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ABSTRACT

VISUAL ATTENTION MODELS AND APPLICATIONS
TO 3D COMPUTER GRAPHICS

Muhammed Abdullah Bülbül

Ph.D in Computer Engineering

Supervisor: Assist. Prof. Dr. Tolga Çapın

June, 2012

3D computer graphics, with the increasing technological and computational

opportunities, have advanced to very high levels that it is possible to generate very

realistic computer-generated scenes in real-time for games and other interactive

environments. However, we cannot claim that computer graphics research has

reached to its limits. Rendering photo-realistic scenes still cannot be achieved in

real-time; and improving visual quality and decreasing computational costs are

still research areas of great interest.

Recent efforts in computer graphics have been directed towards exploiting

principles of human visual perception to increase visual quality of rendering.

This is natural since in computer graphics, the main source of evaluation is the

judgment of people, which is based on their perception. In this thesis, our aim is

to extend the use of perceptual principles in computer graphics. Our contribution

is two-fold: First, we present several models to determine the visually important,

salient, regions in a 3D scene. Secondly, we contribute to use of definition of

saliency metrics in computer graphics.

Human visual attention is composed of two components, the first component

is the stimuli-oriented, bottom-up, visual attention; and the second component

is task-oriented, top-down visual attention. The main difference between these

components is the role of the user. In the top-down component, viewer’s intention

and task affect perception of the visual scene as opposed to the bottom-up com-

ponent. We mostly investigate the bottom-up component where saliency resides.

We define saliency computation metrics for two types of graphical contents.

Our first metric is applicable to 3D mesh models that are possibly animating, and

it extracts saliency values for each vertex of the mesh models. The second metric
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we propose is applicable to animating objects and finds visually important objects

due to their motion behaviours. In a third model, we present how to adapt the

second metric for the animated 3D meshes.

Along with the metrics of saliency, we also present possible application areas

and a perceptual method to accelerate stereoscopic rendering, which is based on

binocular vision principles and makes use of saliency information in a stereoscopic

rendering scene.

Each of the proposed models are evaluated with formal experiments. The

proposed saliency metrics are evaluated via eye-tracker based experiments and

the computationally salient regions are found to attract more attention in prac-

tice too. For the stereoscopic optimization part, we have performed a detailed

experiment and verified our model of optimization.

In conclusion, this thesis extends the use of human visual system principles

in 3D computer graphics, especially in terms of saliency.

Keywords: Computer Graphics, Visual Perception, Saliency, Visual Attention,

Binocular Vision, Stereoscopy, Motion Perception.



ÖZET

3-B BİLGİSAYAR GRAFİKLERİNDE GÖRSEL DİKKAT
MODELLEMELERİ VE UYGULAMALARI

Muhammed Abdullah Bülbül

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Assist. Prof. Dr. Tolga Çapın

Haziran, 2012

3-B bilgisayar grafikleri, gelişen teknolojik imkanların da etkisiyle, çok yüksek

seviyelere ulaştı ve günümüzde gerçeğe oldukça yakın görüntüler, bilgisayar

oyunları ve diğer kullanıcı etkileşimi içeren uygulamar, gerçek zamanlı olarak

üretilebiliyor. Fakat bilgisayar grafikleri alanındaki araştırmaların limitlerine

ulaştığını iddia edemeyiz. Foto gerçekçi görüntüleme halen gerçek zamanlı

olarak başarılamamakta olup, görsel kaliteyi artırmak ve görüntüleme maliyet-

lerini azaltmak araştırma alanı olarak ilgi odağı olmayı sürdürmektedir.

Son zamanlarda bilgisayar grafikleri alanındaki uğraşlar, görüntüleme

kalitesini artırmak amacıyla görsel algı prensiplerini kullanmaya yöneldi. Bu,

bilgisayar grafiklerinde, temel değerlendirme kriterinin insanların yargıları ve

dolayısıyla algıları olmasının doğal bir sonucu. Bu tezde hedefimiz, görsel algı

prensiplerinin bilgisayar grafikleri için kullanımını artırmaktır. Bu tezin literatüre

katkısı iki alanda incelenebilir: Birincisi, 3-B sahnelerde görsel olarak önemli,

dikkat-çeker, kısımları tespit etmeye yönelik sunulan modeller; ikincisi de, dikkat-

çekerlik ölçütlerinin bilgisayar grafiklerinde kullanımına yapılan katkılar.

İnsanlarda görsel dikkat mekanizmasının iki kısmı vardır. İlk kısım, uyaran-

lara bağlı, aşağıdan yukarıya görsel dikkat olup; ikinci kısım göreve bağlı,

yukarıdan aşağıya görsel dikkat olarak adlandırılmaktadır. Bu iki kısım

arasındaki en önemli fark izleyicinin rolüdür. Yukarıdan aşağıya görsel dikkatte,

aşağıdan yukarıya dikkatten farklı olarak, izleyicinin niyeti ve görevi sahnenin

nasıl algılandığını etkiler. Çalışmalarımızda daha çok, içerisinde dikkat-çekerliği

de barındıran aşağıdan yukarıya görsel dikkati araştırdık.

İki türlü grafiksel içerik türü için dikkat-çekerlik ölçütleri tanımladık. İlk

ölçüt, 3-B hareketli grafiksel modeller için geliştirilmiş olup, modelin her
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düğümüne bir dikkat-çekerlik değeri atamaktadır. İkinci model ise birden çok

nesne barındıran bir animasyon sahnesinde, hareketlerinden dolayı görsel olarak

önemli hale gelen nesneleri tespit etmeye yöneliktir. Üçüncü bir model de ise,

ikinci modelde önerilen modelin ilk modelde kullanılan grafiksel içeriklere nasıl

uygulanacağı gösterilmiştir.

Tezde, dikkat-çekerlik ölçütlerinin yanısıra, ölçütlerin muhtemel kullanım

alanları ve ikili (stereo) görüntüleme için algıya bağlı bir optimizasyon yöntemi

de sunulmuştur. Bu yöntem ikili görme prensiplerine dayanmakta olup, sahnenin

dikkat-çekerlik bilgisinden yararlanmaktadır.

Sunulan yöntemlerin her biri, deneyler vasıtasıyla değerlendirildi. Dikkat-

çekerlik ölçütlerinin değerlendirmesinde göz takip cihazı kullanıldı ve dikkat-çeker

olarak belirtilen kısımlara daha çok bakıldığı tespit edildi. İkili görüntüleme için

önerilen yöntem de, ayrıntılı bir kullanıcı testi ile doğrulandı.

Sonuç olarak, sunulan tez görsel sisteme dair prensiplerin, özellikle

dikkat-çekerlik ile ilgili olanların, 3-B bilgisayar grafiklerinde kullanımını

genişletmektedir.

Anahtar sözcükler : Bilgisayar Grafikleri, Görsel algı, Dikkat-çekerlik, Görsel

dikkat, İkili Görüntüleme, Hareket algısı.



Acknowledgement

I know that the achievements we reached are granted gifts. As for the other

parts of my life, I am really thankful to be greatly supported through the way of

obtaining a Ph.D degree.

I would like to express my deepest gratitute to my supervisor Tolga Çapın for
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Uğur Güdükbay, and Ahmet Oğuz Akyüz; for their valuable comments and sug-

gestions. They have sincerely helped and encouraged me through this study.

Thanks to all my friends, I really could not have achieved this much without

their help and support. They formed a superb living environment in Bilkent.

Lastly, I thank each member of my family, especially to my wife Gamze. I

couldn’t think of a better support and love than they have given to me.

I would also like to acknowledge 3DPhone project and TUBITAK for finan-

cially supporting me during my Ph.D study.

Thanks a lot everyone.

viii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Visual Attention, Saliency, and Sensitivity . . . . . . . . . . . . . 7

2.1.1 Concepts in Visual Attention . . . . . . . . . . . . . . . . 8

2.1.2 Visual Attention in Computer Graphics . . . . . . . . . . . 17

2.2 Binocular Vision and Stereoscopic Rendering . . . . . . . . . . . . 22

2.2.1 Concepts in Binocular Vision . . . . . . . . . . . . . . . . 22

2.2.2 Stereoscopic Rendering Optimization Techniques . . . . . 26

2.3 Motion Perception . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Concepts in Motion Perception . . . . . . . . . . . . . . . 28

ix



CONTENTS x

2.3.2 Motion Perception in Computer Graphics . . . . . . . . . 30

2.4 Quality Assessment of 3D Graphical Models . . . . . . . . . . . . 31

2.4.1 Viewpoint-Independent Quality Assessment . . . . . . . . 33

2.4.2 Viewpoint-Dependent Quality Assessment . . . . . . . . . 40

2.4.3 Subjective Evaluation of 3D Polygonal Models . . . . . . . 44

3 Visual Attention Models 51

3.1 Per-Vertex Saliency Model . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Generating Feature Maps . . . . . . . . . . . . . . . . . . 57

3.1.3 Normalization of Feature Maps . . . . . . . . . . . . . . . 58

3.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Per-Object Saliency Model . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Pre-experiment . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.3 Object Motion Saliency . . . . . . . . . . . . . . . . . . . 77

3.2.4 Global Attention Value . . . . . . . . . . . . . . . . . . . . 81

3.3 Extended Per-Vertex Saliency Model . . . . . . . . . . . . . . . . 82

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS xi

3.3.2 Motion-based Clustering . . . . . . . . . . . . . . . . . . . 84

3.3.3 Saliency Calculation for Clusters . . . . . . . . . . . . . . 89

4 Attention-based Stereoscopic Rendering Optimization 92

4.1 Mixed Stereoscopic Rendering . . . . . . . . . . . . . . . . . . . . 92

4.1.1 Mixed Stereo Methods . . . . . . . . . . . . . . . . . . . . 93

4.2 Saliency-guided Stereoscopic Rendering Optimization . . . . . . . 97

4.2.1 Intensity Contrast . . . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Calculating Intensity Contrast . . . . . . . . . . . . . . . . 98

4.2.3 Mixed Rendering Approach . . . . . . . . . . . . . . . . . 99

4.3 Summary of the Proposed Method . . . . . . . . . . . . . . . . . 101

5 Evaluation 103

5.1 Per-Vertex Saliency Model . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . 103

5.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 104

5.2 Per-Object Saliency Model . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 109

5.3 Extended Per-Vertex Saliency Model . . . . . . . . . . . . . . . . 111

5.3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . 111

5.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 111



CONTENTS xii

5.4 Attention-based Stereo Rendering Optimization . . . . . . . . . . 113

5.4.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 117

6 Conclusion 127

Bibliography 129



List of Figures

1.1 Aspects of our study . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Two components of visual attention . . . . . . . . . . . . . . . . . 9

2.2 The object (black circle) is more salient than background and it

attracts more attention. . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Center-surround mechanism, saliency of interested area is related

to difference of fine and coarse scales in terms of different properties

such as luminance, velocity, orientation, etc. . . . . . . . . . . . . 10

2.4 Difference in various properties affects saliency. . . . . . . . . . . 11

2.5 Saliency by parts: larger size, larger protrusion, and stronger

boundaries (having higher crease angles) increase saliency of the

part [53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Repin’s picture was examined by subjects with different instructions. 13

2.7 Human visual system is tuned to the exaggerated feature, which

is a better discriminator, to optimize the search process. . . . . . 14

2.8 Campbell-Robson Contrast sensitivity function chart . . . . . . . 15

2.9 Spatiotemporal sensitivity formula derived by Kelly . . . . . . . . 16

2.10 Masking effect due to textures. . . . . . . . . . . . . . . . . . . . 17

xiii



LIST OF FIGURES xiv

2.11 Saliency computation in 2D and 3D. . . . . . . . . . . . . . . . . 18

2.12 Several applications utilizing saliency. . . . . . . . . . . . . . . . . 21

2.13 Several monocular depth cues including. . . . . . . . . . . . . . . 23

2.14 Visual system uses the difference of images viewed by left and right

eyes to extract depth information. . . . . . . . . . . . . . . . . . . 23

2.15 Binocular rivalry mechanism. When the left-eye and right-eye

views are shown, the combined view merges the dominant regions

from the two views. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.16 According to Gestalt psychology, the units with the same motion

behavior are united and perceived as a single unit. . . . . . . . . . 29

2.17 Left: original bunny model; middle: simplified; right: smoothed . 32

2.18 The Hausdorff distance between two surfaces. . . . . . . . . . . . 34

2.19 Roughness map of a 3D model. . . . . . . . . . . . . . . . . . . . 36

2.20 Left: original image; right: simplified image; bottom: VDP output. 42

3.1 The proposed saliency computation framework. . . . . . . . . . . 53

3.2 Left: Axis-aligned bounding box; right: diagonal of the axis-

aligned bounding box. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 The calculated saliencies based on geometric mean curvature (a),

velocity (b), and acceleration (c) in a horse model. The image in

(d) shows the combined saliency map of the velocity and accelera-

tion features. Light-colored areas show the salient regions and are

emphasized for illustration purposes. . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xv

3.4 The animated cloth model (a). The calculated saliencies based on

hue, color opponency, and intensity are shown in (b), (c), and (d),

respectively. Light-colored areas show the salient regions and are

emphasized for illustration purposes. . . . . . . . . . . . . . . . . 62

3.5 Left: The models with their original views, right: the final saliency

maps of these models. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 The animated horse model is simplified using quadric error metrics

(a) and using our saliency-based simplification method (b). . . . . 66

3.7 Selected viewpoints for several meshes. . . . . . . . . . . . . . . . 67

3.8 Top: reference models ; middle: simplified to half with saliency;

bottom: simplified to half without saliency. . . . . . . . . . . . . 68

3.9 Left: reference model ; middle: simplified to half with saliency;

right: simplified to half without saliency. . . . . . . . . . . . . . 69

3.10 Motion cycle of an object in an animation. . . . . . . . . . . . . . 73

3.11 Screenshots from the eight pre-experiment animations. . . . . . . 74

3.12 Screenshots from the eight pre-experiment animations. . . . . . . 75

3.13 Overview of the POS model. . . . . . . . . . . . . . . . . . . . . . 78

3.14 Attentional dominancy of motion states over each other. . . . . . 79

3.15 Overview of the cluster-based saliency calculation model. . . . . . 83

3.16 Differential velocities on a 3D model. Brighter (yellow) regions

express high differential velocities. The figure shows the absolute

amounts of differential velocities in a scalar manner for a better

presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



LIST OF FIGURES xvi

3.17 Clustering through an animation, from left to right (except the

rightmost): clustering results after several frames are shown.

White regions depict the boundary vertices. The rightmost im-

age shows the final clustering after clustering refinement phase. . 87

3.18 Clustering results for several 3D models. . . . . . . . . . . . . . . 88

3.19 Calculated saliencies on 3D models. Bottom: brighter (yellow)

regions show more salient parts of the models on the top. . . . . . 91

4.1 Left: Traditional stereoscopic rendering approach, Right: Our ren-

dering approach for optimization. . . . . . . . . . . . . . . . . . . 93

4.2 Gaussian pixel widths for the nine scales used in the intensity con-

trast calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Top Left: Original image, Top Right: Modified image, Bottom

left: Intensity contrast map of the original image, Bottom Mid-

dle: Intensity contrast map of the modified image, Bottom Right:

Calculation of Intensity Contrast Change. . . . . . . . . . . . . . 100

4.4 Summary of the hypothesis. . . . . . . . . . . . . . . . . . . . . . 101

4.5 Intensity contrast changes due to selected methods. . . . . . . . . 102

5.1 Samples from the three animation sequences used in the experi-

ment. Left: original frames, right: saliency maps of the frames on

the right (red dots indicate the regions that are looked at by the

subjects for that frame). . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 The results for the animation sequences used in the experiments. . 106

5.3 Comparison between the calculated average saliencies of the re-

gions that are looked at by the actual users, and the randomly

generated virtual users. . . . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES xvii

5.4 Sample screenshot from the experiment. . . . . . . . . . . . . . . 109

5.5 The results of the experiment. . . . . . . . . . . . . . . . . . . . 110

5.6 Experimental results for clustering-based saliency calculation. . . 112

5.7 Presentation of test material. . . . . . . . . . . . . . . . . . . . . 115

5.8 Rating scales used for subjective assessments. . . . . . . . . . . . 115

5.9 Experimental results for framebuffer upsampling method. . . . . . 118

5.10 Comparison of Upsampling Algorithms. . . . . . . . . . . . . . . . 119

5.11 Experimental results for blurring method. . . . . . . . . . . . . . 119

5.12 Experimental results for mixed-level antialiasing method. . . . . . 120

5.13 Experimental results for specular highlight method. . . . . . . . . 121

5.14 Experimental results for mixed shading method. . . . . . . . . . . 122

5.15 Experimental results for mesh simplification method. . . . . . . . 123

5.16 Experimental results for texture resampling method. . . . . . . . 124

5.17 Experimental results for mixed shadowing method. . . . . . . . . 125



List of Tables

2.1 Experiment methodologies of recent subjective experiments on

quality assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Experiment design of recent subjective experiments on quality as-

sessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Saliency metrics and saliency guided simplification. The scores are

normalized according to the score of qslim on simplifying a mesh

to half number of vertices. . . . . . . . . . . . . . . . . . . . . . 69

3.2 States of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Individual Attention Values. . . . . . . . . . . . . . . . . . . . . . 80

4.1 Methods used for Mixed Stereoscopic Rendering. . . . . . . . . . . 95

5.1 Average correlation: saliency vs. fixations . . . . . . . . . . . . . 108

5.2 Test cases for scalable methods. . . . . . . . . . . . . . . . . . . . 113

5.3 Test cases for non-scalable methods. . . . . . . . . . . . . . . . . . 114

5.4 Summary of the experiment. . . . . . . . . . . . . . . . . . . . . . 126

xviii



Chapter 1

Introduction

1.1 Motivation

In the last decade, the rendering and modeling methods in computer graphics

advanced to very high levels, and it is now possible to generate very realistic

synthetic scenes and animations including naturally behaving and looking simu-

lations of fluids, humans, trees etc. Therefore, recent efforts of computer graph-

ics researchers have directed towards accomplishing the generation of these high

quality content in real-time for interactive applications or employing new meth-

ods that increase scene understanding, in addition to searching for more realistic

modeling and rendering techniques.

In a very realistic computer generated scene, which may take hours to render

despite the advances in technology, we do not recognize many details for which a

notable amount of rendering effort is spent. One of the reasons behind this is our

visual system’s capacity to perceive detail. Additionally, the human eye only see

two degrees of visual field, a little more than width of thumb at arms length, in

high detail [124]. For the peripheral region, the resolution that we can perceive

is much lower. However, we perceive all of the visual field in high quality, i.e.

we do not feel any rendering artifacts in the generated image. This is achieved

by rapid eye movements to visually important regions on our visual field and

1



CHAPTER 1. INTRODUCTION 2

combining the gathered information in our brain. Our visual system does not

spend effort for insignificant details in a scene. Thanks to this behavior of human

visual system, we could see the world in real-time. A similar approach could

work well for computer graphics too. The principles of human visual attention

mechanism could be exploited for various purposes in computer graphics field

such as rendering optimization, modeling, and quality estimation.

Three dimensional (3D) stereo perception is also an area of potential interest

in computer graphics research. Providing stereo imagery via stereo displays or

glasses is quite an old idea. For example, Wheatstone invented a stereoscope to

show slightly different images for each eye to provide binocular vision in 1838

[127]. Having been established long time ago, 3D imaging hasn’t been used in

a widespread fashion until recently. In recent years, however, the technology,

towards 3D displays and rendering techniques and usage of binocular systems in

movies and computer generated visuals, enhanced significantly. Usage of stereo

vision brings along many challenges in addition to significantly increasing the gen-

eration times of visuals. Generating natural looking and comfortable 3D scenes

is not an easy task [86].

To overcome the challenges that emerge in 3D computer graphics rendering,

we need a good understanding and use of perception. Perception is of great

importance since whatever happens in the world, our awareness of the events

depends on our perception of them. Similarly, in computer graphics, success of

any content rendered on the screen depends on our perception. Therefore, this

thesis aims to make use of perceptual principles for generating computer graphics

scenes that are perceptually in good quality and computationally less expensive.

Visual perception is a very well studied area in cognitive sciences and visual

principles are studied for many centuries. For example, how the binocular vision

mechanism works was an area of research in the 16th century [56]. Despite the

advances in both visual perception and computer graphics, there is a need for

searching new ways of incorporating them.
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Visual attention
Saliency

Stereo displays
Binocular vision

Figure 1.1: Aspects of our study

1.2 Scope of the Work

In this thesis, our main aim is to perform research on how to employ the percep-

tual principles in computer graphics and enhance computer graphics techniques

on generating a perceptually aware system. Visual perception is a very large area

including space perception, depth and size perception, motion perception, color

perception and many more. Under each of these areas, there are numerous the-

ories and studies in psychology, neuroscience, and computer science disciplines.

Therefore, there is a need to restrict the scope of the efforts to concrete aspects.

In this respect, our study on the use of perceptual principles is motivated by

two aspects which are illustrated in Figure 1.1. In both aspects, human visual

attention and cognition mechanism constitute the basis and the common term in

all aspects is the use of saliency, which characterizes the level of significance of

objects/regions in our visual field. Therefore, this thesis focuses on saliency and

its applications to computer graphics.

