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ABSTRACT 

 

ANALYZING THE FORECAST PERFORMANCE OF S&P 500 INDEX 

OPTIONS IMPLIED VOLATILITY 

Erdemir, Aytaç 

M.S., Department of Management 

Supervisor: Assoc. Prof. Dr. Aslıhan Salih Altay 

 

September 2012 

 

 

 This study examines the comparative performance of the call and put 

implied volatility (IV) of at-the-money European-style SPX Index Options on the 

S&P 500 Price Index as a precursor to the ex-post realized volatility. The results 

confirm that implied volatility contains valuable information regarding the ex-post 

realized volatility during the last decade for the S&P 500 market. The empirical 

findings also indicate that the put implied volatility has a higher forecast 

performance. Furthermore, from the wavelet estimations it has been concluded that 

the long-run variation of the implied volatility is consistent and unbiased in 

explaining the long-run variations of the ex-post realized volatility. Wavelet 

estimations further reveal that in the long-run put and call implied volatility contain 

comparable information regarding the realized volatility of the market. However, in 

the short-run put implied volatility dynamics have better predictive ability.  

 

Keywords: Implied Volatility, Volatility Forecasting, Wavelet Analysis 



 iv   

ÖZET 

 

S&P 500 ENDEKS OPSIYONLARI İÇSEL OYNAKLIĞININ TAHMİN 

ETKİNLİĞİNİN İNCELENMESİ 

Erdemir, Aytaç 

Yüksek Lisans, İşletme Bölümü 

Tez Yöneticisi: Assoc. Prof. Dr. Aslıhan Salih Altay 

 

Eylül 2012 

 
 

 Bu çalışma S&P 500 Endeksi üzerindeki Avrupa-tipi SPX al ve sat 

opsiyonları içsel oynaklığının, gelecek piyasa volatilitesini karşılaştırmalı tahmin 

performansını incelemiştir. Sonuçlar, geçen on yıl boyunca opsiyon içsel 

oynaklıklarının S&P 500 gelecek piyasa volatilitesini açıklamada değerli bilgi 

içerdiğini doğrulamaktadır. Sonuçlar ayrıca, sat endeks opsiyonlarından elde edilen 

içsel oynaklığın daha yüksek bir tahmin performansına sahip olduğunu 

göstermektedir. Ayrıca, dalgacık hesaplamalarından opsiyon içsel oynaklığının 

uzun-vadeli değişiminin, gelecek piyasa volatilitesi değişimini açıklamada uzun 

vadede tutarlı ve eğilimsiz olduğunu ortaya koymaktadır. Dalgacık hesaplamaları 

uzun vadede al-sat opsiyonları oynaklıklarının piyasanın realize edilen oynaklığı 

için karşılaştırılabilir bilgi içerdiğini göstermektedir. Ancak, kısa vadede sat opsiyon 

oynaklığının tahmin becerisi daha iyi olmaktadır.  

 

Anahtar Kelimeler: İçsel Oynaklık, Volatilite tahmini, Dalgacık Analizi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 In finance, forecasting volatility is deemed as an important task, and the 

ever-growing financial markets stimulate an extensive research focus on this task. 

While finance professionals investigate the forecasting performance of different 

volatility models, scholars pay a special interest for understanding the structure and 

the efficiency of the implied volatility in estimating the future realized volatility of 

the related market. 

 In this regard, the thesis examines the performance of the call and put 

implied volatility (IV) of at-the-money (ATM) SPX options on the S&P 500 Index 

in estimating volatility from May 2001 until January 2012. 

First, I utilize the classical least squares method for the very basic regression 

models, in which I seek to analyze the relation between realized volatility and 

implied volatility.  
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 Then, I examine the simultaneous equation model proposed by Christensen 

and Prabhala (1998) and Christensen and Hansen (2002). Secondly, the wavelet 

decomposition method, proposed specifically for financial time series by Ramsey 

(2002), to account for the time series and frequency domain dynamics of volatility 

series. 

 The least squares model yields more consistent and significant results than 

the previously proposed simultaneous system. The explanatory power and 

forecasting ability of the implied volatility is overall very significant for the S&P 

500 over the last ten years. The put implied volatility is superior when compared 

with the call implied volatility. Moreover, the call implied is superior than the 

historical volatility in explaining the ex-post realized volatility. The empirical 

results from the wavelet decomposition take this analysis to a step further and 

reveal a brighter picture about the option implied volatility. Results indicate that 

volatility implied from the S&P 500 Index options contain valuable information in 

explaining the future realized volatility especially for the long-term.  

 Volatility is the core measure of uncertainty in markets. It is an input for 

pricing the financial derivatives, for investment decisions and for risk management 

practices. In reality, the term ‘volatility’ represents two distinct classifications as 

follows:  

a. Historical or realized volatility: It is a backward-looking measure and usually 

measured as the standard deviation of price changes at different time intervals.  

b. Implied volatility: It is considered a forward-looking measure, is derived from 

the market price of options using the Black-Scholes-Merton framework.  
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 To be more precise, implied volatility refers to the average volatility forecast 

over the option maturity, or as the overall expectation of the future volatility of the 

whole market, including all agents. From the rational expectations perspective, 

markets use all available information available to form their estimation of the future 

volatility. Correspondingly, the market option price reveals the markets’ assessment 

of the underlying asset’s volatility over the option maturity. This means that implied 

volatility must be an unbiased and efficient predictor of future realized volatility 

during the life of the option (Christensen and Hansen, 2002).  

 Granger and Poon (2003) explain that using the implied volatility of at-the-

money (ATM) call (and put) options have two grounds: first, the liquidity of the 

ATM options and second, trying to minimize the effect of volatility smile will only 

be possible by choosing ATM implied volatility. 

 This study demonstrates the forecast ability and significance of the ATM 

implied volatility information content for the future volatility realizations for the 

S&P 500 Index. The research motivation of this study is to investigate the 

relationship between the implied volatility of the index options of the benchmark 

stock index and the ex-post realized volatility (of the underlying benchmark), and to 

determine the contemporary dynamics of this relationship during the last decade. 

Moreover, we evaluate the forecast performance of implied volatility. While the 

previous studies have contradictory findings, which I will explain in the next 

chapter, this work differs from prior studies from a number of aspects.  

 First, the empirical findings demonstrate the forecast ability and the 

significance of information content in the implied volatility. Secondly, the put and 
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call implied volatility comparison have revealed some interesting facts. The trading 

volume of the options has been globally increasing in general, but the expansion of 

trading volume of S&P Index options is remarkable. Indeed, the Chicago Board 

Options Exchange (CBOE) reports that S&P 500 Index Option volume has 

exponentially increased over the last ten years supporting liquidity. The put options 

are liquid derivatives that can limit the downside risk for the market. If the market 

volume has increased that much, it means that the hedging activities have increased. 

Hence, if the implied volatility represents the expectations of the market, then the 

put implied volatility must be a comparatively better forecast as it is used as a 

principal hedging instrument against exposure to the S&P 500 Index. In that regard, 

we indeed compare and confirm the higher performance of the put implied. 

Another improvement of this study stems from the standardized market 

facts. CBOE Market Statistics for 2001 indicates an annual dollar volume of about 

$7.8 billion for OEX (S&P 100) American style options and $5.6 billion for SPX 

(S&P 500) European style options. Yet for 2011, CBOE reports an annual dollar 

volume of about $485.7 billion for SPX and $3.3 billion for OEX options, 

respectively. The fact that the previous studies examining the forecast performance 

of implied volatility have mostly used implied volatility from American-style index 

options, e.g. OEX, can be referred as a crucial shortcoming. This study contributes 

to the literature by investigating the ability of call and put volatility implied by 

liquid SPX European type Index options. This can be referred as another significant 

advantage when compared with the prior studies.  

 Another contribution of this study is related with the time series features of 

the volatility. The apparent market dynamics imply that, utilizing a multi-scale 
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analysis of the volatility of the market might allow us to discover different 

characteristics that are prevalent for different periods. For this reason, the wavelet 

decomposition method is applied and the implied versus realized volatility 

dynamics has been considered for the long, medium and short term.  

 In the academic literature the wavelet methodology have been implemented 

in a number of studies to analyze the features of financial and economic time series, 

including volatility, and their corresponding relationships. Gencay et al (2011), for 

instance, investigate the asymmetry of information flow between volatilities. 

Nevertheless, this study uses the wavelet technique to scrutinize the implied and 

realized volatility relationship. Hence, this brings an innovative perspective to the 

relevant literature.  

