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ABSTRACT

CONCURRENT DESIGN OF ENERGY
MANAGEMENT AND VEHICLE STABILITY

CONTROL ALGORITHMS FOR A PARALLEL HYBRID
VEHICLE USING DYNAMIC PROGRAMMING

Halil İbrahim Dokuyucu

M.S. in Mechanical Engineering

Supervisor: Asst. Prof. Melih Çakmakcı

August, 2012

Concurrent design of controllers for a vehicle equipped with a parallel hybrid pow-

ertrain is studied. Our work focuses on simultaneously solving two automotive

control problems, energy management and vehicle stability, which are tradition-

ally considered separately. The optimal actions for the controllers are obtained

by applying dynamic programming using pre-determined drive cycles. By ana-

lyzing these actions rule-based controllers are designed so that the results can be

implemented on real vehicle controllers. These control algorithms calculate the

desired values for the state-of-charge and the wheel slip for the vehicle and this

information together with the actual data are used to supervise the subsystem

controllers. Our control strategy is based on minimizing the fuel consumption and

the wheel slip concurrently. The controller design problems are solved separately

also and compared to the concurrent solution. Results show that promising ben-

efits can be obtained from the concurrent approach for designing hybrid vehicles

which display better fuel economy and vehicle stability.

Keywords: Concurrent Controllers, Hybrid Electric Vehicles.
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ÖZET

PARALEL HİBRİD ARAÇLAR İÇİN ENERJİ

YÖNETİMİ VE ARAÇ DENGE KONTROLCÜ

ALGORİTMALARININ EŞ ZAMANLI OLARAK

DİNAMİK PROGRAMLAMA YARDIMIYLA
TASARLANMASI

Halil İbrahim Dokuyucu

Makina Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Melih Çakmakcı

Ağustos, 2012

Paralel hibrid araçların kontrolcülerinin eş zamanlı tasarlanması üzerine

çalışılmıştır. Çalışmamız esas olarak, geleneksel olarak ayrı ele alınan enerji

yönetimi ve araç denge kontrolcü algoritmalarının eş zamanlı olarak tasarlanması

üzerine yoğunlaşmıştır. Optimum sonuçlar dinamik programlama kullanılarak

önceden belirlenen sürüş çevrimlerinde elde edilmiştir. Bu sonuçların analiz

edilmesiyle gerçek araç kontrolcülerine uygulanabilecek kurala dayalı kontrolcüler

tasarlanmıştır. Kontrolcüler, araç için istenen batarya şarj durumu ve araç tek-

erleği kaymasını hesaplamakta ve hesaplanan bu değerler ile gerçek batarya şarj

durumu ve araç tekerleği kayma değerlerini kullanarak alt sistem kontrolcülerini

gözetmektedir. Kontrol stratejimizin hedefi, araç yakıt tüketimi ve araç tekerleği

kayma değerlerinin minimize edilmesi olarak belirlenmiştir. Kontrol problemleri

ayrı olarak da çözülmüş olup eş zamanlı olarak çözülen kontrolcü ile karşılaştırma

yapılmıştır. Elde ettiğimiz sonuçlar eş zamanlı kontrolcüler yaklaşımının daha iyi

hibrid araçların tasarlanmasında faydalar sağlayabileceğini göstermektedir.

Anahtar sözcükler : Eş Zamanlı Kontrolcüler, Hibrid Elektrik Araçlar.
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Chapter 1

Introduction

1.1 Motivation

In parallel with the rapid increase in population around the world, the need for

personal mobility and transportation has reached high levels. Although vehicles

make our daily life easier, the pollution caused by them is one of the major

problems of the big cities and has overall adverse effects to the environment [1].

Automotive companies try to find alternative ways of operating vehicles in cleaner

and more efficient ways in order to cope with the strict environmental regulations

by the governments. For this purpose engineers have been working on developing

promising technologies such as hybrid electric and fuel cell vehicles. However

these new vehicles usually result in more complex systems compared to the the

vehicles equipped with a conventional powertrain and managing the complexity

of such systems with improving the vehicle performance is an ongoing objective

for researchers in the automotive field. For example by using hybrid powertrains,

which combine two or more power sources in a single system, provides significant

improvements in fuel efficiency and reduces the emissions until zero emission

vehicle (ZEV) technologies are commercially feasible. However, the inclusion of

the new power sources and the accompanying energy storage systems increase the

complexity of the system extensively. The operation of today’s vehicles involves

1



CHAPTER 1. INTRODUCTION 2

many different controller systems working together with each other in an efficient

manner. In Fig.1.1, examples of these controller systems are shown with possible

interactions among each other. The principal contribution of this research is

the development of a control method that uses the interaction between energy

management and vehicle stability controllers. As the interaction between these

two problems grows, significant improvements in terms of fuel consumption and

wheel slip can be achieved when optimization problems of these controllers are

solved concurrently. The strong interaction between the two control problems is

presented in Chapter 3. Rules are extracted based on the optimal traces obtained

in the Dynamic Programming, DP, process. Results show that when energy

management controller is deciding on torque split ratio the information about

wheel slip provides more efficient fuel consumption behavior. For instance, the

energy loss caused by wheel slip is converted to usable energy by regenerative

braking. In addition to this, information about energy management reduces wheel

slip values of the vehicle.

1.2 Background

Traditionally, energy management strategies for hybrid electric vehicles are de-

veloped considering powertrain dynamics only [9, 6, 4]. Our research shows the

benefits of the interaction among the two controller problems which gives us

better results when we consider vehicle stability when determining the energy

management of the hybrid powertrain or vice versa. We propose concurrent de-

sign of two controllers communicating with each other by means of controller area

network (CAN) units.

DP is performed in order to obtain the optimal trace of controller outputs given

the reference set-point data for the system [15]. The vehicle parameters in this

model are updated according to a parallel hybrid vehicle configuration which we

have also developed a complex and nonlinear simulation model based on actual

vehicle data to be used in the controller development section of our research.

Also vehicle longitudinal dynamics of our model is updated according to a bicycle
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Figure 1.1: Automotive Controller Systems Network.
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model, which involves longitudinal dynamics only, including torque split device

between front and rear axles in order to be used in developing vehicle dynamics

controller algorithm.

There are many studies in literature on the design and performance of en-

ergy management and vehicle dynamics controllers. In [8], optimal energy-

management strategies for parallel hybrid powertrain of urban buses are studied.

The parallel hybrid powertrain model is developed with a one way clutch and au-

tomatic transmission. Heuristic control techniques such as logic threshold power

split strategy is offered regarding the instantaneously optimized algorithm. The

controller proposed in this research tries to minimize the fuel consumption of the

vehicle and to make the state-of-charge (SOC) of the battery to stay balanced.

The designed controller is mentioned in two steps. First, simple rules arranging

the power split between the engine and the electric motor are embedded into

the controller architecture and then instantaneously optimization algorithm is

applied in order to maximize the controller performance.

Optimal control theory is used when developing the control strategy in the re-

search presented in [6]. Two vehicle models are used in this study. First a

general complex model is constructed in order to be used in the controller tests

over predefined drive cycles. This model is simplified in order to be used in the

optimization process. The optimal control theory is applied and an optimization

algorithm is obtained. This algorithm is improved by integrating a more accu-

rate battery modeling regarding long trips of the vehicle in which the battery

may diverge from its nominal values. Computation time for the optimal solu-

tion is tried to be reduced in this study. Adaptive control strategy is offered in

[17]. Stochastic dynamic programming is used in the development of the control

strategy and predictive algorithms are proposed in order to use the controller

in real-time applications. The hybrid vehicle is modeled as a stochastic system

and the powertrain operation is modeled as a stochastic process. The problem

is formulated such that the controller decides on the power split between the

engine and the electric motor under the uncertainty conditions. The Markov De-

cision Process is used to solve the stochastic problem. The controller results are

compared to the ones using the rule-based algorithms.
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A vehicle stability enhancement control algorithm is proposed in [9]. The vehicle

is modeled as a four-wheel drive hybrid electric vehicle in which there exist two

separated electric motors at the rear and the front axles. The benefits of elimi-

nating the transfer case unit which splits the total torque between the rear and

the front axles are obtained by using separated electric motors. The rear axle is

driven only by the electric motor whereas the front axle is driven by both the

engine and the electric motor. In the proposed system rear motor control and

electrohydraulic brake control is used in order to enhance the vehicle stability

during cornering. Also regenerative braking is used in order to improve the fuel

economy of the vehicle. Fuzzy logic rules are generated in the proposed control

algorithm.

In the thesis presented in [16], simultaneous controller optimization of traction

controller for electric vehicles is proposed. Magic Formula is used when modeling

the tire longitudinal force which is a function of wheel slip. The controller problem

is formulated including continuous and discrete optimization variables so that

a genetic algorithm using mixed encoding is proposed in the control strategy

development. The optimization process is performed in order to minimize the

energy consumed and completion time of a specified drive cycle which has varying

surface conditions in the sense of coefficient of friction.

