
AN IMPROVED SPRING EMBEDDER
LAYOUT ALGORITHM FOR COMPOUND

GRAPHS

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Alper Karaçelik

August, 2012

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Doğrusöz(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Burkay Genç

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Dr. Cevat Şener

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

AN IMPROVED SPRING EMBEDDER LAYOUT
ALGORITHM FOR COMPOUND GRAPHS

Alper Karaçelik

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Doğrusöz

August, 2012

Interactive graph editing plays an important role in information visualization

systems. For qualified analysis of the given data, an automated layout calculation

is needed. There have been numerous results published about automatic layout of

simple graphs, where the vertices are depicted as points in a 2D or 3D plane and

edges as straight lines connecting those points. But simple graphs are insufficient

to cover most real life information. Relational information is often clustered

or hierarchically organized into groups or nested structures. Compound spring

embedder (CoSE) of Chisio project is a layout algorithm based on a force-directed

layout scheme for undirected, non-uniform node sized compound graphs.

In order to satisfy the end-user, layout calculation process has to finish fast,

and the resulting layout should be eye pleasing. Therefore, several methods

were developed for improving both running time and the visual quality of the

layout. With the purpose of improving the visual quality of CoSE, we adapted

a multi-level scaling strategy. For improving the performance of the CoSE, the

grid-variant algorithm proposed by Fruchterman and Reingold and parallel force

calculation strategy by using graphics processing unit (GPU) were also adopted.

Additionally, tuning of the parameters like spring constant and cooling factor

were considered, as they affect the behavior of the physical system dramatically.

Our experiments show that after some tuning and adaptation of the methods

above, running time decreased and the visual quality of the layout improved

significantly.

Keywords: Interactive graph editing, Automated graph layout, Force-directed

placement, Compound graph, FR-Grid Variant, Multi-level scaling, Parallel pro-

gramming.

iii

ÖZET

İYİLEŞTİRİLMİŞ BİR BİLEŞİK ÇİZGE YERLEŞTİRME
ALGORİTMASI

Alper Karaçelik

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doçent Dr. Uğur Doğrusöz

Ağustos, 2012

Etkileşimli çizge düzenleme, bilgi görselleştirme sistemlerinde önemli bir rol oy-

namaktadır. Eldeki verinin kaliteli analizini yapmak için otomatikleştirilmiş

yerleşim hesaplaması yapmak gerekmektedir. Basit çizgelerin otomatik

yerleşiminin yapılmasına ilişkin bir çok çalışma yapılmıştır. Genellikle bu basit

çizgelerde köşeler iki ya da üç boyutlu düzlemde nokta, kenarlar da bu nokta-

ları bağlayan doğru ya da eğriler olarak gösterilmektedir. Ancak, ilişkisel veriler,

genellikle hiyerarşik veya kümelenmiş olarak organize edilmektedirler. CoSE ile,

kuvvet yönelimli yerleşim şemasına dayalı bir bileşik çizge yerleştirme algoritması

sunulmaktadır. CoSE ile birlikte yönsüz, birbirinden farklı büyüklükte köşelere

sahip bileşik çizgelerin yerleşimi sağlanmaktadır.

Kullanıcı memnuniyetini sağlamak için çizge yerleştirme işinin kısa sürede

tamamlanması ve çizgenin göze hoş gelen bir biçimde ekranda yer alması gerek-

metedir. Hem performans hem de görsel kalitenin iyileştrilmesi amacıyla sunulan

bir çok method bulunmaktadır. Bu tez çalışmasında CoSE’nin görsel kalitesinin

geliştirilmesi amacıyla çok seviyeli ölçeklendirme stratejisini adapte ettik. Ayrıca,

çalışma zamanının iyileştirilmesi için de Fruchterman ve Reingold’un kareleme

yöntemi ile grafik işleme unitesi (GPU) üzerinde eş-zamanlı programlama strate-

jisini CoSE’ye uyguladık. Ek olarak, yay sabiti, serinleme faktörü ve benzeri

parametrelerin ayarlanması işini de fiziksel sistemin davranışını önemli ölçüde etk-

ilediği için dikkate aldık. Yaptığımız deneyler gösterdi ki, parametre ayarlamaları

ve yukarıda bahsedilen metodların adaptasyonu ile birlikte CoSE algoritmasının

çalışma süresi önemli ölçüde azalırken, sonuç çizgelerin görsel kalitesi ise önemli

miktarda iyileştirildi.

iv

v

Anahtar sözcükler : Etkileşimli çizge düzenleme, Otomatik çizge yerleşimi,

Kuvvet yönelimli yerleşim, Bileşik çizge, FR kareleme yöntemi, Çok-seviyeli

ölçeklendirme, Eş zamanlı programlama.

Acknowledgement

First and foremost, I would like to thank to my advisor, Assoc. Prof. Uğur

Doğrusöz for his guidance and patience during my thesis study. He always in-

spired me for pushing myself harder and motivated me for finding the best solu-

tions all the time.

I would also like to thank to the authority of Bilkent University for providing

me with a good environment and facilities to complete my thesis. I am very

grateful to all the instructors that helped me to improve my academic knowledge.

During the two years, I have shared my office with fun and friendly colleagues.

Thanks to them, I always felt like at home. But my special thanks are to one

of my best friends, Selçuk Onur Sümer. My graduate period would not be the

same without him. Also, I would like to thank to Salim Arslan for his assistance

during my graduation.

Finally, yet most importantly, I would like to thank my parents with all my

heart for their endless love and support and to my friends for their companion-

ships.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 7

2 Background and Related Work 8

2.1 Graphs . 8

2.2 Automated Layout Calculation 10

2.3 Compound Spring Embedder (CoSE) 13

2.4 Fruchterman and Reingold’s Grid Variant 16

2.5 Multi-level Scaling . 18

2.5.1 Solar System . 19

2.5.2 Clustering . 21

2.6 Graphics Processor Unit (GPU) Support for Parallel Computing . 22

2.6.1 Graphics Processor Unit (GPU) 23

2.6.2 CUDA Framework . 25

vii

CONTENTS viii

3 Improving by FR-Grid Variant 26

3.1 Adaptation . 27

3.2 Complexity Analysis . 30

3.3 Results . 31

3.3.1 Implementation Issues . 33

4 Improving by Multi-level Scaling Strategy 34

4.1 Adaptation . 34

4.1.1 Coarsening Algorithm . 35

4.2 Complexity Analysis . 42

4.3 Results . 46

4.4 Future Work . 48

5 Improving by GPU Parallelism 51

5.1 Device Memory . 51

5.2 Adaptation . 53

5.2.1 Device Side . 53

5.2.2 Host Side . 59

5.3 Complexity Analysis . 62

5.4 Results . 64

5.5 Future Work . 68

CONTENTS ix

6 Conclusion 69

6.1 Discussion . 70

6.1.1 Parameter Tuning . 70

6.2 Availability . 71

List of Figures

1.1 Radiographs showing different parts of the human body [1]. 2

1.2 Pathway Commons representation of the pathway of ATM medi-

ated phosphorylation of repair proteins [2]. 3

1.3 Cytoscape representation of the pathway of ATM mediated phos-

phorylation of repair proteins [3]. 3

1.4 VISIBIOweb representation of the pathway of ATM mediated

phosphorylation of repair proteins (abstractions at different lev-

els are shown) [4]. 4

1.5 VISIBIOweb representation of the pathway of ATM mediated

phosphorylation of repair proteins (cellular compartments are

shown with clustered structure) [4]. 5

1.6 A map which can be used by intelligence agents for investigating

a case (produced by [5]). 6

1.7 A clustered Facebook friendship map [6]. 6

2.1 A sample compound graph. 9

2.2 Randomly placed particles in initial layout (left), final placement

of particles when the system is converged (right) [7]. 11

x

LIST OF FIGURES xi

2.3 Attractive and repulsive forces versus distance [7]. 13

2.4 A sample compound graph (left), corresponding physical model

(right). Grey circle: barycenter, red solid line: gravitational force,

zigzag: regular spring force, black solid line: constant spring force

[8]. 15

2.5 A squared bounding box of a graph [7]. 17

2.6 Layout algorithm with multi-level scaling method. 18

2.7 Solar system representation of an 8x8 mesh graph G0 (left), coarser

graph G1 of G0 (right) [9]. 19

2.8 Solar system coarsening algorithm [9]. 20

2.9 A part of Gi: 2 Solar Systems S0 and T0 with s-nodes s0, t0, p-

nodes u0, v0 (left), corresponding part of coarser graph Gi+1 (right)

[9]. 20

2.10 Final placement of G2 (left-up), initial placement of G1 (right-up),

final placement of G1 (left-bottom), initial placement of G0 (right-

bottom) [9]. 21

2.11 A 2× 3 sized grid with 3× 4 sized block [10]. 23

2.12 Memory hierarchy of GPU [10]. 24

3.1 A gridded CoSE Graph. The circle around node b indicates the

repulsion circle of b. 28

3.2 Repulsive force calculations after the adaptation of FR-Grid Vari-

ant method. 29

3.3 Execution time comparison with mesh-like graphs (Using FR-grid

variant method). 31

LIST OF FIGURES xii

3.4 Execution time comparison with tree-like graphs (Using FR-grid

variant method). 32

3.5 Execution time comparison with compound graphs (Using FR-grid

variant method). 32

4.1 A sample contraction process. a) The initial phase of the coars-

ening graph, b) v and u are chosen to be matched, c) Node t is

created and neighbors of v is connected to the t, d) v is removed

from the coarsening graph e) Neighbors of u is connected to the t,

f) u is removed from the coarsening graph. 37

4.2 Coarsening steps of a compound node. a) The input graph M0, b)

g and h are matched, a new node m ∈ M1 is created, neighbors

of g are connected to m, c) g is removed, d) Neighbors of h are

connected to m, e) h is removed, f) d and e are matched, a new

node n ∈M1 is created, neighbors of d are connected to n, g) d is

removed, h) Neighbors of e are connected to n, i) e is removed, j)

k and l are matched, a new node o ∈M1 is created. 38

4.3 Coarsening steps of a compound node (Continues from the Fig-

ure 4.2). k) Neighbors of k are connected to o, l) k is removed, m)

l is removed, n) M1, o) f and m are matched, a new node p ∈M2

is created, neighbors of m are connected to p, p) m is removed r)

f is removed s) M2. 39

4.4 Coarsening method. 40

4.5 Contraction method. 40

4.6 Generation of coarser CoSE graph from CoarseningGraph. 41

4.7 Generation of nodes of coarser graph. 41

4.8 Generation of edges of coarser graph. 41

LIST OF FIGURES xiii

4.9 A random mesh-like graph M , coarsened in 11 steps. Levels are

laid out via CoSE [8] after adapting the Walshaw’s clustering

method [11]. On the left-top, there is M10, the coarsest graph,

with 2 nodes. On the right-bottom, there is the final layout of

M = M0. 43

4.10 A compound graph N , with 10 levels. Levels are laid out via CoSE

[8] after adapting the Walshaw’s clustering method [11]. On the

left-top, there is N9, the coarsest graph, with 3 nodes in the root

graph, and 7 nodes in total. On the right-bottom, there is the final

layout of N = N0. 44

4.11 Execution time comparison with mesh-like graphs (Using multi-

level scaling strategy). 46

4.12 Execution time comparison with tree-like graphs (Using multi-level

scaling strategy). 47

4.13 Execution time comparison with compound graphs (Using multi-

level scaling strategy). 47

4.14 Graphs which are laid out via CoSE, before adapting the multi-

level scaling strategy (left); same graphs after adapting the multi-

level scaling strategy (right). 49

4.15 Graphs which are laid out via CoSE, before adapting the multi-

level scaling strategy (left); same graphs after adapting the multi-

level scaling strategy (right). 50

5.1 A sample graph. (Left-top coordinates of nodes are indicated) . . 54

5.2 Edge-value and edge-index arrays for the graph in Figure 5.1. For

instance, node b has one neighbor which is the 3rd node j, node g

has 2 neighbors which are the 3rd and 9th nodes (j and i), and so on. 55

LIST OF FIGURES xiv

5.3 General force calculation algorithm on the kernel. This algorithm

runs simultaneously on each thread. 59

5.4 General layout algorithm on the host side after implementing the

parallel computing approach. 62

5.5 Parallel CoSE vs. Sequential CoSE with mesh-like graphs (Only

FR-grid variant method is applied). 64

5.6 Parallel CoSE vs. Sequential CoSE with mesh-like graphs (Both

FR-grid variant and multi-level scaling methods are applied). . . . 65

5.7 Parallel CoSE vs. Sequential CoSE with tree-like graphs (Only

FR-grid variant method is applied). 65

5.8 Parallel CoSE vs. Sequential CoSE with tree-like graphs (Both

FR-grid variant and multi-level scaling methods are applied). . . . 66

5.9 Parallel CoSE vs. Sequential CoSE with compound graphs (Only

FR-grid variant method is applied). 66

5.10 Parallel CoSE vs. Sequential CoSE with compound graphs (Both

FR-grid variant and multi-level scaling methods are applied). . . . 67

List of Tables

5.1 Graph geometry matrix for the graph in Figure 5.1. 54

xv

Chapter 1

Introduction

1.1 Motivation

Information visualization is a study focusing on constructing visual representation

of large-scale textual information. It is widely used in research and analysis of

data because visual materials prevent people from losing interest on a subject,

and more importantly, make it easier to analyze and understand the underlying

data. Information visualization has applications in scientific research (Figure 1.1),

marketing analysis, cost optimizations, crime mapping (Figure 1.6), etc.

