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ABSTRACT

AN EXECUTION TRIGGERED COARSE GRAINED
RECONFIGURABLE ARCHITECTURE

Oğuzhan Atak

PhD in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Abdullah Atalar

December, 2012

In this thesis, we present BilRC (Bilkent Reconfigurable Computer), a new

coarse-grained reconfigurable architecture. The distinguishing feature of BilRC

is its novel execution-triggering computation model which allows a broad range

of applications to be efficiently implemented. In order to map applications onto

BilRC, we developed a control data flow graph language, named LRC (a Lan-

guage for Reconfigurable Computing). The flexibility of the architecture and

the computation model are validated by mapping several real world applications.

LRC is also used to map applications to a 90nm FPGA, giving exactly the same

cycle count performance. It is found that BilRC reduces the configuration size

about 33 times. It is synthesized with 90nm technology and typical applications

mapped on BilRC run about 2.5 times faster than those on FPGA. It is found

that the cycle counts of the applications for a commercial VLIW DSP processor

are 1.9 to 15 times higher than that of BilRC. It is also found that BilRC can

run the inverse discrete cosine transform algorithm almost 3 times faster than

the closest CGRA in terms of cycle count. Although the area required for BilRC

processing elements is larger than that of existing CGRAs, this is mainly due to

the segmented interconnect architecture of BilRC, which is crucial for supporting

a broad range of applications.

Keywords: Coarse-grained Reconfigurable Architectures (CGRA), Discrete Co-

sine Transform (DCT), Viterbi Decoder, Turbo Decoder, Fast Fourier Transform

(FFT), Reconfigurable Computing, Field Programmable Gate Arrays (FPGA) .
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ÖZET

YÜRÜTÜME TETİKLEMELİ YENİDEN
YAPILANDIRILABİLİR MİMARİ

Oğuzhan Atak

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah Atalar

Aralık, 2012

Bu tezde, BilRC olarak adlandırdığımız yeni bir yapılandırılabilir mimari sunuy-

oruz. BilRC’nin ayırt edici özelliği, geniş bir yelpazedeki uygulamaların etkin

bir şekilde gerçeklenmesine imkan sağlayan yürütmeye tetikli hesaplama mimari-

sidir. Uygulamaları BilRC üzerine yükleyebilmek için LRC (a Language for Re-

configurable Computing) olarak adlandırdığımız bir kontrol data akış diagram

dili geliştirildi. Mimarinin ve hesaplama modelinin esnekliği, bir çok uygula-

manın BilRC üzerinde gerçeklenmesi ile doğrulandı. LRC dilinde modellenen

uygulamalar 90nm teknolojisinde üretilmiş ticari bir FPGA üzerine de yüklendi

ve gerçekleme sonuçları karşılaştırıldı. Buna göre, FPGA’yı yapılandırmak için

gereken hafıza miktarı BilRC için gereken miktarın ortalama olarak 33 katı

olarak bulundu. BilRC 90nm teknolojisinde sentezlendi ve FPGA ile zaman-

lama karşılaştırması yapıldı. Ortalama olarak BilRC üzerindeki uygulamaların

FPGA üzerindeki uygulamalardan 2.5 kat daha hızlı çalıştğı bulundu. BilRC,

ticari bir DSP işlemci ile de karşılaştırıldı, DSP üzerinde gerçeklenen uygula-

malar için gereken saat çevrim sayısının BilRC için gerekenin 1.9 ile 15 kat

arasında olduğu bulundu. BilRC’nin IDCT algorimasını, saat çevrimi açısından,

literatürdeki en iyi CGRA’dan 3 kat daha hızlı çalıştırdığı bulundu. BilRC’nin

diğer CGRA’lara göre dezavantajı işlem birimlerinin kapladığı alanın diğerlerine

göre daha büyük olmasıdır. Bunun temel sebebi BilRC’de kullanılan ara bağlantı

hatlarının karmaşıklığıdır.

Anahtar sözcükler : Yeniden Yapılandırılabilir Mimariler, Kesikli Kosinüs

Dönüşümü, Viterbi Çözücü, Turbo Çözücü, Hızlı Fourier Dönüşümü, Sahada

Programlanabilir Mantık Dizisi.
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Chapter 1

Introduction

To comply with the performance requirements of emerging applications and evolv-

ing communication standards, various architecture alternatives are available. FP-

GAs compete with their large number of logic resources. For example, the largest

Xilinx Virtex-7 FPGA can provide 6737 GMACS (Giga Multiply and Accumulate

per Second) with its 5280 DSP slices1 and it has 4720 embedded BRAMs each

with a 18 Kbits capacity. The main disadvantage of FPGA is the lack of run-time

programmability. To maximize the device utilization, FPGA designers partition

the available resources among several sub-applications in such a manner that each

application works at the chosen clock frequency and complies with the throughput

requirement. The design phases of FPGAs and ASICs are quite similar except

that ASICs lack post-silicon flexibility. For both FPGAs and ASICs, the function

blocks in the application are partitioned to hardware resources spatially.

Unable to exploit the space dimension, DSPs fail to provide the performance

requirement of many applications due to the limited parallelism that a sequen-

tial architecture can provide. This limitation is not due to the area cost of logic

resources, but to lack of a computation model to exploit such a large number

of logic resources. Commercial DSP vendors produce their DSPs with several

accelerators. For example, Texas Instruments TMS320c6670 DSP has a Turbo

1http://www.xilinx.com/support/documentation/data sheets/ds180 7Series Overview.pdf
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Decoder Coprocessor, FFT and Viterbi decoder accelerators for WCDMA, LTE

and WiMAX standards. The disadvantage of such an approach is that the accel-

erators are designed considering only the applications and standards developed

until that time, therefore these accelerators could be useless for emerging appli-

cations and evolving standards.

Application-specific instruction-set processors (ASIP) provide high perfor-

mance with dedicated instructions having very deep pipelines. The basic idea

behind the ASIP approach is to shrink the instructions in the loop body into a

single or a few instructions so that the number of cycles spent for the loop kernel

is reduced. For example, the FFT processors presented in [1, 2, 3, 4] have special

instructions for the FFT kernel. ASIPs are designed in general for a specific algo-

rithm or algorithms having similar computation kernel. For example, an ASIP [5]

with a 15-pipeline stage is presented for various Turbo and convolutional code

standards. A Multi-ASIP [6] architecture is presented for exploiting different

parallelism levels in the Turbo decoding algorithm. The basic limitation of the

ASIP approach is its weak programmability, which makes it inflexible for emerg-

ing standards. For instance, aforementioned ASIPs do not support Turbo codes

with more than 8-states [6] and 16-states [5]. In order to make ASIPs flexible

after fabrication, reconfigurable ASIPs (rASIP) have been proposed [7] having

programmable function generators similar to that of FPGAs.

Coarse-grained reconfigurable architectures (CGRA) have been proposed to

provide a better performance/flexibility balance than the alternatives discussed

above. Hartenstein [8] compared several CGRAs according to their interconnec-

tion networks, data path granularities and application mapping methodologies.

In a recent survey paper, De Sutter et al. [9] classified several CGRAs accord-

ing to computation models while discussing the relative advantages and disad-

vantages. Compton et al. [10] discussed reconfigurable architectures containing

heterogeneous computation elements such as CPU and FPGA, and compared

several fine- and coarse-grained architectures with partial and dynamic configu-

ration capability. According to the terminologies used in the literature [8, 9, 10],

reconfigurable architectures (RA), including FPGAs, can be classified according

to the configuration in three distinct models as single-time configurable, statically

2



reconfigurable and dynamically reconfigurable. Statically reconfigurable RAs are

configured at loop boundaries, whereas dynamic RAs can be configured at almost

each clock cycle. The basic disadvantage of statically reconfigurable RAs is that

if the loop to be mapped is larger than the array size, it may be impossible to

map. However, the degree of parallelism inside the loop body can be decreased

to fit the application to CGRA. This is the same approach that designers use

for mapping applications to an FPGA. In dynamically reconfigurable RAs, the

power consumption can be high due to fetching and decoding of the configuration

at every clock cycle. However, techniques have been proposed [11, 12] to reduce

power consumption due to dynamic configuration. The interconnect topology

of RAs can be either one-dimensional (1D) such as PipeRench [13, 14, 15] and

RAPID [16, 17] or two-dimensional (2D) such as ADRES [18, 19, 20, 21, 22], Mor-

phoSys [23], MORA [24, 25], REMARC [26], GARP [27, 28], KressArray[29, 30],

RAW [31], MATRIX [32], COLT [33], PACT XPP [34, 35, 36] and conventional

FPGAs.

RAs can have a point to point (p2p) interconnect structure as in ADRES,

MORA, MorphoSys and PipeRench or a segmented interconnect structure as in

KressArray, RAPID and conventional FPGAs. p2p interconnect has the advan-

tage of deterministic timing performance. The clock frequency of the RA does not

depend on the application mapped while the fanout of the Processing Elements

(PE) is limited. If an operation has more sinks than the interconnects allow, one

of the PEs is used to delay the data for one clock cycle. Limited p2p interconnect

may increase the initiation interval [20] and cause performance degradation. For

the segmented interconnect method, the output of a PE can be routed to any PE,

while the timing performance depends on the application mapped. For FPGAs,

the timing closure is similar to that of ASICs and is quite tedious, whereas for

a segmented-interconnect CGRA timing closure is rather simple due to coarser

granularity.