Several methods are offered for developing control strategies of energy manage-

ment and vehicle stability controllers. In this thesis we have chosen rule based

controllers including optimization by using dynamic programming for our control

strategy due to its simplicity and successful examples in many areas.

1.3 Objectives and Problem Statement

In the thesis presented here, the main objective is to show the possible benefits

of considering the interaction between the two controllers working in the same

physical plant during the design phase. Rule extraction methods are used to

obtain nearly optimum hybrid electric vehicle control algorithms compared to
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the optimum ones obtained by DP.

Although communication of different controllers via CAN units in vehicle control

architecture is well known in literature, our method differs by proposing the

problem definition in which we show the interaction between the two control

problems by means of the parameter’s selection, i.e. state variables of concurrent

controller problem are used in the constant parameters set when defining the

single controller problems.

1.4 Contributions

The contributions of this thesis can be listed as follows:

1. An analytical method of solving two automotive control problems concur-

rently via DP and developing rule based control algorithms based on the

optimal traces gained in DP.

2. A DP for obtaining the optimal traces of the vehicle stability controller

and showing that DP works properly in applications of long drive cycles, in

contrast to other studies using short profiles with constant road conditions,

which have varying road conditions.

3. The integration of a wheel slip model into the hybrid powertrain simulation

model which is based on actual vehicle data. Wheel slip and SOC signals

network providing the communication between the two control algorithms.



Chapter 2

Parallel Hybrid Electric Vehicle

Model

Hybrid electric vehicles can be classified in two basic powertrain configurations:

series hybrid and parallel hybrid. Other configurations which combine series and

parallel hybrid features in one powertrain can also be defined. In Fig.2.1, both

series (right) and parallel (left) hybrid layouts are described.

In series hybrid vehicles the energy for the electric motor is generated by the

engine. The electric motor provides the propelling of the vehicle. As there is no

mechanical coupling between the engine and the wheels the optimal operating

range of the engine for fuel economy can be achieved most of the time. On the

other hand the energy conversion steps between the engine, the electric motor and

the wheels result in energy losses of the powertrain. The series hybrid is more

efficient during urban driving conditions where the engine speed is expected to

vary most of the time. In Fig.2.2, a series hybrid vehicle introduced by Volvo in

2012 is shown. This is a plug-in series model which the battery of the vehicle can

be charged off duty by plugging it into any electric source. In the low states of

the battery the engine starts to provide power for the vehicle.

In parallel hybrid vehicles the engine and the electric motor are both coupled

with the wheels. This coupling is provided by the series of clutches and geartrain,

7
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Series Hybrid 

Engine Generator Charger Converter Motor 

Battery 

Flywheel 

Differential 

Parallel Hybrid 

Differential Engine Motor 

Clutch 

Battery 
Power  

Electronics 

Gearbox 

Figure 2.1: Series and Parallel Hybrid Vehicle Layouts.
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Figure 2.2: Volvo V70, a series hybrid vehicle offered by Volvo. Available from
http://www.carpages.co.uk/volvo/volvo-25-09-09.asp.

popularly termed as the power split hardware. They provide the propelling of

the vehicle and also assist each other. In low torque demands of the driver

the engine has the option to work in high torque level which is more efficient.

The extra energy is used to charge the battery and used later. The electric

motor has the capability of working as a generator in the braking mode of the

vehicle by regenerative braking. The fuel economy benefits of the parallel hybrid

configuration are achieved mostly in highway driving conditions. In Fig 2.3, one

of the most recognized parallel hybrid electric vehicles commercially available

today, Toyota Prius is shown. Toyota introduced the first generation of Prius

in 2003. In Toyota Prius continuously variable transmission (CVT) is used in

the torque coupling mechanism of the engine and the electric motor as well as in

the mechanism of torque transfer to the wheels. Toyota promises to achieve 3.7
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and 4.7 [L/100 km] fuel economy values in urban and highway driving conditions

respectively. Also 1748 [kg/year] carbon dioxide (CO2) emission is achieved.

Figure 2.3: Toyota Prius, a parallel hybrid vehicle offered by Toyota. Available
from http://www.mibz.com/10064-kbbs-green-cars-list-vw-golf-tdi-chevy-tahoe-
hybrid-and-others.html.

By definition it is in fact possible to use a parallel hybrid vehicle in series hybrid

mode [12]. Researchers try to benefit from the advantages of series and parallel

hybrid powertrains at the same time by designing new hybrid powertrain config-

urations in which series and parallel hybrid mode is selected by the driver due to

the driving condition. When the driver selects the city driving mode the power-

train works as a series hybrid and parallel hybrid is activated by the selection of

highway driving mode. Seven different parallel hybrid powertrain configurations

were studied during the design stage of GM Parallel Hybrid Truck explained in

[7]. The design objectives are examined on all powertrain configurations and one

specific configuration which shows the best performance is selected.

Vehicle stability control systems are first introduced in the late 1980s by BMW

in the name of Electronic Stability Control (ESC). This control system uses the
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Figure 2.4: Toyota Corolla Equipped with VSC System. Available
from http://www.autoreview2u.com/toyota-corolla-2011-with-new-interior-car-
design/.

engine torque delivery system by reducing the torque provided by the engine in

critical conditions. The vehicle stability control systems were taken into account

by the automotive producers and rapidly commercialized since then.

In Fig.2.4 new model of Toyota Corolla which uses the latest vehicle stability con-

trol (VSC) system developed by Toyota is shown. Skidding condition is detected

by the skid sensors of the vehicle and braking or accelerating command is sent

through the wheels which need to be adjusted. VSC system also shows control

actions during the cornering maneuvers of the vehicle. It prevents the vehicle to

get into understeer or oversteer situations.

For the research presented here, we have chosen to work on the parallel hybrid

powertrain configuration because of its generality. Since we are studying the

coupling effects between energy management and vehicle stability controllers we

expect that our results will be more general when the parallel hybrid powertrain

configuration is chosen. To this end, we developed a parallel hybrid powertrain
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Table 2.1: Vehicle Parameters.

Component Component Parameters

Internal Combustion 4 cylinders
Engine (SI) 2.2 liters

84 kW (peak power)
250 kg (mass)

Permanent Magnet 53 kW (peak power)
Electric Motor (brushless) 248 N.m (peak torque)
Nimh Ovonic Battery 28 Ah (capacity)

50 (number of modules)
6 V/module (nominal voltage)
48.6 Wh/kg (Energy density)
444.4 W/kg (Power density)

Manual Gearbox 5 Speed, GR: 3.45, 1.94, 1.29, 0.97, 0.75
Vehicle Body mass: 800 kg

model in Simulink based on actual vehicle data and a typical powertrain config-

uration. This is a complex nonlinear plant model based on empirical data from

actual vehicles driven by realistic control algorithms which we used as our verifi-

cation model as our rule-based vehicle control strategy is developed. This model

is presented in section 2.3.

For the DP procedure, a simplified model based on [15] is developed using our

complex simulation model vehicle parameters. Longitudinal dynamics of the

vehicle are modeled using the bicycle model ignoring the lateral dynamics and

the transfer case model in [9] is used to distribute the total torque between front

and rear axles. Vehicle component parameters used for our research for both the

complex nonlinear and the simplified models are given in Table 2.1. The simple

model is suitable for studying both the energy management and vehicle stability

problems.
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Figure 2.5: Configuration of Parallel Hybrid Vehicle.

2.1 Parallel Hybrid Electrical Vehicle

We used a typical parallel hybrid electric vehicle configuration with an integrated

transfer case as shown in Fig.2.5. The power provided by the electric motor

and the power provided by the engine are mechanically coupled in the integrated

transfer case unit.

Typical transfer case units split the power between the rear and the front axles.

We also integrated the power split mechanism between the electric motor and the

engine into the transfer case unit. Total torque demand of the vehicle is met by

the electric motor and the engine. Torque Split Ratio (TSR) is the control signal

which determines the power split between the electric motor and the engine.

Lower level clutch and gearbox control dynamics which handles the transients of

the integrated transfer case is assumed to be negligible. That is for example it is

assumed that coupling is achieved with no delays.

The integrated transfer case unit also distributes the total power between rear and

front axles. Torque Split Factor (TSF) is the control signal which determines the

power split between rear and front axles. The torque split between rear and front

axles is used to provide vehicle stability during acceleration and braking. In the

integrated transfer case unit total torque is mechanically split and transferred to
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Figure 2.6: Integrated Transfer Case Unit.

both axles. The physical plant of the integrated transfer case is complicated and

has some energy losses during its operation. In Fig.2.6, the integrated transfer

case and power split mechanisms are explained.

As shown in Fig.2.6 there are two split mechanisms in the powertrain. Power

split between electric motor and engine is determined by energy management

controller and torque distribution between front and rear axles is determined by

vehicle stability controller. In our proposed controller system the target split

levels are controlled at the same time by the concurrent supervisory controller.

The engine can operate in more efficient ranges with the help of the electric motor.