Graphs are widely used for visualizing the relational data such as social or

biological networks. Using graphs for visualization allows one to run queries on

the data as well. These queries include: “Find all the paths between two nodes”,

“Find the shortest path between two nodes” and “Find the nth degree neighbour

of a node”. Using graphs for visualization also allows integration with other

systems via pre-defined standards like BioPAX [12] or GraphML [13].

Drawing a graph is basically producing a picture of a graph topology. Gen-

erally, nodes are drawn in a circular or rectangular form or simply as dots, while

edges can be drawn as straight line segments, arcs, or arrows (if the graph is

directed) that connect the nodes. A graph can be drawn in infinitely many ways,

1

Figure 1.1: Radiographs showing different parts of the human body [1].

so aesthetics is an important issue for both manual and automated analysis. In a

quality layout of a graph, number of edge crossings and overlapping nodes should

be low, all nodes should be distributed evenly on the drawing area, adjacent

nodes should be near each other and size of the drawing area should be small [7].

Moreover, picture of the graph should exhibit structural properties like symmetry,

or there should not be any edge crossings for planar graphs. Beyond the visual

quality measures, layout calculations should take a short time. Execution time is

desired to be less than the user interaction time, which is about two seconds.

As the complexity and the size of the data to be analyzed increases, com-

pound and clustered graphs are used more frequently. A textual representation

of pathway of ATM mediated phosphorylation of repair proteins is shown in Fig-

ure 1.2. This snapshot is taken from Pathway Commons [2] which provides a

wide biological network data in BioPAX standard. It also allows to run simple

queries like: “In which networks does a specific protein exist?”.

It is necessary to compound and clustered graphs instead of the simple ones

2

Figure 1.2: Pathway Commons representation of the pathway of ATM mediated
phosphorylation of repair proteins [2].

Figure 1.3: Cytoscape representation of the pathway of ATM mediated phospho-
rylation of repair proteins [3].

3

in order to indicate the classifying information and manage the complexity of the

data. Clustering and hierarchically organizing the input data is required because

most of the time they are in the nature of complex data, and play an important

role in analysis.

Figure 1.4: VISIBIOweb representation of the pathway of ATM mediated phos-
phorylation of repair proteins (abstractions at different levels are shown) [4].

Visual representation of the same pathway in Figure 1.2 is shown in Figure 1.3.

Although compound and clustered structures are hidden, one can easily say that,

visual representation will be more useful than the textual one. For example,

results of the queries like “What is the shortest path between protein a and

4

Figure 1.5: VISIBIOweb representation of the pathway of ATM mediated phos-
phorylation of repair proteins (cellular compartments are shown with clustered
structure) [4].

5

Figure 1.6: A map which can be used by intelligence agents for investigating a
case (produced by [5]).

Figure 1.7: A clustered Facebook friendship map [6].

6

protein b, in a specific biological network?” can be visualized.

After using compound (Figure 1.4) and clustered (Figure 1.5) structures, the

analyzed data aforementioned before become more readable since abstraction

at different levels is revealed and cellular compartments are shown clearly. A

compound graph used in intelligence assessment is shown in Figure 1.6. Another

clustered graph used in social network analysis is shown in Figure 1.7.

1.2 Contribution

In this thesis, we improved the compound spring embedder (CoSE) introduced in

[8]. For improving the performance of CoSE, we adapted Fruchterman and Rein-

gold’s grid variant method [7] and applied the parallel computing strategy [14].

Furthermore, we applied a multi-level scaling method [11] in order to improve

the visual quality of the graphs produced by CoSE. These methods are described

in sections 2.4, 2.5 and 2.6, respectively. Mentioned methods and strategies are

studied, adapted to CoSE, and tested with example graphs. Obtained results are

satisfactory. After the adaptation of the FR-Grid Variant method, CoSE runs

5 to 35 times faster. Applying the parallel programming strategy also makes

CoSE run 1.5 to 15 times faster. Also, visual quality is significantly improved

by adapting the multi-level scaling strategy. Adaptation processes, obtained re-

sults, discussions and possible future work are described in Chapter 3, 4 and 5.

Additional discussions and the conclusion can be found in Chapter 6.

7

Chapter 2

Background and Related Work

2.1 Graphs

A graph G = (V,E) is a pair of a vertex (node) set V and an edge set E [15].

An edge e = (u, v) connects two vertices u, v ∈ V ; thus elements of E are 2-

element subsets of V . Graph G is called the owner graph of all nodes and edges;

conversely, nodes v ∈ V and edges e ∈ E are called the members of graph G.

Given an edge e = (v, u); v and u are called adjacent vertices (or neighbors) and

they are said to be incident to e. Also, two edges e and f are adjacent, if e 6= f

and they are connected to a common vertex. The degree of a vertex v is the

number of incident edges to it, and denoted as deg(v).

Geometry of a simple graph can vary in different applications. A vertex can

be represented as a single dot, or a fixed sized disk, rectangle or triangle. For

convenience, all 2-dimensional vertex representations can be thought to cover a

rectangular area. Thus, for storing the geometry of a vertex, the top left point

(or any reasonable reference point) and width and height of the rectangular area

should be held for each vertex.

A compound graph C = (V,E, F) consists of nodes V , adjacency edges E,

and inclusion edges F . The inclusion graph T = (V, F) is a rooted tree, where the

8

hierarchical structure of a compound graph is stored. It is assumed that E ∩ F

is empty, which means a node cannot be connected to its children or parents by

an adjacency edge. For the compound graph in (Figure 2.1),

V = {a,b,c,d,e,f,g,h,i,j}
E = {{a,b},{a,g},{d,e},{d,g},{f,g},{f,h},{g,h},{i,j}}
F = {bc,bd,be,cf,cg,ch,ei,ej}.

Figure 2.1: A sample compound graph.

If a node contains a graph, it is called a compound node; otherwise, it is called

a leaf or non-compound node [8]. A graph inside a compound node is named child

graph of that compound node. Edge e = (u, v) is an inter-graph edge (e ∈ I), if

u ∈ V Gi , v ∈ V Gj and i 6= j. If i = j, then e is called intra-graph edge. Root

graph (G0) is a virtual graph that contains nodes that have no owner graph and

resides at the 0th level of the parent-node - child-graph hierarchy. In addition, it

is assumed that root graph is owned by a virtual node. For the sample compound

graph in (Figure 2.1),

G0 = {{a,b},{{a,b}}}, G1 = {{c,d,e},{{d,e}}}
G2 = {{f,g,h},{{f,g},{f,h},{g,h}}}}, G3 = {{i,j},{{i,j}}, and

I = {{a,g},{d,g}}.

In order to handle compound graph structures, a graph manager M =

9

(S, I, F) structure is introduced in [8]. S is the set of all child graphs includ-

ing the root graph. I is the inter-graph edge set. And F is the inclusion graph.

Notice that, definition of the set F is extended for application related reasons.

In CoSE, F contains all the graphs including the root graph, and the parent-

node - child-graph hierarchy excluding the root graph and the root node. For the

compound graph in (Figure 2.1),

S = {G0,G1,G2,G3}, and

F = {G1,G2,G3}, {bG1,G1c,G1e,cG2,eG3}.

Introducing compound structures into graph topology makes it requisite to

re-factor the graph geometry. Thus, boundary of a compound node is formed

by its child graph plus a margin on all sides. Geometry of a child graph can

be stored relatively (with respect to the parent compound node) or absolutely.

In CoSE, nodes of child graphs are placed relatively to its owner’s coordinate

system. Upper left point of a compound node is defined as the origin (0,0), which

is compatible with the coordinate systems of most drawing frameworks (e.g., Java

Swing [16]).

2.2 Automated Layout Calculation

As the amount of the data grows, it gets harder to layout the graph representation

of the input data in an eye pleasing way on the screen. Therefore, in order to

benefit from advantages of the visual materials on analysis or research, layout

should be automated.

Some existing layout algorithms treat vertices as points, and edges as straight

line segments that connect the vertices. Also, in such algorithms, graph is as-

sumed to be undirected. Force-directed placement (layout) algorithms are flexible,

easy to understand and implement since they model a mechanical system. Eades

[17] and Fruchterman and Reingold [7] use spring forces similar to the formula

from the Hooke’s law. In Hooke’s law, a restoring force F is defined as F = −kx,

10

where k is the spring constant and x is the distance of the end of the spring

from its equilibrium or ideal position. Kamada and Kawai [18] also use spring

forces, but they consider the graph theoretical distance, instead of the Euclidean

distance.

In Eades’ algorithm [17], vertices are replaced by steel rings, and edges are

replaced by springs. Steel rings repel each other, and springs apply attractive

forces to the rings on both ends. The complexity of this algorithm is O(|E|+|V |2).
Basically, system works as follows: initially, vertices are placed on the Euclidean

space randomly. Then, the system is released, so that the spring and electrical

forces exerted on the rings move the system to a minimal energy state (global

minima) (See Figure 2.2).

Figure 2.2: Randomly placed particles in initial layout (left), final placement of
particles when the system is converged (right) [7].

Kamada and Kawai’s algorithm [18] is a variant of the Eades’. Eades considers

only the ideal distance (edge-length) between adjacent vertices. In addition to

the Eades’ method, the ideal distance between non-adjacent vertices are also

considered by Kamada and Kawai. They calculate the ideal distance between

any two vertices proportionally to the graph theoretical distance between them.

They see the placement problem as a process of reducing the total energy of

the mechanical system. The total energy of the system is reduced by solving a

partial differential equation for each vertex to find a new location. Repositioning

continues after the total energy becomes less than a threshold, where all vertices

are placed closely at their ideal distances from each other.

11

Fruchterman and Reingold’s spring embedder algorithm [7] is also based on

the work of Eades. Vertices behave like atomic particles. Repulsive forces are

calculated for each vertex pair, whereas attractive forces are calculated only be-

tween neighbor vertices. Like Kamada and Kawai, they also consider the ideal

distance between any pair of vertices during the layout. Let k be the optimal

distance between any vertex pair. It is calculated as follows:

k = C
√

area
|V |

C is a constant found experimentally, area is the bounding box of the graph

(or simply the drawing area) and |V | is the number of vertices. k gives the ideal

radius of the empty circle around a vertex. Let dp be the distance between the

vertex pair p = (u, v). And fa and fr be the attractive and repulsive forces

applied on u and v. fa and fr for p are calculated as follows:

fa(dp) = (dp)
2/k

fr(dp) = −k2/dp

Attraction force fa between two neighbor nodes is proportional to the distance

between them. On the other hand, repulsion force fr between any node pair is

inversely proportional to the square of the distance. When the distance between

two vertices equals k, fa and fr cancel each other out (See Figure 2.3).

