1(x, y). If a(x, y) is narrow, a1(x, y) is also

narrow. Secondly, we can see from Eq. 3.30 that A1(νx, νy) = A(νx−ν0
x, νy−ν0

y).

If ν0
x and ν0

y are sufficiently small (that is, the illumination wave is only slightly

tilted) we can assume that A1(νx, νy) is also constant over the |νx| ≤ 1
2∆x

and

|νy| ≤ 1
2∆y

band. In this case (and we will assume that this is the case), we can

neglect the effects due to the modification of pixel aperture function from a(x, y)

to a1(x, y), as well.

Then, we can say that the only remaining effect of oblique illumination is

that, the SLM pattern is changed from s̄[m,n] to s̄1[m,n]. That is, we can

confidently use all the equations that we derived in Sec. 2.3 regarding the SLM

output if we replace s̄[m,n] by s̄1[m,n].

Having understood the effects of the oblique illumination, we now select the

parameters of the illumination wave as

ν0
x =

1

4∆x

, (3.31)

ν0
y =

1

4∆y

(3.32)

and

I0 = exp
{
j
π

4
(M +N − 2)

}
. (3.33)

(Note that with these parameters, when practical values are considered for ∆x,

∆y and λ, the incidence angle of the corresponding wave - that is, the angle

between the propagation direction of the wave and the normal vector of the

SLM surface) becomes only a few degrees, which is in line with our assumption

of slightly tilted illumination wave.) With the above selections, Eq. 3.29 becomes

s̄1[m,n] = s̄[m,n] exp
{
j
π

2
(m+ n)

}
= s̄[m,n]̄i[m,n] (3.34)

73



where

ī[m,n] = exp
{
j
π

2
(m+ n)

}
. (3.35)

Now, suppose that s̄[m,n] = s̄b1 [m,n], that is, we write a binary pattern on

the SLM. When we use the oblique illumination wave i(x, y) with the selected

parameters, the effective pattern on the SLM will become s̄b1 [m,n]̄i[m,n]. Ac-

tually, we can easily see that ī[m,n] is only a slightly different version of t̄[m,n]

given by Eq. 3.23, and handling this difference is trivial. In fact, it is easy to

show that t̄[m,n]
ī[m,n]

is always −1 or 1. Then, if we choose the new binary pattern

s̄b1 [m,n] as

s̄b1 [m,n] =

 s̄b[m,n] when t̄[m,n]
ī[m,n]

= 1

−s̄b[m,n] when t̄[m,n]
ī[m,n]

= −1
(3.36)

(where s̄b[m,n] denotes the binary pattern to be used with the thin mask of the

previous subsection) we see that s̄b1 [m,n]̄i[m,n] = s̄b[m,n]t̄[m,n]. Therefore, in

the oblique wave illumination option, we can first compute s̄b[m,n] as in Eq. 3.25

and Eq. 3.26 (that is, as if we will use the mask t(x, y)), but then compute

s̄b1 [m,n] as in Eq. 3.36 and write it on the SLM which is illuminated by i(x, y)

(without using t(x, y)). At the end, we will get the same reconstruction.

Fig. 3.15 shows the updated SLM pattern obtained from the SLM pattern in

Fig. 3.13. This SLM pattern also produces Fig. 3.14 when multiplied by ī[m,n]

of Eq. 3.35.

The oblique wave illumination option is much simpler than the mask based

option since we do not need to produce any mask. However, at a first glance, it

seems that we need to properly adjust the angle between the illumination wave

and the SLM. In the next subsection, we will show that the mentioned proper

adjustment is not that critical.

74



s̄b1
[m,n]

m

n

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Figure 3.15: The new binary SLM pattern to be used with oblique illumination.
First appeared in [1].
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3.2.3 Small Deviations in the Incidence Angle of the Il-

lumination Wave

In this subsection, we show that adjusting the incidence angle of the illumination

wave used in the previous subsection is not critical at all. To understand this

point, we will examine the effects of tilted illumination from another perspective.

As in Sec. 2.3, let sa(x, y) denote the complex transmittance of the SLM and

ua
z(x, y) denote the diffraction field of the SLM when it is illuminated by normally

incident illumination. Assuming that Fresnel diffraction model is valid, we can

explicitly write

ua
z(x, y) = hz(x, y) ∗ ∗sa(x, y)

=
ejkz

jλz
e

jπ
λz

(x2+y2)∫ ∞

−∞

∫ ∞

∞
sa(x′, y′)e

jπ
λz

(x′2+y′2)e−
j2π
λz

(x′x+y′y)dx′dy′

=
ejkz

jλz
e

jπ
λz

(x2+y2)F
{
sa(x, y)e

jπ
λz

(x2+y2)
}∣∣∣

(νx,νy)=( x
λz

, y
λz )

. (3.37)

Let us now instead illuminate the SLM with i(x, y) given by Eq. 3.27 with I0 = 1

and let us call the new diffraction field as ua,i
z (x, y). Assuming that ν0

x and ν0
y

are small enough that we can continue to use the Fresnel approximation, we can

write

ua,i
z (x, y) = hz(x, y) ∗ ∗ {sa(x, y)i(x, y)}

=
ejkz

jλz
e

jπ
λz

(x2+y2)F
{
sa(x, y)i(x, y)e

jπ
λz

(x2+y2)
}∣∣∣

(νx,νy)=( x
λz

, y
λz )

=
ejkz

jλz
e

jπ
λz

(x2+y2)F
{
sa(x, y)e

jπ
λz

(x2+y2)
}∣∣∣

(νx,νy)=( x
λz

−ν0x,
y
λz

−ν0y)
(3.38)

where the last line follows from the well-known modulation property of Fourier

transform. Then, from Eq. 3.37 and Eq. 3.38, we can write

ua,i
z (x, y) = e

−jπλz
(
ν0

2
x +ν0

2
y

)
ej2π(ν

0
xx+ν0yy)ua

z

(
x− ν0

xλz, x− ν0
yλz

)
(3.39)
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Therefore, when we use oblique illumination, as seen from the output side, we

get a modulated and shifted version of the diffraction field that we would obtain

with the normally incident illumination.

In practice, from the perspective of an observer, this modulation and shift

have no consequence (as long as the tilt angle of the wave is small). The modula-

tion will only slightly change the direction of the beam that forms the reconstruc-

tion, and the shift will only slightly change the location of the reconstruction.

The implication of the above statement is that, it is not critical to use exactly

the same illumination wave as given by Eq. 3.27. For instance, instead of that

wave, suppose we use a normally incident plane wave. We have seen above that

the oblique illumination causes a shift and modulation relative to the normally

incident case. Hence, when we do not use the oblique illumination, the output

field will shift back to its original position. This case is illustrated in Fig. 3.16.

As seen, relative to the oblique illumination case, the desired field appears within

a shifted version of the synthesis region. It can be shown that the center of the

synthesis region is shifted to
(
− λz

4∆x
,− λz

4∆y

)
. For typical practical values of ∆x,

∆y and λ, the amount of the shift is a few centimeters for z around a meter.

Hence, as the third option, we can proceed as in the second option until we

compute s̄b1 [m,n], but then use a normally incident plane wave (or any other

plane wave that makes a small angle with the wave in Eq. 3.27) and accept to

obtain the desired field within a shifted version of the synthesis region.

3.2.4 Binary Pixel Values Other Than ±1

Up to now, we assumed that the binary SLM pixels can be set to ±1. In a more

general case, the pixels are set to two different complex numbers c1 and c2 rather

than ±1. Such a case is fundamentally no different than the ±1 case. To see

this, suppose on the physical binary SLM we can write c1 and c2 where c1 ̸= c2.
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Figure 3.16: Light field generated by the binary SLM pattern in Fig. 3.15 under
normally incident illumination. First appeared in [1].
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Suppose given a desired field, we first compute s̄b1 [m,n] which consists of ±1s as

described in Sec. 3.2.2. Now, let s̄b2 [m,n] denote the actual binary SLM pattern.

Assume that we set s̄b2 [m,n] = c1 when s̄b1 [m,n] = −1 and s̄b2 [m,n] = c2

when s̄b1 [m,n] = 1. It is easy to show that s̄b2 [m,n] = c2−c1
2

s̄b1 [m,n] + c1+c2
2

.

Assume the SLM is illuminated by a normally incident plane wave (so that the

reconstruction will be observed in a shifted window). The effect of the c2−c1
2

term

that multiplies s̄b1 [m,n] is a trivial change in the output complex amplitude. The

additive c1+c2
2

term, which is nonzero when c1 ̸= −c2, is more problematic and

creates the so called undiffracted DC beam which propagates around the optical

axis and has dimensions approximately equal to that of the SLM for practical

distances. However, when the reconstruction is performed sufficiently away from

the SLM, this DC beam does not interfere with the reconstruction since the

synthesis is performed in an off-axis window.

As an example, we display in Fig. 3.17 the light field that we would obtain if

the black pixels of Fig. 3.15 were equal to 0 instead of −1. (We assume that the

white pixels in Fig. 3.15 are still equal to 1, and normally incident illumination

is used.) We see the mentioned undiffracted DC beam of the SLM in the middle

of the figure. Note that in this simulation, the physical size of the binary SLM is

8.2mm×8.2mm, which is roughly equal to the size of the undiffracted DC beam

as explained above.

3.2.5 Volumetric Synthesis Examples

We conclude this chapter noting that our approach can be used to compute binary

SLM patterns for three-dimensional applications, for instance to synthesize 3D

objects floating in air as in 3D display applications. Recall that in Sec. 3.1, we

stated that within the pyramid given in Eq. 3.12 (which we named the synthesis

pyramid), an SLM behaves the same as its low-pass filtered version. When

this pyramid is sufficiently narrow, a desired field specified within it can be
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Figure 3.17: Light field generated by the binary SLM pattern in Fig. 3.15 with
black pixels being equal to 0 instead of −1. Image is enhanced for better visual-
ization.
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synthesized with a sufficiently low-pass gray level SLM pattern which can be

halftoned with low error into a binary SLM pattern.

As an example, consider the 1024 × 1024 gray level SLM pattern (which is

again a low pass pattern) shown in Fig. 3.18. When written on an SLM with pixel

periods ∆x,∆y = 8µm and when λ = 632.9nm, this pattern generates the fields

displayed in Fig. 3.19 and Fig. 3.20 at z = 0.8m and z = 1m respectively. (In this

example, the physical size of the SLM is 8.2mm×8.2mm, the physical size of the

central diffraction order is 6.33cm × 6.33cm at z = 0.8m and 7.91cm × 7.91cm

at z = 1m. The physical sizes of the objects are around a centimeter.) As

seen, a tomato is focused at z = 0.8m while two peppers are focused at z =

1m. In Fig. 3.21, we display the binary SLM pattern computed from the gray

level pattern in Fig. 3.18. Under normally incident illumination, this pattern

produces the output fields shown in Fig. 3.22 and Fig. 3.23 at z = 0.8m and z =

1m, respectively. We see that the images are successfully reconstructed at their

respective depths, and the that the quantization noise is successfully distributed

over the don’t care region. Note that since the objects (and therefore their

images) were chosen small enough, the ideal gray level SLM pattern generating

them was sufficiently low-pass, so we managed to successfully halftone it into the

binary SLM pattern in Fig. 3.21.

3.3 Conclusion

In this chapter, we show that when the desired light fields are suitably specified,

a binary SLM can be used to synthesize them merely after free space propagation

for about a meter without the need to use any complicated optical setup. By

“suitably specified”, we mean that the desired fields should obey the constraints

due to pixellated SLM structure discussed in Sec. 2.3 and they should be confined

within the synthesis region or pyramid specified by Eq. 3.12 where Bx and By are

81



Real Part of Ideal SLM Pattern

m

n

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Figure 3.18: The ideal SLM pattern generating the light field depicted in Fig. 3.19
and Fig. 3.20 (real part).
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Output at z = 0.80 m
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Figure 3.19: Light field generated by the SLM pattern in Fig. 3.18 at z = 0.8m
(magnitude). Image is enhanced for better visualization.
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Figure 3.20: Light field generated by the SLM pattern in Fig. 3.18 at z = 1m
(magnitude). Image is enhanced for better visualization.
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Figure 3.21: Binary SLM pattern computed from the ideal SLM pattern in
Fig. 3.18. First appeared in [1].

85



Output at z = 0.80 m

x(cm)

y
(c

m
)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 3.22: Light field generated by the binary SLM pattern in Fig. 3.21 at
z = 0.8m (magnitude). First appeared in [1].
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Figure 3.23: Light field generated by the binary SLM pattern in Fig. 3.21 at
z = 1m (magnitude). First appeared in [1].
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selected sufficiently small. We showed that if these constraints are satisfied, the

ideal gray level complex-valued SLM pattern becomes sufficiently oversampled,

and it can be successfully halftoned with an acceptable error. Though at a first

glance the halftoning issue seemed problematic due to the fact that a binary

SLM pattern is essentially real-valued but the desired ideal SLM pattern is in

general complex-valued, we showed that this problem can be overcome with the

simple technique proposed in Sec. 3.2. Our technique essentially decomposes

the complex-valued halftoning problem to two decoupled real-valued constrained

halftoning problems for the real and imaginary parts of the ideal SLM pattern.