At high loads the electric motor provides assistance to the engine whereas in low

loads the engine can be shut off or works as a generator for the electric motor. In

addition, the supervised distribution of the total torque provided to the wheels

between the rear and the front axles by the transfer case reduces the wheel slip of

the vehicle. Our powertrain model allows us to control the power split between

the electric motor and the engine and torque distribution between the rear and

the front axle at the same time.

Other configurations can be used as an alternative to the power split mechanisms
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used here. One possible configuration is that the rear axle is propelled by the en-

gine while the front axle is propelled by the electric motor. In this configuration,

the power split decision between the engine and the electric motor needs to inter-

act with the power split decision between the rear axle and the front axle in such

a manner that control signals of the power split mechanisms are not separated

from each other.

For another possible configuration, there are two electric motors mounted on each

axles and the engine providing power for each axle. In this configuration, transfer

case unit is used for only the power split of the engine between rear and front

axles while two mechanical coupling units in each axle are needed for the power

split mechanisms between the engine and the electric motor.

In our research, we use more general powertrain configuration rather than specific

configurations. The results of our research presented in this thesis are generic

enough so that they can be extended to specific powertrain configurations easily.

2.2 Simplified Model Used In Dynamic Pro-

gramming

Our simulation model is based on empirical data from actual vehicles which has

many numbers of dynamic states and high level of complexity. This model is a

useful tool for calculating the validity of the controllers using heuristic control

techniques such as rule extraction [16].

As mentioned earlier dynamic programming (DP) is also used in the research pre-

sented in this thesis. The performance of DP is highly related with the accuracy

and the number of states of the model used for DP. Nonlinear models result in

inaccuracy and the computation burden of the process is high.

For the DP procedure, a simple but functional mathematical model is preferred

rather than a complex nonlinear model. The dynamic states of the complex

nonlinear model are degraded based on the simplification methods introduced in
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Figure 2.7: Bicycle model used in [16].

[15]. The simplified model is left with two dynamic states, namely SOC and the

wheel slip. Based on the characteristics of the DP, which is explained in detail in

Chapter 3, these dynamic states are used individually or together in the model.

The components that take part in the simplified hybrid vehicle model are ex-

plained in the sections 2.2.1-2.2.2.

2.2.1 Vehicle Dynamics Model

The vehicle dynamics are modeled using the bicycle model without the lateral

dynamics. Dynamic weight transfer between front and rear axles is considered

due to the vehicle acceleration. The model used in [16] is followed. The bicycle

model used in this study is shown in Fig.2.7.

The inputs of the vehicle model are vehicle velocity, vveh, and vehicle acceleration,

aveh. Predetermined drive cycle data in forms of vehicle velocity and acceleration

is used for simulations.
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As this is a bicycle model including the longitudinal dynamics only, vehicle mass is

modeled as the half of the total vehicle mass. At the contact points between tires

and the road there are the reaction forces, Fz1 and Fz2, due to the gravitation, g:

Fg = mg = Fz1 + Fz2 (2.1)

where

Fz1 = mg
l1
l
, Fz2 = mg

l2
l
. (2.2)

Longitudinal tire forces are produced with propulsion or braking action of the

vehicle. There is a linear relationship, shown in equation (2.3), between the tire

normal forces, obtained in equation (2.2), and maximum tire longitudinal forces

Fxi,max, which limits the tire friction forces. The road friction coefficient µ, is

assumed to be uniform. In equation (2.3), Fxi denotes the actual friction forces

between the tire and the road.

|Fxi| ≤ |Fxi,max| = µFzi for i = 1, 2 (2.3)

The drag force as a function of vehicle velocity, v, and drag coefficient, C, can be

described as

Fdrag = Cv2. (2.4)

By using Newton’s second law we can find the relationship between the vehicle

acceleration and the longitudinal tire force.

aveh =
Fx1 + Fx2

m
=

Fx

m
(2.5)

where Fx is the net external longitudinal tire force and it is limited by the front

and rear maximum longitudinal tire forces as

|Fx| ≤ |Fx1,max|+ |Fx2,max| = µ(Fz1 + Fz2) = µFg. (2.6)

With equations (2.5) and (2.6) we can obtain a limit for the acceleration. The

condition for this limitation is given as

|aveh| ≤ µg. (2.7)



CHAPTER 2. PARALLEL HYBRID ELECTRIC VEHICLE MODEL 18

Before analyzing the tire normal forces the longitudinal dynamics can be written

as a static system by considering d’Alambert’s Principle

Fx + FL = 0 (2.8)

where FL denotes the inertial force associated with accelerating/decelerating sta-

tus of the vehicle in the above equation. By using equations (2.5) and (2.8) FL

is found as

FL = −maveh. (2.9)

Weight transfer under vehicle acceleration is modeled as

Fz1 = Fg

l − l1
l

+
FL × h

l
, (2.10)

Fz2 = Fg

l1
l
−

FL × h

l
(2.11)

where Fz1 and Fz2 denote the vehicle traction forces of the front and the rear

wheels respectively. Fg represents the weight of the vehicle and FL represents

the inertial forces of the vehicle. l is used for the distance between the axles of

the vehicle whereas l1 is used for the distance between the center of gravity of

the vehicle and the front axle. h is used for the height of the center of gravity

of the vehicle. In equations (2.10)-(2.11) first terms on the right hand represent

the static weight distribution and second terms represent the dynamic weight

distribution.

2.2.2 Powertrain Model

2.2.2.1 Transfer Case Model

As discussed before rear and front axle torque values can be different from each

other while providing the vehicle traction stability. In order to distribute the

torque between front and rear axles we need to use a mechanical accessory like a

center differential. There exists complex transfer case models such as those used

in [4] but for simplicity we used a zero order model as in [9]. The inputs of the
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model are the total torque produced, inertia, rotational speeds of the front and

rear axles. The outputs are the torque values of front and rear axles.

Output torque is calculated as

Tout = ratio× Ti. (2.12)

Front and rear torque values are determined via factor of torque split, (K), as

shown below:

Tout,front = Tout ×Kfront, (2.13)

Tout,rear = Tout ×Krear. (2.14)

Factor of torque split, Krear, is a function of rear rotational speed ratio (RRSR),

ωratio,rear which is calculated as

ωratio,rear = 0.5 +
ωrear − ωfront

0.5× (ωrear + ωfront)
. (2.15)

In equation (2.15), ωrear and ωfront denote the rear axle and front axle rota-

tional speeds respectively. In practice, the control law uses wheel slip instead of

ωratio,rear. It should be noted that wheel slip is a function of ωratio,rear:

wheel slip = ωratio,rear − 0.5. (2.16)

The function, f(ωratio,rear), is to be the control law of the vehicle stability con-

troller.

Krear = f(ωratio,rear) (2.17)

RRSR is the dynamic state of the model and it depends on the speed difference

of front and rear axles. This ratio is the function of the wheel slip of the vehicle

and the objective of the vehicle stability controller is to make the RRSR value at

0.5, i.e. zero slip.

The split factors of rear and front axles sum up to unity:

Kfront = 1−Krear. (2.18)



CHAPTER 2. PARALLEL HYBRID ELECTRIC VEHICLE MODEL 20

The output rotational speed is calculated as

ωin = ratio× ωout. (2.19)

ratio denotes the reduction in the transfer case model and it is unity, i.e. the

rotational speeds of the electric motor and the engine are assumed to be the

same.

The mean value of the rotational speeds of front and rear axles, ωout, which is

defined in equation (2.20), which appears in equation (2.19).

ωout =
(ωrear + ωfront)

2
(2.20)

2.2.2.2 Engine Model

A quasi-static model is used for the engine. The static map obtained from the

actual vehicle data determines fuel consumption rate.

Quasi-static model consists of a steady state model to which an equivalent dy-

namical model of the system is added. The output torque of the engine is modeled

as

Tengine,out = Teng −
Ploss,eng

ωeng

. (2.21)

Here Ploss,eng represents the frictional losses of the engine. Ploss,eng is assumed to

be a constant average value whereas in complex model it is assumed to be varying

with respect to the engine speed. Constant fuel rate is assumed during the idling.

2.2.2.3 Battery Model

The open circuit voltage of the battery,Voc, is governed as

Voc =
qbatt
Cbatt

. (2.22)
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Here qbatt represents the charge of the battery. The capacitance of the battery,

Cbatt, depends on the internal temperature and current of the battery.

SOC of the battery is modeled as a normalized value, which represents the charge

capacity of the battery

SOC =
Voc − Vmin

Vmax − Vmin

(2.23)

where Vmin and Vmax represent the minimum and maximum allowable voltage

of the battery. These minimum and maximum values are selected as 250V and

400V respectively based on the electric motor used in the modeling.

The provided voltage of the battery can be shown as

Vout = Voc − ibattRbatt (2.24)

It should be noted that transients and thermal effects are neglected. So the only

dynamic state is SOC value of the battery.

2.2.2.4 Electric Motor Model

Electric motor dynamics are faster than battery dynamics. The motor model

developed does not have a dynamic state. The losses of the motor are taken into

account considering the output torque and speed.