 In addition, the distinct relationship characteristics between the implied and 

realized volatility for different periods support the heterogeneous markets 

hypothesis of Müller et al. (1997). That is, analyzing different components of the 

volatility that are prevalent for different periods.  

 Heterogeneous markets hypothesis acknowledge that any financial market is 

comprised of distinct agents with different investment horizons and different risk 

exposures resulting from that horizon. Müller et al. (1997) emphasize that we need 

to adopt an alternative approach in volatility characterization, an approach that does 

not assume a uniform volatility (or risk) exposure for all agents. According to the 

authors, different agents must estimate and consider different volatility measures 

depending on their horizons. This is another aspect of including the robust wavelet 

multi-scale decomposition technique in this research. 
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 The empirical results from the wavelet decomposition technique are in 

alignment with the findings of the recent studies of Busch et al. (2011) and Dufour 

et al. (2012). Busch et al. (2011) propose a vector heterogeneous autoregressive 

model (VecHAR) to decompose the volatility components. They find that the 

implied volatility contain incremental information about future volatility. They 

conclude that implied volatility should be used in forecasting future realized 

volatility. They also add that the implied volatility can even predict the jump 

component, which corresponds to high frequency component in our case, to some 

extent. Further, Dufour et al. (2012) considers that the informational value of 

implied volatility also capture the realized implied relationships, i.e. as the leverage 

effect of the volatility feedback. They also claim implied volatility forecast contains 

the variance risk premium of the market. When we look at the long-term coefficient 

of the call and put implied volatility, our results may be related with this finding.  

 In sum, this study empirically represents the crucial feature of put and call 

implied volatility for all S&P 500 market. We clarify the forecast capability and 

dynamics of implied volatility by allowing comparative analysis. Few studies claim 

that implied is an unbiased and efficient forecast of the ex-post realized index 

volatility of the S&P 100 Index after the 1987 stock market crash (Christensen and 

Prabhala 1998, later Christensen and Hansen 2002). Some define it as a powerful, 

upward-biased predictor of the future realized volatility (Fleming, 1998). Yet, the 

prior implications are deducted from studying the market during the 90s, especially 

after the market crash of 1987. 

 While it is an evident necessity to evaluate the efficiency of implied 

volatility for the last decade, the time varying characteristics of volatility have been 
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continuously confirmed in a number of seminal papers, such as Mandelbrot, 1963; 

Fama, 1965; Engle, 1982; Bollerslev, 1986 and so on. Mandelbrot (1963) and Fama 

(1965) for instance, were the first to bring the heteroscedasticity and significant 

excess kurtosis issue in the first differences of logarithms of stock prices. This study 

is innovative to fuse a competent analysis technique to enlighten the comparative 

short-term and long-term dynamics of volatility time series.  

 Frankly, the volatility forecasting studies are all bound to constraints and 

limitations that originate from the heterogeneous and time varying characteristics of 

volatility. Moreover, it is crucial to comprehend the features of the data together 

with the explicit and implicit deductions of the econometric tools and models in 

investigating the implied volatility. The growing academic literature on this matter, 

accordingly, focuses more on discovering the behavior of the time series, questions 

the unrealistic constraints.  

 The plan of the thesis is as follows: The second chapter explains the relevant 

academic background of this study. Then, third chapter reveals data and preliminary 

results. In the Chapter 4, the econometric models have been investigated via least 

squares regressions. Then the forecast performances have been evaluated. Chapter 5 

explains the wavelet decomposition method and the multi-scale properties of 

implied and realized volatility time series, and discusses their relationship under 

such a framework. The last chapter summarizes the empirical results and explains 

the crucial implications for the market.     
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 In the last decades, a myriad of studies have investigated the information 

content and the forecast ability of the implied volatility and the relationship of 

implied and future realized volatility. In that respect, there is no consensus in the 

finance literature and presented empirical findings and assertions have two 

contradictory stances.  

 One line of research considers the implied volatility as an efficient forecast 

of future expectations. In that regard for instance, some earlier studies give credit to 

the explanatory ability of implied volatility (such as Latane and Rendleman, 1976; 

and Chiras and Manaster, 1978). In contrast, the other line of research, studies like 

Canina and Figlewski (1993), assert the exact opposite of the assertion and 

denounce the forecast ability of implied volatility. Canina and Figlewski, 

particularly, analyze the regression of monthly volatility forecasts by one-month 

OEX implied volatilities on S&P 100 index options and on past S&P 100 index 

volatility. They conclude that  implied volatility is of no use as a predictor of
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ex-post volatility and it is dominated by historical volatility measure.  

 Then, Jorion (1995) focuses on foreign exchange (FX) market. He claims 

that the measurements of implied volatility of FX options are less prone to bias. He 

concludes that implied volatility is a biased yet superior forecast. Later, Vasilellis 

and Meade (1996) assert that the implied stock volatility from option prices is an 

efficient forecast for future volatility. They also advocate combining implied and 

GARCH volatility forecasts. However, the value of ARCH/GARCH type models 

has been put into question by other papers. Pagan and Schwert (1990) and Loudon 

et al. (2000), for example, have demonstrated that the use of ARCH/GARCH type 

models tends to produce bias in volatility predictions. Similarly, Engle and 

González-Rivera (1991) and Bollerslev and Wooldridge (1992) have shown 

estimation problems related to the hypotheses made about the distributions of error 

terms of such models and indicate that these problems would explain the biases 

observed in predictions of volatility. 

 Furthermore, it has been unveiled by other seminal studies that implied 

volatility often outperforms time-series approaches (e.g. ARCH/GARCH type 

models) by presenting empirical results from the S&P Index; particularly Fleming 

(1998), Blair et al. (2001), Hol and Koopman (2002).  

 In the prominent Journal of Financial Economics paper “The relation 

between implied and realized volatility” by B.J Christensen and N.R Prabhala 

(1998), authors use OEX (S&P 100) American-style index options implied volatility 

to forecast the future realized volatility. They say that implied volatility is efficient 

in forecasting the future market volatility and it is unbiased. Their study differs in 
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the sense that they reject the bias and claim that the auto-correlated residual 

structure is caused by the measurement errors. Christensen and Prabhala also claim 

that, if the potential errors-in-variables problem can be eliminated by data 

adjustment, the degree of bias in implied volatility forecasts will be much less, than 

previous research studies in literature. Following their work, more recent studies, 

such as Hansen (2001) for Danish KFX index options, Christensen and Hansen 

(2002) for S&P 100 index options, Shu and Zhang (2003) for S&P 500 index 

options, and Szakmary et al (2003) for futures options, view implied volatility as a 

better forecast of future realized volatility than historical volatility. 

 At the same time with the study of Christensen and Prabhala, another 

remarkable paper by Fleming (1998) finds similar results with a small difference. 

Fleming also uses OEX implied volatility and uses the Generalized Method of 

Moments technique to eliminate the serial correlation and heteroskedasticity 

problem. Similar to Jorion (1995) they found that the implied volatility includes all 

the information from historical volatility; hence, it is an upward biased forecast of 

future volatility of the S&P 100 market. These results are claimed to be consistent 

for up to several-month length forecast horizons.  

 While the financial literature expands with numerous studies on volatility 

modeling and studying the forecasting performance of those models, Müller et al. 

(1997) have incorporated the heterogeneous market hypothesis with the volatility 

modeling in their revolutionary Journal of Empirical Finance paper. They measure 

volatilities of the foreign exchange market on different time resolutions and 

compare them in a lagged correlation study. They discover that the long-term 

volatility predicts short-term volatility significantly better. They conclude  that  the 
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resolution of  statistical  volatility  computation  is an  essential  parameter  which  

reflects  the perception  and  the  actions  of  different market  components  from  

short-term  to long-term  traders. They emphasize the asymmetric information flow 

between non-homogeneous traders. By asymmetry, they refer to the phenomena that 

short-term  traders  react  to  long-term volatility by  increasing  their trading 

activity,  thus  have an effect on short-term,  whereas  long-term  traders  mostly 

ignore  the  short-term volatility.   

 The long memory of volatility, described in Dacorogna et al. (1993) and 

Ding et al. (1993), is explained in terms of different market participants with 

different time horizons. Andersen and Bollerslev (1997) also underline the long 

memory property of the volatility. Mandelbrot (1963) was among the first to 

describe the clustering as subsequent large changes, or subsequent small changes. 

Dacorogna et al. (2001) much later explains in detail the time-dependent 

characteristics and idiosyncrasies of the volatility. They further underline that the 

autocorrelation of the absolute value of returns indicate long memory effects. 