Identifying regions in a 3D scene that are visually more important for the user

is the main concern in our study related to visual attention models. Therefore,

this part utilizes the human visual attention mechanism and proposes several

metrics to find out the visually attractive (salient) regions of various 3D graphical

contents.

The attentional mechanism in humans has two components: Top-down (task
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oriented) and bottom-up (stimulus driven). It is known that task and prior

experiences bias the attentive process to the visual stimuli significantly. This

type of attention constitutes the top-down component of attention which mostly

depends on the viewer. On the other hand, the visual properties of a scene are

also important on attracting the viewer and determining his gaze point. This

second type of attention is purely stimulus driven and constitutes the bottom-

up component of attention. Depending on the visual and temporal properties of

objects in a scene, saliency resides in the bottom-up part. Since it is an impossible

task to categorize all possible tasks and prior experiences of the user, our main

concern here is the bottom-up part, which is mostly related to finding out the

salient regions of a scene.

Another aspect of our study aims better use of displays providing faster 3D

stereoscopic rendering without sacrificing visual quality. For stereoscopic vision

systems that provide different images to each eye, we utilize the binocular vision

principles of the human visual system. In a stereoscopic vision system, we analyze

the response of the human visual system to the case in which right and left eyes are

shown images, generated by different rendering parameters. We also investigate

the relationship of such a rendering approach with visual attention mechanism

and saliency.

1.3 Contributions

The contributions of this thesis are divided into two main parts: contributions on

saliency computation and contributions on stereoscopic rendering optimization.

• A general saliency computation framework is proposed for animated meshes.

The saliency framework makes use of the geometry, material, and motion

properties of the meshes to extract their perceptually important regions.

Per-vertex saliency calculation, which is performed in 3D space, enables

view-point independent usage of the calculated saliency values. Possible

application areas that use saliency values are also presented in the thesis.



CHAPTER 1. INTRODUCTION 5

• The second saliency based method extracts the saliencies of separate objects

due to their motion. While the previous framework finds per-vertex saliency

values, this method calculates saliencies on a per-object basis. Both of the

studies are verified by formal experiments using an eye-tracker.

• Another contribution of the thesis is related to perceptual optimization of

stereoscopic rendering. A mixed quality rendering method for views be-

longing to left and right eyes is presented. The suitability of important

graphical methods are analyzed for this type of optimization and a gen-

eral inference is obtained. For this study, a detailed experimental study is

performed and the proposed technique is verified. The proposed technique

helps to decrease stereoscopic rendering time notably.

While these aspects form the main base of our study, there are additional

benefits which will also be described in this thesis. Perceptual concepts and

principles that are utilized in our studies are presented in detail. This liter-

ature is presented in three categories: visual attention mechanism, motion

perception, and binocular vision.

1.4 Thesis Organization

The thesis is organized as follows: First, the utilized concepts and background

information are presented and then the technical contributions and the proposed

methods are given. After explaining the proposed methods, experimental eval-

uation of the studies are presented. The more precise outline of the thesis is as

follows.

In Chapter 2, background information and the related studies are given in

three categories: Visual attention, 3D vision, and motion perception. Addition-

ally, current quality assessment means for 3D graphical models are given in this

chapter.

Chapter 3 presents the proposed methods related to visual attention. These

studies aim to extract the parts of the rendered scenes that capture the user’s
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attention. Saliency calculation metrics are presented in this chapter.

Stereoscopic vision aspect of our study, which aims saliency-guided perceptual

optimization of stereoscopic rendering, is presented in Chapter 4.

In Chapter 5, the experiments to evaluate the proposed techniques and dis-

cussion of the results are demonstrated. Each part of our study is experimentally

analyzed in separate sections.

Finally, we conclude the thesis and point out the possible future research

directions in Chapter 6.



Chapter 2

Background

In this chapter, fundamental concepts utilized in the thesis and a review of the re-

lated literature on perceptually oriented computer-graphics research are presented

in four sections. Firstly, visual attention mechanism in humans is presented which

forms the main concepts used in Chapter 3 e.g., saliency and spatiotemporal sen-

sitivity. Binocular vision mechanism and a review of stereoscopic rendering sys-

tems is given in Section 2.2 which are mostly related to the employed principles in

Chapter 4. In Section 2.3, motion perception is presented. How to assess visual

quality of the presented 3D content is an important part of our research. Lastly,

a review of current literature on this area is presented.

This chapter is presented by a computer graphics perspective. The perception

literature survey dealing with the details on how brain works, which parts of the

visual cortex are employed in the visual perception etc. exceeds our scope of

interest.

2.1 Visual Attention, Saliency, and Sensitivity

Seeing is an interaction between the objects we see and our vision system including

our eyes and brain. Although there are many objects inside our periphery of

7
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vision, some regions attract our attention more than others. The properties of

the objects that we see, e.g., their sizes, motions, colors etc.; our intention of

viewing, e.g., what are we looking for; and our prior experiences play a very

important role for determining our gaze point.

While the direction of our attention in a visual scene is of great interest, how

much detail we can perceive depends on another factor, visual sensitivity. For

example, a very rapid movement may get attention but we are not sensitive to

the details of this too quickly moving region, which could be utilized for optimiza-

tion purposes in the field of computer graphics. Therefore, this section contains

concepts related to our visual attention mechanism and visual sensitivity along

with their realizations in the computer graphics field.

2.1.1 Concepts in Visual Attention

2.1.1.1 Bottom-up vs. Top-down

Visual attention mechanism could be divided into two components: bottom-up

and top-down. Figure 2.1 illustrates these components.

Bottom-up part is related to object properties and is generally referred as

stimulus-driven component of visual attention. As a simple example, in Fig-

ure 2.1, sizes of the boxes have an impact on attracting attention and the smaller

one stands out among others as it is different. In the bottom-up part of the visual

perception mechanism, intentional factors such as the user’s task do not have an

effect. It is mainly related to the visual and temporal properties of the objects.

On the other hand, in the top-down part, task and prior experiences are main

factors of the perception [61].

The interaction between the bottom-up and top-down components of atten-

tion could be explained as follows. The brain is firstly stimulated by objects in

a bottom-up fashion, in which saliency has a great significance. Then, top-down

intentional attention filters the scene according to the task of the observation and
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Top-down
  Task oriented
  Voluntary, conscious
  Prior experiences

Bottom-up
  Stimulus driven
  Unconscious
  Scene properties

Figure 2.1: Two components of visual attention

experiences [102]. Both factors affect our perception of the visual scene and the

direction of our gazes. The following sections summarize the details of bottom-up

and top-down components of attention.

2.1.1.2 Bottom-up Component of Attention and Saliency

Certain properties of objects have an impact on driving our attention to specific

regions in our visual periphery. The simplest example is an object on a plain

background as shown in Figure 2.2. Compared to the background, the object

attracts more attention and most probably becomes the first target of our gazes.

We could say that the object is salient in this scene.

Visual saliency is a key concept which refers to the attractiveness of a visual

stimulus for our visual system caused by its visual properties, e.g., size, shape,

orientation, and color. It has been a focus of cognitive sciences for more than 20

years. Throughout the thesis, when we use saliency term we mean visual saliency

unless otherwise stated.
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Figure 2.2: The object (black circle) is more salient than background and it
attracts more attention.

Figure 2.3: Center-surround mechanism, saliency of interested area is related
to difference of fine and coarse scales in terms of different properties such as
luminance, velocity, orientation, etc.

Bottom-up component of our visual attention is driven merely by the prop-

erties of the visual scene, disregarding user’s intention while viewing the image.

We could say that viewer independent factors (regardless of personal tasks, expe-

riences etc.) determining the direction of our attention reside in the bottom-up

part as saliency does.

Saliency is mainly related to difference of various visual properties of an object

from its surroundings. The neurons employed in the visual system respond to

image differences between a small central region and a larger surround region

[61], which is known as the center-surround mechanism (Figure 2.3). This way,

difference of a property compared to its surroundings stimulates us.

If an object is notably different compared to its surroundings it becomes

salient. This difference could be in terms of many properties of the object, e.g.,
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a b c d

Figure 2.4: Difference in various properties affects saliency. Here, differing prop-
erties are hue (a), luminance (b), orientation (c), and shape (d).

hue, luminance, orientation, motion etc. (See Figure 2.4). It could be said that

saliency is mostly related to difference of a property rather than the strength of

it; e.g., we cannot say that a specific color makes a region always salient.

A highly salient object pops out from the image and immediately attracts

attention. This process is unconscious and operated faster compared to the task

oriented attention. The speed of bottom up (saliency based) attention is on the

order of 25 to 50 ms per item, while the task oriented attention takes more than

200 ms [61]. Howlett et al. [58] show that faces of natural objects such as animals

are salient compared to other parts. Besides, the existence of a special high-level

mechanism for face perception in human visual system is a controversial issue.

Hershler and Hochstein [49] [50] claim that there is a high level, possibly innate,

mechanism in the visual system making faces pop out in an image. VanRullen

[119] opposes to this claim in his study stating that there is a pop-out effect for

faces but it is mostly based on low-level factors. Based on these studies we could

say that faces do pop out but it is controversial if face perception resides in the

bottom-up component or the top-down component of visual perception.

Hoffman and Singh [53], in their research for identifying the factors affecting

the saliencies of the components of objects, conclude with the following findings.

Firstly, 3D shapes are perceptually divided into separate parts on their concave

creases. For the parts generated perceptually, larger size relative to the whole

object and larger protrusion from the object cause higher saliencies (Figure 2.5);
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a b c

Figure 2.5: Saliency by parts: larger size, larger protrusion, and stronger bound-
aries (having higher crease angles) increase saliency of the part [53].

moreover, as well as the already visible relative size and visible protrusion of

parts, their perceptually completed sizes and protrusions are also effective on

their saliencies. Another finding is that a boundary with a higher curvature is

more salient than a boundary with less curvature (Figure 2.5-c).

2.1.1.3 Top-down Component of Attention

What are we looking for greatly affects our visual perception. When we look

for a specific type of object or for a specific property we could perceive many

details that are not perceived normally. On the other hand, biasing the perception

towards a specific target makes other objects less perceivable. Figure 2.6 presents

the significant effect of task on determining our eye movements based on the

results of the experiment of Yarbus [133].

This form of attention is called top-down task oriented atttention and is vol-

untary. Compared to the bottom-up involuntary attention, it is slower.

After being stimulated from the scene in a bottom-up fashion, goal oriented

top-down attention determines what is perceived. This phase of attention in-

cludes constraining the recognized scene, based on scene understanding and ob-

ject recognition [61]. When a scene is constrained by the visual system, the region

which gets the most attention is promoted, which is known as the winner-take-all

principle [61].
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Figure 2.6: Repin’s picture was examined by subjects with different instructions;
(a) Free examination. (b) Estimate thematerial circumstances of the family in the
picture. (c) Give the ages of the people. (d) Surmise what the family had been
doing before the arrival of the ‘unexpected visitor’. (e) Remember the clothes
worn by the people. (f ) Remember the position of the people and objects in
the room. (g) Estimate how long the unexpected visitor had been away from the
family. (From [115]. c©Benjamin W. Tatler, Nicholas J. Wade, Hoi Kwan, John
M. Findlay, and Boris M. Velichkovsky; reprinted with permission. )
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Search target:

Distractors:

Exaggerated 
feature:

Figure 2.7: Human visual system is tuned to the exaggerated feature, which is a
better discriminator, to optimize the search process.

With a search task on browsing a scene, the human visual system is tuned in

the optimal way according to the search goal, such that the features of our target

become easily recognizable [91]. Interestingly, our visual system is not adjusted

for the exact features of our search target, but it is adjusted so that we could

differentiate these features in the optimum way. For example, among objects that

are oriented in a upwards direction, if our goal is to find a slightly right slanted

object; our sensitivity is tuned for the exaggerated feauture of the target object

to simplify differentiation (See Figure 2.7). In the same way, when our attention

is tuned according to a search goal, we may not recognize the objects that are not

related to our task although they are easily visible, which is called inattentional

blindness [112].

Another principle of visual attention is inhibition of return, firstly described

in 1984 by Posner and Cohen [99], which provides our visual system to perceive

the entire scene instead of being stuck in the visually most attractive region.

According to this principle, when a region is attended once, our perception on

that region is inhibited after the first 0.3 seconds and the recognition of objects

in this location decreases for a time of approximately 0.9 seconds. As a result,

attention goes to a new region enabling search of different and novel regions in

the visual periphery.
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Figure 2.8: Campbell-Robson Contrast sensitivity function chart [22]. The fre-
quency increases from left to right and contrast decreases from bottom to top.
(Image from [94]. Courtesy of Izumi Ohzawa, reprinted with permission.)

2.1.1.4 Sensitivity

Our sensitivity to the details in a scene can be utilized in computer graphics.

There are previous attempts that analyze the sensitivity of human visual system

to the visual scene. Spatial and temporal frequencies of the scene significantly

affect our sensitivity [65]. The general behaviour of sensitivity to spatial fre-

quency could be seen in Figure 2.8. As shown in the figure, our sensitivity to

contrast difference decreases in both ends of this figure. Additionally, there is an

interaction between spatial and temporal frequencies. The way the sensitivity is

affected by spatial and temporal frequencies is shown in Figure 2.9 [65].

The human visual system tolerates small velocities and could trace the objects

as if they are static. The temporal frequencies shown in Figure 2.9 are according

to the retinal velocities of the moving patterns. Daly [30] proposed a heuristic to

compute the retinal velocity as:

vR = vI −min(0.82vI + vmin, vmax), (2.1)

where vR is the retinal velocity, vI is the velocity in image space, vmin is the

velocity that the eye can track as if there is no motion, and vmax is the maximum

velocity that the eye can effectively track. vmin and vmax are set to be 0.15◦/sec
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Figure 2.9: Spatiotemporal sensitivity formula derived by Kelly. (From [65].
c©1979 Optical Society of America, reprinted with permission.)

and 0.8◦/sec by Daly.

While these functions are approximate sensitivity thresholds, when a signal

exceeds the sensitivity threshold, it is not guaranteed to be perceived at each trial.

In Psychophysics, the minimum luminance value that we can see is called the

absolute threshold and the minimum luminance difference that we can perceive

is called just noticable difference (JND). Absolute threshold can be measured as

the minimum strength of a signal that is just discriminable from its null [37].

Our sensitivity to a signal could be decreased by the presence of another

signal, which is called the masking effect. A simple example is the auditory

masking effect: a sound could be less perceptible in the presence of a louder sound.

Similarly, visual properties could have a masking effect. For example, texture on

a 3D model could mask the artifacts on the model’s surface. Figure 2.10 shows

an example of masking effect for simplified 3D models. This type of masking is

utilized in computer graphics to hide the low tessellation of the model by the use

of textures [35]. Lavoué analyzed the masking effect of surface roughness on the

perceived distortion of 3D models [70]. The distortions on the surface, e.g., noise

and watermarking are found to be less perceptible on rough regions compared to

smooth regions [70].

The eye can see sharply in only foveal region and it is less sensitive to detail in

the peripheral region, although its sensitivity does not drop off to zero instantly
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Figure 2.10: Masking effect due to textures: Simplification is less recognizable
when texture is applied to the models. From left to right: the number of faces in
the models are approximately: 8600, 4300, and 2150, respectively.

when going away from the center of interest [102]. While we could see the colors

in sharp detail on the foveal image, the color perception decreases significantly

for the periphery where we are more sensitive to luminance compared to color.

The reason for this is the positions of the color sensitive cone cells and luminance

sensitive rod cells on retina. Cones reside mostly in the fovea and more effective in

the foveal region of our vision. Rods surround fovea and provide better luminance

sensitivity in the peripheral region.

2.1.2 Visual Attention in Computer Graphics

2.1.2.1 Computational Models for Visual Attention and Saliency

Itti et al. [62] [61] describe one of the earliest methods to compute the saliency

of two dimensional (2D) images (Figure 2.11-top). In order to calculate the

saliency of a region, they compute the Gaussian weighted means of the intensity,
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Figure 2.11: Saliency computation in 2D (top) by Itti et al. [62] (From [62].
c©1998 IEEE, reprinted with permission.) and in 3D (bottom) by Lee et al. [74]

(From [66]. Courtesy of Youngmin Kim, reprinted with permission). In the
saliency images bright regions represent more salient regions.

orientation, and color opponency properties in narrow and wide scales; then the

difference of these scales gives the information of how different this region is

compared to its surroundings.

Lee et al. [74] have introduced the concept of mesh saliency of 3D graphical

models (Figure 2.11-bottom). In their work, the saliencies of mesh vertices are

computed based on the mesh geometry. Their proposed mesh saliency metric is

based on the center-surround operator on Gaussian weighted mean curvatures.

They have used the computed saliency values to drive the simplification of 3D

meshes, using Garland and Heckbert’s [40] Qslim method for simplifying objects

based on quadric error metrics.

Another saliency metric and measure for the degree of visibility is proposed

by Feixas et al. [34]. Their saliency metric uses the Jensen-Shannon divergence

of probability distributions by evaluating the average variation of JS-divergence

between two polygons, yielding similar results as Lee et al. [74]. A saliency

map for selective rendering that uses colors, intensity, motion, depth, edges, and
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habituation (which refers to saliency reduction over time as the object stays on

screen) is developed using GPU [80]. Their saliency map is based on the model

suggested by Itti and Koch [60].

The mesh saliency metric was improved by Liu et al. [78]. In their work,

two main disadvantages of Lee et al.’s work [74] are discussed. One is that the

Gaussian-weighted difference of fine and coarse scales can result in the same

saliency values for two opposite and symmetric vertices, because of the absolute

difference in the equation. The other is that combining saliency maps at different

scales makes it difficult to control the number of critical points. Therefore, instead

of the Gaussian filter, they use a bilateral filter and define the saliency of a vertex

as the Gaussian-weighted average of the scalar function difference between the

neighboring vertices and the vertex itself.

2.1.2.2 Application Areas of Visual Attention and Saliency

Saliency and other perceptually-inspired metrics have gained attention in level-

of-detail (LOD) rendering and mesh simplification. Reddy [102] uses the models

of visual perception, including vision metrics such as visual spatial frequency

and contrast, to optimize the visual quality of rendering for a flythrough in a

scene, by removing the non-perceptible components of 3D scenes. Luebke and

Hallen [83] propose a perceptually-driven rendering framework that evaluates lo-

cal simplification operations according to the worst-case contrast gratings and

the worst-case spatial frequency of features that they can induce in the image.

In their work, contrast grating is a sinusoidal pattern that alternates between

two extreme luminance values, and the worst-case one is a grating with the most

perceptible combination of contrast and frequency induced by a simplification

operation. They apply the simplification only if a grating with that contrast and

frequency is not expected, so they do not get any perceptible effect, which results

in a high fidelity model. A set of experiments have been performed using three

groups of tasks for measuring visual fidelity [126]. These tasks are naming the

model, rating the likeness of the simplified model against a standard one using

a 7-point scale, and choosing the better model of two equally-simplified models
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using Q-Slim and V-clust [106]. The results of these experiments and some auto-

mated fidelity measures [18] [25] show that automated tools are poor predictors

of naming times but good predictors of ratings and preferences. Williams et al.

[128] extend the perceptual simplification framework by Luebke and Hallen [83]

to models with texture and light effects. Howlett et al. [57] use an eye tracker

to identify salient regions and the fixation time on these regions of models, and

they modify Q-Slim to simplify those regions with a weight value. Because of

experiments similar to Watson et al.’s work, it is shown that the modified Q-

Slim performs better on natural objects, but not on man-made artifacts, which

indicates that saliency detection is very important.

Although mostly used for simplifying meshes, saliency has also been used

as a viewpoint selection criterion. In Yamauchi et al.’s work [130] viewpoints

are selected among a sample point set, forming the vertices of a graph on the

bounding sphere of an object. The graph is partitioned according to the degree

of similarity between its edges, and sorted according to their geometric saliency

value. A recent work by Shilane et al. [110] uses the database of objects to

measure the distinctiveness of different regions of an object. It is based on the

idea that if a region has a very unique shape that is used to differentiate the

object from other objects, that region is an important part of the object. It

works by selecting several random points as centers of overlapping spheres over

the surface and generating shape descriptors from the surfaces covered by those

spheres. Next, a measurement is taken of how distinctive each region is with

respect to a database of multiple object classes, and if the best matches of a

region are all from the object’s own class, that region is distinctive. Although a

database is required, it gives better results than Lee et al’s approach [74] in terms

of simplification quality.

Saliency has also been studied for illustration. It is shown that visual at-

tention can be directed by increasing the saliency at user-selected regions using

geometric modification [67] (Figure 2.12). With a weight change in the center-

surround mechanism, they modify mean curvature values of vertices by using

bilateral displacements and use eye trackers to verify that the change increases

user attention. Mortara et al. [89] use the saliency information to generate



CHAPTER 2. BACKGROUND 21

Figure 2.12: Several applications utilizing saliency. Left: User’s attention is di-
rected to the second statue by altering its saliency [66] (Courtesy of Youngmin
Kim, reprinted with permission). Right: Saliency information is used in generat-
ing cubist like paintings [10] (Courtesy of Sami Arpa, reprinted with permission).

thumbnails of meshes. In addition to the bottom-up saliency calculation they

also use semantic information to determine the important parts of a mesh.

Saliency based variation of human models is proposed by McDonnell et al.

