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ABSTRACT

Uplink Scheduling for Delay Sensitive Traffic in Broadband

Wireless Networks

Cemil Can Coşkun

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Ezhan Karaşan

July 2012

In wireless networks, there are two main scheduling problems: uplink (mobile

station to base station) and downlink (base station to mobile station). During

the downlink scheduling, scheduler at the base station (BS) has access to queue

information of mobile stations (MS). On the other hand, for uplink scheduling,

BS only has the partial information of the MS since distributing the detailed

queue information from all MSs to BS creates significant overhead.

In this thesis, we propose a novel uplink scheduling algorithm for delay sen-

sitive traffic in broadband wireless networks. In this proposed algorithm, we

extend the bandwidth request/grant mechanism defined in IEEE 802.16 stan-

dard and send two bandwidth requests instead of one: one greedy and the other

conservative requests. MSs dynamically update these bandwidth requests based

on their queue length and bandwidth assignment in previous frames. The sched-

uler at the BS tries to allocate these bandwidth requests such that the system

achieves a high goodput (defined as the rate of error-free packets delivered within

a maximum allowed delay threshold) and bandwidth is allocated in a fair man-

ner, both in short term and in steady state. The proposed scheduling algorithm
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can utilize the network resources higher than 95% of the downlink scheduling

algorithms that use the complete queue state information at the MS. Using just

partial queue state information, the proposed scheduling algorithm can achieve

more than 95% of the total goodput achieved by downlink scheduling algorithms

utilizing whole state information. The proposed algorithm also outperforms sev-

eral downlink scheduling algorithm in terms of short-term fairness.

Keywords: Wireless Networks, Delay sensitive traffics, Uplink Scheduling,

Goodput
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ÖZET

GENIŞ BANTLI KABLOSUZ AĞLARDA GECIKMEYE

HASSAS UYGULAMALAR IÇIN YER-UYDU BAĞI

ZAMANLAMALARI

Cemil Can Coşkun

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ezhan Karaşan

Temmuz 2012

Kablosuz ağlarda iki çeşit zamanlama problemi vardır: Yer-uydu bağı (hareketli

kullanıcıdan baz istasyonuna) ve uydu-yer bağı (baz istasyonundan hareketli

kullanıcıya). Uydu-yer bağı zamanlamalarında, baz istasyonundaki zamanlayıcı

hareketli kullanıcıların bütün küyruk bilgilerine erişebilir. Fakat, uydu-yer bağı

zamanlamalarında, bütün hareketli kullanıcıların detaylı kuyruk bilgisini baz is-

tasyonuna taşımak büyük bir ek yük yarattığından baz istasyonunda hareketli

kullanıcılarla ilgili sadece kısmi bir bilgi vardır.

Bu tezde, geniş bantlı kablosuz ağlarda gecikmeye hassas uygulamalar için

yenilikçi bir yer-uydu bağı algoritması önerdik. Önerilen algoritmada, IEEE

802.16’nın belirlediği standart talep/alan ayırma mekanizmasını genişleterek bir

yerine iki tane bant genişliği talebi gönderdik: Bir tanesi istekli bir tanesi de

tamahkar olmak üzere. Hareketli kullanıcılar kuyruk uzunlukları ve daha önce

kendilerine ayrılan bant genişliğine göre dinamik bir şekilde bant genişliği tale-

plerini güncellediler. Baz istasyonundaki zamanlayıcı, bu bant genişliği tale-

plerine göre sistem başarılı çıktısını (hatasız olarak ve izin verilen en yüksek
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gecikme sınırını aşmadan iletilmiş paketler olarak tanımlanmıştır) yüksek tut-

maya çalışarak ve kısa ve uzun vadedeki eşit paylaşımı bozmadan kullanıcılara

yerleri ayırır. Öneriler algoritma ağ kaynaklarını bütün kullanıcıların kuyruk bil-

gilerine hakim olan uydu-yer bağlantısı zamanlayıcı algoritmalarının elde ettiği

faydanın %95i kadar daha fazla fayda getirecek şekilde kullanmıştır. Önerilen

algoritma, kullanıcıların kuyruk bilgilerinin sadece bir kısmını kullanarak, bütün

durum bilgisine sahip olan uydu-yer bağlantısı zamanlayıcı algoritmalarının elde

ettiği başarılı sistem çıktısının %95inden daha fazla bir faydaya ulaşmıştır.

Önerilen algoritma bir çok uydu-yer yönlü zamanlama algoritmalarının kısa vad-

ede elde ettiği eşit paylaşımdan daha iyi bir kısa vade eşit paylaşımı elde etmiştir.

AnahtarKelimeler: Kablosuz ağlar, Gecikmeye hassas uygulamalar, Yer-

uydu bağı zamanlayıcıları, Başarılı çıktı
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Chapter 1

Introduction

Telecommunication investments have been rapidly increasing in recent years. It

is estimated that the world-wide telecommunication industry revenues will grow

from $2.1 trillion in 2012 to $2.7 trillion in 2017 [1]. While telecommunication

industry continues to grow, wireless technologies are the main reason of this

growth. A major part of this investment is on wireless technologies because

wireless technologies allow user mobility. Owing to mobility provided by wireless

technologies, people can access to information or communicate with other people

anywhere without requiring wires. Given the importance placed on these services

in today’s culture, providing high-speed wireless services with a large coverage

area has become very busy research area.

There are several research challenges in wireless networks. One such problem

is the efficient scheduling of users’ demand for bandwidth so that network re-

sources are shared efficiently and user demand requirements are satisfied within

an acceptable delay. There are two main scheduling problems in wireless net-

works, namely uplink (mobile station to base station) and downlink (base station

to mobile station). For downlink transmissions, since all data is gathered at a
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single point (base station (BS)) developing a centralized scheduling algorithm is

relatively simple. On the other hand, in centralized uplink scheduling performed

at the BS only part of the required information is available at the scheduler

since traffic queues are held at mobile stations (MSs). Therefore additional in-

formation is needed from users. Since there is a trade-off between amount of

information provided to BS (extra overhead) and resource usage efficiency, up-

link scheduling is a more open area for research. Most of the existing researches

on wireless scheduling have been concentrated on downlink scheduling whereas

uplink scheduling has been explored less.

There are numerous different applications on the Internet tailored for differ-

ent purposes. Each application has its own requirements in the network. Some

applications require error-free data communication. Some of them need guaran-

teed bit rate. For some others, latency is the most important requirement. For

applications which have maximum latency requirement, the delay experienced

by a packet is what determines utility of the packet. Late received packets with

a delay exceeding a certain threshold (generally taken as 200 ms for interactive

applications) are useless for this type of applications. In order to measure the

rate of data transfer from MSs to BS for evaluating the performances of uplink

scheduling algorithms subject to maximum delay requirements, we use goodput

which is the rate of bits that are delivered to the destination within a certain

delay. Scheduling for delay sensitive traffics which requires not only timely de-

livery of packets, but also efficient use of network resources presents itself as a

challenging problem.

In this thesis, a novel uplink scheduling algorithm for delay sensitive traf-

fic for broadband wireless networks has been proposed. The main objectives of

this algorithm are to allocate bandwidth with an efficiency close to downlink
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scheduling algorithms, to improve total goodput of the system for delay sensitive

applications (i.e. rate of packets delivered within a pre-determined maximum

delay threshold) and at the same time have short and long term fairness among

users.

Our scheduling algorithm is designed for delay sensitive traffics. For these

type of applications, the delay experienced by a packet is not critical, as long

as it is less than a certain threshold. Therefore, in our proposed scheduling al-

gorithm, we assign higher priority to MSs that currently have an average delay

exceeding a certain threshold. When the buffer length of the MS drops below

the threshold, its high priority status ends.

In wireless networks, mobile users have different transmission rates because of

varying channel conditions and they cannot send equal amount of data for equal

air resources. When air resources are equally shared among users, it is called

airtime fairness. When users send equal amount of data within a time period,

it is called data-rate fairness. In our proposed scheduling algorithm, we try to

share air resources equally among users. For that purpose, at the beginning,

equal number of tokens is placed in each user’s bucket. At the end of the each

frame, tokens corresponding to user’s bandwidth allocation are reduced from the

user’s bucket. At the beginning of each frame, constant number of tokens is

added each user’s bucket. While granting, users are sorted in descending order

according to number of tokens if users do not have special conditions. Therefore,

users who use more resources at previous frames are less likely to be granted

more resources, e.g., conservative request is granted instead of greedy request.

In the literature, there are several centralized uplink scheduling algorithms

that have been proposed [2–11]. [2–4] are concentrated on only real-time traffics.
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On the other hand, [5–11] are proposed for multiclass traffics so other types of

traffics (i.e. Unsolicited Grant Services (UGS), Best Effort (BE)) are also taken

into account. In [2] and [4], it is assumed that queue information is available at

BS for granting bandwidth requests. On the other hand, the proposed schedul-

ing algorithm in the thesis uses partial information thus significantly reducing

the extra overhead required for uplink scheduling. [3] allocates constant grant

size to users when they are on state. The packet size is assumed to be constant

in [2], therefore BS can obtain all necessary queue information by using the total

queue size of each MS. On the contrary, packet size are varying in our scheduling

algorithm, therefore uplink scheduling problem becomes more challenging.

In our simulations, we compare our proposed scheduling algorithm with down-

link scheduling algoritmhs: Fully opportunistic downlink scheduling algorithm,

max-min fairness downlink scheduling algorithm, round robin downlink schedul-

ing algorithm, proportional fair scheduling algorithm and some different versions

of our proposed scheduling algorithm. Although, we have significant disadvan-

tages against these algorithms, our proposed scheduling algorithm can reach

97% of the total goodput of the algorithm which maximizes the total goodput of

the system (i.e. fully opportunistic scheduling algorithm and Max-min fairness

scheduling algorithm) On the other hand, we can reach 101% of total goodput

of the round robin scheduling algorithm where users are active 40% of the time

on the average. We can reach 103.5 percent of total goodput of round robin

scheduling algorithms where users are active 80% of the time on average. Our

proposed scheduling algorithm can utilize the resources for high load traffics with

95% efficiency of the round robin scheduling algorithm for a network where users

are active 40% of time on the average and with 98 % efficiency of the round

robin scheduling algorithm in networks where users are active 80 % of time. In

low traffic loads, our bandwidth utilization is over the 99% for any downlink

scheduling algorithm. The proposed method also performs comparably well with
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the downlink algorithms in terms of short term fairness.

In our simulations, we compare our proposed scheduling algorithm with al-

gorithms which send only one bandwidth request: greedy and conservative. Our

proposed scheduling algorithm can reach 107% of the total goodput of the greedy

algorithm and 200% of the total goodput of the conservative algorithm. Our pro-

posed scheduling algorithm can utilize the resources for high traffic loads with

152% of conservative algorithm and 113% of greedy algorithm. The proposed

method performs remarkably better than these two algorithms in terms of short

term fairness.

Another important point to make: In IEEE 802.16 standard MSs make a

single bandwidth request from the BS for the uplink scheduling channel. The

scheduler either grants this bandwidth request or denies it. The standard also

does not specify how the bandwidth request is determined by each MS. We ex-

tend the methodology defined in the standard in two different directions: First,

instead of making a single bandwidth request, the mobile station makes two

bandwidth requests, first one more conservative and the other more greedy. In

the scheduling of user packets, it is possible to split some packets into multi-

ple frames, called fragmentation, so that resources can be used more efficiently.

Fragmentation incurs extra overhead due to required fragmentation headers are

necessary for assembling the original packet. Fragmentation is not allowed in our

scheduling algorithm to reduce overhead. Therefore, bandwidth requests must

be delimited to contain unsplit packets. The scheduler either grants the greedy

bandwidth request, or grants the conservative bandwidth request, or denies the

requests. Second, we introduce an algorithm for MS in order to determine these

bandwidth requests based on information on bandwidth assignments to all MSs
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in previous frames and their own queue lengths.

The rest of the thesis is organized as follows. In Chapter 2, some useful

background information about wireless communication is provided. Moreover,

the basics of scheduling in wireless networks are explained. Furthermore, sev-

eral required metrics to quantify performance of uplink scheduling algorithms

are discussed. Existing wireless scheduling algorithms in the literature are also

discussed.