The execution control mechanism of RAs can be either of a statically sched-

uled type such as MorphoSys and ADRES, where the control flow is converted

to data flow code during compilation, or a dynamically scheduled type such as

KressArray, which uses tokens for execution control.

3



In this thesis, we present BilRC2, a statically reconfigurable CGRA with a

2D segmented interconnect architecture utilizing dynamic scheduling with exe-

cution triggering. KressArray is the most similar architecture with some basic

differences: First, KressArray uses a data-driven execution control mechanism

together with a centralized sequencer, whereas BilRC with no centralized con-

troller, the execution control is distributed. Second, KressArray uses a dynamic

global bus for both primary input/output and temporary data transfer in be-

tween PEs, and local static interconnect for PE communication, BilRC uses a

segmented static interconnect for all communication requirements. Third, Kres-

sArray does not have any multiplier and memory unit in the array architecture

which limits the applications that can be mapped on. BilRC, like FPGAs, have

memory and multiplier PEs so that almost all applications can be implemented.

Our contributions can be summarized as follows:

• An execution triggered computation model is presented and the suitability

of the model is validated with several real world applications. For this

model, a language for reconfigurable computing, LRC, is developed.

• A new CGRA employing segmented interconnect architecture with three

types of PEs and its configuration architecture is designed in 90nm CMOS

technology. The CGRA is verified up to the layout level.

• Full tool flow including a compiler for LRC, a cycle accurate SystemC sim-

ulator and a placement & routing tool for mapping applications to BilRC

are developed.

• CGRAs are known to reduce configuration size, however there is no work

on configuration size comparison of CGRAs and FPGAs. The applications

modeled in LRC are converted to HDL with our LRC-HDL converter and

then mapped onto an FPGA and to BilRC on a-cycle-by-cycle equivalent

basis. Then, a comparison of precise configuration size and timing is done.

• It is known that CGRAs can provide better timing performance as com-

pared to FPGAs. However, there is no work on comparing the timing

2BilRC: Bilkent Reconfigurable Computer
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performance of the two. Thanks to LRC and LRC-HDL generator, the crit-

ical path for several applications are found for both FPGA and BilRC for

a timing performance comparison.

• The segmented interconnect structure is rather mature for FPGAs, however

the required number of tracks (ports) for CGRAs has not been explored yet.

We used state of the art placement and routing heuristics to minimize the

number of ports required to implement several applications with challenging

communication requirements.

The rest of the thesis is organized as follows: In Chapter 2, the architecture

of PEs and the configuration mechanism are presented. Chapter 3 discusses the

execution triggered computation model. In Chapter 4, the tools developed for ap-

plication mapping to BilRC and FPGA are explained. In Chapter 5, mapping of

a number of applications to BilRC is presented. The physical implementation re-

sults, cycle count performance, the critical path performance and a configuration

size comparison are given in Chapter 6. The thesis is concluded in Chapter 7.
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Chapter 2

BilRC Architecture

BilRC has three types of PEs: Arithmetic logic unit (ALU), memory (MEM)

and multiplier (MUL). Similar to the some commercial FPGA architectures such

as Stratix1 and Virtex2, PEs of the same type are placed in the same column as

shown in Fig 2.1. The architecture repeats itself every nine columns and the num-

ber of rows can be increased without changing the distribution of PEs. This PE

distribution is obtained by considering several benchmark algorithms from signal

and image processing and telecommunication applications. The PEs’ distribution

can be adjusted for better utilization for the targeted applications. For example,

the Turbo decoder algorithm does not require any multiplier, but needs a large

amount of memory. On the other hand, filtering applications require many mul-

tipliers, but not much memory. For the same reason, commercial FPGAs have

different families for logic-intensive and signal processing-intensive applications.

2.1 Interconnect Architecture

PEs in BilRC are connected to four neighboring PEs [2] by communication chan-

nels. Channels at the periphery of the chip can be used for communicating with

1http://www.altera.com
2http://www.xilinx.com
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ALU

Column

MEM
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MUL

Column
Configuration 

Input

Figure 2.1: Columnwise allocation of PEs in BilRC

the external world.

If the number of ports in a communication channel is Np, the total number

of ports a PE has is 4Np. The interconnect architecture is the same for all PE

types. Fig. 2.2 illustrates the signal routing inside a PE for Np = 3. There are

three inputs and three outputs on each side. The output signals are connected to

corresponding input ports of the neighbor PEs. The input and output signals are

all 17 bits wide. 16 bits are used as data bits and the remaining Execute Enable

(EE) bit is used as the control signal.

PEs contain processing cores (PC) located in the middle. Port route boxes

(PRB) at the sides are used for signal routing. PCs of ALUs and MULs have two

outputs and the PC of MEM has only one output. Each PC output is a 17 bit

signal. The second output of a PC is utilized for various purposes, such as the

execution control for loop instructions, the carry output of additions, the most

significant part of multiplication, the maximum value of index calculation and the

conditional execution control. PC outputs are routed to all PRBs. Therefore, any

PRB can be used to route PC output in the desired direction. All input signals
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are routed to all PRBs and to the PC as shown in Fig. 2.2. The PC selects its

operands from the input signals by using internal multiplexers. Fig. 2.3 shows

the internal structure of PRB. The Route multiplexer is used to select signals

coming from all input directions and from the PC. The pipeline multiplexer is

used to optionally delay the output of the route multiplexer for one clock cycle.

The idea of using multiplexers for signal routing has already been used in [37].

BilRC is configured statically, hence both the interconnects and the instructions

programmed in PCs remain unchanged during the run.

Fig. 2.4 shows an example mapping. PE1 is the source and PE4 is the des-

tination while PE2 and PE3 are used for signal routing. It must be noted that

the pipelining elements are not used. Inside PC1 an instruction is executed and
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the result is registered. The critical path starts from the output of the source

PC. Then, the signal is routed through PE2 and PE3. THOP is the time delay to

traverse a PE (without using the pipelining element in PRB). Finally, the signal

at PE4 goes through the adder and reaches the output register in PC with a time

delay of TPE. The total delay, TCRIT , between the register in PE1 and the register

in PE4 is given as

TCRIT = nTHOP + TPE (2.1)

where n=2 is the number of hops, THOP is the time delay to traverse one PE and

TPE is the time delay within a PE.
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Figure 2.4: An example of routing between two PEs.

2.2 Processing Core Architectures

2.2.1 MEM

Fig. 2.5 shows the architecture of the processing core of MEM. PC has a data

bus which is formed from all input data signals and an execute enable bus which

is formed from all input EE signals. SRAM block in PC is a 1024×16 dual port

RAM (10 address bits, 16 data bits). op1 adr set by the configuration register

determines which one of the 12 inputs is the read address. Similarly, op2 adr

chooses one of the inputs as the write address. The most significant six bits are

compared with MemID stored in the configuration register. If they are equal,

then read and/or write operations are performed. opr3 addr selects the data to

be written from one of the input ports. One of the input ports of SRAM is used

only for writing and the other one is used only for reading. The read address and

read enable signals are selected by op1 adr from the data bus and the execute

enable bus, respectively. The least significant 10 bits of data are used as the read

address for SRAM and the most significant 6 bits are used as the Memory ID

(MemID). MemID is used to form larger memory arrays by using multiple MEMs.

If MemID in the data bus is equal to MemID in the configuration register, the

data at location addressed by the read address signal is read and the output

execute enable signal, (PC OUT 1 EE), is enabled. If MemIDs are not equal, the

output signal is disabled. The write address and write enable signals are selected

by op2 adr in a similar way.
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Figure 2.5: Processing Core Schematic of MEM

2.2.2 ALU

Fig. 2.6 shows the architecture of ALU. Similar to MEM, ALU has two buses for

input data and execute enable signals. The instruction to be executed in ALU

is programmed during configuration and the ALU executes the same instruction

during application run. The operands to the instructions are selected from the

data bus by using the multiplexers M3, M4, M5, M6. ALU has an 8×16 register

file for storing constant data operands. For example, an ALU with the instruction,

ADD(A,100) reads the variable A from an input port and the constant 100 is stored

in the register file during configuration. The output of the register file is connected

to the data bus so that the instruction can select its operand from the register file.

The execution of the instruction is controlled from the execute enable bus. The

configuration register has a field to select the input execute enable signal from

the execute enable bus. PC executes the instruction when the selected signal is

enabled.
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Figure 2.6: Processing Core Schematic of ALU

2.2.3 MUL

The processing core of MUL is similar to that of ALU. The difference is the in-

structions supported in the two types of PEs. Multiplication and shift instructions

are performed in this PE. The MUL instruction performs the multiplication oper-

ation on two operands. The operands can be from the inputs (variable operands)

or from the register file (constant operands). The result of the multiplication is

a 32-bit number that appears on two output ports. The most significant part

of the multiplication is put on the second output, and the least significant part

is put on the first output. Alternatively, the result of the multiplication can be

shifted to the right in order to fit the result to a single output port by using the

MUL SHR (multiply and shift to the right) instruction. This instruction executes in

two clock cycles: the multiplication is performed in the first clock cycle and the

shifting is performed in the second clock cycle. The rest of the instructions for all

PEs are executed in a single clock cycle. The shift operation is performed by a

barrel shifter. The remaining instructions supported in MUL are the instructions

requiring a barrel shifter.
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Table 2.1: Configuration data structure
Conf. Item number of

words
Meaning

PID 1 Processing Element ID

N 1 Number of words in the configu-
ration packet

Configuration Regis-
ter (CR)

3 PC configuration register

Route Configuration
Register (RCR)

5 It is used to configure multiplex-
ers in the PRBs

Output Initialization
Register

1 loads the register for output ini-
tialization

Register File or Mem-
ory Content Configu-
ration

variable The register file of ALU or MEM
or the SRAM of the MEM is ini-
tialized

2.3 Configuration Architecture

PEs are configured by configuration packets which are composed of 16-bit con-

figuration words. Table 2.1 lists the data structure of the configuration packet.