After finding repulsive and attractive forces, these forces are partially applied

on the particles limited by the temperature. So that, movement of particles is

limited to some maximum value which decreases over time, since the temperature

of the system cools down. As the system approaches a stable state, particles move

slower, and finally, stop.

Attractive force is the heart of spring-based layout algorithms. Without re-

pulsive or other forces, a rough sketch of a graph can still be achieved. Because

of that, movements caused by attractive forces are relatively greater than other

forces for most of the spring embedders (This is also why they are called spring-

based or spring embedder). This does not mean that, repulsive forces can be

12

Figure 2.3: Attractive and repulsive forces versus distance [7].

ignored. They keep the nodes at acceptable distances from each other and help

embedders to avoid node overlaps. But still, repulsive forces are weaker than the

attractive ones.

The term of force is not correctly used for spring and electrical force oriented

methods. Force induces acceleration on bodies in physics, while it is used to

calculate the velocity of bodies (atomic particles) for every time quantum or each

iteration. The real definition of the force leads to a dynamic equilibrium, whereas

the force-directed methods seek a static equilibrium [7].

2.3 Compound Spring Embedder (CoSE)

Compound spring embedder algorithm is based on force-directed placement

scheme, that handles non-uniform node sizes, inter-graph edges, and clustered and

13

compound graph structures [8]. CoSE extends the model proposed by Fruchter-

man and Reingold. It roughly simulates a mechanical system, where nodes behave

like charged particles and edges behave like springs. If a spring is shorter than its

desired length, it pulls the particles it connects, and repels vice versa. Electrical

force between charged particles avoids overlapping nodes. Moreover, it helps to

distribute non-adjacent nodes evenly onto the layout area. Additional to the at-

tractive and repulsive forces, CoSE uses gravitational forces to keep disconnected

graphs together. Isolated nodes are pulled to the barycenter in order to keep the

drawing area small.

A compound node is treated as a single entity, like an elastic cart. It has its

own barycenter, can move only in orthogonal directions, and shrinks or grows

respectively to the bounding box of its child graph (see Figure 2.4). For the sake

of simplicity and efficiency, repulsive forces are calculated for nodes which reside

in the same graph. Ideal lengths of all intra-graph edges are equal to each other,

and pre-defined per layout calculation. However, ideal length of an inter-graph

edge is calculated proportionally to the sum of the depths of its end-nodes from

their common ancestors in the parent-child hierarchy.

Most of the previously proposed layout algorithms assume the nodes as points

or uniform sized. Hence, calculating the distance between any node pair is not an

issue for such algorithms. In CoSE, distance between a node pair is the distance

between the clipping points of the line that passes through the centers of the

nodes. This calculation is costly, but still required. Despite the distance between

the centers of two nodes being long, nodes may seem too close to each other, or

even be overlapped (if at least one of them is really big). In such situations, it is

expected for two nodes to repel each other.

CoSE layout algorithm starts with an initialization phase. Parameters (like

spring or repulsion constant) are set to their initial values, and all nodes are

positioned randomly.

After the initialization, simulation starts. Iteratively, attraction, repulsion and

gravitation forces are calculated and then applied to each node. Temperature of

the system is cooled down periodically which allows the physical system to reach

14

Figure 2.4: A sample compound graph (left), corresponding physical model
(right). Grey circle: barycenter, red solid line: gravitational force, zigzag: regular
spring force, black solid line: constant spring force [8].

a stable state. When total movement of nodes drops below a threshold value,

spring embedder stops. At this point, the layout is said to converge.

Attractive forces are calculated for each edge, while repulsive forces are cal-

culated for each vertex pair. This makes the complexity of one iteration of the

CoSE algorithm O(|E| + |V 2|). If the distance between two vertices is greater

than some threshold value, then the repulsion force between those vertices is ne-

glected. But still, distances between all vertex pairs are checked, and that makes

the complexity of the repulsion force calculation quadratic in |V |. Maximum

number of iterations is calculated to be proportional to the number of vertices;

however empirical results show that number of iterations almost never increases

with the graph size.

15

2.4 Fruchterman and Reingold’s Grid Variant

Main goal of the force-directed placement algorithms is not to simulate a physical

or mechanical system, but obtain pleasing layouts in a reasonable time [7]. In

order to improve their force-directed algorithm, Fruchterman and Reingold focus

on decreasing the complexity, which is O(|E| + |V 2|). Calculating attractive

forces costs O(|E|), and calculating repulsive forces costs O(|V 2|). So, although,

repulsive forces are not considered as the heart of the embedder, calculating them

increases the complexity.

The repulsive force between two particles decreases quadratically as the dis-

tance increases. So Fruchterman and Reingold ask the question “Can we neglect

the contribution of the more distant vertices?”, and propose the FR grid variant

algorithm. In this method, the bounding box is divided into a grid of squares,

and at each iteration, each vertex is placed in its grid square. To calculate the

repulsive forces applied to a vertex v in grid s, only the vertices in the neighbor

grids of s are considered. Square shape of the grid boxes causes distortion. In or-

der to prevent the distortion, for each vertex, vertices that are distant more than

one grid unit are ignored in repulsion force calculation. Formula of the repulsive

force fr is updated as below:

fr(d) = k2

d
u(2k − d)

where

u(x) =

 1 if x > 0;

0 otherwise.

One problem is: What should be the grid unit r? If r is set to a small value,

then tangling between vertices may increase since the number of repulsing vertices

decreases. On the other hand, if r is set to a large value, then we get eye-pleasing

layouts, but we have a huge time penalty. Fruchterman and Reingold proposes

r = 2k, where k is the desired length between any pair of vertices. For the graph

in Figure 2.5, despite the fact that both vertices q and s reside on the nearby grid

16

cells to the vertex v, only the repulsion force between q and v will be calculated

since the distance between s and v is greater than the grid unit.

Figure 2.5: A squared bounding box of a graph [7].

Let w be the width and h be the height of the drawing box. Area a reserved

for a vertex and number of grid cells will be

a = wl
|V | ,

k =
√
a

number of grid cells= w
2k

l
2k

= |V |
4

In conclusion, when vertices are uniformly distributed, one grid cell contains

nearly 4 vertices; therefore, approximately 35 vertices are considered for repulsion

force calculation of a vertex. So, if vertices are uniformly distributed, complexity

of the repulsion force calculation is asymptotically decreased to O(|V |). On the

other hand, for the worst case, complexity is O(|V 2|), since it is still possible to

check each vertex pair.

17

2.5 Multi-level Scaling

Force-directed placement algorithms give satisfactory results for relatively small

graphs (|V | < 100). For larger graphs and graphs that contain a particular

structure, physical systems implemented via such algorithms can be converged

pre-maturely or cannot be converged although the number of iterations reaches

the allowed maximum value.

Multi-level scaling methods focus on obtaining an abstract of the original

graph G0. G0 is coarsened recursively until some conditions are satisfied (con-

ditions may differ due to the coarsening method). Each coarser graph Gi+1 is

an abstract of the finer graph Gi. When the coarsest graph Gk−1 is constructed,

layout process starts. Final placement of Gi+1 is used for the initial placement of

Gi.

General algorithm of layouts using multi-level scaling strategy is shown in

Figure 2.6.

method layout(Graph G)
1) i := 0
2) G0 := G
3) while not all conditions hold do
4) Gi+1 := coarsengraph(Gi)
5) increase i by 1
6) decrease i by 1
7) while i ≥ 0 do
8) calculatelayout(Gi)
9) if i ≥ 1 then
10) interpolate position from (Gi) to Gi−1
11) decrease i by 1

Figure 2.6: Layout algorithm with multi-level scaling method.

Two methods for coarsening process are studied and will be discussed in the

following sub-sections.

18

2.5.1 Solar System

In the solar system method [9], there are 4 types of elements (vertices): In each

solar system there is exactly one sun node (s-node). All vertices adjacent to the

s-node are called either planet node (p-node) or planet with moon node (pm-

node), and finally, there are moon nodes (m-node). A p-node does not have any

moon while pm-nodes have exactly one moon. Directed edges are used between

m and pm-nodes which indicate that current m-node is assigned as the moon of

the current pm-node. (See Figure 2.7 for an example.)

Figure 2.7: Solar system representation of an 8x8 mesh graph G0 (left), coarser
graph G1 of G0 (right) [9].

Big yellow, medium light blue, medium dark blue and small grey disks are used

to show s-nodes, p-nodes, pm-nodes and m-nodes, respectively. Solid black lines

represent intra solar system edges, while dashed red lines represent inter solar

system edges. Arrows connects pm-nodes and m-nodes. Coarsening algorithm

proposed in [9] is shown in Figure 2.8. An example of an edge coarsening process

can be found in Figure 2.9.

When the coarsest graph Gk−1 is obtained, layout and refinement phases are

started. Gk−1 is laid out with a force-directed placement method. Final positions

of vertices in Gk−1 will be used for initial placement of Gk−2. This process con-

tinues until the finest graph G0 is reached. Each vertex in a coarser graph Gi+1

19

method SolarSystemPartition(Graph G)
1) G′ := (V ′, E ′)
2) copy V to V ′

3) i := 0
4) while |V ′| > 0 do
5) si := randomly selected vertex from |V ′|
6) remove si and all nodes have graph theoretical distance 2 or less from si
7) increase i by 1
8) for each s-node si do
9) label neighbors of si as p-node
10)for each non-labelled node v in V do
11) label v as m-node
12) label nearest neighbor of v as pm-node
13)for each connected solar system pair (Si, Sj) do
14) l := average ideal length of all paths

between s-nodes si and sj (suns of Si and Sj)
15) e′ := (si, sj)
16) e′.idealLength := l
17) add e′ to E ′

18)return G′

Figure 2.8: Solar system coarsening algorithm [9].

Figure 2.9: A part of Gi: 2 Solar Systems S0 and T0 with s-nodes s0, t0, p-nodes
u0, v0 (left), corresponding part of coarser graph Gi+1 (right) [9].

20

is the representation of a solar system in the finer graph Gi. Let Si and Ti be two

solar systems in Gi. Thus, s-nodes si+1 and ti+1, which are members of Gi+1, will

represent the solar systems Si and Ti, respectively. When the layout calculation

of Gi+1 is finished and initial placement of Gi is made, si and ti are put exactly

to the same place where si+1 and ti+1 stand. Planet and moon nodes in the solar

system are put around the sun node. Desired edge lengths calculated before are

considered during the initial placement phase (See Figure 2.10).

Figure 2.10: Final placement of G2 (left-up), initial placement of G1 (right-up),
final placement of G1 (left-bottom), initial placement of G0 (right-bottom) [9].

2.5.2 Clustering

Walshaw [11] proposes the coarsening approach known as clustering (or match-

ing), where vertices are matched with one of their neighbors or themselves (if there

is no neighbor to match with). Thus, cluster sizes are one or two. Coarsening

process ends if |V (Gk)| < 2.

There are several ways to find the matching of a graph. The problem of finding

the optimum matching, where the number of unmatched vertices is minimized,

is called “maximum cardinality matching” problem. It is a costly operation with

21

the complexity O(|V 2.5|) [11]. However, Walshaw does not seek for the optimum

solution, but fast and an efficient one. So, he decided to use the matching al-

gorithm that is proposed by Hendrickson & Leland [19]. They use a randomly

ordered list of the vertices and traverse this list to match each unmatched vertex

with an unmatched neighboring vertex (or with itself if there is no such vertex).

Matched vertices are removed from the list.

Let ui and uj be the vertices that are matched (contracted). Weight of the

resulting vertex v will be |v| = |ui| + |uj|. If there is more than one unmatched

neighbor, then the neighbor with the smallest weight is chosen for matching in

order to keep the coarser graphs balanced. Note that even if G0 is non-weighted,

Gi for i > 0 will be weighted.