Moreover, Dacorogna et al. (2001) measure the lagged correlations of mean 

volatility time series at different time resolutions, and infer that an asymmetric 

information flow structure exists, and long-term volatility better predicts the future 

and short-term volatility too. Briefly, it can be deducted that their study is in 

alignment with the framework proposed by Müller et al. (1997).  

 In accordance with these aforementioned studies, Selçuk and Gencay (2006) 

point out the nonlinear scaling feature of moments across time scales, describing it 

as the essential dynamic feature of financial time series. They also note that each 

moment scales nonlinearly at a different rate across each time scale. This, they 
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interpret, prohibits popular continuous time representations, such as Brownian 

motion, as possible candidates in explaining return dynamics.  

 In sum, while the overall a review of the literature appears to be away from a 

consensus, it is a tentative conclusion that implied volatility does provide a better 

forecast or guide for future volatility than forecasts based solely on historical 

information.  

 Nevertheless, the empirical evidence on this strong assertion is limited. 

From a literary perspective, this thesis contributes to the existing financial literature 

by bringing a novel perspective to the posit stating that implied volatility may be 

used as a proxy for market-based volatility forecast. Initially, it expands the 

previous studies on forecasting ability of volatility on the S&P 500 Index to cover 

the last decade, a period of unforeseen financial crises, and compares the 

hypotheses and results of standard econometric models. The hypotheses all describe 

a linear dependence structure between the implied and ex-post realized volatility, 

and claim that implied volatility contains information about future realized 

volatility. The results of the standard econometric models have been compared with 

the previous findings of Christensen and Prabhala (1998) and Christensen and 

Hansen (2002).  

 Secondly, it scrutinizes the wavelet decomposition methodology to estimate 

different components of volatility on different time horizons. Wavelet methodology 

is suitable because it does not distort the examined time series data. Dealing with 

the non-stationary, or near unit root data is a delicate matter. Academic background 

on financial time series explicitly state that all financial returns have non-stationary 
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volatilities (Aït-Sahalia and Park, 2012).  

 Moreover, by analyzing the forecasting ability of the implied volatility with 

wavelet decomposition, we target try to disclose the importance of heterogeneous 

market agents, and whether exposure to different volatility components matter for 

those agents. The empirical findings elucidate whether long-term volatility or short-

term realized and implied volatilities have different dynamic relationships, if so 

should agents change their investment decisions with respect to their exposure term. 

Concisely, for these reasons, it is believed that this thesis provides a better 

understanding of the dynamic properties of contemporary, post-millennia implied 

volatility, thereby helps expanding the literature on volatility forecasting. 

 Recently, Busch et al. (2011) find that the implied volatility contains 

valuable information about the future volatility in stock markets, and it is an 

unbiased forecast. They separate the volatility series into smooth and jump 

components, jump components representing the high-frequency changes in the 

short-term. They conclude that implied volatility predicts the overall future realized 

values of volatility for the stock market, and efficiently predicts the smooth part of 

the future volatility. In addition, they underline that the implied volatility can even 

explain the jump components of the future realized volatility up to some extent. The 

wavelet decomposition technique will specifically allow us to evaluate this assertion 

for the S&P 500 market during the last decade. 

 Similarly, Dufour et al. (2012) find that volatility feedback effect on the S&P 

500 market works through implied volatility, with its nonlinear and forward-looking 

relation with option prices. They further conclude that observing the volatility 
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feedback effect at different horizons, i.e. short-run and long-run, can be attributed to the 

power of implied volatility to predict future volatility. In sum, their detailed 

analyses on the implied and realized volatility support the forecast ability of the 

implied volatility to predict future volatility of the market. 
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CHAPTER 3 

 

 

DATA AND PRELIMINARY ANALYSIS 

 

 

 

 The data set analyzed in this study is based on the S&P 500 Price Index 

monthly return. The time series have been observed during the period of May 2001 

to January 2012. Pt denoting the price of S&P 500 at month t, the average monthly 

return is calculated by; 

 

 
1

  t
t

t

PR ln
P−

=
 
 
   

 The time series of realized volatility is calculated by the estimator of 

standard deviations of monthly returns. Christensen and Prabhala (2002) describe 

implied volatility as the ex-ante volatility forecast, and they calculate the ex-post 

realized return volatility over the monthly option period. Accordingly, the series for 

realized volatility is estimated as the daily index return standard deviation
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over the remaining life of option, as follows:
 

2
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 Where tτ  is the number of days until the month’s end, 

,1

1 ( )t
t t kk

t

R Rτ

τ =
= ∑ and ,t kR  are daily index returns at month t on day k. Since the 

implied volatility is expressed in annual terms, the realized volatility measure is 

also quotes as annual terms.  

 While the realized volatility of the underlying, i.e. S&P 500 Index time 

series  is calculated as follows, the implied volatility data used in the study is 

obtained from the Thomson Reuters DataStream implied call ( c
tσ ) and implied put 

volatility ( p
tσ ) on the S&P 500 Index. The Thomson Reuters DataStream report 

(2008) that in February 2000, they enhanced and standardized the options models as 

such: 

Table 1. Thomson Reuters DataStream Option Models 
Option Instrument Model Style 

Equities Black & Scholes European 

Equities Cox-Rubinstein Binomial American 

Indices Black & Scholes European 

Indices Cox-Rubinstein Binomial American 

Futures Black & Scholes European 

Futures Cox-Rubinstein Binomial American 
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 Since the American-style options can be exercised early but European-style 

options only on expiry, the Cox-Rubinstein Binomial model depicts a binomial tree 

backwards looking at each step whether exercise is optimal. Thomson Reuters 

DataStream also points out that all Index options are European-style (except one 

LSX – FTSE100), whereas all equity, bond, and for-ex options are American style. 

In addition, they explain that at-the-money implied volatilities are estimated by 

interpolating between the two nearest strikes and at the money strike using values 

from the nearest expiry month options. The series switches to the next available 

month on the first day of the expiry month. Therefore, the horizon of the implied 

volatility is monthly. Given these properties, Table 2 gives the descriptive statistics 

for the raw data in monthly terms. 

Table 2. Descriptive Statistics for Raw Data 
 Realized Volatility Call Implied Volatility Put Implied Volatility 

Mean 0.1817 0.2028 0.2011 
Median 0.1548 0.1840 0.1857 

Maximum 0.8340 0.6154 0.6652 
Minimum 0.0591 0.0863 0.0994 
Std. Dev. 1.1383 0.0909 0.0928 
Skewness 2.5187 1.7477 1.8797 
Kurtosis 11.830 7.3736 8.4349 

    
Jarque-Bera 551.1987 232.91 167.1860 
Probability 0.0000 0.0000 0.0000 

Note: Table 2 reports the descriptive statistics for monthly volatility time series of 
the S&P 500 realized, call implied, put implied and call-put average of the implied 
volatility time series. The time series include 128 monthly observations of each 
series collected from Thomson Reuters Data-stream covering the period from May 
2001 to December 2011. 

 We can see that the average realized volatility is lower than the average call 

and put implied volatility. This reality can be attributed to the presence of a 

volatility premium for the S&P 500. Another important deduction is about the 

distributions of the series. The skewness and kurtosis roughly describe the shape of 
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the distribution of the data. To be more precise, values of skewness and kurtosis 

reveal the asymmetry and the tail thickness of the market return distributions, 

respectively.  

 The kurtosis values of 11.83 for realized volatility, and 7.37 for call implied 

and 8.43 for put implied indicate that the distribution of the series are not normal. 

Kurtosis values indicate presence of leptokurtosis, or fat tails, which means that the 

distribution has more probability mass in the tails than the normal distribution. In 

addition, one can observe that the realized volatility series is more skewed and more 

leptokurtic than the implied volatility series.  

 The Jarque-Bera normality test statistic aggregate both skewness and 

kurtosis information of the data and produces a test for normality. When we look at 

the Jarque-Bera statistics, we reject the null hypothesis of normal distribution within 

the 1% significance level. Therefore, using raw data for our models would be a 

major drawback, due to the failure of the normality assumption proven by the 

Jarque-Bera test statistics. 

 Furthermore, we have investigated the long memory property, also described 

as persistence or long-range dependence. Essentially, the long memory property 

implies that past events have a decaying effect on the future of the series. The long 

memory property of a time series is determined by calculating the Hurst exponent. 