The power needed by the motor is a mapped function of output torque, Tmot, and

speed, ωmot

Pbatt = Pmap,motor(Tmot, ωmot). (2.25)

The maximum allowable current of the motor, imax,mot, limits the maximum elec-

tric power, Pmax,mot, supplied from the motor

Pmax,mot = imax,motVout. (2.26)

The mechanical torque limit of the motor, Tmax,mech , is given as

Tmax,mech = Tpeak(ωmot)−HI[Tpeak(ωmot)− Tcont(ωmot)]. (2.27)
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Table 2.2: Parameters of the Electric Motor.

Parameter Value

imax,mot 475 A
Pmax,mot 53kW
ωmax,mot 8000 rpm

Here peak torque value of the motor, Tpeak(ωmot), and the continuous torque

value of the motor, Tcont(ωmot), are the mapped functions of rotational speed of

the motor, ωmot. The heat index HI appeared in the above equation arranges

the available torque between the peak and the continuous torques during its

operation.

The maximum allowable electrical power available to the motor and the motor

speed also limit the output torque. Maximum allowable output torque of the

motor limited electrically, Tmax,elec, is

Tmax,elec = P−1
map,motor(Pmax,motor, ωmot) (2.28)

where P−1
map,mot represents the inverse map of the motor. In Table 2.2 limitation

parameters of the electric motor are given.

2.2.2.5 Gearbox Model

Gear ratio, GT , and loss terms, Tloss,gb, are considered when modeling the gearbox.

The torque passing through the gearbox, Tgb, can be described as

Tgb = GT × (Tout,tc − Tloss,gb) (2.29)

where Tout,tc represents the output torque of the transfer case. The gearbox losses,

Tloss,gb , are assumed to be constant.

Wheel torque, Twheel, is described with final drive ratio, gf , output torque of the

gearbox, Tout,gb, and loss terms of the final drive, Tloss,fd, included as

Twheel = gf × Tout,gb − Tloss,fd. (2.30)
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2.3 Complex Nonlinear Model Used In Simula-

tions

In our controller development stage of research we developed a complex and non-

linear simulation model in Matlab\Simulink environment based on actual data.

For developing this model Autonomie simulation software which is based on the

several actual vehicle and component tests of Argonne National Laboratory are

taken as the reference point when developing our simulation model which is driven

by realistic controllers. We configured our model by selecting the appropriate

model blocks from the libraries of Autonomie. The original controller blocks

are upgraded according to the control algorithms we developed which will be

explained in detail in the controller development section.

In Fig.2.8, the high level model blocks representation of our complex nonlinear

simulation model is given. Two power paths provided by the engine and the

electric motor are separated. The total torque is obtained by summing up the

torques provided by the engine and the electric motor. The total torque is then

distributed to the rear and the front axles via the integrated transfer case unit.

The model blocks of the rear and the front axles are separated from each other as

shown in the above figure. The outputs of the powertrain are collected by signal

processing blocks and feed the controller blocks.

2.3.1 Vehicle Dynamics Model

Vehicle dynamics model is separated to rear and front axle dynamics including

the bicycle model ignoring the lateral dynamics. Vehicle dynamics model is di-

vided into three subblocks, namely differential block, wheel block and axle block.

Output torque of the transfer case is the input and the vehicle speed is the output

of the vehicle dynamics model. The system is fed by the control signals of energy

management and vehicle stability controllers. These signals are processed by the

wheel model.
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Figure 2.8: Simulation Model.
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Figure 2.9: Vehicle Dynamics Model.



CHAPTER 2. PARALLEL HYBRID ELECTRIC VEHICLE MODEL 26

In Fig.2.9, the model blocks providing the vehicle dynamics are shown. Since the

vehicle longitudinal dynamics are modeled only steering angle is neglected in the

wheel model. The tire forces generated by cornering are excluded in the model.

It should be noted that control signals are used in the wheel models. In wheel

model a feedback traction controller is embedded using the control signals. This

traction controller will be explained in detail in section 4.3.

2.3.2 Powertrain Model

Powertrain model includes two power paths adding up in the transfer case. As

this is a mathematical model summation is done before the gearbox block in our

simulation model. Controller blocks feed the powertrain during its operation.

2.3.2.1 Transfer Case Model

The transfer case is modeled as having an input of the total output provided

by the electric motor and the engine and giving an output of the distributed

torque to the axles. Front and rear wheel speeds values drive the mechanism of

determining the power split between rear and front axles.

Fig.2.10 shows the model block representation of the integrated transfer case unit.

The weighted speed of the rear and the front axles is calculated by taking the mean

value of the sum of the rear and the front axle speeds. Rear rotational speed ratio

is calculated via a specific function. The rear and the front torque ratio values

are calculated by a look-up table embedded into the integrated transfer case unit.

2.3.2.2 Engine Model

When modeling the engine Autonomie map functions are heavily used in calcu-

lation steps of engine torque, fuel rate, exhaust emissions. Thermal model of the

engine is also embedded in the engine model.



CHAPTER 2. PARALLEL HYBRID ELECTRIC VEHICLE MODEL 27

Figure 2.10: Inside the Transfer Case Block.

In Fig.2.11, the model block representation of the thermal model of the engine is

given. The heat rejection characteristics of the engine is calculated based on the

actual values of the engine speed, the engine torque and the fuel rate.

2.3.2.3 Battery Model

Battery model consists of voltage and SOC calculation based on mapped func-

tions. Temperature effects are also included in the model. SOC algorithm highly

depends on the temperature effects of the battery.

The calculation process of SOC value of the battery is shown in Fig.2.12. A look-

up table determines the maximum power capacity of the battery with respect to

the temperature value of the battery. This maximum power capacity and the

consumed power values are used in the calculation process of the SOC.
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Figure 2.11: Thermal Model of the Engine.
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Figure 2.12: SOC Algorithm of the Battery Model.

2.3.2.4 Electric Motor Model

Battery voltage is the main input to the electric motor model. Torque provided

by the electric motor which is driven by the control signal of power split between

the electric motor and the engine is the output. In Fig.2.13 the maximum torque

selection model block is represented. Peak and continuous torque values for pro-

pelling and the regenerative modes of the electric motor are determined based on

the look-up tables using the actual speed of the electric motor. There is a switch

mechanism between propelling and the regenerative modes based on the control

signal of the electric motor. Heat index HI is calculated in subsystem using the

actual and the continuous torque values of the electric motor. The maximum

torque selection process decides on whether the torque is limited mechanically or

electrically.

2.3.2.5 Gearbox Model

Gearbox model gets the gear number information from the original controller

blocks of Autonomie including the gear shifting strategy. As the appropriate
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Figure 2.13: Maximum Torque Selection of the Electric Motor.
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Figure 2.14: Speed Calculation of the Gearbox Model.

gear number is determined speed and torque calculation are done in the model.

Gear table based on our vehicle parameters is entered into the model. Speed

calculation process of the gearbox is shown in Fig.2.14. It should be noted that

the free wheeling losses of the gearbox is modeled and used in the model when

the gear number of the vehicle is zero.



Chapter 3

Dynamic Programming

Dynamic Programming (DP) is a design optimization tool which can be applied

to systems with defined design objectives. It is applied in a number of areas such

as information theory, bioinformatics, computer science and control theory [3].

In control theory, DP is used for obtaining the optimal outputs of controllers to

be designed [13].

3.1 Dynamic Programming Overview

Bellman’s principle of optimality constitutes the basics of DP. According to Bell-

man’s principle, the optimality of subsequent control actions included in the main

optimization problem should be validated on the entire space defined for the prob-

lem with respect to the resulting state of the first decision of the sequence. This

optimal behavior is independent of the initial conditions of the system [2]. The

optimal trajectories of subproblems build up the optimal trajectory of the main

problem. The performance of the DP process depends highly on the dynamic

states defined for the problem. The number of the states directly affects the

computation burden and the memory needed for the DP process.

32
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3.2 Problem Formulation

In order to formulate the problem to be solved with DP, continuous time models

should be discretized first as shown in (3.1).

xk+1 = f(xk, uk, k) (3.1)

Here xk represents the state vector of the system, uk represents the control actions

of the system and k represents the time instant of the DP process. After the model

is discretized for numerical optimization, a general DP problem is stated [2, 5]:

A general DP problem

given an objective J , solve

min J =
N
∑

k=0

L(xk, uk, k) (3.2)

where

xk+1 = f(xk, uk, k) (3.3)

subject to

x ∈ Xk ⊂ Rn, u ∈ Uk ⊂ Rm. (3.4)

In 3.2-3.4 N denotes the length of the drive cycle. L is defined as the cost function

of a single subsequent stage whereas J represents the total cost of the system.

Constraints on system states, Xk, and control actions, Uk, can also be defined as

shown in equation (3.4). The constraints of the system are stated as shown in

equation (3.5).

Xk : xmin ≤ xk ≤ xmax (3.5)

Uk : umin ≤ uk ≤ umax

xmin and xmax represent the minimum and maximum allowable values of the

system states respectively. umin and umax represent the minimum and maximum

allowable values of the control actions respectively.