Matching all vertices with another one is the best case for the Walshaw’s

clustering method. In this case, number of levels k = log2 |V |. This case is

guaranteed to occur for complete graphs. On the other hand, matching a star-

shaped graph, where all the edges in the graph is incident with one node, is

the worst case for this algorithm, since only one matching pair contains two

vertices, while other pairs contain only one vertex. This makes k = |V | − 1.

Our experiments show that, mesh-like graphs are closer to the best case; however

tree-like ones are closer to the worst case.

2.6 Graphics Processor Unit (GPU) Support

for Parallel Computing

Almost all proposed automated graph layout algorithms (such as [7] and [8])

consider solving the problem sequentially. In such algorithms, in order to calculate

the repulsion or attraction forces that will be exerted on node vi we have to

wait for force calculations of all nodes vj where j < i < |V |. This is actually

unnecessary, since force calculation of a node has no dependency to or interaction

with force calculation of other nodes. Thus, force calculations, the major part of

the automated layout algorithms, can be parallelized.

22

2.6.1 Graphics Processor Unit (GPU)

GPUs are powerful for practicing parallel algorithms since they have an imple-

mentation of single instruction, multiple data (SIMD) architecture. Moreover,

they contain hundreds or thousands of cores whereas central processing units

(CPU) contain only a few.

Threads are smallest virtual processing units in a GPU. They are organized

into one, two or three dimensional blocks. All threads run in the same block,

reside at the same core. So, there is a limit for number of threads per block,

since threads in a block must share a limited memory space of a processor core.

Blocks are also organized into one, two or three dimensional grids (Figure 2.11).

The thread-block-grid hierarchy provides a natural way to operate on elements

shaped as a vector, matrix, or cube.

Figure 2.11: A 2× 3 sized grid with 3× 4 sized block [10].

23

A GPU contains special memory types for different programming purposes

(Figure 2.12). Global memory is accessible from any threads, it is writeable, but

the slowest memory type in the device. Texture memory is also accessible from

any threads, and it is specialized for handling CUDA array memory. Texture

memories are faster than the global one but they are read only. Shared memory

is also faster than the global memory but is accessible for only the threads in the

same block (processor core). Also, if CPU memory can be mapped to the device

memory address space, then it is available for kernel functions. Mapped memory

page is pinned, and is guaranteed to be used only by the kernel functions. So

mapping a large amount of data will affect other programs running in CPU, since

only too little memory space become available for those programs. When using

mapped memory, instead of copying data between CPU and GPU before the kernel

launch, required data will be copied from mapped (pinned) CPU memory to the

global GPU memory when needed. Pinning the CPU memory is advantageous

if the GPU is integrated. In integrated systems, CPU and GPU memories are

physically same, so copying data between CPU and GPU will be superfluous.

Figure 2.12: Memory hierarchy of GPU [10].

24

2.6.2 CUDA Framework

CUDA [20] is NVDIA parallel computing architecture. Using CUDA-enabled

GPUs increases the performance of parallel programs dramatically. CUDA pro-

vides a subset of C programming language for implementing kernel executions

which are run on GPU devices, and C and C++ are available for implementing

the host executions which are run on the CPU. Beside the CUDA C and C++,

there are other ways to take advantage of the power of GPU computing, such as

OpenCL, DirectCompute, and CUDA Fortran.

One of the key abstractions of CUDA is a hierarchy of thread groups which

allows the programmers to partition the problem into sub-problems and solve

these sub-problems in parallel by blocks of threads. CUDA C extends C and

allows programmers to implement C functions called kernels. When a kernel is

called, it is executed n times in parallel by n different threads. In order to make

kernel calls, programmers have to specify number of threads per block and number

of blocks per grid. All threads in a block reside on the same processor. Grids are

abstract structures for organizing blocks for different programming goals.

25

Chapter 3

Improving by Fruchterman and

Reingold’s Grid Variant

Fruchterman and Reingold proposed the grid-variant method in order to decrease

the running time of the repulsive force calculations, which is O(|V 2|). Complexity

is quadratic since all vertex pairs are processed for repulsive force calculation.

However the repulsive force between two distant vertices can be neglected, because

it decreases quadratically as the distance between the vertices increases.

CoSE algorithm has exactly the same problem aforementioned above. If the

distance between two nodes is greater than some threshold value, then the repul-

sion force between these nodes is not calculated, still, the distance control is done

for all node pairs, and this causes the complexity of the repulsion force calculation

to be O(|V 2|).

In order to decrease the execution time of our compound spring embedder

asymptotically, we decided to adapt the Fruchterman and Reingold’s (FR) grid

variant method.

Basically, in FR grid-variant method, drawing area is divided into a grid of

squares, and for a vertex, only the vertices on neighbor squares are considered

for repulsive force calculation. A distance check is done in order to prevent the

26

distortion. (See Figure 2.5)

3.1 Adaptation

Drawing area is the bounding rectangle (box) of the root graph in CoSE. Size of

the length of a square is proposed as 2k in FR grid-variant method, where k is

the ideal distance between any pair of vertices (or radius of the ideal empty field

around a vertex). In CoSE, only the ideal length l of an edge, in other words

the ideal distance between neighbor vertices, is defined. However, this ideal edge

length can be used for the size of a square of the grid.

Finding the optimum grid square edge size or the repulsion range is not easy.

As the repulsion range increases, the ideal empty area around a node increases

too. On the other hand, increasing the repulsion range also increases the average

number of nodes that apply a repulsive force on a specific node, so using wider grid

squares grants a better looking layout but decreases the performance. Although,

using narrow squares will increase the performance but, it produces worse looking

layouts.

When using the multi-level scaling method during CoSE calculations, we can

change the repulsion range for obtaining better looking layouts with a slight

performance penalty. Since the coarser graphs contain fewer nodes, we can enlarge

the grid squares proportional to the level of the graph. Let r be the repulsion

range and l be the ideal edge length, then;

r = 2× (level + 1)× l

For the input graph, where the level equals to zero, r becomes 2l.

Bounding box of the root graph is virtually squared and divided into a grid of

squares where the length of one side of the square is 2l. Each grid square contains

a collection of nodes. Since CoSE handles variable-sized nodes, one node can

occur in more than one collection, unlike in the original FR grid-variant. This

27

can affect the performance negatively, if the input graph contains huge nodes. In

such cases, a large number of grid squares will be checked for such nodes. This

also makes it difficult to scale the performance of the adapted method.

Figure 3.1: A gridded CoSE Graph. The circle around node b indicates the
repulsion circle of b.

In order to fill the grid squares, the node list is traversed. Grid coordinates of

each node are calculated, and each node is put to its corresponding grid cell(s) by

simply adding the node in question to the corresponding collection(s). To easily

access the grid cells occupied by a node, start and finish grid coordinates on both

x and y axes are maintained for each node. In the sample graph in Figure 3.1, for

compound node c, start and finish coordinates on x axis are 4 and 5, and start

and finish coordinates on y axis are 1 and 3, respectively. For node b, both start

and finish coordinates on x axis is 3.

Nodes that reside in the circular area of the radius 2l around each node are

found and stored in a list named surrounding. For obtaining the surrounding list,

all occupied cells with their neighbor cells are traversed. Since start and finish

coordinates of each node are stored, CoSE will not need to traverse the whole

28

grid matrix for finding the occupied cells by a node. For instance, for calculating

the surrounding of node b in Figure 3.1, all nodes in the highlighted matrix (cells

2 to 4 in x axis and 1 to 3 in y axis) are checked. The nodes in the repulsion

circle of b (which is only a for the sample graph) are put to the surrounding list

of b. Repulsion circle of b is the circle with a radius of 2l and b is in the center.

In order to achieve the most accurate spring embedder simulation, CoSE needs

to update the grid cells before calculating the repulsive forces in each iteration.

However, since we are looking for an improvement at the performance, and simu-

lating a mechanical system just roughly, updating grid cells periodically is a good

solution. Currently, CoSE re-calculates the grid cells for each node once in every

ten iteration.

Once surrounding lists of all nodes are constructed, these lists are traversed

for each node, and repulsive forces between a node and its surrounding can be

calculated cumulatively as in the CoSE.

For nodes v and u, where the distance between them is less than the repulsion

range, v is added to the surrounding list of u, only if u is not included in the

surrounding list of v. This condition is checked in order not to calculate the

repulsive force between a node pair twice. This violates the term of surrounding

list, but saves great time in application.

method CalcRepulsionForcesWithFRGridVariant(VertexSet V)
1) if number of iterations is multiple of 10 then
2) construct empty grid cells
3) for all nodes vi ∈ V do
4) calculate start and finish coordinates of vi
5) put vi to corresponding grid cell(s)
6) for all nodes vi ∈ V do
7) for all nodes ui inside the neighbor grid cells of vi do
8) if distance between vi and ui is less than 2l
9) and owner graph of vi and ui are same then
10) add ui to surrounding list of vi
11)for all nodes vi ∈ V do
12) calculate the repulsion forces between vi and its surrounding

Figure 3.2: Repulsive force calculations after the adaptation of FR-Grid Variant
method.

29

3.2 Complexity Analysis

Variable sized nodes not only make it hard for the performance to scale but

also the complexity analysis difficult for adapted FR-grid variant method. For

convenience, analysis will be done for only fixed-sized nodes with default values

40× 40 pixels for level = 0 and l = 50 (which is the default value for ideal edge

length in CoSE).

Repulsion range r equals 100 with the default values above, which means a

node with a 40× 40 size, can occupy 4 grid cells in the worst case. Thus, number

of grid cells to be checked for such a node is 16. As it is described in section 2.4,

the number of grid cells is found as |V |
4

, if nodes are evenly distributed, such that

one grid cell contains about 4 nodes. In conclusion, approximately 64 nodes are

considered for repulsion force calculation of a node, on average, so that complexity

of the repulsion force calculation is O(|V |) with a large constant.

Grid cells are refreshed in every ten iteration. This operation has two phases:

constructing the grid, and calculating the surroundings of all nodes. Deciding the

size of the grid takes constant time. Traversing the node list and putting the nodes

in the correct grid cells take O(|V |) time. Thus, total time to construct the grid

is O(|V |). In order to calculate the surrounding of each node, neighbor cells are

traversed. As we make the analysis for fixed-sized nodes and assume that nodes

are distributed uniformly, there will be 16 grid cells to traverse and approximately

64 nodes to add as neighbors. Therefore, total time to calculate surrounding of all

nodes is also O(|V |). In conclusion, preparations for FR-grid variant calculation

in one iteration costs O(|V |) but since the grid cells are refreshed in every ten

iteration, the cost is reasonable on the average.

As a result, the complexity of repulsive force calculation is asymptotically

decreased from O(|V 2|) to O(|V |).

30

3.3 Results

Mesh-like, tree-like and compound graphs are generated randomly for testing the

execution time of CoSE after adapting the FR-grid variant. Generated meshes

are neither dense nor sparse with edge-vertex ratio (|E||V |) approximately 1.80. For

generated trees, probability of a node having children is 0.5, a node can have

1 to 4 children and edge-vertex ratio approximately equals to 1. For generated

compound graphs, inter-graph edges are a quarter of all the edges. Number

of siblings in a compound node is 4, and compound depth is 2 with a pruning

probability of 0.4 for the inclusion tree. Edge-vertex ratio of compound graphs

is approximately 0.5. Tests are run on an ordinary PC with Intel(R) Core(TM)2

Quad CPU Q8400 2.67 GHz processor, 3.25 GB usable RAM, and Windows 7

Professional 32-bit operating system. Comparisons of execution times before and

after integrating the FR-grid variant to our compound spring embedder are shown

in Figure 3.3, Figure 3.4 and Figure 3.5.

Figure 3.3: Execution time comparison with mesh-like graphs (Using FR-grid
variant method).