Each PE has a 16-bit-wide configuration input and a configuration output. These

signals are connected in a chain structure as shown in Fig. 2.1. The first word

of the configuration packet is the processing element ID (PID). It is used to ad-

dress the configuration packet to a specific PE. A PE receiving the configuration

packet uses it if the PID matches its own ID, otherwise it is forwarded to the

next PE in the chain. The second word in the packet is the length of the con-

figuration packet, this word is useful for register and memory initializations to

indicate the size of the configuration packet. The configuration register (CR) is

used to configure PC. The fields of the CR are illustrated in Table 2.2 for ALU.

The configuration register of MEM does not require the fields opr4 adr, EE adr,

Init Addr, Init type and Init Enable, and the configuration register of MUL

does not contain the opr4 addr field, since none of the instructions require four

operands. CR is 48 bits long for all PC types; the unused bit positions are re-

served for future use. It must be noted that the bit width of the configuration

register and the route configuration register depends on Np. The number of words

13



Table 2.2: ALU Configuration Register
Conf. Field number

of bits
Meaning

opr1 addr 5 Operand 1 Address

opr2 addr 5 Operand 2 Address

opr3 addr 5 Operand 3 Address

opr4 addr 5 Operand 4 Address

EE addr 5 Execute Enable Input Address

Init addr 4 Initialization Input Address

op code 8 Selects the instruction to be executed

Init Enable 1 Determines whether the PC has an initializa-
tion or not

Init Type 1 Determines the type of the initialization

for the fields given in the table is for Np=4.
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Chapter 3

Execution-Triggered

Computation Model

Writing an application in a high-level language, such as C and then mapping

it on the CGRA fabric is the ultimate goal for all CGRA devices. To get the

best performance from the CGRA fabric, a middle-level language (assembly-like

language) that has enough control on PEs and provides abstractions is necessary.

The designers thus do not deal with unnecessary details, such as the location of

the instructions in the 2D architecture and the configuration of route multiplexers

for signal routing. Although there are compilers for some CGRAs which directly

map applications written in a high-level language such as C to the CGRA [38,

34, 39, 28], the designers still need to understand the architecture of the CGRA

in order to fine tune applications written in C-code for the best performance [9].

The architecture of BilRC is suitable for direct mapping of control data flow

graphs (CDFG). A CDFG is the representation of an application in which op-

erations are scheduled to the nodes (PEs) and dependencies are defined. We

developed a Language for Reconfigurable Computing (LRC) for the efficient rep-

resentation of CDFGs. In this thesis, it is assumed that the CDFG is available,

generating CDFGs from a high level language is out of the scope of this work. Ex-

isting tools such as IMPACT [21] can be used to generate a CDFG in the form of
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Figure 3.1: Example CDFG and Timing Diagram

an intermediate representation called LCode. IMPACT reads a sequential code,

draws a data flow graph and generates a representation defining the instructions

that are executed in parallel. Such a representation can then be converted to an

LRC code.

3.1 Properties of LRC

3.1.1 LRC is a spatial language

Unlike sequential (imperative) languages, the order of instructions in LRC is

not important. LRC instructions have execution control inputs that trigger the

execution. LRC can be considered as a graph drawing language in which the in-

structions represent the nodes and the data and control operands (dependencies)

represent the connections between the nodes.

3.1.2 LRC is a single assignment language

LRC is a functional language similar to Single-Assignment-C language [40, 41].

During mapping to the PEs, each LRC instruction is assigned to a single PE.

Therefore, the output of the PEs must be uniquely named. A variable can be
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assigned to multiple values indirectly in LRC by using the self-multiplexer instruc-

tion, SMUX. Examples for SMUX are provided in Chapter 3.3.2 and Chapter 5.7.

3.1.3 LRC is cycle accurate

In LRC, the number of clock cycles spent for the execution of an instruction is

deterministic. Each instruction in LRC, except MUL SHR, is executed in a single

clock cycle. Therefore, even before mapping to the architecture, cycle-accurate

simulations are possible to obtain timing diagrams of the application.

3.1.4 LRC has an execution-triggering mechanism

LRC instructions have explicit control signal(s), which trigger the execution of

instruction assigned to the node. Instructions that are triggered from the same

control signal execute concurrently, hence parallelism is explicit in LRC, i.e., the

application designer can control the degree of parallelism.

3.2 Advantages of Execution Triggered Compu-

tation Model

The execution-triggered computation model can be compared to the data flow

computation model [42]. The basic similarity is that both models build a data

flow graph such that nodes are instructions and the arcs between the nodes are

operands. The basic difference is that the data flow computation model uses

tagged tokens to trigger execution; a node executes when all its operands (inputs)

have a token and the tags match. Basically, tokens are used to synchronize

operands and tags are used to synchronize different loop iterations. In LRC an

instruction is executed when its execute enable signal is active. Application of the

data flow computation model to CGRAs has the following problems: first, tagged

tokens require a large number of bits; this in turn increases the interconnect area.
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For example, the Manchester Machine [42] uses 54 bits for tagged tokens. Second,

a queue is required to store tagged tokens which increases the area of PE. Third,

a matching circuit is required for comparing tags, both increasing PE area and

decreasing performance. For example, an instruction with three operands requires

two pairwise tag comparisons to be made. Execution-triggered computation uses

a single bit as execute enable; hence it is both area efficient and fast.

The execution-triggered computation model can be compared to the compu-

tation models of existing CGRAs. MorphoSys [23] uses a RISC processor for the

control-intensive part of the application. The reconfigurable cell array is intended

for the data-parallel and regular parts of the application. There is no memory

unit in the array; instead, a frame buffer is used to provide data to the array.

The RISC processor performs loop initiation and context broadcast to the array.

Each reconfigurable cell runs the broadcast instructions sequentially. This model

has many disadvantages. First, an application cannot be always partitioned into

control-intensive and data-intensive parts, and even if it is partitioned, the inter-

communication between the array and RISC creates a performance bottleneck.

Second, the lack of memory units in the array limits the applications that can be

run on the array. Third, the loop initiation is controlled by the RISC processor,

hence the array can be used only for innermost loops.

ADRES[21] uses a similar computation model with some enhancements, the

RISC processor is replaced with a VLIW processor. ADRES is a template CGRA.

Different memory hierarchies can be constructed by using the ADRES core. For

example, two levels of data caches can be attached to ADRES [22], or a multi-

ported scratch pad memory can be attached [43, 44]. There is no array of data

memories in the ADRES core. The VLIW processor is responsible for loop ini-

tiation and the control-intensive part of the application. Lack of parallel data

memory units in the ADRES core limits the performance of the applications

mapped on ADRES. For example, 8-state Turbo decoder algorithm requires at

least 13 memory units for efficient implementation, as explained in Chapter 5.7.

In a recent work on ADRES [43], a 4-ported scratchpad memory was attached

to the ADRES core for applications requiring parallel memory accesses. BilRC

targets more parallelism levels than does ADRES. In our recent work [2], we
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have shown that it is possible to map an LDPC decoder that requires 24 parallel

memory accesses in a single clock cycle. In ADRES, the loops are initiated from

the VLIW processor. Hence, only a single loop can run at a time. ADRES has a

mature tool suite, which can map applications written in C-language direcly to

the architecture. Obviously, this is a major advantage. The VLIW processor in

the ADRES can also be used for the parts of the applications which require low

parallelism.

MORA [25] is intended for multimedia processing. The reconfigurable cells

are DSP-style sequential execution processors, which have internal 256-byte data

memory for partial results and a small instruction memory for dynamic configu-

ration of the cells. The reconfigurable cells communicate with an asynchronous

handshaking mechanism. MORA assembly language and the underlying recon-

figurable cells are optimized for streaming multimedia applications. The compu-

tation model is unable to adapt to complex signal processing and telecommuni-

cations applications.

RAPID [17] is a one-dimensional array of computation resources, which are

connected by a configurable segmented interconnect. RAPID is programmed

with RAPID-C programming language. During compilation the application is

partitioned into static and dynamic configurations. The dynamic control signals

are used to schedule operations to the computation resources. A sequencer is

used to provide dynamic control signals to the array. The centralized sequencer

approach to dynamically change the functionality requires a large number of

control signals, and for some applications the required number of signals would

not be manageable. Therefore, RAPID is applicable to highly regular algorithms

with repetitive parts.