In Chapter 3, the proposed uplink scheduling algorithm is presented. First,

the bandwidth request part is explained. Second, granting part is explained. We

also provide 3 different scenarios to explain the details of the proposed uplink

scheduling algorithm: In the first scenario, network is uncongested and users

can get their greedy requests. In the second scenario, there is a more congested

network; some users get their conservative requests. In the third one, network is

highly congested. Some users encounter packet losses and increased latency.

Chapter 4 describes the simulation environment and the parameters that are

used for simulations such as burst profiles, path losses, etc. The results obtained

from these simulation settings are presented and discussed.

Chapter 5 concludes the thesis.
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Chapter 2

Background Information

Wireless telecommunication is basically data transmission between two or more

devices without wires [12]. Wireless systems use radio signal frequencies for

communication. Several devices use wireless technology to communicate such

as cellular telephones, radio telegraphs, laptop computers, two-way radios etc.

Wireless systems are preferred by users because of their flexibility. They do not

enforce people to stay at a fixed position. Thanks to wireless communication,

people can be mobile during the communication. Wireless communications are

getting more popular as the number of companies which provide wireless com-

munication services increases rapidly [13].

Wired communication is used to describe a type of communication which

uses wires and cables to transmit data. Traditional home telephones and LAN

communication are the most common examples of wired communications. Most

of the wired networks use fiber-optic cables which provide clear signaling for

transmission. Network with fiber optic cables ensure more signals than copper

wiring systems. In addition, signals still can go over long distances reliably

[14]. Wired communications are the most stable communication type since they

7



are affected less from weather conditions and environment compared to wireless

networks.

Wireless networks are a satisfying alternative to wired networks. The main

difference between wired and wireless networks is the physical cable. Wired net-

works communicate through wires which is a more stable technology than radio

signals. Signal strength of a wireless connection may fluctuate because of changes

in the wireless propagation medium. In addition, wired networks typically have

higher transmission speeds than wireless ones. Furthermore, sending data on air

causes security problems [15]. If transmitted data is not encrypted, anyone who

receives the signal can easily access the data. Moreover, some problems of wire-

less networks do not exist in wired ones such as time varying channel capacity

and location dependent errors. Additionally, interference from other users can

decrease channel capacity for wireless networks as users share a common wireless

transmission medium.

There are two main types of wireless communications: infrastructure based

and ad hoc networks which are depicted in Figure 2.1 [13]. In infrastructure

based wireless systems, clients can communicate with each other via fixed base

station or access points. Multiple wireless access points are needed in order to

cover an area. Access points assist data transfer among users. On the other

hand, ad hoc networks are decentralized [16]. There is no infrastructure, each

node participates in communication actively. Although ad hoc networks do not

require any fixed infrastructure, their performances are typically worse than in-

frastructured based networks since mobility of users may result in deterioration

in wireless transmission such as unavailability of routes.
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Figure 2.1: Infrastructure Based Networks vs. Ad-hoc Networks

In this thesis, infrastructure based networks are examined. In infrastructure

based networks, there must be a base station (BS) which organizes all commu-

nications among users. All packets are gathered at BS before they are sent to

their destination. One of the functions of the BS is to choose the packets to

be transmitted (received) to (from) the mobile stations. This problem is called

the packet scheduling or simply the scheduling problem. There are two type

of scheduling in infrastructure based networks which are uplink and downlink.

During the downlink scheduling, BS determines the data packets to be transmit-

ted to mobile stations (MS). On the other hand, during the uplink scheduling

BS chooses the data packets that it will receive from MSs and then inform MSs

about the selected schedule. In this thesis, we study the uplink scheduling prob-

lem.

In this chapter, some useful background information is discussed. Firstly,

brief information is provided about adaptive modulation and coding in Section

2.1. In Section 2.2, throughput and goodput concepts are introduced. In Section

2.3, different fairness metrics are discussed. Scheduling in wireless network will
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be reviewed in section 2.4. Finally, in Section 2.5, fragmentation is investigated.

2.1 Adaptive Modulation and Coding

In mobile communication systems, the quality of signal received by BS varies be-

cause of the distance between MS and BS, log-normal shadowing, fading, noise

and interference from other MSs etc. If the quality of signal is low, error proba-

bility increases. In order to improve the system capacity, decrease packet losses

and enlarge coverage area, the transmitted signal can be modified which is called

link adaptation [17]. Adaptive Modulation and Coding(AMC) is a link adapta-

tion method and it aims to raise the system capacity [17]. By using AMC, each

user can adapt its modulation and coding scheme individually. AMC does not

change power of the signal, instead it adjusts the modulation and coding format

with respect to the signal quality and channel conditions [18]. Users close to the

BS usually use larger modulation constellations and higher code rates. On the

other hand, users close to the cell boundary use smaller modulation constellations

and lower code rates. In addition, the scheduler may consider application’s de-

lay and error sensitivity in choosing appropriate coding and modulation scheme.

If channel changes very fast, AMC works poorly because choosing appropriate

modulation technique and coding scheme based on previous observations of the

channel is difficult [13].

2.2 Goodput and Throughput

In communication networks, throughput is basically average rate of successfully

delivered packets and it is usually measured in bits per second. Total throughput
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of a system is the sum of all data communications in the system. While calcu-

lating total throughput of a system, all packets are take into account. Although

some received packets are useless, they are counted in total throughput of the

system.

Each application may have different requirements such as minimum guaran-

teed bit rate, bit error rate, maximum latency etc. If an application has max-

imum latency requirement comparing throughput of users may be misleading.

Therefore, another parameter is needed for such systems.

Since error-free received packets may be useless from the application point

of view if it arrives after the allowed delay. For delay sensitive applications such

as Voice-over-IP (VOIP), arrival time of a packet is extremely important. If

a packet arrives to the destination after deadline, that packet becomes useless.

Therefore, throughput is not sufficient index to measure total success of system.

Thus, goodput is introduced which is the throughput of the useful bits, that are

delivered to the destination within a certain delay. While calculating goodput,

retransmitted packets or excessively delayed packets are ignored.

Table 2.1 gives information about which packets are counted and which are

not while calculating throughput and goodput. Difference between throughput

and goodput is that late received packets and packets with errors that require re-

transmission are not taken into account while calculating goodput because such

packets are useless for real time applications.
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Table 2.1: Type of packets taken into account for throughput and goodput cal-

culations

Throughput Goodput

Packets received on time
√ √

Late received packets
√

X

Packets with uncorrectable errors
√

X

Lost packets X X

2.3 Fairness

In wireless networks, users have time varying channel characteristics due to shad-

owing and path losses. Because of these variations, users have different data

transmission rates and they cannot send equal amount of data within a period

of time even when they are assigned the same amount of airtime. This leads to

the throughput-fairness dilemma. If bandwidth is shared equally among users,

it may decrease total throughput of the system while distributing the resources

equally to all users. Because of transmission rate differences, users can send al-

tered amount of data for equal bandwidth allocation. So there are two types of

fairness ideas: User can send equal amount of data or users are allocated equal

amount of time in air (called “airtime fairness”). First one punishes users who

have high data rate and assigns them small amount of bandwidth area because

of low data rated users. This punishment also decreases total throughput of the

system. In the second one, total transmitted data of users varies according to

their distances from the BS. Users who have high data rates, can send more bytes

within the same duration. If user’s mobility is low and their data rates rarely

change, users who have low data rates can send less amount of data even in the

long term.
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In order to quantify fairness of networks, different fairness metrics are defined :

FR(T ) =
( N∑
m=1

Rm(T )
)2
/
(
N ·

N∑
m=1

Rm(T )2
)

(2.1)

In Equation (2.1), Rm(T) refers to total amount of data sent in time interval

T by user m and N denotes the total number of users in the system. FR(T) mea-

sures the fairness of the data rate distribution among the users within a duration

T [19]. When FR(T) = 1, all users received the same average data rate within

the period. As FR(T) gets closer to 0, it means that the distribution of data

rates obtained by users is more unbalanced.

FA(T ) =
( N∑
m=1

Am(T )
)2
/
(
N ·

N∑
m=1

Am(T )2
)

(2.2)

In Equation (2.2) Am(T) refers to total amount of assigned area in air in time

interval T by user m. FA(T) measures the fairness of the amount of allocated

resources within a duration T [19]. When FA(T) = 1, all users received the same

amount of time in air within the period. As FA(T) gets closer to 0, it means that

the distribution of allocated resources to users are more unbalanced.

Fairness can be measured over long time periods (called “long-term fairness”)

and over short time durations (called “short-term fairness” ). A system can be

considered as long-term fair, if total assigned bandwidth is proportionally similar

to total generated traffic. For long-term fairness, relatively large T’s are used

to calculate the fairness index. On the other hand, relatively small T’s are used
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to calculate the short-term fairness index. For example, if simulation period is

divided into K pieces and each user gets whole bandwidth during one interval,

system becomes long term fair but it is extremely unfair for short intervals. If a

system is short-term fair, it must also be a long term fair [20].

Figure 2.2: Short Term Fairness vs. Long Term Fairness

In Figure 2.2, there are two different networks with 4 users. First network

divides time into smaller pieces and assigns each piece to one user only. On the

other hand, second network divides time to larger pieces and assigns each piece

to one user. Network 1 is both short term and long term fair, on the contrary,

network 2 is only long term fair. If any new packet comes to user 1 during an

interval assigned for user 2, this packet must wait for a long period until users

2-4 complete their transmissions.

Short-term fairness is an important parameter for applications which need

low latency, e.g. VOIP, online gaming etc [21]. If a system is short term fair,

users do not have any advantages on each other and they can access to channel

with the same probability over a short time horizon, which leads to short access

delays for packets. For delay sensitive applications, equal division of goodput is

more important than the division of throughput. Determining fairness by using

throughput may mislead because there are some useless packets in the calculation

of throughput. Therefore, while calculating fairness, fair sharing of the goodput
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must be the prior aim.

2.4 Scheduling in Wireless Networks

In wireless networks, each user has different channel qualities and traffic loads.

Allocating bandwidth to users in the network in each frame is basically known

as the scheduling problem. Scheduling is a fundamental part of wireless environ-

ments because (i) all resources are shared between users, (ii) users may interfere

with each other if they transmit concurrently [22].

In infrastructured based wireless networks, users communicate with the BS.

There are two main scheduling problems which are uplink (mobile station to

base station) and downlink (base station to mobile station). During downlink,

data is sent by a single source. Therefore there is no complicated process for

power allocation and adjusting transmission delays. However, in uplink, each

user sends its own data to a single source, therefore transmission timetable must

be set carefully, as otherwise there can be interference and data losses.

Figure 2.3: Downlink and Uplink Scheduling
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The scheduling mechanism can be centralized or distributed. In centralized

scheduling algorithms, scheduler at BS makes all decisions about bandwidth al-

location. For downlink scheduling, while scheduler knows whole information

about the network, using a centralized scheduling algorithm is a better choice.

On the other hand, for uplink scheduling, BS may not have the complete state

information of MSs. In order to implement centralized uplink scheduling some

information about the states of MSs must be transferred to the BS.

During the centralized downlink scheduling, scheduler at BS has access to

information such as packet arrival rate of MS, number of packets in each MS

queue, success statistics of packets transmission of each MS, size of each packets

in each MS queue etc. The basic operation of centralized downlink scheduling is

depicted in Figure 2.4. Therefore, setting up a scheduling algorithm for a down-

link scheduling becomes easier. Research on downlink scheduling is relatively

straight forward than in uplink scheduling [23] because there are less uncertain-

ties compared to uplink scheduling.

Figure 2.4: Centralized Downlink Scheduling

16



Centralized uplink scheduling can be designed similar to centralized down-

link scheduling. However in order to do this, each MS must send its complete

information to BS. Since distributing detailed information to the BS creates sig-

nificant messaging overhead for uplink scheduling, in practice BS may only have

partial information about MSs. While user’s sending all the information is not

a realistic approach, BS should make smart choices based on the limited infor-

mation provided by MSs and collected by itself from earlier transmissions. In

addition, MSs have to make careful choices about how much information will be

sent because there is a sharp threshold: sending less information may mislead BS,

conversely sending too much information causes waste of bandwidth. Therefore,

MSs and BS must work collaboratively to have a good performing centralized

uplink scheduling algorithm. The basic operation of centralized uplink schedul-

ing is shown in Figure 2.5.