[85]. In this work, various human models in a crowd are generated by modifying

only the salient regions, namely head and upper torso, of the models. This eases

crowd generation with perceptually different individuals.

Saliency information could also be used for artistic purposes (Figure 2.12).

For example, saliency information is utilized to generate cubist like renderings

[27] and also used in automatic caricature generation of 3D models [26].

Top-down component of attention is also used in computer graphics. For

example, having the information of task related of objects could be utilized very

efficiently in computer graphics by directing the rendering efforts on these objects,

depending on the assumption that other objects will not get attention. Cater et

al. [23] utilize this assumption to come up with a selective rendering framework.

On the other hand, most of the time, it is not very practical to have the knowledge
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of task related objects in a 3D environment. In another study, Lee et al. [75]

study the attention given on objects that are tracked in real-time and uses it to

adjust the level of detail. In this study, an interactive 3D environment which

provides free user movement is used and the assumption is that the objects that

are tracked by the user gets attention.

2.2 Binocular Vision and Stereoscopic Render-

ing

This section is divided into three parts: The first part gives the fundamentals of

binocular vision and stereoscopic rendering, then the optimization methods for

stereoscopic rendering in the literature are presented. Lastly, binocular suppres-

sion theory of binocular vision, which forms the base of our study on stereoscopic

rendering optimization, is given.

2.2.1 Concepts in Binocular Vision

2.2.1.1 Binocular vision fundamentals

The human visual system extracts depth information via several cues of depth.

Most of these cues, such as perspective, relative size, texture gradient, exist in

monocular images 2.13. Although we could extract most of depth information

from the 3D renderings in monocular displays today ‘3D display’ is a phrase

referring to displays capable of providing different images to right and left eyes,

enabling binocular vision.

Stereo vision is a powerful depth cue, and when used properly it provides a

strong presence feeling and 3D sense for small distance, i.e., effective for objects

closer than 30m to the eye. When two eyes see slightly different images, the

human vision system uses the disparities of objects in these two images to extract

depth information and get a 3D impression, as shown in Figure 2.14.
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Figure 2.13: Several monocular depth cues including: occlusion, relative size,
relative brightness, atmosphere, and distance to horizon.

left eye view right eye view

Figure 2.14: Visual system uses the difference of images viewed by left and right
eyes to extract depth information.
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Binocular vision increases visual workload [87], requiring analysis of two dif-

ferent views and their relations. Long durations of 3D vision with contents having

high disparity causes discomfort and eye fatigue. Similarly, in computer graphics,

stereoscopic rendering requires rendering the scene twice and decreases render-

ing performance. The studies to optimize stereoscopic rendering are given in

Section 2.2.2.

Convergence-accommodation conflict: A problem that emerges in stereo

rendering systems is convergence-accommodation conflict. A single eye physically

adapts to the distance of the focused object by distorting eye lens, that is known

as accommodation and is a weak depth cue. Also, two eyes converge to the focal

depth as illustrated in Figure 2.14, which is known as convergence (or vergence).

In physical world, these two depth cues support each other. However, with the

use of 3D displays, a single eye accommodates to the display distance while con-

vergence is made according to the virtual depth of the scene due to the disparity

of the shown left and right images, which causes a conflict about focal distance

resulting in fatigue and visual discomfort [52].

2.2.1.2 Binocular Suppression Theory

Binocular suppression theory of binocular vision proposes an explanation to the

binocular vision mechanism of the eye. According to this theory, when dissimilar

images are shown to each eye, one of the views suppresses the other at any one

time, and the dominating view alternates over time. But when similar images

(e.g., in a stereo pair) are shown to each eye, similar images falling on corre-

sponding retinal regions form a unitary visual impression, while each region in

the visual field contains input from a single eye at any one time [56].

Even though the actual process of the binocular vision is not fully identified,

there are cases which support the binocular suppression theory in perception

research. For instance, in an experimental study, subjects were asked to wear a

lens for myopia for one eye, and hyperopia for the second eye, and were observed

to see all distances in sharp focus, because the focused image suppresses the
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Figure 2.15: Binocular rivalry mechanism. When the left-eye (top-left) and right-
eye (top-right) views are shown, the combined view (bottom) merges the dom-
inant regions from the two views. (From [20]. c©2010 Elsevier, reprinted with
permission.)

unfocused eye. This further supports the binocular suppression theory that one

view is suppressed by the other, with no effect on the final percept [56].

According to the binocular suppression theory, when one view is suppressed

by the other, a perceptual competition occurs between the two views. This is

known as binocular rivalry and this property has been studied extensively. Asher

[12] states that rivalry occurs in local regions of the visual field, and only one

eye’s view is dominant within these regions. Figure 2.15 illustrates this mecha-

nism. In the combined view, the teapot and the glass completely suppress the

corresponding portion of green ground seen by the other eye. Blake and Logo-

thetis [17] also examined the principles of the binocular vision and claimed that

stronger competitors have larger dominance. For instance, a high-contrast figure

will dominate over a low-contrast one, or a brighter stimulus has an advantage

over a dimmer one from the perspective of predominance.

Once binocular rivalry mechanism is confirmed, the next question becomes:

what are the factors that affect the strength of a region for rivalry? Yang et

al. state that a pattern with higher spatial frequency in one eye suppresses a

pattern with lower spatial frequency in the other eye; therefore it is stronger [56].
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Similarly, a region becomes stronger when the contrast [16] or the number of

contours increase, which in turn cause a higher spatial frequency. Color variance

also has a positive effect on stimulus strength [54]. One other factor that causes

a stimulus to be stronger is motion [56]. According to Breese, a moving grating

has an advantage over a stationary one and the strength increases as the speed

of motion increases [56].

Binocular suppression theory has recently gained interest in the image pro-

cessing and compression fields. Perkins [96] studied mixed-resolution stereo im-

age compression where one view is low-pass filtered and has lower resolution, and

demonstrated that the resultant 3D percept is of adequate image quality, when

compared to the reference content. In a related work, Berthold [14] showed that

apparent depth is relatively unaffected by spatially filtering both channels of a

stereo image. Therefore, the image processing research to-date suggests that it

is possible to low-pass filter one or both views of a stereo pair without affecting

the subjective impression of sharpness, depth, and quality of the image sequence.

Stelmach et al. [113] has built on these results, and presented a solution for

mixed-resolution stereo image compression, and provided favorable experimental

results.

2.2.2 Stereoscopic Rendering Optimization Techniques

A number of techniques have been proposed to optimize stereoscopic rendering.

The first group of solutions follows a graphics pipeline-based approach, by utiliz-

ing the coherence between neighboring views. Adelson et al. [4] simultaneously

render a triangle to both images by using the x-axis coherence in device coordi-

nates to accelerate the stereoscopic rendering process. Kalaiah and Capin [63]

propose a GPU-based solution that reduces the number of vertex shader computa-

tions needed for rendering multiple views, the vertex shader is split into two parts

- view-independent and view-dependent. Performing vertex shader computations

once for the view-independent part, instead of per-view calculation, reduces the

rendering complexity. Hasselgren et al. [44] propose a multiview pipeline-based

method, called approximate rendering, where fragment colors in all neighboring
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views can be approximated from a central view when possible. As a result of

approximate rendering, many per-pixel shader instructions are avoided.

Another group of solutions uses an image-based approach. In these solutions,

one view is reconstructed from the other, 3D rendered view, by exploiting the

similarity between the two views. In these techniques, the rendering time of the

second image depends on only the image resolution, instead of the scene com-

plexity, therefore saving rendering computations for one view. Fu et al. [39]

compute the right image by warping the left image; however the resulting image

contains holes which require to be filled by interpolation. Wan et al. [120] fill

these holes by raycasting. Similarly, Fehn [33] uses a depth buffer to generate

multiple views from a single image. Blurring the depth buffer by a Gaussian filter

is used for handling the hole-filling problem. Zhang and Tam [135] also use depth

images to generate the second view. In this method, the image for one view is

used to construct a depth image, and then the second view is constructed using

this depth image. Lastly the holes occurred in the previous step are filled by

averaging the textures from neighboring pixels. Halle uses epipolar images that

contain the rendered primitives interpolated between the two most extreme cam-

era viewpoints for extracting the in-between views [43]. Stereo images produced

with these techniques are generally an approximation to the original stereo image

rendering result.

Finally, a third group of solutions has been proposed for stereoscopic render-

ing optimization targeted for ray tracing and volume rendering. Adelson and

Hodges [4] propose a solution to stereoscopic ray tracing, where a ray-traced left

image is used to construct part of the right image and the rest of the right image

is calculated by ray tracing. He and Kaufman [45] speed up stereoscopic vol-

ume rendering by re-projecting the samples for the left view to the right image

plane and compositing several samples simultaneously while raycasting. Similarly,

Es and Isler [32] propose a GPU-based approach for efficient implementation of

stereoscopic ray tracing.
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2.3 Motion Perception

2.3.1 Concepts in Motion Perception

2.3.1.1 Mechanism to Perceive Motion

A difference of position in our visual field provides a sense of motion. This

process requires a temporal analysis of the contents in our visual field. Between

two different images that fell into our retina sequentially, our visual system needs

to identify that some objects placed in different positions are the same objects and

they are moving. Despite we could easily perceive objects as smoothly moving,

the mechanism to detect motion is not that simple. Dealing with spatial relations

is easier than solving temporal relations [38]. Also, it is possible not to be able

to perceive motion, which is called as ‘motion blindness’. Patients suffering from

motion blindness could see moving objects as static ones that change their places

abruptly [38].

A proposed model to explain motion detection is Reichardt motion detector

[103]. This device is based on small units responsible for detecting motions in

specified directions. These units compare two retinal image points, if the same

signal appears in these two points with a small delay, the units detect motion in

their specific direction [38]. Along with color, depth, and illumination; center-

surround organization is also applied to motion processing in visual system. The

neurons processing motion have a double-opponent organization for direction se-

lectivity [8] meaning that the motion detecting modules could inhibit their sur-

roundings and a motion should be differentiable compared to its surroundings to

be detected.

2.3.1.2 Motion and Luminance

Motion perception has a close relation with the luminance channel. A strong

contrast between the luminance values of the moving object and the background
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gaze point

Figure 2.16: Left: arrows represent motion directions of the separate units. Right:
According to Gestalt psychology, the units with the same motion behavior are
united and perceived as a single unit. In such a case, viewers look at somewhere
inbetween the group members instead of focusing on one of them.

enhances motion sensitivity. A pattern seems to be moving significantly slower

when the background and foreground has only chromatic difference (with same lu-

minance values) compared to the case of black and white [125]. Spatial frequency

is also effective on temporal sensitivity as presented in Section 2.1.1.4.

2.3.1.3 Gestalt Psychology for Motion Perception

In spatial domain, visual system tends to group stimuli by considering their sim-

ilarity and proximity as introduced in Gestalt principles. It is shown that visual

system searches similarities also in temporal domain and can group stimuli by

considering their parallel motions [68]. A bunch of moving dots with the same di-

rection and speed could be perceived as a moving surface with this organization.

Figure 2.16 illustrates this type of grouping.

2.3.1.4 Motion Aftereffect

Upon viewing a motion for a notable amount of time, when we look at somewhere

else, a static scene appears to be moving in the opposite direction compared to

the motion we have been seeing. This is called ‘motion aftereffect’ and it is the



CHAPTER 2. BACKGROUND 30

result of our visual system’s adaptation to a motion.

2.3.1.5 States of Motion

Visual motion may be referred as salient since it has temporal frequency. On

the other hand, recent studies in cognitive science and neuroscience have shown

that motion by itself does not attract attention. However, phases of motion, e.g.,

motion onset, motion offset, continuous motion, have different degrees of influence

on attention. Hence, each phase of motion should be analyzed independently.

Abrams and Christ [3] experimented different states of motion to observe the

most salient one. They indicated that the onset of motion captures attention

significantly compared to other states. Immediately after motion onset, the re-

sponse to stimulus slows with the effect of inhibition of return and attentional

sensitivity to that stimulus is lost.

Singletons, having different motion than others within stimuli, capture atten-

tion in a bottom-up, stimulus-driven control. If there is a target of search, only

feature singletons attract attention. If it is not the target, observers’ attention is

not taken. However, abrupt visual onsets capture attention even if they are not

the target [132].

Other than motion onset, the experiments in the work of Hillstrom and Yantis

[51] showed that the appearance of new objects captures attention significantly

compared to other motion cues. On the other hand, motion offset and continuous

motion doesn’t capture much attention.

2.3.2 Motion Perception in Computer Graphics

Visual sensitivity to moving objects is utilized in computer graphics. Kelly [65]

and Daly [30] measure the spatio-temporal sensitivity and fit computational mod-

els according to their observations. Yee et al. [134] built on these studies and

used the spatio-temporal sensitivity to generate error tolerance maps to accelerate
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rendering.

Peters and Itti [97] observed the gaze points on interactive video games and

concluded that motion and flicker are the best predictors of the attended location

while playing video games. Their heuristic for predicting motion-based saliency

(as for other channels like color-based and orientation-based) works on 2D images

and it is also based on the center-surround machanism.

Halit and Capin [42] proposed a metric to calculate the motion saliency for

motion-capture sequences. In this work, the motion capture data is treated as

a motion curve and the most salient parts of these curves are extracted as the

keyframes of the animation.

2.4 Quality Assessment of 3D Graphical Models

This section presents recent advances in evaluating and measuring the perceived

visual quality of 3D polygonal models. The general process of objective quality

assessment metrics and subjective user evaluation methods are reviewed and a

taxonomy of existing solutions is presented. Simple geometric error computed

directly on the 3D models does not necessarily reflect the perceived visual qual-

ity; therefore, integrating perceptual issues for 3D quality assessment is of great

significance.

3D mesh models are generally composed of a large set of connected vertices

and faces required to be rendered and/or streamed in real time. Using a high

number of vertices/faces enables a more detailed representation of a model and

possibly increases the visual quality while causing a performance loss because

of the increased computations. Therefore, a trade-off often emerges between

the visual quality of the graphical models and processing time, which results

in a need to judge the quality of 3D graphical content. Several operations in

3D models need quality evaluation. For example, transmission of 3D models

in network-based applications requires 3D model compression and streaming, in

which a trade-off must be made between the visual quality and the transmission
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Figure 2.17: Left: original bunny model; middle: simplified; right: smoothed

speed. Several applications require accurate level-of-detail (LOD) simplification

of 3D meshes for fast processing and rendering optimization. Watermarking of

3D models requires evaluation of quality due to artifacts produced. Indexing

and retrieval of 3D models require metrics for judging the quality of 3D models

that are indexed. Most of these operations cause certain modifications to the 3D

shape (see Figure 2.17). For example, compression and watermarking schemes

may introduce aliasing or even more complex artifacts; LOD simplification and

denoising result in a kind of smoothing of the input mesh and can also produce

unwanted sharp features. In order to bring 3D graphics to the masses with a high

fidelity, different aspects of the quality of the user experience must be understood.

3D mesh models, as a form of visual media, potentially benefit from well-

established 2D image and video assessment methods, such as the Visible Differ-

ence Predictor (VDP) [29]. Various metrics have thus been proposed that ex-

tend the 2D objective quality assessment techniques to incorporate 3D graphical

mechanisms. Several aspects of 3D graphics make them a special case, however.

3D models can be viewed from different viewpoints, thus, depending on the ap-

plication, view-dependent or view-independent techniques may be needed. In

addition, once the models are created, their appearance does not depend only

on the geometry but also on the material properties, texture, and lighting [90].

Furthermore, certain operations on the input 3D model, such as simplification,

reduce the number of vertices; and this makes it necessary to handle changes in

the input model.

The latest advances in visual quality evaluation of 3D graphical models could
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be categorized as view-independent and view-dependent metrics. Another ap-

proach is applying subjective user tests. The details of each category and a

performance comparison of existing metrics are given in the remaining part of

this section.

2.4.1 Viewpoint-Independent Quality Assessment

This category of quality assessment metrics directly works on the 3D object space.

The quality of a processed (simplified, smoothed, watermarked, etc.) model is

generally measured in terms of how “similar” it is to a given original mesh. These

similarity metrics measure the impact of the operations on the model. Viewpoint-

independent error metrics provide a unique quality value for a model even if it

has been rendered from various viewpoints as opposed to the viewpoint-dependent

metrics that work on 2D rendered images.

2.4.1.1 Geometric-distance-based metrics

The simplest estimation of how similar two meshes are is provided by the root

mean square (RMS) difference:

RMS(A,B) =

√√√√ n∑
i=1

||ai − bi||2, (2.2)

where A and B are two meshes with the same connectivity, ai and bi are the

corresponding vertices of A and B, and ||..|| is the Euclidean distance between

two points. The problem is that this metric is limited to comparing meshes with

the same number of vertices and connectivity.

One of the most popular and earliest metrics for comparing a pair of models

with different connectivities is the Hausdorff distance [25]. This metric calculates

the similarity of two point sets by computing one-sided distances. The one-sided

distance D(A,B) of surface A to surface B is computed as follows:
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Figure 2.18: The Hausdorff distance between two surfaces. The two-sided Haus-
dorff distance is H(A,B) = max(D(A,B), D(B,A)). (From [19]. c©2011 IEEE,
reprinted with permission.)

dist(a,B) = minb∈B(||a− b||)
D(A,B) = maxa∈A(dist(a,B)).

(2.3)

As this distance is non-symmetric, the two-sided Hausdorff distance is com-

puted by taking the maximum of D(A,B) and D(B,A) (Figure 2.18):

H(A,B) = max(D(A,B), D(B,A)). (2.4)

The Hausdorff distance has been used to find the geometric error between

a pair of 3D mesh models in the Metro tool by Cignoni et al. [25]. In this

approach the mean distance between a pair of meshes is found by dividing the

surface integral of the distance between the two meshes by the area of one of

the surfaces. The computation of this integral on discrete 3D models requires a

sampling method for fast computation. Aspert et al. [13] also propose a sampling

implementation of the Hausdorff distance in the MESH tool.

The Hausdorff distance computes the final distance between two surfaces as

the maximum of all pointwise distances. Rather than taking the maximum,

extensions have been proposed to provide a better indication of the error across

the entire surface. Instead of taking the maximum of the pointwise distances, the

average (known as the L1 norm), the RMS (L2 norm), and combinations have
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been proposed [82, 25].

These metrics are well known and widely used; however, even if they can cor-

rectly correlate with human judgement in some simple scenarii, they usually fail

to reflect the perceived quality because they compute a pure geometric distance

between a pair of meshes, ignoring the working principles of the human visual

system. Hence, several other metrics, using different perceptual principles, have

been proposed to better estimate the perceived quality of 3D meshes. These solu-

tions can be categorized as roughness-based, structure-based, saliency-based, and

strain-energy-based metrics. Since each of these categories focuses on different

aspects of perception, it is unlikely for one of them to estimate the perceived

visual quality for all scenarii. In this case, blending metrics of several categories

may be a possible solution.

2.4.1.2 Roughness-based metrics

Several solutions evaluate the quality of processed 3D models based on their differ-

ences from the original model in their surface roughness (or smoothness). These

solutions employ the observation that operations on 3D mesh either introduce a

kind of noise related to roughness (e.g., as with quantization or watermarking) or

cause smoothing of the surface details (e.g., with level-of-detail simplification for

rendering). Roughness is an important perceptual property, as we cannot deter-

mine the effect of a small distortion if it is on a rough region of the model, and

we can detect defects on smooth surfaces more easily. This perceptual attribute,

called the masking effect, states that one visual pattern can hide the visibility of

another.

Karni and Gotsman propose such a roughness-based error metric to evaluate

their mesh compression approach [64]. This metric calculates the Geometric

Laplacian of a vertex vi as follows:
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Figure 2.19: Roughness map of a 3D model. From left to right: Original model;
roughness map: rough regions shown with warmer colors; noise on rough regions;
noise on smooth regions. (From [19]. c©2011 IEEE, reprinted with permission.)

GL(vi) = vi −

∑
j∈n(i)

l−1ij vj∑
j∈n(i)

l−1ij
, (2.5)

where n(i) is the set of neighbors of vertex i, and lij is the geometric distance

between vertices i and j. Then the norm of the Laplacian difference between

models M1 and M2 is combined with the norm of the geometric distance between

the models as follows (v is the vertex set of M):

||M1 −M2|| = 1
2n

(||v1 − v2||+ ||GL(v1)−GL(v2)||) . (2.6)

One limitation of this metric is that the compared models must have the same

connectivity as the RMS error approach.

Wu et al. [129], for driving their simplification algorithm, examine the dihedral

angles of the adjacent faces, considering that a rough surface should have greater

dihedral angles. Roughness variation has also been used for quality assessment

of watermarked meshes; Gelasca et al. [31] and Corsini et al. [28] measure

roughness strength by taking the difference between a mesh and its smoothed

version. After computing roughness values for the original and watermarked
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models, the roughness-based difference is calculated as follows:

R(M,Mw) = log

(
R(M)−R(Mw)

R(M)
+ k

)
− log(k), (2.7)

where R(M) is the roughness of the original mesh, R(Mw) is the roughness of the

watermarked mesh, and k is a constant to stabilize the numerical results. These

roughness-based perceptual metrics [31, 28] have shown to correlate very well

with human judgement, particularly in the context of watermarking distortions.