Using our simulations, we show that the proposed method can be used to generate

planar as well as volumetric light field distributions. Our results indicate that

when ideal SLM patterns use about 1
16

th
of the available bandwidth (that is,

Bx = 1
4∆x

, By =
1

4∆y
), quite satisfactory results are obtained.

An important property of our approach is that, as long as the desired light

field is specified properly, computation of a suitable binary SLM pattern is re-

duced to solving the complex-valued halftoning problem in Eq. 3.17. That is,

free space propagation related computations can be handled separately from the

halftoning related computations. This is an important advantage over many

existing algorithms, especially ones that use iterative POCS-like methods simi-

lar to the Gerschberg-Saxton algorithm [130, 131, 132, 133, 134, 135, 136, 137].

Usually in such algorithms, during a typical iteration, the output field produced

by some current binary SLM pattern is computed, and then that binary SLM

pattern is updated according to the error between the output and desired fields.

Such calculations greatly increase the computational complexity of those itera-

tive algorithms. On the other hand, in our approach, given the desired field, it is

sufficient to compute the ideal gray level complex-valued SLM pattern only once.

Then, all the computations can be carried out for solving the halftoning problem.

Since any error that we have on the SLM surface after the halftoning process is

directly reflected to the synthesis region, we do not need to separately incorporate
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free space propagation in the optimization procedure for halftoning. To sum up,

we can say that the overall complexity of our approach is mainly determined by

the complexities of the algorithms used for computing the ideal complex-valued

SLM pattern and for carrying out the halftoning. This decoupling gives designers

the freedom to choose among the many existing algorithms for hologram com-

putation and halftoning. To solve the real-valued halftoning problems given in

Eq. 3.26, one can use any of the many existing halftoning algorithms, depend-

ing on the expectations about the computational performance, reconstruction

accuracy, binarization efficiency etc [144]. In our simulations, we used the stan-

dard error diffusion algorithm, which is a simple non-iterative algorithm, and we

found its performance quite satisfactory both in terms of reconstruction quality

and computation speed.
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Chapter 4

FULL COMPLEX SPATIAL

LIGHT MODULATORS

OBTAINED FROM BINARY

SPATIAL LIGHT

MODULATORS

In Chapter 3, we discussed our method for synthesizing light fields with binary

SLMs. The solutions we proposed will be quite useful for those who wish to use

binary SLMs in the simplest way for 3D display applications (that is, with the

fewest number of optical components that are used). Recall that for a single

binary SLM, the proposed technique performs the desired synthesis within a

window that lies within the central diffraction order region, and the technique

simply treats the region that lies outside the mentioned window as the “don’t

care” region. We saw that the don’t care region is mainly occupied by the

quantization related noise terms, undiffracted DC beams and higher diffraction

orders. It is easy to eliminate these side beams in the case of a single SLM.
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However, to build a satisfactory quality holographic display, a single SLM will not

be sufficient because a single SLM can only provide a quite narrow viewing angle.

Therefore, we need to place many SLMs side by side. But then, the removal of

the aforementioned side beams becomes problematic, and their presence may

be disturbing for some designers. To provide an alternative to those who do not

want these disturbing beams but who still wish to enjoy the advantages of binary

SLMs, we propose another solution in this chapter. Here, rather than focusing

on the problem of the determination of a binary SLM pattern that synthesizes a

desired field, we focus on the problem of effectively creating a new full-complex

SLM out of binary SLMs, where the full-complex SLM is created in such a way

that virtually all the disturbing beams mentioned above are eliminated as well.

Actually, there are already some methods that have been proposed to effec-

tively create full-complex SLMs out of restricted type SLMs (which are mostly

phase or amplitude only). As for some examples, in one of the proposed methods,

an amplitude-only SLM is imaged on a phase-only SLM [145]. In this manner,

light passing through the SLMs is modulated both in phase and amplitude as if

it comes out of a single full-complex SLM. In an other method, the beams of two

phase-only SLMs are added using a beamsplitter [146]. In that way, effectively,

a new SLM is created, where a pixel of the new SLM is equal to the sum of two

phase-only pixels, so it can be adjusted to a large number of different complex

values. Similar methods are discussed in [147, 148, 149, 150, 151, 152]. These

methods are successful in the sense that the new SLM provides a richer modu-

lation compared to the component SLMs. But, a common problem in all these

methods is that the set of complex values available for a pixel of the new SLM

does not have a good coverage of the complex plane, so it is hard to regard the

new SLM as a satisfactory full-complex SLM. The main reason of this problem

is the imperfections of practical multilevel SLMs: for instance, most phase-only

SLMs do not cover the 0 − 2π range for the phase, but cover only a restricted

angular range. Similarly, most phase-only SLMs perform an undesired amplitude
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modulation along with the phase modulation and vice versa, that is hard to keep

track of and causes the new SLM to behave differently than intended. Moreover,

the behavior of most multilevel SLMs depends strongly on the illumination wave-

length, causing the proposed designs to operate in a satisfactory manner only for

a narrow range of wavelengths. To avoid such problems, one can consider the

creation of full-complex SLMs out of binary SLMs, as we do in this chapter.

We begin the discussion by explaining our generic method in Sec. 4.1. This

method actually trades pixel count to dynamic range, and carries out this trade-

off by generalizing the concepts of bit plane representation and decomposition

for ordinary digital gray scale multilevel images [153]. In particular, we propose

to effectively obtain a 2K-level (or K-bit) SLM by forming a properly weighted

superposition of K binary (or 1-bit) SLMs. When K is sufficiently large (such

as K = 16), the new SLM can be regarded as a full-complex SLM. We show

that in this way, information-wise, the binary SLMs are utilized in the most

efficient manner that is possible. In Sec. 4.2, we propose a 4f system to optically

implement our generic method. With this system, out of a binary SLM with

PM × QN pixels, we can effectively create a PQ-bit (or 2PQ level) SLM with

M ×N pixels. Again, when P and Q are sufficiently large (such as P = Q = 4),

the new SLM can be regarded as a full-complex one. We show that the 4f

system also provides a means for eliminating the disturbing higher orders from

the diffraction field of the new SLM while preserving the central order with

little distortion. The key element of the proposed 4f system is an optical thin

mask that needs to be physically produced and placed to the Fourier plane. In

Sec. 4.3, we discuss several alternatives for this mask depending on the production

capabilities, and show that even very simple 4-level, 3-level or binary masks work.

What is presented in this chapter is a follow-up to the work presented in [2].
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4.1 Generic Method

In this section, we explain our generic method for effectively creating full-complex

SLMs out of binary SLMs. The reason we call the method as generic is that,

there can be many different possible optical implementations. In this respect,

we will not adhere to a specific optical system in this section, but carry out the

discussion at an abstract level. In the next section, we propose a possible optical

implementation.

Our generic method is actually based on the well known concepts of the bit

plane representation and decomposition for ordinary digital gray scale images

[153]. Therefore, we start by briefly reviewing these concepts.

Let S denote a 2K-level (or K-bit) gray scale digital image of size M × N

(K,M,N ∈ Z+). That is, the image has M × N pixels where each pixel can

take 2K different gray levels. Usually, the pixel values of S can be set to one of

0, 1, 2, ..., 2K − 1, and let us assume that this is also so in our case. Typically,

taking K = 8 is sufficient for high quality images of daily life scenes, so the

pixel values can be set to 0, 1, 2, ..., 255. It is well known that S can be written

as S = 20B0 + 21B1 + ... + 2K−1BK−1; where B0, B1,..., BK−1 are all M × N

binary (or 1-bit) images each pixel of which can be equal to either 0 or 1. The

binary images B0, B1,..., BK−1 are called the bit planes of S, where B0 is named

the least significant bit plane and BK−1 is named the most significant bit plane.

Given S, writing it as S = 20B0 + 21B1 + ...+ 2K−1BK−1 is called the bit plane

representation of S and the process of finding the appropriate B0, B1,..., BK−1

is called the bit plane decomposition of S. Note that in its bit plane representa-

tion, S is written as a particular weighted superposition of its bit planes, where

the weights are given by 20, 21,...,2K−1 . Our generic method for creating full-

complex SLMs out of binary SLMs amounts to a generalization of this weighted

superposition concept to include complex-valued weighting coefficients as well.
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In particular, in our method, we will form a properly weighted superposition of

a number of identical binary SLMs (corresponding to the superposition of bit

planes of an image) to obtain a full-complex SLM (corresponding to a gray level

image).

Suppose we have K binary SLMs of size M × N at hand. Assume these

SLMs are identical, i.e., the pixel periods, pixel geometries and other physical

parameters of all the SLMs are the same. Let us denote these binary SLMs with

B0, B1,...,BK−1. Let b̄i[m,n] denote the value of the (m,n)th pixel of Bi where

0 ≤ m ≤ M−1, 0 ≤ n ≤ N−1, 0 ≤ i ≤ K−1 and m,n, i ∈ Z. Suppose b̄i[m,n]

can be set to either −1 or 1.

Now suppose that we have some kind of an optical system which processes all

these binary SLMs and effectively creates a new M ×N SLM that we denote by

S, such that S = w0B0+w1B1+ ...+wK−1BK−1 where wi ∈ C for 0 ≤ i ≤ K−1,

i ∈ Z. (Note that if s̄[m,n] denotes the value of the (m,n)th pixel of S, we have

s̄[m,n] = w0b̄0[m,n] + w1b̄1[m,n] + ... + wK−1b̄K−1[m,n].) That is, the optical

system effectively creates the new SLM by forming a weighted superposition

of the binary SLMs where wi’s denote the possibly complex-valued weighting

coefficients. Below, we show that selecting these coefficients wisely, and taking

K sufficiently large, we can make S a full-complex SLM.

As a first example, suppose K = 16, and suppose the weighting coefficients

are taken as

wi =


1

255
2i for 0 ≤ i ≤ 7

j
255

2i−8 for 8 ≤ i ≤ 15
(4.1)

with j =
√
−1. Then, adjusting b̄0[m,n], b̄1[m,n],..., b̄15[m,n]; we can set

each s̄[m,n] to any complex number of the form 1
255

(R + jI) where R, I =

−255,−253,−251, ..., 251, 253, 255. Note that the number of different complex

values available for each s̄[m,n] is 216, corresponding to an information content

of 16 bits per pixel. With the current weights, we reserve 8 bits for the real part
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Figure 4.1: Complex numbers available for a pixel of the new SLM with the
weights in Eq. 4.1. Each dot on the figure represents an achievable complex
number. First appeared in [2].

and 8 bits for the imaginary part of the new SLM. These complex values are

displayed in Fig. 4.1. These complex numbers also have a good coverage of the

complex plane, as we can see from the figure. Therefore, we can regard S as a

full-complex SLM. Hence, out of 16 binary (1-bit) SLMs of size M ×N , we have

created a single but full-complex (16-bit) SLM of size M ×N .

Let us continue to examine the current example in detail. Note that to start

with, we have a total of 16MN pixels (from 16 binary SLMs where each binary

SLM has MN pixels). At the end, we have only MN pixels (from a single SLM
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with MN pixels). So, the pixel count is reduced. However; the pixels in the

beginning are binary (1-bit), while the pixels of the new SLM are full-complex

(16-bit). So, the dynamic range is increased. Therefore, we have essentially

traded pixel count to dynamic range while obtaining the full-complex SLM out

of the binary SLMs.

Actually, information-wise, the mentioned trade off is carried out in the most

efficient manner that is possible. To see this, note that the information content

of each of the binary SLMs is MN bits, and since we use 16 binary SLMs, the

total information content in the beginning is 16MN bits. At the end, we obtain

the full complex SLM, which has MN pixels where each pixel has an information

content of 16 bits, so the information content of the full complex SLM is also

16MN bits. Hence, the full complex SLM is created out of the binary SLMs

without any loss in the information capacity. Therefore, information-wise, binary

SLMs are utilized in the most efficient manner.

The nice result stated above follows as a consequence of the fact that we

create the binary SLM by forming a properly weighted superposition of the binary

SLMs. That is, our choice of the weighting coefficients as in Eq. 4.1 is one of

the wise choices. As an example, to see what happens when we do not choose

these coefficients wisely, consider taking wi = 1 for all i, which corresponds to

directly adding all 16 binary SLMs without using any weighting. If this were

the case, then each pixel of S (obtained as S = B0 +B1 + ...+B15) could only

be set to −16,−14,−12, ..., 12, 14, 16. That is, it would not be possible to set

a pixel of S to some value other than the listed ones no matter how much we

play with the values of the corresponding binary pixels that are superposed. So,

only 17 different values would be available for each pixel of the new SLM, that

is quite small compared to 216 (which is the number of different values obtained

with the former weights). Therefore, if we directly superposed the binary SLMs

without any weighting, we would have used them in a quite inefficient manner

96



while creating the new SLM (and it would not be possible to regard the new SLM

as a full-complex one at all since only 17 different values would be available for

each pixel). This example clearly suggests that a wise selection of the weighting

coefficients is crucial in the explained method.

As we have seen, our initial selection for the weighting coefficients is a wise

selection, but it is not the only possible wise selection. For instance, again

suppose that K = 16, and suppose the weighting coefficients are selected as

wi =

∣∣∣∣∣1− e
jπ
16

2

∣∣∣∣∣ e jiπ
16 (4.2)

for 0 ≤ i ≤ 15, i ∈ Z. Using these coefficients, each pixel of S can be set to

one of the complex numbers displayed in Fig. 4.2. These complex numbers are

different from the ones shown in Fig. 4.1, but again there are 216 different complex

numbers on this figure and they also have a good coverage of the complex plane.