LRC is more efficient than the computation model of existing CGRAs from a

number of perspectives:

1. LRC has flexible and efficient loop instructions. Therefore, no external

RISC or VLIW processor is required for loop initiation. Arbitrary number

of loops can be run in parallel. The applications targeted for LRC are not
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limited to the innermost loops. For example, the IDCT algorithm has two

loops one for horizontal and one for vertical processing, these loops can be

pipelined so that after the first loop finishes the two loops run in parallel.

Another example is that the turbo decoding algorithm has two loops one for

processing the received symbols in the normal order and one for processing

the received symbols in the interleaved order. Moreover these loops has

two inner loops one for processing data in the forward direction and one for

processing data in the reverse order. Such complex loop topologies can be

easily modeled in LRC.

2. LRC has memory instructions to flexibly model the memory requirements

of the applications. For example, the Turbo decoding algorithm requires 13

memory units. The access mechanism to the memories is efficiently mod-

eled. The extrinsic information memory in the Turbo decoder is accessed

by four loop indices. LRC has also flexible instructions to build larger-sized

memory units. ADRES, MorphoSys and MORA have no such memory

models in the array.

3. The execution control of LRC is distributed. Hence, there is no need for an

external centralized controller to generate control signals, as is required in

RAPID. The instruction set in LRC is flexible enough to generate complex

addressing schemes, and no external address generators are required. While

LRC is not biased to streaming applications, they can be modeled easily.

It must be noted that LRC is not biased to any specific application, i.e.,

there are no application specific instructions.

3.3 Modeling Applications in LRC

In a CDFG, every node represents a computation, and connections represent the

operands. An example CDFG and timing diagram is shown in Fig. 3.1. The node

ADD performs an addition operation on its two operands Op1 Data and Op2 Data

when its third operand, Op3 EE, is activated. Here, Op1 and Op2 are data operands

and Op3 is a control operand. Below is the corresponding LRC line.
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[Res,0]=ADD(Op1,Op2)<-[Op3]

In LRC, the outputs are represented between the brackets on the left of the

equal sign. A node can have two outputs; for this example only the first output,

Res, is utilized. A “0” in place of an output means that it is unused. Res is

a 17-bit signal that is composed of 16-bit data, Res Data, and a 1-bit execute

enable signal, Res EE. The name of the function is provided after the equal sign.

The operands of the function are given between the parentheses. The control

signal that triggers the execution is provided between the brackets on the right of

the “<-” characters. As can be seen from the timing diagram, the instruction is

executed when its execute enable input is active. The execution of an instruction

takes one clock cycle; therefore, the Res EE signal is active one clock cycle after

Op3 EE.

3.3.1 Loop Instructions

Signal processing and telecommunication algorithms contain several loops which

are in nested, sequential or parallel topology. For example, FFT algorithm has a

nested loop in which the outer loop counts the stages in the algorithm and the

inner loop counts the butterflies within a stage. The loops are responsible for

a great portion of the execution time. Therefore, efficient handling of loops is

critical for the performance of most applications. LRC has flexible and efficient

loop instructions. By using multiple LRC loop instructions, nested, sequential

and parallel loop topologies can be modeled. A typical FOR loop in LRC is given

as follows:

[i,i_Exit]=FOR_SMALLER(StartVal,EndVal,Incr)<-[LoopStart,Next]

This FOR loop is similar to that in C-language:

for(i=StartVal;i<EndVal;i=i+Incr)

{loop body}
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Figure 3.2: CDFG and LRC example for FOR SMALLER
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Figure 3.3: Timing Diagram of FOR SMALLER

The FOR SMALLER instruction works as follows:

• When the LoopStart signal is enabled for one clock cycle, the data portion

of the output, i DATA, is loaded with StartVal DATA, and the control part

of the output i EE is enabled in the next clock cycle.

• When the Next signal is enabled for one clock cycle, i DATA is loaded with

i DATA+Incr DATA and i EE is enabled if i DATA+Incr DATA is smaller than

EndVal; otherwise, i Exit EE is enabled.

The parameters StartVal, EndVal and Incr can be variables or constants.

Fig. 3.2 shows an example CDFG having three nodes. The LRC syntax of

the instructions assigned to the nodes is shown at the right of the nodes. All

operands of FOR SMALLER are constant in this example. When mapped to PEs,
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constant operands are initialized to the register file during configuration. ADD

and SHL (SHift Left) instructions are triggered from i EE. Hence, their outputs

k and m are activated at the same clock cycles as illustrated in Fig. 3.3. The

Next input of the FOR SMALLER instruction is connected to the k EE output of

the ADD instruction. Therefore, FOR SMALLER generates an i value for every two

clock cycles. When i exceeds the boundary, FOR SMALLER activates the i Exit

signal. The triggering of instructions is illustrated in Fig. 3.3 with dotted lines.

SFOR SMALLER is a self-triggering FOR instruction given as

[i,i_Exit]=SFOR_SMALLER(StartVal,EndVal,Incr,IID)<-[LoopStart]

The SFOR SMALLER instruction does not require a Next input; but in-

stead it requires a fourth constant operand, IID (Inter Iteration Dependency).

SFOR SMALLER waits for the IDD cycles to generate the next loop index after gener-

ating the current loop index. This instruction triggers itself and can generate an

index for every clock cycle when IID is 0. LRC has support for loops whose index

variables are descending; these instructions are FOR BIGGER and SFOR BIGGER.

The aforementioned for loop instructions can be used as a while loop by setting

the Incr operand to 0. By doing so, it always generates an index value. This is

equivalent to an infinite while loop. The exit from this while loop can be coded

externally by conditionally activating the Next input.

3.3.2 Modeling Memory in LRC

In LRC, every MEM instruction corresponds to a 1024-entry, 16-bit, 2-ported mem-

ory. One port is used for writing data to memory and the other port is used for

reading data from the memory. The syntax for MEM instruction is given below:

[Out]=MEM(MemID,ReadAddr,InitFileName,WriteAddr,WriteIN)

The MEM instruction takes five operands. MemID is used to create larger memories

as discussed earlier. ReadAddr is the read address port of the memory. This
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signal is composed of ReadAddr Data and ReadAddr EE signals. The 10 least

significant bits of ReadAddr Data are connected to the read address port of the

memory. When ReadAddr EE is active, the data in the memory location addressed

by ReadAddr Data is put on Out DATA in the following clock cycle and Out EE is

activated. The InitFileName parameter is used for initializing the memory. The

write operation is similar to reading. When WriteAddr EE is active, the data in

WriteIN Data is written to the memory location addressed by WriteAddr Data.

Program 1shows the code for forming a 2048-entry memory: The first memory

1: [Out1]=MEM(0,ReadAddr,File0,WriteAddr,WriteData)

2: [Out2]=MEM(1,ReadAddr,File1,WriteAddr,WriteData)

3: [Out]=SMUX(Out1,Out2)

Program 1: Building a 2048-Entry Memory in LRC

has MemID=0. This memory responds to both read and write addresses if they are

between 0 and 1023; similarly, the second memory responds only to the addresses

between 1024 and 2047. Therefore, the signals Out1 EE and Out2 EE cannot

both be active in the same clock cycle. The SMUX instruction in the third line

multiplexes the operand with the active EE signal. Due to the SMUX instruction,

one clock cycle is lost. The SMUX instruction can take four operands. Therefore,

up to 4n memories can be merged with n clock cycles of latency.

3.3.3 Conditional Execution Instructions

Conditional executions are inevitable in almost all kinds of algorithms. Although

some signal processing kernels such as FIR filtering do not require conditional

executions, an architecture without conditional executions can not be considered

complete. LRC has novel conditional execution control instructions. Below is a

conditional assignment statement in C language:

if(A>B) {result=C;} else{result=D;}

Its corresponding LRC code is given as
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[c_result,result]=BIGGER(A,B,C,D)<-[Opr]

BIGGER executes only if its execute enable input, Opr EE, is active. result is as-

signed to operand C if A is bigger than B; otherwise it is assigned to D. c result

is activated only if A is bigger than B. Since c result is activated only if the con-

dition is satisfied, the execution control can be passed to a group of instructions

that is connected to this variable. The example C code below contains not only

assignments, but also instructions in the if and else bodies.

if(A>B) {result=C+1;} else {result=D-1;}

This C-code can be converted to an LRC code by using three LRC instructions as

shown in Program 2. The first line evaluates C+1, the second line evaluates D-1

1: [Cp1,0]=ADD(C,1)<-[C]

2: [Dm1,0]=SUB(D,1)<-[D]

3: [0,result]=BIGGER(A,B,Cp1,Dm1)<-[Opr]

Program 2: Use of Comparison Instruction in LRC

and in the third line, result is conditionally assigned to Cp1 or Dm1 depending on

the comparison A>B. Conditional instructions supported in BilRC are as follows:

SMALLER, SMALLER EQ (smaller or equal), BIGGER, BIGGER EQ (bigger or equal),

EQUAL and NOT EQUAL. By using these instructions, all conditional codes can be

efficiently implemented in LRC. ADRES [19] uses a similar predicated execution

technique. In LRC two branches are merged by using a single instruction. In a

predicated execution, a comparison is made first to determine the predicate, and

then the predicate is used in the instruction. In LRC, the results of two or more

instructions cannot be assigned to the same variable, since these instructions are

the nodes in the CDFG. Therefore, the comparison instructions in LRC are used

to merge two branches of instructions. Similar merge blocks are used in data flow

machines [42] as well.

