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ABSTRACT

SURFACE REFLECTANCE ESTIMATION FROM

SPATIO-TEMPORAL SUBBAND STATISTICS OF

MOVING OBJECT VIDEOS

Onur Külçe

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Onural

Co-Supervisor: Assist. Prof. Dr. Katja Doerschner

August 2012

Image motion can convey a broad range of object properties including 3D struc-

ture (structure from motion, SfM), animacy (biological motion), and its material.

Our understanding of how the visual system may estimate complex properties

such as surface reflectance or object rigidity from image motion is still limited. In

order to reveal the neural mechanisms underlying surface material understand-

ing, a natural point to begin with is to study the output of filters that mimic

response properties of low level visual neurons to different classes of moving tex-

tures, such as patches of shiny and matte surfaces. To this end we designed

spatio-temporal bandpass filters whose frequency response is the second order

derivative of the Gaussian function. Those filters are generated towards eight

orientations in three scales in the frequency domain. We computed responses of

these filters to dynamic specular and matte textures. Specifically, we assessed

the statistics of the resultant filter output histograms and calculated the mean,

standard deviation, skewness and kurtosis of those histograms. We found that

there were substantial differences in standard deviation and skewness of specular
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and matte texture subband histograms. To formally test whether these simple

measurements can in fact predict surface material from image motion we devel-

oped a computer-assisted classifier based on these statistics. The results of the

classification showed that, 75% of all movies are classified correctly, where the

correct classification rate of shiny object movies is around 77% and the correct

classification rate of matte object movies is around 71%. Next, we synthesized

dynamic textures which resembled the subband statistics of videos of moving

shiny and matte objects. Interestingly the appearance of these synthesized tex-

tures were neither shiny nor matte. Taken together our results indicate that

there are differences in the spatio-temporal subband statistics of image motion

generated by rotating matte and specular objects. While these differences may

be utilized by the human brain during the perceptual process, our results on the

synthesized textures suggest that the statistics may not be sufficient to judge the

material qualities of an object.

Keywords: The Human Visual System, Surface Reflectance, Movie Subband

Statistics, Three-Dimensional Second Order Derivative of Gaussian Filter, Tex-

ture Synthesis, Steerable Pyramid
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ÖZET

HAREKET EDEN NESNE VİDEOLARININ ALTBAND

İSTATİSTİKLERİ KULLANILARAK YÜZEY YANSITMA

ÖZELLİĞİNİN BELİRLENMESİ

Onur Külçe

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Onural

Yardımcı Tez Yöneticisi: Assist. Prof. Dr. Katja Doerschner

Ağustos 2012

Nesnelerin hareket görüntüleri, 3 boyutlu (3B) yapı, biyolojik hareket, maddenin

yapısı gibi nesne özelliklerini kapsayan geniş bir alanda bilgi verebilir. Görsel

sistemin, yüzey yansıması veya nesnenin katılığı gibi karmaşık özellikleri nasıl

algıladığı ile ilgili bilgimiz ise sınırlıdır. Maddenin yüzey yapısının algılanmasını

sağlayan sinirsel mekanizmanın ortaya çıkarılması için doğal başlangıç noktası,

mat ve parlak yüzeyleri içeren farklı sınıflardaki hareketli dokulara uygulanan,

düşük seviye görsel sinir hücrelerini taklit eden süzgeçlerin çıkışlarını incelemek-

tir. Bu amaçla, frekans tepkisi Gauss’un ikinci dereceden türevi olan mekan-

zamansal band-geçirgen süzgeçler tasarladık. Bu süzgeçler, frekans alanında sekiz

yönde ve üç ölçekte tasarlandılar. Bu süzgeçlerin hareketli parlak ve mat doku-

lara olan çıktılarını bulduk. Özellikle, süzgeçlerin çıkışlarındaki histogramların

istatistiklerini değerlendirdik ve histogramların ortalama, standart sapma, ya-

mukluk ve sivrilik (basıklık) ölçülerini hesapladık. Parlak ve mat doku altband

histogramları arasında standart sapma ve yamukluk açısından belirgin farklar

olduğunu gözlemledik. Bu basit ölçümlerin gerçekte parlak veya mat nesnelerin
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tanınması için kullanılıp kullanılamayacağını anlamak için, bu istatistikleri kul-

lanan bilgisayar tabanlı bir sınıflandırıcı geliştirdik. Sonuçlar kullanılan film-

lerin %75’inin doğru olarak sınıflandırılabildiğini gösterdi. Mat nesnelerin doğru

olarak sınıflandırma oranı %71 iken parlak nesnelerin doğru sınıflandırılma oranı

%77 olarak bulundu. Daha sonra, altband istatistikleri açısından parlak ve mat

nesnelere benzeyen hareketli dokular üretildi. İlginç bir şekilde, üretilmiş filmler

ne mat ne de parlak bir görünüme sahipti. Bu sonuçlar tümden ele alındığında,

dönen parlak ve mat nesnelerin mekan-zamansal altband istatistikleri arasında

fark olduğu gözlemlendi. Beyin bu farkları, algılama sürecinde kullanabileceği

halde, üretilen dokular bize, istatistikler nesnenin madde yapısının kalitesini an-

lamak için yeterli olmayabileceğini gösterdi.

Anahtar Kelimeler: İnsan Görsel Sistemi, Yüzey Yansıması, Film Altband

İstatistikleri, Üç boyutlu Gauss’un İkinci Dereceden Türevi, Doku Sentezi,

Döndürülebilir Piramit.
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Chapter 1

INTRODUCTION

Understanding the visual system and visual perception has been the interest of

many scientists and philosophers, such as Aristotle, Plato, Leonardo DaVinci or

Hermann von Helmholtz. In 1981, the Nobel Prize in Physiology or Medicine

was given to David H. Hubel and Torsten Wiesel for their contributions to un-

derstanding the visual system. They showed that neurons in the visual cortex

respond to very specific stimuli, such as bars at different orientations or moving

edges, in particular locations of the visual field called the receptive field. They

also proposed that the visual system is organized hierarchically, where simple

cells respond to basic stimulus properties, such as brightness and orientation of

edges, and complex cells that receive feedforward input from these simple cells

respond to motion of oriented edges [1]. More recently many higher level neu-

rons with more complex properties of the receptive field have been discovered,

such as those respondent exclusively to faces [2]. One aim of research in vision

is to understand how complex visual phenomena such as color, object or surface

material are estimated from the visual input, i.e., to understand the specific pro-

cessing hierarchy. In this thesis, we examine whether simple brightness intensity

statistics, such as those that may be computed by simple cortical cells, of moving

objects can account for the appearance of surface reflectance.
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We next give explanations of the terms surface reflectance, statistics of visual

stimuli, motion and subband.

Surface Reflectance: When we see the surface of an object, we can easily

judge the material of that object based on its surface reflectance properties and

we can tell, for example, whether the object is made up shiny, matte or velvet

material. Surface material provides important information about how to interact

or evaluate a given object. For example, stucco which has bad quality is often

appears less shiny than stucco which is of good quality. In trying to understand

whether a car had crashed before one often examines discontinuities in shiness

on its surface.

In electromagnetics terminology, reflectivity of a surface can be defined as

the ratio between the energy of the reflected light to the incident light [3]. In

computer vision, surface reflectance is often modeled as a bidirectional reflectance

distribution function (BRDF). The BRDF includes four parameters, azimuth and

zenith angles of the light source and azimuth and zenith angles of the observers.

These angles are defined with respect to surface normal, where the reflection

occurs.

Shininess or opaqueness of a surface is determined by its reflectance proper-

ties. That is, if all radiated energy is contained in reflected light beam which has

the same angle with incoming light, then, the surface seems perfectly shiny. This

type of reflectance is called specular reflectance. On the other hand, if reflected

light beams carry equal amount of energy in every direction, then, the surface

seems perfectly opaque. This type of reflectance is called diffuse reflectance. A

surface may have both of those reflectance types at the same time. That is, if the

degree of the specular reflectance increases, it seems shinier and if the degree of
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the diffuse reflectance increases, it seems more matte. For example, if most of ra-

diated energy is contained in the light beams whose reflection angles are close to

angle of incoming light, the surface can still seem shiny. In addition, there can be

some situations that cannot be decided whether the object is matte or specular.

In such a situation, it can be said that the surface has nearly same specular and

diffuse reflectance amounts and it seems semi-matte. These reflectance models

are included in the BRDF and more details about the BRDF as well as specular

and diffuse reflectance types can be found in [4].

Surface reflectance is a crucial piece of information for many computer vision

algorithms. For example, shape from shading is a method that provides recov-

ery of shape of an object from its reflectance properties, assuming diffuse re-

flectance (Lambertian) [5, 6, 7]. Other algorithms have assumed known specular

reflectance for estimating shape [8]. However, how to estimate surface reflectance

from movies directly is largely unstudied. This thesis is one of those attempts.

Statistics of Visual Stimuli: It is reasonable to assume that the visual system

is adapted to the environment that we live in. Therefore, exploring the properties

of the visual input can help to understand the working mechanism of the human

Visual system (HVS). The distribution of brightness intensities of the visual input

is, for example, a simple property that has been examined by several researchers.

In 1954, Attneave indicated that the visual information in a natural scene is

highly redundant. The word redundant means that natural scenes have recurrent

characteristics in terms of color, brightness and shape. For example, the sky in

a sunny day is blue or a road is gray color. In order to increase the information

gathered from a visual stimuli and storing the maximum information, the HVS

should have an efficient coding algorithm to reduce that redundancy [9]. In 1961,

Barlow formulized the suggestion of Attneave in a mathematical manner and
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proposed the concept of redundancy reduction [10]. According to the principle,

instead of responding and storing each part of a natural scene, the HVS shows

reaction to the probabilistic characteristics of the visual stimuli. In this way,

a scene which contains redundancies is abstracted according to its statistical

characteristics and efficiently processed and perceived by the brain.

Previous research on visual scene statistics mainly focused on the first order

(extracted from image histogram) and second order (extracted from correlation

properties) statistics. More details on redundancy reduction, image statistics

and coding/storing visual information can be found in [11, 12, 13, 14, 15].

Motion: The physical world around us and/or we are constantly in motion

and so, motion perception is extremely crucial for many aspects in our life. For

example, while we walk across the street, if we see that there is an oncoming fast

moving car, we decide to walk faster or wait until the car passes by. So, how is

motion computed by the brain? One possibility is that the HVS processes only

instantaneous two-dimensional visual stimuli, and in this case, the perception of

motion could be explained by simply investigating the perceptual mechansims of

instaneous frames (or instances in time) independently. However, let us consider

a disease called akinetopsia. People with this disease lack the perception of

motion, although they can see standing objects. For example, they can see their

hands when they put them onto a table. However, they cannot see the same

hands while they are washing or waving them. Or, they cannot judge the speed

of oncoming cars and they cannot see people moving in a room. Their perception

is that of snapshots. Researches have shown that akinetopsia is caused by a

lesion found in a certain part of the visual system in the brain, that is called as

middle temporal region (MT) [16]. This region of the brain is in fact responsible

for motion perception. Therefore, motion perception is more than independent

perception of motion in two-dimensional consecutive frames.
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What other kinds of information does image motion convey? Research has

shown that motion is extremely crucial for estimating three-dimensional shape

in structure from motion (SfM) [17, 18, 19, 20, 21, 22, 23, 24], perception of

biological entities [25, 26, 27] and more recently also in material perception [28,

29, 30, 31]. What these works have in common is that they demonstrate that

motion provides information, that cannot be extracted from still images.

Subband: In 1959, the Nobel laureates David H. Hubel and Torsten Wiesel

conducted an experiment on the early stages of the visual system of a cat [1]. In

the experiment, the cat was shown some lines at different angles and the activity

of neurons in primary visual cortex and lateral geniculate nucleus (LGN) were

recorded. The experimental results suggested that each different set of neurons

responds to lines at different angles. They called these neurons as simple neurons.

In addition, they also found that a different set of neuron responded to the lines

which have different lengths. After that, they showed the cat moving lines which

have different motion direction. As being in the case of different angled and

length of lines, different sets of neurons responded the lines which have different

motion direction. They called these neurons as complex neurons. At the end

of their work, they reached the conclusion that the visual system decomposes a

visual stimuli into its features which have different angles, lengths and motion

directions, then process each decomposed part separately.

In the discipline of image processing and related fields, the behaviour of

the single and complex neuron sets can be interpreted under the concepts of

orientation and scale. In other words, it can be said that the single and complex

neurons have orientation and scale selectivities. As we explain in Chapter 2,

orientation and scale selectivity characteristics of the neurons can be modeled

in the frequency domain. That is to say, a particular orientation and scale

correspond to a particular location in the frequency plane. This location in the
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frequency plane can be called as subband. In this thesis, we model the selectivities

of the neuron sets by the digital filters designed in the frequency plane. Detailed

information about the behaviour of the simple and complex cells as well as the

details of the HVS can be found in [32] and [33].

Compilation of the Stated Concepts and Outline of this Thesis: The

image that a moving object generates can convey important information about

the appearance of that object, including its surface reflectance characteristic.

For example, if an object is painted as though it reflects its environment, it can

be perceived as shiny when it is stationary. However, when it moves, it rapidly

becomes apparent that it does not reflect the environment specularly but that is it

just painted. On the other hand, if the object surface was specular, reflections on

the surface had specific motion characteristics and differed from the motion of the

object. Example movies that show motion of painted objects and shiny objects

can be found on the website http://www.umram.bilkent.edu.tr/~kulce/.

In this thesis, we try to understand the fairly complex perceptual attribute

of surface material by examining the responses of the early visual system to

moving matte and specular surfaces. We first mimic the response of the early

stages of the HVS. To accomplish this, we design an image processing tool which

consists of subband filters which have different orientation and scale selectivities

similar to simple and complex visual neurons. In Chapter 2 we give the technical

details of the filters. In Chapter 3, we test the hyphothesis that the statistics

play role on the recognition of surface reflectance, by examining similarities and

differences between subband statistics of the motions generated by the matte

and shiny rotating objects.
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The chapters are organized as follows:

• Chapter 2: This chapter includes the technical details about the image

processing tool that we develop to model the early stages of the HVS. Since

we design oriented filters in different scales, we explain what the orientation

and scale is and their interpretation in the frequency domain. Secondly, we

give the filter properties of three-dimensional derivative of Gaussian filters,

such as orientation and scale bandwidth and associated design considera-

tions. Then, since we used second derivative of Gaussian filters to model the

HVS, we give explicit design steps of that filter. Next, since one of the aims

of this thesis is to check whether the subband statistics are sufficient cues

on the surface reflectance recognition, we need to synthesize new movies

which have the same subband statistics with a selected shiny or matte ob-

ject movie. The algorithm for synthesis requires the steerable pyramid,

which is a subband decomposition/reconstruction filterbank. Therefore,

we give technical details on the steerable pyramid and the analytical con-

straints that the steerable pyramid filters should have. Finally, we provide

explicit design steps of adopted three-dimensional steerable filter design

methods.