In finance literature, Mandelbrot (1972) especially showed that the the Hurst 

estimator detects dependence, even in the presence of significant excess skewness 

or kurtosis and it can catch the non-periodic cycles. He said that the Hurst exponent 

H=0.5 would indicate independent processes, though it can be non-Gaussian 
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process. 

 Empirical results give a Hurst estimate of 0.8607 for S&P 500 realized 

return and 0.9210 for the implied volatility. Results can be interpreted as a 

demonstration of the long-memory or persistence property of the volatility for the 

period of March 2001 to January 2012. Alternatively, it can be interpreted as 

periods of high-volatility will tend to be followed by high-volatility, and low-

volatility periods will tend to be followed by low-volatility periods. This finding can 

be a confirmation of clustering property of the volatility series. 

 In order to overcome the significant level of skewness and excess kurtosis, 

we have calculated the log-transformed series. Like the prior studies of Christensen 

and Prabhala (1998) and Christensen and Hansen (2002), we decided to use the log-

transformed data. The descriptive statistics are summarized in Table 3. 

Table 3. Descriptive Statistics for Log Data 

  

Log 
Realized 
Volatility 

Log Implied 
Volatility 

(Call) 

Log Implied 
Volatility 

(Put) 

Log Implied 
Volatility 
(Average) 

Mean -1.8551 -1.6876 -1.6800 -1.6838 
Median -1.8652 -1.6832 -1.6928 -1.6850 

Maximum -0.1814 -0.4855 -0.4075 -0.4465 
Minimum -2.8275 -2.4492 -2.3081 -2.3500 
Std. Dev. 0.5250 0.4004 0.4009 0.3994 
Skewness 0.5474 0.4473 0.4884 0.4728 
Kurtosis 3.1954 2.9085 2.9326 2.9128 

          
Jarque-Bera 6.5966 4.3129 5.1120 4.8092 
Probability 0.03695 0.11573 0.07761 0.0903 

Note: Table 3 reports the descriptive statistics for the natural logarithm of the 
monthly S&P 500 realized, call implied, put implied and call-put average of the 
implied volatility time series. It is based on 128 monthly observations on each 
volatility series collected from Thomson Reuters Data-stream covering the period 
from May 2001 to December 2011. 
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 From Table 3, we can conclude that we cannot reject the null hypothesis of 

normal distribution for all realized and implied volatility time series within the 1% 

significance level. It is an important conclusion since in the next Chapters the 

models and statistical interpretations of the models that have been tested are more 

powerful under the normality assumption.  

The Figures 1 and 2 show the monthly S&P 500 realized, put and call 

implied volatility series graphically. It should be noted that all the estimations are 

based on the log-transformed time series from this point on. Therefore, the 

following figures are describing the log-transformed data. 

 

 
Figure 1. S&P 500 Price Index Realized and Call Implied Volatility 
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Figure 2.   S&P 500 Call  & Put Implied Volatility 
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 One can notice from Figure 2 that the log-transformed call and put implied 

volatility time series are very close. Since the implied volatility is valid for monthly 

duration, using monthly-calculated values would eliminate any duration related 

problem in general. Still, we should keep in mind that all quoted volatility series are 

merely estimations and time series values calculated as defined previously. 

 In addition to Jarque-Bera, we have checked for the serial correlation. 

Autocorrelation, also known as serial correlation, is the correlation of the variable 

with its past values. It can be a significant problem for the regression analysis. To 

check for autocorrelation the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) are estimated. The Figure 3 shows the ACF and 

PACF of the realized and implied volatility. The figure shown below indicates that 

the series appear as stationary autoregressive time series.  
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Figure 3.   ACF and PACF of S&P 500 Volatility 
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  From the descriptive data analysis, it can be concluded that the log-

transformed series would be appropriate to investigate the explanatory relationships. 

However, while the data characteristics conform to our econometric examination, 

that the true market volatility is not observable (Fleming, 1998) It is a challenging 

fact about the time series analysis of the volatility. It has been acknowledged that 

various measures for volatility, such as standard deviations, variance, or absolute 

values of returns are proxies for the true market volatility and our calculations are 

such proxies that are bound to constraints and measurement errors emerging from 

the estimated data (Ding, Granger and Engle, 1993; Fleming, 1998; Christensen and 

Prabhala, 1998; Granger and Pool, 2003). 
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 It means that independent from the estimation technique we have chosen to 

represent the realized volatility value, what we really use are different 

representatives, or proxies estimated from the earlier sets of observations. This can 

be referred as the unobservability problem. When such variables, i.e. variables that 

are not actually observable, incorporated in the econometric framework, this leads 

to measurement errors. Measurement errors in variables often cause biased results, 

and effects could be different depending on the form of the error terms. 

 While the true market volatility is unobservable, option valuation models let 

us directly estimate a conditional, market-based volatility forecast. In the Black-

Scholes-Merton framework, volatility (of the underlying) again is the unobserved 

variable. That is interpreted as given the markets are efficient, volatility implied 

should become market’s actual forecast of the future return volatility (Fleming, 

1998). 

 It is important to recall that the commonly accepted strategy is to choose the 

implied volatility derived from at-the-money (ATM) option is based on the liquidity 

argument. It is also interpreted, as high liquidity will assure ATM implied is least 

prone to measurement errors (Granger and Poon, 2003).  
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CHAPTER 4 

 

 

STANDARD ECONOMETRIC MODELS 

  

 

 

 Regression is a standard econometric and statistical technique that allows us 

to examine the existence and extent of relationships and validity of time series or 

econometric models. A classical regression analysis does not make any specification 

about the measurement or distribution of the variables, yet the Gauss-Markov 

assumptions must hold for the appropriateness of the regression. 

 The Gauss-Markov Theorem also assumes that: the independent variables 

are non-stochastic (i.e. non-random); expected value of the residual is zero and its 

variance is constant for all periods (implying that the homoscedasticity of the 

residuals); and independent variables must be linearly independent from one 

another (Pepinsky, 2003). 

 However, in reality there exist a number of difficulties for all those 

conditions to be met. In   the basic least squares   regression   model,   explanatory   
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variables are assumed non-stochastic. Assuming the explanatory variables to be 

non-stochastic means that they do not have random components and their values are 

fixed and unaffected by the sample generation process. Hence, it is an unrealistic 

and restrictive assumption. 

 Accordingly, when one or more explanatory variables are subject to 

measurement error and estimator(s) are biased and inconsistent. The problem of 

unobservability of the true market volatility has been mentioned. We should be 

aware of the presence of measurement errors in realized and implied volatility time 

series. Moreover, we should be careful about the impossibility of elimination of 

such errors. Therefore, even if the proposed models indicate a specific econometric 

or time series model, such findings can still be described as biased, due to the 

measurement errors.   

 It is a strong assertion to claim that the implied volatility is an efficient 

forecast of the average volatility of the underlying. Yet, its validity with regard to 

the S&P Index depends on limitations. Fleming (1998) explains such an implication 

can primarily be considered for European options. 

 From an econometric perspective, observed variables are generally subject 

to measurement errors, or error-in-variables (EIV) problem. Moreover, the validity 

and robustness of models, interpretations, description of features of series, and the 

depth of our perception are bound to such errors caused by the measured variables. 

Precisely, in our case, realized and implied volatility are represented inevitably with 

proxies. 
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 Specifically, the classical error-in-variables (EIV) problem arises when the 

observed values are correlated with the measurement error. In other words, when 

the covariance between the independent variable and error terms gives the variance 

of the measurement error, estimators become biased and inconsistent.  

 The violations of the Gauss-Markov framework include the following: non-

linear relationship between the variables, endogeneity (meaning that violation of the 

strict exogeneity requirement for the regressors), serial correlation, 

heteroskedasticity, and so on. The misspecification of a model would lead to 

heteroskedasticity. Additionally, leaving out explanatory variables is known as 

omitted variables problem, and it causes biasness (a.k.a. omitted-variables bias). In 

addition, simultaneity of time series variables is another cause of error for the 

single-equation least squares regressions. 

 

4.1.   Least Squares Estimation  

 To find out if implied volatility has any forecasting power when compared to 

the realized volatility, regression analyses between the variables were performed. As 

mentioned in Christensen and Hansen (2002), the information content of the 

implied volatility has been estimated by the least squares estimations. Empirical 

findings have been calculated for a number of models.  

 As for the notation, we let ht to denote ex-post realized monthly return 

volatility of the S&P 500 Index calculated over the remaining lives of relevant 
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options., we let c
ti denote the implied call option volatility p

ti  denote implied put 

option volatility, and α values denote the corresponding coefficients. 