Results are quite satisfactory. We obtained a dramatic decrease in running

31

Figure 3.4: Execution time comparison with tree-like graphs (Using FR-grid vari-
ant method).

Figure 3.5: Execution time comparison with compound graphs (Using FR-grid
variant method).

32

times after applying the FR-grid variant method. As the size of the input graph

increases, difference between the running times increases greatly in line with our

theoretical analysis.

3.3.1 Implementation Issues

Currently, CoSE updates the grid cells once in every ten iteration. In the early

iterations, the spring embedder is not stable since temperature is high. Because

of that, nodes are more likely to make dramatic movements and oscillations, so

at the beginning of the spring embedder iterations, occupied grid cells by a node

are more likely to change. Moreover, as the system is closer to convergence state,

nodes move slightly and less likely to change occupied cells. Thus, in order to

obtain more realistic simulations without a huge time penalty, updating grid cells

frequently in early stages and increasing the re-calculation period proportional to

the number of total iterations passed can be useful.

33

Chapter 4

Improving by Multi-level Scaling

Strategy

Most of the spring embedder algorithms remain insufficient in laying out large

graphs that are especially symmetric or contain a particular structure or a pat-

tern. There are several multi-level methods aiming to resolve this problem by

recursively coarsening the input graph. When the coarsest graph is constructed,

layout process is started. Final positions of the nodes in each laid out coarser

graph are interpolated to the finer graph.

We have surveyed through several methods and researched two methods in

detail earlier in section 2.5. Because we need a fast, easy, and efficient method, we

decided to implement the Walshaw’s clustering method for adapting the multi-

level scaling strategy to the CoSE algorithm.

4.1 Adaptation

The most challenging problem of adapting a multi-level scaling method to CoSE

is handling compound nodes during the coarsening process. If compound nodes

of graph Gi are treated as leaf nodes while Gi is being coarsened, it means all

34

child nodes of each compound node will be ignored, and only the first hierarchic

level of the input graph will be considered during the coarsening. For instance,

if the input graph G0 has thousands nodes, but in the root graph, there are

only a few compound nodes that own all other nodes, then G0 would have a

few coarsening levels. Thus, CoSE could not benefit from the advantages of the

multi-level scaling method.

We investigated the approach of handling compound nodes during the coars-

ening process by coarsening each level of input graph separately. This would

give fine layouts inside each compound node, but would create another problem.

Separate hierarchical levels should be put together in order to obtain the final

layout. In hierarchical level l, if a child graph exceeds the boundary of its parent

node v or shrinks too much, then v should be resized. So the layout of level l− 1

should be computed before level l. This results in a contradictory situation to

the inter-graph edges supported by CoSE. The reason is simply that we want to

put neighbors close to each other, and so CoSE needs to calculate the attractive

forces between nodes connected with an edge but reside on different levels. Due

to the reasons mentioned, we had to give up this idea and decided to consider

only non-compound nodes during the coarsening process.

A special graph structure named coarsening graph is introduced in order to

ease and modularize the coarsening process. In the coarsening graph, only leaf

nodes and the intra-graph edges that are between these nodes are included.

4.1.1 Coarsening Algorithm

There is a one-to-one mapping between coarsening graphs and compound graphs.

We use Ml notation for the compound graph in coarsening level l, and Gl for the

coarsening graph which contains only the leaf nodes of Ml and the intra-graph

edges between these nodes. Thus, a compound graph Ml indicates the original

graph will be laid out in level l, whereas the coarsening graph Gl is used for only

coarsening purpose. We defined reference pointers in order to maintain the one-

to-one mapping from nodes in the coarsening graph to the nodes in the compound

35

graph.

For coarsening level zero (l = 0), G0 is constructed with no nodes or edges

initially. By a recursive traversal, leaf nodes of M0 are gathered, and for each leaf

node, a corresponding coarsening node is created, and added to G0. In order to

obtain a one-to-one mapping between M0 and G0, leaf nodes of M0 are mapped

with all nodes in G0. After creating and mapping all the nodes in G0, edge list

of M0 is traversed. Only the edges that connects the leaf nodes (excluding the

inter-graph edges) are added to G0. Weights of all nodes are set to one. By this

way, construction of G0 is completed.

G0 is coarsened recursively, until the size of Gl becomes 1, or size of last two

coarsening graphs Gl and Gl−1 are equal to each other. If |V Gl | = |V Gl−1|, it

means all nodes in both Gl and Gl−1 are isolated, and no coarser graphs can be

generated any more.

For a coarsening level l, all nodes in Gl are flagged as unmatched. Nodes

of a coarsening graph are stored in a list instead of a set, in order to assure a

deterministic search for unmatched nodes. If there is a node in Gl, then the first

node v in the node list is checked, whether it is matched or not. If v is unmatched,

then v and if exists, its matching node u are contracted and merged into node t.

Unmatched neighbors of v in the same graph are traversed, and the node with the

minimum weight is selected for matching. Weight of t is set to the sum of weights

of v and u, and t is flagged as matched. Neighbors of v and u are connected to t.

Finally, t is added to the end of the node list of Gl, while v and u are removed

(See the Figure 4.1). Coarsening steps of a compound graph are shown in the

Figure 4.2 and the Figure 4.3.

Two pointers; previous and next, are used for tracing the coarsening processes

and interpolating the final positions of finer graphs to the coarser ones. Each node

has two previous pointers, and one next pointer. For instance, let us assume that

t ∈ Ml. Nodes v, u ∈ Ml−1, which are merged and contracted to the node t are

pointed by previous pointers of t (see the 4th and 6th screenshots in Figure 4.1).

For this instance, next pointers of v and u point to the t.

36

Figure 4.1: A sample contraction process. a) The initial phase of the coarsening
graph, b) v and u are chosen to be matched, c) Node t is created and neighbors
of v is connected to the t, d) v is removed from the coarsening graph e) Neighbors
of u is connected to the t, f) u is removed from the coarsening graph.

37

Figure 4.2: Coarsening steps of a compound node. a) The input graph M0, b) g
and h are matched, a new node m ∈M1 is created, neighbors of g are connected
to m, c) g is removed, d) Neighbors of h are connected to m, e) h is removed, f)
d and e are matched, a new node n ∈M1 is created, neighbors of d are connected
to n, g) d is removed, h) Neighbors of e are connected to n, i) e is removed, j) k
and l are matched, a new node o ∈M1 is created.

38

Figure 4.3: Coarsening steps of a compound node (Continues from the Figure 4.2).
k) Neighbors of k are connected to o, l) k is removed, m) l is removed, n) M1, o) f
and m are matched, a new node p ∈M2 is created, neighbors of m are connected
to p, p) m is removed r) f is removed s) M2.

39

method coarsen(CoarseningGraph G=(V,E))
1) for i ≤ V.size do
2) V [i].matched := false
3) while V [0] is not matched do
4) CoarseningNode v := V [0]
5) CoarseningNode u := lowest weighted neighbor of v
6) contract(G, v, u)
7) for i ≤ V.size do
8) CoSENode newNode:= create a new node
9) newNode.previous1 := V [i].node1.reference
10) V [i].node1.reference.next :=newNode
11) if V [i].node2 is not null then
12) newNode.previous2 := V [i].node2.reference
13) V [i].node2.reference.next :=newNode

Figure 4.4: Coarsening method.

method contract(CoarseningGraph G=(V,E), CoarseningNode v,
CoarseningNode u)

1) CoarseningNode t := create a new node
2) add t to the end of V
3) t.node1 := v
4) for i ≤ v.neighbors.size do
5) if v.neighbors[i] is not equal to t then
6) CoarseningEdge e := (t, v.neighbors[i])
7) add e to E
8) t.weight := v.weight
9) remove v from V
10)if u is not null then
11) t.node2 := u
12) for i ≤ u.neighbors.size do
13) if u.neighbors[i] is not equal to t then
14) CoarseningEdge f := (t, u.neighbors[i])
15) add f to E
16) t.weight := t.weight+u.weight
17) remove u from V
18)t.matched := true

Figure 4.5: Contraction method.

40

After constructing Gl+1 from Gl, coarser compound graph Ml+1 will be gener-

ated from Gl+1. A new root for Ml+1 is created. Then, nodes of Ml are traversed

recursively (where the initial call is made with the root graphs of Ml and Ml+1)

as follows: If current node v is a compound one, then a new compound node y

is created with an empty child graph and added to the graph which is passed as

parameter. Next pointer of v is set to y and one of the previous pointers of y is

set to v. Then, a recursive call is invoked with the child graphs of v and y. If v

is not a compound node, then next pointer of v is added to the graph which is

passed as parameter. After generating nodes of coarser graph Ml+1, edge list of

Ml is traversed, and edges of Ml+1 are generated.

method generateCoarserCoSEGraph(GraphManager Ml)
1) Create Ml+1

2) Create a root for Ml+1

3) generateNodes(Ml.root, Ml+1.root)
4) generateEdges(Ml.root, Ml+1.root)

Figure 4.6: Generation of coarser CoSE graph from CoarseningGraph.

method generateNodes(CoSEGraph Gl = (Vl, El),
CoSEGraph Gl+1 = (Vl+1, El+1))

1) for all nodes of Gl do
2) if a node (vl) is compound then
3) create vl+1 with an empty child graph
4) vl.next := vl+1

5) vl+1.previous1 := vl
6) generateNodes(vl.child vl+1.child)
7) otherwise
8) add vl.next to Gl+1

9) copy geometry of vl to vl+1

Figure 4.7: Generation of nodes of coarser graph.

method generateEdges(CoSEGraph Gl = (Vl, El),
CoSEGraph Gl+1 = (Vl+1, El+1))

1) for all edges of Gl do
2) create el with no source or target
3) el.source:= el.source.next
4) el.target := el.target.next

Figure 4.8: Generation of edges of coarser graph.

41

All graphs from the finest to the coarsest are held in a list. Layout phase

begins with the coarsest graph Mk−1, where k is the number of levels. Mk−1

is laid out with our compound spring embedder. When layout calculations are

finished, final positions of nodes in Mk−1 are used for initial positioning of Mk−2.

As aforementioned, nodes, that are contracted in order to generate a node in a

coarser graph, can be accessed via previous pointers. Assume that v ∈Mk−1 and

previous pointers of v points to the node u and w, where u, w ∈ Mk−2. When

interpolating the positions, node u, which is pointed by the first previous pointer

is placed to the exactly same place with v. Node w, the second previous pointer,

is placed to the lower right of the first node, to a distance of ideal edge length from

both x and y axes. Refinement continues until the input graph M0 is reached.

Whole layout calculation is finished when M0 is laid out.

In the Figure 4.9 and Figure 4.10, laid out levels of a randomly generated

mesh-like graph and a compound graph with a particular structure are shown. It

is observable that, each coarser graph is an abstraction of the finer one.

4.2 Complexity Analysis

Making the complexity analysis of a multi-level scaling method is not easy, since

the number of abstraction levels heavily depends on the structure of the input

graph. For dense graphs like complete meshes, it is more probable to find a

matching for a node. For the best case, each node is matched with another one

which makes number of abstraction level k = log2 |V |. On the other hand, for

sparse graphs like trees, more than half of the clusters may contain only one node.

For the worst case, only one node is matched with another one, but other nodes

match with themselves so that number of abstraction level k = |V | − 1.

Let Tsingle(|V |, |E|) be the running time of a single level force-directed place-

ment algorithm and Tmulti(|V |, |E|) be the running time of the same algo-

rithm after applying Walshaw’s clustering method [11], [9]. Tmulti(|V |, |E|) =
k−1∑
i=0

(Tsingle(|Vi|, |Ei|) + Trefine(|Vi|, |Ei|) + Tinit(|Vi|, |Ei|) + Tcoarsen(|Vi|, |Ei|)).

42

Figure 4.9: A random mesh-like graph M , coarsened in 11 steps. Levels are laid
out via CoSE [8] after adapting the Walshaw’s clustering method [11]. On the
left-top, there is M10, the coarsest graph, with 2 nodes. On the right-bottom,
there is the final layout of M = M0.