Lavoué proposes a local roughness measure that is able to efficiently differ-

entiate between the different kinds of regions in a mesh: rough parts, smooth

regions, and “edge” features, which define border areas between regions [70] (see

Figure 2.19). The proposed measure is based on a curvature analysis of local

windows of the mesh and is independent of its connectivity. This measure does

not estimate any distance but provides a local roughness estimation that can be

used to hide artifacts and could be useful for the design of future quality metrics.

2.4.1.3 Structural distortion-based metrics

Structural distortion-based metrics consider the assumption that the human vi-

sual system is good at extracting the structural information of a scene in addition

to local properties. Lavoué et al. [73] propose Mesh Structural Distortion Mea-

sure (MSDM), based on the work of Wang et al. [122], dedicated to 2D images.

Instead of extracting the structural information using luminance in 2D images,

this metric uses curvature analysis of the mesh geometry. In this work, a local

mesh structural distortion measure (LMSDM) on two local windows x and y of

the two meshes is calculated as:

LMSDM(x, y) =

(α× L(x, y)a + β × C(x, y)a + γ × S(x, y)a)
1
a ,

(2.8)

with α, β, and γ selected as 0.4, 0.4, and 0.2, respectively, by the authors and

with curvature comparison L, contrast comparison C, and structure comparison

S computed as:
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L(x, y) = ||µx−µy ||
max(µx,µy)

,

C(x, y) = ||σx−σy ||
max(σx,σy)

, and

S(x, y) = ||σxσy−σxy ||
σxσy

,

(2.9)

where µx, σx, and σxy are respectively the mean, standard deviation, and covari-

ance of the curvature on local windows x and y. Then the MSDM is calculated

as follows:

MSDM(X, Y ) =

(
1

nw

nw∑
i=1

LMSDM(xi, yi)
a

) 1
a

∈ [0, 1), (2.10)

where X and Y are the compared meshes, xi and yi are the corresponding local

windows of the meshes, and nw is the number of local windows. a is selected

as 3 by the authors, for equations 2.8 and 2.10 [73]. This metric has proven to

correlate very well with human judgement even in difficult scenarii. The authors

propose an improved version of this method in [71].

2.4.1.4 Saliency-based metrics

The metrics described above provide a guarantee of the maximum geometric

distance rather than estimating the perceived distance between the models.

In this group of metrics the idea is to give more importance to parts of the

meshes that gather more human attention. This type of metric is generally used

for mesh simplification such that salient parts of a mesh are preserved in the

simplification, as suggested by Howlett et al. [57] and Lee et al. [74]. The salient

parts of meshes are determined by utilizing an eye-tracker in Howlett et al.’s

work, whereas Lee et al.’s method is more convenient as it computes saliency of

a mesh automatically, based on its surface curvature.

Similar to the roughness-based and structural distortion-based metrics,

saliency uses the perceptual limitation of the human visual system, and its further

use for mesh quality assessment is a research area of great interest.
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2.4.1.5 Strain-energy-based metrics

Bian et al. [15] propose a solution based on the strain energy on the mesh as

a result of elastic deformation. Mesh models are assumed to be elastic objects;

as shells composed of triangular faces of negligible thickness. The assumption is

that triangle faces do not bend, and each triangle is deformed along its plane by

ignoring any rigid body motion.

The perceptual distance between the two versions of the input model is de-

fined as the weighted average strain energy (ASE) over all triangles of the mesh,

normalized by the total area of the triangular faces:

SFEM(A,B) =
1

S

∑
wiWi, (2.11)

where wi are weights for which several strategies are tested in [15] and Wi is the

strain energy computed for triangle i.

This model correlates well with human opinion from the subjective experiment

conducted by the authors.

2.4.1.6 Attribute-based metrics

Many 3D mesh models contain per-vertex attributes in addition to the vertex

position, such as color, normal, and texture coordinates. Also, in sharp creases

of the models, there may be multiple normals per-vertex, or there may be several

color values on the boundaries, causing discontinuities in the attributes.

As described by Luebke et al. [82], correspondence between vertices on two

surfaces is important but is a difficult issue for meshes with different connectiv-

ities; it is difficult to compare attribute values from the original surface and a

simplified version in a continuous function. Luebke describes an alternative to

Hausdorff, called the bijection method. This requires correspondence between

vertices in a 2D parametric domain, such as a texture map. This distance is

called a parametric distance. Roy et al. [107] propose a metric called Attribute
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Deviation Metric, that can be used to compare two meshes according to their

geometric and appearance attributes (or any other per-vertex attributes). The

local deviation of attributes between each point of a mesh and the surface of the

reference mesh is calculated using parametric distances.

Pan et al. propose a different approach for quality assessment, calculating

the quality of a 3D model according to its wireframe and texture resolutions

(Equation 2.12) [95].

Q(g, t) =
1

1
m+(M−m)t

+
(

1
m
− 1

m+(M−m)t

)
(1− g)c

(2.12)

Here, m and M are the minimum and maximum bounds of quality, g and t are

graphical and texture components scaled into a [0−1] interval, and c is a constant.

All coefficients are determined by curve fitting on subjective evaluation data. This

metric provides a very good estimation of human judgement as demonstrated in

the authors’ subjective experiment.

2.4.2 Viewpoint-Dependent Quality Assessment

Viewpoint-dependent quality assessment metrics estimate the perceptual qual-

ity of a 3D model as it is shown on the screen; therefore, these metrics are

image-based. Viewpoint-dependent metrics can be classified as: non-perceptual

metrics and perceptually based metrics. The visual system does not matter for

non-perceptual approaches; they compute the difference between two images pixel

by pixel. Perceptually based metrics rely on the mechanisms of the human visual

system and attempt to predict the probability that the human observer will be

able to notice differences between images.
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2.4.2.1 Non-perceptual metrics

Lindstrom and Turk calculate the RMS image error for mesh simplification [77].

In their work, the meshes are rendered from multiple viewpoints and the quality

of the resulting luminance images are measured in terms of their differences from

the original image as follows:

dRMS(Y 0, Y 1) =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(
y0ij − y1ij

)2
, (2.13)

where Y 0 and Y 1 are m by n luminance images. The RMS metric is not a

good metric for image quality assessment and is seldom used because it is highly

affected by a shift or scale, and it does not have a perceptual aspect.

Another quality metric for comparing image quality against a reference image

consists in calculating the peak signal-to-noise ratio (PSNR). Using the RMS

error shown in Eq. 2.13, the PSNR for an image with a highest possible intensity

value Imax can be calculated by:

PSNR = 20log10

(
Imax
dRMS

)
(2.14)

Although PSNR is also widely used for natural images, it is shown to be a

poor indicator of image quality [123]. However, according to a report of the Video

Quality Experts Group (VQEG), many more-complicated image quality metrics

are not significantly better than PSNR [105]. The reasons for this are discussed

in a study of Wang et al. [121].

2.4.2.2 Perceptually based metrics

Many 2D metrics incorporate the mechanisms of the human visual system. These

metrics generally use the following perceptual concepts: Contrast Sensitivity

Function (CSF), which indicates the relation between the visible spatial frequency
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Figure 2.20: Left: original image; right: simplified image; bottom: VDP output.
(From [19]. c©2011 IEEE, reprinted with permission.)

and different contrast values; and masking, which describes the reduction in the

visual sensitivity of a signal upon the existence of another signal.

A popular metric in this category is Daly’s Visible Difference Predictor [29].

This metric takes two images as inputs, one of which is evaluated relative to

the other; and the output is an image of the perceptual differences between the

two images (see Figure 2.20). The value of each pixel on the output image

indicates the detection probability of the difference. The VDP is shown to be

a good indicator of perceptually important areas in 3D graphics scenes by the

psychophysical experiment of Longhurst and Chalmers [79].

Another well-known metric is the Sarnoff Visual Discrimination Model (VDM)

[81] by Lubin. This metric also predicts the detection probability of the differences
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between a reference image and the evaluated image, as in VDP. The Sarnoff VDM

model works on spatial domain whereas VDP works in the frequency domain;

VDM works faster but requires more memory. Li et al. [76] compare the two

metrics and find that each model has advantageous properties.

Bolin and Meyer modify the Sarnoff VDM model and propose a simpler and

faster metric, which incorporates color properties into their 3D global illumination

calculations [18]. This metric is preferred for its efficiency. In their subjective

experiment with differently simplified 3D models, Watson et al. [126] show that

this metric is an effective predictor of fidelity.

Ramasubramanian et al. [101] propose a perceptually based metric that de-

fines a threshold map in which the minimum detectable difference values are

stored for each pixel. This metric handles luminance and spatial processing sep-

arately, which provides efficiency since it enables pre-computing of the spatial

features.

Ramanarayanan et al. [100] introduce a novel concept, the Visual Equivalence

Predictor (VEP), which claims that two images are visually equivalent if they give

the same impression even though they have visually different parts. This concept

makes more sense for computer-generated imagery in which slightly different il-

lumination techniques lead to different images when analyzed pixelwise although

the two images have similar fidelity and information. This model takes 3D ge-

ometry, material, and illumination properties into account for the equivalency

computations. The VEP concept aims to overcome the limitations of the VDP

model, which only considers the earliest levels of visual coding, and is therefore

too conservative with respect to the kinds of approximations that can be applied

in the rendering process.

Visual masking, which describes the reduction in visual sensitivity of a signal

upon the existence of another signal, has been used for view-dependent quality

assessment of 3D models. Ferwerda et al. [35] investigate the masking effect for

computer graphics and extend the VDP model to include color. In their study, a

computational model of the masking effect of the used textures on the artifacts

of the 3D meshes is developed. This masking effect is predicted on the varying
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contrast, spatial frequency, and orientation features of the texture pattern and

on the polygonal tessellation of the model surface.

Three image-quality metrics based on perceptual color differences are pro-

posed by Albin et al. [7]. These similar metrics find the difference between two

images in the LLAB (a modified version of CIELAB) color space. The authors

state that these metrics are not complete but only initial attempts at a perceptual

quality metric. While the first metric is based on a pixel-by-pixel difference of

the images, the second metric gives a single distance value using a Monte-Carlo

approach, and the last one is a subdivision-based metric, which gives a rougher

difference image compared to the first metric in a shorter time.

2.4.3 Subjective Evaluation of 3D Polygonal Models

While automatic metrics are commonly used to predict perceptual quality, rela-

tively few researchers have attempted to measure and predict the visual fidelity of

3D models through subjective experiments. These experiments could be directly

used to predict the perceptual quality of 3D models as well as to validate the

outcomes of automatic metrics described in the previous sections. Generally, the

term “quality” is used to judge how two images (one of them original, the other

modified) are “similar” to each other.

2.4.3.1 Experimental measures

Watson et al. study experimental fidelity measures for 3D graphical models [126],

and define three of them: naming time, which measures the time from the ap-

pearance of an object until the observer names it; rating, where observers assign

a number within a range and meaning determined by the experimenter; and

forced choice preferences, where observers are shown two or more stimuli, and

they choose the stimulus with more of the experimenter-defined quality. The

results of this work show that automatic measures of fidelity (e.g., Bolin’s [18],

Metro [25], mean squared error (MSE) approaches) are successful at predicting
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experimental ratings, less successful at predicting preferences, and largely unsuc-

cessful at predicting naming times. On the other hand, when the task is based on

comparing different models, ranking is stated to be better than rating the mod-

els because the given ratings do not necessarily reflect the perceptual distance

between the compared models [104, 111]. The experimental measures used in

several user studies can be found in Table 2.1.

2.4.3.2 Experimental design

The parameters used in an experiment are of great importance because they can

bias the results significantly, especially for computer-generated stimuli, where

almost everything can be controlled. Effective parameters controlled in several

quality assessment studies are shown in Table 2.2 and listed as follows:

• Lighting: The position and type of light source is a crucial element, with

a major effect on the viewing conditions. Rogowitz et al. [104] show that

models lit from the front result in different subjective scores compared to

the same models lit from above. The human visual system has a prior that

light is stationary and comes from a left-above orientation [55].

• Background: The background may affect the perceived quality by chang-

ing the visibility of the boundaries of the model. While a uniform black

background is used in several user studies [126][108], Corsini et al. [28]

choose a non-uniform background that fades from blue to white so as not

to overestimate the contours.

• Materials and Shading: Today, almost all 3D models used in applications

have material properties (e.g., texture, normals) and associated complex

programmable shaders. On the other hand, most of the subjective evalua-

tions for verifying perceptual metrics do not take material properties into

account; they use only diffuse and smooth-shaded models, mostly to prevent

highlight effects [28]. Textures have only been used in the context of sub-

stituting geometry with texture [95][108]. On the other hand, as described
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above, material properties such as textures introduce the masking effect

and hide visual artifacts. Researchers often use models without textures

or complex material properties to better control the number of variables

influencing the outputs.

• Animation and Interaction: To evaluate a 3D model in a fair way, ob-

servers should be able to see the models from different viewpoints. This

can be achieved by animating the object or viewpoint as in [104, 95], as

well as giving free viewpoint control to the user as in [28, 111, 72]. Fur-

thermore, animations affect the perception of the models such that, in the

study of Rogowitz and Rushmeier [104], artifacts caused by simplification

are less visible when the objects are rotating rather than standing still. The

sensitivity of the human visual system is dependent on retinal velocity; the

eye’s tracking ability is limited to 80 deg/sec [30], which should be taken

into account when an experiment includes animation.

• Type of Objects: There are several concerns to keep in mind when select-

ing objects for a subjective experiment. Watson et al. [126] state that

evaluation results are different for animal models and man-made artifacts.

Further, using abstract objects helps avoid semantic interpretation [108].

Also, the complexity and roughness of the models are important. In a very

complex object, simplifications may not be visible and the roughness of a

mesh may mask artifacts.

• Masking: The object’s geometry, roughness, texture, and applied noise or

watermarking can mask each other. Lavoue et al. [70] examine the masking

effect of noise and roughness; Pan et al. [95] and Rushmeier et al. [108]

examine the masking effect of textures on geometry. The masking effect

should be considered while designing an experiment.

• Extent: The extent, i.e., the display area of the rendered model in pixels,

should be large enough to reflect the details of the model. Showing too

many items simultaneously may decrease the visibility of the models. The

display extents used in several user studies can be found in Table 2.2.

• Levels: When an operation (simplification, watermarking, etc.) on meshes
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is to be tested, the number of the comparison cases and the strengths of

the applied operations for each case should be adjusted carefully. Too few

levels (compared cases) may not sufficiently reflect the tested operation,

whereas a large number of levels may not be feasible, as they would require

too many subjects. For simplification case, there are studies using three

[126, 104] to seven [111] levels (including the originals) of simplification.

• Stimuli order: In comparison-based experiments, stimuli can be shown to

the user simultaneously (e.g., side-by-side) or in succession (e.g., first the

reference, then the tested models). When they are shown in succession,

enabling users to turn back to the reference model as in the experiment

of Rogowitz and Rushmeier [104], allows for a more-detailed comparison.

Also, the order and the position of the stimuli should be selected in a way

that minimizes the effect of external variables such as observer movements

and room’s ambient light.

• Duration: The duration of which the tested models are shown to the sub-

jects may also affect the results of evaluation.

2.4.3.3 Standards for subjective evaluation

Although no specific recommendation for subjective evaluation of 3D models

exists currently, a number of standards, which define the conditions for subjec-

tive experiments for other multimedia content (e.g., image and video), could be

adapted and used. A well-known standard is the ITU-R BT.500 Recommendation

[2], which defines the methodology for the subjective evaluation of image quality.

Different experiment methods, such as double-stimulus continuous quality-scale

(DSCQS) and simultaneous double stimulus for continuous evaluation (SDSCE)

are recommended and grading scales and how to present test materials are out-

lined. Several of these methods, which may be useful for quality assessment of

3D meshes, are briefly explained below.

• The DSCQS method is recommended for measuring the relative quality

of a system against a reference. It has a continuous grade scale which is
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partitioned into five divisions of equal length, labeled bad, poor, fair, good,

and excellent. Subjects can mark the scale in a continuous manner and then

the grades are mapped to a 0-100 interval. The reference and test material

are shown twice in succession.

• The SDSCE method is recommended for measuring the fidelity between

two impaired video sequences. The stimuli are shown side by side and the

grading is continuous.

• The ITU-R BT.500 standard also includes recommendations related to the

evaluation of the experiments, such as how to eliminate the outlier data.

A related standard, the ITU-T P.910 recommendation [1], describes subjective

assessment methods for evaluating the one-way overall quality for multimedia ap-

plications. This recommendation addresses test methods and experiment design,

including comparison methods; and evaluation procedures, including viewing con-

ditions and the characteristics of the source sequences, such as duration, kind of

content, number of sequences, etc. Subjective evaluation of 3D graphical models

as a form of media can benefit from these recommendations.



Chapter 3

Visual Attention Models

When searching for visually attractive points in a 3D scene, we have two types of

concerns. One of the concerns is, among many objects, which objects stand out

and capture most of the viewers’ attention. In addition to identifying the visually

significant objects in a scene, finding out the visually attractive parts/regions

of these objects is another concern. In this chapter, we handle these concerns

separately, and present two new saliency computation models for different types

of graphical contents.

The first model, Per-Vertex Saliency (PVS) model works on individual and

possibly animated 3D mesh models and finds saliency values for each vertex of the

input meshes, whereas the second model, Per-Object Saliency (POS) works on

separate objects and finds saliency values for each object in the scene according

to their motions. Additionally, we present Extended Per-Vertex Saliency (EPVS)

model which is an extension of PVS and makes use of the human visual system

principles used in the POS model when calculating motion based saliencies.

51
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3.1 Per-Vertex Saliency Model

The metric is targeted for calculating the saliency of 3D meshes, and it is appli-

cable to not only static but also vertex-animated models. Most of the previous

saliency detection models in the literature [74, 78, 34] focus on the shape and

curvature features of 3D meshes. On the other hand, when applied to generic 3D

models, they all suffer from problems caused by their omission of material prop-

erties or complexity introduced by animation. Besides, curvature-based methods

are only capable of detecting salient locations with distinct curvature features,

which are insufficient for our animation-based saliency computation task.

The combination of different features, such as color, orientation, spatial fre-

quency, brightness, direction of movement, into a single saliency model requires

an integrated model of attention. The feature-integration theory of attention

[117], which has been used successfully for 2D images, suggests that the visual

scene is initially coded along a number of separable dimensions; and the contri-

bution of any features which are present in the same region are combined. Based

on this theory, Itti et al. have proposed a model for integration of the different

features in 2D images [62]. Our model of saliency for 3D animated models uses

a similar approach.

In order to derive an integrated approach for saliency calculation, our met-

ric considers multiple features of animated meshes such as their color, geometry,

and motion; each as a separate channel. The general structure of the proposed

approach is shown in Figure 3.1. The 3D model is decomposed into a set of dimen-

sions, with each dimension stored in a separate feature map. Different regions

of the 3D model then compete for saliency within each feature map, and only

those regions that stand out locally from their neighborhood in different scales

are kept. Then, the saliency values computed for each dimension are combined

into a master saliency map, which approximates the overall attended regions of

the animated 3D mesh.

Our saliency calculation depends on the center-surround mechanism of the
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Figure 3.1: The proposed saliency computation framework. (From [21]. c©2010
ACM, reprinted with permission.)
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human visual system [62] [74]. The mechanism captures the regions that are spa-

tially different from their surroundings. For each feature, we compute the salient

vertices by a set of center-surround operations. In these operations, vertices in a

small neighborhood of a vertex v constitute the center, and vertices in a larger

neighborhood constitute the surround. The across-scale difference of a feature

between the central region and the surrounding region determines the saliency.

We compute different feature maps of multiple scales to account for the

saliency in different scales of the mesh. For example, a small scale saliency map

may detect the movement of a finger in a human model but it will fail to detect

a larger-scale movement such as that of a leg. A large-scale saliency map will fail

in the former case and succeed to show the saliency correctly in the latter case.

As shown in Figure 3.1, our saliency computation framework consists of four

steps: (i) feature extraction, (ii) generating feature maps, (iii) normalization and

synthesis, and (iv) combining separete saliency maps.

3.1.1 Feature Extraction

Different features of objects in a visual scene affect the direction of our attention.

That is, a region in a visual scene could stand out due to different features. For

example, in a scene with similar colors at all regions, presence of a differently

colored object results color properties to be the dominant feature to direct our

attention; however, if number of differently colored objects increases, another

feature channel, for instance motion, could be the the most significant channel.

Since the visual attractiveness could be directed by various properties of objects,

considering more feature channels increases the chance of finding out the most

salient object. We use geometry, velocity, acceleration, hue, color opponency,

and intensity features of a vertex in our saliency computations. Each feature is

calculated as follows for each vertex:

Geometry: This feature is used for computing the saliency of a 3D mesh

due to its shape. Curvature is a significant feature of a vertex that can indicate
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its distinctiveness among others. Therefore, for geometry-based computations,

we use the mean curvatures of vertices, as previously proposed by Lee et al.

[74]. For computing mean curvatures, we use Meyer et al.’s method for curvature

computation [88].