So, the new coefficients can also be used to create a 16-bit full-complex SLM as

well. Similarly, many other nice selections for the weighting coefficients can also

be found.

Note that our choice of K and wi’s determines the values that are available

for a pixel of S. That is, if during some application, the desired value for a pixel

of S is not among the available values, we should first perform a quantization.

Therefore, our choice of K and wi’s actually defines a quantizer on the complex

plane. In order to achieve optimum performance, we should design this quantizer

(i.e. choose K and wi’s) by taking into account the statistical properties of the

non-quantized source (that is, the complex-valued pattern that one wants to

write on the full-complex SLM). Actually, in the above examples, since we chose

K = 16 (and we chose the weights wisely), we had a quite large number of

values with a good coverage of the complex plane, so that the quantization error

will most probably be quite small and thus quantization related issues can be

neglected. However, we should note that in holographic applications, smaller

values of K can be sufficient. For instance, in [82, 154], it is discussed that even
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Figure 4.2: Complex numbers available for a pixel of the new SLM with the
weights in Eq. 4.2. First appeared in [2].
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4-bit quantization can be quite sufficient for certain holographic applications. In

such cases, in order to make the overall system as economical as possible, one

may wish to use only the needed number of binary SLMs. Then, the designer

must make sure that his choice of wi’s leads to a satisfactory distribution of

achievable complex numbers on the complex plane.

In summary, our generic method for creating full-complex SLMs out of binary

SLMs can be described as follows: Using some optical system, effectively form

a weighted superposition of K binary SLMs to obtain a new SLM where K is

sufficiently large. Select the weights such that each pixel of the new SLM can

be set to 2K different complex values where these values also have a satisfactory

coverage of the complex plane. Under these conditions, the new SLM can be

regarded as a full-complex one. In this way, information-wise, the binary SLMs

are utilized in the most efficient manner that is possible while creating the full-

complex SLM.

Before closing this section, let us discuss how to configure the binary SLMs in

order to make the new SLM S equal to some desired full-complex SLM denoted

by Sd. That is, we wish to determine B0,B1, ...,BK−1 such that we achieve

S = Sd where S = w0B0 + w1B1 + ... + wK−1BK−1. Let us assume that the

weighting coefficients are selected wisely such as in Eq. 4.1 or in Eq. 4.2, so that

each pixel of S can be set to 2K different complex values. Let us also assume

that Sd is already quantized (that is, the value of each pixel of Sd is equal to

one of the achievable complex values). Then, for each pixel of Sd, we should

solve the equation s̄d[m,n] =
∑K−1

i=0 wib̄i[m,n] and determine b̄i[m,n] under the

constraint that b̄i[m,n] = ±1. A straightforward method is to prepare a look-

up table that holds the mapping between the possible binary patterns of size

1 ×K and the complex numbers produced by them, and use this look-up table

to determine b̄0[m,n], b̄1[m,n],..., b̄K−1[m,n]. Note that this look-up table will

have 2K entries. When K ≤ 16, such a look-up table can be handled easily
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with today’s computation and storing technology (with K ≤ 16, the number

of entries in the table will be less than or equal to 65536). If the achievable

complex numbers are listed in the look-up table in an intelligent manner, search

times may be minimized or in certain cases no search may be needed at all.

As a first example, suppose we use the weights given in Eq. 4.1. In this case,

actually we do not need to use any look-up table at all. Given a desired Sd, we

only need to perform separate bit plane decompositions of real and imaginary

parts in the standard way (that is, as we do for ordinary images).

As a second example, suppose we take the weighting coefficient as in Eq. 4.2.

In this case, the solution is not as easy as for the first example, because, referring

to Fig. 4.2, we can see that the achievable complex numbers do not have an

orderly distribution on the complex plane. Then, we can resort to the look-up

table based solution. Suppose first that we list the achievable complex numbers

and the corresponding binary patterns in a random order. In that case, given a

pixel s̄d[m,n], we need to search the entire look-up table to find out the complex

number that is closest to s̄d[m,n]. However, this method is impractical especially

when the size of the look-up table is considerable. A better method is illustrated

in Fig. 4.3. Here, we first divide the complex plane covered by the achievable

complex numbers into a number of bins such that

• each bin contains at most some manageable number of achievable complex

numbers, and

• it is easy to find the bin in which s̄d[m,n] lies.

For instance, in Fig. 4.3, we see that the bins are formed by a uniform sampling

in the phase and magnitude domains. This makes it easy to find the bin in

which the given s̄d[m,n] lies. As also seen from the figure, in each bin, there

are only a small number of achievable complex numbers. Then, given the value

of s̄d[m,n], after determining the bin inside which it lies, to find the closest
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Figure 4.3: Division of the complex plane into bins to facilitate the search.

achievable complex number and the corresponding binary pattern, we only search

among the alternatives that lie inside the bin. In this manner, search times are

made quite short.
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4.2 Practical Implementation Using a 4f Sys-

tem

In the previous section, we described our generic method for creating a K-bit

SLM out of K binary SLMs. We carried that discussion at an abstract level with-

out adhering to a specific optical system, and concluded that we can successfully

create the full-complex SLM if we have some kind of an optical system which

effectively forms a properly weighted superposition of K binary SLMs. In this

section, we propose an optical system which forms this weighted superposition.

But, rather than K separate but identical M ×N binary SLMs, we will assume

that we have a single binary SLM with K×M ×N pixels. We will partition this

SLM into a K sub SLMs, and form the weighted superposition of these sub-SLMs

to obtain a single full-complex M × N SLM. Though there is no fundamental

difference in between, this new form makes it easier for us to present our work.

Actually, we will further take K as K = P × Q where P,Q ∈ Z+, and assume

that we have a binary SLM of size PM ×QN at hand. Out of this binary SLM,

we will create a PQ-bit SLM of size M ×N . Hence, we will consider the binary

SLM as a collection of PQ sub-SLMs, where each sub-SLM is also binary and

has size M ×N . We will form the weighted superposition of these sub-SLMs to

obtain the PQ-bit SLM.

We explain our optical system in three subsections. In Sec. 4.2.1, we still

stay on the conceptual ground and propose a simple linear shift invariant (LSI)

system through which we obtain the weighted superposition of the sub-SLMs.

In Sec. 4.2.2, we consider a bandlimited version of the LSI system we propose

in Sec. 4.2.1. The reason is, we plan a 4f system based implementation, but

the initial LSI system has infinite bandwidth, so it is not possible to practically

implement. We will also see that the band-limitation will have the positive

effect of eliminating the disturbing higher diffraction orders of the SLM output.
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In Sec. 4.2.3, we propose a 4f system which implements the bandlimited LSI

system considered in Sec. 4.2.2.

4.2.1 An LSI System to Form the Weighted Superposi-

tion of Binary SLMs

Consider a binary SLM that has PM × QN pixels. Let ∆x and ∆y denote

the pixel periods of the SLM. Let a(x, y) denote the pixel aperture function

of the SLM such that a(x, y) = 0 for x /∈ [0,∆x] or y /∈ [0,∆y]. In most

cases, a(x, y) = rect
(

x
∆x

− 0.5
)
rect

(
y
∆y

− 0.5
)
where rect(x) = 1 for |x| < 0.5,

rect(x) = 0.5 for |x| = 0.5 and rect(x) = 0 for |x| > 0.5. Let b̄[m,n] denote

the value of the (m,n)th SLM pixel (m,n ∈ Z) for 0 ≤ m ≤ PM − 1 and

0 ≤ n ≤ QN − 1 such that b̄[m,n] can be set to either −1 or 1. If b(x, y) denotes

the complex transmittance of the binary SLM, we have:

b(x, y) = a(x, y) ∗ ∗
PM−1∑
m=0

QN−1∑
n=0

b̄[m,n]δ(x−m∆x, y − n∆y). (4.3)

Above, ∗∗ denotes the two dimensional convolution operation such that f1(x, y)∗

∗f2(x, y) =
∫∞
−∞

∫∞
−∞ f1(x

′, y′)f2(x−x′, y− y′)dx′dy′. With the definitions above,

the SLM is assumed to lie in the region 0 ≤ x ≤ PM∆x and 0 ≤ y ≤ QN∆y.

Note that we can view our binary SLM as a collection of PQ sub-SLMs (which

are also binary) where each sub-SLM consists of M ×N pixels. In this respect,

we can write b(x, y) as

b(x, y) =
P−1∑
p=0

Q−1∑
q=0

bp,q(x− pM∆x, y − qN∆y) (4.4)

where bp,q(x, y) denotes the complex transmittance of the (p, q)th sub-SLM and

is given as

bp,q(x, y) = b (x+ pM∆x, y + qN∆y) rect

(
x− 0.5M∆x

M∆x

)
rect

(
y − 0.5N∆y

N∆y

)
(4.5)
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for 0 ≤ p ≤ P−1 and 0 ≤ q ≤ Q−1. Note that all sub-SLMs have pixel aperture

function a(x, y) and pixel periods ∆x and ∆y. When forming the binary SLM,

the (p, q)th sub-SLM is placed in the region pM∆x ≤ x ≤ (p + 1)M∆x and

qN∆y ≤ y ≤ (q + 1)N∆y (a 1D illustration is provided in Fig. 4.4 where P = 4

and the sub-SLMs are denoted by b0, b1, b2 and b3). Our purpose is to form a

weighted superposition of these sub-SLMs. We will accomplish this by processing

b(x, y) with a suitably defined linear shift invariant (LSI) system.

Consider an LSI system whose impulse response h(x, y) is given as

h(x, y) =
P−1∑
p=0

Q−1∑
q=0

w̄[p, q]δ(x− pM∆x, y − qN∆y) (4.6)

where w̄[p, q] ∈ C for 0 ≤ p ≤ P − 1, 0 ≤ q ≤ Q − 1, p, q ∈ Z. As seen,

h(x, y) consists of a P ×Q grid of impulses which are spaced by M∆x and N∆y.

The (p, q)th impulse is located at (pM∆x, qN∆y) and has strength w̄[p, q]. If

H(νx, νy) denotes the frequency response of this LSI system, we have

H(νx, νy) = F {h(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
h(x, y) exp {−j2π(xνx + yνy)} dxdy

=
P−1∑
p=0

Q−1∑
q=0

w̄[p, q]e−j2π{νxpM∆x+νyqN∆y}. (4.7)

It is easy to see that H(νx, νy) is periodic with periods 1
M∆x

and 1
N∆y

.

Suppose b(x, y) is processed by this LSI system. Let g(x, y) denote the re-

sulting output such that g(x, y) = b(x, y) ∗ ∗h(x, y). Then we can write:

g(x, y) =
P−1∑
p=0

Q−1∑
q=0

w̄[p, q]b(x− pM∆x, y − qN∆y). (4.8)

The spatial support of g(x, y) is given by the region 0 ≤ x ≤ (2P − 1)M∆x

and 0 ≤ y ≤ (2Q − 1)N∆y. Examining g(x, y), we see that the LSI system

actually forms a superposition of shifted and weighted replicas of b(x, y). Such

LSI systems are usually called echo systems in the signal processing literature,
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w̄[0]b(x)

+

w̄[1]b(x − M∆x)
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w̄[3]b(x − 3M∆x)

w̄[0]b0 w̄[0]b1 w̄[0]b2 w̄[0]b3 x

w̄[1]b0 w̄[1]b1 w̄[1]b2 w̄[1]b3 x

w̄[2]b0 w̄[2]b1 w̄[2]b2 w̄[2]b3 x

w̄[3]b0 w̄[3]b1 w̄[3]b2 w̄[3]b3 x

=

g(x) xw̄[0]b0 w̄[1]b0

w̄[0]b1
w̄[2]b0

w̄[1]b1

w̄[0]b2

w̄[3]b0

w̄[2]b1

w̄[1]b2

w̄[0]b3

w̄[3]b1

w̄[2]b2

w̄[1]b3

w̄[3]b2

w̄[2]b3
w̄[3]b3

g(x)×

rect
(

x−3.5M∆x
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Figure 4.4: 1D illustration of the process through which s(x, y) is created out of
b(x, y). b(x), h(x), g(x), s(x) and w̄[p] respectively denote the 1D counterparts
of b(x, y), h(x, y), g(x, y), s(x, y) and w̄[p, q] which are discussed in the text. In
the 1D case, we assumed that the binary SLM is divided into four sub-SLMs of
size M , and denoted these sub-SLMs with b0, b1, b2 and b3. First appeared in [2].
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since one-dimensional (1D) versions of them are used to produce synthetically

generated echoes of sound signals in audio processing.

Now, define s(x, y) such that

s(x, y) = g(x, y)rect

(
x− (P − 0.5)M∆x

M∆x

)
rect

(
y − (Q− 0.5)N∆y

N∆y

)
. (4.9)

Hence, s(x, y) is obtained by windowing g(x, y) in space. The window selects

the portion of g(x, y) lying in the the region (P − 1)M∆x ≤ x ≤ PM∆x and

(Q− 1)N∆y ≤ y ≤ QN∆y. It is straightforward to show that

s(x, y) =
P−1∑
p=0

Q−1∑
q=0

w̄ [P − 1− p,Q− 1− q] bp,q(x− x0, y − y0) (4.10)

with x0 = (P − 1)M∆x and y0 = (Q− 1)N∆y.