 The first model is proposed to analyze the informational efficiency of the 

historical volatility over the ex-post realized volatility. In the second model, though, 

we analyze the information content of the implied volatility. 

Model I:  10 1   t t th hα α ε−+ +=   

Model II:  0 1 t t t
cih α α ε+ +=  

 By comparing these two models, we can decide on which one is more 

powerful in explaining the future realized volatility. Model II represents the 

conventional analysis for the implied volatility. When the coefficient of the implied 

volatility is different from the zero, it indicates that implied volatility contains some 

information about the future realized volatility. Moreover, when the intercept term 

0α  is zero and coefficient of implied volatility 1α =1, the implied volatility can be 

described as efficient. Of course, the error terms should be white noise and 

uncorrelated with the variables. 

 On the other hand, we can determine whether the past historical volatility or 

the past value (value on month t-1) of the implied volatility is more significant in 

explaining the implied volatility values. For that purpose, the Models III and IV 

have been evaluated. 
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Model III: 0 1 1   t
c c
t ti iα α ε−+ +=  

Model IV: 0 1 1  t t
c
t hi α α ε−+ +=  

 In addition to the above models, in order to compare the significance of put 

and call implied volatilities relatively, the following models V and VI have been 

proposed. Besides the call and put implied volatilities, another measure have been 

calculated, due to the fact that call and put series seem very close, and incorporating 

them separately would create a multi-collinearity problem. This measure is the 

average of implied call and put values, and represented as taiv . Therefore, the 

models are described as follows: 

Model V: 0 1 t t t
pih α α ε+ +=  

Model VI: 10 tt taivh α α ε+ +=  

 If we consider the second model ( 0 1 t t t
cih α α ε+ += ), it can be seen that a 

comparison of these three models altogether would allow us to determine whether 

the call, the put, or the average implied volatility value would be a better forecast. 

The estimation results for the proposed econometric models have been summarized 

in Table 4 below. 
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Table 4. Information Content of the Implied Volatility: Least Squares 
Estimates 

Results of Various Models Estimated via OLS 
Independent 

variables Model I Model 
II 

Model 
III 

Model 
IV 

Model 
V 

Model 
VI 

Dependent 
variable h(t) h(t) ic(t) ic(t) h(t) h(t) 

Intercept 
-0.4533                      
(0.1136)       

*** 

0.0929           
(0.0960) 

-0.2237 
(0.0780) 

*** 

-0.4454           
(0.0636)        

*** 

0.1070          
(0.0910) 

0.1123           
(0.0927) 

h(t-1) 
0.7548                

(0.0588)       
*** 

- - 
0.6690  

(0.0329)    
*** 

- - 

ic(t) - 
1.1543 

(0.0553) 
*** 

- - - - 

ic(t-1) - - 
0.8666 

(0.0449) 
*** 

- - - 

ip(t) - - - - 
1.1679  

(0.0527)    
*** 

- 

ai(t) - - - - - 
1.1684  

(0.0536)    
*** 

Adjusted R2 0.5645 0.7733 0.7463 0.7654 0.7939 0.7886 

F-statistic 164.349 
  *** 

434.315 
  *** 

371.744    
*** 

1412.154      
*** 

490.436      
*** 

474.775 
 *** 

Sample Size 127 128 127 127 128 128 

Durbin-
Watson 2.2126 1.8203 2.2737 2.0554 1.6693 1.7445 

Obs*R-
squared                   
(LM test 

Serial 
correlation) 

6.137                   
(0.1896) 

1.637 
(0.8019) 

3.9589 
(0.4115) 

10.7812 
(0.0291)       

** 

4.6280 
(0.3276) 

2.9840 
(0.5605) 

Note: In the above table, the following time series have been used in these 
estimations: The ex-post realized volatility (ht) calculated as the standard 
deviation of the average monthly of the S&P 500 Index return over the life of the 
index option, and its first lag (ht-1), call option implied volatility( c

ti ), put option 
implied volatility( p

ti ), average implied volatility( taiv ). There are 128 monthly 
observations in full sample, but including the lagged variables may cause decline 
in the sample size. There are 6 models reported  in the table which utilize 
following regression equations: 
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Model I) 0 1 1   t t th hα α ε−= + +  
Model II) 0 1  c

t t th iα α ε+ +=  
Model III) 0 1 1   c c

t t ti iα α ε−+ +=  

Model IV) 0 1 1   c
t t ti hα α ε− += +  

Model V) 0 t p t t
pih α α ε+ +=  

Model VI) 0 tat taivh α α ε+ +=  

Numbers in parenthesis are standard deviations for the coefficients and P values 
for chi-squared test statistic for serial correlation test. Stars denote the 
significance of various types. *** means significant at 0.01 level, ** shows 
significance in 0.05 level, * indicates significance at 0.1 level and finally no stars 
means insignificance or failure of the rejection in that test. In the table, F-statistic 
is the value we rely on in testing overall significance of the model. stars in F-
statistic part has similar meaning as in coefficient significance tests and serial 
correlation tests 

 
 

 As mentioned by Granger and Poon (2003), the regression based 

methodology for estimating the information content of the implied forecast entails 

regressing the implied on the forecasts, as in the second, fifth and sixth models. The 

prediction is unbiased only if the intercept term is zero and the coefficient is equal 

to one.  

 The Table 4 indicates that in the first model ( 0 1 1   t t th hα α ε−= + + ), 

intercept term and coefficient of lagged realized v volatility are significant if we 

look at the t-statistic. F-statistic of the model also shows that model is overall 

significant. The R2 seems to be moderate in this model. Further, presence of first 

order autocorrelation is in inconclusive area by Durbin Watson test since the 

statistic is between upper and lower bounds for rejection. Therefore, we cannot 

comment on presence of first order serial correlation. Moreover, we cannot also 

detect higher order serial correlation by LM test.  
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 In Second model, coefficient of the intercept term is insignificant and other 

coefficient is significant on 0.01 confidence level. The Model II is also overall 

significant since F-statistic is high enough. We can observe a higher adjusted R2 

value. This may be interpreted, as an evident proof of the superior power of the 

implied volatility over the future realized volatility as compared to the historical 

volatility. Moreover, Durbin Watson statistic appears to be higher than the upper 

bound for this statistic. Thus, it falls in rejection region. Again, from the LM test we 

cannot reject the null hypothesis of no higher order serial correlation.  

 Coefficients in the third model are all individually significant as there are 

jointly significant. Further, autocorrelation tests appear to be as good as in 

significance tests. Durbin Watson-statistic does not show that the first order serial 

correlation is rejected in the border of tests statistic and LM test does not indicate 

higher order serial correlations in residuals of the model.  

 Fourth model is also overall significant with individually significant 

coefficients. Though Durbin-Watson does not indicate first order serial correlation 

in residuals, LM test demonstrates evidence on existence of higher order serial 

correlation in residuals of the model.  

 Fifth and sixth model contains one insignificant coefficient, intercept term, 

and one significant parameter, coefficient of regressor. Models are again significant. 

We can observe highest adjusted R-square values among all models. We cannot 

also find presence of any serial correlation structure both first order and higher 

orders.  
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 In order to explain slightly higher values of implied put volatility from the 

implied call, Christensen and Hansen (2002) mention the suggestion provided by 

Harvey and Whaley (1991; 1992), which implies that the slightly higher values 

might emerge from the pressure of buying put options. It stems from the fact that 

buying index put options is a convenient and inexpensive means for portfolio 

insurance. Despite this general acknowledgement, the most influential studies use 

the call implied volatility information content. Our results reveal a more interesting 

fact.  

  Since the call and put implied volatilities are so close, we assessed an 

alternative model, which is estimating the sixth model with including an average of 

the call and put implied variables. When we compare the sixth model, a slight 

improvement in adjusted R-square value is detected. Furthermore, when we 

compare the fourth, fifth and the sixth models, with the aim of comparing the 

relative information content of the call and put implied volatility in explaining the 

future volatility, the results clarified that put options are more appropriate for such 

information content and forecast performance measures. 

 

4.2.   Forecast Performance  

 From the regression analysis, it has been concluded that the put implied 

volatility is a better forecast of the future realized volatility. We need to check this 

posit by evaluating the forecast performances of three relative models. The three 

econometric models, namely model II ( 0 1 t t t
cih α α ε+ += ), model V 



 

  33  

( 0 1 t t t
pih α α ε+ += ) and model VI( 10 tt taivh α α ε+ += ) have been compared with 

regard to their one-step ahead, i.e. static, forecast performances. In other words, we 

calculated whether the put implied, call implied or the average implied have a 

higher forecast performance over the future realized volatility series.  