Velocity: The velocity of a vertex is calculated by taking the positional

difference of a vertex in consecutive frames as follows:

vel(vi, fi) =
p(vi, fj)− p(vi, fj−1)

diagonal
, (3.1)

where vi stands for vertex i; p stands for position which is a vector of length three;

fj stands for jth frame; diagonal is the length of the diagonal of the mesh’s axis-

aligned bounding box (Figure 3.2). The division by diagonal makes our method

scale independent.

diagonal

Figure 3.2: Left: Axis-aligned bounding box; right: diagonal of the axis-aligned
bounding box.

Acceleration: The acceleration computation is very similar to the velocity

calculation. It is calculated by taking the difference of velocities on consecutive

frames but this time diagonal is not used because its effect is already present in

velocities.

acc(vi, fi) = vel(vi, fj)− vel(vi, fj−1), (3.2)

where acc(vi, fi) stands for acceleration of vertex i at frame j.

Hue: We extract hue values from the RGB color of a vertex and map them
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to the 0-360 interval. Let r, g, and b denote the red, green and blue components

of the color of a vertex. Corresponding hue value is extracted as follows.

hue =



0, if max = min(
60×(g−b)
max−min + 360

)
mod 360, if max = r(

60×(b−r)
max−min + 120

)
mod 360, if max = g(

60×(r−g)
max−min + 240

)
mod 360, if max = b

(3.3)

where max and min stand for maximum and minimum values among r, g, and

b.

Because the hue values wrap around (e.g., the value 359 is close to 1), while

computing the center-surround differences (explained in Section 3.1.2) we use the

smaller distance between two values. For example, the distance between values

350 and 10 is 20 instead of 340.

Color opponency: In color perception, there is an opponent color theory

proposed by Hering [48]. This theory states that human visual system interprets

red-green and blue-yellow colors in an opposite fashion so that we cannot perceive

a color such as yellowish blue or redish green. For the central area of the visual

field, the neurons in the primary visual cortex are excited by one of the colors

in the Red-Green and Blue-Yellow pairs, and inhibited by the other color. The

opposite holds for the surrounding area. Therefore, presence of a color in the

center increases saliency of a region, if this region is surrounded by the opponent

color. We use the color opponency values described in [62]. For color opponency,

the feature values for center and surround are computed separately as follows:

ORGC = max((r − g+b
2

), 0)−max((g − r+b
2

), 0)

ORGS = max((g − r+b
2

), 0)−max((r − g+b
2

), 0)

OBY C = max((b− r+g
2

), 0)−max(( r+g
2
− | r−g

2
| − b), 0)

OBY S = max(( r+g
2
− | r−g

2
| − b), 0)−max((b− r+g

2
), 0)

(3.4)

Intensity: For each vertex, we compute the intensity feature by calculating

the average of the RGB components of the vertex.
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The calculated per-vertex features are used to generate feature maps for each

individual feature which is presented in the following part. These feature maps

are not actually 2D maps but vector’s holding values of each specific feature for

each vertex. Separating these features have the advantage of identifying each

feature’s individual saliency impact and enables tuning each feature’s weight on

generating the final saliency map.

3.1.2 Generating Feature Maps

After processing all features of the vertices, we calculate the Gaussian-weighted

center-surround differences for several center-surround scales, and then we gen-

erate a separate feature map for each pair of center-surround scale and feature.

Define this feature map as featuremap(c, s, f) which stores the feature for each

vertex of a 3D mesh, where c and s stand for the center and surround levels and

f stands for the feature. For scale (c, s) and feature f the entry for vertex i in

the map is generated as follows:

• Let the neigborhood N(v, d) of vertex v be the set of vertices that have a Eu-

clidean distance smaller than d to vertex v. First, we calculate the Gaussian-

weighted average of feature f for the vertices that are in N(vi, 2c) [62].

G(f, c, vi) =

∑
x∈N(vi,2c) fxexp

(
− ||vx−vi||

2

2c2

)
∑
x∈N(vi,2c) exp

(
− ||vx−vi||2

2c2

) (3.5)

• Then, the absolute center-surround differences are stored in the feature

map.

featuremap(c, s, f, i) = |G(f, c, vi)−G(f, s, vi)|, (3.6)

where c is the fine (center) scale and s is the coarse (surround) scale.

For center and surround distances, Itti et al. [62] have used 2, 3, and 4 pixels

for fine scale c and c + δ pixels for coarse scale s, where δ ∈ {2, 3}, resulting in

six different center-surround levels. On the other hand, Lee et al. [74] used 2ε,
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3ε, 4ε, 5ε, 6ε, where ε is 0.3% of the diagonal of the bounding box for the center

and the surround is the double of the center. In this case, five different levels of

center-surround scales are considered. The largest surround scale of the second

approach covers only 12 × 0.3% = 3.6% of the diagonal of the bounding box,

which is not large enough since, for example, in a human model it approximately

corresponds to a finger size and cannot reflect a center-surround difference for a

larger region. Hence, we also need to consider larger center-surround scales as well

as the narrow scales. The list of center-surround levels used for our calculations

follows:

L = {2ε, 3ε, 5ε, 8ε, 13ε, 21ε, 34ε, 55ε},
(c, s)∈{x, y|x=L[i] ∧ (y=L[i+ 1] ∨ y=L[i+ 2])}

(3.7)

where c stands for center, s stands for surround and ε again means 0.3% of the di-

agonal. Above equation means that for each central neighborhood, two surround

levels exist which are the smallest two neighborhoods greater than the central

neighborhood. For instance, central neighborhood 2ε is used for two center-

surround levels, (2ε− 3ε) and (2ε− 5ε). Using the Fibonacci sequence decreases

the cost of calculating neigborhoods of different scales such that only eight differ-

ent neighborhoods are calculated to get thirteen different center-surround levels.

In this case, the largest surround level covers 55× 0.3% = 16.5% of the bounding

box.

3.1.3 Normalization of Feature Maps

After calculating the separate feature maps, the next step of our method is to

combine the maps that belong to the same feature. This is done by linear addition

after normalizing the maps using the normalization method defined by Itti et

al. for 2D images [62]. For example, all feature maps related to velocity are

normalized and summed up to determine the velocity-based saliency map. This

normalization method works as follows:
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• All values in the feature map are mapped to a fixed range 0 −M so that

the maximum saliency becomes M .

• All vertices with a saliency greater than all of its neighbors’ saliencies are

signed as local maximums. Let a be the average value of the saliencies of

the local maximums.

• The feature map is multiplied with |M − a|2.

Using this normalization technique suppresses the maps in which the saliency

values are distributed homogeneously, whereas a map with an outstandingly

salient point is promoted. After normalization, all maps related to a feature

are linearly added and we get a saliency map for each feature.

Other normalization methods, such as iterative competition between salient

locations and simple normalized summation, have been proposed by Itti and Koch

for 2D images [59]. For 3D animated models, however, this approach is the most

suitable one regarding the computation-accuracy tradeoff. In a 3D animated

mesh, several frames have to be processed each having a large number of vertices,

which makes the iterative competition solution computationally indesirable where

the normalization method we use works faster and provides comparable quality.

After computing the saliency maps based on each feature, we combine these

maps to a final saliency map. This combination is performed by linear addition

as each feature map has already been normalized in the previous step.

3.1.4 Results

In this section, we demonstrate the results of our saliency metric. Each feature

has different contribution to the saliency calculation; therefore, it is useful to

show the effect of each feature separately before demonstrating the final saliency

map.

Geometry based saliency map: It identifies the important regions of a 3D

mesh according to its shape. It can be considered as the static saliency of a 3D
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mesh. Figure 3.3-a shows salient parts of a horse model due to its geometry. As

seen in the figure, the parts of the mesh that are outstanding according to their

mean curvatures (e.g., eyes, feet, joint of tail) are computed as salient.

Velocity and acceleration based saliency maps: Velocity and accelera-

tion features are used to obtain the regions that are salient due to their motion.

Note that high saliency of a region is not the direct result of high velocity or

acceleration of this region. Saliency is related to the difference of this region’s

motion with respect to the surrounding area.

Figures 3.3-b and 3.3-c show examples of velocity-based and acceleration-

based saliency maps, respectively. Although these two features are similar, each

one is sensitive to a different behaviour of a motion. For example, while velocity-

based saliency map finds left feet as salient (Figure 3.3-b), the acceleration-based

saliency map finds the front-right foot of the horse model as more salient (Fig-

ure 3.3-c). In Figure 3.3-d, the combination of motion related saliency maps are

shown.

Hue, color opponency, and intensity based saliency maps: In addition

to the shape and motion related attributes of 3D meshes, our saliency metric also

considers per-vertex material properties. Figure 3.4-b shows the hue-based sa-

liency map of the cloth model shown in Figure 3.4-a. As seen in this figure,

the hue-based saliency map highlights the regions that have different hue values

than their neighbors. Color opponency-based saliency map identifies the regions

that are surrounded by the opponent color. In Figure 3.4-c, we can see that the

green parts are indicated as salient since in the original image these regions are

surrounded by the opposite color (red). Another color related attribute which is

used to identify the salient regions is the intensity of color. The intensity-based

saliency map, which is shown in Figure 3.4-d, points out the salient regions due

to their color intensity.

Final saliency map: All features are combined to obtain a final saliency

map. In Figure 3.5, example saliency maps belonging to different animated mod-

els are shown. Although these images are only snapshots of the animations of the

models, looking at the saliency images we can understand the salient regions of
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(a) (b)

(c) (d)

Figure 3.3: The calculated saliencies based on geometric mean curvature (a),
velocity (b), and acceleration (c) in a horse model. The image in (d) shows the
combined saliency map of the velocity and acceleration features. Light-colored
areas show the salient regions and are emphasized for illustration purposes. (From
[21]. c©2010 ACM, reprinted with permission.)
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(a) (b)

(c) (d)

Figure 3.4: The animated cloth model (a). The calculated saliencies based on
hue, color opponency, and intensity are shown in (b), (c), and (d), respectively.
Light-colored areas show the salient regions and are emphasized for illustration
purposes. (From [21]. c©2010 ACM, reprinted with permission.)
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the models due to their animations, such as the legs of the horse model and the

left part of the cloth model.

3.1.5 Applications

The computed saliency map can be used for different applications, including mesh

simplification, viewpoint-selection [74], persuading attention [67], and accelerat-

ing global illumination computations [134].

Our saliency calculation is performed in a view independent way. Once the

saliency values are computed as a preprocessing step, they can be stored as per-

vertex attributes in a 3D animated mesh and can be used in different applications

without recomputing. We present several applications in which the usage of

saliency has a significant importance.

3.1.5.1 Mesh Simplification

The first application in which the usage of saliency is illustrated is simplification

of 3D animated meshes. This application is based on the idea that a vertex with

a higher saliency value means that it resides on a perceptually more interesting

region of the mesh. Our goal is to delay the simplification of the salient parts of

the mesh, because those parts are presumably the parts of the mesh where the

viewers focus on. On the other hand, saliency maps themselves do not suffice to

be used as the main simplification metric, but they are rather used as heuristics

for simplification.

We have used the Quadric Error Metric (QEM) described in [40] as our main

simplification metric and incorporated saliency maps as a supporting decision

factor. QEM is based on iterative pair contractions. A pair contraction is uniting

two vertices into a single vertex in a way that minimizes the resulting geometric

error. In QEM, All possible edge pairs to contract are kept in a heap according to

their costs (geometric errors). The edge pair with the minimum cost is contracted

to a single vertex and the heap is updated after contraction.
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Figure 3.5: Left: The models with their original views, right: the final saliency
maps of these models. (From [21]. c©2010 ACM, reprinted with permission.)
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In our framework, the QEM scores, determining the simplification possibilities

of vertex pairs are blended with the saliency value of the vertices and the final

score is assigned to the vertices, according to the following equation:

wi = −qi × (1− α) + si × α× µ, (3.8)

where wi is the final weight, qi is the QEM score, si is the saliency score of pair i,

α is the weight of the saliency score in simplification and µ is the normalization

factor of the saliency values.

In our experiments, we have selected α = 0.5 and µ = 10−4. After the scores

are assigned to each vertex, the vertices are placed on a heap, i.e., a priority

queue, according to their scores. A vertex with a high score means that it has a

lower QEM error score and/or a higher saliency; thus, we delay the contraction

of the vertices with higher scores. For this purpose, we use a min-heap where

vertices with lower scores are placed at the top. These vertices are consequently

simplified earlier without degrading the quality of the salient regions of the mesh

and without increasing the QEM error rate significantly. When two vertices are

contracted to a single wertex, we assign a new score to the resulting vertex. This

score is obtained by the own QEM score of the new vertex and a saliency value

which is computed by linearly interpolating the saliency values of the contracted

vertices. This interpolation is performed depending on the distance of the new

vertex to the contracted vertices. Figure 3.6 shows a frame of the result of our

simplification method applied on the horse model. The figure illustrates that the

new method successfully preserves the salient regions such as the eye of the horse

model, and the colored region on the back.

3.1.5.2 Dynamic Level-of-Detail

Dynamically adjusting the level-of-detail of the models in the scene depending on

the display area they allocate is a widely used technique. This technique provides

rendering efficiency by avoiding the time to render the imperceptible details of

complex meshes. The view-independent saliency values that are computed as a

preprocess can be used for real-time level-of-detail adjustment. The idea here is
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(a) (b)

Figure 3.6: The animated horse model is simplified using quadric error metrics
(a) and using our saliency-based simplification method (b). Both of the models
have 4600 faces. (From [21]. c©2010 ACM, reprinted with permission.)

that the viewers mostly focus on objects that are closer to them in the scene, or

the objects that allocate the most space on the screen. Therefore, we can further

simplify objects that are further away from the viewer. This simplification is

performed considering the saliency values of the vertices as explained in Section

3.1.5.1.

Another usage area of saliency based mesh simplification is the dynamic level-

of-detail adjustment for 3D animated models. Depending on the display area

allocated by the models, the view independent saliency values that are computed

as a pre-process can be used for real-time level-of-detail adjustment.

3.1.5.3 Viewpoint Selection

The saliency information can also be used to automatically determine the view-

point for an animation. Since the saliency values indicate the significant regions

of 3D meshes, automatic selection of the viewpoint through animation would be

a useful tool for a number of applications. A similar approach can be used for au-

tomatically creating a thumbnail for animated 3D meshes; however, in this case,

it would be better to use the saliency that is generated using only the geometric

and the material properties of a 3D mesh without the motion related attributes

since a thumbnail does not include animation. Alternatively, the frame with the

largest saliency can be selected.
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Figure 3.7: Selected viewpoints for several meshes. top: original views of the
models, bottom: corresponding saliency maps. (From [21]. c©2010 ACM,
reprinted with permission.)

In order to select the viewpoint automatically, we examine a spherical region

around a 3D mesh and the viewpoint in which the total saliency of all visible

points reaches the maximum is selected as the viewpoint. Figure 3.7 shows the

selected viewpoints for several animated models. This technique can further be

extended for automatic control of camera position in an animation.

3.1.5.4 Quality Assessment Metrics and Saliency Guided Simplifica-

tion

In this section, we compare the saliency guided simplification (SGS) method pro-

posed in Section 3.1.5.1 with Garland’s quadric error based simplification method

(QEM). In our analysis we generated three levels of simplified meshes. The first

level is the original mesh (reference mesh). The number of vertices in the meshes

of second and third levels are 1/2 and 1/4 of the reference mesh, respectively.

The models and their simplified versions are shown in Figures 3.8 and 3.9. In

the figures, it is apparent that the models’ details are preserved on the salient

regions of meshes. For example, eyes of the horse and nails of the finger are better

preserved with the SGS method, compared to the QEM method.
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Figure 3.8: Top: reference models ; middle: simplified to half with saliency;
bottom: simplified to half without saliency.
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Figure 3.9: Left: reference model ; middle: simplified to half with saliency; right:
simplified to half without saliency.

# faces: 1/2 of ref. # faces: 1/4 of ref.
metric model QEM SGS QEM SGS

HDRVDP horse 1 0.99977 0.99966 0.99935
hand 1 1.00003 0.99996 0.99985

PSNR horse 1 0.97147 0.96611 0.93638
hand 1 1.00969 0.98220 0.96735

HAUSDORFF horse 1 0.41259 0.33333 0.15526
hand 1 0.69791 0.48375 0.29450

MSDM2 horse 1 0.86277 0.77313 0.66278
hand - - - -

Table 3.1: Saliency metrics and saliency guided simplification. The scores are
normalized according to the score of qslim on simplifying a mesh to half number
of vertices.
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We have compared the performance of simplification numerically. For com-

puting the scores of the simplified meshes we used four metrics. The details of

these metrics are given in Section 2.4 except HDRVDP [84], which is an exten-

sion of VDP for high dynamic range images. Among the used metrics, PSNR and

HDRVDP perform in 2D image space while Hausdorff and MSDM2 [71] work in

3D object space. As shown in Table 3.1, in most of the cases, metrics indicated

that the scores are better for QEM compared to SGS. For clarity, the scores are

normalized according to the score of QEM on meshes simplified to half number

of vertices compared to the reference mesh.

Image based-metrics are mostly sensitive to the errors at the boundaries of

the meshes due to the high contrast between foreground and background. Also,

image-based metrics are affected by various factors e.g., shading methods to ren-

der the scenes, lighting conditions, shadows, and viewpoint. In this regard, view-

point independent metrics are advantageous and result in more stable scores;

nevertheless, an advantage of the viewpoint dependent metrics is that they work

on the final images of the models that are actually seen by the viewers.

Despite the differences among the quality assessment metrics, the resulting

scores are not much different. For the simple metrics (Hausdorff, PSNR) and for

the more advanced metrics (HDRVDP and MSDM2) the ranks of the simplified

meshes’ scores are the same for most cases. Although we cannot generalize the

results to all scenarios, we can infer that none of the used metrics could reflect the

attention-based quality of meshes. Building an attention-guided quality metric

could be an interesting direction of future research.

3.1.6 Discussion

We have proposed a new saliency metric to calculate the level of significance

of 3D animated meshes. To be able to identify the saliencies due to different

properties, the proposed metric takes various features of 3D models into account

while computing the saliency. These features are related to the shape, color,

and motion of an animated 3D model. The saliencies due to each feature are
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computed separately, and they are normalized and combined to calculate the

final saliency map. The proposed method is view independent; thus, the saliency

map can be calculated for an animated 3D mesh once and can be used for both

view-dependent and view-independent applications. We have also recommended

several applications in which the saliency information could be useful.

3.2 Per-Object Saliency Model

In a scene with many objects, the target of our attention becomes individual

objects instead of parts of objects. Extracting saliency information in such a

scene could be performed on a per-object basis instead of per-vertex basis. In

this section, we present our second saliency computation, Per-Object Saliency

(POS) model which aims finding the saliencies of separate objects. For each

animating object, a saliency value is assigned with the proposed algorithm.

By considering psychological literature given in the Sections 2.1 and 2.3, we

describe a model to compare the attention values of objects in terms of motion.

While motion by itself doesn’t attract attention, its attributes such as initiation

of a motion may attract attention. The proposed model is based on the effect of

motion states on the attractiveness level of a visual stimulus.

Initially, we consider the motion attributes to discriminate different states of

an object’s motion. The following six states (Table 3.2) form the essence of a

motion cycle (Figure 3.10):

3.2.1 Pre-experiment

We performed an eye-tracker based pre-experiment to observe the relations be-

tween the defined states and the attentively attractive objects in a 3D scene.
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Static: No change of location.

Object Appearance: Appearance of an object, which was not previously
present, on the screen.

Motion Onset: The start of a motion (static to dynamic).

Motion Offset: The end of a motion (dynamic to static).

Continuous Motion: The state of keeping the motion with the same ve-
locity.

Motion Change: Change in the direction or speed of a motion.

Table 3.2: States of motion

In the experiment, we asked subjects to watch the animations including move-

ments of five balls within a 3D room. Eight different animations were used (Fig-

ure 3.11 and Figure 3.12). In each of them, we analyzed different motion states

and the observers’ reactions to them. We used an SMI Red Eye Tracker to ob-

serve and analyze gaze points of subjects during the animations. Eight voluntary

graduate students, who have reported normal or corrected to normal vision, par-

ticipated in the experiments. The subjects were not told about the purpose of

the experiments and each of them watched eight different animations.

3.2.1.1 Experiment cases.

The cases used in the pre-experiment were as follows:

• Case 1: Motion onset and motion offset are tested. Five initially static

objects start to move in sequence with at least 3 seconds intervals. At the

end, forty seconds later, all objects stop again in sequence with at least 3

seconds intervals.

• Case 2: Motion onset and motion offset are tested for shorter intervals. All

objects start to move in sequence with 0.3 second intervals and stop the

same way.
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Figure 3.10: Motion cycle of an object in an animation. Perceptually distinct
phases are indicated as six states. Object appearance is the initial state for each
object. (From [11]. c©2011 Springer, reprinted with permission.)

• Case 3: Object appearance is tested. Some objects start to move and an-

other object abruptly appears. There is an interval of five seconds between

the latest motion onset and the object appearance.

• Case 4: Object appearance, motion onset, and motion change are tested.

One object starts to move, one object appears, and another moving object

changes its direction at the same time.

• Case 5: Object appearance, motion onset, and motion change are tested in

larger spatial domain. The only difference from the fourth case is that the

objects are placed at further points in screen space.

• Case 6: Object appearance, motion onset, and motion change are tested

in sequential order. This time, three states do not occur at the same time,

but in sequential order with intervals of 3 seconds.