The conditional assignment instructions in LRC is summarized in Table-3.1.
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Table 3.1: Conditional Assignment Instructions in LRC

C Language Syntax LRC Instruction

> BIGGER

>= BIGGER EQ

< SMALLER

<= SMALLER EQ

== EQUAL

! = NOT EQUAL

3.3.4 Initialization Before Loops

1: min=32767;

2: for(i=0;i<255;i++){

3: A=mem[i];

4: if(A<min) {min=A;}

5: }

Program 3: Minimum value of an array in C

In the C-code in Program 3, the variable min is assigned twice, before the loop

and inside the loop. Such initializations before loops are frequently encountered

in applications with recurrent dependencies. Multiple assignment to a variable

is forbidden in LRC as discussed in Chapter 3.1.2. An initialization technique

has been devised for LRC instructions, which removes the need for an additional

SMUX instruction.

The corresponding LRC code is given below: MIN finds the minimum of its

1: [i,i_Exit]=SFOR_SMALLER(0,256,1,0)<-[LoopStart]

2: [A,0]=MEM(0,i,filerand.txt,WriteAddr,WriteData)

3: [min(32767),0]=MIN(min,0,A,0)<-[A,LoopStart]

Program 4: Minimum value of an array in LRC
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first and third operands1. The execute enable input of the MIN instruction is

A EE. The second control signal between the brackets to the right of the “< −”

characters, LoopStart, is used as the initialization enable. When this signal is

active, the Data part of the first output is initialized. The parentheses after the

output signal min represent the initialization value.

3.3.5 Delay Elements in LRC

CDFG representation of algorithms requires many delay elements. These delay

elements are similar to the pipeline registers of pipelined processors. A value

calculated in a pipeline stage is propagated through the pipeline registers so that

further pipeline stages use the corresponding data.

1: for(i=0;i<256;i++){

2: A=mem[i];

3: B=abs(A);

4: C=B>>1;

5: if(C>2047){R=2047;}

6: else{R=C;}

7: res_mem[i]=R;

8: }

Program 5: Pipelinining

In the C-code in Program 5, the data at location i is read from a memory

A, its absolute value is calculated at B, shifted to the right by 1 at C and finally

saturated and saved to the memory at location i. The corresponding LRC code

is given in Program 6.

Although the LRC instructions are written in Program 6 in the same order

as in the C-code in Program 5, this is not necessary. The order of instructions in

LRC is not important. The IID operand of the SFOR SMALLER instruction is set

to 0. Therefore, an index value, i, is generated from 0 to 255 at every clock cycle,

i.e., software pipelining [45] is used. After six clock cycles, all the instructions

1The second and fourth operands of MIN are used for the index of minimum calculation.
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1: [i,i_Exit]=SFOR_SMALLER(0,256,1,0)<-[LoopStart]

2: [A,0]=MEM(0,i,filerand.txt,0,0)

3: [B,0]=ABS(A)<-[A]

4: [C,0]=SHR(B,0,1)<-[B]

5: [0,R]=BIGGER(C,2047,2047,C)<-[C]

6: [mem2,0]=MEM(0,0,0,i(4),R)

Program 6: Pipelining in LRC

are active at each clock cycle until the loop boundary is reached. Since the

instructions are pipelined, the MEM instruction above cannot use i as the write

address, but its four-clock-cycle delayed version. The number of pipeline delays

is coded in LRC by providing it between the parentheses following the variable.

It must be noted that the number of pipeline delays are constant and it must be

determined at design time. A variable for a pipeline delay is not allowed, since

these delay elements are part of the interconnection network which are fixed after

the configuration. The requirement to specify delay value explicitly in LRC for

pipelined designs makes code development a bit difficult. However, the difficulty

is comparable to that of designing with HDL or assembly languages.

3.3.6 Utilization of the Second Output

In LRC, some of the instructions have two outputs. The second output is used

for a number of purposes. Although the basic Processing Core architecture is

16-bit, i.e., the operands of the instructions are 16-bits, it is possible to create

larger size arithmetic. One purpose of the second output is as the carry output

of an addition:

1: [R_lsb,carry] = ADD(A_lsb,B_lsb)<-[A_lsb]

2: [R_msb,0] = ADDC(A_msb(1),B_msb(1),carry)<-[A_lsb(1)]

Program 7: Utilization of the second output as the carry signal

In the code in Program 7, A lsb and A msb represent the LSB and MSB
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parts of an 32-bit signal. The instruction ADDC has an additional third operand

carry. The first two operands are delayed one clock cycle to match them with

the carry signal. It must be noted that only the least significant bit of the signal

carry is utilized. However, routing a dedicated carry line in the interconnection

network would be more problematic since this line is only utilized by the addition

instruction. In BilRC, the second output of the PC is used for different purposes

for different instructions, and it is routed in the interconnection network only if

it is required.

The second output can also be utilized for finding the index of maximum of

an array. In Program 8, a tree is formed by using the MAX instructions.

1:[max_01,ind_01]=MAX(A0,0,A1,1)<-[A0]

2:[max_23,ind_23]=MAX(A2,2,A3,3)<-[A2]

3:[max_45,ind_45]=MAX(A4,4,A5,5)<-[A4]

4:[max_67,ind_67]=MAX(A6,6,A7,7)<-[A6]

5:[max_03,ind_03]=MAX(max_01,index_01,max_23,ind_23)<-[max_01]

6:[max_47,ind_47]=MAX(max_45,index_45,max_67,ind_67)<-[max_45]

7:[max_07,ind_07]=MAX(max_03,index_03,max_47,ind_47)<-[max_03]

Program 8: Utilization of second output for finding index of maximum
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Chapter 4

Tools and Simulation

Environment

Fig. 4.1 illustrates the simulation and development environment. The four key

components are:

4.1 LRC Compiler

Takes the code written in LRC and generates a pipelined netlist. Every instruc-

tion in LRC corresponds a node in CDFG which is assigned to a PC in BilRC

and every connection between two nodes is a net. The net has the following

information: input connection, output connection, the number of pipeline stages

between the input and the output.
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Figure 4.1: Simulation and Implementation Environment

4.2 BilRC Simulator

Performs cycle-accurate simulation of LRC code. BilRC simulator was written

in SystemC1. The pipelined netlist is used as the input to BilRC simulator. PCs

are interconnected according to the nets. If a net in the netlist file has delay

elements, then these delay elements are inserted between PCs. The results of a

simulation can be observed in three ways: from the SystemC console window,

the Value Change Dump (VCD) file or the BilRC log files. Every PC output has

been registered to SystemC’s built-in function sc trace; thus by using a VCD

viewer all PC output signals can be observed in a timing diagram.

4.3 Placement & Routing Tool

This tool maps the nodes of CDFGs into a two-dimensional architecture, and

finds a path for every net. Since the interconnection architecture of BilRC is

similar to that of FPGAs, similar techniques can be used for placement and rout-

ing. However, unlike that of FPGAs, the interconnection network of BilRC is

pipelined. This is the basic difference between FPGA and BilRC interconnection

networks. BilRC place & route tool finds the location of the delay elements dur-

ing the placement phase. The placement algorithm uses the simulated annealing

1http://www.systemc.org/home/
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technique with a cooling schedule adopted from [46]. The total number of delay

elements that can be mapped to a node is 4Np. For every output of a PC, a

pipelined interconnect is formed. When placing the delay elements, contiguous

delay elements are not assigned to the same node. Such movements in the sim-

ulated annealing algorithm are made forbidden. A counter is assigned for every

node, which counts the number of delay elements assigned to the node. The

counter values are used as a cost in the algorithm. Therefore, delay elements are

forced to spread around the nodes. The placement algorithm uses the shortest

path tree algorithm for interconnect cost calculation. The algorithm used for

routing is similar to that of the negotiation based router [47]. Fig. 5.2 shows the

result of placement and routing of the maxval algorithm explained in Chapter 5.1.

4.4 HDL generator

Converts LRC code to HDL code. Since LRC is a language to model CDFGs,

it is easy to generate the HDL code from it. For each instruction in LRC, there

is a pre-designed VHDL code. The HDL generator connects the instructions

according to the connections in the LRC code. The unused inputs and outputs of

instructions are optimized during HDL generation. The quality of the generated

HDL code is very close to that of manual coded HDL. The generated HDL code

can then be used as an input to other synthesis tools, such as the Xilinx ISE.

The generated HDL code was used to map applications to an FPGA in order to

compare the results with LRC code mapped to BilRC.
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Chapter 5

Example Applications for BilRC

In order to validate the flexibility and efficiency of the proposed computa-

tion model, several standard algorithms selected from Texas Instruments bench-

marks [48] are mapped to BilRC. We also mapped Viterbi and Turbo decoder

channel decoding algorithms and multirate and multichannel FIR filters. For all

cases, it is assumed that the input data are initialized into the memories and the

outputs are directly provided to the device outputs.