Table 5. Comparison of Forecast Performances 

Forecasts: 
Call 

Implied 
Volatility 

Average 
Implied 

Volatility 

Put Implied 
Volatility 

Root Mean Squared Error 0.2479 0.2394 0.2364 
Mean Absolute Error 0.1822 0.1776 0.1796 

Mean Absolute Percentage Error 12.776 12.159 12.009 
Theil Inequality Coefficient 0.0645 0.0623 0.0615 

Bias Proportion 0.0000 0.0000 0.0000 
Variance Proportion 0.0635 0.0587 0.0571 

Covariance Proportion 0.9364 0.9412 0.9428 
Note: The forecast by call implied volatility represents the forecast of the model II 
( 0 1 t t t

cih α α ε+ += ), the forecast by average implied volatility represents the 
forecast of the model and model VI ( 10 tt taivh α α ε+ += ), and the forecast by 
average implied volatility represents the forecast of the Model V 
( 0 1 t t t

pih α α ε+ += ). 
 

 From the model selection criteria as well as the significance of the models, 

the put implied volatility should have superior forecast performance. Indeed when 

we look at the comparative forecast performances in Table 4, we can clearly 

confirm this deduction. When we look at the root mean squared error and the mean 

absolute error values, the smallest error, thus better forecasting ability belongs to 

the error, the better the forecasting ability of that model according to that criterion. 

 In Table 5 above, the comparative one-step ahead forecast performances 

could be seen. The inequality coefficient denotes the fit, with zero indicating a 
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perfect fit. The bias proportion indicates how far the forecast mean from the 

realized mean, the variance indicates how far the forecast variation from the 

realized variation, and covariance proportion shows the unsystematic forecasting 

error proportion. 

 While among the one-step ahead forecasts, the put implied volatility has the 

highest forecast ability, the low bias and variance proportions indicate the goodness 

of forecast. 

  We want to expand this strong hypothesis by investigating whether the long-

term, the medium-term and short-term volatility have different information content 

and forecasting ability. For this purpose, we adapted the wavelet multi-scale 

decomposition method. We want to filter out the different components of the series 

without distorting the data. 

 For this purpose, different techniques are available. We should consider that 

the method should produce robust empirical results to explain the time varying 

properties of especially persistent and serially correlated series. In finance, it is 

common to investigate issues of filtering in the frequency domain especially for 

time series, since this type of analysis more naturally lends itself to the 

decomposition of a time series into sums of periodic patterns. 

 Still, various filtering methods, starting from deterministic detrending to 

Beveridge-Nelson decomposition and Hodrick Prescott filter all have shortcomings. 

The deterministic de-trending assumes uncorrelated trend and cycles and 

Beveridge-Nelson is an equivalent expression of the infinite moving average. 
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Moreover, Hodrick Prescott filter results depend on the choice of λ parameter, 

which makes the resulting cyclical component and its statistical properties highly 

sensitive to this choice. As one of the latter tools, the Baxter-King filter is a band-

pass filter, which is in reality a centered moving average with symmetric weights. 

However, it has been criticized because it induces spurious dynamics in the cyclical 

component (Jorda, 2010). Briefly, those earlier filtering methods are all subject to 

restrictive assumptions that make them rather inappropriate for analyzing the 

persistent financial time series data. 
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CHAPTER 5 

 

 

WAVELET DECOMPOSITION 

 

 

 

 Wavelet method is essentially a novel filtering technique. It allows us to 

account for the nonlinearity and other erratic features present in financial data 

without any manipulation of characteristic features present in financial series (e.g. 

spillovers, clustering, heteroscedasticity etc.). Conventional methods have been 

described as rather inappropriate to handle most financial and economic time series 

data (Granger and Poon, 2003).  

 Recently, wavelet decomposition has been introduced in economic and 

financial analysis, and the literature on the subject has been expanding rapidly. 

Ramsey and Zhang (1997) use the wavelet decomposition to analyze the dynamics 

of the foreign exchange rates. They conclude that wavelet analysis is able to capture 

a variety of properties of non-stationary time series. Ramsey and Lampart (1998) 

decompose economic variables across several wavelet scales in order to identify 

different relationships between money and income, and between consumption 
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and income. Then, Gencay et al. (2001) demonstrate that wavelet filtering is an 

appropriate tool to deal with the nonstationary and time-varying features of 

financial time series. 

 In addition, a variety of academic studies conclude that conventional time 

series methods focus exclusively on a time series at a given scale and they assume 

an unconditional universal time scale for the risk, i.e. volatility. Such studies include 

Ding et al. (1993), Andersen and Bollerslev (1997), Lobato and Savin (1998), and 

Dacorogna et al. (2001) and Gencay et al. (2002, 2004). 

 In that regard, the previous studies of Gencay et al. (2001, 2002, 2004, 2005, 

2009 and 2010) strongly emphasize the heterogeneous characteristics of volatility. 

Gencay et al. (2005) particularly emphasize the nonstationarity and asymmetry of 

volatility by implementing wavelet analysis to financial data. According to them, 

the volatility features imply that low-frequency volatility becomes effective in the 

long-run, and vice versa. Gencay et al. further underline that nonstationarity of 

different moments of financial time prohibit and nullify the popular model 

assumptions such as Wiener Process etc. 

  Essentially, wavelet analysis decomposes a series into a set of trend 

(approximation) and detail (cyclical) components. The detail components cover 

different frequency bands, which are effective for different periods. The periods 

correspond to short-run, medium-run, long-run depending on their time span. The 

levels are described as the decomposition of the series with high-pass and low-pas 

filters, which can preserve orthogonality. It means that levels do not contain 

information about each other and the summations of the levels recreate the original 
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series. It is important to remember that market players have different investment or 

risk exposure horizons, and corresponding to their specific goals for each term, take 

different positions in the short-run, medium-run and long-run. Accordingly, wavelet 

analysis offers a complementary time and frequency domain analysis 

simultaneously. 

 The classical Fourier transform has been a powerful tool for modern time 

series analysis and widely used to transform series from time domain to frequency 

domain. It is a traditional filtering technique used to analyze the frequency structure 

of time series. However, it poses challenges and constraints. In Fourier analysis, a 

series is transformed onto a set of orthogonal components, which are stationary sine 

and cosine functions. Hence, it is described as inadequate when dealing with 

financial time series.  

 Analogous to the orthogonal components in Fourier transform, wavelets are 

any wave functions that are localized in time and frequency domains. They are able 

to capture dynamic properties of time series. In fact, the orthogonal components 

retrieved via wavelet decomposition describe properties both at time and frequency 

plane, thereby extracting the transient patterns of idiosyncratic time series. 
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Figure 4. Partitioning of Time-Frequency Plane by Different Methods* 

*Adapted from “An Introduction to Wavelets and Other Filtering Methods in 
Finance and Economics” by R. Gencay, F. Selcuk and B. Whitcher, 2002, p. 98. 
Copyright 2002. by Academic Press. 
 

 In wavelet analysis, the function f(t) is translated and dilated onto the father 

( )tϕ   and mother wavelets ( )tψ . The mother wavelet functions ψ  define the 

details, they have unit energy and zero mean, i.e. integral is zero; it is chosen with a 

compact support to obtain localization in space. In addition, the father wavelet 

functions φ define scaling, i.e. approximations and its integral is one.  