Figure 2.5: Centralized Uplink Scheduling
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Because of these uncertainties, uplink scheduling is a more open area for re-

search. In this thesis, we study centralized uplink scheduling. All users send

their bandwidth requests to the BS and BS makes the decision about bandwidth

allocation. MSs make some assumptions by using previous bandwidth alloca-

tions for bandwidth requests. MSs and BS work collaboratively to determine on

bandwidth allocation.

Centralized uplink and downlink scheduling algorithms have been widely in-

vestigated in the literature [2–11,24]. There are many different parameters that

are optimized such as utility maximization, sum-rate maximization, achieving

a desired quality of services (QoS), power efficiency and ergodic sum-rate maxi-

mization [24]. In sum-rate maximization, optimal solution is that each subcarrier

is allocated by the user who has better channel conditions [24]. In order to im-

prove fairness, utilization maximization idea is suggested, it ensures more fairness

compared to throughput maximization algorithms such as proportional fairness.

Moreover, channel-aware resource allocation systems assume that state of chan-

nel is always available to scheduler and there are always packets in the queue

of each user [24]. The proposed scheduling algorithms in [5, 6, 8, 9] use differ-

ent scheduling algorithm for different service classes. Paper [7] proposes to use

opportunistic extension of deficit round robin (O-DRR) to satisfy delay require-

ment of different traffics. In paper [10], an adaptive proportional fairness(APF)

scheduling is proposed. APF tries to guarantee all different classes quality of

services (QoS). In paper [11], first allocate all UGS class packets and continue

to allocate all packets of ertPS, rtPS, nrtPS and BE, respectively. Scheduling

algorithms for real-time traffics are investigated in [2–4]. [2] and [4] use all queue

information for granting. On the other hand, our proposed scheduling algorithm

uses partial information. Paper [3] allocates constant grant size to users when

they are on state. Packet size is assumed constant for [2], therefore it can obtain

all necessary information by using total queue size of user. On the contrary,
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packet size is varying in our scheduling algorithm, therefore scheduling problem

becomes more challenging.

Wireless networks have limited resources, therefore choosing the most suit-

able scheduling algorithm is an important process. Scheduling algorithms can

be viewed under two main categories which are throughput-optimal scheduling

and fair scheduling [25]. In throughput-optimal scheduling, the scheduler at BS

aims to increase total throughput of the system by allocating a larger amount of

bandwidth to the users with better channel conditions. The resulting scheduling

algorithm, however, is not fair. Fully opportunistic scheduling algorithm [26]

is one of the most common throughput-optimal scheduling algorithms. On the

other hand, airtime fair scheduling algorithms do not take into account channel

condition of a user. Scheduler at BS tries to assign equal amount of bandwidth

to each user such as the max-min fairness algorithm [27]. Alternatively, data-rate

fairness algorithms such as round robin scheduling algorithm [28] try to equalize

the amount of data sent. Some scheduling algorithms such as proportional fair

scheduling algorithm [29] try to both maximize throughput and not to starve the

other users.

2.4.1 Fully Opportunistic Scheduling Algorithm

Good scheduling algorithms always try to improve the spectrum efficiency. One

way of doing that is assigning high percentage of bandwidth to users who has

higher data rates. However in order to do that system must sacrifice from fair-

ness. If users are wandering around the coverage area, long-term fairness may be

satisfied however it is impossible to have short-term fairness because data rate of

users does not change so frequently. Therefore during short periods, some users
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get low or no bandwidth.

Scheduling Algorithm

1. Online users are sorted with respect to their transmission rates.

2. If there are equality between transmission rates, these users are sorted

randomly.

3. Starting from the user who has the highest transmission rate, BS tries to

send whole queue of each user.

4. If any packet does not fit in or there are no more packets in the queue, BS

passes to next user.

5. This process continues until all packets are sent or whole bandwidth allo-

cated.

Fully opportunistic systems always maximize the total throughput, however

it sacrifices fairness among users. Therefore, some users starve when system is

congested.

2.4.2 Round Robin Scheduling Algorithm

Round robin scheduling algorithm is used for time-sharing systems. Each user

sends one of its packets during its term. Round robin scheduling algorithm forces

each user to send equal number of packets.

20



Scheduling Algorithm

1. Online users are sorted starting from the marked user from the previous

frame.

2. BS searches users one by one and add one packet from each user into the

list of scheduled packets.

3. This process continues until, all packets are sent or total bandwidth utilized

4. The user who is next to the last assigned user is marked for the next frame.

Round robin scheduling algorithm is a relatively fair algorithm. Each user

sends approximately equal number of packets at each frame. If users’ average

packet size is not varying, each user can send nearly equal amount of bytes. Users

who have low transmission rates, are assigned larger bandwidth allocation be-

cause they require more air resources to send equal amount of bytes. Therefore,

airtime fairness is not achieved in round robin scheduling. In addition, because

of this property, network’s total throughput is low.

2.4.3 Max-min Fairness Scheduling Algorithm

Aim of max-min fairness algorithm is dividing resources equally among users.

However, some users may have fewer demands than its share. In this case, max-

min fairness algorithm increases the resource of other users by sharing remained

bandwidth equally among others.

Scheduling Algorithm

1. Users are sorted in ascending order by their demands.
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2. Total bandwidth is divided by number of online users.

3. If demand of a user is lower than its share, rest of the bandwidth is split

up again. And shares of the remained users increase.

4. If not, all users get their assigned shares.

By using max-min fairness algorithm, total bandwidth area is equally shared

at each frame. Because of that, it is both short term and long term airtime fair.

If users are highly mobile in the environment, system will be long term data-rate

fair also. However total throughput may be low since users with low transmission

rates utilize more air resources.

2.4.4 Proportional Fair Scheduling Algorithm

Proportional fair scheduling algorithm tries to both maximize throughput and

fulfill user’s minimal demands [19]. Proportional fair scheduling algorithm try

to maximize instantaneous data rate over average data rate for each user. To

obtain this, it uses (2.3):

Pm(s) =
[DRCm(s)]α

[Rm(s)]β
(2.3)

where DRCm(s) refers to instantaneous data rate for user m at time s. Rm(s)

refers to average data rate received by user m which is calculated with Equa-

tion (2.4):

Rm(s) = (1− 1

LT
)Rm(s− 1) +

1

LT
DRC ′m(s− 1) (2.4)

DRC′m(s− 1) refers to data rate of user m at time s− 1, LT is the averaging

coefficient for the exponential weighted moving average. The parameters α and β
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are set to 1 for conventional proportional fairness scheduling, When α increases,

effect of instantaneous data-rate increases, therefore system will be more close

to fully opportunistic. If β increases, affect of average data-rate increases, so

system becomes more fair.

Scheduling Algorithm

1. Pm(s) are updated and online users are sorted according to their Pm(s).

2. If there are equality between users’ Pm(s)s, they will be sorted randomly.

3. Starting from the user who has the highest Pm(s), BS tries to send whole

queue of each user.

4. If any packet does not fit in bandwidth allocation, BS will pass to next

user.

5. This process continues until all packets are sent or whole bandwidth is

allocated.

Proportional fair scheduling algorithm is more fair than fully opportunistic

systems because of the denominator of equation (2.3). However, while α in (2.3)

increases, importance of instantaneous data rate increases; therefore users who

have higher data-rate will get larger space at bandwidth allocation and system

become less fair.

Fully opportunistic scheduling algorithm always aims to improve total

throughput of the system. Therefore, users with low data rates will be assigned

small or no portion of total bandwidth for long term, if network is congested.

Therefore, the system cannot be short-term fair and total goodput of system will
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suffer from it. On the other hand, it can send more data than other scheduling

algorithms by maximizing the throughput. If the system is highly congested,

using fully opportunistic scheduling algorithm would be best choice because to-

tal throughput of system will increase and it can decrease total number of lost

packets. In addition, congested traffic will be overcome in a shorter time period.

Each user can send equal amount of packets by using round robin scheduling

algorithm. If packet sizes vary in large range, short-term data-rate fairness will

be unbalanced. However, if packet sizes are nearly equal to each other, system

will be short-term data-rate fair as well. While users send equal number of pack-

ets within the same time interval, the system will sacrifice from total throughput.

Max-min fairness scheduling algorithm always assures airtime fairness. Sys-

tem resources are equally shared among users. If users’ data-rates do not change

frequently in system, data-rate fairness is not provided because users with low

data rates send less data than others. However, total throughput of the system

will be greater than round-robin scheduling algorithm.

Proportional fairness algorithm is a hybrid scheduling algorithm. It both tries

to improve the total throughput of the system and also try to satisfy minimum

demand of users. Therefore, total throughput of the system will be less than

fully opportunistic scheduling algorithm however it will be more fair.

In Table 2.2, algorithms are sorted according to importance of the given

parameters. For example, fully opportunistic scheduling algorithm is the best

algorithm to maximize total throughput of the system, however, it is the worst

for the fairness of system.
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Table 2.2: Comparison of Different Scheduling Algorithms

Max. Thr. S. term Fair L. Term Fair

Fully Opportunistic 1 4 4

Round Robin 4 2 1

Max Min Fairness 3 2 2

Proportional Fairness 2 3 3

2.5 Fragmentation

If a network layer packet does not perfectly fit in the allocated bandwidth at the

link layer, there are two choices: User can divide the packet into two or more

pieces (fragmentation) or it can leave a portion of the assigned space empty. Un-

filled allocated bandwidth is not a good option as it reduces the efficiency and

thus goodput. However, fragmentation causes messaging overhead on the system

which means extra bits transmitted over the link. Therefore, user must make

wise choices about fragmentation.
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Figure 2.6: Fragmentation

In Figure 2.6, the last packet does not fit in the bandwidth allocation of user.

Therefore, the packet is divided into two pieces and the packet transmitted in

multiple frames. There will be two small packets, however the total number of

transmitted bytes of these two fragments is more than the original packet due

to extra overhead emanating from fragmentation. In this thesis, we assume that

fragmentation is not allowed in order to reduce the overhead.

In the next chapter, firstly details of proposed uplink scheduling for delay

sensitive traffic are provided. After that, brief information is provided about

priority mechanism and its properties are discussed. Finally, 3 examples are

provided to explain the details of the scheduling algorithm.
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Chapter 3

Proposed Uplink Scheduling

Algorithm for Delay Sensitive

Traffics (USFDST)

In this thesis, a centralized uplink scheduling algorithm is proposed. During the

centralized uplink scheduling, scheduler at BS decides on bandwidth allocation

of each MS for the next uplink frame. In uplink scheduling, there are some diffi-

culties. The scheduler at BS cannot obtain whole queue information about MSs

because gathering all information at BS causes significant messaging overhead

and it will decrease spectral efficiency of the network. Therefore, scheduler at BS

must make its decision by using partial information which is provided by MSs.

Meanwhile, MSs have to make smart choices about which information will be

sent to BS. Under or over messaging may mislead the BS and make the schedul-

ing more difficult.

In this thesis, MSs have an active role on scheduling. They decide on their

bandwidth requirements. For this purpose, they use bandwidth allocation of
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other users at previous frame, size of their queues, its own bandwidth allocation

at previous frames. By using these parameters, each MS determines on two dif-

ferent bandwidth requests: One of them is greedy and the other is conservative.

After that, user will send to BS only these two bandwidth requests and priority

information. Priority basically means that user’s queue is expanding and if it

does not get more bandwidth allocation, it will start to lose packets or send ex-

cessively delayed packets which are useless for real-time applications. The aim of

this scheduling algorithm is to improve total goodput of the system for real-time

applications (e.g. VOIP). Therefore, decreasing number of excessively delayed

packets is one of the significant objective of algorithm.

Figure 3.1: Request part of Algorithm

In Figure 3.1, each user sends its bandwidth requests to the scheduler at BS.
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Figure 3.2: Granting part of Algorithm

In Figure 3.2, the scheduler at BS separates users into two group according

to priority information: prior group, non-prior group. After that, the scheduler

at BS sorts users in each group according to number of token in descending order

and allocates conservative bandwidth requests of prior users using this order. If

conservative requests of each user in prior group are satisfied, scheduler at BS

starts to assign greedy request of these users according to same order. After

that, scheduler at BS do same process for non-prior group.

In this chapter, details of proposed algorithm are explained in Section 3.1. In

Section 3.2, priority is discussed. Finally, in Section 3.3 three different scenario

is provided.
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3.1 Uplink Scheduling Algorithm for Delay

Sensitive Traffic

In this part, firstly request part of uplink scheduling algorithm for delay sensitive

traffic is explained in Section 3.1.1. In Section 3.1.2, granting part of uplink

scheduling algorithm for delay sensitive traffic is explained.