• Chapter 3: This chapter shows experimental results on the subband

statistics of matte and shiny moving objects. We first describe our dataset

and the statistical parameters that we use. Secondly, since our dataset con-

sists of matte and shiny versions of an object, we give statistical differences

of the motions of such pairs. After that, we examine the differences between

the averages of the statistical parameters of matte object motions and the

averages of the statistical parameters of shiny object motions. Then, we

attempt to classify surface reflectance using motion statistics. Finally, we

propose a motion syntesis algorithm based on subband histogram matching

and discuss classification results on the synthesized textures.
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• Chapter 4: We end with a brief summary, discussions of the results and

possible future work.

The contribution of this thesis can be summarized as follows:

• We examine the role of subband motion statistics on surface reflectance ap-

pearance and develop a successful classifier based on the subband statistics.

We show the limits of this approach using synthesized reflectance textures.

• We examine the filter properties of three-dimensional derivative of Gaussian

filters in any derivative order and provide explicit design steps of first and

second derivative of Gaussian fitlers.

• We develop two different design methods for three-dimensional steerable

pyramid filters.

1.1 Previous Works on Surface Reflectance

Recognition

We end this chapter by briefly reviewing previous work on human surface re-

flectance recognition.

Still Images: In [34], Sharan et al. examine the importance of diffuse re-

flectance through an image matching experiment and find that diffuse reflectance

parameters affect surface reflectance recognition. Moreover, they work on the

statistics extracted from histograms of subbands of complex photographs and

develop a machine learning algorithm based on those statistics for separation

of shiny objects from matte ones. In [35], Flemming et al. reveal that stored

assumptions and previous knowledge of humans about real world illumination
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statistics also affect the decision of whether an object is shiny or matte. In [36],

Dror et al. propose another machine vision algorithm to differentiate matte and

shiny surfaces. In their work, the surfaces that they use have arbitrary shapes

and the illumination type is unknown. The pattern recognition algorithm that

they develop also uses statistics of the images. In [37], Motoyoshi et al. find

that perceived glossiness is highly correlated with the skewness of both image

luminance histogram and image subband histograms. If the skewness of the his-

tograms is high, then, the object seems more glossy and has less albedo. They

also propose that there are mechanisms on the human visual system that are sen-

sitive to skewness of the luminance histograms. However, in [38], Anderson and

Kim have shown that unique statistics are not sufficient to explain the perception

of surface gloss but that other higher level properties such as the alignment of

highlights with the shading gradient are important. In [39], Adelson summarizes

the recent works on the topic and emphasizes the importance of the subband

statistics on the perception of glossiness in still images.

Motion: In [29], Doerschner et al. introduce three motion cues to identify

surface material. These cues are extracted from optic flow characteristics of the

objects and named as coverage, divergence and 3D shape reliability. By using

those characteristics of the optic flow, they developed a classifier algorithm and

they can predict the shininess of an object. In [30], the authors classify materials

as shiny or matte by examining their dominant direction of motion and motion

velocities. They assume specular features as sliding onto the surface of the object

while it is moving. A specular feature move faster than the object in flat regions

and slower than object in convexly curved regions. In [31], Zang et al. work

on perception of motion of nonrigid shiny and matte objects. They also use

optic flow characteristics related to motion. In [28], Hartung et al. investigates

surface reflectance perception according to the parameters; naturalness of the

9



illumination environment, consistency between background and reflection, and

optic flow.
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Chapter 2

FILTERS AND VIDEO

PYRAMID

Images and videos are filtered for different purposes. In this thesis, since we de-

sire to investigate statistical differences between subbands of motion of shiny and

matte objects, Gaussian derivative filters are designed in different orientations

and scales. Their advantageous properties are separability, steerability and hav-

ing short lengths. Moreover, in order to see to what extent the subband statistics

are important on the surface reflectance perception, a kind of hierarchical video

decomposition architecture, steerable pyramid for three-dimensional signals, is

designed.

In this chapter, after giving the preliminaries on the concept, we state the

mathematical expressions and design steps of the Gaussian derivative filters.

Then, we proceed with the general properties, usage and explanation of our

adopted filter design techniques for the steerable pyramid. Detailed explanations

and theorems on steerability of such filters can be found in [40], and the extension

of the steerability property to three-dimensional separable filters is explained in

[41]. The steerable pyramid is explained in details in [42].
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2.1 Orientation and Scale

2.1.1 Orientation in 2-D Images

In this thesis, we make an orientation analysis on motion. However, before

we proceed to the orientation concept in three-dimensional signals, we find it

beneficial to mention the orientation in the two-dimensional case, in other words,

in still images.

Many images, especially ones which are captured from the nature, have many

oriented structures. The orientation of a feature is characterized by the direction

of the edges of that feature. In Figure 2.1, we define a coordinate system for a

still image and an orientation angle α.

?

-

y

x

@
@
@
@
@
@
@@

��

��

���

N

��

��

α

Figure 2.1: The diagonal solid line shows an edge of a feature and the dashed
arrow indicated with N shows the line which is normal to the edge. The ori-
entation of the edge is defined by the angle α. If α � 0 rad, the edge is called
vertically oriented and if α � π{2 rad, the edge is called horizontally oriented.

In this thesis, we work on discrete images. Let a finite image be defined

by the function Ipm,nq, where m and n are integers such that m P r0,M � 1s,
n P r0, N � 1s. Thus m and n identify the pixel locations along the x and y axes,

respectively. The two-dimensional discrete Fourier transform (DFT), F pu, vq, of

12



this image is calculated by;

F pu, vq �
N�1̧

n�0

M�1̧

m�0

Ipm,nqe�j 2πumM e�j
2πvn
N , (2.1)

where j � ?�1, u and v are integers such that u P r0,M � 1s, v P r0, N � 1s
[43]. The plane that these coefficients lie is called as Fourier plane or

frequency plane. Moreover, the magnitude spectrum coefficients are the ab-

solute values of the DFT coefficients. In the coordinate system defined for the

DFT, u and v correspond to discrete frequencies along the x and y axes shown

in Figure 2.1, respectively.

The DFT of an image which contains oriented structures shows a character-

istic pattern. That is, in the Fourier plane, existence of a nonzero coefficient in

an arbitrary pu, vq point implies existence of a feature which have the orientation

angle α � arctanp�v{uq in the image. Also, the magnitude of that coefficient

determines the dominancy of the oriented feature and the phase determines its

location in the image [43]. In Figure 2.2, three images which have oriented struc-

tures and their magnitude spectrum are shown as examples. The first image is

the jersey of the football team Barcelona and the second image is a zebra, more

complicated image since it has features in multiple orientations. The jersey has

vertically oriented stripes along y axis (α � 0 rad) and the stripes of the zebra

elongates mainly in the diagonal direction. The last image is an artifical image

which also has oriented structures but it contain higher frequency with respect to

other images. In accordance with the previous statement, the large coefficients in

the magnitude spectrum of the images lie along the direction of dominant spatial

orientation of the images.
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(a) A gray-scale image of the jersey of
Barcelona

(b) The magnitude spectrum of the
image of the jersey

(c) A gray-scale image of a zebra (d) The magnitude spectrum of the
image of the zebra

(e) An artifical image (f) The magnitude spectrum of the ar-
tificial image.

Figure 2.2: Three images which contain oriented structures together with the
defined coordinate axes are shown. The origin of the magnitude spectrums are
brought to the origin of the images.
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Therefore, a filter may detect a feature which has a certain orientation, if its

magnitude response has large coefficients along the same orientation angle of the

feature. These type of filters, which have orientation selectivity, are called ori-

ented filters. Readers can find detailed explanations about orientation selectivity

and oriented edge detection in [43] and [44].

2.1.2 Orientation in 3-D Images

The orientation concept can be extended to the spatio-temporal domain. In a

still image, a variaton on the signal occurs as a result of the intensity change

in nearby pixels. Since a video can be assumed as a rectangular prism whose

volume is filled with rows, columns and frames, a variation in time corresponds

to the intensity change of nearby pixels in successive frames.

Three-dimensional DFT of a video, Ipm,n, tq, is computed by just adding

the new frequency variable p to the two-dimensional DFT. That is;

F pu, v, pq �
T�1̧

t�0

N�1̧

n�0

M�1̧

m�0

Ipm,n, tqe�j 2πumM e�j
2πvn
N e�j

2πpt
T , (2.2)

where t is an integer in r0, T � 1s. Inverse discrete Fourier transform (IDFT) is

also defined by;

Ipm,n, tq � 1

MNT

T�1̧

p�0

N�1̧

v�0

M�1̧

u�0

F pu, v, pqej 2πumM ej
2πvn
N ej

2πpt
T , (2.3)

where p is an integer in r0, T � 1s.

Equation 2.3 states that a video in the discrete domain can be written as a

linear combination of three-dimensional complex exponential functions. Since we

work on real signals, complex exponential functions reduce to discrete cosines,

which are in the form of gpm,n, tq � cospum� vn� pt� ϕq, where ϕ represents

the phase. The perceived motion direction of this cosine is always the same
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as the spatial orientation, which is computed as arctanp�v{uq, due to aperture

problem [45]. The cosine function cospum� vn� ptq can be written in the form

of gpm � Vxt, n � Vytq � cos
�
upm � Vxtq � vpn � Vytq

�
, where Vx and Vy are

the components of the velocity vector ~V � rVx VysT along x and y directions.

For a three-dimensional cosine signal, these components are Vx � up{pu2 � v2q
and Vy � vp{pu2 � v2q. The speed is also calculated by |~V | � a

V 2
x � V 2

y �
|p|{?u2 � v2. Therefore, in the three-dimensional magnitude plane, existence

of a nonzero coefficient in an arbitrary pu, v, pq point implies the presence of a

moving feature whose spatial domain orientation and speed are arctanp�v{uq and

|p|{?u2 � v2, respectively. Three frequency component, u, v and p constitute an

orientation vector in the three-dimensional space, which is ru v psT .

As an example, in Figure 2.3, the large coefficients of the DFT of a moving

vertically oriented edge is shown. As it can be seen from the figure, according

to the arctanp�v{uq formula, spatial domain orientation angle of each cosine is

zero. In addition, their speed, which is |p|{?u2 � v2 is equal to the speed of the

moving edge.

6

p

�
���

����u

- v����
����
����
����
����
����

Figure 2.3: The DFT of a motion of a vertical edge is shown. The large nonzero
coefficients are found where the dots are located. If video of the moving edge
consists of real pixel values, the DFT is symmetric with respect to origin.
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Therefore, in order to extract the motion characteristics of a feature, spatio-

temporally oriented filters can be used. Further explanations about the spatio-

temporal orientation can be found in [46] and [47].

In this thesis, since shiny features have their own motion characteristics,

orientation analysis in the spatio-temporal domain would be helpful to extract

information about shininess. In addition, as we mentioned in the previous chap-

ter, in the early stages of the HVS, orientation selective cells are found [32].

Therefore, oriented filters are also useful to model the HVS.

2.1.3 Scale

In images and videos, correlation of pixel intensities both in small and large re-

gions can give information about the image features. The term scale in image

processing is used to point out the size of the region that is being examined.

Coarser scale is associated with large regions and finer scale is associated with

small regions. In the three-dimensional images, Ipm,n, tq, analysis in the differ-

ent scales extracts information about motion continuity and duration of different

sized features.

In the Fourier spectrum, the scale concept can be interpreted as follows. If

there is a variation at a finer scale, that means there is a fast change on that

local region of the signal. A fast change in a signal occurs if the coefficients of

high frequency components in the Fourier spectrum are large. On the contrary,

a slow change in a signal can be noticed in coarser scales. And a slow change

in a signal occurs as a result of the dominant low frequency cosine components.

Therefore, in order to extract features on the finer scales, filters tuned to high

frequencies and in order to extract features on the coarse scales, filters tuned to

low frequencies should be used. An example showing the scale concept is given
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in Figure 2.4. In this figure, variations in both coarse and fine scales can be seen.

The magnitude spectrum of this image is also shown.

(a) An image which contain features
at different scales.

(b) The magnitude spectrum of the
image.

Figure 2.4: First image has circles at coarser scales and rectangle-like shapes at
finer scales. Second image shows the magnitude spectrum of the first image.

Readers can find detailed explanations about the scale concept in [48].

In this thesis, the motion of both small and large shiny features relative to

object surface are required to be analyzed. (This would give information about

coherent motion duration of shiny and matte features). Therefore, scale analysis

might provide information about shininess.

2.1.4 Filter Design for Selectivity in Specific Orientation

and Scale

Before we proceed with the design steps of our filters, in this section, we first

mention a general technique that can be applied for the design of filters which

have arbitrary scale and orientation selective characteristics.

In this thesis, we start to design the filters by specifying their discrete time

Fourier transforms (DTFT). Let a three-dimensional discrete filter be the func-

tion fpx, y, tq, where x, y, t are integers such that x, y, t P p�8,8q. The

18



three-dimensional DTFT, F pωx, ωy, ωtq, of this filter is calculated by;

F pωx, ωy, ωtq �
8̧

t��8

8̧

y��8

8̧

x��8

fpx, y, tqe�jpωxx�ωyy�ωttq, (2.4)

where ωx, ωy, ωt are continuous real numbers such that ωx, ωy, ωt P p�8,8q.

In order to design the orientation and scale selective filters, it is good to use

the spherical coordinates for three-dimensional signals. This coordinate system

allows direct identification of the orientation and scale selectivities of the filters.

In the frequency domain and according to Figure 2.5, the spherical coordinates

are defined as

ωr �
b
ω2
x � ω2

y � ω2
t (2.5)

cospφq � ωt
ωr
, where 0 ¤ φ ¤ π (2.6)

cospθq � ωxa
ω2
x � ω2

y

, where 0 ¤ θ   2π (2.7)

Figure 2.5: Spherical coordinate angles
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The radial and the angular part of the filter can be designed separately. Let

the function Fspωr, θ, φq be the representation of the filter F pωx, ωy, ωtq in the

spherical coordinates. Let us assume that the filter has the property,

Fspωr, θ, φq � W pωrqGpθ, φq, (2.8)

where, W pωrq is the radial part and Gpθ, φq is the angular part of the filter.

This kind of separation allows separate treatment of radial and angular parts

in terms of center frequency and bandwidth. The term center frequency refers to

the frequency that the amplitude of the filter is at its maximum and bandwidth

is the term used for the quantity of the frequency interval of the passband of the

filter. There are different bandwidth definitions in the literature; in this thesis

we use 3-dB bandwidth definiton [49]. Some important notes on the filter design

are the following;

• These filters are assumed to be zero-phase filters. Therefore, specifying the

magnitude spectrum is enough to design the filters.

• It is crucial to remember that the DTFT is periodic with 2π, therefore

we specify the DTFT coefficients in the interval r�π, πq and assume that

DTFT has periodic extensions. Therefore, according to Equation 2.5, the

maximum value of ωr can be π
?

3. If filters which have same radial but

different angular functions are to be designed, in order to keep the char-

acteristics of the specified radial function, W pωrq should be zero when ωr

is greater than π. The reason is that, if W pωrq is designed such a way

that it is nonzero when ωr is greater than π, multiplication of W pωrq by a

certain angular function, Gpθ, φq, may lead to nonzero coefficients outside

the interval of r�π, πq at ωx, ωy or ωt axes. This situation disobeys 2π

periodicity rule and it becomes impossible to design the filters with the

specified radial function.
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• If the spatio-temporal domain filter coefficients are desired to be real zero-

phase filters, then the frequency domain coefficients should be chosen to

be symmetric with respect to the origin.