5.1 Maximum Value of an Array (maxval)

The maximum value of an array can be computed in LRC in different ways

depending on how the array stored in memories. The input array of size 128

is stored in 8 sub-arrays with a size of 16 each. The algorithm first finds the

maximum values of the 8 sub-arrays by sequentially processing each data read

from the memories, and then the maximum value from among these 8 values are

computed. Fig. 5.1 illustrates the CDFG of the algorithm.
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Figure 5.1: LRC Code and CDFG of Maximum Value of an Array

1: [LoopStart]=DELAY(PI)<-[PI]

2: [i, i_Exit] = SFOR_SMALLER( 0,16,1,0)<-[LoopStart]

3: [d.1] = MEM(0,i,Data1.txt,0,0)<-[]

4: [d.2] = MEM(0,i,Data2.txt,0,0)<-[]

5: ...

6: [d.8] = MEM(0,i,Data8.txt,0,0)<-[]

7: [m1(-32768)] = MAX(m1,0,d1,0)<-[d1,LoopStart(1)]

8: [m2(-32768)] = MAX(m2,0,d2,0)<-[d2,LoopStart(1)]

9: ...

10: [m8(-32768)] = MAX(m8,0,d8,0)<-[d8,LoopStart(1)]

11: [m1_2] = MAX(m1,0,m2,0)<-[i_Exit(1)]

12: [m3_4] = MAX(m3,0,m4,0)<-[i_Exit(1)]

13: [m5_6] = MAX(m5,0,m6,0)<-[i_Exit(1)]

14: [m7_8] = MAX(m7,0,m8,0)<-[i_Exit(1)]

15: [m1_4] = MAX(m1_2,0,m3_4,0)<-[m1_2]

16: [m5_8] = MAX(m5_6,0,m7_8,0)<-[m5_6]

17: [max_result] = MAX(m1_4,0,m5_8,0)<-[m1_4]

Program 9: Maximum Value of an Array
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The signal, LoopStart, triggers the SFOR SMALLER instruction. The loop gen-

erates an index value for every clock cycle, starting from 0 and ending at 15. i is

used as an index to read data from 8 memories in parallel. Then, 8 MAX instruc-

tions find the maximum values corresponding to each sub-array. The instruction

corresponding to the eighth sub-array is shown below:

[m8(-32768)]=MAX(m8,0,d8,0)<-[d8,LoopStart(1)]

Here, the variable m8 is both output and input. At every clock cycle, m8 is

compared to d8 and the larger one is assigned to m8. The LoopStart(1) signal

(1 in parentheses indicates one clock cycle delay) is used to initialize m8 to -32768.

It should be noted that if an instruction’s output is also input to itself, the output

variable is connected to the input bus inside the processing core. This is shown in

Fig. 2.6, where PC OUT 1 is connected to the input data bus. During compilation,

LRC compiler finds the instructions whose output is also input, and then the PE

is configured accordingly.

When the FOR loop reaches the boundary, i Exit EE is activated for one clock

cycle, one-cycle-delayed version of i Exit EE is used to trigger the execution

of four MAX instructions. The dotted lines in the figure represent the control

signals and the solid lines represent signals with both control and data parts. The

instructions in the MAX-tree are executed only once. The depth of the memory

blocks in BilRC is 1024, whereas the maxval algorithm uses only 16 entries.

This under-utilization of memory can be avoided by using register files instead

of memories. ALU PEs have 8-entry register files, two ALU PEs can be used to

build a 16 entry register file.

5.2 Dot Product of two Vectors

This algorithm can be computed on BilRC in different ways depending on how

the input vectors are stored. It will be assumed that the vectors a and b are

stored in 8 memories. Thus, there are 8 sub arrays. In the LRC code given in
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Figure 5.2: Maxval algorithm placement and routing on BilRC

Appendix C.3, first 8 dot products of the sub arrays are computed. Then, these

partial dot products are summed up. This example shows the utilization of the

second output of the MUL SHIFT instruction. The least and most significant parts

of the multiplications are accumulated for each loop iteration. The carry output

resulting from the adder is used as an input for the MSB part. Since the LSB

addition takes one clock cycle, the MSB part of the multiplication is delayed one

clock cycle to balance the two inputs.

5.3 Finite Impulse Response Filters

Digital filters can be implemented by using a tap delay line, multipliers and

an adder tree. A 16-tap FIR filter can be described in LRC as given in the

Program 10. In this example, it is assumed that both the filter input data which

is stored in a memory and the filter coefficients are represented as 12-bit signed

values. The write address and data ports of the memory are not used in this

example. In a real implementation, these ports are used or the filter input data

can be read from a primary input. SFOR SMALLER instruction in the first line

generates an index at every clock cycle. This index value is used as the address

of the memory in the second instruction. 16 MUL SHIFT instructions multiply the

coefficients with the filter input data and shift the result to the right by 11. The

second multiplier, mul1 uses one clock cycle delayed version of data, and the

16th multiplier uses 15 clock cycle delayed version of data. The tap delay line is

implicitly defined in LRC by using the delayed versions of the input data. The
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Figure 5.3: Part of the CDFG of dot product algorithm

results of the multiplication are used as input to an adder tree.

A multi-rate filter can be designed with LRC in a similar way. In order to

design a multi-rate filter with rate 2, the MUL SHIFT instructions in Program 10

can be changed as given in Program 11. In this code, the second multiplier uses

data(2), which is two clock cycle delayed version of data and third multiplier

uses data(4) and so on. As compared to the single rate FIR, the number of delay

elements in the algorithm is doubled. Since BilRC has plenty of delay elements,

this does not create a problem.

The multi-rate filter described above can be used as a multichannel filter by

multiplexing channel data at the filter input and demultiplexing the data at the

filter output. The multiplexing at the filter input is shown in Program 12. In this

code, SFOR SMALLER instruction generates an index for every two clock cycles,

since its 4th operand, IID, is set to 1. The memory for the data ch1 uses i as the

address and data ch2 uses i(1), one clock cycle delayed version of i. data ch1

and data ch2 are active for one clock cycle for every two clock cycle. The output
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[i, i_Exit] = SFOR_SMALLER( 0,1024,1,0)<-[LoopStart]\\

[data] = MEM(0,i,data.txt,0,0)<-[]

#multiplication by filter coefficients

[mul0] = MUL_SHIFT(data ,-23 ,11)<-[data]

[mul1] = MUL_SHIFT(data(1) ,-39 ,11)<-[data(1)]

...

[mul15 ] = MUL_SHIFT(data(15),-23 ,11)<-[data(15)]

#adder tree

[add1_0] = ADD(mul0 ,mul1)<-[mul0]

...

[add1_7] = ADD(mul14,mul15)<-[mul14]

[add2_0] = ADD(add1_0 ,add1_1)<-[add1_0]

...

[add2_3] = ADD(add1_6 ,add1_7)<-[add1_6]

[add3_0] = ADD(add2_0 ,add2_1)<-[add2_0]

[add3_1] = ADD(add2_2 ,add2_3)<-[add2_2]

[filter_out] = ADD(add3_0 ,add3_1)<-[add3_0]

Program 10: FIR Filter

[mul0 ] = MUL_SHIFT(data ,-23 ,11)<-[data]

[mul1 ] = MUL_SHIFT(data(2) ,-39 ,11)<-[data(2)]

[mul2 ] = MUL_SHIFT(data(4) ,-39 ,11)<-[data(2)]

...

[mul15 ] = MUL_SHIFT(data(30),-23 ,11)<-[data(30)]

Program 11: Part of the Multi-Rate FIR Filter
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of SMUX is active for every clock cycle and contains data from the first channel

for one clock cycle and from the second channel in the following clock cycle.

[i,i_Exit] = SFOR_SMALLER( 0,1024,1,1)<-[LoopStart]

[data_ch1] = MEM(0,i,data.txt,0,0)<-[]

[data_ch2] = MEM(0,i(1),data.txt,0,0)<-[]

[data] = SMUX(data_ch1,data_ch2)<-[]

Program 12: Part of the Multi-Channel FIR Filter

5.4 2D-IDCT Algorithm

2D-DCT and its inverse, 2D-IDCT algorithms are widely used in image processing

for compression and decompression respectively. In this work, we consider the

implementation of (8x8) 2D-IDCT algorithm with LRC. We used a fixed point

model of the Program [48]. The algorithm is composed of three parts: horizontal

pass, transposition and vertical pass. In the horizontal pass, the rows of the 8×8

matrix are read and the 8-point 1D IDCT of the row is computed. Since there are

8 rows in the matrix, this operation is repeated 8 times. The transposition phase

of the algorithm transposes the resulting matrix obtained from the horizontal

pass. In the final phase, the matrix is read again row-wise and the 1D IDCT of

each row is computed. The challenging part of the algorithm is the transposition

phase.

Fig. 5.4 illustrates the CDFG and LRC of the algorithm. This algorithm

computes 2D-IDCT of 100 frames, where a frame is composed of 64 words. The

code assumes that the input data is stored in 8 arrays. While the input arrays are

being filled, the IDCT computation can run concurrently. Hence, the time to get

data to the memory can be hidden. The two SFOR SMALLER instructions at the

beginning of the code are used for frame counting and horizontal line counting,

respectively. The SHR OR instruction computes the address, which is used to

read data from the eight memory locations. MUX (multiplex) instructions in the

code are used for transposition. The MUX instruction has five operands: the first
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[frame_cnt ] = SFOR_SMALLER( 0,100,1,8)<-[LoopStart]

[hor_cnt ] = SFOR_SMALLER( 0,8,1,0)<-[frame_cnt]

[hor_addr] = SHL_OR(frame_cnt,3,hor_cnt)<-[hor_cnt]

#Read a Row

[data_1] = MEM(0,hor_addr,data_1.txt,0,0)<-[]

...