Eq. 4.10 is the result we have been seeking for. We see that s(x, y) is ob-

tained as the weighted superposition of bp,q(x, y)’s where the weights are given by

w̄ [p, q] (a 1D illustration of the process through which s(x, y) is obtained from

b(x, y) is provided in Fig. 4.4 for P = 4). Hence, s(x, y) represents the complex

transmittance of a new SLM that is obtained as the weighted superposition of

the sub-SLMs of the binary SLM. Note that the new SLM also has the pixel

aperture function a(x, y) and pixel periods ∆x and ∆y. It lies in the region

(P − 1)M∆x ≤ x ≤ PM∆x and (Q − 1)N∆y ≤ y ≤ QN∆y. We know from

Sec. 4.1 that, properly choosing w̄ [p, q], we can make this new SLM a PQ-bit

SLM. And we also know that when P and Q are chosen sufficiently large (such

as P = Q = 4), the new SLM can be regarded as a full-complex one. Hence,

using the proposed LSI system, we can create an M ×N full-complex (PQ-bit)

SLM out of a PM ×QN binary SLM.

As a first illustration for the P = Q = 4 and M = N = 256 case, Fig. 4.5

shows a 1024×1024 binary SLM. Fig. 4.6 and Fig. 4.7 respectively show the real
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and imaginary parts of g(x, y) = h(x, y) ∗ ∗b(x, y) when w̄[p, q] are taken as:
w̄[0, 0] w̄[0, 1] w̄[0, 2] w̄[0, 3]

w̄[1, 0] w̄[1, 1] w̄[1, 2] w̄[1, 3]

w̄[2, 0] w̄[2, 1] w̄[2, 2] w̄[2, 3]

w̄[3, 0] w̄[3, 1] w̄[3, 2] w̄[3, 3]


=

1

255


j27 j26 j25 j24

j23 j22 j21 j20

27 26 25 24

23 22 21 20


. (4.11)

Fig. 4.8a and Fig. 4.8b, which are respectively the magnified versions of the

signals within the windows in Fig. 4.6 and Fig. 4.7, show the real and imaginary

parts of s(x, y). As seen, a 256 × 256 full-complex SLM has been successfully

created out of the binary SLM. (In this example, we took ∆x = ∆y = 10µm and

assumed rectangular pixels. In Fig. 4.5, black pixels have value −1, and white

pixels have value 1.)

As a second illustration, suppose again that P = Q = 4 and M = N = 256,

and our goal is to obtain the s(x, y) depicted in Fig. 4.8. However, suppose that

this time the weights are given as
w̄[0, 0] w̄[0, 1] w̄[0, 2] w̄[0, 3]

w̄[1, 0] w̄[1, 1] w̄[1, 2] w̄[1, 3]

w̄[2, 0] w̄[2, 1] w̄[2, 2] w̄[2, 3]

w̄[3, 0] w̄[3, 1] w̄[3, 2] w̄[3, 3]


=

∣∣∣∣∣1− e
jπ
16

2

∣∣∣∣∣


e

j0π
16 e

j1π
16 e

j2π
16 e

j3π
16

e
j4π
16 e

j5π
16 e

j6π
16 e

j7π
16

e
j8π
16 e

j9π
16 e

j10π
16 e

j11π
16

e
j12π
16 e

j13π
16 e

j14π
16 e

j15π
16


.

(4.12)

In this case, the binary SLM pattern that we should be using is illustrated in

Fig. 4.9. The real and imaginary parts of the corresponding g(x, y) are illustrated

respectively in Fig. 4.10 and Fig. 4.11. s(x, y) is again drawn into a rectangular

box, and we can see that the s(x, y) illustrated in Fig. 4.8 is obtained successfully.
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Figure 4.5: Binary SLM pattern. First appeared in [2].
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Figure 4.6: Real part of g(x, y). First appeared in [2].
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Figure 4.7: Imaginary part of g(x, y). First appeared in [2].
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Figure 4.8: (a) Real part of s(x, y). (b) Imaginary part of s(x, y). First appeared
in [2].
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Figure 4.9: Binary SLM pattern for the new weights.
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Figure 4.10: Real part of g(x, y).
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Figure 4.11: Imaginary part of g(x, y).
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4.2.2 Imposing a Bandwidth Limitation

In theory, the LSI system proposed in the previous subsection enables us to

effectively create a PQ-bit M × N SLM out of a PM × QN binary SLM. It is

well known that 4f systems can be used to optically implement LSI systems, and

we will do so in the next subsection. However, before proceeding, we will analyze

the effects of imposing a bandwidth restriction to the LSI system we used in the

previous subsection. The reason is, the frequency response H(νx, νy) of that LSI

system occupies the entire frequency spectrum, whereas a 4f setup which consists

of finite-sized lenses and optical masks can only support a finite bandwidth. In

this respect, let us consider a new LSI system with impulse response hL(x, y)

such that

hL(x, y) = h(x, y) ∗ ∗hB(x, y) (4.13)

where hB(x, y) denotes the impulse response of an ideal low-pass filter with band-

widths Bx and By such that

hB(x, y) = BxBysinc (xBx) sinc (yBy) (4.14)

with sinc(x) = sin(πx)
πx

. Hence, the new LSI system is the bandlimited version

of the original LSI system. Note that if HL(νx, νy) and HB(νx, νy) respectively

denote the Fourier transforms of hL(x, y) and hB(x, y), we have HB(νx, νy) =

rect
(

νx
Bx

)
rect

(
νy
By

)
and HL(νx, νy) = H(νx, νy)HB(νx, νy). Let gL(x, y) denote

the output when the binary SLM is processed by the new LSI system, so that

gL(x, y) = b(x, y) ∗ ∗hL(x, y). We can also write

gL(x, y) = g(x, y) ∗ ∗hB(x, y) (4.15)

which indicates that the output of the new LSI system is a blurred version of the

output of the original LSI system. Recall that when the original LSI system was

used, the full-complex SLM (represented by s(x, y)) was selected out of g(x, y)

with a simple windowing operation in space. Suppose we apply the same window

to gL(x, y) and denote the resulting output with sL(x, y) such that sL(x, y) =
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gL(x, y)rect
(

x−(P−0.5)M∆x

M∆x

)
rect

(
y−(Q−0.5)N∆y

N∆y

)
. Assuming that the blurring is

not too strong (that is, Bx and By are sufficiently large, or hB(x, y) is sufficiently

narrow) so that leakages due to infinite tails of hB(x, y) can be ignored, we can

write:

sL(x, y) ≈ s(x, y) ∗ ∗hB(x, y). (4.16)

Hence, when the new LSI system is used, we approximately obtain a blurred

version of the full-complex SLM pattern represented by s(x, y). Since the free-

space propagation is also a LSI system, the light field produced by the SLM at

any distance will also experience the same blurring. Obviously, we do not want

to lose any important information present in the generated light field due to this

blurring effect. So there is a limit to the degree of blurring we can tolerate.

As we saw in Sec. 2.3, the light field produced by a pixellated SLM consists of

diffraction orders, which are shifted, modulated and dispersed versions of each

other, so they essentially carry the same information. The order which has the

lowest frequency content is called the central order. The blurring will not cause

any information loss as long as the central order remains unaffected from it. This

is the case if Bx and By are greater than the bandwidths of the central order,

which are given as 1
∆x

and 1
∆y

in our case. Hence, the bandlimited LSI system

can be confidently used instead of the original LSI system if:

Bx >
1

∆x

and By >
1

∆y

. (4.17)

Indeed, if the above conditions are met near the limit (i.e., Bx ≈ 1
∆x

and By ≈
1
∆y

), central order of the light field produced by the full-complex SLM is preserved

(with little distortion) while higher orders are almost eliminated. This result

is actually explicitly desired in 3D displays where presence of higher orders is

disturbing. As for an illustration, assume P = Q = 4, M = N = 256, and

consider the 1024 × 1024 binary SLM depicted in Fig. 4.12 (∆x = ∆y = 10µm,

the SLM has rectangular pixels). Suppose the weighting coefficients are as given

in Eq. 4.11. If we processed this binary SLM with the original LSI system (no

band limitation), we would obtain the full-complex SLM depicted in Fig. 4.13a,
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that would produce the diffraction field depicted in Fig. 4.13b at a distance

of 50cm. Note that since the SLM in Fig. 4.13a has rectangular pixels, the

diffraction field in Fig. 4.13b consists of diffraction orders (the bright guitar at the

center is the central diffraction order while its replicas are the higher diffraction

orders). Next, Fig. 4.13c depicts the blurred version of the full-complex SLM

depicted in Fig. 4.13a that we obtain when we process the binary SLM with the

new LSI system with bandwidths given by Bx = 1
∆x

and By = 1
∆y

. Fig. 4.13d

displays the new diffraction field. As explained above, the central order is almost

unaffected from the blurring, while the higher orders are almost eliminated. (In

these figures, we computed the diffraction fields taking hz(x, y) as in Eq. 2.11,

and λ = 632.9nm.)
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Figure 4.12: Binary SLM Pattern. First appeared in [2].
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Figure 4.13: (a) Full-complex SLM pattern obtained by processing the binary
SLM pattern in Fig. 4.12 with the LSI system described by h(x, y). (b) Resulting
diffraction field at 50cm. (c) Full-complex SLM pattern obtained with the LSI
system described by hB(x, y). (d) Resulting diffraction field at 50cm. First
appeared in [2].
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Figure 4.14: 4f setup. L1 and L2 denote positive thin lenses of focal length
f . MF and MO respectively denote the Fourier and output plane masks. First
appeared in [2].

4.2.3 Implementation with a 4f System

Now, the ground for optical implementation is established. For a single wave-

length, the LSI system described by Eq. 4.13 can be optically implemented using

a 4f system. Consider the system depicted in Fig. 4.14. As seen, two positive

thin lenses (denoted by L1 and L2) with focal lengths f (f > 0) are placed at

z = f and z = 3f planes. If the illumination wavelength is λ, the complex

transmittances of these lenses are given by

tl(x, y) = exp

{
− jπ

λf
(x2 + y2)

}
. (4.18)

At the Fourier plane (z = 2f plane), an optical thin mask (that we name the

Fourier plane mask) denoted by MF is placed. Let mF (x, y) denote the complex

transmittance of this mask. At the output plane (z = 4f plane), another thin

mask (that we name the output plane mask) denoted by MO is placed. Let

mO(x, y) denote the complex transmittance of this mask. We assume that both of

these masks are passive components, implying that their magnitude transmission

at any point should be less than or equal to unity. We simply assume that
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max {|mF (x, y)|} = 1 and max {|mO(x, y)|} = 1. Let u0(x, y) denote the light

field over the input plane (z = 0 plane). As explained in [104], according to the

Fresnel scalar diffraction theory, the light field just before the output plane mask

is given as:

u4f−(x, y) =
e

j8πf
λ

(jλf)2
u0(−x,−y) ∗ ∗MF

(
x

λf
,
y

λf

)
(4.19)

where MF (νx, νy) denotes the Fourier transform of mF (x, y). We see that if we

take u0(x, y) = j2e
−j8πf

λ b(−x,−y) (which corresponds to placing the 180
o
rotated

version of the binary SLM pattern to the third quadrant of the input plane

and illuminating it with a normally incident plane wave of complex amplitude

j2e
−j8πf

λ ) and if we have MF

(
x
λf
, y
λf

)
= 1

η
(λf)2hL(x, y) (where

1
η
is included to

satisfy the passive mask condition), we can get u4f−(x, y) = 1
η
gL(x, y). Therefore,

we should have:

mF (x, y) =
1

η
HL

(
− x

λf
,− y

λf

)
=

1

η
HB

(
− x

λf
,− y

λf

)
H

(
− x

λf
,− y

λf

)
=

1

η
rect

(
x

Wx

)
rect

(
y

Wy

)
P−1∑
p=0

Q−1∑
q=0

w̄[p, q]e
j2π
λf

{xpM∆x+yqN∆y} (4.20)

where Wx = Bxλf , Wy = Byλf . It is easy to see that mF (x, y) corresponds

to the complex transmittance of a periodic grating that is windowed in space,

where the grating periods are λf
M∆x

and λf
N∆y

and the window widths are Wx and

Wy. Because of Eq. 4.17, we should have Wx > λf
∆x

and Wy > λf
∆y

, so at least

M × N periods of the grating should be preserved after windowing. For the

weights given in Eq. 4.11, mF (x, y) is illustrated in Fig. 4.15a for 5 periods in

each dimension. (In this figure, P = Q = 4, M = N = 256, ∆x = ∆y = 10µm,

f = 10cm, λ = 632.9nm.) Recall that the 1
η
factor is included in Eq. 4.20 to

ensure that max {|mF (x, y)|} = 1. The value of η is given as

η = max

{∣∣∣∣∣
P−1∑
p=0

Q−1∑
q=0

w̄[p, q]ej2π{x
′p+y′q}

∣∣∣∣∣
}

(4.21)
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Figure 4.15: (a) Fourier plane mask for the weights given in Eq. 4.11. (b) Pixel-
lated Fourier plane mask that should be used for the weights given in Eq. 4.11.
Both masks are displayed for 5 periods in each dimension, and only real parts
are shown. First appeared in [2].

for x′, y′ ∈ R.