• After specifying the filter characteristics in the DTFT domain, they should

be converted to the discrete spatio-temporal domain for digital processing.

In the literature, there are different techniques for this conversion. Some

methods are explained in detail in [50]. In this thesis, we give details of

our adopted technique in Section 2.3.3.

2.2 Steerable Filters

Various kinds of filters may be needed for different applications. For example,

for smoothing, low-pass filters; for edge detection, high-pass or band-pass filters

are used. In each of those three types of filtering operations, as in our case,

orientation selective filters may be needed. When an image/video is analyzed

in different orientations, after specifying the center frequencies of the angular

parts of the filters, designing all of them in the discrete spatial/spatio-temporal

domain separately can cause a huge workload. Each filter also occupies memory

on its operation platform (a computer, an embedded system etc). Moreover, for

an input signal, the output of each of those oriented filters are needed to be

computed separately either with the convolutions in the spatial/spatio-temporal

or with the multiplications in the Fourier domain. Those large number of convo-

lutions or multiplications also require higher memory sizes and more advanced

processors.

Steerable filter concept, on the other hand, introduces the fact that an arbi-

trarily oriented filter output of a multi-dimensional signal can be found by linear

combination of a number of basis filter outputs. Those basis filters are the same
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except the center frequencies of their angular functions. In other words, they are

rotated copies of a prototype filter.

In the three-dimensional space, let Ipωx, ωy, ωtq be the three-dimensional

DTFT of a video and Fθ,φpωx, ωy, ωtq be the three-dimensional DTFT of a filter

whose center frequency in the orientation space is tuned to the spherical angles

θ and φ, as shown in Figure 2.5.

The steerability property can be written as,

Ipωx, ωy, ωtqFθc,φcpωx, ωy, ωtq �
Ņ

i�1

kipθc, φcqIpωx, ωy, ωtqFθi,φipωx, ωy, ωtq. (2.9)

As we mentioned in the introduction of this chapter, in [40], there are

theorems about computing minimum number and orientations of basis filters

for two and three dimensional filters. In [41], a method of three dimen-

sional separable steerable filter design is presented. In those articles, theo-

rems about the steerability property are presented for functions in the form

of Fθ,φpωx, ωy, ωtq � W pωrqPNpωx1q where W pωrq is a spherically symmetric win-

dowing function, that is ωr �
b
ω2
x � ω2

y � ω2
t , and PNpωx1q is an N th order

polynomial in ωx1 � αωx � βωy � γωt. α, β and γ are defined as the directional

cosines, which are the functions of θ and φ. Another approach for steerable filters

is the following. Let ωx1 , ωy1 , ωt1 axes be the rotated versions of standard ωx, ωy,

ωt axes. In the cartesian coordinates, rotation is represented by (according to

the angles specified in Figure 2.5) [51],�
����

sin pφcq 0 cos pφcq
0 1 0

� cos pφcq 0 sin pφcq

�
����
�
����
�
����

cos pθcq � sin pθcq 0

sin pθcq cos pθcq 0

0 0 1

�
����
�
����
ωx

ωy

ωt

�
����
�
����

�
����
ωx1

ωy1

ωt1

�
���� . (2.10)

In the above equation, the product inside the parantheses first rotates the

coordinate system around ωt axis and the second product rotates around ωy1
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axis. The confusion about the signs of the matrix elements can be handled by

assuming that the rotation of a plane is counterclockwise when looked topview

from the positive side of the rotation axes. From Equation 2.10, by writing ωx1

as,

ωx1 � ωx sinpφcq cospθcq � ωy sinpφq sinpθcq � ωt cospφcq, (2.11)

basis filters and their corresponding coefficients in Equation 2.9 can be found.

In this thesis, we use this rotation concept for steerable filters in the design

of the derivative of Gaussian filters. We give the details in the next section.

2.3 Derivative of Gaussian Filters

In this thesis, since we need oriented band-pass filters for extracting subband

characteristics of shiny and matte object motions, we decided to use derivatives

of Gaussian function. The motivation behind this choice is their separability,

steerability property and smoothness (smoothness here is used as a term to in-

dicate the smooth transition from zero to its maximum value in the magnitude

spectrum). Separability of a filter reduces the computational complexity by con-

verting multi-dimensional convolutions to convolutions in smaller dimensions. A

linear time invariant filter is separable if its impulse response, fpx, y, tq, can be

written as;

fpx, y, tq � gpxqhpyqkptq.

The Fourier transform of a separable function is also a separable function. Steer-

ability, as explained in the above section, provides computational efficiency and

smoothness provides short filter length in the spatio-temporal domain without

aliasing. Moreover, as we explain in the next section, usability of 1st derivative

of Gaussian filter in the steerable pyramid is also important.
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In the discrete time Fourier domain, nth derivative of Gaussian filter with

respect to x1 in the rotated coordinate axes x1, y1, t1 can be written as a multi-

plication of the DTFT of the Gaussian filter and pjωx1qn [52]. That is,

Gpnqpωx1 , ωy1 , ωt1q � C pjωx1qn e�
σ2

2

�
ω2
x1
�ω2

y1
�ω2

t1

	
, (2.12)

where σ is a parameter that influences the bandwidth and the center frequency

of the radial frequency and C � σn
�
e
n

�n
2 is a normalization constant such that

the maximum value of Gpnqpωx1 , ωy1 , ωz1q is equal to one.

2.3.1 Steerability

As in Equation 2.11, ωx1 can be written in terms of ωx, ωy, ωt. Since the term

inside the exponent in Equation 2.12 is spherically symmetric, it can be directly

replaced by ω2
x�ω2

y �ω2
t . Therefore, an oriented nth derivative of Gaussian filter

along the angles specified by the spherical coordinates θc and φc is, [41],

G
pnq
θc,φc

pωx, ωy, ωtq �Cjne�σ2

2 pω2
x�ω

2
y�ω

2
t q

�
cospθcq sinpφcqωx � sinpθcq sinpφcqωy � cospφcqωt

�n
(2.13)

Equation 2.13 can be written as a sum of nth order polynomials times an

exponential function. That is;

G
pnq
θc,φc

pωx, ωy, ωtq �
ņ

k�0

ķ

l�0

interpolation coefficientshkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj
C

�
n

k


�
k

l


�
cos pθcql sin pθcqk�l sin pφcqk cos pφcqn�k

	
�
jnωlxω

k�l
y ωn�kt e�

σ2

2 pω2
x�ω

2
y�ω

2
t q
	

looooooooooooooooooomooooooooooooooooooon
basis filters

. (2.14)

The interpolation coefficients and the basis filters in Equation 2.14 are, thus,

found as in Equation 2.9 for derivatives of Gaussian filters [41]. The basis func-

tions are in the frequency domain and they should be transformed to the spatio-

temporal domain to be used in the convolutions. The basis functions are all
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separable functions and therefore, three-dimensional convolutions can be accom-

plished with one-dimensional convolutions.

2.3.2 Orientation and Scale Characteristics

Although specifying the derivative of Gaussian filters in the cartesian coordinates

reveals the separability and steerability properties, the orientation and scale char-

acteristics can be computed if the filters are written in the spherical coordinates.

The filters can be written in the spherical coordinates as;

G
pnq
θc,φc

pωr, αq � Cjne�
σ2

2
ωr2 pωr cosθc,φcpαqqn , (2.15)

where cosθc,φcpαq is equal to the inner product of the unit vectors whose elements

are the cartesian coordinates, ωx, ωy and ωt, of the filter whose orientation angle

is towards pθc, φcq and the cartesian coordinates of an arbitrarily oriented signal

towards pθ, φq [53]. In addition, since the function in Equation 2.15 is given in

the spherical coordinates, we use the spherical coordinate representations. That

is,

cosθc,φcpαq �  vθc,φc , vθ,φ ¡

�
�
ωxθ,φ ωyθ,φ ωzθ,φ

� �
ωxθc,φc ωyθc,φc ωzθc,φc

�T

� rcospθq sinpφq sinpθq sinpφq cospφqs

�
����

cospθcq sinpφcq
sinpθcq sinpφcq

cospφcq

�
����

� sinpφcq sinpφq cospθcq cospθq � sinpφcq sinpφq sinpθcq sinpθq � cospφcq cospφq
(2.16)

The equality between Equation 2.13 and Equation 2.15 can be seen through

substituting cosθc,φcpαq term in Equation 2.15 by the result obtained in Equation
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2.16. That is,

G
pnq
θc,φc

pωr, θ, φq � Cjne�
σ2

2
ωr2

�
ωr sinpφcq sinpφq cospθcq cospθq�ωr sinpφcq sinpφq sinpθcq sinpθq�ωr cospφcq cospφq�n

(2.17)

and if the equalities

ωx � ωr sinpφq cospθq, ωy � ωr sinpφq sinpθq, and ωt � ωr cospφq

are replaced in Equation 2.17, the equality between Equation 2.13 and Equation

2.15 is provided.

First of all, the DTFT of a signal should be rectangularly periodic with 2π

[43]. However, it can be seen from Equation 2.15 that, the derivatives of Gaussian

filters have infinite support without periodicity. In order to solve this problem in

the design of the discrete derivative of the Gaussian filters, we need to compute

e�
σ2

2
ωr2ωnr for ωr P p0 πs and then, assume that the filters have rectangularly

periodic extensions in the Fourier domain.

It is also worth to note that, in order not to lose the band-pass character-

istics of the filters, their magnitudes should converge to zero around the radial

frequency π. As an example, in Figure 2.6, the radial parts of Gaussian deriva-

tive filters for different derivative orders, n, and the parameter σ is shown (That

is Ce�
σ2

2
ωr2ωnr ). It can be understood from these figures that if σ is 0.5 or lower,

the filters do not show band-pass characteristics whatever the order of the deriva-

tive is. If σ equals to 1, 1st and 2nd order derivatives can be used, on the other

hand, 3rd order derivative may not be appropriate depending on the application

type. If σ equals to 1.5, 1st, 2nd and 3rd order derivative of Gaussian filters are

appropriate to use.
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(a) n=1, σ = 0.5 (b) n=2, σ = 0.5

(c) n=3, σ = 0.5 (d) n=1, σ = 1

(e) n=2, σ = 1 (f) n=3, σ = 1

27



(g) n=1, σ = 1.5 (h) n=2, σ = 1.5

(i) n=3, σ = 1.5

Figure 2.6: The radial functions of the derivatives of Gaussian filters for different
derivative orders, n, and σ.

The scale selectivity of the derivatives of Gaussian filters is determined by

the function Ce�
σ2

2
ωr2ωnr . The center frequency, ωcr, is determined by,

ωcr � �
?
n

σ
.

This equality can be reached by taking the first derivative of e�
σ2

2
ωr2ωnr with

respect to ωr and then equating it to zero.

As we stated before, we adopted the 3-dB bandwidth definition. That is the

quantity of the interval between the cutoff frequencies at which the magnitude

of the filter reduces up to 1{?2 of its maximum. The 3 dB bandwidth of the
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filter is,

ωBWr � |ωcutoff1
r � ωcutoff2

r |, (2.18)

where ωcutoff1
r and ωcutoff2

r are the solutions to

e�
σ2

2
ωr2ωnr �

�n
e

	n
2 1?

2σn
. (2.19)

Since we could not find an analytical solution to this equation, we find the

bandwidth of the filters by numerical methods. As it can be seen from the above

equations, the center frequency and the bandwidth is determined by the order

of the derivative and the parameter σ.

The orientation selectivity of a derivative of Gaussian filter is determined by

the angular function
�

cosθc,φc pαq
�n

. The center frequencies in the orientation

space are θc and φc. For example, a filter which is oriented towards the angles

θc � 0 rad and φc � π{2 rad (it is actually ωx axis), has no response to the signals

whose nonzero coefficients lie only along ωy or ωz axes. Since the angle between

those axes and ωx axis is π{2. The 3-dB bandwidth, αBW , of the angular part of

an nth derivative of Gaussian filter is,

αBW � arccosp2� 1
2n q. (2.20)

This bandwidth is calculated by finding the angle that the gain of the filter

decreases to 1{?2 of its value at that angle.

2.3.3 Spatio-temporal Domain Discrete Filter Design

In order to use the filters in discrete applications and in the spatio-temporal

domain, we used frequency sampling algorithm to design the filters [54]. Here

we give the filter design steps for one dimensional filters. The reason is that the
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derivative of Gaussian functions are separable and the filters can be operated in

one-dimensional convolutions.

Let F pωq be the DTFT of a one-dimensional discrete domain filter, where

ω P p�8,8q. The spatio temporal domain discrete filter coefficients, fptq, can

be computed according to the equation,

fptq � 1

M

rM�1
2

s¸
k��ptM�1

2
uq

F pk2π

M
qej 2πktM , (2.21)

where, M is a positive integer, k is an integer such that �ptM�1
2

uq ¤ k ¤ prM�1
2

sq
and t is an integer such that �ptM�1

2
uq ¤ t ¤ prM�1

2
sq.

The number of the coefficients in the filter is determined by the number

M . It is important to make a smart choice for this number. First of all, for

the derivatives of Gaussian filters, M should be an odd number to have real

coefficients and to have zero phase filters for even numbered derivative order.

Second, we know that while the bandwidth of a signal gets narrower, interval

of the nonzero coefficients in the time domain gets larger ([33]). Therefore,

the number of the samples calculated from the magnitude spectrum should be

large enough. In order to decide for an appropriate value, we first design a

filter and we recompute DTFT from those coefficients. Then we compare the

ideal DTFT and the recomputed DTFT by looking at their plots. (In order to

compute an approximate DTFT by a computer, we pad the filter coefficients

with a large number of zeros, and then compute the DFT from such zero padded

filter coefficients.) In Figure 2.7, we give samples of the DTFT of the filters

which are computed by taking different number of samples from 2nd derivative

of the Gaussian filter. From the figures, it can be seen that, if one needs exactly

the same DTFT as the ideal one, 5-tap filter is not appropriate, because the

maximum of its DTFT coefficients is greater than one and its bandwidth is

narrower than the ideal one. Moreover, although 7-tap and 9-tap filters look

30



quite similar, if they are zoomed, it can be seen that the bandwidth of 7-tap

filter also differentiates from that of the ideal one.

(a) Ideal DTFT (b) DTFT of 5-tap filter

(c) DTFT of 7-tap filter (d) DTFT of 9-tap filter

Figure 2.7: The magnitude spectrum of 2nd derivative of Gaussian filters for
different length filters.

2.3.4 Explicit Design Steps of 2nd Derivative of Gaussian

Filter

As it can be seen from Equation 2.12, 2nd derivative of Gaussian filter is a zero

phase filter (actually phase of the filter is π rad because j2 � �1, however,

a multiplication by �1 makes it zero phase). Its radial center frequency and

bandwidth are
?