The general DP problem defined in equations (3.2)-(3.4) can be solved by numer-

ical methods according to the Bellman’s principle of optimality [11].
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In equations (3.6)-(3.7), Jk represents minimum cost function between the stage

k and stage N . The problem formulation is shown as if it is starting from the

state of xk.

Jk(xk) = min
uk,...,uN





N
∑

j=k

L(xj, uj , j)





= min
uk



L(xk, uk, k) + min
uk+1,...,uN





N
∑

j=k+1

L(xj, uj , j)







 (3.6)

= min
uk

[L(xk, uk, k) + Jk+1(xk+1, k + 1)]

where

JN(xN) = min
u(N)

[L(xN , uN , N)] (3.7)

3.3 Implementation in MATLAB

In our research we used the DP algorithm outlined in [14] with appropriate mod-

ifications based on our parallel hybrid vehicle model. In this section the DP

algorithm in [14] is summarized. As the result of the research presented in [14] a

generic Matlab function which solves deterministic optimization problems specif-

ically for energy management strategy of parallel hybrid vehicles is developed.

First the optimization problem is defined as outlined in equations (3.2)-(3.4).

Continuous time model is discretized according to the equation (3.1).

Control policy, π, is defined as a function of control actions, µi,as

π = µ0, µ1, . . . , µN−1. (3.8)

The discretized cost function is rearranged as shown in equation (3.8) based on the

control policy defined in equation (3.7) where initial state is defined as, x(0) = x0.

Jπ(x0) = gN(xN) + ϕN(xN) +
N−1
∑

k=0

hk(xk, µk(xk)) + ϕk(xk) (3.9)

In equation (3.9) gN(xN)+ϕN(xN) stands for the final cost in which an additional

penalty function is defined within as, ϕN(xN), which has an effect on the final

constraints. The function of, hk(xk, µk(xk)), is defined as the cost function of the
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control actions of µk(xk). Another penalty function, ϕk(xk), which has an effect

on system state constraints.

An optimal control policy is defined as shown in equation (3.10).

J0(x0) = min
π∈Π

Jπ(x0) (3.10)

Here the control policy is minimized over a finite horizon. Π stands for the all

possible control policies.

The DP algorithm calculates the optimal cost-to-go function at every stage going

backwards based on the Bellman’s principle of optimality as discussed earlier.

Jk(x
i) = min

uk∈Uk

[

hk(x
i, uk) + ϕk(x

i) + Jk+1(Fk(x
i, uk))

]

(3.11)

Linear interpolation is used to calculate the cost-to-go function, Jk+1(Fk(x
i, uk)).

The interpolation procedure is represented graphically in Fig.3.1.

The optimal control signal map is obtained as the result of the discretized cost

function defined in equation (3.8). The optimal trajectory of the controller is

obtained using this optimal signal map during the forward simulation of the

model. It should be noted that the optimal cost-to-go function defined in (3.10)

is calculated on the discretized points of the specified state space. However the

function Fk(x
i, uk) which is included in the last term of the optimal cost-to-

go function is a continuous function. When the output of this function stays

between any two nodes on the state space the optimal cost-to-go function should

be calculated with suitable approximation methods. Linear interpolation is used

for the control signal when actual state does not match the discrete points.

Detailed description on how to use the “dpm function” which solves the dis-

cretized optimal control problem is given in [14] and also in the appendix. The

structure of the function is given as:

[res dyn] = dpm[fun, par, grd, prb, options]

Here fun stands for handling the dpm function, par is the parameter structure

defined by the user, grd is the grid structure, which is constituted by the nodes on
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Figure 3.1: Graphical representation of linear interpolation [5].
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which the discretized optimal cost-to-go function is solved, defined by the user,

prb is the problem structure and options is the option structure selected by the

user. As the output of the dpm function, two variable structures are created:

output of the DP procedure and the optimal signal trajectory calculated using

the control signal map.

3.4 Application to Automotive Control Prob-

lems

In the research presented in [14] an automotive optimization control problem is

given as an example. A Quasi-static discrete-time model of an hybrid vehicle is

used to define the fuel consumption of the vehicle. SOC of the battery is chosen

as the only state variable of the model. The details of the mathematical modeling

of the vehicle components are given in [14].

The discretized model is defined based on the model equations as described in

equation (3.12).

xk+1 = f(xk, uk, vk, ak, ik) + xk (3.12)

In equation (3.12) xk denotes the SOC of the battery which is the only dynamic

state of the model, uk denotes the control signal of the model which is defined as

the torque split between the engine and the electric motor, vk, ak, ik, denote the

vehicle speed, vehicle acceleration and the gear number of the vehicle respectively

at the instance of k. As vehicle speed, vk, vehicle acceleration, ak, and the gear

number, ik, are known by the drive cycle defined for the system, the discretized

model defined in equation (3.12) can be reduced to a simplified model:

xk+1 = f(xk, uk) + xk, k = 0, 1, 2, . . . , N − 1. (3.13)

In equation (3.13), k denotes the instance of the calculation steps. The simulation

time is set up by defining the end point of instance which is denoted as N .
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Optimization control problem of the hybrid vehicle

Given an objective J , solve

min
uk∈Uk

J =
N−1
∑

k=0

∆mf (uk, k) · Ts (3.14)

where

xk+1 = f(xk, uk) + xk (3.15)

subject to

x0 = 0.55, xN = 0.55, xk ∈ [0.4 0.7] (3.16)

and

N =
660

Ts

+ 1 (3.17)

Through the equation (3.14)-(3.17), the fuel consumption of the vehicle is denoted

by the function, ∆mf (uk, k).Ts. Time step, Ts is selected as Ts = 1s. The state

space of the state variable is given in equation (3.16). The number of calculation

step is calculated as considering the period of the drive cycle. In the research

presented in [14] Japanese 10-15 (J1015) drive cycle is used.

The optimal control problem formulated in equations (3.14)-(3.17) is solved using

dpm function.

In sections 3.4.1-3.4.3 the automotive control system design problems for our

research using DP are described.

3.4.1 The Concurrent Problem

Since the concurrent control system is the main focus in our research, control

systems for energy management and vehicle dynamics are presented concurrently

first. In Fig.3.2 the interaction between the two control problems are explained.

The two dynamics states, SOC and RRSR, are used together in concurrent prob-

lem formulation. These dynamic states communicate with each other during the

DP procedure. The optimal solution of energy management problem at each
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Figure 3.2: Interaction Between Control Problems.

instance is used when the vehicle stability is solved and vice versa.

This relation outlined in Fig.3.2 is stated in equations (3.18)-(3.20) in which

the optimization control problem for concurrent controller is formulated for two

dynamic states, namely SOC and RRSR.
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The concurrent DP problem

Given an objective J , solve

min
TSRk∈U

1
k
(x1

k
),TSFk∈U

2
k
(x2

k
)
J =

K−1
∑

k=1

{

fHEV,k(x
1
k, TSRk), fvehicle,k(x

2
k, TSFk), k

}

(3.18)

where

x1
k+1 = f(x1

k, u
1
k) + x1

k, k = 0, 1, . . . , N − 1

x2
k+1 = f(x2

k, u
2
k) + x2

k, k = 0, 1, . . . , N − 1 (3.19)

subject to

x1
k ∈ X1

k ⊂ [0.4 0.7], u ∈ U1
k ⊂ [−1 1]

x2
k ∈ X2

k ⊂ [0.3 0.7], u ∈ U2
k ⊂ [0 1] (3.20)

3.4.2 The Energy Management Problem

The objective of the energy management controller problem is to minimize the

fuel consumption of the vehicle over a predefined drive cycle. A quasi-static

discrete-time model is used to define the fuel consumption of the vehicle. Our

energy management DP formulation is similar to the one presented in [14]. The

SOC is the only dynamic state in the model. And torque split ratio between

internal combustion engine and electric motor is the control signal. In [14], the

discrete model is firstly defined as

x1
k+1 = f(x1

k, u
1
k, v, a, i) (3.21)

where x1
k stands for SOC, u1

k stands for torque split ratio between internal combus-

tion engine and electric motor, v stands for vehicle velocity, a stands for vehicle

acceleration and i stands for gear number.

For our DP analysis the discrete model in equation (3.21) is simplified:
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x1
k+1 = f(x1

k, u
1
k), k = 0, 1, . . . , N − 1 (3.22)

where

x1
k ∈ S1

k ∧ u1
k ∈ C1

k (3.23)

with

S1
k = [0.4 0.7] ∧ C1

k = [−1 1] (3.24)

N denotes the number of calculation steps in the DP procedure based on the

length of the drive cycle defined for DP procedure. S1
k and C1

k are defined as the

state space and input space for the dynamic programming algorithm respectively

in equation (3.24). S1
k limits the dynamic state of the model, and C1

k limits the

control signal of the controller. Here it is assumed that driving cycle is known

in advance. In our study FTP75 drive cycle is used for all simulations in order

to have a fixed basis when comparing different controller schemes. Fig.3.3 shows

the velocity profile of the FTP75 drive cycle.