Finally, to select 1
η
sL(x, y) out of u4f−(x, y) = 1

η
gL(x, y), we can use the

following simple output plane mask

mO(x, y) = rect

(
x− (P − 0.5)M∆x

M∆x

)
rect

(
y − (Q− 0.5)N∆y

N∆y

)
. (4.22)

At the end, we get u4f+(x, y) = u4f−(x, y)mO(x, y) ≈ 1
η
sL(x, y) as desired.

4.2.4 Discussion About the 4f Setup

Firstly, we should remind that the proposed 4f setup is analyzed using Fresnel

scalar diffraction theory which is accurate under paraxial cases, i.e. the light rays

traveling throughout the system must be confined to the vicinity of the optical

axis and they should have small angles. Hence, the physical optical setup must

be prepared accordingly. The binary SLM size should not be too large, and the

focal length of the positive lenses should not be too small. Usually, these are
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already a straightforward consequence of typical component sizes in an optical lab

environment. We also assumed during the analysis that the overall bandwidth of

the system is mainly restricted by the Fourier plane mask. This means, the lens

apertures should not be too small, so that they do not cause a further restriction

on the bandwidth. Under these conditions, Eq. 4.18 — Eq. 4.22 will provide a

fairly accurate description of behavior of the physical setup.

Secondly, we should note that other optical implementations are also possible

for the generic method proposed in Sec. 4.1. Assuming that we start with a sin-

gle PM ×QN binary SLM, the critical issue is that, the binary SLM should be

divided into PQ sub-SLMs of size M ×N and a properly weighted superposition

of these sub-SLMs must be formed optically in a coherent manner. That super-

position can be effectively formed using other optical components such as beam

splitters or prisms. But in such options, each sub-SLM must be illuminated with

a plane wave whose complex amplitude is equal to the corresponding weighting

coefficient of that sub-SLM. Hence, a nonuniform illumination must be used for

the binary SLM. In addition, since there are many sub-SLMs, we would need

many beam splitters or prisms, whose physical dimensions must be suitable for

placing side by side. All these factors complicate the implementation. But the

presented 4f system only requires the lenses and the Fourier and output plane

masks. A common plane wave illumination is sufficient for the entire binary SLM.

Then, the 4f system automatically handles the mentioned properly weighted su-

perposition of the sub-SLMs. Moreover, while creating the full-complex SLM,

adjusting the widths of the Fourier plane mask, we can get rid of the diffraction

orders of the SLM output. Hence, while not being the only possible option, we

believe that the 4f system is a convenient option.

Finally, let us discuss the main drawbacks of the proposed 4f system. One

of the significant drawbacks is that precise alignment is required between the

optical components. For instance, if other components are perfectly placed but
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the Fourier plane mask is slightly off-positioned on the transverse plane, the sub-

SLMs will be superposed with weights that are different than intended, and this

will result in a malfunctioning of the system. However, we believe that easy test

procedures can be developed to achieve the required precision in alignment in an

optical environment.

Another drawback might be due to the light efficiency of the 4f system. In

practice, the input power (that is, the power used to illuminate the binary SLM)

will be partly lost as the light passes through the binary SLM, the lenses, and

the masks; so that only a fraction of the input power will be delivered to the full-

complex SLM and to the observation region. Actually, if we ignore the losses due

to the binary SLM, the lenses, and the finite aperture size of the Fourier plane

mask; and if we assume that the binary SLM pixels are independently distributed

and for each pixel the values −1 or 1 are equally likely, a straightforward analysis

yields that on the average, the fraction of the input power delivered to the full-

complex SLM (i.e., the light efficiency of the system) is given by

Leff =
1

PQ

1

η2

P−1∑
p=0

Q−1∑
q=0

|w̄[p, q]|2 (4.23)

where η is as given in Eq. 4.21. Hence, Leff depends on the selection for w̄[p, q].

It can be shown that Leff varies between 1
(PQ)2

and 1
PQ

. For instance, for the

P = Q = 4 case, Leff changes between 0.39% and 6.25%, and for the weights

given in Eq. 4.11, it is about 1.08%. For some applications, these efficiencies

might be low. But as we pointed in Sec. 4.1, for holographic purposes, even

4-bit quantization is usually sufficient [82, 154], so taking P = 2 and Q = 2, Leff

can be made to vary between 12.5% and 25%. We believe that at least for 3D

display purposes, this efficiency is sufficient, comparable to that of other schemes

based on binary SLMs, and can be tolerated to enjoy the benefits of having a

full-complex SLM.
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4.3 Pixellated and Quantized Fourier Plane

Masks

The Fourier plane mask, denoted by mF (x, y) and given in Eq. 4.20, is the key

component of the proposed 4f system. This mask should be physically produced

and placed in the Fourier plane. The problem is, the mask given in Eq. 4.20 is

a continuous function of space coordinates taking on continuously varying gray

values, so it is hard to physically produce. In this section, we will consider the

usage of pixellated and quantized Fourier plane masks, since such masks are

easier to produce in practice.

Actually, the mask given in Eq. 4.20 is a continuous function of space coor-

dinates because H(νx, νy) given in Eq. 4.7 is a continuous function of νx and νy.

Recall that H(νx, νy) denotes the frequency response of the LSI system discussed

in Sec. 4.2.1. Now, suppose instead of that system, we use another LSI system

whose frequency response HS(νx, νy) is defined as:

HS(νx, νy) = rect (νxPM∆x) rect (νyQN∆y) ∗ ∗{
H(νx, νy)

∞∑
r=−∞

∞∑
t=−∞

δ

(
νx −

r

PM∆x

, νy −
t

QN∆y

)}
.(4.24)

As seen, HS(νx, νy) is obtained by sampling H(νx, νy) and then applying zero

order interpolation on the resulting discrete signal. Recall that H(νx, νy) is pe-

riodic with 1
M∆x

and 1
N∆y

. Since it is sampled with sampling periods 1
PM∆x

and

1
QN∆y

, HS(νx, νy) is also periodic with 1
M∆x

and 1
N∆y

. Due to zero order hold

interpolation, HS(νx, νy) has a piecewise constant structure. Actually, this is the

main reason for us to consider the new LSI system instead of the original LSI

system; because if we manage to create the full-complex SLM using the new LSI

system, the new Fourier plane mask given as

mS
F (x, y) =

1

η
HB

(
− x

λf
,− y

λf

)
HS

(
− x

λf
,− y

λf

)
(4.25)
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will become a pixellated mask. However, we should first show that we can also

create the full-complex SLM using the new LSI system.

Taking the inverse Fourier transform of HS(νx, νy), we see that the impulse

response of the new LSI system is given as

hS(x, y) = sinc

(
x

PM∆x

)
sinc

(
y

QN∆y

)
×

∞∑
r=−∞

∞∑
t=−∞

h (x− rPM∆x, y − tQN∆y) (4.26)

where h(x, y) denotes the impulse response of the original LSI system (see

Eq. 4.6). As seen, sampling of H(νx, νy) causes a periodic replication of h(x, y) in

space where the replicas are spaced by PM∆x and QN∆y; and zero order hold

interpolation creates the sinc roll-off factor. Similar to h(x, y), hS(x, y) consists

of impulses that are spaced by M∆x and N∆y, but unlike h(x, y), the number of

impulses in hS(x, y) is infinite. Similar to what we did in Sec. 4.2.1, let gS(x, y) =

b(x, y)∗∗hS(x, y) and sS(x, y) = gS(x, y)rect
(

x−(P−0.5)M∆x

M∆x

)
rect

(
y−(Q−0.5)N∆y

N∆y

)
.

It is easy to show that

sS(x, y) =
P−1∑
p=0

Q−1∑
q=0

w̄′ [P − 1− p,Q− 1− q] bp,q(x− x0, y − y0) (4.27)

where x0 = (P − 1)M∆x, y0 = (Q− 1)N∆y, and

w̄′[p, q] = w̄[p, q]sinc
( p

P

)
sinc

(
q

Q

)
(4.28)

for 0 ≤ p ≤ P − 1 and 0 ≤ q ≤ Q− 1. We see upon comparison of Eq. 4.27 with

Eq. 4.10 that, when we use the new LSI system, the only change is, when forming

sS(x, y), sub-SLMs are weighted by w̄′[p, q] instead of w̄[p, q]. The main reason

for this change is the zero order hold interpolation that is used when obtaining

HS(νx, νy) from H(νx, νy). However, this change does not create any problem.

In particular, now we should specify w̄′[p, q] rather than specifying w̄[p, q]. After

specifying w̄′[p, q], we should find w̄[p, q] according to Eq. 4.28, and then we

should design the new LSI system according to Eq. 4.7 and Eq. 4.24. When

this is done, the new LSI system will produce the same output as the original

126



LSI system (i.e., sS(x, y) = s(x, y)); implying that instead of the old Fourier

plane mask given in Eq. 4.20, we can use the mask given in Eq. 4.25. This new

mask, which has a pixellated structure, is also periodic in its spatial support with

periods λf
M∆x

and λf
N∆y

. The pixel widths of the new mask are given by λf
PM∆x

and λf
QN∆y

. Therefore, in each period of the mask there are P × Q pixels. Note

that since the mask widths must be greater than λf
∆x

and λf
∆y

by Eq. 4.17, the

new mask should have at least PM ×QN pixels.

If the physical production process only dictates that the Fourier plane mask

should be pixellated, but no quantization on pixel values is required, given

w̄′[p, q], we only need to compute w̄[p, q], H(νx, νy) and HS(νx, νy) as explained

above, and prepare the pixellated Fourier plane mask mS
F (x, y) according to

Eq. 4.25. For instance, for the P = Q = 4 case, if we want w̄′[p, q] to be equal

to the weights given in Eq. 4.11, the pixellated mask shown in Fig. 4.15b should

be used. The mask in Fig. 4.15b produces the same output (possibly up to a

constant amplitude factor) with the mask in Fig. 4.15a.

In practice, usually, there is also a quantization constraint on the pixel values

of the Fourier plane mask. In such cases, the correct approach is to take the

Fourier plane mask as given and determine the implied w̄′[p, q]. Given mS
F (x, y);

using simple Fourier transform relations, it can be shown that the implied w̄′[p, q]

becomes:

w̄′[p, q] =
1

16
sinc

( p

P

)
sinc

(
q

Q

) P−1∑
r=0

Q−1∑
t=0

mS
F

(
rλf

PM∆x

,
tλf

QN∆y

)
ej2π(

pr
P
+ qt

Q )

(4.29)

for 0 ≤ p ≤ P − 1 and 0 ≤ q ≤ Q − 1. Note that in the above equation,

mS
F

(
rλf

PM∆x
, tλf
QN∆y

)
denotes the pixel values of the Fourier plane mask. In the

presence of a quantization constraint, Fourier plane masks should be designed

according to the above equation. In particular, we should first assign the values

of the pixels of the mask taking into account the quantization constraint on them.

Then, we should compute the implied weights according to the above equation,
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and then we should compute the complex values achievable by a pixel of the new

SLM based on these weights. If these values are few in number or have poor

coverage of the complex plane, we should re-design the mask.

Assuming P = Q = 4, we will go through a number of examples and show

that even Fourier plane masks with quite limited pixel values can lead to w̄′[p, q]’s

that generate a large number of complex values for the pixels of the new SLM.

Fig. 4.16a illustrates a mask whose pixels are equal to ±1 or ±j. Hence, there

are only four levels available for a pixel of the mask. Fig. 4.16b illustrates the

complex numbers available for a pixel of the new SLM when we use this mask.

There are 216 different complex numbers on this figure. Another 4-level example

is illustrated in Fig. 4.16c and Fig. 4.16d. The number of achievable complex

numbers is again 216. (In Fig. 4.16a and Fig. 4.16c; white, light gray, dark

gray and black pixels respectively have values 1, j, −j and −1.) Therefore,

even using the simple masks illustrated in Fig. 4.16, we can produce the new

full-complex SLM without any loss in the information content. Moreover, the

achievable complex numbers have a good coverage of the complex plane. Even

simpler masks can be used if we accept a slight degradation in this coverage.

Fig. 4.17a and Fig. 4.17c illustrate two masks whose pixels are equal to ±1 or 0.

Hence, there are only three levels available for a pixel of the mask. Fig. 4.17b

and Fig. 4.17d illustrate the resulting complex numbers that can be achieved.

There are again 216 different complex numbers in both figures, but their coverage

of the complex plane is slightly worse than the 4-level examples. (In Fig. 4.17a

and Fig. 4.17c; white, gray and black pixels respectively have values 1, 0, and

−1.) Yet even simpler masks can be used if we accept to achieve a reduced

number of complex numbers (that is, if we tolerate some loss in the information

content). Fig. 4.18a and Fig. 4.18c illustrate two binary masks whose pixels

are equal to ±1. Fig. 4.18b and Fig. 4.18d illustrate the resulting complex

numbers that can be achieved. This time, there are only 215 different complex

numbers in both figures (implying that the full-complex SLM is 15-bit, so 1-bit
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of information is lost per pixel), which is lower than 216, but which is still high,

and the coverage of the complex plane is acceptable. (Fig. 4.18a and Fig. 4.18c;

white and black pixels respectively have values 1 and −1.) The 1-bit per pixel

loss in the information content may be tolerated for the convenience of using

binary masks which are quite easy to physically produce. These examples show

that as the quantization constraint on the Fourier plane mask gets harsher, the

number of available complex values for a pixel of the SLM can decrease and

the coverage of the complex plane can get worse. However, since the number of

available levels is still large, given a typical desired full-complex SLM pattern,

the quantization error will be still quite low (though it may increase slightly) and

no noticeable degradation in final reconstruction quality will take place.