43

Figure 4.10: A compound graph N , with 10 levels. Levels are laid out via CoSE
[8] after adapting the Walshaw’s clustering method [11]. On the left-top, there is
N9, the coarsest graph, with 3 nodes in the root graph, and 7 nodes in total. On
the right-bottom, there is the final layout of N = N0.

44

Trefine(|Vi|, |Ei|) is the time to refine graph Gi from Gi−1, Tinit(|Vi|, |Ei|) is the

time to make initial placement of Gi and Tcoarsen(|Vi|, |Ei|) is the time to coarsen

graph Gi to Gi+1.

For the best case, Trefine(|Vi|, |Ei|) and Tcoarsen(|Vi|, |Ei|) are (|Vi| + |Ei|)/2,

because the traversal of half of the node list is enough to refine or coarsen

the graph Gi. For the worst case, Trefine(|Vi|, |Ei|) and Tcoarsen(|Vi|, |Ei|) are

|Vi| − 1, because whole list has to be traversed to refine or coarsen the graph

Gi. Tinit(|Vi|, |Ei|) is |Vi| for any case. In conclusion
k−1∑
i=0

(Trefine(|Vi|, |Ei|) +

Tinit(|Vi|, |Ei|) + Tcoarsen(|Vi|, |Ei|)) is asymptotically linear in |V | and |E|.

For the best case, each cluster contains two nodes, so |Vi+1| = |Vi|/2. Also

for graphs where edge node ratio |E|/|V | is greater than 1, |Ei+1| ≤ |Ei|/2 since

number of nodes in coarser graph is decreased by the factor of 1/2. On the other

hand, for the worst case, all clusters but one contain one node, so |Vi+1| = |Vi|−1

and |Ei+1| ≤ |Ei| − 1. Therefore,
k−1∑
i=0

Tsingle(
|V |
2i

,
|E|
2i

) ≤
k−1∑
i=0

Tmulti(|Vi|, |Ei|) ≤

k−1∑
i=0

Tsingle(|V | − i, |E| − i). Lower bound of the inequality is less than 2 ×

Tsingle(|V |, |E|) and upper bound is less than k × Tsingle(|V |, |E|). In conclu-

sion, the inequality above becomes 2 × Tsingle(|V |, |E|) ≤
k−1∑
i=0

Tmulti(|Vi|, |Ei|) ≤

|V | × Tsingle(|V |, |E|).

As a result, as the density increases or the structure of the graph gets closer to

the best case, complexity of the multi-level scaling methods is closer to the lower

bound, which is asymptotically the same as the single-level methods. However,

as the density decreases or the structure of the graph becomes closer to the worst

case, complexity converges to the upper bound, which multiplies the complexity

of the single-level methods by |V | in theory. But in practice, layout in each level

except the first one is incremental, so the system should converge a lot faster than

in theory.

45

4.3 Results

In order to test the execution time and resulting layouts produced by CoSE with

Walshaw’s multi-level strategy, mesh-like, tree-like, and compound graphs are

generated randomly. For performance comparisons, tests are run with the same

graphs and the same system/machine configuration that are used for testing

the FR-grid variant. In addition, graphs with a specific structure are manually

created for testing the visual quality. Comparisons of execution times before and

after adapting the multi-level scaling strategy to our compound spring embedder

are shown in Figure 4.11, Figure 4.12 and Figure 4.13.

Figure 4.11: Execution time comparison with mesh-like graphs (Using multi-level
scaling strategy).

Walshaw’s clustering method gives better results for mesh-like graphs. On the

other hand, it is out-performed by our original spring embedder for tree-like and

especially compound graphs. Since the edge-vertex ratio of the tested compound

nodes is less than 1, and for trees it is highly probable that more than half of

the clusters have only one node, we obtained a worse performance for trees and

compound graphs. However, meshes are denser and structured more similar to

46

Figure 4.12: Execution time comparison with tree-like graphs (Using multi-level
scaling strategy).

Figure 4.13: Execution time comparison with compound graphs (Using multi-
level scaling strategy).

47

the complete graphs. So that, execution time of layout calculation is decreased

for meshes after adapting the multi-level strategy.

Main goal of adapting a multi-level scaling method is to obtain better look-

ing layouts for especially large graphs. Without this adaptation, many times

CoSE fails to solve the structure of large graphs. After implementing Walshaw’s

multi-level scaling method, we observed that number of edge crossings decreased

dramatically, and we started to obtain much more eye pleasing layouts. There

are screen shots taken via Chied [21] with and without the multi-level strategy

in Figure 4.14 and Figure 4.15. In conclusion, after the adaptation of multi-

level scaling strategy, CoSE is slower only by a small factor, but produces higher

quality layouts.

4.4 Future Work

Because of the difficult nature of compound structures, we simply ignored the

compound nodes during the coarsening calculations. Eventually, this decision

effects the visual quality of compound graph’s layouts. Especially, compound

graphs that are nested deeply, and contain more compound nodes than leaf ones

cannot take advantage of the multi-level scaling method. On the other hand,

after implementing Walshaw’s clustering method, CoSE produces better looking

layouts for graphs that have a few levels and contain compound nodes mostly

own leaf nodes. For simple graphs that contain no compound nodes, results are

really satisfactory.

Because we have been seeking for an easy and efficient method, we have chosen

the Walshaw’s clustering algorithm for implementing the multi-level scaling. In

the future, Sonar system method that mentioned in Section 2.5.1, or another

multi-level scaling method can be considered for adapting to CoSE.

48

Figure 4.14: Graphs which are laid out via CoSE, before adapting the multi-level
scaling strategy (left); same graphs after adapting the multi-level scaling strategy
(right).

49

Figure 4.15: Graphs which are laid out via CoSE, before adapting the multi-level
scaling strategy (left); same graphs after adapting the multi-level scaling strategy
(right).

50

Chapter 5

Improving by GPU Parallelism

For huge graphs, where |V | >> 1000, execution times of spring embedders in-

crease dramatically. But hopefully, it is possible to parallelize the force calcula-

tions, since force calculations of a node have no dependency to or interaction with

force calculations of other nodes. In [14], the force-directed placement algorithm,

which uses GPU support during the calculation of forces, outperforms the same

algorithm which uses only CPU. Depending on graph structure, GPU supported

algorithm runs 20 to 60 times faster than the CPU implementation of the same

algorithm. Therefore, we were inspired by the work in [14] and decided to adapt

their parallel programming strategy to CoSE.

5.1 Device Memory

GPUs provide a powerful environment for implementing parallel algorithms, be-

cause they are an implementation of the SIMD architecture. Moreover, they give

developers the chance to achieve real parallelism via virtual threads. With GPUs

that contain thousands of processors, it is possible to run hundreds of thousands

of threads in parallel.

There are specific memory types for specific purposes in a GPU. For an

51

integrated system, where CPU and GPU memories are physically same, using

mapped-pinned memory is very advantageous. However, most of the new systems

are not integrated, and for very large graphs (with high memory requirements),

using mapped-pinned memory reduces the performance of other programs cur-

rently running and thus the system in general.

Shared memory is faster than the global memory and available for both reading

and writing. Each block has its own shared memory, and a shared memory is

only available for the owner block. Optimum size of a block (maximum number

of threads in the block) depends on the size of its shared memory. Generally,

maximum number of threads that can run in parallel in a block is 512 or 1024.

Therefore, for a graph that contains more than 512 or 1024 nodes, we have to

split the graph. However even this will not work, since it may be desired to access

all nodes within a kernel launch, which, in this case, is not possible since a block

cannot access the shared memory of other blocks.

Texture memory is a cache memory type (which is also called texture cache),

where the global memory can be accessed through. It is read-only, and optimized

for 2-dimensional spatial locality. Texture cache is accessed via texture fetching,

which costs one read from memory only on a cache miss. Otherwise, it costs just

one read from the texture cache.

In order to maximize the memory throughput, it is recommended to copy the

host data to the device in one piece. Copying data in many small pieces performs

worse because of the overhead associated with each data transfer [10].

CUDA provides two types of memory allocations: Linear and CUDA array.

Linear memory type is used to allocate a linear block of the GPU memory. Lin-

ear memory blocks are useful for allocating primitive types, structs and arrays.

Linearly allocating 2D or 3D arrays is bad for performance, since accessing such

arrays costs more than one read from the memory. CUDA array type is special-

ized for memory handling of 2D and 3D arrays to avoid additional costs to access

such arrays on the device side.

52

5.2 Adaptation

Calculating the forces to be applied to a node has no dependency or interaction

with force calculation of other nodes. So, one can use one thread per node for

calculating repulsion, attraction and gravitational forces in parallel. Thus, each

thread ti will be responsible for calculation of the total force applied to a node

vi. There is also alternative approach to parallel computation: Each thread

can be assigned for calculating a repulsion or attraction force between only a

node pair (v, u). However, such an approach has disadvantages. More than one

thread might access the same field for writing, which needs synchronization on

device side resulting in loss of parallelism. Let us say we have n nodes, and

n × n threads for calculating repulsion force between each node pair. When we

synchronize, the device will wait n times in total to access to a field in order to

write the resulting repulsion force. This solution is worse in comparison with the

previous one (thread per node). In addition, thread per force calculation method

is opposed to the principle that “All processors should be busy at all time” [10].

5.2.1 Device Side

Data Structures

Each node occupies a 2-dimensional rectangular area. For storing the geometry,

the top-left point and width and height of the rectangular area are used. Addi-

tionally, since repulsion force is only calculated for nodes in the same compound

node (including the root), index of the owner node for each node should be stored.

For repulsion force calculation, top, left, width, height, and owner index attributes

will be sufficient.

Geometry and hierarchy of a graph can be stored in a 2D integer array. Each

row stores information about only one node, and each column stores an attribute

of node. For the sample graph in Figure 5.1, graph geometry matrix is given in

Table 5.1. This 2D array will be allocated as CUDA array memory because of

53

top left width height
a 10 173 252 177
b 350 111 165 182
c 441 213 40 40
d 202 183 40 40
e 455 121 40 40
f 109 226 40 40
g 350 10 40 40
h 20 270 40 40
i 360 138 40 40
j 267 69 40 40

root 0 0 525 360

Table 5.1: Graph geometry matrix for the graph in Figure 5.1.

the performance issues mentioned above. After the allocation, graph data are

needed to be copied from the host (CPU) to the device (GPU). And finally, a

texture memory space will be bound for the graph data.

Figure 5.1: A sample graph. (Left-top coordinates of nodes are indicated)

Resulting forces exerted to each node in x and y directions will be written

to the global memory. For each axis and force type, there will be an array for

storing the resulting forces. Thus, there will be six arrays stored in global device

memory. Length of each array is |V |. Since each thread is assigned to one node,

it is guaranteed that, each thread will only access one field of the resulting force

54

arrays exclusively for writing. Thus, the device is not needed to be synchronized

explicitly. Explicit synchronization in GPU should be avoided because it has a

negative effect on parallelism.

On the GPU side, geometry and hierarchy of the input graph and its edges

with their ideal lengths are stored in texture memory in order to maintain the

layout process on the device side. Some of these attributes will not be changed

during the layout calculations. Thus, storing these data in the fastest read-only

memory, the texture cache or simply the texture memory in the GPU, will be the

best solution.

For storing the edges, the data structures defined in [14] are used. Two arrays

are stored; one array named edge-value is used to store the adjacency of the

nodes, and the other one named edge-index is used to keep the start and end

indices of the adjacency lists in edge-value array (Figure 5.2). Because of the

performance issues, edge-value array is stored in the texture cache, while edge-

index array is stored in the global memory. Reason of storing these two arrays

in different memory spaces is the difference in the access frequencies. In a thread

i, edge-index array is accessed two times, whereas edge-value array is accessed as

many as the number of neighbors of node vi times. Size of the edge-value array

is 2× |E|, while the size of the edge-index array is |E|+ 1.