The optimization problem for energy management controller is formulated as

below.

The energy management DP problem

Given an objective J , solve

min
TSRk∈U

1
k
(x1

k
)
J =

K−1
∑

k=1

fHEV,k(x
1
k, TSRk) (3.25)

where

x1
k+1 = fHEV (x

1
k, TSRk) (3.26)

subject to

x1
k ∈ X1

k ⊂ [0.4 0.7], TSRk ∈ U1
k ⊂ [−1 1]. (3.27)

In equation (3.25), fHEV (x
1
k, TSRk) is the fuel consumption function of the HEV

model as a cost of the system. fHEV (x
1
k, TSRk) calculates the fuel consumption

of the vehicle as

fHEV (x
1
k, TSRk) = ∆mf (TSRk, k).Ts. (3.28)
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Figure 3.3: FTP 75 Drive Cycle.

Table 3.1: Working Modes of Powertrain.

TSR RANGE WORKING MODE

TSR = 0 Electric Motor Only Mode
0 < TSR < 1 Torque Assist Mode
TSR = 1 Engine Only Mode
1 < TSR Battery Charging Mode

Dynamic state, x1
k, is SOC and control signal, TSRk, is torque split ratio between

internal combustion engine and electric motor. The objective of the DP algorithm

is to minimize the cost function.

TSR is defined as

TSR =
Engine Torque Calculated at the Wheels

Total Torque Calculated at the Wheels
. (3.29)

The working modes of the powertrain are given in Table 3.1

Initial SOC is taken as 0.5 and final SOC is between 0.5 and 0.51. For our DP

analysis the dpm function outlined in [14] is used. We obtain the optimal torque

split ratio trace by taking the argument which minimizes the cost function given
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Figure 3.4: SOC Behavior of Energy Management Controller.

in equation (3.25). In Fig.3.4, SOC behavior is given and in Fig.3.5, the optimal

operating trace of the energy management controller is given.

It can be seen in the results in Fig.3.4 and Fig.3.5 that the vehicle is working

in the electric motor only mode in the low torque demand range when vehicle is

launched. Optimal trace of the controller shows that in the low torque demand

range except vehicle launch, recharging mode is preferred. Engine only mode is

dominant in the middle torque demand range, and torque assist mode is preferred

in the high torque demand mode. In Fig.3.5, optimum trace shows that our hybrid

electric model works like a typical parallel hybrid electric vehicle [14].
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CHAPTER 3. DYNAMIC PROGRAMMING 45

3.4.3 The Vehicle Stability Problem

The objective of the vehicle stability controller problem is to minimize the wheel

slip of the vehicle over a predefined drive cycle. A quasi-static discrete-time model

is used to define the wheel slip of the vehicle.

The algorithm outlined in [14] is also used for DP analysis of vehicle dynamics

control system individually. Here the vehicle is assumed to be non-hybrid so the

battery and the electric motor are removed from the system. The only dynamic

state is the rear rotational speed ratio (RRSR), ωratio,rear. The torque split factor

between front and rear axles is the control signal.

The discrete model is firstly defined as

x2
k+1 = f(x2

k, u
2
k, v, a, i, µ) (3.30)

where x2
k stands for RRSR, u2

k stands for torque split factor between front and

rear axles, v stands for vehicle velocity, a stands for vehicle acceleration, i stands

for gear number and µ stands for the friction coefficient between tire and road.

In 3.2-3.4 N denotes the length of the drive cycle. L is defined as the cost

function of a single subsequent stage whereas J represents the total cost of the

system. Constraints on system states, Xk, and control actions, Uk, can also be

defined as shown in equation (3.4). The constraints of the system are stated as

shown in equation (3.5). For our DP analysis the discrete model in equation

(3.30) is simplified as given below.

x2
k+1 = f(x2

k, u
2
k), k = 0, 1, . . . , N − 1 (3.31)

where

x2
k ∈ S2

k ∧ u2
k ∈ C2

k (3.32)

with

S2
k = [0.3 0.7] ∧ C2

k = [0 1] (3.33)

N denotes the number of calculation steps in the DP procedure based on the

length of the drive cycle defined for DP procedure. S2
k and C2

k are defined as the
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state space and input space for the dynamic programming algorithm respectively

in equation (3.33). S2
k limits the dynamic state of the model and C2

k limits the

control signal of the controller.

When simplifying the discrete model we have to know the friction coefficient be-

tween road and tire as well as vehicle speed, vehicle acceleration and gear number.

For traction controller studies, the most common way is to make simulations for

short distances. In this study we need to use long drive cycles in order to pro-

vide the coherence between the two control problems. It is assumed that friction

coefficient is given for the drive cycle. This is specified based on the limitation of

the vehicle acceleration given in the equation (2.6).

The vehicle stability DP problem

Given an objective J , solve

min
TSFk∈U

2
k
(x2

k
)
J =

K−1
∑

k=1

fvehicle,k(x
2
k, TSFk) (3.34)

where

x2
k+1 = fvehicle(x

2
k, TSFk) (3.35)

subject to

x2
k ∈ X2

k ⊂ [0.3 0.7], TSFk ∈ U2
k ⊂ [0 1] (3.36)

In equation (3.34) fvehicle(x
2
k, TSFk), is the wheel slip function of the vehicle

model as a cost of the system. fvehicle(x
2
k, TSFk) calculates the wheel slip of the

vehicle as

fvehicle(x
2
k, TSFk) = ∆wheel slipf (TSFk, k) · Ts. (3.37)

Dynamic state, x2
k, is RRSR and control signal, TSFk, is torque split factor

between front and rear axles. The aim of the DP algorithm is minimizing the

wheel slip while maximizing the tractive force. TSF is defined as

TSF =
Front Axle Torque Calculated at Wheels

Total Torque Calculated at Wheels
. (3.38)

The working modes of the powertrain are given in Table 3.2.
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Table 3.2: Working Modes of Powertrain.

TSF RANGE WORKING MODE

TSF = 0 Rear Axle Only Mode
0 < TSF < 1 Front and Rear Mixing Mode
TSF = 1 Front Axle Only Mode
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Figure 3.6: RRSR Behavior of Vehicle Stability Controller.

Initial RRSR is chosen as 0.5. The final RRSR value is between 0.5 and 0.51.

RRSR behavior is given in Fig.3.6. Fig.3.7 shows the optimal operating trace of

the controller. Optimal trace of the controller shows that in the low speed range

rear axle only mode is preferred. Front and rear axle mixing mode is dominant

in the middle and high speed range. There are transitions between front and rear

axle when the crankshaft speed is about 250 rad/s. Fig.3.7 (plus signs) shows

the optimal traces of the concurrent controller. Torque assist mode got more

dominant in the high torque demand range. Transitions between front and rear

axles took place between 200 rad/s and 350 rad/s range.

It should be noted that we need a complex transfer case model in order to provide

front/rear axle only modes. The main objective of applying DP is to obtain the

optimal traces. Working mode of powertrain should also be considered when
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Figure 3.7: Optimal Operating Points of VSC vs Concurrent Controllers.

Table 3.3: Fuel Consumption and Wheel Slip Comparison over FTP75 Cycle.

Fuel Average Improvement
Consumption Wheel Slip Fuel Average
(l/100km) (%) Consumption Wheel Slip

EM Only Case 8.3
VSC Only Case 3.6
Concurrent Controller 7.5 3.4 9.63% 5.5%

analyzing the results. In the torque assist mode the decrease in wheel slip provides

decrease in energy loss of the vehicle.

It should also be noted that the concurrent problem formulation reduces to the

energy management problem formulation when the state variable of vehicle sta-

bility controller is kept fixed or vice versa. The interaction between the state

variables of energy management and vehicle stability controllers provide us bet-

ter results in concurrent controller optimization. Optimization characteristics of

the hybrid vehicle problem are enhanced by using two level optimization algo-

rithms. However these optimization levels are not separated as shown in our

problem formulations.
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Figure 3.8: Wheel Slip Comparison of Vehicle Stability and Concurrent Con-
trollers.

In Fig.3.8 and Fig.3.9, the fuel rate and wheel slip comparisons are illustrated

between individual cases and concurrent. Profiles obtained show that fuel rate

is decreased when concurrent controller is used since energy loss due to the slip-

page is eliminated by hybrid energy management strategies such as regenerative

braking. The profile of concurrent controller stays around an optimum fuel rate

line with low fluctuations. This tells us that power consumption of electric motor

gets higher by being dominant in the torque assist mode of the powertrain and

helping the internal combustion engine to operate in the fuel efficient range. The

fuel rate and wheel slip profiles are integrated over FTP75 drive cycle given in

Table 3.3. The results indicate that we can obtain high levels of fuel efficiency

in the long range driving conditions. Hard acceleration and braking ranges are

outlined where the difference is significant. It is also observed that less wheel

slip is obtained for the same torque demand when concurrent controller is used

since torque adjustment of wheel slip controller is stabilized by the energy man-

agement strategy. As electric motor assistance is improved the contribution of

electric motor gets higher. This makes the torque transitions of the powertrain

stable.
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Figure 3.9: Fuel rate comparison of concurrent and EM controllers.