[data_8] = MEM(0,hor_addr,data_8.txt,0,0)<-[]

#Horizontal IDCT computations

...

[reg1_wd_m1]=MUX(sel10,f0,f1(1),f2(2),f3(3)) <-[sel10]

[reg1_wd_m2]=MUX(sel10,f4(4),f5(5),f6(6),f7(7))<-[sel10]

[reg1_wd] =MUX(sel3,reg1_wd_m1,reg1_wd_m2,0,0)<-[sel3]

...

[reg8_wd_m1]=MUX(sel10(7),f0,f1(1),f2(2),f3(3))

<-[sel10(7)]

[reg8_wd_m2]=MUX(sel10(7),f4(4),f5(5),f6(6),f7(7))

<-[sel10(7)]

[reg8_wd] =MUX(sel3(7),reg8_wd_m1,reg8_wd_m2,0,0)

<-[sel3(7)]

...

#Vertical IDCT computations

...

Program 13: IDCT
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[frame_cnt ] = 

SFOR_SMALLER( 0,100,1,8)

<-[LoopStart]

[hor_cnt, h_cnt_Exit] = 

SFOR_SMALLER( 0,8,1,0)

<-[frame_cnt]

[h_addr] 

=SHL_OR(frame_cnt,3,hor_cnt)

<-[hor_cnt]

MEM MEM MEM

Horizontal IDCT Computations

[d7]= 

MEM(0,h_addr,d7.txt,

Waddr,Wdata)
d7d1d0

MEM

d2

MEM

d3

MEM

d4

MEM

d5

MEM

d6

f7

MUX MUX

MUX MUX MUX

MUX

REG

REG

reg0

reg1

[m1] = 

     MUX(sel10,f0,f1(1),f2(2),f3(3))   

     <-[sel10]

[m2] = 

     MUX(sel10,f4(4),f5(5),f6(6),f7(7))

     <-[sel10]

[w1] = 

     MUX(sel3,m1,m2,0,0)

     <-[sel2]

[m3] = 

     MUX(sel10(1),f0,f1(1),f2(2),f3(3))

     <-[sel10(1)]

[m4] =   

     MUX(sel10(1),f4(4),f5(5),f6(6),f7(7))

     <-[sel10(1)]

[w2] = 

     MUX(sel2,m1,m2,0,0)

     <-[sel2(1)]

f6f5f4f3f2f1f0

f1(1) f2(2) f3(3) f4(4) f5(5) f6(6) f7(7)

m1 m2

m3
m4

w2

w1

s
e
l1
0

s
e
l3

Delay 

Element

T
R
A
N
S
P
O
S
E

Vertical IDCT Computations

h_cnt_Exit_EE

Figure 5.4: LRC code and CDFG of 2D-IDCT Algorithm

operand is used as the selection input, and the remaining four operands are to be

multiplexed. In order to multiplex eight operands, three multiplexers are used.

The variables [f0,f1,...,f7] are the results of the horizontal IDCT. These

variables are used as the input operands of the multiplexers. f0 is connected

to the input of the multiplexer directly, whereas f1 is delayed one clock cycle;

hence f1(1) and f2 is delayed two cycles. The horizontal results are queued in

a pipeline for the first register, reg0. For the second register, reg1, sel10 and

sel3, which are selection operands of the multiplexers, are delayed, so that the

second horizontal results are queued. The transposition operation is performed

by using 24 MUX instructions and 31 delay elements.
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I1

I2

[Stage, StageExit ] = 

FOR_SMALLER(0,10,1)

<-[LoopStart,BflyExit(6)]

[Bfly,  BflyExit  ] =

SFOR_SMALLER( 0,512,1,1)

<-[Stage]

ADDRESS COMPUTATION INSTRUCTIONS

I3

I4

I5 I6

I8I7 I9 I10

BUTTERFLY COMPUTATION INSTRUCTIONS

Delay 

Element

A_Real B_Real A_Imag B_Imag

Addr_A Addr_B

[Addr] = 

SMUX(Addr_A,Addr_B)

[AdrrRev  ]  =

 MEM(0,Addr,BitRev.txt,

0,0)

[Real]  =

MEM...

[Imagl]  =

MEM...

[B_Imag ] = 

DELAY(Imag)

<-[Addr_B(3)]

[A_Imag ] = 

DELAY(Imag)

<-[Addr_A(3)]

[B_Real ] = 

DELAY(Imag)

<-[Addr_B(3)]

[A_Real ] = 

DELAY(Imag)

<-[Addr_A(3)]

LoopStart

Figure 5.5: LRC code and CDFG of FFT

The IID parameter of the SFOR SMALLER instruction for horizontal line count-

ing is set to 0. Therefore, an index is generated every clock cycle, and computation

of eight horizontal IDCTs takes 8 clock cycles. The computation of the vertical

IDCTs takes 8 clock cycles as well. The computations of horizontal and vertical

IDCTs are pipelined. Thus, a 2D-IDCT is computed in 9 clock cycles on the av-

erage (1 clock cycle is lost in loop instructions). The computation of 100 frames

takes only 930 clock cycles.

5.5 FFT Algorithm

FFT algorithm is widely used in signal processing and telecommunication appli-

cations. We have designed 1024 point radix-2 DIT (Decimation In Time) FFT

algorithm in LRC. This algorithm is computed in two loops: the outer loop counts
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the stages and the inner loop counts the butterflies in the stages. For 1024 point

FFT there are log2(1024) = 10 stages and 1024/2 = 512 butterflies. A butterfly

has two inputs from the data memory and a coefficient from the coefficient mem-

ory. The LRC code and the CDFG is illustrated in 5.5. The code takes 39 LRC

instructions. The loop for stage counting uses BflyExit(6) signal which is the

6 clock delayed version of the exit signal of the loop for butterfly counting. The

inner loop generates an index for every two clock cycle, since the data memory is

sequentially accessed by the two inputs of a butterfly. The signals bflyadr a and

bflyadr b are the addresses of the butterfly. These signals are active once for

every two clock cycles. They are active non overlapping clock cycles. The signal

DataAddr which is the output of SMUX instruction is active for every clock cycle.

DIT FFT algorithm accesses the memory in bit reverse order, a memory, which

is initialized with bit reversed addresses is used for this purpose. AdrrRev is the

bit reverse address of the butterfly and is used as the read address for the data

memory. The input data to the FFT is represented in two memory locations for

real and imaginary parts. The real and imaginary data read from the memory

are demultiplexed by using DELAY instructions. oprA Real and oprB Real are

the real parts of the two inputs of a butterfly. The effectiveness of the LRC for

accessing a shared resource, the memory in the current example, must be noted.

In VHDL such access mechanisms are generally coded with complex state ma-

chines. The butterfly computation is composed of multiplication, addition and

subtraction instructions. The results of the butterfly computation are saved to

the memory locations where the inputs of the butterfly is read.

5.6 Viterbi Decoder

In communications, Viterbi decoding [49] is used to decode convolutionally en-

coded information. The algorithm is computed in two phases. In the first phase,

probabilities of Markov states are computed recursively in the forward direction,

i.e., in the same direction the information is encoded. At each step, the survivor

paths are stored. In the second phase, the stored paths are traversed backwards

and at each step a symbol is decoded, i.e., the most probable value of a symbol
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I1

I4 I5 I6 I7

I2 I3

I8 I9

I10

[i,i_Exit ] = 

SFOR_SMALLER(0,100,1,1)

<-[LoopStart]

[Par1] = 

MEM(0,i,par1.txt,

wa1,wd1)

[Par2] = 

MEM(0,i,par2.txt,

wa2,wd2)

[g1] = 

ADD_MM(par1,par2)

<-[par1]

[g4] = 

ADD(par2,par1)

<-[par1]

[g3] = 

SUB(par1,par2)

<-[par1]

[g2] = 

SUB(par1,par2)

<-[par1]

[s1_A] = 

ADD(s1,g1)

<-[g1]

[s1_B] = 

ADD(s2,g4)

<-[g4]

[s1(0),bit1] = 

MAX(s1_A,0,s1_B,1)

<-[s1_A,LoopStart]

I11 I2

I13

[s16_A] = 

ADD(s15,g3)

<-[g3]

[s16_B] = 

ADD(s16,g2)

<-[g2]

[s16(-128),bit16] = 

MAX(s16_A,0,s16_B,1)

<-[s16_A,LoopStart]

bit1
bit16

State 1 Computations State 16 Computations

s0 s16

Figure 5.6: LRC code and CDFG of Viterbi Decoder

is decided.

The Viterbi algorithm given in this section is for a convolutional code with 16

states, i.e., the constraint length is 5 and the code rate is 1/2.

In Fig. 5.6, the forward computation phase of the algorithm is illustrated. In

this code, the frame size is 100 and the rate of the encoding is 1/2. The number

of Markov states is 16. IID parameter of the SFOR SMALLER (I1) is set to 1.