2{σ rad and 0.31π rad, respectively. The angular frequency

bandwidth is 0.18π rad and the center frequency can be decided for a particular

31



orientation selection. This filter is narrow enough in terms of both orientation

and scale selectivity for our purpose. Therefore, we used it as the band-pass

filters for the analysis of the movies. A filter response of a video, Ipωx, ωy, ωtq,
along the center frequencies for the orientation, pθc, φcq, can be computed as,

Ipωx, ωy, ωtq
��G

p2q
θc,φc

pωx, ωy, ωtq
� �

Ck1pθc, φcq
�
Ipωx, ωy, ωtqω2

xe
�σ2

2
ω2
xe�

σ2

2
ω2
ye�

σ2

2
ω2
t
�

�Ck2pθc, φcq
�
Ipωx, ωy, ωtqω2

ye
�σ2

2
ω2
ye�

σ2

2
ω2
xe�

σ2

2
ω2
t
�

�Ck3pθc, φcq
�
Ipωx, ωy, ωtqω2

t e
�σ2

2
ω2
t e�

σ2

2
ω2
xe�

σ2

2
ω2
y
�

�Ck4pθc, φcq
�
Ipωx, ωy, ωtq � jωxe�σ2

2
ω2
xjωye

�σ2

2
ω2
ye�

σ2

2
ω2
t
�

�Ck5pθc, φcq
�
Ipωx, ωy, ωtqjωxe�σ2

2
ω2
xjωte

�σ2

2
ω2
t e�

σ2

2
ω2
y
�

�Ck6pθc, φcq
�
Ipωx, ωy, ωtqjωye�σ2

2
ω2
yjωte

�σ2

2
ω2
t e�

σ2

2
ω2
x
�

(2.22)

where,

k1pθc, φcq � sin2pφcq cos2pθcq, k2pθc, φcq � sin2pφcq sin2pθcq,
k3pθc, φcq � cos2pφcq, k4pθc, φcq � 2 sin2pφcq cospθcq sinpθcq,
k5pθc, φcq � 2 sinpφcq cospφcq cospθcq, k6pθc, φcq � 2 sinpφcq cospφcq sinpθcq.

Equation 2.22 is reached from Equation 2.14. As it can be seen from Equation

2.22, there are three different filters which are in the form of ω2e�
σ2

2
ω2

, jωe�
σ2

2
ω2

and e�
σ2

2
ω2

. The term ωe�
σ2

2
ω2

is multiplied by j to have real time and space

domain coefficients. We designed these filters for three different σ values. These

values are chosen such that the band-pass filters cover all the frequency plane.

The selected σ values are 1, 1.8 and 3.2. The spatio-temporal domain coefficients

of the filters mentioned in this section are computed as explained in section 2.3.3

and they are given in Appendix B.

We designed filters whose frequency responses are tuned to eight different

orientation angles for all of the σ values. These angle pairs are given in Table

2.1.
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1 2 3 4 5 6 7 8
θc 0 π

4
π
2

3π
4

π 5π
4

3π
2

7π
4

φc
π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

Table 2.1: Selected center frequencies in the orientation space for the analysis of
the videos are shown. The angles are in radians.

The number of the oriented filters and the specified angles are selected such

that they cover all the orientation space. As a result, the total number of the

subbands that we investigate the movies is 24 (three scales and eight orientations

for each scale).

It can be understood from Equation 2.15 that, 2nd derivative of Gaussian

filters are symmetric with respect to the origin in terms of both radial and angular

parts. Therefore, a filter that is oriented towards a certain angle in the Fourier

domain is also oriented towards the symmetric angles. The center orientation

frequencies of the filters are expressed in Figure 2.8 and we give examples about

the orientation selectivity of some filters in Figure 2.9.

Figure 2.8: The center frequencies of the oriented filters are pointed out with the
dots.
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Figure 2.9: Orientation selectivities of two filters on the unit sphere are shown.
The magnitude of the filter is proportional to color brightness.

2.4 Video Pyramid

In this thesis, one of the aims is to check whether the first order subband statistics

are the sufficient cues to the surface reflactance recognition. For that purpose, we

need to synthesize a movie which has the same first order subband statistics of

the motions of shiny and matte objects. We synthesized the movies by applying

the algorithm proposed in [55]. We express the details about the algorithm in

the next chapter. In that algorithm, steerable pyramid is used as the video

decomposition and reconstruction tool. Since it includes a number of filtering

operations and since the filters are based on the steerable filters, we mention the

steerable pyramid in this section.

Some filter outputs for different videos are demonstrated in the companion

website of this thesis. The URL of the website is http://www.umram.bilkent.

edu.tr/~kulce/.

2.4.1 Steerable Pyramid for Videos

Steerable pyramid is one of the wavelet decomposition techniques in the liter-

ature. Readers can find detailed information on other wavelet decomposition
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techniques in [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]. The steerable

pyramid basically decomposes a multidimensional signal into its subbands and

then provides reconstruction from those subbands. Each subband allows analysis

of a particular scale and orientation. The filterbank architecture of the steerable

pyramid is shown in Figure 2.10.

H0pωq

L0pωq O1pωq

Okpωq

L1pωq 2 Ó

O1pωq

Okpωq

L1pωq 2 Ó

O1p-ωq

Okp-ωq

L1p-ωq2 Ò

L0p-ωq

H0p-ωq

O1p-ωq

Okp-ωq

L1p-ωq2 Ò

Input Image Output Image

Analysis Synthesis

Figure 2.10: Steerable pyramid analysis/synthesis scheme is shown. H0pωq,
L0pωq, L1pωq, Oipωq are high-pass, low-pass, low-pass and oriented filters (band-
pass or high-pass) respectively. The index, k, represents the number of the
orientation bands. Dashed lines under downsampling and upsampling symbols
represent that the pyramid decomposition/reconsruction scheme continues until
a desired number of scale bands are reached.

As it can be seen from Figure 2.10, an input video is first decomposed into its

high and low frequency components by applying filters L0pωq and H0pωq. Then,

filtering the video with the oriented filters, Oipωq, produces oriented band-pass

parts of the image. The filter, Oipωq, can be either band pass or high pass filters,

but, during the design of these filters, it should be noted that the multiplication of

these filters with L0pωq should produce a band pass filter. Finally, a coarser scale
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is obtained by applying another low pass filter L1pωq and then downsampling

the video. The same procedure, that is filtering the video with oriented and low

pass filters and downsampling continues until a desired number of scale band is

reached. At the coarsest scale, only the low-pass part of the video remains.

The ideal filter characteristics are given in [42]. In Figure 2.11, for visual

purposes, we give a sample frequency partition of two-dimensional coordinate

system by the high pass, low pass and four oriented filters. The extension to

three dimensional space is straightforward.

ωy (rad)

ωx (rad)

Hpωq

B1pωq

B2pωqB3pωq

B4pωq

B1pωq

B2pωq B3pωq

B4pωq
π

π

-π

-π

Figure 2.11: Two dimensional frequency domain partition by the steerable pyra-
mid decomposition. Hpωq represents high-pass content and Bipωq represents the
filter output of Oipωq. The coarser scales are represented by the concentric circles
and they are also partioned to their oriented components by Oipωq.

The pyramid decomposition is self inverting. That is, in order to reconstruct

the video, the same filters with a small modification are used. This modification

is that, if the filters in the decomposition part do not have zero phase, the filters
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in the reconstruction part should have reverse of the phase of the decomposition

filters. This is accomplished in the reconstruction part by using the symmetrics

of the decomposition filters with respect to origin. In this way, it is assured that

there is no phase difference between the input video and the reconstructed video

(The negative sign in Figure 2.10 next to ω symbols comes from this require-

ment). In addition, upsampling is applied in the reconstruction part instead of

downsampling.

The main drawback of this filter bank is that it is overcomplete. Since the

input signal is not downsampled after oriented filters, a video which has p pixels

is represented in the subbands by p8k
7
� 1qp pixels.

Some filter design techniques for the steerable pyramid for two-dimensional

signals are given in [70] and [71]. Here we give the details on three-dimensional

filter design.

2.4.2 Requirements of Three-Dimensional Filters for

Steerable Pyramid

The steerable pyramid filters should satisfy three conditions for the perfect re-

construction [42];

Flat Sytem Response �¡ |H0pωq|2 � |L0pωq|2
�
|L1pωq|2 �

ķ

i�1

|Oipωq|2
�
� 1,

(2.23)

Recursion �¡ |L1

�ω
2

	
|2
�
|L1pωq|2 �

ķ

i�1

|Oipωq|2
�
� |L1

�ω
2

	
|2,

(2.24)

Anti-aliasing �¡ |L1pωq| � 0 for ω ¡ π

2
. (2.25)
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While we design the filters, we assume that the oriented filters are in the form of

Oipωq � Opθi,φiqpωq � W pωrq �Gipθ, φq,

where pθi, φiq represents the center frequencies in the orientation space. We also

assume that the low-pass and the high-pass filters are spherically symmetric

filters. Therefore, Equation 2.23 and Equation 2.24 can be satisfied, if the sum

of the square of the oriented filters are independent from the angular variables

θ and φ. In other words, that sum should be a spherically symmetric function.

In order to solve this problem, a filter design technique for the angular parts is

given in [72]. In this thesis, we adopted that technique.

Orientation Selectivity Characteristics of Filters: Let the angular parts

of the oriented filters equal to
�

cosθi,φipαq
�2

, j cosθi,φipαq, �j cosθi,φipαq or

| cosθi,φi pαq |. That is;

Oθi,φipωr, θ, φq �

$'''''''&
'''''''%

W pωrq
�

cosθi,φi pαq
�2
,

W pωrqj cosθi,φi pαq ,
W pωrq p�jq cosθi,φi pαq ,
W pωrq| cosθi,φi pαq |.

(2.26)

Since we assume that W pωrq is real and always positive, the second and third

versions in Equation 2.26 have j and �j as their multipliers, and the angular

function of the fourth one is in absolute value to have real coefficients in the

spatio-temporal domain. In Statement 1, we express the number of the oriented

filters and their center frequencies in the orientation space. However, before we

make the statement, we need to introduce the platonic solids. The platonic solids

are the only convex volumetric shapes that have full symmetry. There are five

known platonic solids. The readers can find more about the platonic solids in

[73]. All of the known platonic solids are shown in Figure 2.12.
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(a) Tetrahedron
(four faces)

(b) Cube or Hexa-
hedron (six faces)

(c) Octahedron
(eight faces)

(d) Dodecahedron
(twelve faces)

(e) Icosahedron
(twenty faces)

Figure 2.12: Platonic solids figures which are captured from the website http:

//en.wikipedia.org/wiki/Platonic_solid. (Permission to use these figures
are granted under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation. Copyright
from the user in wikipedia with the nickname DTR.)

Now we proceed with the following statement;

Statement 1. Let us assume that the platonic solids we mentioned above except

the cube are circumscribed by a sphere. If the angular part of the filters is equal

to cosθi,φipαq, the perfect reconstruction can be provided if the center frequencies

of the filters in the orientation space, pθi, φiq, are the spherical coordinates of the

vertices of the tetrahedron (four oriented filters) or the octahedron (three oriented

filters). If the angular part is equal to
�

cosθi,φipαq
�2

, The angles pθi, φiq, can be

the spherical coordinates of the vertices of the dodecahedron (ten oriented filters)

or the icosahedron (six oriented filters).

An explicit proof of the above statement is not given in [72]. We include a

proof for cosθi,φipαq case in Appendix A.
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Statement 1 somewhat different than the statement given in [72]. In that

article, it is stated that, in the orientation space, if the center frequencies of the

filters, which have angular function as cosθi,φipαq, are chosen as the vertices of the

cube and the octahedron, the filters provide the perfect reconstruction. On the

other hand, in Statement 1, instead of the cube, we mention that vertices of the

tetrahedron provide perfect reconstruction. Actually, if only the vertices of the

tetrahedron are chosen as the center frequencies (not vertices of any composition

of rotated tetrahedrons and octahedrons), in the magnitude spectrum it is exactly

the same as chosing the vertices of the cube. The reason for that is, as it is

explained at the end of section 2.3.4, if the angular function is a cosine, orienting

a filter towards a certain frequency point also means orienting the same filter

towards the symmetric frequency points (symmetry is with respect to origin).

And, the set of the coordinate points of the vertices of a tetrahedron with their

symmetric ones is the same as the set of the coordinate points of the vertices of

the cube.

However, the difference here is that, if the orientation selectivity function

is chosen as cosθi,φipαq, the perfect reconstruction should also be satisfied when

the coordinates of the vertices of compounds of differently rotated tetrahedrons,

cubes or octahedrons are chosen. Here the word compound means that, platonic

solids are combined such a way that their circumscribed spheres have the same

center point in the three-dimensional space, but the platonic solids differ in their

rotations. And a certain volumetric shape, whose vertices satisfy perfect recon-

struction requirement, can be a compound of only rotated tetrahedrons. In other

words, it may not include any cubes or octahedrons. Therefore, we find it bene-

ficial to state the vertices of the tetrahedron, instead of the cube. For example, if

the angular function of the filters are chosen as cosθi,φipαq, the coordinates of the

vertices of the dodecahedron (compound of five tetrahedrons) or the icosahedron

(compound of three tetra hedrons) provide the perfect reconstruction.
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In this paragraph, we explain the characteristics of the orientation selectivity

function,
�

cosθi,φipαq
�n

, when the center frequencies in the orientation space

are selected as the spherical coordinates of the vertices of four platonic solid.

For n � 1, the characteristics of the cube and the octahedron, for n � 2, the

characteristics of the dodecahedron and the icosahedron are given. The 3 dB

bandwidth of the orientation selectivity function, αBW pnq, is stated in Equation

2.20. In addition, we express the angle, ϕpa, rq, between the vectors whose

elements are the cartesian coordinates of two closest points of the vertices of

platonic solids. It is calculated by the formula; ϕ � 2 arcsinp a
2r
q, where a is the

edge length of the platonic solid and r is the radius of the circumscribed sphere of

platonic solid. The reason of giving the characteristics of the cube instead of the

characteristics of the tetrahedron lies here. Since the angle, ϕpa, rq, is smaller for

a cube, giving the characteristics of the tetrahedron leads to wrong results. The

magnitude of the angular functions of the filters in the half of ϕpa, rq is also given

as Mpϕq � 20nlog10pcospϕ{2qq. By computing Mpϕq, we find the most suitable

platonic solid to use. Here, the suitability criteria is that, if Mpϕq becomes too

low, then, some frequency content in the video may fade away in all the subbands.

On the other hand, if Mpϕq becomes too high, some frequency content may be

represented in more than one subband. Therefore, we desire Mpϕq to be close to

�3 dB, which is the known magnitude for the cut-off. However, depending on

the application, any combination of the vertices of platonic solids can be used.

Finally, we give the sum of the squares of the orientation selectivity functions

for the vertices of the platonic solids. The reason of taking square is that in

Equation 2.23 and Equation 2.24, the squares of the oriented filters are added

up. That is;

F pn, V q �
V̧

i�1

�
cosθi,φipαq

�2n
, (2.27)

where, V is half of the number of the vertices of the corresponding platonic solid.

We give all these properties with their associated platonic solid in Table 2.2.

In Appendix C, we give the cartesian coordinates, Cpx, y, tq, and the spherical
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coordinates, Spθ, φq, of the selected vertices of the platonic solids based on the

coordinate axes as in Fig. 2.5. However, these points can be rotated altogether

by multiplying the coordinates with the rotation matrix stated in Equation 2.10.

αBW pnq ϕpa, rq M(ϕ) (dB) F(n,V)
Cube or Regular Hexahedron 0.25π 0.39π �1.76 1.33

Octahedron 0.25π 0.5π �3 1
Dodecahedron 0.18π 0.23π �1.18 2
Icosahedron 0.18π 0.35π �2.81 1.2

Table 2.2: Some properties of the orientation selectivity function with their as-
sociated platonic solid are shown. Angles are expressed in radians.