Chapter 4

Controller Development

When optimal control actions are obtained in the DP process the next step is to

design controllers which will command actions similar to the optimal actions in

similar cases. These designed energy management and vehicle stability control

algorithms will be added to our complex nonlinear vehicle model discussed in

Chapter 2 so that the algorithms can be tested and the control design process is

completed.

Optimal control actions are used as reference set-points when constructing the

control algorithms. The relationships between SOC and torque demand, wheel

slip and torque demand are used in individual cases whereas the relationship

between SOC, wheel slip and torque demand as shown in Fig.4.1 is used in the

concurrent case. These relationships give us desired values of SOC and wheel slip

for various operating points.

Based on these relationships look-up tables are constructed in order to be used

in the control algorithms. Look-up tables provide the desired values of SOC and

wheel slip in the controller architecture based on the cases mentioned. In indi-

vidual cases, one dimensional look-up tables are used such that the actual torque

demand determines the desired values of SOC and wheel slip values. However in

the concurrent case two look-up tables which are two dimensional are used such

that the actual torque demand and SOC values determine the desired wheel slip

51
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Figure 4.1: Optimal Traces provided by DP process.

of the vehicle and the actual torque demand and wheel slip values determine the

desired SOC of the vehicle.

4.1 The Vehicle Stability Controller

A simple feedback controller is designed for vehicle stability. The objective of

the controller is to minimize the wheel slip. The controller consists of two model

blocks which are embedded in to the controller block and the wheel model blocks

discussed in Chapter 2. In the wheel model a quarter car model is used to

calculate the actual wheel slip value based on the controller command sent to the

wheel models as shown in Fig. 4.2. Empirical tire model is used in the model.

The control signal and the vehicle speed are the inputs whereas the wheel speed

and the wheel slip are outputs of the model. PI controller is used in the controller

block as shown in Fig.4.3. The control signal is the difference between the actual

and the desired wheel slip values. Desired wheel slip value is taken from look-up
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Figure 4.2: Wheel Slip Calculation of the Vehicle Stability Controller.

table constructed having input as torque demand and giving output as desired

wheel slip. The relationship between torque demand and optimal wheel slip

provided by DP process is shown in Fig. 4.4. It is observed that in high torque

demand region there is more wheel slip. We can say that the vehicle model is

achieving a good transfer of traction torque to the wheels in low torque demand

region. However in high torque demand region, as our vehicle model includes

different torque values on the rear and the front axles, traction torque transfer to

the wheels is not so good compared to the low torque demand range.

We can conclude that the weight transfer to the rear and the front axles in

acceleration and decelerating situations consequences to more wheel slip of the

vehicle model. Our controller tries to reduce this high wheel slip as shown in Fig.

4.5.

The vehicle model is simulated using the Urban Dynamometer Driving Schedule,

UDDS, as the input drive cycle. Fig. 4.5 shows the wheel slip behavior of the

vehicle. It can be seen that wheel slip difference follows a decreasing trend.
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Figure 4.3: Control Signals of Vehicle Stability Controller.
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Figure 4.4: Relationship Between Torque Demand and Wheel Slip.
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Figure 4.5: Wheel Slip Behavior of the Vehicle with Vehicle Stability Controller.
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4.2 The Energy Management Controller

In energy management controller development process our controller is integrated

to the state flow chart of the existing realistic control algorithm as an add-on

controller function. In Table 4.1 the conditions for the control algorithm are

given. The controller decides on the working mode of the powertrain based on

these conditions. The signal path of the add-on unit is shown in Fig. 4.6. The

control signal is the difference between actual and desired SOC values which

is provided by the look-up table embedded in the controller. In Fig. 4.7, the

relationship between torque demand and SOC provided by the DP process is

given.

The rules about energy management strategy extracted are given in Table

4.1. The controller enforces rules in its operations by sending status control

commands.SOCdiff,cr represents the critical value of the difference between actual

and desired SOC values. In energy management control algorithm this critical

value is determined as 0.15 as shown in Table 4.2. The critical value is obtained

by tuning the controller in various cases. The tuning procedure is based on sim-

ulations made in order to compare the controller behavior. As summarized in

Table 4.1, the controller tries to make the battery stay in the optimum SOC

range. The system is forced to stay in the discharging mode when SOC differ-

ence is higher than a specified threshold. Likewise the system is forced to stay

in charging mode when SOC difference is lower than a specified threshold. If the

SOC difference is in the allowable range the existing realistic controller algorithm

is used. In addition if the SOC difference is higher than a specified threshold, the

system is forced to use only mechanical brakes instead of regenerative braking.

System is simulated with respect to UDDS. The SOC behavior of the vehicle

as shown in Fig. 4.8 shows that the SOC change is stabilized with the help of

the developed controllers. It is also seen that in hard acceleration and braking

regions the system cannot successfully trace the optimum SOC values where the

controller seems to be increasing the SOC value as much as possible which leads

the system deviating from the optimum SOC range. In this study it is shown

that communicating with the vehicle stability controller providing information
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Figure 4.6: Energy Management Controller Add-on Unit.
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Figure 4.7: Relationship Between Torque Demand and SOC.

Table 4.1: Energy Management Controller Rules.

CONDITION OPERATING MODE

if |SOCdiff | < SOCdiff,cr Normal Mode
if SOCdiff < −SOCdiff,cr Charging Mode
if SOCdiff > SOCdiff,cr Discharging Mode
if SOCdiff > SOCdiff,cr Mechanical Braking
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Figure 4.8: SOC Behavior of the Vehicle with Energy Management Controller.
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Table 4.2: Critical Values of SOC and Wheel Slip.

wheel slipcr 0.03
SOCdiff,cr 0.15
SOCdiff,cr1 0.15
SOCdiff,cr2 0.13

about the road conditions, helps the energy management controller to supervise

the powertrain systems stay in the optimum SOC range. It should be noted that

supervising actions eliminate the deviations in SOC behavior.

4.3 The Concurrent Controller

In concurrent controller development the two developed controllers are coupled by

means of new rules and control signal network. It should be noted that the desired

values of SOC and wheel slip are taken from the 2-D look-up table constructed

having input as torque demand and (i) SOC when determining the desired wheel

slip, and (ii) wheel slip when determining the desired SOC. These new rules are

integrated to the model via a subsystem added to the existing realistic control

algorithm again as such an add-on controller unit. Vehicle stability controller

remains the same whereas the signal it takes differs from the individual case.

New rules extracted for concurrent controller are given in Figs. 4.9-4.10. The

sequence of these are the same whereas the critical values of the SOC difference,

SOCdiff,cr1 and SOCdiff,cr2, change with respect to the condition of wheel slip,

whether it is higher than the critical wheel slip value, wheel slipcr, or not. The

critical values of the SOC and the wheel slip are obtained by tuning the controller

for the optimum SOC and wheel slip behavior of the concurrent controller. Here

by defining a critical value, we claim that the developed rules using this critical

values work in the most efficient way compared to any other value. Table 4.2

shows the critical values.

The system is simulated with respect to UDDS, and Indian Highway. The SOC
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Figure 4.9: Extracted rules for concurrent controller when wheel slip is high.
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Figure 4.10: Extracted rules for concurrent controller when wheel slip is low.
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Figure 4.11: SOC behavior of the concurrent controller.

behavior of the vehicle as shown in Fig. 4.11 shows that the actual SOC value is

stabilized and merged to desired SOC value with the help of the interaction be-

tween the two control algorithms. Wheel slip difference is controlled by the torque

adjustments. If energy management controller knows about torque adjustment

of the vehicle stability controller before its action, it will take the advantage of

giving more efficient decisions. For instance if the vehicle is under the high wheel

slip range and vehicle should decrease the torque provided, torque demand will

be less and the vehicle will be able to operate in electric motor only mode in order

to make the internal combustion engine to stay in efficient range. Regenerative

braking can also be applied in such a situation which will provide efficiency to

the system.
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Figure 4.12: Wheel Slip Behavior of the Concurrent Controller.

On the other hand if the vehicle stability controller knows the energy management

strategy before its action, this will provide giving more efficient decisions. If the

vehicle is operating in the internal combustion engine only mode and vehicle

stability controller should decrease the torque, a relevant signal should be sent to

the energy management controller to select the electric motor only mode.

Fig. 4.12 shows the wheel slip behavior of the developed controllers. The wheel

slip values of the concurrent controller noticeably get closer to the optimum wheel

slip range. Interaction between the two controllers makes the concurrent con-

troller work better compared to the single controller. The reason is that torque

adjustment actions of the concurrent controller optimized with the help of the
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SOC information of the system provided by the energy management controller.

Our concurrent controller provides such an interaction in which the two controllers

try to make each other to work in the most efficient range. SOC and wheel

slip behavior of the concurrent controller shows that the interaction between the

controllers provides flexibility in decision making process. To make the SOC and

wheel slip values stay in optimum range also effects the fuel consumption of the

vehicle. The fuel rate in different cases for two drive cycles are shown in Figs.