• Case 7: Velocity difference is tested. Each object starts to move at the

same time and the same direction with different velocities.

• Case 8: States are tested altogether.
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(a) (b)

(c) (d)

Figure 3.11: Screenshots from the eight pre-experiment animations. a: Motion
onset and offset are tested. b: Motion onset and offset are tested for shorter
intervals. c: Object appearance is tested. d: Object appearance, motion onset,
and motion change are tested.
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(e) (f)

(g) (h)

(i) (j)

Figure 3.12: Screenshots from the eight pre-experiment animations. e: Object
appearance, motion onset, and motion change are tested in larger spatial domain.
f: Object appearance, motion onset, and motion change are tested in sequential
order. g: Velocity difference is tested. h: States are tested altogether. i, j:
Sample gaze positions from SMI-Red eye tracker.
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3.2.1.2 Observations.

Our observations of the pre-experiment results are listed as follows:

Motion onset, motion change, and object appearance states strongly attract

attention. In the first case (Figure 3.11-a), five object onsets were performed and

among eight subjects, five subjects looked at all of the motion onsets. Each of

the other three subjects missed only one motion onset and the missed objects

were different for each of them. In the object appearance case (third animation),

all subjects directed their gazes to the newly appeared object (Figure 3.11-c).

In the cases four and five, none of the three objects with three different state

sets dominate over the others (Figures 3.11-d, 3.12-e); indicating that motion

onset, motion change, and object appearance states do not suppress each other.

However, motion offset, continuous motion, and static states could be suppressed

by any of the other three states.

Continuous motion and motion offset states capture attention merely over

the static state. The gazes of the subjects were rarely transferred to the objects

with a motion offset event. However, when we asked the subjects, they informed

us that they were aware of all motion offsets but they probably did not need to

move their gazes to see them. We conclude that, in most cases, subjects perceive

motion offsets in their peripheral view, but their attention is not captured by

these events.

In all of the experiments, none of the objects in static state were observed to

capture attention while others were in different states. Therefore, we could say

that static state does not contribute to the visual attractiveness of an object.

A further important observation is that, if the time interval between two state

transitions (not for the same object) is smaller than 0.3 seconds, the transition

which was set later was not captured by the subjects. In case two (Figure 3.11-b),

for instance, where all objects start to move in sequential order with 0.3 seconds

intervals, none of motion onsets truly captured attention of the subjects. This is
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an expected behavior, since following the first event, human attentional mecha-

nism remains on this location in the first 0.3 seconds, causing new events to be

discarded [116]. After this very short period, the inhibition of return (IOR) mech-

anism slows the response to the current focus of attention, enabling previously

unattended objects to be attended. This decay time for the state is 0.9 seconds.

After 0.9 seconds, the effect of state disappears [99] (Figures 3.11-b,d; 3.12-e,f).

Gaze is transferred to the closest object upon multiple events attracting atten-

tion. In the final case (Figure 3.12-h), we observed that if more than one motion

change exists, for example object appearance, motion onset, or motion change

appear at the same moment, the subjects’ gazes are commonly transferred to the

closest object to the current gaze point.

Lastly, if more than one object have the same state, with the same speed and

the same direction of motion, they are recognized as a single object according to

the Gestalt principles introduced in Section 2.3. In case eight, subjects did not

check each object separately in these moments; instead they looked at a point in

the middle of this object group having the same motion direction and speed.

3.2.2 Overview

The overview of the proposed model is shown in Figure 3.13. The model consists

of two main parts. In the first part, individual motion saliencies of the objects

are calculated. In the second part, the relations among the object are examined,

and the focus of attention is decided.

3.2.3 Object Motion Saliency

Based on the observations from the pre-experiments and findings from the lit-

erature in psychology related to states of motion [3, 51, 132], we propose a new

individual motion saliency model. The proposed model calculates instant saliency

values dynamically for each object in an animation. Once the motion state of an
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Figure 3.13: Overview of the POS model. (From [11]. c©2011 Springer, reprinted
with permission.)

object is detected, its saliency value is calculated as a time dependent variable.

We define an initial saliency value for each motion state according to the

dominancy among the states (Figure 3.14). These initial values are the peak

saliencies, and they decay in time. Although these constants do not reflect an

exact proportional dominancy result of the states among each other, they are used

to estimate the saliency ranking with respect to their attentional dominancy. The

initial saliency values for three most dominant states motion onset, motion change

and object appearance are assigned as 10k while they are 2k for motion offset and

continuous motion. For static state, it is 1k. Usage of k as a coefficient enables

converting the calculated saliencies for each object to probabilities defining the

chance of getting the observers’ gazes. Each visible object in a scene is a candidate

for being the target of user attention and has a saliency value in terms of coefficient

k. Setting the sum of all saliency values to one results in a k value, using this

value saliency of an object corresponds to the calculated probability of this object

to be the gaze point.
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Figure 3.14: Attentional dominancy of motion states over each other. Object
appearance, motion onset and motion change are the most dominant states cap-
turing attention. Motion offset and continuous motion states are slightly more
dominant over the static state. (From [11]. c©2011 Springer, reprinted with
permission.)
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Table 3.3: Individual Attention Values. (From [11]. c©2011 Springer, reprinted
with permission.)

States t ≤ 300ms 300ms < t < 900ms 900ms ≤ t

STATIC 1k 1k 1k

ONSET 10k 10k((4.2− 4t)/3sec) 2k

OFFSET 2k 2k((7.5− 5t)/6sec) 1k

CONTINUOUS 2k 2k 2k

CHANGE 10k 10k((4.2− 4t)/3sec) 2k

APPEARANCE 10k 10k((2.9− 3t)/2sec) 1k

For each visible object, calculated individual saliency values change between

1k and 10k according to the formulas shown in Table 3.3, where t stands for the

elapsed time after a state is initialized. Obviously, the saliency value for invisible

objects is zero.

Saliency of an object in the static state is always 1k, because we observed

that it almost never captures attention among other states. Also, saliency value

is permanently 2k for continuous motion since a moving object may get attention

anytime if nothing interesting, e.g. states of all other objects are static, happens

on the screen and the subject is not performing a target search [132]. Likewise,

motion offset could get attention over static or continuous motion. However, it

is under decay with the effect of IOR until the state becomes static.

Motion onset changes to continuous motion state; therefore, its value decays

to 2k with IOR. It is exactly the same for motion change state. Hence, during

inhibition of return ( 0.3sec< t < 0.9sec ) [5] [6], the attention value decays

linearly from 10k to 2k as shown on Table 3.3. Differently, object appearance

decays to 1k because its state may become static. Similarly, motion offset decays

linearly from its peak value 2k to 1k, since its following state is static.

Inhibition of return is not applied to any of the states if the elapsed time on a

state is smaller than 300ms. This is because the sensitivity to an attended region

is kept at the top-level for the first 300ms. Before IOR decreases our sensitivity
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to this location, our attention remains here. As we mentioned earlier, during this

time, other state changes are not captured by the subjects in the experiments.

This model provides calculating individual motion saliency values of each

object in real time. However, these values are still not sufficient to decide the

focus of attention without examining the relationships of the objects among each

other.

3.2.4 Global Attention Value

So far we have shown a model to calculate individual attention values of the

objects. On the other hand, our visual system does not interpret objects in the

scene individually. It tries to group the similar behaviors in the visual scene and

represent any stimulus in the simplest way. As Gestalt psychologists concluded,

all similar objects in our vision are grouped and perceived as a simple object [9].

We, therefore, include a Gestalt organization layer into our model. Each object

in this model has a Gestalt ID. In this work, we assume that, the objects having

identical motion direction and speed are labeled with the same Gestalt ID. The

pseudocode for this procedure is as follows.

Algorithm 1 Setting Gestalt ID’s to objects

curGestalt = 1
for i = 1 to NUMBEROFOBJECTS do

gestaltSet = false
for j = 1 to i-1 do

if objects[j].velocity = objects[i].velocity then
objects[i].gestaltID = objects[j].gestaltID
gestaltSet = true
break

end if
end for
if !gestaltSet then

objects[i].gestaltID = curGestalt
curGestalt++

end if
end for
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In a group of objects having the same Gestalt ID, the object with the high-

est saliency determines the saliencies of all objects in this group. In the pre-

experiments, we clearly observed that if there are several objects with the same

speed and direction, subjects’ gazes circulate among the area covered by the

group members, instead of looking directly at individual objects revealing the

perceptual unification of these objects.

Another problem that is not solved by the individual saliency model is the

case of equivalence. If there are multiple objects with the highest individual

attention value, which object will be chosen as the possible gaze point is not

addressed. An observation we made during pre-experiments suggest a solution to

this problem. If more than one state changes occur at the same time, subjects

commonly looked at the closest object to the previous gaze point. Therefore, we

included an attribute to our model to consider the Euclidean distance of each

object from the previous decision of gaze point. It is calculated as the pixelwise

Euclidean distance from the previously decided focus of attention in the screen.

Finally, if there are multiple Gestalt groups with the highest calculated

saliency, the closest one to the previously decided focus of attention is selected

as the current focus of attention.

3.3 Extended Per-Vertex Saliency Model

The POS model proposed in Section 3.2 is applicable to separate objects in a 3D

animation scene. In this model, a saliency value is calculated for each object. In

this section, we propose a technique to extend the proposed per-object saliency

calculation model to 3D meshes, where the saliency property is calculated in a

per-vertex fashion.
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Figure 3.15: Overview of the cluster-based saliency calculation model.

3.3.1 Overview

The simplest approach to extend the per-object saliency calculation model to a

per-vertex saliency calculation model for 3D meshes is regarding each vertex as

an object. However, this approach would be computationally expensive. Fur-

thermore, looking at a 3D mesh, we do not recognize each vertex as a separate

part of an object; we rather group the similar vertices perceptually and regard

each groups as a single unit. This enables common analysis of vertices that move

together.

Our proposed approach is based on clustering the vertices with a similar be-

haviour. Figure 3.15 illustrates an overview of the model. In our model, each

frame of a vertex-animated mesh sequence is analyzed to cluster vertices accord-

ing to their motion properties. As the vertices with similar motion behaviour are

perceptually grouped with a Gestalt approach, each cluster is analyzed as a single

unit after the clustering process. Thus, representative vertices for each cluster

are used to extract the motion saliencies of their clusters. Since the number of

vertices to be analyzed reduces significantly (from total number of vertices to

number of clusters) via the clustering process, the saliency calculation can be

performed in real time.
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3.3.2 Motion-based Clustering

In this clustering technique, our aim is to group the vertices with similar motion

into the same cluster. Thus, the generated clusters should contain vertices that

have very close motions through the animation. Additionally, we need to form

clusters in which all vertices are connected. For this purpose, we utilize the

velocities of vertices and their connectivity information. The clustering procedure

is summarized in Algorithm 2:

Algorithm 2 Pseudocode for motion-based clustering

for all frames of the animation do
Find differential velocities of all vertices
Extract boundary vertices using differential velocities
Assign vertices inside a bounded area to a separate cluster

end for
Refine clusters to get final clustering

3.3.2.1 Finding Differential Velocities

In this step, our aim is to find the vertices that have different velocities compared

to their surroundings. Since vertices in a group have similar velocities through

the animation, we assume that the vertices having high relative velocities to their

neighbors resides in the boundaries between clusters. We name the difference

between the velocity of a vertex v and the Gaussian-weighted mean velocity in

its surrounding region the differential velocity of vertex v (dv(v)), calculated as

fallows:

~dv(v) = | ~vel(v)− ~G(vel, s, v)|, (3.9)

where, ~vel(v) is the velocity of v calculated as in Equation 3.1 and ~G(vel, s, v) is

the Gaussian weighted mean velocity of the surround s of v. For s, we used 0.036

of the size of the mesh’s bounding box as the radius of surrounding region. The

differential velocity calculations are done on a vector basis instead of considering

scalar values, to be able to differentiate velocities in different directions.
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Figure 3.16: Differential velocities on a 3D model. Brighter (yellow) regions
express high differential velocities. The figure shows the absolute amounts of
differential velocities in a scalar manner for a better presentation.

Figure 3.16 illustrates differential velocities on a 3D model. As shown in this

figure, differential velocities are higher in the boundary regions that separate the

concrete regions that move together.

3.3.2.2 Extracting Boundary Vertices

After calculating the differential velocities of vertices, those vertices that have

high differential velocities are selected as the boundary vertices. The set of bound-

ary vertices BV is composed of the vertices having higher differential velocities

than a threshold.

BV = v ∈ V ||dv(v)| > tbound, (3.10)

where V is the set of all vertices in the mesh and tbound is the lower threshold for

the absolute differential velocities of boundary vertices. The vertices in BV will

be used to form clusters; thus, having more boundaries result in more clusters.

Selecting a high tbound value results in less boundary vertices and less number of

clusters. In the opposite case, there would be more boundary vertices and more
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clusters. Having less number of clusters is worse than having redundant clusters

since less clusters result in wrong saliency calculations while redundant clusters

is safe but result in computational overhead. Therefore, we selected a low value

for tbound as 0.001 percent of the maximum absolute differential velocity among

all vertices of the mesh.

3.3.2.3 Forming Temporary Clusters

In each frame of the animation, boundary vertices are used to form clusters, and

the generated clusters are merged with the clusters from the previous frame. This

way, clusters are accumulated through the animation and every single motion in

any frame forms a cluster in the final clustering. The pseudocode to form the

clusters in a single frame is shown in Algorithm 3.

Algorithm 3 Generating temporary clusters at each frame

initialize NonClusteredVertices with all vertices except boundaries
initialize currentCluster with 1
while NonClusteredVertices is not empty do

initialize TraceList
vertex v = first element in NonClusteredVertices
assign v to currentCluster
remove v from NonClusteredVertices
add v to TraceList
while TraceList is not Empty do

for all neighbors n of v do
if n is not boundary then

assign n to currentCluster
add n to TraceList
remove n from NonClusteredVertices

end if
end for
remove v from TraceList
v = first element of TraceList

end while
increment currentCluster

end while

Figure 3.17 shows samples from the temporary clusters through an animation.



CHAPTER 3. VISUAL ATTENTION MODELS 87

Figure 3.17: Clustering through an animation, from left to right (except the
rightmost): clustering results after several frames are shown. White regions depict
the boundary vertices. The rightmost image shows the final clustering after
clustering refinement phase.

As shown in this figure, the boundary vertices are not assigned to any cluster in

this phase, they will be assigned to the closest clusters to them in the cluster

refinement phase.

3.3.2.4 Cluster Refinement

After temporary clusters are set for all frames, clusters are refined to form the

final clustering. In this phase of the method, each vertex is assigned to the cluster

with the most similar motion behavior to this vertex through the animation. The

distance of a vertex v to a cluster C is calculated by summing up the squared

differences between the velocity of v and mean velocity of vertices belonging to

C at each frame. This distance calculation is shown in the following equation.

dist(v, C) =
F∑
f=1

∣∣∣∣∣∣ ~vel(v, f)−
∑
w∈C

~vel(w, f)

|C|

∣∣∣∣∣∣
2

, (3.11)

where F is the number of frames through the animation and ~vel(v, f) is the

velocity of vertex v in frame f . The following algorithm is performed to finalize

the clustering process. Several clustering results are presented in Figure 3.18
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Algorithm 4 Generating temporary clusters on each frame

while There is an update in last iteration do
for all e ∈ Edges do
v1 and v2 are the vertices connected by e
if v1.cluster 6= v2.cluster then
dV 1toC1 = dist(v1, v1.cluster)
dV 1toC2 = dist(v1, v2.cluster)
dV 2toC1 = dist(v2, v1.cluster)
dV 2toC2 = dist(v2, v2.cluster)
if dV 1toC1 > dV 1toC2 then

assign v1 to v2.cluster
end if
if dV 2toC1 < dV 2toC2 then

assign v2 to v1.cluster
end if

end if
end for

end while

Figure 3.18: Clustering results for several 3D models.
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3.3.3 Saliency Calculation for Clusters

3.3.3.1 Identifying Cluster Heads

In the EPVS model, the approach proposed for the POS model proposed in

Section 3.2 is utilized to calculate the saliency values for each cluster. In this

process, each cluster is handled as an object. For each cluster, firstly, we select

a representative vertex, cluster head. Then, the motions of the cluster heads are

analyzed through the animation to calculate the saliency of their clusters.

A cluster head is a selected vertex with the smallest distance to the cluster

centroid according to the distance formula given in Equation 3.11. By cluster

centroid, we mean an imaginary vertex having the average velocity of all vertices

in a cluster at each frame of the animation. Cluster heads represent their clusters

and since number of cluster heads is much less than the number of vertices,

calculating saliency on them could be done in real time.

3.3.3.2 Calculating Saliency

The motion state of a cluster head is extracted using its velocity relative to the

whole object. The motion that is caused by the movement of the entire object

should be avoided in saliency calculations for clusters; thus, we subtract the

average velocity of all clusters from the velocities of the cluster heads to obtain

their relative velocities as follows:

~rv(v, f) = ~vel(v, f)−
∑
w∈V

~vel(w, f)

|V |
, (3.12)

where V is the set of all vertices and f is a frame of the animation sequence.

Relative velocities of the cluster heads and two threshold values, tonset and

tchange, are used to extract the motion states. The motion states are calculated

with the following conditions:
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State(v) =



|rv(v, f)| > tonset&|rv(v, f − 1)| < tonset ⇒ MotionOnset

|rv(v, f)| < tonset&|rv(v, f − 1)| > tonset ⇒ MotionOffset

|rv(v, f)− rv(v, f − 1)| > tchange ⇒ MotionChange

|rv(v, f)| > tonset ⇒ Continuous

otherwise Static

(3.13)

Human visual system is not good at recognizing speed change [93], this is the

reason behind having a different threshold for motion change in our algorithm.

In general, we set tchange as 2 ∗ tonset and tonset as follows:

tonset = tan 0.15◦ ∗ duser ∗ kwtoc, (3.14)

where 0.15◦ is the drift velocity of the eye that could be traced like a static

situation [134] and kwtoc is a constant to convert the result from world space to

computer space.

Each state is related to a saliency value, which are identical to the values

shown in Table 3.3. Saliency values are assigned to vertices according to this

table based on their motion states. Furthermore, according to our observations,

a strong motion onset (starting with a higher velocity), attracts more attention so

we have weighted the saliencies according to the relative velocities of the cluster

heads when a motion onset or motion change occurs. Equation 3.15 shows this

operation:

saliency(v)′ =
(saliency(v)− sbase) ∗ |rv(v)|

rvmax
, (3.15)

where rvmax is the highest relative velocity at the moment and sbase is the saliency

value given to continuously moving vertices, shows this operation:

When a motion onset or motion offset occurs, the attention to this region

remains for approximately 0.3s and disappears in 0.9s according to the inhibition

of return mechanism as explained in Section 2.1.1.3. Thus, when a state change is
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Figure 3.19: Calculated saliencies on 3D models. Bottom: brighter (yellow)
regions show more salient parts of the models on the top.

identified, its effect is calculated for the following frames according to the formulas

in Table 3.3. When a new state change occurs before the effect of previous motion

state vanishes, a cluster head is affected by two motion states at the same time.

In such cases, the maximum saliency value is selected as the final saliency value.

After calculating the saliency values for cluster heads, their saliency values

are spread to all vertices in their clusters. Figure 3.19 shows calculated saliencies

on several 3D models.

For saliency calculations, we use velocities in 3D space instead of using the 2D

velocities projected to the screen space as the human visual system could extract

the absolute 3D velocity from the 2D retinal images [38]. However, since the

proposed saliency calculation model could work in real-time, retinal velocities of

the cluster heads could also be calculated and used for saliency calculations.



Chapter 4

Attention-based Stereoscopic

Rendering Optimization

4.1 Mixed Stereoscopic Rendering

In this chapter, we present a binocular suppression theory based approach to

stereoscopic graphics rendering. The proposed method exploits the fact that

the 3D perception of the overall stereo pair in a region is determined by the

dominant image on the corresponding region, instead of summation of the effect

of two images. The dominant view varies in different parts of the image, forming

a mosaic pattern of suppression, creating the overall 3D percept. Our goal is to

explore how the rendering quality can be reduced in the suppressed view, without

reducing the overall perceived quality of the rendered 3D image. If such features

can be detected, rendering computations of those features for one eye can be

reduced, thus increasing the overall speed of rendering.

Figure 4.1 illustrates the traditional and the newly proposed mixed stereo-

scopic rendering approaches. In the traditional approach, the left and right views

are generated with the same rendering technique and the same quality. On the

other hand, in the proposed approach, two views can have different parameters of

rendering - one of the views is generated with the original quality and the other

92
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Figure 4.1: Left: Traditional stereoscopic rendering approach, Right: Our ren-
dering approach for optimization. On the upper images, the object space is
illustrated along with the viewpoint. The images below show the corresponding
left and right eye views of the above scene. The right view on the mixed stereo-
scopic rendering approach is generated with lower quality caused by simplifying
a set of modeling and rendering features. (From [20]. c©2010 Elsevier, reprinted
with permission.)

view with lower quality, thus decreasing the overall rendering cost. However, this

approach is feasible when the overall quality of the final 3D percept is determined

by the high quality image.