The following parametes are used by the proposed uplink scheduling algo-

rithm:

� N : Number of users in the system

� NAj : Number of active users in the system at frame j

� BWijk : BW requests of user i at frame j (k=1: conservative, k=2: greedy)

� BWAij : Assigned bandwidth of user i at frame j

� BWijkb : highest limit for BW requests for user i at frame j (k=1: conser-

vative, k=2: greedy)

� Condij : Condition of user i at frame j. Condition of user i gives the relation

between BWij: and BWAij

� B : Total bandwidth of system

� Rij: Tranmission rate of user i at frame j

� Prij : if user i is alarmed at frame j, Prij=1, else 0

� Tki: # of token of user i

� Tk : Constant token which is added to each user’s bucket at the beginning

of each frame
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� BDL : Use to determine on user’s alarm set off or not. if TDRi is less than

BDL and Pri(j−1) = 1, Prij will set to 0.

� BDH : Use to determine on user’s alarm set on or not. if TDRi is higher

than BDH and Pri(j−1) = 0, Prij will set to 1.

� PoB: Percentage of occupied bandwidth in the previous frame

� QTij:Total number of bytes in the queue of user i at frame j

� TDRi : Total number of needed frame to send the whole queue of user i, if

its assigned bandwidth will be average of last 10 granted bandwidths

� ML10Reqi : Average bandwidth for user i assigned over the last 10 frames

3.1.1 Request Part of Uplink Scheduling Algorithm for

Delay Sensitive Traffic

1. Add constant number of tokens to each user’s bucket according to Formula

3.1

Tki = Tki + Tk (3.1)

2. Decide on BWij1b and BWij2b

� If Condij=1

When Condij =1, it means that BWi(j−1)1 or BWi(j−1)2 6= 0, however

BWAi(j−1) =0

– If Prij = 1

* If there is only one user whose Condij=1

BWij1b = BWi(j−1)1 (3.2)
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BWij2b = min(B, 0.01 ∗B +BWij1b) (3.3)

* If there are more users whose Condij=1

BWij1b = BWi(j−1)1 (3.4)

BWij2b = min(B, 0.005 ∗B +BWij1b) (3.5)

– If Prij =0

* If there is only one user whose Condij =1

BWij1b = 0.75 ∗BWi(j−1)1 (3.6)

BWij2b = min(B, 0.01 ∗B +BWij1b) (3.7)

* If there are more users whose Condij=1

BWij1b = 0.75 ∗BWi(j−1)1 (3.8)

BWij2b = min(B, 0.005 ∗B +BWij1b) (3.9)
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Figure 3.3: Condij=1 Chart

Figure 3.3 explains the operation chart of users with Condij=1. If a

user does not get its conservative request, it means that whether net-

work is congested or user’s conservative request is too large to fit in. If

there are more users in the network whose condition is 1, congestion is

more likely reason. Therefore users must reduce their requests. How-

ever, if Prij=1, reducing bandwidth requests may be harmful for the

user because user needs large amount of bandwidth allocation imme-

diately. Therefore, repeating the same request will be more rational

solution. Otherwise, although user gets some bandwidth allocation,

it may be useless for it.

� If Condij=2

When Condij =2, it means that BWi(j−1)2 6= 0, however BWAi(j−1) =

BWi(j−1)1
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– If there is no user whose Condij=1 and there are some users whose

Condij = 3

* Prij =1

BWij1b = min(B, 0.02 ∗B +BWi(j−1)1) (3.10)

BWij2b = min(B, 0.01 ∗B + ∗BWij1b) (3.11)

* Prij =0

BWij1b = min(B, 0.01 ∗B +BWi(j−1)1) (3.12)

BWij2b = min(B, 0.01 ∗B +BWij1b) (3.13)

– If there is no user whose Condij=1 and there is no user whose

Condij= 3 either

BWij1b = min(B, 0.01 ∗B +BWi(j−1)1) (3.14)

BWij2b = min(B, 0.01 ∗B +BWij1b) (3.15)

– If there are some users whose Condij=1 and there are some users

whose Condi= 3 either

* Prij=1

BWij1b = min(B, 0.01 ∗B +BWi(j−1)1) (3.16)

BWij2b = min(B, 0.01 ∗B +BWij1b) (3.17)
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* Prij=0

BWij1b = min(B,BWi(j−1)1) (3.18)

BWij2b = min(B, 0.01 ∗B +BWij1b) (3.19)

– If there are some users whose Condij=1 and there is no user whose

Condij= 3

* Prij=1

BWij1b = min(B,BWi(j−1)1) (3.20)

BWij2b = min(B, 0.01 ∗B +BWij1b) (3.21)

* Prij=0

BWij1b = min(B, 0.9 ∗BWi(j−1)1) (3.22)

BWij2b = min(B, 0.01 ∗B + ∗BWij1b) (3.23)

Figure 3.4: Condij=2 Chart
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Figure 3.4 explains the operation chart of users with Condij=2. If

a user gets its conservative request, its primary aim is protecting its

previous bandwidth allocation and if it is possible, it will try to get its

greedy request. If congestion is not severe (i.e. there is no user with

Condkj=1), it increases its requests a little bit. Otherwise, it won’t

change its requests.

� If Condij=3

When Condij=3, it means that BWAi(j−1) = max(BWi(j−1)1,

BWi(j−1)2)

– If all online user’s Condij=3

* If it sends all its queue at previous frame

BWij1b = min(B, 1.5 ∗BWAi(j−1)) (3.24)

BWij2b = min(B, 0.02 ∗B +BWij1b) (3.25)

* If it cannot send all its queue in the previous frame

BWij1b = min(B, 0.4 ∗B/nAj + 0.75 ∗ (1/PrF ) ∗BWAi(j−1))

(3.26)

BWij2b = min(B, 0.02 ∗B + ∗BWij1b) (3.27)

– If all online users’ Condij is not 3

* If it sends its all queue in the previous frame

BWij1b = min(B,BWAi(j−1)) (3.28)

BWij2b = min(B, 0.02 ∗B +BWij1b) (3.29)
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* If it does not send all its queue in the previous frame

BWij1b = min(B, 0.4 ∗B/nAj + 0.6 ∗ (1/PoB) ∗BWAi(j−1))

(3.30)

BWij2b = min(B, 0.02 ∗B + ∗BWij1b) (3.31)

Figure 3.5: Condij=3 Chart

Figure 3.5 explains the operation chart of users with Condij=3.

If user sends its whole queue in the previous frame, its bandwidth

requirements are relatively low. It does not suffer highly from low

bandwidth allocation at the next frame. Therefore, it will try to

increase its bandwidth allocation if network is not congested (i.e.

all online user’s Condij = 3). On the other hand, if user does not

send its all queue in the previous frame, bandwidth allocation is

more necessary for the user in next frame. Therefore, it adjusts

its requests according to the previous bandwidth allocation. If

PoB is higher (i.e. bandwidth is full or nearly full), it will be
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more conservative, otherwise it will be more aggressive.

� If Condij=0

It meansBWi(j−1)1 and BWi(j−1)2 are equal to 0

BWij1b = BWmin (3.32)

BWij2b = BWij1b + 1packet (3.33)

BWmin = 0.8 ∗B/N (3.34)

For users who are not online in the previous frame, BWmin is a starting

point. User does not have any information about network’s condition

therefore it starts slowly, and in the next frame, it will adjust its

bandwidth requests according to the congestion of network.

3. Each user decides on whether it is alarmed or not according to the Equa-

tion (3.35):

TDRi = QTij/Rij/ML10Reqi (3.35)

if TDRi > BDH and Prij=0

it sets Prij=1

else if TDRi < BDL and Prij =1

it sets Pri=0
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4. User will determines on bandwidth requests for next frame by using BWij1b

and BWij2b. They do not use any fragmentation and request highest num-

ber of unsplit packets which is less than BWij1b and BWij2b. While deciding

BWij1, if first packet in the queue is larger than BWij1b, user can extend it

and will send first packet as a request. After decision on BWij1, if BWij1

plus next packet in the queue exceeds BWij2b, BWij2 will be assigned as

next packet in the queue plus BWij1.

3.1.2 Granting Part of Uplink Scheduling Algorithm for

Delay Sensitive Traffic

In this part, granting of uplink scheduling algorithm for delay sensitive traffic is

explained. After that, an example scenario is provided.

1. Firstly, scheduler sort alarmed users with respect to their tokens.

2. After that if B −
∑i−1

k=1BWAkj > BWij1

BWAij = BWij1 (3.36)

3. If there is still empty space and B −
∑i−1

k=1BWAkj > BWij2 − BWij1, the

scheduler updates bandwidth assignment of user i as

BWAij = BWij2 (3.37)

4. After bandwidth allocation for alarmed users, scheduler assigns bandwidth

to non-alarmed ones. Scheduler sorts them with respect to number of

tokens. Next, if B −
∑

Prij=1BWA:j −
∑i−1

k=1BWAkj > BWij1

BWAij = BWij1 (3.38)
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5. If there is still empty space and B −
∑

Prij=1BWA:j −
∑i−1

k=1BWAkj >

BWij2 −BWij1

scheduler will update bandwidth assignment of user i as

BWAij = BWij2 (3.39)

6. Tki = Tki −BWAij

7. Assign condition of users

� BWAij = max(BWij1, BWij2) then Condi(j+1)=3

� BWAij = BWij1 then Condi(j+1)=2

� BWij1 or BWij2 6= 0 but BWAij = 0 then Condi(j+1)=1

� BWij1 and BWij2 = 0 then Condi(j+1)=0

8. Determine ML10Reqi of users: User’s oldest request is subtracted and

newest request is added instead of that. However, if both requests of a

user are less than BWmin and user is granted for its maximum request,

then while calculating ML10Reqi, user’s grant is assumed BWmin to avoid

false alarm. On the other hand, if user has requested for a bandwidth but it

is not granted any, then while calculating ML10Reqi, user’s grant is taken

as 0.

Granting Example

In this part, a granting example for uplink scheduling algorithm for delay sensi-

tive traffic is provided.
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Figure 3.6: Bandwidth Requests of Users

In Figure 3.6, there are 5 users and their bandwidth request are shown. Two

of users are alarmed and the others not.
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Figure 3.7: BW Allocation of alarmed users

In Figure 3.7, the scheduler at BS sorts alarmed users according to number

of token. After that, allocate their conservative and greedy requests respectively.
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Figure 3.8: BW Allocation of Non-Alarmed users

In Figure 3.8, the scheduler at BS sorts non-alarmed users according to num-

ber of token and allocate their conservative and greedy requests respectively.

Greedy request of MS5 does not fit in bandwidth allocation. Therefore, it gets

its conservative request.
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Figure 3.9: Updating Tki and to determine on Condij

In Figure 3.9, the scheduler updates Tki and determines on Condij of each

user according to BWAij.

3.2 Priority

The aim of priority mechanism is (i) allocating more bandwidth to users whose

queue cannot be emptied in reasonable amount of time, (ii) by early intervention,

prevent users’ queue to become full and start losing packets. However, this mech-

anism can be effective when number of alarmed users is low in the network. If all

users are alarmed, this mechanism will be harmful for system because when users

are alarmed, scheduling algorithm always try to expand their bandwidth alloca-

tion. Therefore, this scheduling algorithm may be useless for saturated networks.
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3.3 Simulation Examples

In this section, brief explanation will be provided about the operation of the

scheduling algorithm. There are three different scenarios. In the first one, net-

work is uncongested; users can easily get their greedy request. In the second

one, network is more congested. Therefore, some users will get their conserva-

tive request and in some cases, they won’t get any bandwidth. Third one is the

most congested network and priority mechanism will be explained in this part.

In these scenarios, most common cases that can be faced are investigated.

3.3.1 Example 1- Uncongested network without priority

In this scenario, network is uncongested. We choose Rij =1 for all users to make

scenario simpler.

Users’ previous Tki, BWi(j−1)1, BWi(j−1)2, BWAi(j−1) and Condij are in Ta-

ble 3.1.