Figure 5.2: Edge-value and edge-index arrays for the graph in Figure 5.1. For
instance, node b has one neighbor which is the 3rd node j, node g has 2 neighbors
which are the 3rd and 9th nodes (j and i), and so on.

Edges in a compound graph can have various ideal lengths depending on their

source and target node’s placement in the graph hierarchy. Ideal edge lengths

between nodes in the same owner graph and nodes in different levels or different

compound nodes differ greatly. Aim of applying the spring force is to reach a

55

stable state, where the lengths of the edges are very close to the ideal lengths

that are calculated beforehand. Thus, storing the ideal edge lengths is essential.

Although ideal lengths can be computed on the device side, we decided to store

the ideal-edge-lengths in an array on texture memory, since these calculations

require recursive calls, which should be avoided on the device side [10]. Size of

the ideal-edge-lengths array is |E|.

As aforementioned, a 2D CUDA array is fetched to the texture cache in order

to store the geometry of the graph. In CoSE, nodes lay over a rectangular area

in 2D Euclidean space. Y coordinate of the top line and x coordinate of the

left line are needed to locate a rectangular area. Additionally, width and height

of the rectangular area should be stored in order to obtain the full geometric

information about a node. Each row in graph-geometry matrix is reserved for a

node. It has four columns corresponding to x, y, width, and height attributes.

Finally, geometry of the root graph is also required for calculations. Therefore

the size of the graph-geometry matrix is 4× (|V |+ 1) (see Table 5.1).

In order to calculate the gravitational force that will be applied on a node,

firstly, we should know whether or not the node in question is isolated. In other

words, do we need to calculate the gravitational force for a node, or not? Sec-

ondly, gravitational forces in compound nodes depend on the current sizes of the

compound nodes. So, the current sizes of the compound nodes should also be

stored. Finally, owner node of each node should be known to be able to know

the owner node’s current size. Owner node of a node can be stored via an inte-

ger that holds the row index of the node in the graph-geometry matrix. For the

graphs which are owned directly by the root graph, −1 can be used. Owner node

index is also necessary for calculating the surrounding nodes in the device side,

because the repulsion force is calculated between only the nodes with the same

owner. In conclusion, we use a 2D CUDA array named owner-data to store the

data mentioned above. Each row in the owner-data matrix is reserved for a node.

First column stores the index of the owner node, second one stores the estimated

size of the child graph of each compound node (for leaf nodes, value of the second

column will be −1), third column is used for checking whether gravitational force

will be calculated or not (0 or 1). Size of the owner-graph matrix is 3× |V |.

56

A surrounding-matrix is stored in the global memory for handling FR-grid

variant method in the device efficiently. At the ith row of the matrix, indices of

geometric neighbors of ith node (vi) are listed. These neighbors are the nodes

that apply a repulsion force on vi. For the graph in Figure 3.1, in the second row

of the surrounding-matrix, which is allocated for node b, only the index of node

a is stored. Since all nodes in the graph (except vi) can be neighbors of vi, there

should be at least |V |− 1 columns in the surrounding-matrix. Moreover, we need

a delimiter index, like −1, so the size of the matrix is |V | × |V |.

Resulting forces in x and y directions are stored separately. Since there are

three kinds of forces (attraction, repulsion and gravitational), there will be six

arrays named spring-x, spring-y, rep-x, rep-y, grav-x and grav-y. These arrays are

located in the global memory, because they will be accessed for both reading and

writing. Size of each array is |V |.

Beside the data structures mentioned above, there are also constants and lay-

out dependent parameters. Constant parameters like spring constant, repulsion

constant, fr-grid calculation check period are hard-coded in the header file of the

kernel CUDA C source. Layout dependent variables like repulsion range, num-

ber of nodes, and number of current iterations are stored in global memory, and

are accessible from all threads. In addition, pointers of the data structures that

are located on the global memory and layout dependent variables are passed as

parameters from CPU (via JCuda framework [22]) to the global function in the

kernel. A global function is like a main function for a CPU executable.

Algorithms

Total number of blocks (blocks per grid × number of grids) equals to and

cannot exceed the total number of processors in the GPU. Moreover, number of

threads in a CUDA block is limited due to the local memory of a processor. Our

experiments show that, using the full capacity of blocks gives better performance

results in comparison to using all the processors first. So, we decided to use maxi-

mum number of threads per block (threadMAX). Hence, there will be |V |
threadMAX

+1

blocks.

57

In each and every iteration of the layout calculation, each thread is assigned

to calculate the attractive, repulsive and gravitational forces to be applied on

each node. However, number-of-blocks × threadMAX ≥ |V |, and one block will

have idle threads if |V | is not a multiple of threadMAX . Threads from 0th to

|V | − 1st indices are dedicated to nodes from 0th to |V | − 1st indices, respectively.

In other words, if index of a thread is less than the number of nodes, then force

calculations are handled in this thread.

Firstly, all forces in both x and y axis are set to zero and owner node id is

obtained from owner-data matrix. Starting from the first iteration, surrounding-

matrix is re-calculated periodically in every ten iteration.

During the calculation of surrounding nodes, grid cells occupied by vi are

calculated at the beginning. Then all nodes in the neighbor cells are traversed. If

a node vj is in a neighbor cell of vi, and distance between vi and vj is less than or

equal to the length of the grid unit, and owner nodes of vi and vj are the same,

then index of vj is added to ith row of the surrounding-matrix.

In order to calculate attractive forces applied on vi, neighbors of vi in graph

topology need to be known. Indices of the neighbors of vi are held in the edge-

value array, from edge-index [i] to edge-index [i + 1] (see Figure 5.2). Attractive

forces between vi and its neighbors are calculated in the device as it is in the

sequential version. The method that calculates the attraction force between two

nodes is ported from Java to CUDA C. All attractive forces applied on vi are

summed up and stored in spring-x [i] and spring-y [i].

In the effort to calculate repulsive forces applied on vi, geometric neighbors

of vi in the graph should be known. Indices of surrounding nodes are stored in

the ith row of surrounding-matrix. Hence, this row is traversed until reaching

the delimiter index −1, or reaching the end of row. Repulsive forces between vi

and its surrounding are calculated in the device as it is in the sequential version.

The method that calculates the repulsion force between two nodes is ported from

Java to CUDA C. All repulsive forces applied on vi are summed up and stored in

rep-x [i] and rep-y [i].

58

If the third column of ith row in owner-data matrix equals to 1, this means

node vi is isolated and a gravitational force should be applied on it. So, the

gravitational force applied on vi is calculated and stored in grav-x [i] and grav-y [i].

Calculation of gravitational force applied on a node in the device is implemented

as it is in the sequential version. The method that calculates the gravitational

force on a node is ported from Java to CUDA C.

The overall algorithm that is implemented on the device side is shown in

Figure 5.3.

method CalculateAllForcesOnANode(int numberOfNodes)
1) i :=threadIndex
2) if i <numberOfNodes then
3) obtain owner graph index of the ith node
4) set forces to be exerted on the ith node to zero
5) calculate the total spring force applied on the ith node
6) if current iteration number is multiple of 10 then
7) construct the surrounding list of the ith node
8) calculate the total repulsion force applied on the ith node
9) if a gravitational force should be applied on the ith node then
10) calculate the gravitational force applied on the ith node

Figure 5.3: General force calculation algorithm on the kernel. This algorithm
runs simultaneously on each thread.

5.2.2 Host Side

Data Structures

One of the weaknesses of CUDA C framework is that it does not allow allocation

or de-allocation of the GPU memory dynamically on the device side. On the

other hand, CUDA C provides memory handling functions in the host side. Thus,

parallel computations are started just after allocating required spaces for variables

that will be used in the kernel.

Because CoSE layout algorithm is implemented in Java language, we prefer to

use Java for implementing the host side. So, use the JCuda framework [22], which

59

wraps the CUDA functionality (including driver methods) and lets developers use

a Java interface for calling CUDA methods.

All of the data structures mentioned in Section 5.2.1 are allocated from CPU

via JCuda framework. Data structures like edge-value, edge-index, ideal-edge-

lengths, surrounding-matrix, owner-data and graph-geometry are allocated before

the layout calculation is started.

Edge-value, edge-index, ideal-edge-lengths arrays and owner-data matrix are

constructed and copied from the host to the device only once and used during

the whole layout process, because these structures are dependent to the graph

topology and cannot be changed during the layout calculations. On the other

hand, graph-geometry matrix is constructed on the CPU for each iteration, and

copied to the GPU texture memory. Memory allocations of output arrays (spring-

x, spring-y, rep-x, rep-y, grav-x and grav-y) in GPU global memory are handled

before making the kernel call in each iteration. During the construction of data

structures that will be copied to the device memory, Java arrays are used regard-

less of whether or not the constructed data is one or two dimensional.

Algorithms

If a CUDA enabled GPU is plugged to the motherboard, and parallel program-

ming option is enabled by the user, then parallel computation is initiated via

JCuda. In order to make kernel calls, we need to create a file that can be loaded

and executed using the CUDA Driver API. For creating this file, kernel source

code has to be compiled by the NVCC compiler [23]. We have two options for

compilation of the kernel source. One is creating a PTX file, which is a human-

readable (but hardly human-understandable) file containing a form of assembler

source code. The other option is creating a CUBIN file, which is a CUDA binary

and contains the compiled code that can be directly loaded and executed by the

GPU. CUBIN files are specific to the capability of the GPU, which is kind of a

version number for the GPU hardware. CUBIN files that have been generated for

a compute capability cannot be loaded on a GPU with a lower capability. On the

60

other hand, PTX files are generated at runtime for the GPU of the target ma-

chine which makes it write-once, compile-anywhere. Thus, we prefer to generate

PTX files [23].

First, the device is initiated. Created PTX assembler file is loaded to the

initiated device. This PTX assembler file is known as the module in CUDA

terminology. After loading the module, a function pointer to the kernel main

function is obtained.

All data structures except the outputs are allocated before running the spring

embedder. Structures that are related with the graph topology and cannot be

changed during the layout process are constructed and copied to the device. For

arrays and matrices which will be stored in a texture cache, a texture reference is

set in addition.

In each iteration of the spring embedder, graph-geometry matrix is con-

structed, and copied to the texture memory of the device. Output arrays are

allocated from the global memory of the device. After that, kernel main func-

tion is called via the obtained function pointer. Pointer to the output arrays are

passed as argument to the kernel main function. For preventing a miscalculation,

each kernel call should be synchronized, so that, execution in the host side is

paused until the device becomes idle. When force calculations in the device are

completed, output forces are copied back to the host side. Then, device mem-

ory allocated for this iteration is de-allocated. Finally, attractive, repulsive, and

gravitational forces are applied to the nodes on the CPU side. When the spring

embedder finishes the layout computation, device memory used for this layout is

de-allocated.

The general algorithm that is implemented on the host side is shown in Fig-

ure 5.4.

61

method ParallelLayout(Graph G)
1) generate binary file
2) initialize the device
3) load the binary file
4) obtain the function pointer to the kernel main function
5) while G is not converged or max. number of iterations is not reached do
6) construct graph geometry matrix
7) prepare device memory fields
8) call the kernel main function
9) copy resulting force values to host
10) clean-up device memory
11) apply forces

Figure 5.4: General layout algorithm on the host side after implementing the
parallel computing approach.

5.3 Complexity Analysis

Let us first focus on the execution time of the force calculations and then move

onto the whole spring embedder. Since the execution time is mostly dependent on

the structure of the input graph, we will make some assumptions for simplifying

the complexity analysis.

Applying FR-grid variant method to CoSE, puts the average execution time of

calculation of total force to be exerted on a single node in the order of 2|E|/|V |+C.

Total time to calculate all the attractive forces is 2|E|, because the attractive force

that will be applied on two nodes are calculated in two threads. Total time to

calculate the repulsive and the gravitational force to be applied on a single node

is constant and indicated with C. Assuming edges are uniformly distributed to

nodes, sequentially calculating the total forces for all nodes makes the average

complexity of one spring embedder iteration O(|E| + |V |) with a large constant

factor.