4.1.1 Mixed Stereo Methods

The proposed mixed stereoscopic rendering method manipulates various graphics

rendering and modeling conditions, in different levels of intensity. In this work, a

number of representative and commonly used image and geometry based meth-

ods, which are employed in virtual environments, have been investigated. These

methods include framebuffer upsampling, blurring, mixed-level antialiasing, tex-

ture resampling, mesh simplification, mixed shadowing, specular highlight, and

mixed shading. Table 4.1 and the rest of this section illustrate the used methods
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in detail. The applied methods are classified into two classes: 2D image-based

methods, and 3D object/rendering-based methods.

2D image-based methods

2D image-based methods - including framebuffer upsampling, blurring - are

methods that operate on the framebuffer. The main purpose of the 2D image-

based methods is to decrease the rasterization cost of one view while keeping the

overall quality. In these methods, an image for one view is generated with low

quality, and then image-based post processing operations are performed on it.

Framebuffer Upsampling: In framebuffer upsampling, the 3D scene is ren-

dered to a smaller framebuffer in one view, and then this buffer is upsampled to

match the framebuffer resolution for the high-quality view. Four different sizes of

framebuffers have been used, each level halving the width and height of the previ-

ous level (1/4 area of the previous size). For upsampling, the Lanczos resampling

algorithm has been used [118].

Blurring: As demonstrated in Section 2.1, a widely-used 2D technique is

applying a rendering effect for approximate rendering. In this work, a blur filter

is used to demonstrate its effect. For blurring the images, a Gaussian filter is

used, with radiuses of different sizes which determine the strength of the filter

[36]. The radiuses of Gaussian filters used for levels 2, 3 and 4 are 1, 3, 5 pixels

respectively, where the first level is the original framebuffer (Table 4.1). The σ

values of the Gaussian filters are the same for each level, and are chosen as 1.

3D object/rendering based methods

3D object/rendering-based methods operate on the 3D scene, i.e. application

stage of the rendering pipeline (mesh simplification, mixed shadowing), or on

subsequent stages of the rendering pipeline (mixed-level antialiasing, texture re-

sampling, specular highlight, mixed shading). The general goal of these methods

is to decrease the rendering pipeline computations on the CPU and the GPU, by

excluding a number of rendering effects for only one of the views.

Mixed-level antialiasing: Antialiasing, based on sampling more than one
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Method Levels A B

Framebuffer
upsampling

Lvl 1: Original (A)
Lvl 2: 1/2 Size (B)
Lvl 3: 1/4 Size
Lvl 4: 1/8 Size

Blurring

Lvl 1: Original (A)
Lvl 2: Blurred (filter radius 1) (B)
Lvl 3: Blurred (filter radius 3)
Lvl 4: Blurred (filter radius 5)

Mixed-Lvl
antialiasing

On: Antialised (A)
Off: Not-antialiased (B)

Specular
highlight

On: with spec. highlight (A)
Off: without spec. highlight (B)

Mixed
shading

Lvl 1: Phong shaded (A)
Lvl 2: Gouraud shaded (B)

Mesh
simplification

Lvl 1: Original Mesh (A)
Lvl 2: Face count = 1/2 of orig.
Lvl 3: Face count = 1/4 of orig. (B)
Lvl 4: Face count = 1/8 of orig.

Texture
resampling

Lvl 1: Texture size 512 x 512 (A)
Lvl 2: Texture size 256 x 256
Lvl 3: Texture size 128 x 128
Lvl 4: Texture size 64 x 64 (B)

Mixed
shadowing

On: Shadows are used (A)
Off: Shadows are not used (B)

Table 4.1: Methods used for Mixed Stereoscopic Rendering (From [20]. c©2010
Elsevier, reprinted with permission.)
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sample per pixel, is widely used in graphics applications. Different sampling pat-

terns have been proposed, including Grid, Checker, Quincunx sampling schemes

[6]. Although hardware-based antialiasing solutions are fast, processing of more

than one sample per pixel is still required. Therefore, in the mixed antialiasing

method, one of the views is rendered using antialiasing, and the other view is ren-

dered with antialiasing turned off. Although different antialiasing schemes could

also be used for the two views, one of the views is rendered with no antialiasing,

to better illustrate its effect. In this work, a 3×3 grid super-sampling is used as

the antialiasing method [6].

Specular highlight: Specular highlight is the bright spot on a reflector

surface caused by the reflection of light, which depends on the viewing angle. In

computer graphics, specular highlight is simulated in various specular reflectance

models such as Phong, Cook-Torrance, etc. [92]. In this work, the Phong model is

used to exhibit the specular highlight for one view, and the specular component

of the material for the other view is ignored, resulting in a pure Lambertian

reflectance model [46].

Mixed Shading: In order to investigate the effects of illuminating two views

with different interpolation methods, we implemented Phong and Gouraud shad-

ing which are widely used in computer graphics. In Phong shading, normals are

interpolated when calculating the color values inside a polygon in order to ob-

tain a smooth appearance [98]; whereas in Gouraud shading only the colors are

interpolated with lower cost [41]. Although a wide variety of advanced shading

techniques, such as the use of BRDF, have been recently used, we chose two

widely-used solutions for illustrating the effect of mixed shading.

Mesh simplification: In order to find out the effects of object-based tech-

niques, mesh simplification is employed for all objects in one view. The simpli-

fication is done using the Quadric Edge Collapse method described in [40]. The

number of faces of a mesh in a level is approximately half of the number of faces

in the previous level (Table 4.1).

Texture resampling: To verify the effect of mixed-resolution textures in a

scene, a texture resampling method is employed. In this method, the textures in
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the scene are rendered with lower resolution in one view. Various levels of texture

resampling have been used: the size of the texture map used for a level is half of

the previous level in terms of both width and height (Table 4.1). Linear filtering

is used for resampling of the texture images [47]. In this work, further methods

for antialiasing of textures, such as mipmapping or anisotropic filtering, are not

tested, to verify only the resampling effect.

Mixed Shadowing: As adding shadows to a 3D scene requires expensive

calculations, avoiding these calculations for one view without affecting the final

3D percept would be a desirable optimization. In the Mixed Shadowing method,

no shadow is used for one view; and point light sources with hard shadows are

used for the second view [5].

4.2 Saliency-guided Stereoscopic Rendering Op-

timization

4.2.1 Intensity Contrast

According to the binocular suppression theory, the methods described above are

effective when the regions in the simplified view are suppressed by the high-quality

view. Therefore, the properties of an image, which allow a view to be suppressed,

and which therefore keep the modification unnoticed, should be characterized.

Previous studies suggest that stronger competitors (e.g: higher spatial fre-

quency, more color variance or a faster motion) are more likely to suppress [17],

[56]. According to our observations, the properties that make the competitors of

the binocular rivalry stronger are also the features that attract visual attention:

The regions which attract more attention are likely to be the candidates for being

strong competitors in a stereo pair. Itti and Koch state that the visual attention

is selective, and eye gaze is oriented towards regions that show large contrast,

and these regions can be defined as salient [61]. According to Itti, a region is

more salient - thus attracts more attention - when it differs from its surroundings
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regarding a number of properties, such as intensity, color opponency, motion, and

orientation [61]. These properties are consistent with the properties that increase

the strength of the competitor.

To measure the strength of a view, we use a heuristic, intensity contrast, and

obtain the change in the image intensity contrast caused by a modification, to

decide whether it is sufficient to apply the modification to only a single view.

For this purpose, we have followed the saliency calculation method described in

[60], in which a center-surround mechanism is used to compute three separate

saliency maps for three channels: intensity, color and orientation. In our work,

only intensity maps are needed, since the methods used for modification do not

have a significant effect on the color and orientation attributes of the stereoscopic

image.

4.2.2 Calculating Intensity Contrast

The first step in calculating the intensity contrast map of an image is extracting

the intensity map of the image. The average of the RGB values in a pixel gives

the intensity value:

I =
R +G+B

3
(4.1)

The intensity contrast map is generated from the intensity image using the

center surround operator described in [60]. In this method, DoG (Difference

of Gaussian) filters are calculated as the difference of Gaussian filters in fine

(center) and coarse (surround) scales. The center consists of the pixels with a

closer distance than c and the surround consists of the pixels with a closer distance

than s = c+ δ, where c ∈ 2, 3, 4 and δ ∈ 3, 4. Thus, six DoG filters are calculated

using fine and coarse scales as {2− 5, 2− 6, 3− 6, 3− 7, 4− 7, 4− 8} (Figure 4.2)

and each of them is used to generate an intensity contrast map. These six maps

are added pixel by pixel to construct a final intensity contrast map.

Figure 4.3 shows a pair of intensity contrast maps and their difference. In
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Figure 4.2: Gaussian pixel widths for the nine scales used in the intensity contrast
calculation. Scale σ = 0 corresponds to the original image, and each subsequent
scale is coarser by a factor 2. On the right, two examples of the six center-
surround DoG filters are shown, for scale pairs 2-5 and 4-8. (From [60]. c©1998
Elsevier, reprinted with permission.)

this figure, brighter regions in the intensity contrast maps show the parts with

greater intensity contrast. To calculate the effect of a modification on the intensity

contrast, the intensity contrast map of the modified image (rendered with low

quality) is subtracted from the intensity contrast map of the original image. In

Figure 4.3, the positive values are colored as blue and the negative values are

colored as yellow. The negative values on the result (yellow regions in the figure)

indicate an increase in the intensity contrast due to the modification.

4.2.3 Mixed Rendering Approach

We are proposing that if the intensity contrast of a view is greater than the other

view, it has the privilege of being dominant. Hence, we are hypothesizing that

a modification which raises the intensity contrast needs not be applied on both

of the views. On the other hand, if the intensity contrast of the modified view is

lower than the original image, then the optimized pair provides the same percept

as the result of traditional rendering. Figure 4.4 summarizes our hypothesis.
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Figure 4.3: Top Left: Original image, Top Right: Modified image, Bottom left:
Intensity contrast map of the original image, Bottom Middle: Intensity contrast
map of the modified image (Brighter regions are the parts with higher intensity
contrast in the intensity contrast maps.) Bottom Right: Calculation of Intensity
Contrast Change. Difference of the two intensity contrast maps results in the
right-most image, where the blue regions are the parts that the intensity contrast
is greater in the original image and yellow regions are the opposite. (From [20].
c©2010 Elsevier, reprinted with permission.)

Figure 4.5 contains sample intensity contrast change maps of the applied meth-

ods. According to our hypothesis, a modification is not recognizable in blue re-

gions of the intensity contrast change map. For instance, the intensity contrast

change map of the specular highlight method contains only blue; therefore we

expect that the image with the specular highlight will suppress the other image

in the final percept, and this method is suitable for our optimization approach. In

framebuffer upsampling, blurring and texture resampling methods; blue regions

are considerably more than the yellow regions which also lead us to expect that

original images are dominant in general. Thus, these methods are expected to be

appropriate for stereoscopic rendering optimization. The yellow regions cover a

large area in the figures of antialiasing and mesh simplification methods, therefore

these methods are not suitable for our optimization approach, according to our

hypothesis. For mixed shadowing, although the shadowed image has apparently

more intensity contrast in the borders of the shadow; the opposite holds for the

interior parts of the shadow. Hence, shadow is expected to be a strong factor

for suppression, therefore it should be applied on both of the views. For mixed
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Figure 4.4: Summary of the hypothesis. Optimized pair provides the same per-
cept if the intensity contrast of the modified view is lower than the original
(ContrastHigh: Intensity contrast of high quality image). Note that, the low
quality image does not have to be the right view always. It is also possible to
decrease the quality of the left view. (From [20]. c©2010 Elsevier, reprinted with
permission.)

shading, even though there are regions in which the Gouraud shaded image is

dominant, Phong shaded image is stronger in general.

4.3 Summary of the Proposed Method

In this chapter, we have presented a perceptually-based optimization approach for

stereoscopic rendering, which makes use of the binocular suppression mechanism

of the human visual system. The proposed method exploits the fact that the 3D

perception of the overall stereo pair in a region is determined by the dominant

image on the corresponding region, instead of summation of the effect of two

images. We have also introduced an estimate of the strength of a view, called

intensity contrast, and used it to estimate whether the application of a method

decreases the strength of that view. We have performed a subjective experiment
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Framebuf. Upsampling Blurring Antialiasing Specular Highlight

Mixed Shading Mesh Simplification Texture Resampling Mixed Shadowing

Figure 4.5: Intensity contrast changes due to selected methods. (Level 1 and level
3 are used for upsampling, blurring, mesh simplification, and texture resampling
methods.) (From [20]. c©2010 Elsevier, reprinted with permission.)

on the selected methods.

We conclude that decreasing the rendering cost for one view may be an effec-

tive technique to increase the rendering performance of 3D stereoscopic content,

while retaining the depth, quality, and sharpness of the original 3D rendering.

The following methods provide an effective solution: framebuffer upsampling,

blurring, specular highlight, mixed shading, texture resampling. On the other

hand, mixed-level antialiasing, mesh simplification, and mixed shadowing, pro-

duce unacceptably low levels of quality and sharpness. The detailed experiment

to evaluate the proposed method is presented in Section 5.4.



Chapter 5

Evaluation

This chapter is divided into three sections to present the experiments performed

for each of the proposed methods. First two sections are related to the saliency

calculation methods for animated meshes and animating objects and the third

section is related to proposed stereo-rendering optimization technique.

5.1 Per-Vertex Saliency Model

5.1.1 Experiment Design

To verify the PVS model, we performed an experiment in which our aim was

to compare the calculated saliency maps to the actual regions that are looked

at by the users. For this purpose, we used a Tobii 1750 eye-tracker. In the

experiment, three short video sequences (Figure 5.1) were shown to 12 subjects

and the points that were looked at were captured. The duration of each animation

was approximately 15s. The subjects had reported normal or corrected to normal

vision and they freely viewed the animations with no assigned task. In order to

evaluate our system, we followed the steps shown below:

1. We extracted the saliency maps for the animations that are used in the

103
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experiment.

2. For each user, using the eye-tracking results, we marked the points of the

animations that are looked at.

3. For each frame of the animation;

(a) We calculated average saliency of all visible points; call it average

saliency.

(b) We calculated average saliency of all points that are marked as looked

at, and compared this to average saliency.

5.1.2 Results and Discussion

There were several limitations in this experiment. Firstly, there was a margin

of error, which was quite large considering that our saliency computation is per-

formed over vertices. In order to tolerate this error, when calculating the average

saliency of the points we used a small circular neighborhood of the points that

were looked at. The radius of this circle was approximately 5% of the visible

region. While this approximation tolerated the error to some extent, it caused

the calculated average saliency of the points that were looked at to be closer to

the average saliency of all visible points.

Another limitation was that there was a delay between a motion and the users

response to that motion. To tolerate this error, we took the time of eye-tracker

backwards by 0.4s, to take into account the subjects’ reaction delay due to their

perceptual processing of the shown animation.

Despite these limitations, the eye tracking results show that the subjects

looked at the regions with significantly higher overall saliency than average. In

the top row of Figure 5.2, saliency histograms for each saliency range are shown;

whereas the bottom row shows the cumulative distribution of saliency values.

Note that the saliency of visible points in these animations are scaled to [0,100]

range in order to be able to compare the results. In these plots, the average
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Figure 5.1: Samples from the three animation sequences used in the experiment.
Left: original frames, right: saliency maps of the frames on the right (red dots
indicate the regions that are looked at by the subjects for that frame). (From
[21]. c©2010 ACM, reprinted with permission.)
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Figure 5.2: The results for the animation sequences used in the experiments.
Plots at the top row show the average saliency histogram for each animation and
the plots at the bottom show the cumulative distribution of saliency values. In
each plot, the black dot indicates the average saliencies of the points that are
looked at. (From [21]. c©2010 ACM, reprinted with permission.)

saliency values of all points that are the output of eye tracker are also shown. As

shown in Figure 5.2, the average saliency of regions that the subjects look at for

animations 1, 2, and 3 are ranked in the top 17%, 21%, and 19% of all visible

points, respectively.

Furthermore, we tested the validity of the proposed saliency approach as fol-

lows. In addition to the actual users, we assumed 100 virtual users who look at

random screen positions. Then, we compared the calculated average saliencies of

the regions that the actual subjects look at to the regions that the virtual users

looked at. In this comparison, we did not consider the points that were not on

the animated models. Figure 5.3 shows that the actual users look at more salient

regions compared to the virtual users and the difference is statistically significant

(p < 0.05) according to the applied t-test.

These results show that our saliency metric identifies the regions that are likely

to be looked at and determines the important parts of a 3D mesh. Moreover, these

results can be considered as the worst case due to the limitations explained before.

Despite these limitations, the points that are looked at have significantly

higher saliency values (p < 0.05) than the average saliency value of all visible
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Figure 5.3: Comparison between the calculated average saliencies of the regions
that are looked at by the actual users, and the randomly generated virtual users.
Error bars indicate 95% confidence intervals. (From [21]. c©2010 ACM, reprinted
with permission.)

points according to the applied t-test. Figure 5.2 shows the average saliency

values of the points that are looked at by the users, against the average saliency

values of all visible points through the animations. The average saliency of visible

points are set to 1 in order to make the plots comparable.

We also calculated the correlation between the calculated saliency values and

gaze points. For this purpose, we generated two video sequences for the contents

used in the experiment. In the first video, the contents are colored according

to the calculated saliency values. In the second video, the content is colored

according to the eye tracker results such that a region that is looked at more

is brighter. Then, we calculated the Pearson Correlation for each frame of the

two video sequences. The average correlation results are shown in Table 5.1.

Number of trials significantly effects correlation results because there are only a

few fixation points for each frame of the animation which cannot be used to form

a correct fixation map for a model. Also, in the ideal case, even if all subjects

look at the most salient region, we don’t get a high correlation value. Despite

these problems, having a positive correlation value mimics that the regions having
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higher saliency values are more likely to be the fixation points.

correlation
animation-1 0.094
animation-2 0.191
animation-3 0.245

Table 5.1: Average correlation: saliency vs. fixations

5.2 Per-Object Saliency Model

5.2.1 Experiment Design

We performed a formal user study to validate the proposed POS model to calcu-

late saliency of animating multiple objects. In the experiment, subjects looked

at a 22” LCD display where twenty spheres animate for two minutes in a 3D

room (Fig. 5.4). For each half-second of animation, a random object changed

its motion state to another random state. The subjects’ task was pressing a

button when the color of a sphere becomes the target color which was shown to

the subjects during the experiment. Interval time for two color change was at

least three seconds. In order to avoid color or shape related bias, all spheres have

the same size and randomly selected colors having close luminances. The reason

for selecting different colors for each sphere is to decrease the pop-out effect for

the spheres that change color. During an animation, we had three cases of color

changes. The first case was the color change of highly salient spheres, which

were chosen with strong decisions of our model. In second case, among spheres

having the lowest saliencies, the most distant spheres to the previously calculated

gaze points were chosen. In third case, we choosed the sphere in a fully random

fashion. All cases were shown to the users in a mixed manner multiple times.

16 voluntary graduate or undergraduate level students (4 females, 12 males)

whose average age was 23.75 attended to our experiment. All subjects had re-

ported to have normal or corrected to normal vision and they were not informed
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Figure 5.4: Sample screenshot from the experiment. (From [11]. c©2011 Springer,
reprinted with permission.)

about the purpose of the experiment. The experiment was introduced to the sub-

jects as a game. In the game, to get a higher score, they were told to press the

button as soon as possible when an object changed its color to the target color.

Before starting the experiment, each subject performed a trial case to learn how

to play the game.

5.2.2 Results and Discussion

The results of the experiment can be seen in Fig. 5.5. We expect the response

times to color changes of salient spheres to be shorter since they are expected

to occur on the focus of attention. As expected, observers responded to color

changes of salient spheres in a shorter time compared to those appeared on lowly

salient spheres and randomly selected spheres. The differences for both cases are

statistically significant (p < 0.05) according to the applied paired t-test.

For motion saliency in computer animations we analyzed psychological find-

ings on the subject by conducting an eye-tracking experiment and developed a

decision theoretic approach to momentarily determine perceptually significant
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Figure 5.5: The results of the experiment. High, low, and random stand for the
compared cases in which color changes are applied to objects having high, low,
and random saliencies, respectively; according to the POS model. Error bars
show the 95% confidence intervals. (From [20]. c©2011 Springer, reprinted with
permission.)

objects. Our observations from the experiment showed that each phase of the

motion has a different impact on perception. To that end, we defined six motion

states and assigned attention values to them by considering their dominance. In-

dividual attention values were determined for each object by considering their

current state and elapsed time after a state initialization to include the impact of

IOR. We elaborated our model by including the relationships of the objects on

the scene with each other using Gestalt principles. Overall model makes decisions

for the most salient object and its position is predicted as the gaze point. We

carried-out a final experiment to evaluate the effectiveness of decisions our model

make.

One of the limitations of our approach is the consideration of only bottom-up

and stimulus-driven attention like most of other saliency works. Our final experi-

ment had promising results although it included a simple task for users to search.

On the other hand, more complex tasks could remove the effect of motion saliency.

The model should be evaluated with further experiments and improved by the

impact of new task-dependent cases. Furthermore, motion saliency and other

object based saliency methods considering object material and shape should be

compared. In our model we only consider saliency caused by motion. Dominancy
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of other saliency parameters on motion saliency is not evaluated here.