Table 3.1: Previous Parameters

User QTi(j−1) Tki BWi(j−1)1 BWi(j−1)2 BWAi(j−1) Condij

1 8800 11000 7100 8800 8800 3

2 2700 23000 1600 1900 1900 3

3 2200 8000 2000 2200 2200 3

4 0 52000 0 0 0 0
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Request

1. Firstly, number of tokens of users is updated as shown in Table 3.2.

Table 3.2: Token Updates

User Tki

1 11000+4000=15000

2 23000+4000=27000

3 8000+4000=12000

4 52000+4000=56000

2. Highest limits are decided for BW Requests as shown in Table 3.3. If a user

sends its whole queue in the previous frame, its necessity for bandwidth is

relatively low. Therefore, for next frame, scheduler courages other users to

make more greedy requests. To make these requests more realistic, users

use PoB to determine next requests.

Table 3.3: Determination of BWij1b and BWij2b

User BWij1b BWij2b

1 1.5*8800=13200 0.02*20000+13200=13600

2 0.4*20000/3 + 0.75*(1/0.685)*1900=4747 0.02*20000+4747=5147

3 1.5*2200=3300 0.02*20000+3300=3700

4 0.8*20000/4=4000 4000+ 1packets

3. After that, users will decide on their requests as shown in Table 3.4 by

using the limits given at Table 3.3.
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Table 3.4: BWij1 and BWij2 values

User QTij BWij1 BWij2

1 5500 5500 0

2 4200 4200 0

3 4800 3000 3500

4 7800 3900 4800

Granting

1. Scheduler firstly, sorts user with respect to their tokens in descending order

as given in Table 3.5.

Table 3.5: Sorting of users

User Tki BWij1 BWij2

4 56000 3900 4800

2 27000 4200 0

1 15000 5500 0

3 12000 3000 3500

2. After that, scheduler will decide on bandwidth allocation of users by using

the order in Table 3.5. Scheduler assigns conservative requests of users

at first. There is empty space in bandwidth, therefore scheduler assigns

greedy requests of users also as given in Table 3.6.
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Table 3.6: Assigning BWAij and Condij and Updating Tki

User QTij BWAij Condi(j+1) Tki

1 5500 5500 3 15000-5500=9500

2 4200 4200 3 27000-4200=22800

3 4800 3500 3 12000-3500=8500

4 7800 4800 3 56000-4800=51200

In this example, network is not congested; therefore users can get their greedy

bandwidth requests easily. If there is not any special arrangement for user 2(i.e.

user who does not send its whole queue at previous frame), its BWij1b and BWij2b

will be lower (2850 and 3250). The adjustment helps users to increase their

BWij1b and BWij2b more quickly in uncongested networks.

3.3.2 Example 2-Congested network without priority

In this scenario, network is more congested than example 1. Therefore, users

have to be more conservative about their bandwidth requests. We choose Rij =1

for all users to make scenario simpler.

Users’ previous Tki, BWi(j−1)1, BWi(j−1)2, BWAi(j−1) and Condij are pro-

vided in the Table 3.7.
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Table 3.7: Previous Parameters

User QTi(j−1) Tki BWi(j−1)1 BWi(j−1)2 BWAi(j−1) Condij

1 17000 16000 9200 9900 0 1

2 10000 22000 5500 6200 6200 3

3 4700 80000 4300 4700 4700 3

4 12300 -15000 5200 5600 5600 3

Request

1. Firstly, number of tokens of users is updated as shown in Table 3.8.

Table 3.8: Token Updates

User Tki

1 16000+4000=20000

2 22000+4000=26000

3 80000+4000=84000

4 -15000+4000=-11000

2. Highest limits are decided for BW Requests as shown in Table 3.9. If a

user did not assign any bandwidth for previous frame (e.g. user 1), there

are two possibilities: network may be congested or previous requests are

too big to fit in. Solution for both problem is to decrease requests. In

addition, because of the arrangement for user with Condij=3, users with

Condij=3 become more conservative because PoB is close to 1 (i.e. network

is congested) and this mechanism forces them to make more conservative

requests.
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Table 3.9: BWij1b and BWij2b values

User BWij1b BWij2b

1 0.75*9200=6900 0.01*20000+6900=7100

2 0.4*20000/4 + 0.6*(1/0.82)*6200=6536 0.02*20000+6536=6936

3 4700 0.02*20000+4700=5100

4 0.4*20000/4+0.6*(1/0.82)*5600=6097 6097+ 400=6497

3. After that, users will decide on their requests as shown in Table 3.10 by

using the limits at given at Table 3.9. When table is examined, BW1j2

is greater than BW1j2b because after deciding on BW1j1, size of the next

packet in the queue of user 1 is 900 bytes. Fragmentation is not allowed

in the algorithm; therefore user 1 can send a request greater than the pre-

determined limit.

Table 3.10: BWij1 and BWij2 values

User QTij BWij1 BWij2

1 23000 6400 7300

2 14000 6200 7100

3 600 600 0

4 11000 5400 6200

Granting

1. Scheduler, firstly, sorts user with respect to their tokens in descending or-

der as shown in Table 3.11.
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Table 3.11: Sorting of users

User Tki BWij1 BWij2

3 84000 600 0

2 26000 6200 7100

1 20000 6400 7300

4 -11000 5400 6200

2. After that, scheduler decides on bandwidth allocation of users as shown in

Table 3.12 by using the order in Table 3.11. Scheduler assigns conservative

requests of users at first. There is an empty space in bandwidth allocation,

greedy requests of user 2 and 3 fit in this empty space, therefore scheduler

updates their allocation.

Table 3.12: Assigning BWAij and Condij and Updating Tki

User QTij BWAij Condi(j+1) Tki

1 23000 6400 2 20000-5500=14500

2 14000 7100 3 26000-7100=18900

3 600 600 3 84000-600=83400

4 11000 5400 2 -11000-5400=-16400

Next frame:

Request

1. Firstly, number of tokens of users is updated as shown in Table 3.13 .
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Table 3.13: Token Updates

User Tki

1 14500+4000=18500

2 18900+4000=22900

3 83400+4000=87400

4 -16400+4000=-12400

2. Highest limits are decided for BW Requests as shown in Table 3.14. User

1 and user 4 do not get their greedy requests at previous frame, however

the others can. Therefore, their primary aim is to protect their previous

bandwidth allocation. User 2’s bandwidth allocation is greater than aver-

age of network (20000/4=5000) and network is congested.

Table 3.14: BWij1b and BWij2b values

User BWij1b BWij2b

1 6400+200=6600 0.01*20000+6600=6800

2 0.4*20000/4 + 0.6*(1/0.975)*7100=6369 0.02*20000+6369=6769

3 600 0.02*20000+600=1000

4 5400+0.01*20000=5600 0.01*20000+ 5600=5800

3. After that, users will decide on their requests as shown in Table 3.15 by

using limits at given in Table 3.14.
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Table 3.15: BWij1 and BWij2 values

User QTij BWij1 BWij2

1 19000 6500 6700

2 7600 6300 6600

3 2400 1200 1700

4 7000 5500 6200

Granting

1. Scheduler firstly, sorts user with respect to their tokens descending order

as shown in Table 3.16.

Table 3.16: Sorting of users

User Tki BWij1 BWij2

3 87400 1200 1700

2 22900 6300 6600

1 18500 6500 6700

4 12400 5500 6200

2. After that, scheduler decides on bandwidth allocation of users as shown in

Table 3.17 by using the order in Table 3.16. Scheduler assigns conservative

requests of users at first. There is an empty space in bandwidth allocation,

greedy request of user 3 fits in this empty space, therefore scheduler up-

dates its allocation.
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Table 3.17: Assigning BWAij and Condij and Updating Tki

User QTij BWAij Condi(j+1) Tki

1 19000 6500 2 18500-6500=12000

2 7600 6300 2 22900-6300=16600

3 2400 1700 3 87400-1700=85700

4 7000 5500 2 -12400-5500=-17900

In the example 2, network is more congested than example 1. If users were

aggressive like example 1, they might get no bandwidth allocation.

3.3.3 Example 3- Congested network with priority

This is the most congested scenario among the three examples that we consider.

Prij=1 for some users, it means that their queue length is too large and they can

send them all in more than BDH frame, if they assign ML10Reqi for bandwidth.

We choose Rij =1 for all users to make scenario simpler. In addition, BDL=5

and BDH=10 for this example.

Users previous Tki, BWi(j−1)1, BWi(j−1)2, BWAi(j−1), Condij, Pri(j−1) and

ML10Reqi are provided in the Table 3.18 and 3.19.
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Table 3.18: Previous Parameters I

User QTi(j−1) Tki BWi(j−1)1 BWi(j−1)2 BWAi(j−1)

1 75000 -30000 7300 8000 8000

2 35000 10000 6700 7000 7000

3 40000 22000 4800 6000 4800

4 0 94000 0 0 0

Table 3.19: Previous Parameters II

User Condij Pri(j−1) ML10Reqi

1 3 1 4000

2 3 1 5500

3 2 0 4500

4 0 0 3000

Request

1. Firstly, number of tokens of users is updated as shown in Table 3.20.

Table 3.20: Token Updates

User Tki

1 -30000+4000=-26000

2 10000+4000=14000

3 22000+4000=26000

4 94000+4000=98000

2. Highest limits are decided for BW Requests as given in Table 3.21.

55



Table 3.21: BWij1b and BWij2b values

User BWij1b BWij2b

1 0.4*20000/3+0.6*(1/0.99)*8000=7515 0.02*20000+7515=7915

2 0.4*20000/3 + 0.6*(1/0.99)*7000=6909 0.02*20000+6909=7309

3 0.01*20000+ 4800=5000 0.01*20000+5000=5200

4 0.8*20000/4=4000 4000+ 1packets

3. Priorities are updated as shown in Table 3.22. Although, TDR3 is greater

than TDR2, user 2 is alarmed, while user 3 is not, because Pr2(j−1)=1 and

TDR2 is over the BDL. On the other hand, Pr3(j−1)=0 and TDR2 is under

the BDH .

While calculating ML10Reqi, oldest bandwidth allocation is subtracted and

last bandwidth allocation added instead.

Table 3.22: Prij are updated

User QTij ML10Reqi TDRi Prij

1 75000 (4000*10-7000+8000)/10=4100 18.29 1

2 35000 (5500*10-4500+7000)/10=5750 6.08 1

3 40000 (4500*10-2500+4800)/10=4730 8.45 0

4 0 3000 0 0

4. After that, users will decide on their requests as shown in Table 3.23 by

using the limits at given in Table 3.21.
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Table 3.23: BWij1 and BWij2 values

User QTij BWij1 BWij2

1 71000 7500 8400

2 30000 6200 6600

3 42000 4500 4750

4 2000 2000 0

Granting

1. Scheduler, firstly, sorts user whose Prij=1 with respect to their tokens in

descending order. After that, it will sort other user with respect to their

tokens in descending order either as shown in Table 3.24.

Table 3.24: Sorting of users

User Tki BWij1 BWij2 Prij

2 14000 6200 6600 1

1 -26000 7500 8400 1

4 98000 2000 0 0

3 26000 4500 4750 0

2. After that, scheduler decides on bandwidth allocation of users as shown in

Table 3.25 by using the order in Table 3.24. Scheduler assigns conservative

requests of users with Prij=1 at first. After that, there is an empty space,

greedy request of user 1 and 2 fit in this empty space. therefore, sched-

uler updates their allocation. Finally, it will pass on the others and do

same process in the same order. The aim of the idea is lessening queues of

alarmed users to protect those users from packet losses and sending packets
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with excessive delays.

Table 3.25: Assigning BWAij and Condij and Updating Tki

User QTij BWAij Condi(j+1) Tki

1 71000 8400 3 -26000-8400=-34400

2 30000 6600 3 14000-6600=7400

3 42000 0 1 26000-0=26000

4 2000 2000 3 98000-2000=96000

Next frame:

Request

1. Firstly, number of tokens of users is updated as given in Table 3.26.

Table 3.26: Token Updates

User Tki

1 -34400+4000=-30400

2 7400+4000=11400

3 26000+4000=30000

4 96000+4000=100000

2. Highest limits are decided for BW Requests as given in Table 3.27.
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Table 3.27: BWij1b and BWij2b values

User BWij1b BWij2b

1 0.4*20000/4+0.6*(1/0.85)*8400=7929 0.02*20000+7929=8329

2 0.4*20000/4 + 0.6*(1/0.85)*6200=6376 0.02*20000+6376=6776

3 0.75*4500=3375 0.005*20000+3375=3475

4 2000 0.02*20000+2000=2200

3. Priorities are updated as shown in Table 3.28. While calculating

ML10Req3, 0 is added because user made request at previous frame but

it didn’t get any. In addition, although BWA4(j−1)=2000, 4000(BWmin) is

added to calculate ML10Req4 because it gets its maximum request and it

is less than BWmin, this precaution is used to prevent false alarms. This

user gets low bandwidth allocation because of its requests.