By looking at M values, it can be said that, if n is equal to 1, the coordinates

of vertices of the octahedron, if n is equal to 2, the coordinates of vertices of

icosahedron are more appropriate to use. In this project, in order not to get

results which are depending on the choice of the steerable pyramid filters, we

designed two type of filter sets. One set uses the coordinates of the vertices of

the compounds of three differently rotated octahedron and one cube and the

other uses the coordinates of the vertices of the icosahedron. In the next section,

we mention detailed design steps of the filters.

2.4.3 Explicit Design Steps of Three-Dimensional Steer-

able Pyramid Filters

Method I: In this method, we designed the oriented filters by using 1st deriva-

tive of Gaussian filters. The low-pass and high-pass filters also have Gaussian

characteristics. This filter set is useful when the video to be filtered has only a

few frames. In addition, computational requirements can be reduced by the sep-

arable convolutions with this filter set. If a video has a small number of frames,

the undesired border effects (extremely low or high responses) may dominate the
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output of the filter. In our case, since we extract statistical information on the

subbands, it is important that a filtered movie should not have significant border

artifacts. The main drawback of this filter set is that the reconstruction is not

perfect. In below paragraphs we give comments on the reconstruction error.

With the Gaussian and 1st derivative of Gaussian filters, it is not possible to

satisfy the flat system response and recursion requirements as given by Equation

2.23 and Equation 2.24 at the same time. In order to minimize the reconstruc-

tion error and see how much distortion occurs on the magnitude spectrum, we

combined the flat system response and recursion restrictions into one equation.

In this way, we found the overall frequency response of the steerable pyramid

filterbank. In order to do this, we need to predetermine the number of the scales

and we choose it as 3. This number is chosen not to have too few frames after

the downsamplings.

It can be seen from Equation 2.15 that 1st derivative of Gaussian filters ori-

entation selectivity is determined by the funtion cospαq. Therefore, according to

the discussion given in the previous section and after trials of different volumetric

shapes, we decided to use the spherical coordinates of the vertices of the com-

pound of three octahedrons and a cube. Therefore, the number of the oriented

filters, k, becomes 13. The spherical coordinates that we used are given in Table

2.3.

1 2 3 4 5 6
θc 0 π{2 3π{2 π{2 0 π
φc π{2 π{4 π{4 π{2 π{4 π{4

7 8 9 10 11 12 13
θc 0 π{4 7π{4 π{4 3π{4 5π{4 7π{4
φc 0 π{2 π{2 0.96π 0.96π 0.96π 0.96π

Table 2.3: Spherical coordinates which are used in the design of the steerable
pyramid filters in Method I. Angles are expressed in radians
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After achieving perfect reconstruction in the orientation space, the overall

frequency response in the radial frequency, Spωrq, of the pyramid becomes,

Spωrq �|H0pωrq|2�

|L0pωrq|2
! 3̧

i�1

|Opωr, θi, φiq|2 � |L1pωrq|2
� 3̧

i�1

|Opωr{2, θi, φiq|2�

|L1pωr{2q|2
� 3̧

i�1

|Opωr{4, θi, φiq|2 � |L1pωr{4q|2
	�)

� a.t., (2.28)

where, a.t. refers to aliasing terms and

L0pωrq � e�
σ2l0
2
�ω2
r , H0pωrq �

a
1 � e�σ

2
l0�ω

2
r , L1pωrq � e�

σ2l1
2
�ω2
r ,

Opωr, θi, φiq � Niσde
1
2 je�

σ2d
2
ωr2ωrcosθi,φipαq (2.29)

We choose σl1 as 1.6, so that L1pπ{2q � 0.04 which is close to zero. Therefore,

aliasing terms can be ignored. Since we choose σl1 as 1.6, we choose σl0 as 0.8 so

as to have L0pωrq � L1pωr{2q. If we choose σl0 larger than 0.8, the reconstruction

error increases rapidly. If it becomes smaller than 0.8, the band pass regions in

different scales are not represented by the equal magnitudes. We also select σd

as 1. This selection is suitable in terms of small reconstruction error, the center

frequency and the bandwidth of the bandpass filters. Radially center frequency

of the band pass filters is 1 rad. This value is not too close either to zero or

π rad. The 3 dB bandwidth of these filters is 1.15 rad. Moreover, in order

to represent the subbands efficiently, the passbands of L0pωq and Opωr, θi, φiq
should overlap and we considered this fact in the choice of σ parameters. The 3

dB cutoff frequency of L0pωq is 0.33π rad and the center frequency of the band-

pass filters is 0.4π rad, which are close enough. The normalization values N1,

N2 and N3 are selected such that to provide minimum reconstruction error and

normalize the sum of the oriented filters. If N1 � 1{?4.33, N2 � 0.95{?4.33 and

N3 � 0.87{?4.33, the frequency response Spωrq becomes as in Figure 2.13.

From this figure, it can be seen that, the frequency response takes its minimum
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Figure 2.13: Frequency response of the steerable pyramid designed with Method
I

value as 0.91 at around radial frequency of 0.5π rad and it takes its maximum

value as 1.035 at around radial frequency of 0.22π rad.

All the filters except the high-pass one are separable. We found spatio-

temporal domain coefficients of the high pass filter by taking inverse three-

dimensional DFT of the function given in Equation 2.29. We designed all other

filters as explained in the previous section. 1st derivative of Gaussian filter in

any orientation can be written in the steerable form as

G
p1q
θi,φi

pωx, ωy, ωtq � cospθiq sinpφiqpjωxe�
σ2d
2
ω2
xqe�σ2d

2
ω2
ye�

σ2d
2
ω2
t

� sinpθiq sinpφiqpjωye�
σ2d
2
ω2
yqe�σ2d

2
ω2
xe�

σ2d
2
ω2
t

� cospφiqpjωte�
σ2d
2
ω2
t qe�σ2d

2
ω2
xe�

σ2d
2
ω2
y (2.30)

As it can be seen from these filters, the filtering operations can be done by one-

dimensional convolutions. As it is stated before, we used spherical coordinates

of the vertices of the compound of three rotated octahedrons and a cube.
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We give the spatio-temporal filter coefficients mentioned in this section in

Appendix B.

The filters that we mentioned until now are for the decomposition (analysis)

part. Since the low-pass and the high-pass filters are zero phase filters, they

can be directly used in the synthesis part. However, the band-pass filters are

not zero phase filters, thus, in the reconstruction part we use their symmetric

versions with respect to origin. Moreover, the downsampling and upsampling

reduce the energy of the video to 1{8 of its value. We compensate this reduction

by multiplying the video by 2
?

2 while downsampling and upsampling. Finally, in

the convolutions, we pad the movies in a symmetric manner. Let one dimensional

signal to be convolved be fpnq, where n is an integer such that 0 ¤ n ¤ L � 1.

Also let the filter length be T . In the convolutions, we assume that fp�kq � fpkq
and fpL�1�kq � fpL�1�kq, where k is an integer and 0 ¤ k ¤ pT �1q{2. For

example, if the signal to be convolved is ra b c d es (L � 5), and the filter length,

T , is 3, we assume the signal to be convolved as rb a b c d e ds. The reason

of this is to prevent the spurious responses after upsampling and filtering with

L1pωq and the spurious responses occur if the signal has two consecutive zeros or

two consecutive nonzeros at the borders after upsampling. In order to have the

same dimensions at the input of the pyramid and the output of the pyramid, in

each scale, the signal size after upsampling should be the same as the signal size

before downsampling. Let the signal to be upsampled has length L. Depending

on the signal length before downsampling, the signal length after upsampling can

be either 2L or 2L � 1. The padding method that we described prevents being

two consecutive zeros or two consecutive nonzeros at the borders in either case.

For example, let us assume that the signal ra b cs is to be upsampled. Depending

on the signal length before downsampling, the upsampling operation results in

either ra 0 b 0 cs or ra 0 b 0 c 0s. Then, for example, if the length of L1pωq is

three, then the signal to be filtered is either r0 a 0 b 0 c 0s or r0 a 0 b 0 c 0 cs. Any
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other padding method (e.g. circularly, symmetric or zero padding) might result

in border artifacts by placing two consecutive zeros or nonzeros. However, the

padding method that we use guarantees that the border artifacts do not occur

whatever the signal after upsampling is. If all the videos would have dimensions

of integer exponents of 2, the circular convolution could also prevent the border

artifacts.

Method II: In this method, the filters are nonseperable and have larger sizes.

The advantage of this set of filters is that they have narrower bandwidth both

in radial and angular frequencies. In addition, they give better results in terms

of reconstruction. However, filter size is higher compared to the filters designed

with Method I and the filters are nonseparable.

In this method we first designed the radially symmetric low pass filter, L0pωrq,
by using the algorithm for the multidimensional radially symmetric filters ex-

plained in [74]. This algorithm provides zero phase filters. Therefore, specifying

the magnitude spectrum is enough to design the filters. In that algorithm, there

are some parameters about the filter to be specified. They are, the cut off radial

frequency of the pass band region, ωpass, the cut off radial frequency of the stop

band region, ωstop and the tolerance values in the stopband region, δstop and in

the passband region, δpass. They are shown in Figure 2.14.
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1+δpass
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ωr(rad)
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Figure 2.14: The filter specifications are shown. The magnitude of the filter is
specified for the intervals shown within dashed lines. The regions that remains
outside of these intervals are the transition regions.

We chose the parameters as ωpass � π{2 rad, ωstop � 3π{4 rad, δstop � δpass �
0.05 rad. This is an iterative algorithm to get a radially symmetric filter whose

DTFT is as specified by the parameters. We decided the number of iterations

as 30, and the filter size as 9� 9� 9. After generating a low pass filter by using

the algorithm, we make a small modification on the filter. That is, we brought

its DFT coefficients between 0 and 1. This modification is required in order to

satisfy flat system response and recursion constraints. To do the modification,

we computed the DFT, F pkxold , kyold , ktoldq, of the coefficients of the designed

filter and applied a simple linear operation on the DFT coefficients. That is,

F pkxnew , kynew , ktnewq �
�
F pkxold , kyold , ktoldq�min

�{pmax�minq, where min and

max are the minimum and maximum of the coefficients F pkxold , kyold , ktoldq. Then,

by computing the IDFT from new coefficients, we got the final low pass filter,

L0pωrq.
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After we designed L0pωrq in the spatio-temporal domain, we proceeded to

design the remaining filters according to flat system response and recursion re-

quirements. In order to do this, we computed the DFT coefficients of H0pωrq
from the DFT coefficients of L0pωrq, according to

a
1 � |L0pωrq|2. Then, by

computing IDFT of H0pωrq, we find the spatio temporal domain coefficients of

the high-pass filter.

We designed the filter, L1pωrq, by using the DFT of L0pωrq. After computing

the DFT of L0pωrq, we padded zeros to this DFT and increased the DFT size to

17 � 17 � 17 (As a reminder, the size of the filter, L0pωrq, is 9 � 9 � 9). This

provides the equality L0pωrq � L1pωr{2q and L1pωrq � 0 when ωr ¡ π{2. After

computing IDFT of this 17 � 17 � 17 sized filter, we find the spatio-temporal

coefficients of the filter L1pωrq.

Then we moved on to the design of the oriented filters. In order to design,

we assumed the filters as separable functions as explained in section 2.1.4. Since

the radial part of the oriented filters are the same, we first designed that part.

The radial part of the oriented filters have been assumed to be high-pass filters,

contrary to the first method of filter design. The design procedure is exactly

the same as the design of H0pωrq. Here, instead of using L0pωrq, we used the

DFT coefficients ofL1pωrq and computed the DFT coefficients of Oipωrq from the

equation
a

1 � |L1pωrq|2. In order to make the spherically symmetric filter to

have orientation selectivity, we multiplied the filter coefficients with the function;

cosθi,φipαq2 �
�

sinpφiq sinpφq cospθiq cospθq�

sinpφiq sinpφq sinpθiq sinpθq � cospφiq cospφq�2 (2.31)

This equation is written from Equation 2.16. The angle pairs pθi, φiq are the

spherical coordinates of the vertices of the icosahedron and the pθ,φq are the

spherical coordinates of the grid points of the DFT of the oriented filters.
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As an example, let the index of a coefficient in the cartesian coordinates be

p5,�3, 4q and the filter index goes from �8 to 8 for each axis. (Since the fil-

ter size is 17 � 17 � 17). The spherical coordinates, pθi, φiq of p5,�3, 4q are

arccos
�
5{a52 � p�3q2� and arccos

�
4{a52 � p�3q2 � 42

�
, respectively. More-

over, we normalized the functions by multiplying them by 1{?1.2, in order to

make the sum of the oriented filters equal to 1.

As we explained at the end of Method I, we used here symmetric padding to

prevent undesired border effects and multiplied the filter outputs by 2
?

2 both

in downsampling and upsampling.

As we mentioned before, some movies showing individual responses of the

steerable pyramid filters as well as reconstruction of those movies by using each

steerable pyramid in http://www.umram.bilkent.edu.tr/~kulce/.

To sum up, in this chapter we give the technical details of the image process-

ing tools that we utilize on the surface reflectance recognition. We first mention

the orientation and scale concept and a design technique of orientation and scale

selective filters. Then, we introduce the steerable filter concept and we move

on to the derivative of Gaussian filters. In that section, we give orientation and

scale selectivity characteristics and the design methods of derivative of Gaussian

filters for arbitrary derivative orders. Then, since we designed second derivative

of Gaussian filters, we explain the details about second derivative of Gaussian

filters. Finally, we mention the steerable pyramid and its properties. Moreover,

we give our adopted filter design techniques for steerable pyramid.
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Chapter 3

EXPERIMENTAL RESULTS

This chapter is devoted to the experimental results related to recognition of

surface reflectance from statistics of band-pass filter outputs.

First of all we give information about our dataset and mathematical expres-

sion of the statistical parameters that we used. Then, we explain the details of

our analysis methods. Our analysis steps can be grouped under four sections.

First, since the data set includes movies of one matte and one shiny version for

each object, we show pairwise statistical differences between matte and shiny

versions. Secondly, we find the average subband statistics of matte and shiny

object motions and express their differences. Thirdly, we designed a classifier

from statistics of matte and shiny objects and we give the classification results.

Finally, in order to check whether the subband statistics are the sufficient cues

to surface reflectance recognition, we attempted to synthesize new movies which

have the same subband statistics with the motions of matte and shiny objects

by using the texture synthesis algorithm proposed in [55]. In that section, since

we use two steerable pyramids, we first mention the general success rate of the

steerable pyramids on three dimensional texture synthesis and then we give the

results related to synthesis of textured movies.