To sum up, Eq. 4.27 and Eq. 4.28 indicate that instead of any continuous

Fourier plane mask, we can design and use an equivalent pixellated mask and

get the same output. And the examples through Fig. 4.16—Fig. 4.18 indicate

that even in the case of a severe quantization constraint, it is possible to design

Fourier plane masks such that the complex values that are available for a pixel

of the full-complex SLM are large in number and have a good coverage of the

complex plane. Therefore, pixellation and quantization of the Fourier plane

mask do not cause any noticeable degradation in the system performance in

terms of reconstruction quality. However, in the case of a pixellated mask, the

light efficiency will be slightly decreased relative to the continuous mask case.

This is because of the fact that the pixellated mask will cause the emergence of

higher order waves which divert some of the input power. These waves travel in

high angles and are blocked at the output plane mask stage, causing a smaller

portion of the input power to be delivered to the full-complex SLM and thus to

the observation region. Roughly, on the average, the efficiency will be decreased

by about 20% at this stage relative to the continuous mask case. This decrease

can be minimized if phase only Fourier plane masks such as the ones shown in

Fig. 4.16 and Fig. 4.18 are used. We assume that this additional loss can be
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tolerated for the convenience of using pixellated and quantized Fourier plane

masks.

4.4 Conclusion

In this chapter, we first proposed a generic method for effectively creating full-

complex SLMs out of binary SLMs. The method relies on forming a prop-

erly weighted superposition of binary SLMs. We showed that in this manner,

information-wise, binary SLMs are utilized in the most efficient manner. Then,

we proposed a 4f system as a possible optical implementation of our generic

method. In addition to forming the full-complex SLM, this 4f setup also enables

us to get rid of the disturbing higher diffraction orders of the SLM output. We

showed that the parameters and components of the system can easily be cus-

tomized for different production technologies. One main drawback of the system

is the precise alignment requirement, but we believe that easy to apply optical

test procedures can be designed to satisfy it. Another drawback may be due

to light efficiency, but we assume that in 3D display applications, the levels are

tolerable. Compared to previous approaches, the most important feature of our

approach is that we tried to use the full potential of the binary SLMs when cre-

ating the full-complex SLMs. Actually, our generic method can be tailored to

create full-complex SLMs out of multilevel amplitude-only or phase-only SLMs.

In this case, less complicated optical systems can be used for optical implemen-

tation. However, we believe that the robust behavior of binary SLMs justify

our choice for selecting them to create the full complex SLM. We believe that

for commercially available binary SLMs, the proposed 4f system can be imple-

mented within a small volume. Therefore, multiple replicas of the 4f system can

be conveniently placed side by side to create full-complex SLM arrays to be used

in applications such as 3D displays.
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Figure 4.16: (a) A 4-level Fourier plane mask. (b) Achievable complex numbers.
(c) Another 4-level mask. (d) Achievable complex numbers. First appeared
in [2].
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Figure 4.17: (a) A 3-level Fourier plane mask. (b) Achievable complex numbers.
(c) Another 3-level mask. (d) Achievable complex numbers. First appeared
in [2].
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Figure 4.18: (a) A binary Fourier plane mask. (b) Achievable complex numbers.
(c) Another binary mask. (d) Achievable complex numbers. First appeared
in [2].
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Chapter 5

SUMMARY AND

CONCLUSIONS

5.1 Summary

In this thesis, we study the signal processing problems related to the holographic

3D video displays constructed using binary SLMs. In Chapter 1, we explore

several approaches to realize a 3D video display, and highlight the holographic

approach as the most promising alternative despite the fact that many crucial

problems still remain to be solved. In particular, we identify the imperfections

(such as amplitude coupled phase modulation or vice versa) and non-robust be-

havior (such as drastic changes in pixel values with wavelength) of currently

existing multilevel SLMs as troublesome factors that hinder the quality of holo-

graphic displays. We suggest that most of the related problems can be avoided

by using the more robust binary SLMs, if only the associated signal processing

problems (“determination of binary SLM patterns that synthesize desired light

fields” and “achieving full-complex modulation using binary SLMs”) are solved
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to a satisfactory extent. We undertake these problems. As a review of the back-

ground material, in Chapter 2, we discuss the basics of scalar wave optics theory

and scalar diffraction theory. We also include in that chapter an analysis of the

light field generated by a finite-size SLM. This analysis is particularly important

for understanding the restrictions that the SLM structure imposes on the light

fields that are wished to be generated.

In Chapter 3, we undertake the problem of determination of binary SLM

patterns that synthesize desired light fields. We first concentrate on the determi-

nation of the spatial domain over which it makes sense to specify the desired light

field in the case of a binary SLM. For this, we examine the effects of applying a

low-pass filter to the SLM pattern written on a finite size SLM, an find out that

the light field generated by the SLM approximately remains unchanged within

a sub-region of the central order region. We choose this region as the synthesis

region. We show that if the desired light field is confined within the synthesis

region, the ideal gray level complex-valued SLM pattern generating it becomes a

low-pass pattern. We show that this complex-valued pattern can be successfully

halftoned into a binary SLM pattern if the pixels of the binary SLM are parti-

tioned into two groups, such that the first group is used for halftoning the real

part and the second group is used for halftoning the imaginary part. To optically

implement the mentioned partition, we first propose placing a thin mask after

the SLM. Then we show that if we remove the mask and instead use oblique illu-

mination at a specific incidence angle, we can still achieve the desired partition.

Finally, we show that proper adjustment of the incidence angle is not critical

from a visual viewpoint. With these solutions, we effectively extend the theory

of halftoning for classical real-valued images to complex-valued holograms. Our

simulations illustrate that the proposed technique can be used to generate planar

as well as volumetric light field distributions.

135



In Chapter 4, we undertake the problem of achieving full-complex modulation

using binary SLMs. Here, compared to Chapter 3, we take a different approach

and focus on effectively creating a full complex SLM out of binary SLMs. For

this purpose, we first propose a generic method which is based on the well known

concepts of bit plane representation and decomposition for ordinary gray level

images. In particular, we effectively create a full-complex SLM by forming a

properly weighted superposition of a number of binary SLMs, where superpo-

sition weights are allowed to be complex-valued as well. The method actually

involves a trade off between pixel count and dynamic range. We show that with

our method, information-wise, binary SLMs are utilized in the most efficient

manner that is possible. As a possible optical implementation, we propose a 4f

system. In addition to forming the full-complex SLM, this 4f setup also enables

us to get rid of the disturbing side beams generated by the SLM. We show that

the parameters and components of the system can easily be customized for dif-

ferent production technologies, and even in the case of severe restrictions (such

as a binary Fourier plane mask), the values available for a pixel of the new SLM

may have a quite satisfactory coverage of the complex plane.

5.2 Conclusions

When we decided to undertake this thesis, we made the observation that the

theory of halftoning for ordinary gray scale images has been excelled to such an

extent that binary printers have been the paradigm in the printing industry for

quite many decades. Based on this observation, we decided that if the theory

of halftoning for ordinary gray scale images is extended to complex-valued holo-

grams with a correct approach (in which the optics and signal processing related

aspects of the problem are treated in a coherent manner), it should be possi-

ble to achieve quite satisfactory holographic reconstructions with binary SLMs
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in a simple manner (without using complicated optical setups or making inten-

sive computations) as well. We make the mentioned extension in Chapter 3 of

this thesis. As our simulation results indicate, with our approach, it is possible

to synthesize high quality light fields by using binary SLMs just as multilevel

SLMs. The achieved quality is comparable to that provided by a lower resolu-

tion full complex SLM; resembling the image quality offered by a binary printer.

Therefore, there is no reason to think any more that because of their low dy-

namic range, binary SLMs are intrinsically inadequate for holographic display

purposes. Indeed, it is possible to make holographic displays more efficient and

flexible by using the more robust binary SLMs.

Most of the methods proposed until now on the problem studied in Chapter

3 assume that the mathematical relation between the binary SLM pattern and

the desired light field is given by a Fourier transform, and solve the problem

accordingly [122, 124, 126, 127, 128, 129]. To be successful, these methods require

the desired light field to be specified on a plane that lies either in the far field

or on the Fourier plane of a 2f setup. On the other hand, in our formulation,

we assume from the very beginning that the desired light field lies in the non-

far field range and allow it to be specified within a volume as well. And as our

simulation results indicate, with our method, we can successfully synthesize light

fields specified within a volume that lies in the non-far-field range merely after

free-space propagation from the SLM plane. In this sense, our method requires

optical setups that are much less complicated. Moreover, it gives users more

flexibility in the specification of desired light fields. Therefore, especially within

the context of holographic displays, our solutions are much ready and suitable

to be used.

Another main improvement provided by the solution we develop in Chapter

3 becomes apparent when we consider its algorithmic details. Recall that in
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our solution, given a properly specified desired field, we first compute the as-

sociated ideal complex-valued gray level pattern, and then solve two decoupled

real-valued halftoning problems to find the required binary SLM pattern. In

this way, we decouple the hologram related computations and halftoning related

computations. This aspect makes our approach much more modular compared

to many of the algorithms proposed before. And this modularity has quite im-

portant advantages. For instance, the designer has the freedom to choose any of

the existing algorithms for hologram computation. As long as the hologram is

computed with sufficient accuracy, the details of the algorithm are unimportant.

Similarly, as long as the desired accuracy is achieved, halftoning related compu-

tations can be carried out using any of the existing algorithms. (Indeed, it can

be noticed that in Chapter 3 we do not propose any particular algorithm either

for hologram computation or for classical halftoning. We only identify the places

in which such algorithms are needed, and deliberately leave the selection of the

related algorithm to the designer.) A straightforward consequence is that, the

overall accuracy and computational complexity of our approach is determined

by the individual accuracies and computational complexities of the algorithms

used for hologram computation and halftoning. In this respect, the accuracy and

computational performance of our solution will directly benefit from any possi-

ble improvements in the methods for hologram computation and halftoning. It

is hard to say that the algorithms developed for binary SLM pattern computa-

tion before our study have these nice properties. Most of these algorithms are

iterative algorithms where during a typical iteration, the output field produced

by some current binary SLM pattern is computed, and then that binary SLM

pattern is updated according to the error between the output and desired fields

[121, 130, 131, 132, 133]. Therefore, in these algorithms, free space propaga-

tion and halftoning related computations are strongly mingled. This mingled

structure greatly increases the computational complexity of those iterative al-

gorithms. Moreover, since those algorithms are also not modular, they lose the
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chance to benefit from the improvements in the algorithms for halftoning or

hologram computation. Actually, examination of the related literature will re-

veal that many researchers complain about the poor computational performance

of existing algorithms [134, 135, 136, 137]. This is understood to be one of the

reasons that binary SLMs are considered in holographic display designs rela-

tively less frequently compared to multilevel SLMs. In this respect, we find out

that besides increasing the reconstruction quality significantly, our solution also

provides important improvements in computation performance and modularity,

paving the way for more frequent employment of binary SLMs in holographic

display designs.

In the beginning of Chapter 4, we explain that most of the schemes pro-

posed until now for achieving full complex modulation by using restricted type

multilevel SLMs suffer from the imperfections and non-robust behavior of those

multilevel SLMs [145, 146, 147, 148]. We indicate that in the proposed schemes,

especially the distribution of the values achievable by a pixel of the new SLM

on the complex plane is poor; and that the proposed schemes operated in the

desired fashion only within a limited wavelength range [149, 150, 151, 152]. Then

we propose our scheme which uses binary SLMs. Though our scheme still has

some drawbacks such as poor light efficiency or precise alignment requirements,

we show through our simulations that even in the presence of severe practical con-

straints on system components, the coverage of the complex plane is much more

satisfactory than that achieved by previous schemes. Meanwhile, the scheme

can be tailored to operate at any wavelength within a wide range. Noting that

the drawbacks of our scheme are also shared to a certain extent by previous

schemes, we can say that our solution turns out to be a strong option for de-

signers, especially to those who wish enjoy the robust nature of binary SLMs.

Actually, we believe that our design also has the potential to be quite benefi-

cial and instructive to SLM designers as well. For instance, rather than trying

to design a physical SLM which provides full complex modulation in a direct
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manner, these designers can focus on the optical implementation of the 4f sys-

tem that we propose in Chapter 4. We believe that possibly with some minor

modifications, this 4f system can be implemented within a small volume. If

the required alignment precision is also achieved, it is possible to effectively ob-

tain a full-complex SLM in an indirect manner, where that full complex SLM

will most probably have much superior qualifications compared to any existing

multilevel SLM (better coverage of complex plane, eliminated diffraction orders,

etc.). Needless to say, holographic displays will enormously benefit from all these

possible developments.

To sum up, we believe that in this thesis, we provide systematic solutions

to the signal processing problems that arise within the context of holographic

displays constructed using binary SLMs and that were thought to be challenging.

The solutions we present are quite ready to be directly applied to these problems.