At this frame, Pr2j becomes 0, because TDR2 is now lower than BDL. At

the same time, Pr3j becomes 1 because TDR3 is higher than BDH .

Table 3.28: Prij are updated

User QTij ML10Reqi TDRi Prij

1 63000 (4100*10-2500+8400)/10=4690 13.43 1

2 26000 (5750*10-0+6600)/10=6410 4.05 0

3 50000 (4730*10-7500+0)/10=3980 12.56 1

4 3500 (3000*10-2500+4000)/10=3150 1.11 0

4. After that, users will decide on their requests as shown in Table 3.29 by

using limits given at Table 3.27.
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Table 3.29: BWij1 and BWij2 values
User QTij BWij1 BWij2

1 63000 7700 8200
2 26000 6100 6600
3 50000 3200 4100
4 3500 1500 2200

Granting

1. Scheduler, firstly, sorts user whose Prij=1 with respect to their tokens in

descending order. After that, it will sort other user with respect to their

tokens in descending order either as shown in Table 3.30.

Table 3.30: Sorting of users

User Tki BWij1 BWij2 Prij

3 30000 3200 4100 1

1 -30400 7700 8200 1

4 100000 1500 2200 0

2 11400 6100 6600 0

2. After that, scheduler decides on bandwidth allocation of users as shown in

Table 3.31 by using the order in Table 3.30. Scheduler assigns conserva-

tive requests of users with Prij=1 at first. After that, there is an empty

space in bandwidth, greedy requests of user 1 and 3 fit in this empty space.

Therefore, scheduler updates their allocation. Finally, it will pass on the

others and execute the same process in same order.
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Table 3.31: Assigning BWAij and Condij and Updating Tki

User QTij BWAij Condi(j+1) Tki

1 63000 8200 3 -30400-8200=-38600

2 26000 6100 2 11400-6100=5300

3 50000 4100 3 30000-4100=25900

4 3500 1500 2 100000-1500=98500

Next frame:

Request

1. Firstly, number of tokens of users is updated as given in Table 3.32.

Table 3.32: Token Updates

User Tki

1 -38600+4000=-34600

2 5300+4000=9300

3 25900+4000=29900

4 98500+4000=102500

2. Highest limits are decided for BW Requests as given in Table 3.33.
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Table 3.33: BWij1b and BWij2b values

User BWij1b BWij2b

1 0.4*20000/4+0.6*(1/0.995)*8200=6944 0.02*20000+6944=7344

2 0.01*20000 + 6100=6300 0.02*20000+6300=6500

3 0.4*20000/4+0.6*(1/0.995)*4100=4472 0.02*20000+4472=4872

4 0.01*2000+1500=1700 0.01*20000+1700=1900

3. Priorities are updated as given in Table 3.34.

Table 3.34: Prij are updated

User QTij ML10Reqi TDRi Prij

1 57000 (4690*10-6400+8200)/10=4870 11.70 1

2 22000 (6410*10-9500+6100)/10=6070 3.62 0

3 51000 (3980*10-1500+4100)/10=4240 12.03 1

4 2500 (3150*10-2500+1500)/10=3050 0.82 0

4. After that, users decides on their requests as shown in Table 3.35 by using

limits at Table 3.33.

Table 3.35: BWij1 and BWij2 values

User QTij BWij1 BWij2

1 57000 6300 7100

2 22000 6200 6800

3 51000 4000 4600

4 2500 1700 2200
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Granting

1. Scheduler, firstly, sorts user whose Prij=1 with respect to their tokens in

descending order. After that, it will sort other user with respect to their

tokens in descending order either as shown in Table 3.36.

Table 3.36: Sorting of users

User Tki BWij1 BWij2 Prij

3 29900 4000 4600 1

1 -34600 6300 7100 1

4 102500 1700 2200 0

2 9300 6200 6800 0

2. After that, scheduler decides on bandwidth allocation of users as shown in

Table 3.37 by using the order in Table 3.36. Scheduler assigns conserva-

tive requests of users with Prij=1 at first. After that, there is an empty

space in bandwidth, greedy requests of user 1 and 3 fit in this empty space.

Therefore, scheduler updates their allocation. Finally, it will pass on the

others and execute the same process in same order.

Table 3.37: Assigning BWAij and Condij and Updating Tki

User QTij BWAij Condi(j+1) Tki

1 57000 7100 3 -34600-7100=-41700

2 22000 6200 2 9300-6200=3100

3 51000 4600 3 29900-4600=25300

4 2500 1700 2 102500-1700=100800

In the example 3, network is severely congested. As a result, some users

have Prij=1. It means that these users need help to lessen their queue length
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to prevent from packet losses and excessively delayed packets. Scheduler firstly,

allocates these users’ requests to improve their bandwidth allocation. This is a

temporary intervention to improve total goodput of system and decrease packet

losses. However, this precaution can be harmful, when all users in the network

are congested, because scheduler always try to expand bandwidth allocation of

alarmed users. Therefore, if number of alarmed users in the network increases,

total priority idea collapses and it can be harmful for the system.

In the next chapter, firstly details of simulation environment are provided.

After that, simulation results are discussed.
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Chapter 4

Simulation Results

In this chapter, the simulation environment and used parameters will be intro-

duced in Section 4.1. In Section 4.2, simulation results are provided and obtained

results are discussed.

4.1 Simulation Environment

In this section, firstly the simulation environment is described in Section 4.1.1.

In Section 4.1.2, user’s movement in simulation environment is provided. After

that, computation of SNR is discussed in Section 4.1.3. In Section 4.1.4, burst

profiles used in the simulation are reviewed. In Section 4.1.5, traffic model is

described. In Section 4.1.6, computation of traffic load on system is explained.

In Section 4.1.7, frame structure is provided. Finally, in Section 4.1.8, the other

algorithms used for comparisons with the proposed algorithm.
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4.1.1 WINNER 2: B1 Urban Microcell Scenario

WINNER 2 project proposed link level channel models for executing system

level simulations of short range wide area wireless communication systems [30].

Following scenarios are examined in WINNER 2: indoor small office, large in-

door hall, indoor-to-outdoor, urban micro-cell, bad urban micro-cell, outdoor-to-

indoor, stationary feeder, suburban macro-cell, urban macro-cell, rural macro-

cell, and rural moving networks [30]. Both non-light-of-sight (NLOS) and line-

of-sight (LOS) conditions are considered in WINNER 2 channel models.

In our simulations, B1 model of WINNER 2 is used. B1 is a urban microcell

scenario. Antennas are assumed to be below the tops of surrounding buildings.

Streets are laid out in a Manhattan-like grid. LOS condition is valid for users who

directly see the BS, however LOS can temporarily blocked by traffic or buildings.

The path loss computation for B1 is as follows:

The free space path loss is given by

PLfree = 46.4 + 20log10(d[m]) + 20log10(f [GHz]/5) (4.1)

The path loss expressions and standard deviation of the log-normal shadow

fading for LOS and NLOS conditions are given in Table 4.1. The calculations of

the distance parameters d1 and d2 in this model are depicted in Figure 4.1
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Table 4.1: Path Loss Parameters for B1

Scenario Path Loss [dB] Shadow applicablity

Fading range and antenna

std(dB) height values

PLLOS = max(22.7 log10 (d1[m]) + 41.0 + σ=3 30m < d1 < d′BP

20 log10(f[GHz]/5.0),PLFree) hBS = 10m

LOS hMS = 1.5m

PLLOS =40.0 log10(d1 [m] ) + 9.45 σ = 3 d′BP < d1 < 5km

-17.3 log10(h
′
BS[m]) - 17.3 log10(h

′
MS[m])

+ 2.7 log10(f[GHz]/5.0)

PLNLOS = PLLOS(d1) + 20 -12.5· nj σ = 4 10m < d1 < 5km

10nj · log10(d2[m]) w/2 < d2 < 2km

NLOS w=20m

where nj = max((2.8 - 0.0024d1[m]),1.84) hBS =10 m

hMS = 1.5 m

Figure 4.1: Geometry for d1 and d2 path-loss model
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4.1.2 Displacement of users

We use a simulation area given by a 4x5 Manhattan-like grid given in Figure 4.2.

Base station is at the center of the simulation environment. Only users on X1 are

in LOS condition. Total simulation area is 1km2 however users can only move in

9 streets. Users wander in streets freely, when they come to crosses, they can go

to any direction with equal probability. The probabilities of moving in different

directions are depicted in Figure 4.3

Figure 4.2: Simulation Environment
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Figure 4.3: Cross Decision

Users cannot leave the simulation environment, therefore if they arrive at the

edge of the area, they have to return back. Therefore total number of users in

the network stays constant during the simulation.

Velocity of a user stays constant when the user moves over a straight line.

The velocity may change when users arrive at corners or edges. After a decision

made on a new direction, the new velocity of the user is chosen randomly. There

are 3 different types of users in the system: slow, moderate, fast. Velocity of

slow users are uniformly distributed between 0 km/h and 50km/h, velocity of

moderate users are uniformly distributed between 0km/h and 100km/h, velocity

of fast users are uniformly distributed between 50km/h and 100km/h.

4.1.3 Computation of Signal to Noise Ratio

Signal to Noise Ratio (SNR) is a measure of the ratio of the power of the desired

signal to the power of background noise. In wireless communication networks,

SNR and error probability are inversely proportional.
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In order to calculate the SNR of a user, firstly, power of the received signal must

be calculated. Equation (4.2) is used for that purpose:

Pr(dBm) = Pt(dBm) +Gt(dB) +Gr(dB)− PL(dB) (4.2)

where Pr is the received power at the receiver, Pt is the transmission power,

whereas Gt and Gr are transmitter and receiver antenna gains, respectively. After

calculating the power at the receiver, SNR is calculated as:

SNR(dB) = Pr(dBm) +Np(dB) (4.3)

Np = 10log10(kTB) (4.4)

where Np is noise power, k is Boltzman constant which is 1.38x10−23 JK−1, T is

temperature in Kelvin (which is taken as 298 ◦K in this thesis) and B is channel

bandwidth (which is taken as 40MHz in this thesis).

In our simulations, following parameters are used: Pt =34.771 dBm, Gt = 10

dB, Gr = 5 dB. PL is calculated from Winner 2 B1 model. From (4.4), the noise

power Np is obtained as -97.8 dBm at B=40MHz.

There are two types of fading in radio systems: fast and slow. The reason of

fast fading is the multipath propagation. The other type of fading is slow fading
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(i.e. shadow fading), which is caused by an obstacle on the way between mobile

and base station. In the literature, shadowing fading is modeled using a one

dimensional log-normal distribution. From the geometry of the channel between

the MS and BS, the shadow fading values experienced by a user as time evolves

are correlated. For shadow fading correlation, Gudmundson’s time correlation

model is used [31]. Time-correlation functions provide a statistical information

about time dependent evolution of the signal. Proposed algorithm by Gudmund-

son achieved very good results in suburban and urban environments. The details

of the Gudmundson’s model are described below.

Signal strength is measured in mobile communication systems at regular in-

tervals, therefore a discrete-time model is chosen. Logarithm of the received

signal strength can be shown as A(n). Assume that A(n) has a Gaussian distri-

bution and average distance between MS and BS is [31] :

τ = Pt −K2 · log(d) (4.5)

In Equation (4.5), Pt is transmitted power, K2 is a propagation constant be-

tween 20 and 60 dB. This is taken from Okumura’s model for large scale average

of received signal strength in mobile radio systems [31].

As the correlation function the following decreasing function is used [31]:

RA(k) = σ2a|k| (4.6)

a = ε
v·ψ/D
D (4.7)
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In Equation (4.6), a is the correlation coefficient, it may be expressed as in

Equation (4.7). RA(k) is the correlation between two points which are separated

with distance D. The variance σ2 is chosen between 3 dB and 10 dB. In Equation

(4.7), v is the velocity of mobile. ψ is the sampling interval that is chosen 0.5s.

εD is the correlation between two points.