5.3 Extended Per-Vertex Saliency Model

In this section, we present the evaluation of the motion-based EPVR model that

is an adaptation of the motion-based saliency model (POS model) presented in

3.2 to 3D animated meshes.

5.3.1 Experimental Design

To evaluate the cluster-based saliency calculation model proposed in Section 3.3

we used the eye tracking data from the experiment presented in Section 5.1. The

proposed model was applicable to the same content and the previously recorded

gaze points are reused to analyze the saliency levels at these regions. Two of the

short animations are analyzed with the newly proposed model. These animations

include material properties of meshes in addition to the animations. While it is

not desirable to have material properties while evaluating motion-based saliency

since material properties also affect users’ attention, the experiment is closer to

the real world conditions with the presence of material properties.

5.3.2 Results and Discussion

The results of our analysis show that the motion based saliency calculation could

work well for 3D animated meshes when motion based saliency is not dominated

by another channel of saliency like geometry. Figure 5.6 shows the results of

the analysis. In this figure, average saliencies in the gaze points of users are

compared to average saliencies of randomly selected gaze points. In the analysis

we considered a small neighborhood of the gaze points for two reasons, the first

is to tolerate the small accuracy error (0.5 degrees of the visual field) of the used

eye-tracker; and the second is our ability to see a small neighborhood in sharp
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Figure 5.6: Experimental results for clustering-based saliency calculation. Error
bars show the 95% confidence intervals.

detail (2 degrees around the gaze point).

As Figure 5.6 indicates, for different 3D models, the success of the clustering-

based saliency calculation model differs. The proposed model is found to be very

successful for the hand model such that the average saliency values of the users’

gaze points are approximately 0.41 while for the random case it is around 0.28

in a scale where the vertex with the highest saliency value is set to 1 for each

frame. However, for the horse model, a static part of the model, head, gathered

the most attention resulting in less gazes on the motion-wise salient parts. There

was no significant effect of motion saliency on reflecting the gaze points of the

users. On the other hand, for the hand model, the proposed model reflected the

possible attention centers well, possibly due to the absence of an outstanding

distractor like head of the horse model. As the figure illustrates the error bars

do not overlap and the results are found to be statistically significant according

to the applied t-test.
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Ref vs. Test Ref vs. Test Ref vs. Test
1-1 vs 1-2 2-2 vs 1-2 3-3 vs 1-2
1-1 vs 1-3 2-2 vs 1-3 3-3 vs 1-3
1-1 vs 1-4 2-2 vs 1-4 3-3 vs 1-4

Table 5.2: Test cases for scalable methods. (From [20]. c©2010 Elsevier, reprinted
with permission.)

5.4 Attention-based Stereo Rendering Opti-

mization

We implemented the proposed methods described in Section 4.1.1, and performed

a formal experiment to observe whether the use of each method is perceptible.

Our main approach is to compare differences of two cases: One of the cases is

altering both left and right views in the same scale, and the other case is altering

only one of the views with a different scale, using the methods in Table 4.1.

For the methods that can be applied in different scales, the first level is not

modifying, and the fourth level is applying the method with the greatest strength.

The actual correspondence of the scales for each method is shown in Table 4.1.

For these methods, comparison cases are shown in Table 5.2. In the table, each

cell corresponds to a comparison case. For instance, 1-1 vs 1-2 stands for the

comparison of reference content in which the method is applied with level 1 for

both views, with the test content in which the method is applied with level 1 for

one view and with level 2 for the other view. Thus, there are 9 cases in total for

each scalable method.

For the methods with two levels, there are two options: applying the method

or not. The details of this type of methods are also shown in Table 4.1, and the

comparison cases for these methods are shown in Table 5.3. In Table 5.3: ’on’

stands for applying the method and ’off’ stands for not applying the method. On

the right side of the table, levels for the mixed shading method are shown.
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Ref vs. Test Ref vs. Test
on-on vs on-off phong-phong vs phong-gouraud
off-off vs on-off gouraud-gouraud vs phong-gouraud

Table 5.3: Test cases for non-scalable methods. (From [20]. c©2010 Elsevier,
reprinted with permission.)

5.4.1 Experiment Design

5.4.1.1 Subjects

We recruited 61 subjects: 47 males and 14 females with a mean age of 24.6.

The subjects were among voluntary undergraduate and graduate students with

computer science background; and most of them do not have previous experience

on rendering on stereoscopic displays. The subjects were not informed about the

purpose of the experiment. All have self-reported normal or corrected vision.

5.4.1.2 Display

We used a Sharp Actius AL3DU stereoscopic laptop which has an NVIDIA

GeForce Go 6600 graphics processor and a 15-inch XGA (1024 × 768) TFT 3D

LCD display. In this display, 3D effect is provided by the parallax barrier tech-

nology. 3D perception is available for a single viewer, in a limited view angle and

in a limited distance.

5.4.1.3 Procedure

For the experiment design, we followed the double-stimulus continuous-quality

scale (DSCQS) method described in [2]. According to this procedure, subjects

were shown a content, either test or reference, for about ten seconds; after a

three seconds break, they were shown the other content. Then, both contents

were shown for the second time, to obtain the subjective evaluations. The order

of the reference and the test contents was determined randomly and subjects did

not know whether they see the reference or the test content first. This process is
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Figure 5.7: Presentation of test material. (From [20]. c©2010 Elsevier, reprinted
with permission.)

Figure 5.8: Rating scales used for subjective assessments. (From [20]. c©2010
Elsevier, reprinted with permission.)

illustrated in Figure 5.7.

Our rating scale was also consistent with the scale that is recommended in

ITU-R 500. A screenshot from our experiment system is shown in Figure 5.8.

The rating scale is continuous and red pixels show the subject’s rating for the

corresponding field.

In the experiment, there are four methods with nine comparison cases and four

methods with two comparison cases (Tables 4.1, 5.2, and 5.3). Thus, in total,

there are 44 (= 9× 4 + 2× 4) different cases to be evaluated. Either 10 different

videos or 25 different images were used per case on average. Each case is tested

15-20 times in total. For this purpose, each subject performed the experiment
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for about 30 minutes, including a training case at the beginning and a 5 minute

break in the middle of the experiment.

5.4.1.4 Assessment of Contents

Subjects evaluated both test and reference contents of all the cases separately,

with respect to four criteria, as shown in Figure 5.8. The meaning of each crite-

rion was explained to the viewers before the experiment begins. The motivation

behind selecting these grading criteria is as follows:

• Quality: The primary goal of the experiment is to compare the quality of

test and reference pairs. Quality denotes the perceived overall visual quality

of the shown content. The labels ”Excellent”, ”Good”, ”Fair”, ”Poor”, and

”Bad” were displayed alongside the scale.

• Depth: This criterion measures the apparent depth as reported by the user.

Since stereoscopic displays are most beneficial for providing a better sense

of depth, the effect of various modifications on apparent depth should be

taken into account. For instance; if any modification that seems to retain

quality causes a considerable amount of decrease in depth perception, the

proposed optimization approach would be ineffective.

• Sharpness: This criterion is the subjective clarity of the details in an image,

which is an important factor while evaluating graphical or image-based

contents [113]. Sharpness has also been reported to be well correlated with

quality of the contents [114], [24].

• Comfort: This criterion measures how distracting the scene is to the users.

The visual comfort of a stereoscopic content may be affected by a num-

ber of factors such as left/right image misalignment, bad content creation,

convergence-accommodation conflict and difficulty of getting the correct

viewing position [69]. Therefore, the perceived comfort of a stereoscopic

content is also reported as important and widely-used as a criterion in sub-

jective experiments for stereoscopic displays [69], [131]. Similar to depth



CHAPTER 5. EVALUATION 117

criterion, the resulting comfort of an applied method should be taken into

consideration to find out whether it is affected by our optimization ap-

proach.

5.4.2 Results and Discussion

To determine the difference between the reference and test content, the Test minus

Reference score was used. A score of zero means that the Test sequence was rated

equivalently to the reference sequence, and a negative score means that the test

content was rated lower than the reference content. Error bars in the figures

below show the 95% confidence interval of the mean, which corresponds to the

range within which the mean is expected to fall with 95% certainty. Data points

in the non-overlapping error bars indicate statistical difference at the p < 0.05

level. For each of the 44 test cases, a paired samples t-test was also applied; with

p < 0.05 level to represent statistically significant difference between the pairs.

The parallax-barrier display that was used in the experiment has a narrow

range of correct viewing position. Occasionally, this may cause a difficulty in

getting the proper viewing position and leads to abnormal ratings for the contents

that are seen from the wrong viewpoint. Therefore, it is likely to have outliers

among the experimental results. The outliers were detected as the ratings that lie

outside the region of mean±2×stddev [109], and the cases reported by subjects.

5.4.2.1 Framebuffer Upsampling

Figure 5.9 shows the experimental results of framebuffer upsampling method. The

quality and sharpness results show that all mixed pairs (1-2, 1-3, and 1-4) are

perceived better than 2-2 pair, without any loss of apparent depth and comfort.

The differences in sharpness are even larger for 3-3 pair, which is consistent

with the hypothesis. Furthermore, the 1-2 pair is close to 1-1 pair in all rating

criteria. On the other hand, the 1-1 pair statistically differs from 1-3 and 1-4 pairs,

which may be the result of the Lanczos algorithm that was used for upsampling.
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Figure 5.9: Experimental results for framebuffer upsampling method (Error bars
show the 95% confidence interval of the mean). (From [20]. c©2010 Elsevier,
reprinted with permission.)

Therefore, other upsampling algorithms, such as B-Spline based methods, may

fit better to higher level of simplification; since they result in upsampled images

that have lower intensity contrast (Figure 5.10).

This pattern of results suggests that memory and computation savings can

be achieved with application of the framebuffer upsampling method in Level 2 to

one view, with equivalent perceived quality and sharpness. Moreover, the cost of

advanced rendering techniques, such as real-time ray tracing, can be decreased

for one view by using framebuffer upsampling.

5.4.2.2 Blurring

Figure 5.11 shows that blurring the right-eye view in Level 2 or Level 3 had no

perceived effect in all rating criteria. On the other hand, there is a statistically

significant difference between 1-1 and 1-4 pairs. The series 2-2 and 3-3 in the

quality panel indicates that when one of the views is not blurred in a pair, the

perceived quality of this pair is higher than blurring both views at the same time.

In conclusion, the results are consistent with our expectation that the blurred

image is suppressed by the original view, due to the decrease in the intensity

contrast. The similarity in quality between 1-1 and 1-3 pairs and the significant
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Figure 5.10: Comparison of Upsampling Algorithms. Top-left and Bottom-left:
Original image, Top-middle: Level 2 image upsampled with Lanczos filter, Top-
right: Intensity contrast change map of top-middle image (compared to the
original image), Bottom-middle: Level 2 image upsampled with B-Spline filter,
Bottom-right: Intensity contrast change map of bottom-middle image (compared
to the original image). (From [20]. c©2010 Elsevier, reprinted with permission.)

Figure 5.11: Experimental results for blurring method (Error bars show the 95%
confidence interval of the mean). (From [20]. c©2010 Elsevier, reprinted with
permission.)
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Figure 5.12: Experimental results for mixed-level antialiasing method (Error bars
show the 95% confidence interval of the mean). (From [20]. c©2010 Elsevier,
reprinted with permission.)

quality decrease from 1-3 to 3-3 pairs show that non-blurred content determines

the perceived quality of the 1-3 pair, which strongly supports our idea. However,

the level of blurring should be carefully considered, since exaggerating the blur

effect may result in a poor depth perception and a low quality, as the results for

1-4 pair indicate.

5.4.2.3 Mixed-level Antialiasing

Figure 5.12 shows that the mixed pair for antialiasing was rated close in overall

quality to the non-antialiased pair, whereas antialiasing both views show higher

quality than the mixed pair. The results for perceived sharpness and comfort

show a similar pattern to results of perceived quality. On the other hand, the

results show that antialiasing has no effect on the apparent depth.

These results indicate that the antialiased image is suppressed by the non-

antialiased image. This outcome is in accordance with our expectations, since

antialiasing decreases the intensity contrast. Thus, turning off antialiasing in

only one view is not appropriate, and should only be applied or disabled on both

of the views.
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Figure 5.13: Experimental results for specular highlight method (Error bars show
the 95% confidence interval of the mean). (From [20]. c©2010 Elsevier, reprinted
with permission.)

5.4.2.4 Specular Highlight

The results for the specular highlight method are shown in Figure 5.13. It is

apparent that the perceived quality, depth, sharpness, and comfort of the mixed

pair were rated similarly to the reference pair, while the quality of the pair with

specular highlight removed in both views was rated lower than the mixed pair.

Therefore, removing specular highlight in one view in a stereo pair has a small

effect on the overall stereo image and thus can be used for mixed stereo rendering.

5.4.2.5 Mixed Shading

Figure 5.14 shows that the mixed shading pair was rated with equivalent results to

Phong-shaded pair, and with higher quality than the Gouraud shaded pair. The

explanation of this result is that the intensity contrast is increased when Phong

shading is used instead of Gouraud shading, because the specular highlight is

more visible in Phong shading.

These results indicate that mixed shading provides a viable alternative for

stereoscopic rendering. Nevertheless, the situation will not be probably the same

when ”extreme” shading methods, such as flat shading, are used for one view.
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Figure 5.14: Experimental results for mixed shading method (Error bars show
the 95% confidence interval of the mean). (From [20]. c©2010 Elsevier, reprinted
with permission.)

Since flat shading increases the intensity contrast by resulting in a color disconti-

nuity on the edges, flat shaded view will be dominant against the Phong shaded

view on the edges.

5.4.2.6 Mesh Simplification

The results for the mesh simplification method are shown in Figure 5.15. It is not

possible to obtain a general inference by looking at the quality, depth, sharpness,

and comfort results. This situation is not in conflict with our prediction, which is

based on the idea that intensity contrast is higher on the edges (especially on the

silhouette edges) and each mesh will probably dominate on its own edges. There-

fore, the perceived 3D mesh is likely not one of the meshes, but an unpredictable

combination of them.

As a result, it is not easy to predict the effect of a mixed pair on the stereo

image, while using meshes of different level of detail for each view is not ap-

propriate. However, simplifying the mesh for a single view may be applicable if

the silhouette is preserved. One possible improvement may be application of a

silhouette-preserving mesh simplification method which does not cause a signifi-

cant increase in the intensity contrast of the simplified mesh.
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Figure 5.15: Experimental results for mesh simplification method (Error bars
show the 95% confidence interval of the mean). (From [20]. c©2010 Elsevier,
reprinted with permission.)

5.4.2.7 Texture Resampling

Figure 5.16 shows that the quality responses of the 1-2 and 1-3 pairs were close to

the original 1-1 pair. All the mixed pairs were rated higher than the 3-3 pair, both

for quality and sharpness. These results meet our expectations. On the other

hand, the ratings for the 2-2 pair contradict our predictions. Our expectation

was that the 2-2 pair would be rated lower than the mixed pairs, for which the

quality is determined by the Level 1 view according to our hypothesis. A likely

explanation of this contradictory situation is as follows: In our experiment, we

observed that the resolution of the Level 2 texture maps were already sufficient

for our objects since the area to cover is smaller than the size of the Level 2

texture maps; so that the Level 1 texture maps cannot provide higher quality

than the Level 2 texture maps. In this regard, if we consider the Level 1 and

Level 2 texture maps as similar in final rendered image, the results seem to be

consistent with our expectation. Thus, the texture resampling method provides

a viable solution for stereoscopic rendering.
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Figure 5.16: Experimental results for texture resampling method (Error bars
show the 95% confidence interval of the mean). (From [20]. c©2010 Elsevier,
reprinted with permission.)

5.4.2.8 Mixed Shadowing

Figure 5.17 illustrates that the mixed pair has closer ratings for quality to the case

in which both views are not shadowed. Furthermore, the original reference pair

has significantly higher quality ratings than the mixed pair. These two results

imply that using shadows in only one view is not a feasible solution, as it affects

perceived quality.

Another result inferred from the sharpness ratings is that shadowed (on-on)

and shadowless (off-off) reference pairs are sharper than the mixed pair, and the

difference is more apparent while comparing the shadowed reference pair to the

mixed pair. This situation may be explained as the following: In a mixed pair,

right and left views may become dominant on different regions and this decreases

the sharpness of the perceived stimulus.

Consequently, using shadow for a single view is not appropriate since it does

not increase the quality and depth perception to a higher level than the pair

without shadows. A mixed pair is rated to have lower comfort and sharpness

than the reference pairs.
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Figure 5.17: Experimental results for mixed shadowing method (Error bars show
the 95% confidence interval of the mean). (From [20]. c©2010 Elsevier, reprinted
with permission.)

5.4.2.9 General Discussion

Table 5.4 summarizes the feasibility of using the selected methods for mixed

stereoscopic rendering, thus decreasing rendering complexity. Our experiment

results show that it is possible to decrease the rendering cost of a 3D frame using

methods: framebuffer upsampling, blurring, specular highlight, mixed shading,

texture resampling. However, this optimization approach is not feasible for effects

such as mixed-level antialiasing and mixed shadowing.

Our hypothesis suggests that using different stimuli for each eye can be used

for optimization purposes if the applied effect decreases the intensity contrast and

as a result the high-quality view dominates in the mixed pair. In the meantime,

one important point to consider is that the difference in levels, between the two

views should not be increased significantly. For example, higher levels of blurring

one view decreases the perceived quality and depth, as the experiment results

have shown.
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Method Expectation Applying to
single view

Framebuffer Upsampled view is suppressed. Feasible
Upsampling (Not as apparent as the blurring case)
Blurring Blurred view is suppressed. Feasible

Mixed-level Antialised view is suppressed. Not feasible
Antialiasing
Specular The view with specular highlight Feasible
highlight suppresses the other.
Mixed Shaded with Phong model suppresses Feasible
Shading the Gouraud in general.
Mesh Two meshes may not be perceived as a Not feasible
Simplification single mesh. Not appropriate to use.
Texture Texture mapped with higher resolution Feasible
Resampling image suppresses the other.
Mixed Silhouette of shadows become apparent Not feasible
Shadowing but may result in discomfort since brighter

parts suppress inside the shadowed regions.

Table 5.4: Summary of the experiment. (From [20]. c©2010 Elsevier, reprinted
with permission.)
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Conclusion

Computer Graphics is a discipline in which the main purpose is generating com-

puter generated scenes that are in good quality. Users could assess the quality

of the rendered scenes merely based on their perception of these scenes. In this

thesis, we utilized a portion of the significant perceptual knowledge for computer

graphics.

Our approach is composed of two main parts: In the first part, our main

focus is to find out the perceptually attractive regions of the scenes and in the

second part our main focus is to utilize the binocular vision mechanism to optimize

stereoscopic rendering without sacrificing visual quality. Apart from the proposed

perceptual techniques, a detailed interdisciplinary literature survey combining

areas in Psychology, Visual Perception, Neuroscience, and Computer Graphics is

presented in Chapter 2. Although we have covered the most important literature

for our research in detail, there is a notable perception knowledge that could be

utilized in computer graphics which is practically impossible to fit in a thesis.

We have proposed saliency calculation techniques for two type of contents.

First one, PVS, works on single 3D meshes and tries to find the salient regions

of them due to their geometry, animation, and material properties. The second

one, POS, works on multiple objects that are animating and its purpose is to

find out the most salient object in terms of its motion for each frame of the
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animation. We have evaluated both of these studies and statistically verified that

the proposed metrics are successful. The models proposed in this thesis are based

on the bottom-up part of visual attention. A possible direction for future research

could be incorporating the task-based, top-down visual attention into saliency

computation framework. As explained in Section 2.1.1.3, task based attention

greatly affects our sensitivity to the visual scene. After a saliency analysis as

a pre-process without the presence of a task, such an extension could work in

real-time depending on the user’s task at the moment.

Salient regions could be considered as the important parts of visual scene and

saliency information has a great potential for utilizing in Computer Graphics.

It could be used for perceptual level of detail adjustment, perceptual camera

control, and for artistic purposes like automatized caricaturization and cubist

like rendering frameworks. Another, application area could be games in which

difficulty level could be adjusted perceptually via, for instance, placing a search

target into a salient or non-salient area.

There are many attempts to build a perceptual metric to evaluate quality of

3D models; however, to the best of our knowledge, none of them uses attention

principles in their assessments. Since we are more sensitive to the salient regions

of 3D models, it could be useful to employ saliency information in a perceptual

quality metric.

We have also investigated the graphical methods that could be used for stereo-

scopic rendering optimization utilizing the binocular suppression theory of binoc-

ular vision. We have performed a detailed experiment and reached this general

conclusion: A modification which raises the intensity contrast does not require

application to both views. On the other hand, if the intensity contrast of the

modified view is lower than the original image, then the optimized pair provides

the same percept as the result of traditional rendering. To be more specific, the

proposed stereoscopic rendering optimization technique is applicable for several

graphical methods e.g., framebuffer upsampling, specular reflection, blurring, and

shading.



CHAPTER 6. CONCLUSION 129

Our general finding about the applicability of graphical methods could be in-

vestigated in more detail for specific graphical methods like specular reflection,

use of shadows etc. Moreover, the proposed rendering optimization is for ren-

dering only two views (left and right views), autostereoscopic multiview displays

have much more views to be rendered concurrently and how to apply the proposed

optimization strategy for such displays is also a possible research possibility for

the future.
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