51



3.1 Data Set and Statistical Parameters

3.1.1 Data Set

The dataset includes 20 matte object and 20 shiny object motions. These motions

are in pairs. In other words, there are 20 pairs and in each pair there are one

matte and one shiny version of an object. The motion of the objects are generated

with a simple rotation. The movies are computer-generated motions, so, they

are not real scenes. The motions of shiny objects are generated such that they

reflect the environment that they are placed into. Their matte versions, on the

other hand, are painted as though they reflect their environments when they are

stationary. However, when they start to rotate, it is understood that they just

carry the painting, instead of reflecting the environment. The main difference

between appearances of the matte and shiny objects is that, in flat regions on

the object surface, specular features move faster than the object itself and in

convexly curved regions, specular features move slower than the object. On the

other hand, if the object is matte, the paintings on the object surface move with

the same speed along with the object surface. In our dataset, the general shape

of the objects has the appearance of a potato, but they have different curved

and flat regions. The data set is outlined in Figure 3.1. In addition, in Figure

3.2 and Figure 3.3, we give sample video frames of a matte object and its shiny

counterpart.
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Object 1

Environment 1

Environment 2

Environment 3

Environment 4

Environment 5

4 Different Rotation Axes

4 Different Rotation Axes

4 Different Rotation Axes
1 Rotation Axis

1 Rotation Axis

Object 2
Environment 1

Environment 2

Environment 3

2 Different Rotation Axes

1 Rotation Axis
1 Rotation Axis

Object 3 Environment 1 1 Rotation Axis

Object 4 Environment 1 1 Rotation Axis

Figure 3.1: The dataset scheme is shown. At the end of each branch, there is a
pair of movie which includes a shiny object and a matte object.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.2: Six frames from a moving matte object

53



(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.3: Six frames from a moving shiny object

Since the black background behind the objects has dominant effect on the

statistics, we use only the center part without the background. After removing

the background, the frames given in Figure 3.2 and Figure 3.3 look like as in

Figure 3.4 and Figure 3.5
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.4: Six frames showing the center parts of a moving matte object

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.5: Six frames showing the center parts of a moving shiny object
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3.1.2 Statistical Parameters

Since we use subband statistics for the analysis, we first compute the outputs

of the bandpass filters, which are second derivative of Gaussian filters that we

presented in Chapter 2. We compute 24 filter outputs (eight orientations for

three different scales) for each movie. Although we use symmetric padding for

convolutions, in order not to have border artifacts, we exclude borders in all for

three dimensions after filtering.

The statistics that we measured are all extracted from pixel histograms of

the subbands. The pixel histogram is an array whose elements are the counts

of the pixels which have the same intensity levels in an image or a video. The

first index of the histogram corresponds to minimum intensity level (black color)

and the last index corresponds to maximum intensity level (white color). After

computing the outputs of the subbands, we linearly normalized pixel intensities

to have minimum pixel intensity as 0 and maximum pixel intensity as 1. Making

this normalization for each subband separately is logical, since each orientation

selective cell gives response according to the local intensity differences, instead of

the overall brightness level [11]. Since the graphic card in our computer supports

8-bit resolution, we assume that there are 28 � 256 intensity levels in the interval

[0,1] and we used those quantized values for the intensity values in the subbands.

Moreover, we divided each element in the histogram by the total number of

pixels in the filter output. Therefore, the histogram of each subband can be

assumed as the representation of the probability density function (pdf) and the

corresponding subband output can be assumed as a random process. In Figure

3.6, a sample histogram is shown.
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Figure 3.6: A sample histogram

Let a histogram represent the pdf, pXpiq, where X is a random variable

which takes one of the 256 intensity levels in the interval [0 1]. From this pdf we

extracted four statistical parameters. These parameters are the mean, standard

deviation, skewness and kurtosis.

Mean: The mean, µ, is,

µ � ErXs �
1̧

i�0

i � pXpiq, where i � 0,
1

255
,

2

255
, . . . , 1. (3.1)

Standard Deviation: The standard deviation, σ, is,

σ �
a
ErpX � µq2s �

1̧

i�0

pi� µq2 � pXpiq, where i � 0,
1

255
,

2

255
, . . . , 1. (3.2)

The standard deviation is a measure of average contrast.

Skewness: The skewness, µ3, is,

µ3 � ErpX � µq3s �
1̧

i�0

pi� µq3 � pXpiq, where i � 0,
1

255
,

2

255
, . . . , 1. (3.3)

The skewness is a measure of the symmetry with respect to mean of the his-

togram. This value takes a positive number if the histogram plot is skewed to-

wards right and takes a negative number if the histogram plot is skewed towards

left.
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Kurtosis: The kurtosis, κ, is,

κ � ErpX � µq4s
σ4

�
°1
i�0pi� µq4 � pXpiq

σ4
, where i � 0,

1

255
,

2

255
, . . . , 1. (3.4)

The kurtosis is a measure of the peakedness of the histogram.

3.2 Numerical Results

3.2.1 Comparison of Matte-Shiny Pairs

As we stated previously, the data set consists of videos of moving matte and shiny

versions of each object. We have a total of 20 pairs of movies and we investigated

statistical differences of each pair. Since we have 24 subband histograms for each

movie and four statistical parameters from each histogram, we compared each

pair for 24 � 4 � 96 parameters.

The comparison was made in a way that, for a certain parameter and a certain

subband, we find the number of pairs in which the specified parameter is greater

for subband histogram of matte object motion than its shiny pair. For example,

let the parameter that is subject to comparison be the standard deviation, σi,

which is extracted from histograms of a particular scale and orientation selective

filter outputs. The number, c, represents that in c of twenty movies, the specified

parameter is greater for matte object than that of the shiny object. We give those

numbers in Table 3.1.
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O1 O2 O3 O4 O5 O6 O7 O8

µ
S1 7 7 11 8 9 8 12 8
S2 11 9 12 13 13 12 14 11
S3 10 11 10 10 11 10 13 9

σ
S1 8 14 12 13 16 17 15 15
S2 12 14 15 13 13 17 16 14
S3 14 14 17 18 18 17 14 11

µ3

S1 10 13 8 7 8 9 9 8
S2 7 7 7 6 5 6 7 5
S3 7 8 7 7 6 10 8 6

κ
S1 14 14 11 8 6 7 7 9
S2 11 11 9 9 9 5 5 7
S3 6 10 4 3 5 6 8 10

Table 3.1: Each column is a specific orientation and each row is a specific scale.
The symbol Oi represents the ith orientation and Si represents the ith scale. The
scale index 1 indicates the highest radial frequency and 3 indicates the lowest
radial frequency. The parameters which are subject to comparison are written
on the left. µ, σ, µ3 and κ are mean, standard deviation, skewness and kurtosis
respectively. The explanation on how to read this table is given in the text.

Comparison of Means

By looking at the results given in Table 3.1, it can be stated that, there

is not much difference between matte and shiny objects in terms of subband

histogram means. There are two reasons of it. Firstly, if the subbands are

investigated separately, the number of matte object motions whose mean is higher

is approximately half of the twenty pairs in all of the subbands. Secondly, when

the subbands are investigated as a whole, in eight of twenty four subbands, the

mean of the shiny object motion is greater and in twelve of twenty four subbands,

the mean of the matte object motion is greater. In addition, in four subbands,

the mean of the matte object is higher in ten pairs and the mean of the shiny

object is higher in remaining ten pairs. Therefore, we can state that an accurate

recognition in a matte-shiny motion pair cannot be made by just looking at their

subband histogram means.
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Comparison of Standard Deviations

In terms of standard deviation, the separation between matte and shiny ob-

ject motions is more obvious. In only one subband, the number of motion pairs

whose standard deviation of histogram of shiny object is higher than its matte

counterpart. In all the remaining subbands, the number of the matte object mo-

tions whose standard deviation is higher than their shiny counterparts is larger.

Furthermore, in 13 of the 24 subbands, the standard deviation of matte object

motion is greater in 15 or more of 20 motion pairs. Therefore, in our dataset,

by looking at the standard deviations of the subbands of a given pair, a more

accurate decision about which movie is the motion of matte one can be made.

Comparison of Skewnesses

In many of the subbands (21 of 24), the skewness is larger for motions of

shiny objects. As in the standard deviation case, for a given pair, an accurate

decision can be made whether a motion belongs to matte object or not by look-

ing at the subband histogram skewnesses. However, although in many subbands

the skewness is higher for shiny object motions, the difference is not as large as

the standard deviation case: only in two of 24 subbands, the skewness of shiny

object motion is greater in 15 or more of 20 motion pairs.

Comparison of Kurtosises

In terms of kurtosis, the difference between shiny and matte object motions

is not large compared to the standard deviation and the skewness cases, but, the
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separation is better compared to the mean case. In 17 of 24 subbands, the his-

tograms of shiny object motions are more kurtotic than their matte counterparts

and in five of them the kurtosis of shiny object motion is greater in 15 or more

of 20 motion pairs

3.2.2 Average Statistics of Matte and Shiny Motions

In order to find the difference of average statistics, first we summed statistical

parameters which belong to matte motions or shiny motions and divided each

parameter by 20 which is the number of the matte object and shiny object movies.

Then, we subtracted shiny motion parameters from matte motion parameters.

That is,

µijdif �
1

20

20̧

k�1

pµijmk � µijskq, σijdif �
1

20

20̧

k�1

pσijmk � σijskq,

µij3dif �
1

20

20̧

k�1

pµij3mk � µij3skq, κijdif �
1

20

20̧

k�1

pκijmk � κijskq,

where ij represents the ith scale and jth orientation and mk and sk represent

the kth movie of the matte motion dataset and kth movie of the shiny motion

dataset, respectively. In Table 3.2, we give these values.

From Table 3.2, it can be stated that the average of the means do not give

much information about shininess of an object. Since in approximately half of

the subbands, the mean which is extracted from the average subband histogram

is higher for matte object motions. On the other hand, in all of the subbands, the

variance of the average histogram of the matte object motion is higher. Moreover,

in a few subbands (2 of 24), the skewness of the shiny object motion is smaller. As

being in the mean parameter, in half of the subbands, the shiny motion is more

kurtotic than the matte motion. These results agree with the ones expressed in
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O1 O2 O3 O4 O5 O6 O7 O8

µdif

S1 -0.0216 -0.0234 0.0040 0.0018 -0.0067 -0.0120 0.0022 -0.0159
S2 0.0029 -0.0059 0.0104 0.0060 0.0094 0.0161 0.0222 0.0150
S3 -0.0042 0.0034 0.0060 -0.0051 -0.0121 -0.0111 0.0116 0.0058

σdif

S1 0.0001 0.0039 0.0039 0.0083 0.0091 0.0096 0.0047 0.0050
S2 0.0084 0.0068 0.0134 0.0110 0.0087 0.0128 0.0111 0.0114
S3 0.0108 0.0099 0.0208 0.0166 0.0150 0.0175 0.0134 0.0105

µ3dif

S1 0.0001 0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
S2 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
S3 -0.0002 -0.0001 -0.0001 -0.0001 -0.0002 -0.0001 -0.0001 -0.0001

κdif

S1 1.7869 0.6211 0.5747 -0.1531 -0.1253 0.7740 0.3900 1.0191
S2 1.1207 0.6473 -0.3088 -0.4635 -0.5107 -0.4001 -0.0653 0.8296
S3 0.4280 -0.1003 -0.4693 -0.7003 -0.6134 -0.6276 0.0551 0.4814

Table 3.2: Each column is a particular orientation and each row is a particular
scale. The symbol Oi represents the ith orientation and Si represents the ith

scale. The scale index 1 indicates the highest radial frequency and 3 indicates
the lowest radial frequency. The parameters which are subject to comparison
are written on the left. µdif , σdif , µ3dif and κdif are mean, standard deviation,
skewness and kurtosis respectively.

Section 3.2.1. As in separate investigation of the matte and shiny objects, the

variance and the skewness of the subband histograms give more information than

the mean and the kurtosis about shininess.

3.2.3 Classification Results

In this thesis, we tested five machine learning algorithms for recognition of a

motion which belongs to either a matte or a shiny object. We compared the

accuracy of the results of these algorithms in order to verify classification results

are independent of the specific classifier. These algorithms are the least-squares,

the support vector machine (SVM), the Bayesian classifier, the Bayesian classifier

after the principal component analysis (PCA) and the Bayesian classifier after the

linear discriminant analysis (LDA). Since we get most classification success rates

from the least squares and the SVM algorithms and the success rates of the least-

squares and the SVM algorithms are very much the same, we give just the results

of the SVM algorithm. In these algorithms, we used the statistical parameters

which are extracted from motion subband histograms as the movie features. As
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we stated before, these parameters are the mean, standard deviation, skewness

and kurtosis. Since there are 24 subbands, in this classification algorithm we

used 24� 4 � 96 features for each movie. Therefore, a movie is represented by a

feature vector which contains 24 mean, 24 standard deviation, 24 skewness and

24 kurtosis values. Moreover, we also classified the movies just based on only

their mean, standard deviation, skewness and kurtosis parameters. We used the

classification algorithms provided by PRTools for Matlab [75].

Preprocessing Stage: In order to get an independent result from selection of

the training and test samples, we ran the classification algorithm 1000 times. In

each run, first of all, we randomly selected 70% of the matte movies as matte

motion training samples and 70% of the shiny movies as shiny motion training

samples. Therefore, in the learning step, we have 28 of 40 movies whose half is

matte object and half is shiny object motions.

Secondly, in order to classify the movies correctly, the classification algorithm

requires that each feature which belongs to a certain movie should be in the same

order. For example, the mean values which are extracted from Equation 3.1 given

in Section 3.1.2 are in the order of 10�1 (for example, 0.5, 0.7, 0.3 etc.), whereas

the skewness values extracted from Equation 3.3 are in the order of 10�5 (for

example 0.00005, 0.00007, 0.00003 etc.). In order to fix this problem, we made a

normalization on the training data. In the PRToolbox, the function in scalem.m

file does this normalization. The main idea of this normalization is that each

feature is provided to be an outcome of a pdf whose mean is zero and variance

is one. Specifically, let pij be a parameter (µ, σ, µ3 or κ) array whose entries are

the parameter values which are extracted from histograms of ith orientation and

jth scale filter output of the. That is, pij � rpm1
ij pm2

ij . . . pm14
ij ps1ij p

s2
ij . . . ps14

ij s.
The letters m and s represent the words matte and shiny and their indexes go

up to 14, since we use 14 matte object and 14 shiny object movies in the training
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set. Let the mean, µpij calculated from these values be;

µpij �
14̧

k�1

�
pmkij � pskij

�
28

,

and the standard deviation, σij, be;

σpij �
gffe 14̧

k�1

��pmkij � µpij
�2 � �pskij � µpij

�2

28

�
.

Then, each entry in pij is updated according to the equation pc � µpijq{σpij ,
where c represents an element in pij. Finally, each parameter in the test set is

also normalized by using the parameters µpij and σpij .

Classification Stage: In this part, we give the classification results based on

the SVM classifier. This classifier is based on finding a linear decision boundary

which separates each class from others. The mathematical background of this

algorithm is out of the scope of this thesis. Details of the procedure, as well as

other types of classification algorithms can be found in [76].

The classification results based on all four statistical parameters for 1000

run of the SVM algorithm are as follows;

• The average success rate is 74%.

• The standard deviation of the success rates is 11.

• The minimum success rate is 33%.

• The maximum success rate is 100%.

• Confusion matrix for average success rate is;

Estimated Label

Matte Shiny

True Label
Matte 71 29

Shiny 23 77
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• The standard deviation of the success rates of matte object motion classi-

fication is 18.

• The minimum success rate for matte object motion classification is 17%.

• The maximum success rate for matte object motion classification is 100%.

• The standard deviation of the success rates of shiny object motion classi-

fication is 18.