Figure 4.4: Normalized autocorrelation (measured and fitted) in urban environ-

ment

In Figure 4.4, measured autocorrelation is shown by solid line and fitted au-

tocorrelation is shown by dotted line. After 20m, autocorrelation is close to zero

and two variable acts like an independent variable. In our simulations, we recal-

culate each users shadow fading every 5m because they are still highly correlated

with each other since the correlation coefficient is 0.5477 at 5m.
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4.1.4 Burst Profiles

Following burst profiles are used in our simulations: 64-QAM 3/4 , 64-QAM 2/3,

16-QAM 3/4 16-QAM 1/2 QPSK 3/4 QPSK 1/2. In our simulations, network is

assumed to be error free to simplify the simulations. Therefore, for each frame

the highest profile is selected for each MS such that the measured SNR is sufficient

to provide a BER of less than 10−3 [32]. The SNRs required in order to allow

this BER for each burst profile are listed in Table 4.2.

Table 4.2: SNR required for consider burst profiles

Burst Profile SNR Required(dB)

QPSK 1/2 3.5

QPSK 3/4 6.5

16-QAM 1/2 9.0

16-QAM 3/4 12.5

64-QAM 2/3 16.5

64-QAM 3/4 18.5

If SNR of user is over 18.5dB, user uses the highest profile ( 64-QAM 3/4). If

SNR of user is less than 3.5dB, user cannot send data.

4.1.5 Traffic Model

During our simulations, each user is active with probability p. In our simulations,

we used p=0.4 and p=0.8. The traffic arrival process at each MS is modeled as

an on-off Markov modulated Poisson process [33].

73



Figure 4.5: On-Off Markov Modulated Poisson Model

In the on state, packets are arriving according to a Poisson process with rate

λ. In the off state, no packets are arriving. The rate of transitions between On

to Off and Off to On are γ10 and γ01, respectively. To obtain p = 0.4, γ10 is equal

to 0.03 and γ01 is 0.02. To obtain p = 0.8, γ10 is selected as 0.01, and γ01 is equal

to 0.04.

4.1.6 Traffic Load of Network

The average traffic load is given as

ρ =
λ ·Np · APsize

B · AC
(4.8)

where AC is the average spectral efficiency of users and APsize is average packet

size. In simulation, 40% of packets are assumed to be 64 bytes long (corre-

sponding to acknowledgment packets). The rest of the packets are uniformly

distributed between 65 bytes and 750 bytes. The resulting average packet size is

given as:

APsize = 0.4 ∗ 64 + 0.6 ∗ (65 + 750)/2 = 270.1bytes (4.9)
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4.1.7 Frame Size

Size of each frame is 5ms.

Figure 4.6: Frame Model

As shown in Figure 4.6, 20% of each frame is reserved for Uplink and Downlink

scheduling MAP. Half of the remaining part of each frame is reserved for downlink

scheduling and the other half is reserved for uplink scheduling communication.

4.1.8 Compared Algorithms

In our simulations, 8 different algorithms are for comparison:

1. Fully Opportunistic Downlink Scheduling Algorithm (OpporDL): as de-

scribed in Section 2.4.1.
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2. Opportunistic Uplink Scheduling Algorithm (OpporUL): its request part

is exactly same as the proposed algorithm without priority. In granting,

scheduler at BS sorts users with respect to their burst profiles in descending

order.

3. Uplink Scheduling Algorithm for delay sensitive traffic (USFDST): as de-

scribed in Chapter 3.

4. Uplink Scheduling Algorithm for delay sensitive traffic without priority

(USFDST-NP): it is the same as the USFDST algorithm, however there is

no priority mechanism.

5. Uplink Scheduling Algorithm for delay sensitive traffic (USFDST-DL): it

is the same as the USFDST algorithm except that the scheduler has access

to MS queue lengths so that if there is an empty space after USFDST

scheduling, round robin scheduling algorithm is used to fill the empty space.

6. Round Robin Downlink Scheduling Algorithm (RR-DL) as explained in

Section 2.4.2.

7. Max-min Fairness Downlink Scheduling Algorithm (Max-MinF) as ex-

plained in Section 2.4.3.

8. Proportional Fairness Downlink Scheduling Algorithm (PropFair) as ex-

plained in Section 2.4.4.

It is important to note that the downlink scheduling algorithms (1, 5, 6, 7,

8) have full access to information about MS queues whereas uplink scheduling

algorithms (2, 3, 4) have only partial information about queue states.
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4.2 Simulation Results

In the simulations, simulation time is set to 50 minutes corresponding to 600,000

frames. There are 10 users in the network: 3 slow, 4 moderate and 3 fast. 5

simulations have been carried out for each traffic load. 9 different average traffic

loads are used for simulations between 0.5 and 0.8. Each user’s queue is limited

to 100 packets, any new packet is discarded and counted as lost if it arrives to

a full queue. In addition to buffer overflows, any packet with an access delay

exceeding 200ms is also assumed lost from the application point of view since

there is a maximum delay requirement for delay sensitive traffic. We repeat our

simulations for two different values of p: p = 0.4 and 0.8.

For delay sensitive networks, as long as the delay is not over the maximum

latency, its distribution is not critical. Therefore, USFDST algorithm tries to

decrease the total number of packets with no delay, meanwhile it tries to de-

crease the number of packets which is over the maximum allowed latency. In the

following figures, distributions of delay of packets are provided for p = 0.8 and

traffic load of ρ = 0.8.
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Figure 4.7: Histogram of Delay between 0 ms and 150ms

When we look at the Figure 4.7, USFDST algorithm has a very small number

of packets with 0 delays. However between 25ms and 70ms, there is a significant

increase for USFDST. The delay histogram can be seen in more detail in Fig-

ure 4.8.
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Figure 4.8: Histogram of Delay between 15 ms and 150ms

Figure 4.8 shows that limits of this increase is near the BDL and BDH . There-

fore, these values can be adjusted according to the delay requirements of the ap-

plication. The downlink version USFDST-DL has no packets exceeding a delay

of about 120ms.

79



Figure 4.9: Histogram of Delay between 150 ms and 450ms

The histogram of the delay is depicted in Figure 4.9 for the range of delays be-

tween 150ms and 450ms. USFDST is the fifth best algorithm to decrease number

of packets with excessive delays coming after RR-DL, USFDST-DL, Max-MinF

and Proportional Fairness. For opportunistic algorithms, results are not very

good as there is a significant number of packets which are sent with excessively

delays.

4.2.1 Results for p = 0.8

Average spectral efficiency, in bits/sec/Hz, is used to measure spectral efficiency

of the system. For the burst profiles used in this thesis, the spectral efficiency
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ranges between 1 (for QPSK 1/2) and 4.5 (for 64-QAM 3/4). Average spectral

efficiency in a frame, ASE, is calculated by Equation (4.10):

ASE(j) = TSB(j)/
N∑
i=1

BWAij (4.10)

In Equation (4.10), ASE(j) is the average spectral efficiency of the network in

frame j. TSB(j) is the total number of transmitted bits in frame j and BWAij is

the total resources assigned to user i in the frequency domain (in units of sec*Hz)

in frame j.

Figure 4.10: Average Spectral Efficiency (bits/s/Hz) vs Utilization

In Figure 4.10, the average spectral efficiency of each scheduling algorithm

is close to each other for low traffic load cases. As expected, average spectral

efficiencies of opportunistic algorithms are higher than others, especially at higher
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traffic loads, whereas round-robin scheduling has the lowest ASE. USFDST and

proportional fair scheduling algorithms lie in the middle.

Figure 4.11: Average Resource Allocation

For uplink scheduling algorithms, filling total bandwidth area is more diffi-

cult than downlink scheduling algorithms because the scheduler does not have

complete queue information of MSs. The average resource allocations achieved

by different scheduling algorithms are plotted in Figure 4.11. We observe that

USFDST can fill the total bandwidth close to the downlink scheduling algorithms

although USFDST scheduler makes use of only partial information about queue

states of MSs. In high traffic load cases, the difference between USFDST and

the best filling algorithm (i.e. RR-DL) is less than 2%. The data for this figure

is also tabulated in Table 4.3.

82



Table 4.3: Average Resource Allocation

0.5 0.55 0.6 0.62 0.64 0.68 0.7 0.75 0.8

OpporDL 0.755 0.812 0.868 0.876 0.899 0.921 0.931 0.944 0.959

OpporUL 0.749 0.800 0.845 0.850 0.869 0.888 0.894 0.905 0.919

USFDST 0.756 0.814 0.871 0.879 0.902 0.924 0.934 0.946 0.961

USFDST-NP 0.754 0.811 0.865 0.874 0.896 0.917 0.926 0.939 0.954

USFDST-DL 0.757 0.816 0.876 0.885 0.908 0.932 0.943 0.957 0.973

RR 0.758 0.817 0.878 0.887 0.911 0.935 0.947 0.961 0.976

Max-MinF 0.757 0.815 0.873 0.883 0.906 0.929 0.940 0.954 0.970

PropFair 0.757 0.814 0.870 0.879 0.904 0.929 0.939 0.954 0.970

As USFDST algorithm is developed for delay sensitive applications, improv-

ing total goodput of the system is the main objective of the algorithm without

disturbing the short and long term fairness. In Figure 4.12, total goodput of the

system is plotted for all algorithms considered. Goodputs are close to each other

for low traffic loads (i.e. between 0.5 and 0.65). Since user’s demands are low

at these loads, missed scheduling opportunities can be easily compensated in the

following frames. At higher loads, there are more differences between goodputs,

but the differences are still within 5%.
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Figure 4.12: Goodput vs. Traffic Load of Network
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Figure 4.13: Details of the high traffic load cases

In Figure 4.13, high traffic load cases are shown in more detail. When high

traffic load cases are examined, Max-MinF and proportional fair scheduling are

the best scheduling algorithm to improve total goodput of the network. It is

followed by OpporDL and USFDST-NP. However USFDST can reach 97% of

the total goodput of these downlink algorithms. USFDST works worse than

USFDST-NP, because of priority mechanism starts to affect system negatively

for high traffic load cases as more users are in the alarmed state more often.
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Figure 4.14: Total Number of Lost Packets

Figure 4.14 shows utilization vs. total number of lost packets in the net-

work. Goodput and total number of lost packets are inversely proportional as

expected. When traffic load is increasing, total number of lost packet is also

increasing. There is an exponential increase at packet losses after traffic load is

above 0.65 because the congestion of the network becomes more severe and it

causes more packet losses.

Since users can be offline for some durations, we propose a new short term

fairness metric. In this fairness metric, system discards offline users by only

counting the packets which are queued before the duration and arrive during the

duration. This fairness metric is provided in the Equation (4.11):
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FI(∆) =

(
U∑
i=1

FXi)
2

U ∗
U∑
i=1

FX2
i

(4.11)

FXi(∆) =
TSBi(t, t+ ∆)

NIBi(t, t+ ∆) +QPi(t)
(4.12)

In Equation (4.12), U is the number of online users, ∆ is the short-term fair-

ness horizon (taken as 50 frames in this thesis). TSBi(t,t+∆) is total transmitted

bits in the interval (t,t+∆) by user i, NIBi(t,t+∆) is the number of arrived bits

in interval (t,t+∆) to user i, and QPi(t) is the number of total bits in the queue

of user i at time t. Therefore, only users with demands within the time period

are taken into account in calculating the short term fairness.

Figure 4.15: Short Term fairness of Algorithms

87



Figure 4.15 shows short-term fairness of the algorithms. USFDST algorithm

is the best algorithm in sharing bandwidth fairly among users except RR-DL.

USFDST-NP starts to sacrifice from fairness among users at high traffic load.

If bandwidth is shared among users equally, users with low transmission rates

can send fewer amount of data in the same interval. Therefore, in congested

networks, queue of these users starts to expand. Priority mechanism increases

bandwidth allocation of these users, and it improves the short-term fairness,

while slightly sacrificing from the total goodput.

Figure 4.16: Long Term fairness of Algorithms

Figure 4.16 shows long term fairness vs. utilization of the network. Simula-

tion time is long enough, therefore, there is not significant differences between
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long term fairness of the algorithms. Each algorithm achieves a very high long-

term fairness.

4.2.2 Results for p = 0.4

The simulation based comparative study is repeated in the same environment

now with p = 0.4 where users are less active.