Therefore, we expect that with the increased usage of the more robust binary

SLMs, holographic displays will be more robust, efficient and flexible. Actually,

in our belief, another consequence of this study is that, researchers working on

SLM design (in fields such as MEMS, MOEMS, nanotechnology etc.) can now

concentrate on developing robust binary SLMs with improved properties (such

as finer pixels, higher light throughput, larger pixel count, smaller response time

etc.) rather than trying to improve the dynamic range of currently existing

non-robust multilevel SLMs. Our signal processing based methods can easily

compensate for the low dynamic range of binary SLMs, making it possible for us

to enjoy their many advantages.

140



Bibliography

[1] E. Ulusoy, L. Onural, and H. M. Ozaktas, “Synthesis of three-dimensional

light fields with binary spatial light modulators,” Journal of the Optical

Society of America A, vol. 28, pp. 1211–1223, 2011.

[2] E. Ulusoy, L. Onural, and H. M. Ozaktas, “Full-complex amplitude modu-

lation with binary spatial light modulators,” Journal of the Optical Society

of America A, vol. 28, pp. 2310–2321, 2011.

[3] E. Ulusoy, L. Onural, and H. M. Ozaktas, “Signal processing for three-

dimensional holographic television displays that use binary spatial light

modulators,” in Proceedings of IEEE Conference on Signal Processing and

Communications Applications Conference, pp. 41–44, 2010.

[4] T. Okoshi, Three Dimensional Imaging Techniques. New York Academic

Press, 1976.

[5] S. A. Benton, Three Dimensional Imaging. SPIE, 1977.

[6] J. Ebbeni and A. Monfils, Three Dimensional Imaging. SPIE, 1983.

[7] M. W. Vannier, J. Marsh, and P. R. Biondetti, Three Dimensional Imaging.

Pergamon Press, 1988.

[8] G. T. Herman, Three Dimensional Imaging. Wiley, 2000.

[9] B. Javidi, F. Okano, and J. Y. Son, Three Dimensional Imaging, Visual-

ization, and Display. Springer, 2009.

141



[10] O. Schreer, P. Kauff, and T. Sikora, 3D Videocommunication: Algorithms,

Concepts, and Real-time Systems in Human Centred Communication. Wi-

ley, 2005.

[11] L. Onural, 3D Video Technologies: An Overview of Research Trends. SPIE

Press, 2011.

[12] M. Mrak, M. Grgic, and M. Kunt, High-Quality Visual Experience:

Creation, Processing and Interactivity of High-Resolution and High-

Dimensional Video Signals. Springer, 2010.

[13] R. Ronfard and G. Taubin, Image and Geometry Processing for 3D Cine-

matography. Springer, 2010.

[14] B. Javidi and F. Okano, Three-Dimensional Video and Display: Devices

and Systems. SPIE, 2001.

[15] B. Mendiburu, 3D TV and 3D Cinema: Tools and Processes for Creative

Stereoscopy. Elsevier Science, 2011.

[16] E. B. Goldstein, Sensation and Perception. Wadsworth Cengage Learning,

2009.

[17] I. P. Howard, Perceiving in Depth, Volume 1: Basic Mechanisms. Oxford

University Press, USA, 2012.

[18] I. P. Howard and B. J. Rogers, Perceiving in Depth, Volume 2: Stereoscopic

Vision. Oxford University Press, USA, 2012.

[19] N. A. Valius, Stereoscopy. Focal P., 1966.

[20] J. Merritt and S. S. Fisher, Stereoscopic Displays and Applications. SPIE,

1990.

[21] I. Sexton and P. Surman, “Stereoscopic and autostereoscopic display sys-

tems: An in-depth review of past, present and future technologies,” IEEE

Signal Processing Magazine, vol. 16, pp. 85–99, 1999.

142



[22] A. J. Woods, Stereoscopic Displays and Virtual Reality Systems XII. SPIE,

2005.

[23] F. P. Miller, A. F. Vandome, and J. McBrewster, Stereoscopy: Head-

mounted Display, LCD Shutter Glasses, Anaglyph Image, Autostereogram,

Pulfrich Effect, Lenticular Printing, Stereopsis, Photogrammetry, Stere-

ogram, Computer Vision, Depth Perception, Binocular Vision, CIE 1931

Color Space. Alphascript Publishing, 2009.

[24] J. E. Melzer and K. W. Moffitt, Head-Mounted Displays: designing for the

user. McGraw-Hill, 1997.

[25] M. Halle, “Autostereoscopic displays and computer graphics,” Computer

Graphics, ACM SIGGRAPH, vol. 31, pp. 58–62, 1997.

[26] N. A. Dodgson, “Autostereoscopic 3D displays,” Computer, vol. 38, pp. 31–

36, 2005.

[27] K. Talmi and J. Liu, “Eye and gaze tracking for visually controlled inter-

active stereoscopic displays,” Signal Processing: Image Communication,

vol. 14, pp. 799–810, 1999.

[28] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A com-

parison and evaluation of multi-view stereo reconstruction algorithms,” in

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, vol. 1, pp. 519–528, 2006.

[29] F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,”

Displays, vol. 25, pp. 99–108, 2004.

[30] M. Lambooij, W. IJsselsteijn, and M. Fortuin, “Visual discomfort and vi-

sual fatigue of stereoscopic displays: A review,” Journal of Imaging Science

and Technology, vol. 53, pp. 1–14, 2009.

143



[31] L. Onural, “Television in 3D: What are the prospects?,” Proceedings of the

IEEE, vol. 95, pp. 1143–1145, 2007.

[32] R. Zone, Stereoscopic Cinema and the Origins of 3D film, 1838-1952. The

University Press of Kentucky, 2007.

[33] D. Gabor, “A new microscopic principle,” Nature, vol. 161, pp. 777–778,

1948.

[34] D. Gabor, “Holography, 1948-1971,” Proceedings of the IEEE, vol. 60,

pp. 655–668, 1972.

[35] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography. Bell

Telephone Laboratories, 1983.

[36] P. Hariharan, Basics of Holography. Cambridge University Press, 2002.

[37] C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging. Wiley,

2002.

[38] G. Saxby, Practical Holography. Institute of Physics Publication, 2004.

[39] G. K. Ackermann, J. Eichler, and J. Eichler, Holography: A Practical Ap-

proach. John Wiley and Sons, 2008.

[40] S. A. Benton and V. M. Bove, Holographic Imaging. Wiley-Interscience,

2008.

[41] H. M. Smith and R. A. Bartolini, Holographic Recording Materials.

Springer-Verlag, 1977.

[42] H. J. Caulfield and E. N. Leith, The Art and Science of Holography: a

Tribute to Emmett Leith and Yuri Denisyuk. SPIE, 2004.

[43] S. Johnston, Holographic Visions: a History of New Science. Oxford Uni-

versity Press, 2006.

144



[44] J. E. Ludman, H. J. Caulfield, and J. Riccobono, Holography for the New

Millennium. Springer, 2002.

[45] L. Onural, “Research trends in holographic 3DTV displays,” in LEOS An-

nual Meeting Conference Proceedings, 2009., pp. 6–7, 2009.

[46] L. Onural, “An overview of research in 3DTV,” in Systems, Signals and Im-

age Processing, 2007 and 6th EURASIP Conference focused on Speech and

Image Processing, Multimedia Communications and Services, p. 3, 2007.

[47] L. Onural, “Holographic 3DTV research within the european 3DTV

project,” in Digital Holography and Three-Dimensional Imaging, p. DWA1,

Optical Society of America, 2008.

[48] L. Onural, F. Yaras, and H. Kang, “Current research activities on holo-

graphic video displays,” in SPIE Conference Series, vol. 7690, 2010.

[49] T. C. Poon, Digital Holography and Three-Dimensional Display: Principles

and Applications. Springer, 2006.

[50] U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Record-

ing, Numerical Reconstruction, and Related Techniques. Springer, 2005.

[51] L. Onural, A. Gotchev, H. M. Ozaktas, and E. Stoykova, “A survey of sig-

nal processing problems and tools in holographic three-dimensional televi-

sion,” IEEE Trans on Circuits and Systems for Video Technology, vol. 17,

pp. 1631–1646, 2007.

[52] L. Onural and H. M. Ozaktas, “Signal processing issues in diffraction and

holographic 3DTV,” Sign Pro: Image Comm, vol. 22, pp. 169–177, 2007.

[53] M. Lucente and T. A. Galyean, “Rendering interactive holographic im-

ages,” in Proc. of the 22nd annual conference on Computer graphics and

interactive techniques, pp. 387–394, 1995.

145



[54] M. Lucente, “Interactive three-dimensional holographic displays: seeing

the future in depth,” SIGGRAPH Comput. Graph., vol. 31, pp. 63–67,

1997.

[55] Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi,

“Three-dimensional imaging and processing using computational holo-

graphic imaging,” Proc. IEEE, vol. 94, pp. 636–653, 2006.

[56] G. B. Esmer, V. Uzunov, L. Onural, H. M. Ozaktas, and A. Gotchev,

“Diffraction field computation from arbitrarily distributed data points in

space,” Signal Processing: Image Communication, vol. 22, pp. 178–187,

2007.

[57] M. Janda, I. Hanak, and L. Onural, “Hologram synthesis for photorealistic

reconstruction,” J. Opt. Soc. Am. A, vol. 25, pp. 3083–3096, 2008.

[58] G. B. Esmer, L. Onural, and H. M. Ozaktas, “Exact diffraction calculation

from fields specified over arbitrary curved surfaces,” Optics Communica-

tions, vol. 284, pp. 5537–5548, 2011.

[59] S. A. Benton, Selected Papers on Three-Dimensional Displays. SPIE Op-

tical Engineering Press, 2000.

[60] H. M. Ozaktas and L. Onural, Three-Dimensional Television: Capture,

Transmission, Display. Springer, 2008.

[61] J. W. Goodman, Introduction to Fourier Optics. McGraw-Hill, 1996.

[62] L. Yaroslavsky, Digital Holography and Digital Image Processing: Princi-

ples, Methods, Algorithms. Kluwer Academic, 2004.

[63] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Optics

Letters, vol. 22, pp. 1268–1270, 1997.

[64] G. Tricoles, “Computer-generated holograms: an historical review,” Appl.

Opt., vol. 26, pp. 4351–4360, 1987.

146



[65] O. Bryngdahl and F. Wyrowski, “Digital holography - computer-generated

holograms,” in Progress in Optics (E. Wolf, ed.), vol. 28, pp. 1 – 86, Else-

vier, 1990.

[66] J. Y. Chen, Computer Generated Holography. University of Massachusetts.

Lowell, 1991.

[67] S. H. Lee, Selected Papers on Computer Generated Holograms and Diffrac-

tive Optics. SPIE Optical Engineering Press, 1992.

[68] D. Abookasis and J. Rosen, “Computer-generated holograms of three-

dimensional objects synthesized from their multiple angular viewpoints,”

J. Opt. Soc. Am. A, vol. 20, pp. 1537–1545, 2003.

[69] C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography

as a generic display technology,” Computer, vol. 38, pp. 46–53, 2005.

[70] W. J. Dallas, “Computer-generated holograms,” in Digital Holography and

Three-Dimensional Display (T. C. Poon, ed.), pp. 1–49, Springer US, 2006.

[71] B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary

masks,” Appl. Opt., vol. 5, pp. 967–969, 1966.

[72] A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated

by computer,” Appl. Opt., vol. 6, pp. 1739–1748, 1967.

[73] J. P. Waters, “Three-dimensional Fourier-transform method for synthesiz-

ing binary holograms,” J. Opt. Soc. Am., vol. 58, pp. 1284–1288, 1968.

[74] R. A. Gabel and B. Liu, “Minimization of reconstruction errors with

computer-generated binary holograms,” Appl. Opt., vol. 9, pp. 1180–1191,

1970.

[75] A. R. Sass, “Binary intensity holograms,” J. Opt. Soc. Am., vol. 61,

pp. 910–915, 1971.

147



[76] P. L. Ransom and R. F. Henton, “Analysis of a computer-generated binary-

phase hologram,” Appl. Opt., vol. 13, pp. 2765–2767, 1974.

[77] W. Lee, “Binary synthetic holograms,” Appl. Opt., vol. 13, pp. 1677–1682,

1974.

[78] R. A. Gabel, “Reconstruction errors in computer-generated binary holo-

grams: a comparative study,” Appl. Opt., vol. 14, pp. 2252–2255, 1975.

[79] W. Lee, “Binary computer-generated holograms,” Appl. Opt., vol. 18,

pp. 3661–3669, 1979.

[80] M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and

T. Reyhan, “Holographic 3DTV displays using spatial light modulators,”

in Three-Dimensional Television: Capture, Transmission, Display (H. M.

Ozaktas and L. Onural, eds.), pp. 529–555, Springer, 2008.

[81] F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays:

A survey,” Journal of Display Technology, vol. 6, pp. 443–454, 2010.

[82] L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional

video displays.” Accepted for publication in Proc. IEEE.

[83] F. Yaras, H. Kang, and L. Onural, “Circularly configured multi-SLM holo-

graphic display system,” in 3DTV Conference: The True Vision - Capture,

Transmission and Display of 3D Video (3DTV-CON), 2011, pp. 1–4, 2011.

[84] J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light

modulators: a tutorial,” Proc. IEEE, vol. 78, pp. 826 –855, 1990.

[85] U. Efron, Spatial Light Modulator Technology: Materials, Devices, and

Applications. Marcel Dekker, 1994.