• The minimum success rate for shiny object motion classification is 0%.

• The maximum success rate for shiny object motion classification is 100%.

The results of the classification algorithms show that if the mean, standard

deviation, skewness and kurtosis parameters are used altogether in the feature

set, approximately 75% of the movies can be classified correctly. The motions

of the shiny objects can be classified with a bit more success. Although the

minimum and maximum success rates indicate the classification success may

depend on the choice of training and test sets, the low standard deviation values

signal the robustness of the algorithm against the choice of these sets.

The classification results based on just the mean values for 1000 run of the

SVM algorithm are as follows;

• The average success rate is 57%.

• The standard deviation of the success rates is 13.

• The minimum success rate is 17%.

• The maximum success rate is 100%.

• Confusion matrix for average success rate is;
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Estimated Label

Matte Shiny

True Label
Matte 58 42

Shiny 45 55

• The standard deviation of the success rates of matte object motion classi-

fication is 21.

• The minimum success rate for matte object motion classification is 0%.

• The maximum success rate for matte object motion classification is 100%.

• The standard deviation of the success rates of shiny object motion classi-

fication is 21.

• The minimum success rate for shiny object motion classification is 0%.

• The maximum success rate for shiny object motion classification is 100%.

The classification results based on just the standard deviation values for

1000 run of the SVM algorithm are as follows;

• The average success rate is 54%.

• The standard deviation of the success rates is 13.

• The minimum success rate is 0%.

• The maximum success rate is 92%.

• Confusion matrix for average success rate is;

Estimated Label

Matte Shiny

True Label
Matte 48 52

Shiny 39 61
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• The standard deviation of the success rates of matte object motion classi-

fication is 20.

• The minimum success rate for matte object motion classification is 0%.

• The maximum success rate for matte object motion classification is 100%.

• The standard deviation of the success rates of shiny object motion classi-

fication is 23.

• The minimum success rate for shiny object motion classification is 0%.

• The maximum success rate for shiny object motion classification is 100%.

The classification results based on just the skewness values for 1000 run of

the SVM algorithm are as follows;

• The average success rate is 53%.

• The standard deviation of the success rates is 12.

• The minimum success rate is 8%.

• The maximum success rate is 83%.

• Confusion matrix for average success rate is;

Estimated Label

Matte Shiny

True Label
Matte 43 57

Shiny 37 63

• The standard deviation of the success rates of matte object motion classi-

fication is 20.

• The minimum success rate for matte object motion classification is 0%.
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• The maximum success rate for matte object motion classification is 100%.

• The standard deviation of the success rates of shiny object motion classi-

fication is 23.

• The minimum success rate for shiny object motion classification is 0%.

• The maximum success rate for shiny object motion classification is 100%.

The classification results based on just the kurtosis values for 1000 run of

the SVM algorithm are as follows;

• The average success rate is 61%.

• The standard deviation of the success rates is 11.

• The minimum success rate is 25%.

• The maximum success rate is 92%.

• Confusion matrix for average success rate is;

Estimated Label

Matte Shiny

True Label
Matte 65 35

Shiny 42 57

• The standard deviation of the success rates of matte object motion classi-

fication is 19.

• The minimum success rate for matte object motion classification is 0%.

• The maximum success rate for matte object motion classification is 100%.

• The standard deviation of the success rates of shiny object motion classi-

fication is 18.
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• The minimum success rate for shiny object motion classification is 0%.

• The maximum success rate for shiny object motion classification is 100%.

From the results of the success rates of the classifications based on the in-

dividual parameters, it can be stated that if just the mean, standard deviation

or skewness values are used in the feature set, the success rate rapidly decreases

relative to the success rate of the classification based on the feature set which

includes all the parameters. These success rates become approximately 50%,

which is the expected success rate of a random classification. On the other hand,

the success rate of the classification based on the kurtosis values is around 60%,

which is higher than the cases of the other parameters. That means, in our

dataset, the separation between matte and shiny objects in terms of their kur-

tosis values of the subband histograms is more obvious than the mean, standard

deviation and skewness values. Another important observation about these clas-

sifications can be made as, in the skewness case, most of the matte objects are

classified as a shiny object. The reason of this misclassification may be that the

skewness of the moving shiny objects may be more stationary than the skewness

of the matte objects. In other words, the skewness values which belong to matte

objects show more variation than the skewness of the shiny objects. And, if the

most of the matte objects in the test set resemble to shiny objects in terms of

their subband histogram skewnesses, they are classified as shiny.

As a result of these classification success rates, the highest classification suc-

cess is observed when all the statistical parameters are used in the feature set.
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3.3 Motion Synthesis

In the previous section, we give some statistical differences between motions of

matte and shiny objects. In order to understand to what extent the motion sub-

band statistics are important on the surface reflectance recognition, we synthe-

sized new movies. These movies are aimed to have the same subband statistics

with a source movie, but it looks completely different from that movie. The

source movie is either the motion of a matte object or a shiny object. We give

the method of motion synthesis and results in the later stages of this section.

In order to generate a synthethic motion, we used texture synthesis algorithm

proposed in [55]. Although that algorithm was proposed for two-dimensional

textures, we adapted it for three dimensional motion synthesis. The aim of the

algorithm is to modify a random noise movie such that its subband histograms

are the same as subband histograms of a chosen source movie. The steps of the

algorithm can be summarized as follows;

• Preprocessing Step: There are two accomplishments in this step. Firstly,

a noise movie is generated by assigning independent random values to the

video pixels. Secondly, the source movie is decomposed by the steerable

pyramid which is mentioned in Section 2.4. Then, the subband histograms

are extracted from the source movie subbands and saved for the later usage.

• Step 1: The histogram of the noise is equalized to the histogram of the

source movie. This process is called as histogram equalization and it is based

on equating the cumulative distribution functions (CDF) of two histograms.

Detailed information about histogram equalization can be found in [77].

• Step 2: The noise movie is decomposed into their subbands by using the

steerable pyramid.
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• Step 3: In each subband, the histograms of the noise are equalized to the

histograms of the source movie.

• Step 4: The histogram equalized subbands of the noise movie are used in

the reconstruction of the modified noise.

• Step 5: It is went back to Step 1 and continued until a desired number of

iterations reached.

In our case, we decided to have 5 iterations, since, if the iteration number in-

creases, the artifacts in the resulting image also increase due to reconstruction

errors.

3.3.1 Test of the Success of the Algorithm on Moving

Textures

In [55], it is shown that this algorithm is useful if source image does not have

a dominant orientation and it has a homogeneous structure. If this conditions

are met, although there are some failure examples, synthesized texture looks like

similar to source image. In order to test the algorithm for three dimensional im-

ages, we first synthesized a texture from the motion of clouds which has isotropic

features both in space and time. Since we designed two different steerable pyra-

mids, we give the results for each. In Figure 3.7, six frames of the real cloud

motion are shown in gray scales. In Figure 3.8 and Figure 3.9 six frames of the

synthesized texture are also shown for each steerable pyramid.
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.7: Six frames from a motion of clouds. This is a test movie for the
texture synthesis algorithm.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.8: Six frames from the synthesized texture by using the steerable pyra-
mid mentioned in Method I in Section 2.4.3.
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.9: Six frames from the synthesized texture by using the steerable pyra-
mid mentioned in Method II in Section 2.4.3.

As it can be seen from the figures, although there are some artifacts, the syn-

thesized textures are similar to the source movie for the cloud motion, especially

the ones synthesized using the steerable pyramid whose bandpass filters are the

first derivative of Gaussian filters. One of the most different parts is the sense of

depth between the source movie and the synthesized movies.

The movies that we used for surface reflectance recognition are not homoge-

nous both in time and space. Therefore, we do not expect that the synthesized

textures resemble the source movies in this particular feature. However, al-

though the spatial structure of the objects are not captured, the synthesized

dynamic textures have the same motion direction with the motion direction of

their corresponding source movies. In order to test the success of the algorithm,

we developed a classification algorithm which resembles to the one mentioned

in Section 3.2.3. In order to apply the classification algorithm, we first decom-

posed each synthesized texture into its subbands by using the second derivative

of Gaussian filters, then extracted the mean, standard deviation, skewness and

kurtosis from the subband histograms and used all of them in the feature space.

In this version of the classification algorithm, we again randomly selected 14
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motions of matte objects and 14 motions of shiny objects. Then, we used all

the synthesized movies in the test set. Since the aim of this algorithm is to

whether the synthesized textures resemble to the source movies in terms of their

subband statistics, we check whether the success rate is to 100%. The results of

the classification can be summarized as follows:

The classification results for 1000 run of the SVM algorithm on synthesized

textures by the steerable pyramid mentioned in Method I in 2.4 are as follows;

• The average success rate is 54%.

• The standard deviation of the success rates is 4.

• The minimum success rate is 40%.

• The maximum success rate is 63%.

• Confusion matrix for average success rate is;

Estimated Label

Matte Shiny

True Label
Matte 25 75

Shiny 17 83

• The standard deviation of the success rates of matte object motion classi-

fication is 8.

• The minimum success rate for matte object motion classification is 5%.

• The maximum success rate for matte object motion classification is 55%.

• The standard deviation of the success rates of shiny object motion classi-

fication is 14.

• The minimum success rate for shiny object motion classification is 35%.

• The maximum success rate for shiny object motion classification is 100%.
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The classification results for 1000 run of the SVM algorithm on synthesized

textures by the steerable pyramid mentioned in Method II in 2.4 are as follows;

• The average success rate is 54%.

• The standard deviation of the success rates is 3.

• The minimum success rate is 45%.

• The maximum success rate is 68%.

• Confusion matrix for average success rate is;

Estimated Label

Matte Shiny

True Label
Matte 17 83

Shiny 9 91

• The standard deviation of the success rates of matte object motion classi-

fication is 10.

• The minimum success rate for matte object motion classification is 0%.

• The maximum success rate for matte object motion classification is 55%.

• The standard deviation of the success rates of shiny object motion classi-

fication is 7.

• The minimum success rate for shiny object motion classification is 55%.

• The maximum success rate for shiny object motion classification is 100%.

From the results given above, the success rates for both steerable pyramids

are around 50%. However, the main point here is that, the shiny objects are

classified with a high success rate, which is around 90%. On the other hand, the

matte objects are classified with a low success rate, which is around 20%. These
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results indicate that, in terms of subband statistics, the synthesized textures,

regardless of their source movies, resemble more to the shiny object motions

than the matte object motions. Therefore, the synthesized textures can be used

in a subjective test which checks whether they resemble to matte or shiny one.

We give the results of this experiment below.

3.3.2 Results of Motion Texture Synthesis

Since we synthesized two dynamic textures for each motion. One movie is syn-

thesized by using the steerable pyramid mentioned in Method I and the other is

synthesized by using the steerable pyramid mentioned in Method II in 2.4. There-

fore, there are 80 different synthetic dynamic textures. As we stated before, most

of the synthesized textures resemble more the shiny object movies in terms of the

subband statistics. Therefore, in this section, we qualitatively checked whether

a human observer judged the synthesized textures to be more similar to shiny

than matte. The main result that can be inferred from synthesized textures is

that, although synthesized textures capture some of the properties of their cor-

responding source movies, they do not appear to provide sufficient information

to make a decision whether the synthesized textures resemble a moving shiny or

a moving matte object.

The detailed information about the synthesized textures can be summarized

as follows. First of all, synthesized textures move in the same direction with

their corresponding source movies. Secondly, the speed of the textures also looks

similar to speed of the source movie textures. In addition, since the bandwidth

of the bandpass regions of the steerable pyramid designed with Method II is

narrower in terms of orientation, the textures synthesized with this steerable

pyramid looks more articulated than the ones which are synthesized by using the

steerable pyramid designed with Method I. In Figures 3.10, 3.11, 3.12, 3.13, 3.14
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and 3.15, an example motion pair and their corresponding synthesized textures

are shown.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.10: Six frames from the source moving matte object.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.11: Six frames from synthesized texture whose source motion is shown
in Figure 3.10. This texture is synthesized by using the steerable pyramid men-
tioned in Method I in Section 2.4.3.
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.12: Six frames from the synthesized texture whose source motion is
shown in Figure 3.10. This texture is synthesized by using the steerable pyramid
mentioned in Method II in Section 2.4.3.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.13: Six frames from a source moving shiny object which has the same
shape as of the object in Figure 3.10.
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.14: Six frames from synthesized texture whose source motion is shown
in Figure 3.13. This texture is synthesized by using the steerable pyramid men-
tioned in Method I in Section 2.4.3.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 3.15: Six frames from the synthesized texture whose source motion is
shown in Figure 3.13. This texture is synthesized by using the steerable pyramid
mentioned in Method II in Section 2.4.3.

In addition to these movies, some other movie and synthesized texture ex-

amples can be found in http://www.umram.bilkent.edu.tr/~kulce/.
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One of the possible reasons that the synthesized textures do not give the

sense of the reflectance is that the algorithm does not capture any information

about the object shape. We already saw that shape information is crucial for

judging surface glossines of static objects [38]. Since specular features slide on

the surface of a shiny object, perceiving no object in a movie may somehow

interfere with the recognition of specularity. In addition, our subband statistics

were not an exact match due to overlap in the frequency domain in our filterset.

Using a better algorithm that synthesizes textures whose subband statistics are

exactly the same as the source movies may lead to a better classification of matte

and shiny synthesized textures.

In this chapter, we provided indices to the importance of subband statistics

on the perception of the surface specularity. In the begining of the chapter, we

gave details on the dataset and analytical definitions of the four statistical pa-

rameters, mean, standard deviation, skewness and kurtosis. Then, we explained

the numerical results, starting from the comparison of matte and shiny object

motion pairs. In comparison of the pairs, we highlighted some properties that

are in common in the motion pairs. In the second phase of the numerical re-

sults section, we compute the average statistics of the matte and shiny objects.

Then, we developed a machine learning algorithm from two different classifiers.

In both of the methods, we got approximately 75% success rate on the classifica-

tion of matte and shiny objects. Finally, we synthesized dynamic texture, to see

whether the subband statistics are the sufficient characteristics on the perception

of the reflectance, and we see that there should be some other characteristics that

should be taken into account to succefully predict surface reflectance perception.
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Chapter 4

SUMMARY AND

CONCLUSIONS

In this thesis, we investigated the role of subband motion statistics on surface

reflectance appearance. Our results indicate that, although the subband statistics

can provide cues to surface reflectance, they do not capture all the required

information necessary for the identification of surface material properties.

Summary: The work we have done for this thesis can be grouped under two

main titles:

• Technical details of three dimensional filters used for subband decomposi-

tion/reconstruction.

• Examination of the first-order subband motion statistics of moving matte

and shiny objects.