Figure 4.17: Average Spectral Efficiency(bits/s/Hz) vs Utilization

In Figure 4.17, average spectral efficiency of each scheduling algorithm is close

to each other for low traffic load cases except OpporUL. Average spectral effi-

ciency of OpporUL is remarkably higher than other algorithms. It means that

OpporUL favors user with higher transmission rates in scheduling. In general,
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opportunistic scheduling algorithms achieve highest average spectral efficiency.

Similar to p = 0.8, round-robin scheduling has the lowest spectral efficiency

whereas USFDST lies in the middle.

When Figures 4.10 and 4.17 are compared, average spectral efficiency is

greater for p = 0.4. The reason is that λ for p = 0.4 is greater than λ for p = 0.8.

When user is in the on state, queues of users are expanding more quickly for

p = 0.4. Therefore, users lose more packets, when their transmission rates are

low (i.e. when they are using lower burst profiles) when p = 0.4. Consequently,

the average spectral efficiency for p = 0.4 is greater than p = 0.8 as users with

lower burst profiles have reduced traffic due to buffer overflows.

Figure 4.18: Average Resource Allocation
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In Figure 4.18, the average amount of resources allocated to MSs is plotted.

We observe that USFDST can fill the total area close to the downlink scheduling

algorithms in low traffic load cases. In high traffic load cases, the difference

increases, however it is not more than 5%. The data for this figure is also

tabulated in the Table 4.4.

Table 4.4: Average Resource Allocation

0.5 0.55 0.6 0.62 0.64 0.68 0.7 0.75 0.8

OpporDL 0.703 0.743 0.801 0.798 0.814 0.820 0.842 0.860 0.879

OpporUL 0.614 0.628 0.662 0.659 0.665 0.660 0.675 0.684 0.694

USFDST 0.703 0.737 0.795 0.789 0.803 0.799 0.823 0.838 0.853

USFDST-NP 0.699 0.734 0.791 0.786 0.800 0.798 0.821 0.837 0.851

USFDST-DL 0.712 0.752 0.813 0.811 0.826 0.833 0.856 0.873 0.892

RR 0.713 0.755 0.817 0.813 0.829 0.835 0.858 0.875 0.894

Max-MinF 0.708 0.749 0.809 0.806 0.821 0.827 0.850 0.867 0.886

PropFair 0.706 0.744 0.808 0.802 0.819 0.819 0.845 0.864 0.882

When Figures 4.11 and 4.18 are compared, we observe that USFDST per-

forms more effectively, when users are more active in the system. When p = 0.4,

users arrival rate (λ) increases, and the correlation between current queues of

users and previous bandwidth requests are weaker. Therefore, USFDST per-

forms worse for p = 0.4.
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Figure 4.19: Bandwidth Allocation of USFDST for Traffic Load is 0.75 and

p = 0.8

In Figure 4.19, bandwidth allocation of USFDST is plotted of ρ = 0.75 traffic

load and p = 0.8. We observe that for 78% of the frames, USFDST algorithm

can fill more than 95% of the bandwidth.
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Figure 4.20: Bandwidth Allocation of USFDST for Traffic Load is 0.75 and

p = 0.4

Figure 4.20 shows bandwidth allocation of USFDST when traffic load ρ = 0.75

and p = 0.4. We observe that for 51% of the frames, USFDST algorithm can

fill more than 95% of the bandwidth. Therefore, USFDST performs more effec-

tively for larger p’s since correlation between current queues of users and previous

bandwidth request are more stronger which is crucial for USFDST algorithm.
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Figure 4.21: Goodput vs. Traffic Load of Network

In Figure 4.21, total goodput of the system is close to each other for low

traffic loads (i.e. between 0.5 and 0.65) except OpporUL. In low traffic load

cases, missed scheduling opportunities can be easily compensated at the following

frames. However as the traffic load increases, differences are more distinctive.
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Figure 4.22: Details of the high traffic load cases

In Figure 4.22, goodput is plotted for traffic loads between 0.65 and 0.8.

OpporDL and Max-MinF perform as the best scheduling algorithms in terms of

total goodput of the network. However, USFDST can reach 97% of the total

goodput of these algorithms although it does not have full access to information

about MS queues which is available to downlink scheduling algorithms. USFDST

works worse than USFDST-NP, which is the same algorithm without priority,

because priority mechanism starts to affect system negatively for high traffic

load cases. Users are in the alarmed state more often in high traffic load cases.

As explained before, if there are more alarmed users simultaneously, this can

degrade the efficiency.
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Figure 4.23: Total Number of Lost Packets

Figure 4.23 shows utilization vs. total number of lost packets in the network.

Goodput and total number of lost packets are inversely proportional as expected.

When traffic load is increasing, total number of lost packets is also increasing.

There is an exponential increase in packet losses after traffic load exceeds 0.65,

because congestion of the network becomes more severe and it causes more packet

losses.

When Figure 4.14 and Figure 4.23 are compared, total number of lost packets

for p = 0.4 is 77% more than total number of lost packets for p = 0.8 because

packet arrivals are more bursty. Therefore, network become congested more

quickly.
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Figure 4.24: Short Term fairness of Algorithms

Figure 4.24 shows short-term fairness of the algorithms according to the met-

ric given in Equation (4.11). USFDST algorithm achieves higher short-term

fairness than UFDST-NP because of the lack of priority mechanism which favors

some users for some time intervals. When the network is congested, queues of

users with low transmission rates start to expand, and the priority mechanism

increases the bandwidth allocation of these users resulting in a degradation in

short term fairness. As expected the round-robin scheduling algorithm achieves

the highest short-term fairness.
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Figure 4.25: Long Term fairness of Algorithms

Figure 4.25 shows long term fairness vs. utilization of the network. Simula-

tion time is long enough, therefore, there is not significant differences between

long term fairness of the algorithms. Each algorithm achieves a long-term fair-

ness metric close to 1.

4.2.3 Results for p = 0.4 one bandwidth request

In this section, we compare our algorithm against the algorithms which send only

one bandwidth request. For greedy algorithm, users send only greedy request of

USFDST to the scheduler and for conservative algorithm, users send conservative

request of USFDST to the scheduler.
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Figure 4.26: Average Resource Allocation

The average resource allocations achieved by algorithms are plotted in Fig-

ure 4.26. We observe that USFDST can fill the total bandwidth more accurately

than the other two algorithms. In high traffic load cases, the difference between

USFDST and the greedy algorithm is 7%. USFDST can fill the total bandwidth

at least twice as better as conservative algorithm.
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Figure 4.27: Goodput vs. Traffic Load of Network

As expected, USFDST algorithm works better than both greedy and conser-

vative algorithms because it sends two bandwidth requests instead of one, it will

increase the flexibility of scheduler. In Figure 4.27, total goodput of the sys-

tem is plotted for these three algorithms. USFDST can reach 152% of the total

goodput of the conservative algorithm and 113% of greedy algorithm for highly

loaded cases. For low traffic load cases, conservative algorithm works worse than

greedy algorithm because assigning greedy request of a user is more likely for low

traffic load.
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Figure 4.28: Short Term fairness of Algorithms

Figure 4.28 shows short-term fairness of the algorithms according to the met-

ric given in Equation (4.11). USFDST algorithm achieves higher short-term

fairness than both conservative and greedy algorithms. Both conservative and

greedy algorithms have really bad results for short-term fairness, because they

send only one bandwidth request. Scheduler either grant or reject this request,

so for some of the frames, user get zero allocation and this affects short-term

fairness negatively.
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Figure 4.29: Bandwidth Allocation of algorithms for Traffic Load is 0.75 and

p = 0.4

In Figure 4.29, bandwidth allocation of algorithms are plotted of ρ = 0.75

traffic load and p = 0.4. We observe that USFDST can fill more than 90%

of frames for half of the simulation. On the other hand, for conservative algo-

rithm, it cannot allocate bandwidth accurately, 90% bandwidth allocation can

be achieved for only small portion of frames.
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4.2.4 Results for p = 0.8 one bandwidth request

Figure 4.30: Average Resource Allocation

The average resource allocations achieved by algorithms are plotted in Fig-

ure 4.30. We observe that USFDST can fill the total bandwidth more efficiently

than the other two algorithms. It can reach higher average resource allocation.

In high traffic load cases, the difference between USFDST and the greedy al-

gorithm is 4%. USFDST can reach 190% of resource allocation of conservative

algorithm. For p = 0.8, the difference between USFDST and greedy algorithm

decreases because correlation between requests increases.
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Figure 4.31: Goodput vs. Traffic Load of Network

USFDST algorithm can reach higher goodput results than both greedy and

conservative algorithms. In Figure 4.31, total goodput of the system is plot-

ted for these three algorithms. USFDST can reach 155% of the total goodput of

the conservative algorithm and 106% of greedy algorithm for highly loaded cases.
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Figure 4.32: Short Term fairness of Algorithms

Figure 4.32 shows short-term fairness of the algorithms according to the met-

ric given in Equation (4.11). USFDST algorithm achieves higher short-term

fairness than both conservative and greedy algorithms.
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Figure 4.33: Bandwidth Allocation of algorithms for Traffic Load is 0.75 and

p = 0.8

In Figure 4.33, bandwidth allocation of algorithms are plotted of ρ = 0.75

traffic load and p = 0.8. We observe that USFDST can fill more than 90% of

frames for half of the simulation. On the other hand, for conservative algorithm,

it cannot allocate bandwidth accurately and there aren’t any frames which is

allocated more than 90%.
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Chapter 5

CONCLUSIONS

In this thesis, centralized uplink scheduling problem for delay sensitive traffic is

studied in broadband wireless networks. For delay sensitive applications, total

goodput of the system is more important than total throughput of the system

since packets with excessively delays do not provide any service for the applica-

tion. Therefore, our primary aim is to improve the total goodput of the network

and to allocate bandwidth as efficiently as downlink algorithms.

Our scheduling algorithm is one of the best in terms of short term fairness

among the scheduling algorithms considered. This is provided by the priority

mechanism. Users with low transmission rates does not starve for bandwidth

once they switched to high priority and the scheduler assigns more resources to

these users until their queue lengths drop below a threshold.

For delay sensitive applications, sending packet with no delay or sending it

with a delay less than maximum latency has no difference from the application

point of view. We benefit from this property in our scheduling algorithm. We

decrease the number of zero delayed packets at the cost of increased number of
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packets with nonzero, but less than the maximum allowed delays.

Our scheduling algorithm is designed for an uplink scheduling traffic, so it has

partial information about MSs queue. However despite of this disadvantage, the

proposed USFDST algorithm can utilize the resources with an efficiency of 95%

(p = 0.4) and 98% (p = 0.8) for more bursty and less bursty traffics respectively.

Other uplink scheduling algorithm (i.e. OpporUL) works distinguishable worse

than USFDST. For p = 0.4 and traffic load ρ = 0.8, while OpporUL can fill

the 69% of resources on average, USFDST reaches 85.3% resource allocation on

average which is 28% higher than the OpporDL.

USFDST works better for less bursty traffics. It utilizes more than 95% of

resources for 78% of the frames when traffic load ρ = 0.75 and p = 0.8. On the

other hand, it can reach only 58% of %95 of resource allocation when traffic load

ρ = 0.75 and p = 0.4.

Our proposed scheduling algorithm is designed for delay sensitive applica-

tions, therefore it is trying to improve total goodput of the system. In low

traffic loads, the total goodput difference between USFDST and downlink algo-

rithms are less than 1%. When the traffic load increases, the difference between

USFDST and the most maximizing goodput algorithm (i.e. Max-MinF) is less

than 3% when p = 0.8. When p = 0.4, the difference grows, but it is not more

than %5. Although our scheduling algorithm is designed for uplink scheduling,

it achieves better results for total goodput than a downlink scheduling algorithm

round robin.
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Our proposed scheduling algorithm can reach 107% of the total goodput of

the greedy algorithm and 200% of the total goodput of the conservative algo-

rithm. Our proposed scheduling algorithm can utilize the resources with effi-

ciency 152% and 113% of conservative and greedy algorithm respectively. The

proposed method performs remarkably better than these two algorithms in terms

of short term fairness.

On possible future research direction is a hybrid scheduling algorithm where

when the network is heavily congested, scheduling algorithm can cancel priority

mechanism and assign bandwidth without it or assign bandwidth opportunisti-

cally. Another problem that may require future work is investigation the effects

of fragmentation on the performances of the uplink scheduling algorithms.
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