4.13-4.14 for UDDS and Indian Highway drive cycles respectively. It is seen that

significant difference of fuel rate between single and concurrent controllers exists

in the hard acceleration and braking ranges. This is due to the fact that the

SOC and wheel slip behaviors of the concurrent controller are enhanced by the

interaction between the two control algorithms.

Nearly optimal behavior in SOC and wheel slip provides better fuel economy as

shown in Figs. 4.13-4.14. The reason we are using two different kinds of drive

cycle is that we aim to show that the controller algorithm developed in this study

is able to compete with all driving conditions. The concurrent controller provides

significant improvements especially in hard acceleration and braking ranges as

highlighted in Figs. 4.13-4.14. Since the differences between optimal and actual

values of SOC and wheel slip increase in such a situation, the concurrent controller

takes important role in keeping the vehicle stay in optimal ranges. In Table 4.3

the integrated values over UDDS and Indian Highway driving cycles are given.

The two driving conditions are combined when calculating the fuel consumption

of the vehicle. We try to reach general fuel economy behavior in order to show

more general scope of our controller algorithm. It should be noted that the

improvements shown in this study is valid in ideal conditions. Our aim in this

study is to show the opportunities in taking into account the interactions between

controllers in automotive control systems.
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Table 4.3: Fuel Consumption and Wheel Slip Comparison over UDDS and Indian
Highway.

Fuel Average Improvement
Consumption Wheel Slip Fuel Average
(l/100km) (%) Consumption Wheel Slip

EM Only Case 8.5
VSC Only Case 3.7
Concurrent 7.1 3.25 16.47% 12.16%
Controller

Figure 4.13: Fuel rate behavior of the concurrent controller with UDDS.
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Figure 4.14: Fuel rate behavior of the concurrent controller with Indian Highway.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In our research we studied the possibility of designing a better control algorithm

by considering the interaction between the energy management and the vehicle

stability controller design problems. The optimal traces obtained by DP consti-

tute the reference point of the developed controller algorithms. Dynamic pro-

gramming cannot be directly used in developing a controller strategy because it

requires a prior known drive cycle. In Fig.5.1, our approach of controller strategy

is outlined. We used heuristic control techniques supported with global opti-

mization. We tried to use the advantages of both heuristic control techniques

and global optimization. Our control algorithm is based on logic threshold con-

trol strategy based on instantaneous optimization mechanisms. The results of DP

gave us a chance of comparing the results of our developed controller algorithms.

The performance of the concurrent controller is compared against energy man-

agement and vehicle stability controllers individually. Under the same driving

conditions the concurrent controller is 16.47% more efficient than energy man-

agement controller by means of fuel consumption and 12.16% more efficient than

vehicle stability controller by means of wheel slip.
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Figure 5.1: Controller Strategy Approach.
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In general, energy management controllers using DP are known to be fuel efficient

[15]. The main idea pointed out in this study is that the interaction between en-

ergy management and vehicle stability controllers can enhance the fuel efficiency

of the vehicle. Additionally the vehicle stability controllers proven as reducing the

wheel slip values of a vehicle [9] can be enhanced individually by using DP, also

they can be more efficiently operated when interacted with energy management

controller.

As a result we conclude that allowing the interaction between the two control

algorithms gives us better fuel economy with simulations based on mathematical

models. The future work for this research is to develop real time implementation

of the controllers developed here. Benefits obtained in this study will be examined

considering the frequency characteristics of the two controllers due to the fact

that traction controller has faster dynamics compared to energy management

controller.

5.2 Future Work

5.2.1 Real Time Application Aspects

In this section real time implementation aspects of our research is presented.

The optimal traces of controllers obtained in DP are embedded in the controller

algorithm via look-up tables. In the operation process of the powertrain, the

system is fed by the calculated values of our control signals, namely SOC and

wheel slip. These actual values are compared with the optimal traces. The

difference between these actual and optimum values drives our controller system.

Torque demand of the system is also used in look-up tables as a parameter. In our

proposed concurrent controller algorithm optimum SOC is determined by actual

torque demand and wheel values and optimum wheel slip value is determined by

actual torque demand and SOC value. The first stage of concurrency is provided

in the selection of optimum values.
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Figure 5.2: Signal Process of Concurrent Controller.

Figure 5.3: Signal Processing of the Concurrent Controller.
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Figure 5.4: Onboard Control Scheme of the Concurrent Controller.
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Fig. 5.2 presents a block diagram which describes how our system can be imple-

mented on a real vehicle controller. The error signals of SOC and wheel slip are

used in the concurrent controller system at the same time. These error signals

are heavily used in our extracted rules in order to compare the actual data with

specified thresholds. As we propose that energy management and vehicle stabil-

ity working concurrently we should mention the time characteristics of these two

controllers. Vehicle stability controller dynamics is faster than energy manage-

ment controller dynamics. As the time characteristics of the two controllers do

not match, real time simulations should be done in order to validate the applica-

bility of our proposed concurrent controller algorithm which is planned to be the

future work of our research. The signal rates should match in the operation of

the controller as outlined in Fig. 5.3.

Our concurrent controller is designed as an add-on unit in the state flow diagram

of the original controller. This block is to be placed in the engine control unit

(ECU) of the vehicle. The vehicle stability controller block is detached in the

controller architecture of the vehicle. Signal sharing between energy management

and the vehicle stability controller is provided by the CAN units. The look-up

tables providing the desired SOC and the wheel slip values work in the ECU

plant. Onboard controller sensors feed the system with the actual data. Actual

SOC and the actual wheel slip values are calculated instantaneously by using

the sensor outputs battery voltage and the wheel speed respectively. ECU gives

the control signals of TSR and TSF as outputs. The scheme of the concurrent

controller system integration into the vehicle controller area is shown in Fig. 5.4.

5.2.2 Improvement of The Problem Formulation

By obtaining the optimal trajectories in DP process we continued our research

into heuristic control techniques such as rule extracting. Simulations based on

predefined driving cycles are performed and results are tried to be generalized

with the consideration of urban and highway driving characteristics together.

On the other hand stochastic optimal control policies can also be applied to our
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hybrid vehicle model in order to improve the level of optimality of the control

problem. The research presented in [10] offers stochastic methods to develop

the controllers for hybrid vehicles. The developed controller is optimized on a

family of random drive cycles. The optimization problem is defined on an infinite

horizon so that time invariant control strategy is developed. The vehicle model

has three state variables, power demand, SOC and the wheel speed.

The infinite horizon optimization problem is given as

Jπ(x0) = lim
N→∞

Eω

[

N−1
∑

k=0

γkg(xk, π(xk))

]

, (5.1)

where g(xk, π(xk)) is the instantaneous cost function defined for the problem

which has a discount factor of γ, π(xk) is the control policy and Jπ(x0) is the

expected cost with the system starting point of the state x0. As it is seen in

equation (5.1), N is defined as going to the infinity instead of a specified value as

in our research. Power demand, Pdem, of the vehicle is modeled as discrete-time

stochastic dynamic process. The details of stochastic modeling can be found in

[15].

Control signal is defined as the engine power Pe. The motor power, Pmot, becomes

a dependent variable:

Pe,k + Pmot,k = Pdem,k (5.2)

where k denotes the calculation instance.

The control policy iteration algorithm is used to solve the stochastic dynamic

programming problem based on the Bellman’s Optimality Principle. The itera-

tion process continues until the convergence point of the optimal cost function.

The stochastic method offers a generalized solution independent of time. So that

it is implemented directly to the real-time applications and vehicle tests. Since

our research focuses on the coupling effects between two automotive control prob-

lems working in the same physical plant we studied the deterministic controller

development techniques in order to see the interaction of the controllers better.

It should be noted that deterministic methods give better results than stochas-

tic methods on a specified drive cycle. As a future work stochastic methods are
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planned to be used in the controller development process for our hybrid vehicle

model.
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Appendix A

Codes

The Main file running dpm function used in [14] is presented here:

% load driving cycle

load JN1015

% create grid

grd.Nx{1} = 61;

grd.Xn{1}.hi = 0.7;

grd.Xn{1}.lo = 0.4;

grd.Nu{1} = 21;

grd.Un{1}.hi = 1;

grd.Un{1}.lo = -1; % Att: Lower bound may vary with engine size.

% set initial state

grd.X0{1} = 0.55;

% final state constraints

grd.XN{1}.hi = 0.56;

grd.XN{1}.lo = 0.55;
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% define problem

prb.W{1} = speed_vector; % (661 elements)

prb.W{2} = acceleration_vector; % (661 elements)

prb.W{3} = gearnumber_vector; % (661 elements)

prb.Ts = 1;

prb.N = 660*1/prb.Ts + 1;

% set options

options = dpm();

options.UseLine = 1;

options.SaveMap = 1;

options.MyInf = 1000;

options.Iter = 5;

options.InputType = ’c’;

options.FixedGrid = 0;

[res dyn] = dpm(@hev,[],grd,prb,options);