( ) 0t dtψ =∫  ( ) 1t dtϕ =∫   
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 Mother wavelets are described as the translation functions, or high-pass 

filters. In contrast, the father wavelets are dilation functions or low-pass filters, such 

that: 

2
, ( ) 2 (2 )j j

j k t t kψ ψ− −= −   with { }, 0, 1, 2,....j k Z∈ = ± ±   

2
, ( ) 2 (2 )j j

j k t t kϕ ϕ− −= −   with { }, 0, 1, 2,....j k Z∈ = ± ±  

 And the wavelet representation of the function f(t) can be described as: 

, , , , 1, 1, , , 1, 1,( ) ( ) ( ) ( ) ( ) ......... ( )J k J k J k J k J k J k J k J k k k
k k k k k

f t a t d t a t d t d tϕ ψ ϕ ψ ψ− −= + + + + +∑ ∑ ∑ ∑ ∑
 

 J is the level of decomposition and k ranges from 1 to the number of 

coefficients in each specific component. The coefficients , ,, ,...J k J ka d  are the 

wavelet transform coefficients given by the following projections: 

( ) ( ), ,J k J ka t f t dtϕ≈ ∫  ( ) ( ), ,J k J kd t f t dtψ≈ ∫   with j = 1,2,3……,J  

 

 

 

 

 

  

f(t) 

a1 d1 

a2 d2 

a3 d3 

Figure 5. Wavelet Decomposition 
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 That is, wavelet transform decomposes or translates function into orthogonal 

components at different scales. For the function f(t), the wavelet multi-resolution in 

the time-frequency domain corresponds  to the following:  

f(t) = AJ(t) + DJ(t) + ……. + D2(t) + D1(t)   

where 

, ,( ) ( )J J k J k
k

A t a tϕ=∑  

, ,( ) ( )J J k J k
k

D t d tψ=∑   

∑ −−− =
k

kJkJJ tdtD )()( ,1,11 ψ
     

1 1, 1,( ) ( )k k
k

D t d tψ=∑ .  for j = 1,2, ….J 

 Aj(t) are defined as the smooth approximations while Dj(t) are known as the 

detail levels. In this case, n=2J measures the scale and it is called as the dilation 

factor.  Then, the discrete wavelet transform can be described as:  

∫
∞

∞−

= dtttfw klkl )()(~
,, ψ

  
 

 Also, the inverse wavelet transform can be described as: 

∑ ∑
+∞

−∞=

+∞

−∞=

=
l k

klkl twtf )(~)( ,, ψ
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The discrete wavelet transform (DWT) is defined as a mathematical tool that 

projects a time series onto collection of components. These components capture 

information from the time series at different frequencies at distinct times.  (Gencay 

et al., 2010) The DWT has the advantage of time resolution by using basis functions 

that are local in time. However, the choice of a wavelet basis is an important issue 

in DWT; in that case the length of the data should be taken into account. 

 Specifically, in empirical analysis four types of orthogonal wavelets; namely 

haar, daubechies, symlet and coiflet wavelets are present. In order to preserve 

orthogonality in our estimations and considering the sample length and the time 

series features of the volatility, the Symlet-8 wavelet family has been chosen. The 

Figure 13 below shows the Symlet high-pass, and low-pass filter properties.  

 The wavelet decompositions of realized and implied volatility series are 

performed by using the wavelet basis Symlet 8 (Daubechies, 1992). Since the 

volatility series consist of 128 observations and the length of Symlet 8 basis is 16, 

using the general criterion: 

( ) ( )( )
( )
/ 1

  
2

log length x lwave
Level

log

 



= 
−




 

 Here, Level denotes maximum level of decomposition; length(x) is the 

length of the series; lwave is the length of the wavelet basis. 
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Figure 6.   Symlet-8 Wavelet Family: Wavelet and Scaling Functions 
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 The calculation for the optimum decomposition level indicates that J=3 

levels. The original time series can be reconstructed by summing all three detail 

levels plus the approximation level.  

 Since lower frequencies will prevail for a longer period, the corresponding 

scales and their time domain characterizations are described in the Table below. It is 

interpreted as the observed magnitudes on the first detail scale have higher 

frequency values, but they will be observed for a shorter period, e.g. up to three 

months. 

Table 6. Time Scales 
Scale Frequency 
Detail Scale 1 (Dj=1) Up to three months 
Detail Scale 2 (Dj=2) Up to six months 
Detail Scale 3 (Dj=3) Up to a year 
Approximation (Aj=3) Over a year 
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 The Figures 7-12 below show the approximation and the detail levels of the 

S&P 500 Index realized volatility graphically. The wavelet decomposition analysis 

has been implemented via MATLAB Software.  

 It should be noted that since the put implied volatility is found to be a 

superior forecast of the future realized volatility, in wavelet analysis, the scale-by-

scale relationship between the put implied and the realized volatility has been 

estimated. The results confirm different characteristics and explanatory power of the 

different components, e.g. lower-frequency and higher period components and so 

on, of put implied over the future realized volatility. 

 

Figure 7. Realized Volatility and Approximation Level 
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Figure 8. Implied Volatility (Put) and Approximation Level 
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Figure 9. Approximation Level 
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Figure 10. 3rd Detail Level 
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Figure 11. 2nd Detail Level 
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Figure 12. 1st Detail Level 
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 It should be noted that as we sum the detail levels plus the approximation, 

we get the reconstructed time series. (Series:= A3+D3+ D2+ D1) Furthermore, we 

check whether there is any significant difference between the original volatility time 

series and reconstructed volatility time series; the error is estimpated as 1.3972e-

013 for the realized volatility. 

 Secondly, the implied volatility (call) series is decomposed into three detail 

levels and an approximation level. The Figures 9 to 12 indicate that the levels for 

the implied volatility might have different information content and forecasting 

power for different time horizons.  

 For the implied volatility wavelet scales, the sum of approximation and three 

detail levels were compared with the actual series. The error between those two 

values is estimated as 3.1870e-013 for the implied volatility. 
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 In order to have a better understanding of the wavelet decomposition, the 

energy levels have been calculated. In other words, we estimated how much of the 

variance in realized & implied volatility series, do the approximation and detail 

scales explain.  

 
Table 7. Energy Levels 

Energy (%) Approximation 
(A3) 

Detail 
Level 3 

Detail 
Level 2 

Detail 
Level 1 

Realized Volatility 97.94 0.59 0.59 0.88 
Implied Volatility 99.05 0.23 0.18 0.55 

 It can be understood from Table 6 that the 99.05% of the variation in implied 

volatility can be explained by the approximation level. The 97.94% of the variation 

in realized volatility is explained by the approximation level of the wavelet 

decomposition. Considering the above energy levels, we further estimated the 

descriptive statistics in each scale for realized and put implied volatility series.  

Table 8. Descriptive Statistics for Realized Volatility Scales 

  
Realized 
Volatility 

Approximation 
Level 

3rd 
Detail 
Level 

2nd 
Detail 
Level 

1st 
Detail 
Level 

Mean -1.8551 -1.8559 -0.0004  0.001438 -0.0002 
Median -1.8652 -1.8968 -0.0009  0.013820  0.005872 

Maximum -0.1814 -0.8809  0.479791  0.468018  0.438422 
Minimum -2.8275 -2.393 -0.3108 -0.4679 -0.4324 
Std. Dev.  0.524991  0.440169  0.156027  0.167813  0.175033 
Skewness  0.547419  0.514168  0.126046 -0.1573 -0.1246 
Kurtosis  3.195433  2.105611  3.080418  3.563372  2.812640 

            
Jarque-

Bera  6.596618  9.906174  0.373429  2.220651  0.518249 
Probability  0.036946  0.007062  0.829681  0.329452  0.771727 
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Table 9. Descriptive Statistics for Put Implied Volatility Scales 

  

Put 
Implied 

Volatility 
Approximation 

Level 

3rd 
Detail 
Level 

2nd 
Detail 
Level 

1st 
Detail 
Level 

Mean -1.6800 -1.6797 -0.0012  0.000709  0.000213 
Median -1.6928 -1.6447  0.006390  0.004564 -0.0055 

Maximum -0.4075 -0.8666  0.400873  0.251711  0.446103 
Minimum -2.3081 -2.2231 -0.2653 -0.2680 -0.2451 
Std. Dev.  0.400923  0.365761  0.108409  0.079816  0.100666 
Skewness  0.488355  0.171667  0.315707  0.073673  0.596562 
Kurtosis  2.932607  2.056779  4.756885  4.236028  5.657284 

            
Jarque-

Bera  5.112017  5.373564  18.58842  8.263877  45.25175 
Probability  0.077614  0.068100  0.000092  0.016052  0.000000 

  

It can be concluded from Table 8 and 9 that we cannot reject the null 

hypothesis of normal distribution for realized volatility detail scales, and the 

implied volatility approximation scale with the 5% significance level. However, we 

reject the null hypothesis of normal distribution, for implied volatility detail levels 

and realized volatility approximation level with 5% significance level.  

  Considering the different components of put implied might have different 

explanatory power over the future realized volatility, we have newt run the scale-by-

scale regression as a multi-scale analysis of the conventional model: 

0 1    t t th iα α ε+ +=  We know that if the implied volatility is efficient, 0α =0 and 

1α =1. Now, we want to analyze this hypothesis to disclose the long-run and short-

run dynamics.  

  We know that most of the variation is explained on the approximation 
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levels, which corresponds to low-frequency components of volatility series that are 

effective for a period of one-year or longer. But, the detail scales are also important 

as they describe the yearly dynamics. Therefore, we have investigated our standard 

model ( 0 1    t t th iα α ε+ += ) on each scale. Since each scale is orthogonal to each 

other, i.e. they do not contain overlapping information, running this regression on 

scales would allow us to comment on the time varying dynamic relationship 

between the implied and realized volatility series.  