[86] P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey,

V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: Techniques

148



and technologies,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 17, pp. 1647–1658, 2007.

[87] R. W. Cohn, “Pseudorandom encoding of complex-valued functions onto

amplitude-coupled phase modulators,” J. Opt. Soc. Am. A, vol. 15,

pp. 868–883, 1998.

[88] R. W. Cohn, “Analyzing the encoding range of amplitude-phase coupled

spatial light modulators,” Optical Engineering, vol. 38, pp. 361–367, 1999.

[89] Y. Yang, H. Stark, D. Gurkan, C. L. Lawson, and R. W. Cohn, “High-

diffraction-efficiency pseudorandom encoding,” J. Opt. Soc. Am. A, vol. 17,

pp. 285–293, 2000.

[90] C. Stolz, L. Bigue, and P. Ambs, “Implementation of high-resolution

diffractive optical elements on coupled phase and amplitude spatial light

modulators,” Appl. Opt., vol. 40, pp. 6415–6424, 2001.

[91] V. Arrizon, “Optimum on-axis computer-generated hologram encoded

into low-resolution phase-modulation devices,” Optics Letters, vol. 28,

pp. 2521–2523, 2003.

[92] J. A. Davis, K. O. Valadez, and D. M. Cottrell, “Encoding amplitude and

phase information onto a binary phase-only spatial light modulator,” Appl.

Opt., vol. 42, pp. 2003–2008, 2003.

[93] V. Arrizon, G. Mendez, and D. S. de La-Llave, “Accurate encoding of

arbitrary complex fields with amplitude-only liquid crystal spatial light

modulators,” Optics Express, vol. 13, pp. 7914–7927, 2005.

[94] V. Arrizon, U. Ruiz, R. Carrada, and L. A. Gonzalez, “Pixelated phase

computer holograms for the accurate encoding of scalar complex fields,” J.

Opt. Soc. Am. A, vol. 24, pp. 3500–3507, 2007.

149



[95] T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a

digital micromirror device,” Opt. Eng., vol. 40, pp. 926–933, 2001.

[96] B. Javidi and F. Okano, Three-Dimensional Television, Video and Display

Technology. Springer, 2002.

[97] D. Dudley, W. Duncan, and J. Slaughter, “Emerging Digital Micromirror

Device (DMD) applications,” 2003. White Paper, Texas Instruments.

[98] F. P. Miller, A. F. Vandome, and J. McBrewster, Digital Micromirror De-

vice. VDM Publishing House Ltd., 2010.

[99] M. E. Motamedi, MOEMS: Micro-Opto-Electro-Mechanical Systems. SPIE

Press, 2005.

[100] E. Ulusoy, G. Esmer, H. M. Ozaktas, L. Onural, A. Gotchev, and

V. Uzunov, “Signal processing problems and algorithms in display side

of 3DTV,” in Proceedings of 2006 IEEE Conference on Image Processing,

pp. 2985–2988, 2006.

[101] E. Ulusoy, V. Uzunov, L. Onural, H. M. Ozaktas, and A. Gotchev, “Three-

dimensional monochromatic light field synthesis with a deflectable mirror

array device,” in Proceedings of SPIE Volume 6187, 2006.

[102] E. Ulusoy, L. Onural, and H. M. Ozaktas, “Analysis of the complex light

field generated by a deflectable mirror array device,” in Proceedings of SPIE

Volume 6252, 2006.

[103] E. Ulusoy, L. Onural, H. M. Ozaktas, V. Uzunov, and A. Gotchev, “Three-

dimensional complex scalar light field synthesis with a deflectable mirror

array device,” in Proceedings of 2nd Workshop on Immersive Communica-

tion and Broadcast Systems, ICOB 2005, Berlin, Germany, 2005.

[104] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd edition.

Wiley, 2007.

150



[105] G. C. Sherman, “Application of the convolution theorem to Rayleigh’s

integral formulas,” J. Opt. Soc. Am., vol. 57, pp. 546–547, 1967.

[106] E. Lalor, “Conditions for the validity of the angular spectrum of plane

waves,” J. Opt. Soc. Am., vol. 58, pp. 1235–1237, 1968.

[107] L. Onural, “Exact analysis of the effects of sampling of the scalar diffraction

field,” J. Opt. Soc. Am. A, vol. 24, pp. 359–367, 2007.

[108] L. Onural, “Sampling of the diffraction field,” Appl. Opt., vol. 39, pp. 5929–

5935, 2000.

[109] S. B. Tucker, J. O. Castaneda, and W. T. Cathey, “Matrix description of

near-field diffraction and the fractional Fourier transform,” J. Opt. Soc.

Am. A, vol. 16, pp. 316–322, 1999.

[110] H. M. Ozaktas, S. O. Arik, and T. Coskun, “Fundamental structure of

Fresnel diffraction: natural sampling grid and the fractional Fourier trans-

form,” Optics Letters, vol. 36, pp. 2524–2526, 2011.

[111] H. M. Ozaktas, S. O. Arik, and T. Coskun, “Fundamental structure of Fres-

nel diffraction: longitudinal uniformity with respect to fractional Fourier

order,” Optics Letters, vol. 37, pp. 103–105, 2012.

[112] F. Gori, “Fresnel transform and sampling theorem,” Opt. Comm., vol. 39,

pp. 293–297, 1981.

[113] F. Wyrowski, “Diffractive optical elements: iterative calculation of quan-

tized, blazed phase structures,” J. Opt. Soc. Am. A, vol. 7, pp. 961–969,

1990.

[114] J. N. Mait, “Understanding diffractive optic design in the scalar domain,”

J. Opt. Soc. Am. A, vol. 12, pp. 2145–2158, 1995.

151



[115] Y. H. Wu and P. Chavel, “Cell-oriented on-axis computer-generated holo-

grams for use in the Fresnel diffraction mode,” Appl. Opt., vol. 23, pp. 228–

238, 1984.

[116] M. Li, A. Larsson, N. Eriksson, and M. Hagberg, “Continuous-level phase-

only computer-generated hologram realized by dislocated binary gratings,”

Opt. Lett., vol. 21, pp. 1516–1518, 1996.

[117] R. Hauck and O. Bryngdahl, “Computer-generated holograms with pulse-

density modulation,” J. Opt. Soc. Am. A, vol. 1, pp. 5–10, 1984.

[118] O. K. Ersoy, J. Zhuang, and J. Brede, “Iterative interlacing approach for

synthesis of computer-generated holograms,” Appl. Opt., vol. 31, pp. 6894–

6901, 1992.

[119] P. Thorston, F. Wyrowski, and O. Bryngdahl, “Importance of initial distri-

bution for iterative calculation of quantized diffractive elements,” Journal

of Modern Optics, vol. 40, pp. 591–600, 1993.

[120] C. Wu, C. Chen, and M. A. Fiddy, “Iterative procedure for im-

proved computer-generated hologram reconstruction,” Appl. Opt., vol. 32,

pp. 5135–5140, 1993.

[121] N. Yoshikawa and T. Yatagai, “Phase optimization of a kinoform by sim-

ulated annealing,” Appl. Opt., vol. 33, pp. 863–868, 1994.

[122] E. Zhang, S. Noehte, C. H. Dietrich, and R. Manner, “Gradual and random

binarization of gray-scale holograms,” Appl. Opt., vol. 34, pp. 5987–5995,

1995.

[123] L. Legeard, P. Refregier, and P. Ambs, “Multicriteria optimality for it-

erative encoding of computer-generated holograms,” Appl. Opt., vol. 36,

pp. 7444–7449, 1997.

152



[124] H. H. Suh, “Color-image generation by use of binary phase holograms,”

Opt. Lett., vol. 24, pp. 661–663, 1999.

[125] R. Eschbach, “Comparison of error diffusion methods for computer-

generated holograms,” Appl. Opt., vol. 30, pp. 3702–3710, 1991.

[126] A. Kirk, K. Powell, and T. Hall, “A generalization of the error diffusion

method for binary computer-generated hologram design,” Opt. Comm.,

vol. 92, pp. 12–18, 1992.

[127] R. Eschbach and Z. Fan, “Complex valued error diffusion for off-axis

computer-generated holograms,” Appl. Opt., vol. 32, pp. 3130–3136, 1993.

[128] F. Fetthauer, S. Weissbach, and O. Bryngdahl, “Equivalence of error diffu-

sion and minimal average error algorithms,” Opt. Comm., vol. 113, pp. 365–

370, 1995.

[129] K. Heggarty and R. Chevallier, “Signal window minimum average error

algorithm for computer-generated holograms,” J. Opt. Soc. Am. A, vol. 15,

pp. 625–635, 1998.

[130] M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital

holograms by direct binary search,” Applied Optics, vol. 26, pp. 2788–2798,

1987.

[131] B. K. Jennison and J. P. Allebach, “Efficient design of direct-binary-search

computer-generated holograms,” J. Opt. Soc. Am. A, vol. 8, pp. 652–660,

1991.

[132] J. Zhuang and O. K. Ersoy, “Fast decimation-in-frequency direct binary

search algorithms for synthesis of computer-generated holograms,” J. Opt.

Soc. Am. A, vol. 11, pp. 135–143, 1995.

153



[133] J. Zhuang and O. K. Ersoy, “Optimal decimation-in-frequency iterative

interlacing technique for synthesis of computer-generated holograms,” J.

Opt. Soc. Am. A, vol. 12, pp. 1460–1468, 1995.

[134] B. B. Chhetri, S. Yang, and T. Shimomura, “Stochastic approach in the ef-

ficient design of the direct-binary-search algorithm for hologram synthesis,”

Appl. Opt., vol. 39, pp. 5956–5964, 2000.

[135] F. Wyrowski, “Iterative quantization of digital amplitude holograms,”

Appl. Opt., vol. 28, pp. 3864–3870, 1989.

[136] L. Bigue and P. Ambs, “Optimal multicriteria approach to the iterative

Fourier transform algorithm,” Appl. Opt., vol. 40, pp. 5886–5893, 2001.

[137] S. H. Tao and X. Yuan, “Practical implementation of the phase-

quantization technique in an iterative Fourier-transform algorithm,” Appl.

Opt., vol. 43, pp. 2089–2092, 2004.

[138] J. P. Allebach, “Representation-related errors in binary digital holograms:

a unified analysis,” Appl. Opt., vol. 20, pp. 290–299, 1981.

[139] B. K. Jennison and J. P. Allebach, “Analysis of the leakage from computer-

generated holograms synthesized by direct binary search,” J. Opt. Soc. Am.

A, vol. 6, pp. 234–243, 1989.

[140] F. Wyrowski, “Diffraction efficiency of analog and quantized digital ampli-

tude holograms: analysis and manipulation,” J. Opt. Soc. Am. A, vol. 7,

pp. 383–393, 1990.

[141] Y. Chang, P. Zhou, and J. H. Burge, “Analysis of phase sensitivity for

binary computer-generated holograms,” Appl. Opt., vol. 45, pp. 4223–4234,

2006.

154



[142] C. Maurer, A. Schwaighofer, A. Jesacher, S. Bernet, and M. Ritsch-Marte,

“Suppression of undesired diffraction orders of binary phase holograms,”

Appl. Opt., vol. 47, pp. 3994–3998, 2008.

[143] R. Piestun, B. Spektor, and J. Shamir, “On-axis binary-amplitude

computer-generated holograms,” Opt. Comm., vol. 136, pp. 85–92, 1997.

[144] R. Ulichney, Digital Halftoning. MIT Press, 1987.

[145] R. Tudela, I. Labastida, E. Martin-Badosa, S. Vallmitjana, I. Juvells, and

A. Carnicer, “A simple method for displaying fresnel holograms on liquid

crystal panels,” Opt. Comm., vol. 214, pp. 107–114, 2002.

[146] R. Tudela, E. Martin-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and

A. Carnicer, “Wavefront reconstruction by adding modulation capabilities

of two liquid crystal devices,” Opt. Eng., vol. 43, pp. 2650–2657, 2004.

[147] D. A. Gregory, J. C. Kirsch, and E. C. Tam, “Full complex modulation

using liquid-crystal televisions,” Appl. Opt., vol. 31, pp. 163–165, 1992.

[148] R. D. Juday, “Full-complex modulation with two one-parameter spatial

light modulators.” United States Patent 5,416,618, 1995.

[149] L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, com-

plex modulation by the use of two coupled-mode liquid-crystal televisions,”

Appl. Opt., vol. 35, pp. 4567–4576, 1996.

[150] P. M. Birch, R. Young, D. Budgett, and C. Chatwin, “Two-pixel computer-

generated hologram with a zero-twist nematic liquid-crystal spatial light

modulator,” Optics Letters, vol. 25, pp. 1013–1015, 2000.

[151] V. Arrizon, “Complex modulation with a twisted-nematic liquid-crystal

spatial light modulator: double-pixel approach,” Optics Letters, vol. 28,

pp. 1359–1361, 2003.

155



[152] E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and

phase modulation using commercial twisted nematic LCDs,” Appl. Opt.,

vol. 47, pp. 2076–2081, 2008.

[153] R. C. Gonzales and R. E. Woods, Digital Image Processing, 2nd edition.

Prentice Hall, 2002.

[154] T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of

digital holograms for three-dimensional object reconstruction and recogni-

tion,” Appl. Opt., vol. 41, pp. 4124–4132, 2002.

156