After introducing the fundamental concepts that provide a basis for the rest

of the thesis in Chapter 1, we describe the technical details in Chapter 2. We
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first explain orientation and scale concepts. We, then, give their interpretations

in the frequency domain. Next, we introduce steerable filter concept, which

is a method of implementing an oriented filter as a linear sum of differently

oriented filters. After that, since we used second derivative of Gaussian filters as

the orientation and scale selective filters, we first provide a few properties of the

derivative of Gaussian filters, such as steerability, orientation and scale selectivity

characteristics and design considerations. Then, we describe the explicit design

steps of the second derivative of Gaussian filters in three dimensions. These

filters are designed in three scales and eight orientations that extract total of 24

subbands. The filter coefficients of these filters can be found in Appendix B. In

the last part of the chapter, we introduce a video decomposition/reconstruction

technique, which is called the steerable pyramid. After that, we describe our

adopted filter design techniques for three-dimensional steerable pyramid. In order

to provide perfect reconstruction in the orientation space, we used the technique

in [72] and in order to provide perfect reconstruction in scale space we used two

different methods; 1) First derivative of Gaussian filters, 2) Designing the low

pass filter, which has broader bandwidth than bandwidth of the other low pass

filter in the filterbank, by applying the technique given in [74] and subsequent

design of the remaining filters in the steerable pyramid filterbank.

In Chapter 3, we introduce the dataset and mathematical definitions of the

statistical parameters. These parameters are the mean, standard deviation,

skewness and kurtosis. All these parameters are extracted from the subband

histograms of the movies. Then, we compare statistics of each motion pair which

contains one matte and one shiny version of an object. According to the results,

means and kurtosises of the motion subbands do not differ much within the pairs.

On the other hand, in many subband histograms, the standart deviation of most

of the matte object motions is higher than their shiny counterparts. Whereas,

the skewness of the subband histograms of matte object motions is generally
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higher than in its shiny counterpart in most of the subbands. Moreover, we also

compared the averages of the statistical parameters which are extracted from the

subband histograms of 20 moving matte objects and the statistical parameters

which are extracted from the subband histograms of 20 moving shiny objects.

We observed that the standard deviation and skewness values in many subbands

of the moving matte objects generally differ from the moving shiny objects. The

average standard deviations of the subband histograms of the matte objects are

larger than their shiny counterparts and the skewness shows the opposite be-

haviour, that is the skewness values are higher for the subband histograms of

shiny object motions in many subbands. Then, we developed a classifier algo-

rithm based on those statistical parameters. We used the SVM as the classifi-

cation algorithm. The results of the classification showed that, nearly 75% of

all movies are classified correctly. The correct classification of shiny movies is

around 77% and of matte movies is around 71%. In addition, we classified the

movies just based on one statistical parameter. In the mean, standard devia-

tion and skewness cases, the success rate is nearly 50%. On the other hand,

the success rate in the classification based on the kurtosis values increases up to

60%. Finally, we synthesized artificial reflectance videos by using the algorithm

proposed in [55]. From a classification algorithm applied on these new videos,

we found that most of the videos were classified as shiny. Visual inspection,

however, indicates that it is not possible to make an accurate estimation about

the resemblance of the synthesized movies as either matte or shiny textures.

Comments: According to the results which are obtained from our dataset, the

hypothesis that states the statistics of a visual stimuli play role on perception

and identification is partially validated on the surface reflectance recognition

from movies. One of the strongest findings that have us reach such a conclusion

is that the differences between the standard deviation and skewness values in

the video subbands. These results indicate that in many subbands the standard
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deviation of matte object motions is higher than their shiny counterparts. That

means, the outputs of the filters have more intensity contrasts in the matte case.

Moreover, since the skewness values are generally higher in the shiny case, it

can be said that, the histograms of the filter outputs have longer tails towards

brighther intensity than darker intensity values. In addition, although it is not

obvious as in the standard deviation and skewness cases, the kurtosis of the

subband histograms of the moving shiny objects is generally higher than the

matte case. Since the kurtosis is a measure of the peakedness of a histogram, it

can be deduced that the intensity values in the shiny object motion subbands

are accumulated around a certain value.

Another finding in this thesis is the success rate of the classification of the

movies based on four statistical parameters extracted from the subband his-

tograms. Although we have a small data set, we got a 75% success on the

classification of all movies. Therefore, this can be another cue that the statistics

are important on the perception of the shininess. These were the results that

supports the hyphothesis that we mentioned at the beginning of this paragraph.

However, classification results on the synthesized textures suggests otherwise. In

terms of first order subband statistics, a large number of the synthesized textures

resemble shiny moving objects, regardless whether they were originally derived

from shiny or matte. However, most human observers would not judge the syn-

thesized textures to look shiny, in fact, they find it hard to make any comment

on the resemblance of the synthesized textures to either matte or shiny objects.

This may be beause the synthesized motions do not give the feeling of object-

ness. In other words, a solid shape cannot be perceivied and as noted before,

the motion of the specularities on a shiny object surface is related to the object

shape. They move faster than the object surface on the flat regions, slower on

the convexly curved regions and tend to move towards convexities [30]. In the

synthesized textures, this information is absent. The crucial implication is that
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for the HVS the estimation of 3D shape and reflectance may be coopearative,

i.e. not independent.

Future Work:

• The work can be repeated over a larger dataset. The reason is that, the

number of the sample movies is relatively small when it is compared to

the dimension of the feature sets which are used in the classifications. The

dataset can include both computer generated and real world examples.

Moreover, the dataset does not have to include just the solid shapes. For

example, in order to investigate the shiny features on a liquid, motion of

water waves can be included.

• In our dataset, the objects are rotating in a fixed rectangle within the

movie frames. Thus, we could cut out the background from the movies

easily. However, if our classification algorithm is going to be used in the

classification of a motion captured from a real world environment, just

cutting out the background may not be possible. The reason is that, in

the real scenes, the objects generally move unevenly within the scenes.

Therefore, applying a background extraction algorithm to the movies before

classification can be useful.

• We worked on the first order statistics which are extracted from the sub-

band histograms. However, second or higher order statistics or Markov

models may also have the influence on the perception of the surface re-

flectance. As an intuition, these statistics may explain the relationship

between the motion of specular features and the motion of object surface.

• We saw that the synthesis algorithm that we used is not good enough

for our aim, which is to synthesize a movie whose subbands have exactly

the same histograms with a particular source movie. Therefore, another
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algorithm that provides synthesizing a movie whose only similarity to a

source movie is the first order statistics can be developed or the existing

algorithm can be modified.

• In order to see the response of the early stages of the HVS to a visual stimuli

which includes motion of a matte or shiny object, functional magnetic

resonance imaging (fMRI) experiments can be performed.
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APPENDIX A

PROOF OF STATEMENT I

Let the cartesian coordinates of the frequency components of an arbitrary cosine

signal be ωx � rωx ωy ωtsT and the cartesian coordinates of the directed frequency

points of a filter be ωxi
� rωxi ωyi ωtisT , where i is from 1 to P . We assume that

the frequency points are on the unit sphere. That is ω2
x�ω2

y�ω2
t � ω2

xi
�ω2

yi
�ω2

ti
�

1. However, even if the frequency points are not on the unit sphere, the proof is

still valid (The only thing that should be added to the proof is a normalization

constant, which does not have an effect on the proof). Let R be the rotation

matrix defined in Equation 2.10. The coordinate axis points ωxi
can be rotated

to new coordinate axes, ωx1i
� rωx1i ωy1i ωt1isT as;

ωx1i
� Rωxi

(A.1)

The cosine of the angle, α, between the vectors whose elements are the carte-

sian coordinates of a point can be calculated through inner product of two vectors.

In the same way, cos2pαiq, can be written as multiplication of two inner products;
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cospαiq2 �
�
ωx

Tωx1i

� �
ωx1i

Tωx

�
(A.2)

� ωx
T
�
ωx1i

ωx1i
T
�
ωx (A.3)

The sum of the square of the cosine functions can be written as;

P̧

i�1

cospαiq2 �
P̧

i�1

�
ωx

T
�
ωx1i

ωx1i
T
�
ωx

T
�

(A.4)

� ωx
T

�
P̧

i�1

ωx1i
ωx1i

T

�
ωx (A.5)
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(A.6)

In order to have a constant frequency response for all signals, we want to have

sum of the square of the cosines independent from ωx, ωy and ωt. If the cartesian

coordinates of frequency points, ωx1i , ωy1i , ωt1i , are selected such that, the matrix

in the middle in Equation A.6 is the identity matrix times a scalar constant,

that is cI,
°P
i�1 cospαiq2 becomes equal to c � pω2

x � ω2
y � ω2

t q � c. Any point set

which satisfies this equality can be used. It can also be seen that, if ωx1i
equals

the cartesian coordinates of the vertices of the cube or the octahedron, which

are given in Appendix C, the matrix in the middle in Equation A.6 becomes an

identity matrix times a constant. Finally, since we rotated the coordinate system

at the beginning, any set of points that can be rotated to cartesian coordinates

of the vertices of the cube or the octahedron can be used.
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APPENDIX B

FILTER COEFFICIENTS

The filter coefficients are given in the below table. Each column gives 1D spatial

filter coefficients of the functions F0pωq � e�
σ2

2
ω2

, F1pωq � jωe�
σ2

2
ω2

and F2pωq �
ω2e�

σ2

2
ω2

. The numbers in the first column indicate filter coefficient index. Since

filter coefficients of F0pωq and F2pωq are even symmetric and coefficients of F1pωq
are odd symmetric with respect to tap number 0, negative index coefficients are

not shown. The coefficients are calculated according to the IDFT equation;

fiptq � 1

M

rM�1
2

s¸
k��ptM�1

2
uq

Fipk2π

M
qej 2πktM , (B.1)

where, i � 0, 1 or 2, t P Z and �ptM�1
2

uq ¤ t ¤ prM�1
2

sq and M is the filter

length. A generic table that shows placement of coefficients is as follows;

σ

F0pωq F1pωq F2pωq
0 f0p0q f1p0q f2p0q
1 f0p1q f1p1q f2p1q
...

...
...

...

M�1
2

f0pM�1
2
q f1pM�1

2
q f2pM�1

2
q
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σ � 1 σ � 1.8 σ � 3.2

F0pωq F1pωq F2pωq F0pωq F1pωq F2pωq F0pωq F1pωq F2pωq
0 0.3984 0 0.3922 0.2216 0 0.0684 0.1247 0 0.0122

1 0.2425 -0.2427 0.006 0.1899 -0.0586 0.0405 0.1187 -0.0116 0.0105

2 0.0536 -0.1067 -0.1663 0.1196 -0.0738 -0.0087 0.1026 -0.02 0.0061

3 0.0046 -0.0148 -0.033 0.0553 -0.0512 -0.0303 0.0803 -0.0235 0.001

4 0.0001 0.0011 -0.0028 0.0188 -0.0232 -0.0228 0.0571 -0.0223 -0.0031

5 0.0047 -0.0072 -0.0097 0.0368 -0.018 -0.0052

6 0.0008 -0.0016 -0.0027 0.0215 -0.0126 -0.0053

7 0.0001 -0.0002 -0.0006 0.0114 -0.0078 -0.0042

8 0.0055 -0.0043 -0.0028

9 0.0024 -0.0021 -0.0016

10 0.0009 -0.0009 -0.0008

11 0.0003 -0.0004 -0.0004

12 0.0001 -0.0001 -0.0002

σ � 0.8 σ � 1.6

F0pωq F0pωq
0 0.4936 0.2493

1 0.2326 0.2051

2 0.0194 0.1142

3 0.0012 0.0432

4 0.0128

The nonseparable spatio-temporal filter kernel, hpx, y, tq of the high pass filtera
1 � e�0.82�pω2

x�ω
2
y�ω

2
t q is shown below. Since the filter is three dimensional, in

order to write it here, we separate the filter coefficients according to their time

index. If a filter kernel is shown under a label hp0 : 3, 0 : 3, tq, the filter kernel is

for from 0th index to 3rd index for both spatial axes of the tth time index. Since
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the coefficients are symmetric with respect to origin, we give the kernels only

for positive time indexes. Moreover, we only give the first quadrant of the filter

kernels, however, since the filter coefficients are symmetric with respect to origin,

x � 0 and y � 0 axes, they can be extrapolated in a straightforward manner to

have a size of 9 � 9 � 9.

Hp0 : 3, 0 : 3, 0q =

y0 y1 y2 y3

x0 0.9745 -0.0180 -0.0068 -0.0023

x1 -0.0180 -0.0128 -0.0051 -0.0020

x2 -0.0068 -0.0051 -0.0025 -0.0014

x3 -0.0023 -0.0020 -0.0014 -0.0011

Hp0 : 3, 0 : 3, 1q =

y0 y1 y2 y3

x0 -0.0180 -0.0128 -0.0051 -0.0020

x1 -0.0128 -0.0093 -0.0039 -0.0017

x2 -0.0051 -0.0039 -0.0021 -0.0013

x3 -0.0020 -0.0017 -0.0013 -0.0010

Hp0 : 3, 0 : 3, 2q =

y0 y1 y2 y3

x0 -0.0068 -0.0051 -0.0025 -0.0014

x1 -0.0051 -0.0039 -0.0021 -0.0013

x2 -0.0025 -0.0021 -0.0014 -0.0011

x3 -0.0014 -0.0013 -0.0011 -0.0009
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Hp0 : 3, 0 : 3, 3q =

y0 y1 y2 y3

x0 -0.0023 -0.0020 -0.0014 -0.0011

x1 -0.0020 -0.0017 -0.0013 -0.0010

x2 -0.0014 -0.0013 -0.0011 -0.0009

x3 -0.0011 -0.0010 -0.0009 -0.0009
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APPENDIX C

CARTESIAN AND

SPHERICAL COORDINATES

OF VERTICES OF PLATONIC

SOLIDS

The coordinate points presented in this part are taken from [73]. The cartesian

coordinates, Cpx, y, tq, of the vertices of the cube;

C1 C2 C3 C4

x 1 1 �1 �1

y 1 �1 �1 1

t 1 1 1 1

The spherical coordinates, Spθ, φq, of the vertices of the cube in radians;

S1 S2 S3 S4

θ π
4

7π
4

5π
4

3π
4

φ 0.3041π 0.3041π 0.3041π 0.3041π
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The cartesian coordinates, Cpx, y, tq, of the vertices of the octahedron;

C1 C2 C3

x 1 0 0

y 0 1 0

t 0 0 1

The spherical coordinates, Spθ, φq, of the vertices of the octahedron in radians;

S1 S2 S3

θ 0 π
2

Not Important

φ π
2

π
2

0

The cartesian coordinates, Cpx, y, tq, of the vertices of the dodecahedron; (g =

p1 �?
5q{2);

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

x 1 �1 1 �1 1/g �1/g g �g 0 0

y 1 1 �1 �1 0 0 1/g 1/g g �g

t 1 1 1 1 g g 0 0 1/g 1/g

The spherical coordinates, Spθ, φq, of the vertices of the dodecahedron in radians;

S1 S2 S3 S4 S5

θ π
4

3π
4

7π
4

5π
4

0

φ 0.3041π 0.3041π 0.3041π 0.3041π 0.116π

S6 S7 S8 S9 S10

θ π 0.116π 0.8839π π
2

3π
2

φ 0.116π π
2

π
2

0.3839π 0.3839π
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The cartesian coordinates, Cpx, y, tq, of the vertices of the icosahedron;

C1 C2 C3 C4 C5 C6

x 0 0 1 1 g �g

y 1 �1 g �g 0 0

t g g 0 0 1 1

The spherical coordinates, Spθ, φq, of the vertices of the icosahedron in radians;

S1 S2 S3 S4 S5 S6

θ π
2

3π
2

0.3238π 1.1762π 0 π

φ 0.1762π 0.1762π π
2

π
2

0.3238π 0.3238π
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