FR-grid variant method is implemented for kernel side and is currently being

used by default. Therefore, we can assume that vertices are laid out evenly on the

drawing area as we did in the analysis of the FR-grid variant. In this case, there

will be at most 64 vertices to be checked for repulsive force calculation as described

62

in Section 3.2. Secondly, we assume that edges are uniformly distributed between

nodes. So that deg(v) becomes approximately the same for all v ∈ V . Note

that, deg(v) ' 2|E|
|V | and number of edges can be indicated as a multiple of the

number of vertices. The maximum value of 2|E|
|V | is |V | for complete graphs, but

for convenience, 2|E|
|V | can be assumed to be constant. Finally, calculating the

gravitational force to be applied on a vertex takes constant time.

To sum up, calculation of all forces takes constant time on the average. As

we know, for |V | < |T |, where |T | = number of processors × maximum threads

per block, kernel runs for each one of the vertices is handled in parallel. Thus, on

the average case, force calculations are executed in constant time for |V | < |T |.

In order to implement the force calculations on the GPU, the device should be

initialized and topology of the graph should be copied to the kernel side once for

each layout. On the other hand, geometry of the graph should be updated for each

iteration. So, CoSE spends O(|V |) per iteration for copying the geometry of the

input graph. Because of the memory copying costs, running time of the CUDA

supported CoSE becomes O(|V |) with a less constant factor compared to the plain

Java implementation, assuming |V | < |T |. Meanwhile, Java function overheads

for device initialization takes relatively long time but luckily, this process is done

only once for each layout calculation. In conclusion, for graphs containing more

nodes than a threshold value, parallel CoSE will eventually yield better results

in comparison with the sequential one.

However, input graphs with structure far different than the one described

above will yield different results. For instance, in complete graphs, there are
n(n−1)

2
edges. In such a case, we cannot assume 2|E|

|V | as a constant value. Also for

a star-shaped graph, there is a god vertex that is incident with all the edges, while

other vertices in the graph are incident with only one edge. Thus, the thread that

calculates the attractive forces on the god node spends O(|V |) time. Because the

kernel is waited to be idle before passing to the next iteration, force calculations

will cost O(|V |).

63

5.4 Results

For testing the running time of the parallel implementation of the CoSE, three

types of graphs: mesh-like, tree-like and compound graphs are generated ran-

domly. For performance comparisons, tests are run with graphs that contain

same structural properties with the graphs that are used for testing the previous

methods. Also, tests are run on the same system/machine configuration with the

previous methods. Different from testing of previous methods, we used larger

graphs ranging from 500 to 2500 nodes. For each graph size, we run sequential

and parallel CoSE ten times and take the average execution times. Comparisons

of execution times before and after adapting the parallel computing approach to

our compound spring embedder are shown in Figures 5.5 through 5.10.

Figure 5.5: Parallel CoSE vs. Sequential CoSE with mesh-like graphs (Only
FR-grid variant method is applied).

The major part of the compound spring embedder is the force calculations.

Thus, calculating the applied forces in parallel should cause a drastic decrease in

the execution time. However, because of the Java function overheads and mem-

ory copying costs, our parallel implementation will be advantageous for graphs

64

Figure 5.6: Parallel CoSE vs. Sequential CoSE with mesh-like graphs (Both
FR-grid variant and multi-level scaling methods are applied).

Figure 5.7: Parallel CoSE vs. Sequential CoSE with tree-like graphs (Only FR-
grid variant method is applied).

65

Figure 5.8: Parallel CoSE vs. Sequential CoSE with tree-like graphs (Both FR-
grid variant and multi-level scaling methods are applied).

Figure 5.9: Parallel CoSE vs. Sequential CoSE with compound graphs (Only
FR-grid variant method is applied).

66

Figure 5.10: Parallel CoSE vs. Sequential CoSE with compound graphs (Both
FR-grid variant and multi-level scaling methods are applied).

containing more than a certain number of vertices. This is the reason why we

used graphs in greater sizes.

Sequential and parallel implementations are compared for observing the per-

formance improvement. FR-grid variant method is used by default during all

test runs. We also compared the run times by applying our multi-level scaling

method. As expected, for huge graphs where |V | > 1000 we obtained a substan-

tial decrease in run times and our GPU supported CoSE implementation is 1.5 to

15 times faster than the CPU-only implementation. Approximately, the thresh-

old sizes for mesh, tree and compound graphs where the parallel implementation

starts to outperform the sequential one are 1500, 1000, and 500, respectively.

67

5.5 Future Work

Currently, only the force calculation process is run in parallel. The reason is

CoSE calculates the boundaries of the compound nodes recursively and recursive

invocations are avoided in GPU computing because of the SIMD structure. In the

future, whole embedder may be implemented in parallel by avoiding recurrence.

Moreover, drawing the final placement using GPU programming can be a good

improvement on performance.

68

Chapter 6

Conclusion

In order to decrease the asymptotic running time complexity from quadratic

to linear, we adapted the grid variant of Fruchterman and Reingold’s spring

embedder algorithm [7] to CoSE. We observed that adapting FR-Grid variant

makes CoSE to run 5 to 35 times faster for graphs ranging from 100 to 700

nodes.

For graphs with more than 100 nodes, and graphs that contain a particular

structure, CoSE converged pre-maturely or could not converge until number of

iterations hits to its maximum value. For obtaining better looking placements,

we adapted Walshaw’s clustering method [11], which is an implementation of

multi-level scaling. As expected, visual quality is significantly improved after

implementing the Walshaw’s method.

In CoSE, attractive, repulsive and gravitational forces exerted on node vi

had been calculated after the force calculations of all vj’s are finished, where

j < i < |V | and. This sequential process is not the only way to calculate forces,

since force calculation of a node has no dependency to or interaction with the

force calculation of other nodes. CoSE can calculate the applied forces in parallel.

We were inspired by the work in [14] during the adaptation of the parallel com-

putation principles to CoSE. Applying parallel programming strategy decreased

69

the high constant in the complexity of CoSE (with the FR-grid variant applied).

However, due to the copying costs, improvement in running time was observable

for very large graphs with more than a thousand nodes. After the adaptation,

CoSE runs 1.5 to 15 times faster.

6.1 Discussion

When we obtain the results of performance comparisons between sequential and

parallel CoSE, we notice that, if multi-level scaling strategy is applied, the differ-

ence between run times increases slightly faster. The reason may be the sizes of

the graphs. Force-directed algorithms are efficient for placement of small graphs,

where |V | < 100. For greater graphs, force-directed methods can converge pre-

maturely, or oppositely, can reach the maximum number of iterations without

laying out the graph properly.

6.1.1 Parameter Tuning

Tuning of the parameters like spring constant, repulsion constant, cooling factor,

etc. should be considered, as it affects the behavior of the mechanical system. For

example, as the springs get stronger, final placements get better in visual quality

but with a late convergence. However, a strong spring (with a high constant value)

might cause high degree nodes to oscillate. Oscillations in early iterations provide

a reasonable empty area around a node. These oscillations result relatively better

looking layouts, but system reaches the stable state lately.

Increasing the repulsion constant, improves the visual quality. Since the nodes

repel each other more strongly and the empty area around the nodes increases.

Changing the repulsion constant does not affect in the same proportion as chang-

ing the spring constant, since the impact of an attractive force is greater than a

repulsive force in a spring embedder.

In addition, if the initial placement of the graph is not far from desired,

70

CoSE is run incrementally and no random placement is done. For incremental

layouts, maximum displacement threshold for one iteration can be smaller, since

it is assumed that, the graph is close to a stable state and nodes should move

slowly.

In conclusion, we ignore the performance penalty and increase the spring and

repulsion constants slightly, because the performance of the CoSE is improved by

adopted methods.

6.2 Availability

All of the improvements mentioned in this thesis are implemented under Chisio

Layout (ChiLay) [24] project which is stored in sourceforge [25], [26].

After implementing and testing FR-grid variant and multi-level scaling meth-

ods to CoSE, we published ChiLay version 2.0 [24]. It contains several layout

styles including the improved CoSE. In order to use this layout package, Chisio

Editor Version 2.0 [21] can be downloaded and installed. For our GPU supported

compound spring embedder, we created a new branch under the sourceforge repos-

itory [26] and named it improved-CoSE-CUDA. Source of the fully improved CoSE

can be accessed from the repository [27].

71

Bibliography

[1] “Phenixvision.” http://www.hospitals-management.com/products_

services/communications_infotechnology/phenix_vision.html, Ac-

cessed in August 2012.

[2] “Pathway commons.” http://www.pathwaycommons.org, Accessed in Au-

gust 2012.

[3] “Cytoscape.” http://www.cytoscape.org/, Accessed in August 2012.

[4] A. Dilek, M. E. Belviranli, and U. Dogrusoz, “Visibioweb: visualization

and layout services for biopax pathway models,” Nucleic Acids Research.

38(Suppl), pp. W150-154, 2010.

[5] “Tom Sowyer Software.” http://www.tomsawyer.com/, Accessed in August

2012.

[6] “Facebook Social Graph.” http://www.mihswat.com/labs/app/

facebook-social-graph/, Accessed in August 2012.

[7] T. Fruchterman and E. Reingold, “Graph drawing by force-directed place-

ment,” Software Practice and Experience 21 (11) (1991) 11291164, 1991.

[8] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir, “A layout

algorithm for undirected compound graphs,” Information Sciences, 179, pp.

980994, 2009.

[9] S. Hachul and M. Jnger, “Large-graph layout with the fast multipole mul-

tilevel method,” Technical report, Zentrm fr Angewandthe Informatik Kln,

2005.

72

[10] NVIDIA CUDA C Programming Guide. NVIDIA CUDA, 2011.

[11] C. Walshaw, “A multilevel algorithm for force-directed graph drawing,”

(Proc. Graph Drawing) LNCS, 1984:171-182, 2001.

[12] “BioPAX - Biological Pathway Exchange.” http://sbml.org/Main_Page/,

Accessed in August 2012.

[13] “GraphML - A File Format for Graphs.” http://graphml.graphdrawing.

org/, Accessed in August 2012.

[14] A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart, “Rapid multipole

graph drawing on the GPU,” GD 2008, LNCS 5417, pp. 90101, 2009.

[15] Graduate Texts in Mathematics, Graph Theory. Springer, 2000.

[16] “Java Swing.” http://www.javaswing.org/, Accessed in August 2012.

[17] P. Eades, “A heuristic for graph drawing,” Congressus Nutnerantiunt, 42,

149160, 1984.

[18] T. Kamada and S. Kawai, “Automatic display of network structures for

human understanding,” Technical Report 88-007, Department of Information

Science, Tokyo University, 1988.

[19] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning

graphs,” S. Karin, editor, Proc. Supercomputing ’95. ACM Press, 1995.

[20] “CUDA: Parallel Programming and Computing Platform.” http://www.

nvidia.com/object/cuda_home_new.html, Accessed in August 2012.

[21] “Chied: Chisio editor.” http://cs.bilkent.edu.tr/~ivis/chied.html,

Accessed in August 2012.

[22] Y. Yan, M. Grossman, and V. Sarkar, “Jcuda: A programmer-friendly inter-

face for accelerating java programs with cuda,” Lecture Notes in Computer

Science, 2009, Volume 5704/2009, 887-899, 2009.

[23] “JCuda Tutorial.” http://www.jcuda.de/tutorial/TutorialIndex.

html, Accessed in August 2012.

73

[24] “Chilay: Chisio layout.” http://cs.bilkent.edu.tr/~ivis/chilay.html,

Accessed in August 2012.

[25] “Sourceforge.” http://sourceforge.net/, Accessed in August 2012.

[26] “Source of chilay.” https://chilay.svn.sourceforge.net/svnroot/

chilay, Accessed in August 2012.

[27] “Fully improved cose.” https://chilay.svn.sourceforge.net/svnroot/

chilay/chilay2x-improved-CoSE-CUDA, Accessed in August 2012.

74