 From Table 10, it can be concluded that in the long-term, the put implied 

volatility is an important predictor of the ex-post realized volatility. We cannot 

reject the null hypothesis of unbiasedness and consistency. However, from the 

Durbin-Watson statistics we can conclude that on the approximation level as well as 

on the detail level 3 and 2, positive first order serial correlation exists. It should be 

noted that, positive correlation does not affect the consistency and the unbiasedness 

on these levels. From the above table, we can conclude that on the long-term, the 

put implied volatility is a consistent and unbiased predictor of the long-run variation 

of the ex-post realized volatility. 
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Table 10. Multi-scale Regressions for Put Implied Information Content 

OLS Estimation for Levels of Decomposed Series 

Independent 
variables 

Model: 0 1    t t th iα α ε+ +=  

Dependent 
variable 

Realized 
Volatility 
Level 1 

Realized 
Volatility 
Level 2 

Realized 
Volatility 
Level 3 

Realized 
Volatility 
Approx. 

Intercept 
-0.0004       
(0.0131)      

***                            

0.0004 
(0.0114)       

0.0010 
(0.0069) 

0.1096 
(0.0429)        

**   

Put Implied 
Volatility Level 1 

0.9209 
(0.1313)    

***                            
- - - 

Put Implied 
Volatility Level 2 - 

1.3527 
(0.1433)    

*** 
- - 

Put Implied 
Volatility Level 3 - - 

1.2454 
(0.0642)   

*** 
- 

Put Implied 
Volatility 

Approximation 
- - - 

1.1702 
(0.0250)    

*** 
Adjusted R-

squared 0.2748 0.4092 0.7468 0.9451 

F-statistic 49.137     *** 88.997     *** 375.662     
*** 

2189.627 
*** 

Sample Size 128 128 128 128 
Durbin-Watson 3.1147 1.3341 0.3019 0.0661 

Note: Put Implied Volatility Levels represent the wavelet decomposed detail 
levels and approximation level of put implied volatility series, Realized Volatility 
Levels are again detail levels and approximation for realized volatility series. 
Stars have same interpretation before. The standard regression model 

0 1    t t th iα α ε+ +=  has been evaluated on each scale. Stars denote the 
significance of various types. *** means significant at 0.01 level, ** shows 
significance in 0.05 level, * indicates significance at 0.1 level and finally no stars 
means insignificance or failure of the rejection in that test. In the table, F-statistic 
is the value we rely on in testing overall significance of the model. 
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 In addition to scale-by-scale relationship between the put implied and the 

future realized volatility, we can investigate the relationship for the call implied as 

well. The reason for this is to investigate whether there is any difference in terms of 

significance and explanatory power of the information content for different terms. 

For this reason, the standard model ( 0 1    t t th iα α ε+ += ) has been investigated on 

each scale for the call implied volatility, too. The results are summarized in Table 

11. 

Table 11. Multi-scale Regressions for Call Implied Information Content 

OLS Estimation for Levels of Decomposed Series 

Independent 
variables 

Model: 0 1    t t th iα α ε+ +=  

Dependent 
variable 

Realized 
Volatility 
Level 1 

Realized 
Volatility 
Level 2 

Realized 
Volatility 
Level 3 

Realized 
Volatility 
Approx. 

Intercept 
-0.0003       
(0.0141)      

***                            

0.0003 
(0.0121)       

0.0015 
(0.0068) 

0.1275 
(0.0412)        

***   

Call Implied 
Volatility Level 1 

0.7442 
(0.1475)     

***                            
- - - 

Call Implied 
Volatility Level 2 - 

1.0870 
(0.1376)    

*** 
- - 

Call Implied 
Volatility Level 3 - - 

1.2538 
(0.0629)    

*** 
- 

Call Implied 
Volatility 

Approximation 
- - - 

1.1755 
(0.0238)       

*** 
Adjusted R-

squared 0.1614 0.3257 0.7569 0.9501 

F-statistic 25.455      
*** 

62.364      
*** 

396.451     
*** 

2420.483    
*** 

Sample Size 128 128 128 128 
Durbin-Watson 3.1524 1.2549 0.2837 0.0641 
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Note: Call Implied Volatility Levels represent the wavelet decomposed detail levels 
and approximation level of call implied volatility series, Realized Volatility Levels 
are again detail levels and approximation for realized volatility series. The standard 
regression model 0 1    t t th iα α ε+ +=  has been evaluated on each scale. Stars denote 
the significance of various types. *** means significant at 0.01 level, ** shows 
significance in 0.05 level, * indicates significance at 0.1 level and finally no stars 
means insignificance or failure of the rejection in that test. In the table, F-statistic is 
the value we rely on in testing overall significance of the model.  

 

 From the results, it can be seen that, the long-term characteristics, i.e. the 

values of coefficients and the significance in terms of explaining the long-run 

realized volatility variation are nearly the same for call and put implied volatility. 

The real difference stems from higher frequency components; namely from the first 

and second detail levels, which correspond to changes up to six months. 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

 The forecasting power of call and put implied from S&P 500 Index options 

are tested in this study. The regression results reveal that the implied volatility 

information content is important for the S&P 500 for the last decade. Results also 

clarify that the put implied volatility has higher forecasting performance over the 

future volatility of the market.  

 The previous studies, supporting the efficiency of the implied forecasting 

ability, have considered the call-implied volatility. This study presents the empirical 

findings, which contradict with the conventional assumption of considering the call 

implied and finding the put implied volatility information comparatively 

insignificant. and based their assumptions on American-style options.  

 The previous studies on the subject (such as Harvey and Whaley, 1992; 

Canina and Figlewski, 1993; Fleming, 1998; Christensen and Prabhala, 2002),
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mostly adopted using the American-style OEX stock index options written on the 

S&P 100 Index, since it was the most active instrument class at that time. This was 

defined as a significant drawback (Granger and Poon, 2003).  

 Unlike those previous studies, this thesis used the monthly values of implied 

volatility from the European-style SPX Options on S&P 500 Index. From the tests, 

we cannot reject the efficiency of call and put options. The adjusted R-square values 

support the high explanatory power of the implied volatility no the future.  

 On the other hand, we consider the dynamics of the market, changing 

differently for different time horizons, and utilized the wavelet decomposition 

structures of implied and realized volatilities. The wavelet analysis results verify an 

important posit. Information content of the implied consistently and unbiasedly 

explains the long-term component of future ex-post volatility. The explanatory 

power of the call and put implied volatility are much lower in the short run. 

Comparatively, the forecasting ability of put implied volatility is much better than 

the call implied volatility for shorter horizons. 

 This study concludes that the put implied volatility of the global benchmark 

S&P 500 Index can be described as an efficient forecast of the ex-post market 

volatility. However, the dynamics of this relationship might be observed differently 

for different periods. In other words, the long-run implied volatility might be a 

much better and robust predictor for the long-term variation of the market volatility. 

In addition, though the long-term movement of call and put implied are very close, 

the real difference between both series emerges from higher-frequency component.  
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 This study also confirms another important assertion regarding the 

explanatory power of the implied volatility. The conclusion by Busch et al. (2011) 

asserting that implied volatility predicts future realized volatility continuous  and 

jump components. The jump components that the authors refer correspond to the 

high frequency changes that are effective in the short-run. They assert that the 

implied volatility can predict the jump components up to a certain extent. Our 

wavelet estimations, indeed, confirm that implied volatility contains information 

about the short-run realized volatility. However, the forecast ability of the implied is 

lower (as can be noticed from the lower adjusted R-square values for high 

frequency detail levels of multiscale regressions in Table 10 and Table 11) 

 From the basic option theory, put options are used to hedge the downside 

risk of the market. Accordingly, they have a slightly higher implied volatility. Still, 

this study comparatively reveals that the put implied volatility is a better forecast of 

than the call implied volatility. 

 As a forward-looking volatility measure, the implied volatility contains all 

the expectations of the market for different terms. When we separately consider the 

term components of the implied and assess the information content and the forecast 

ability, the long-term consistency and unbiasedness can be observed. The empirical 

findings contribute to the general forecast theory, and underlines that the put 

implied volatility is a high performing forecast on average. In addition, the put 

implied volatility contain information about the short-run dynamics of the future 

realized volatility and it is more efficient compared to the call implied volatility for 

predictions of  realized volatility in the short-run. 
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