Therefore, an index value is generated for every two clock cycles. In the second

and third instructions, the two parity likelihoods are read from two memory

locations. From these likelihood values four path metrics are calculated, G0, G1,

G2, G3. These four path metrics corresponds to four combinations of the parity

bits, i.e., 00, 01, 10 and 11. Then, these path metrics are used to calculate the two

accumulating state path metrics for each state. The initial value of S0 is set to 0

and remaining states are set to −128. Here, −128 corresponds to −∞ meaning

that the probability of being in this state is almost impossible. LoopStart signal

is used to initialize the state signals. MAX finds the maximum value of its first and

third operands and puts the result on the first output. If the greater operand

is the first one, it puts the second operand on the second output, otherwise the

fourth operand is put on the second output.
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1:[i, i_Exit ] = SFOR_SMALLER( 0,100,1,1)<-[LoopStart]

2:[Sys] = MEM(0,i,r_sys.txt,0,0)<-[]

3:[Par] = MEM(0,i,r_par.txt,0,0)<-[]

4:[G0] = ADD\_MM(Par,Sys)<-[Sys]

5:[G1] = SUB (Par,Sys)<-[Sys]

6:[G2] = SUB (Sys,Par)<-[Sys]

7:[G3] = ADD (Sys,Par)<-[Sys]

8:[s0_metric_0] = ADD(S0,G0)<-[G0]

9:[s0_metric_1] = ADD(S1,G1)<-[G1]

10:[s1_metric_0] = ADD(S2,G0)<-[G0]

11:[s1_metric_1] = ADD(S3,G1)<-[G1]

12:[s2_metric_0] = ADD(S0,G3)<-[G3]

13:[s2_metric_1] = ADD(S1,G2)<-[G2]

14:[s3_metric_0] = ADD(S2,G3)<-[G3]

15:[s3_metric_1] = ADD(S3,G2)<-[G2]

16:[S0(0),bit0] = MAX(s0_metric_0,0,s0_metric_1,1)

<-[s0_metric_0,LoopStart]

17:[S1(-128),bit1] = MAX(s1_metric_0,0,s1_metric_1,1)

<-[s1_metric_0,LoopStart]

18:[S2(-128),bit2] = MAX(s2_metric_0,0,s2_metric_1,1)

<-[s2_metric_0,LoopStart]

19:[S3(-128),bit3] = MAX(s3_metric_0,0,s3_metric_1,1)

<-[s3_metric_0,LoopStart]

Program 14: Forward Recursion of the Viterbi Algorithm
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I1

I8

[iter, iter_Exit ] = 

FOR_SMALLER( 0,10,1)

<-[LoopStart,SISO_Exit(1)]

[Par1] = 

MEM(0,k_m,par1.txt,

wa1,wd1)

[Par2] = 

MEM(0,k_m,par2.txt,

wa2,wd2)
I7

I2
[SISO, SISO_Exit ] = 

FOR_SMALLER( 0,2,1)<-

[iter,m_Exit(14)]

I3

[k, k_Exit ] = 

SFOR_SMALLER( 0,100,1,1)

<-[SISO]

I4

[m, m_Exit ] =

SFOR_BIGGER( 99,-1,-1,1)<-

[k_Exit(11)]

m_Exit

k_Exit

I5
[k_m] = 

SMUX(k,m)

[interleaver] = 

MEM(0,k_m,intl.txt,

wa1,wd1)
I6

[0,addr] =

EQUAL(SISO,0,k_m(1),interleaver)

<-[k_m(1)]

I9

I10 I11 I12

[syst  ] = 

MEM(0,addr,syst.txt,

wa3,wd3)

[extr] = 

MEM(0,addr,0,

wr_extr,Le2)

[0,par ] = 

EQUAL(SISO,1,par2(1),

par1(1))<-[par1(1)]

Forward Recursion 

Instructions

Backward Recursion 

Instructions

k

m

LoopStart

Delay 

Element

Figure 5.7: LRC code and CDFG of UMTS Turbo Decoder

The backward computation of the algorithm is simpler than the forward phase.

Starting from the most probable state, the algorithm decodes a bit for every 3

clock cycles. At each step the most probable state is decided from the surviving

path and the previous most probable state. The forward and backward compu-

tation phases are pipelined, therefore on the average 1/3 bits are decoded at a

clock cycle.

5.7 UMTS Turbo Decoder

Turbo codes [50] are widely used in telecommunications standards as in

UMTS [51] for forward error correction. The basic difference between UMTS [51]

and CCSDC [52] Turbo codes in terms of implementation is the number of states
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in the codes. The UMTS code uses an 8-state encoder, whereas CCSDC uses a

16-state encoder. The complexity of the decoder algorithm almost doubles when

the number of states double. These two algorithms can be easily coded in LRC

and mapped to the BilRC. Only the UMTS Turbo decoder will be considered,

since the basic computation mechanism is the same. In Chapter 6, results will be

provided for both decoders. A Turbo decoder requires an iterative decoding al-

gorithm in which two soft-in-soft-output (SISO) decoders exchange information.

The first SISO corresponds to the convolutional encoder that encodes the data

in the normal order, and the second one corresponds to the encoder that encodes

the data in an interleaved order. The operations performed in these two decoders

are the same. Therefore, only a single decoder, which serves as both the first

SISO and the second SISO sequentially, is implemented in LRC. Inside a SISO

decoder, a forward recursion is performed first. At each step the probabilities

of states are stored in memories and then a backward recursion is performed.

During the backward recursion, the probabilities of states computed in forward

recursion and the current backward state probabilities are used to compute a new

likelihood ratio for the symbol to be decoded [53].

Fig. 5.7 illustrates the CDFG and LRC of a Turbo decoder. The first loop

instruction (I1) is used to count the iterations, which starts from 0 and end at 9.

The second loop (I2) counts SISOs. When SISO is 0, the instructions inside the

loop body correspond to the first SISO in the algorithm. When it is 1, it behaves

as the second SISO. The third loop instruction (I3) ,whose output is k, is used

for forward recursion, and the loop instruction (I4), whose output is m, is used for

backward recursion. The forward recursion and backward recursion instructions

read the input data from the same memory. Hence, k and m are multiplexed with

the SMUX instruction. k and m can not be active at the same time, since the loop

for m starts after the loop for k exits. The input likelihoods are stored in three

arrays, syst, par1 and par2 corresponding to the systematic, the parity of first

encoder and the parity of second encoder, respectively. extr is for the extrinsic

information memory. The first SISO uses par1 as the parity likelihood, and the

second SISO uses par2. The EQUAL instruction (I12) corresponding to par selects

either par1 or par2 depending on the value of SISO. The arrays for syst and extr
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must be accessed in the normal order for the first SISO and in the interleaved

order for the second SISO. The read address of the memory, inter index, is set

to k m(2) when SISO is 0 and interleaver when SISO is 1 by using an EQUAL

instruction (I9), where interleaver is the interleaved address that is read from

a memory.

[iter,iter_Exit]=FOR_SMALLER(0,20,1)<-[delay_out,SISO_Exit(1)]

[SISO,SISO_Exit]=FOR_SMALLER(0,2,1)<-[iter,m_Exit(14)]

[k, k_Exit ] = SFOR_SMALLER( 0,100,1,1)<-[SISO]

[k_m,0] = SMUX(k,m)<-[]

[par1] = MEM(0,k_m,rx_par1.txt,0,0)<-[]

[par2] = MEM(0,k_m,rx_par2.txt,0,0)<-[]

[interleaver]=MEM(0,k_m,interleaver.txt,0,0)<-[]

[0,inter_index]=EQUAL(SISO,0,k_m(2),interleaver(1))

<-[k_m(2)]

[syst ] = MEM(0,inter_index,rx_sys.txt,0,0)<-[]

[extr ] = MEM(0,inter_index,0,wr_extr,Le2)<-[]

[0,par ] = EQUAL(SISO,1,par2(2),par1(2))<-[par1(2)]

...

#Forward Recursion Instructions

[m, m_Exit]=SFOR_BIGGER(99,-1,-1,1)<-[k_Exit(11)]

...

#Backward Recursion Instructions

Program 15: UMTS Turbo Decoder
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Chapter 6

Results

6.1 Physical Implementation

We utilized Cadence RTL Compiler for logical synthesis and Cadence Encounter

for layout generation. Faraday library1 for 90nm UMC CMOS process technology

was used for standard cells. Behavioral and gate-level simulations were performed

on Cadence NC-VHDL and NC-Verilog. The steps taken in physical implemen-

tation were similar to standard ASIC implementation steps. Since BilRC has a

programmable segmented-interconnect architecture, it is not possible to directly

synthesize the top-level BilRC HDL code. The Cadence synthesis tool can find

and optimize the critical path. Since the configuration for BilRC is unknown to

the tool, it can not determine the critical path. Therefore, PEs are synthesized

individually by applying two timing constraints. The combinational path delay

constraint (THOP ) is applied in order to determine the time delay to traverse a

PE. The clock constraint is applied in order to determine the path between any

PE input and the register output of the PC. The plain clock constraint is used

to determine the longest delay path between two registers. Since the input of PE

is not registered, this condition is specified to the tool with -input switch [54].

Table 6.1 shows the timing results achieved at +25◦C.

1http://www.faraday-tech.com/index.html
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Table 6.1: Timing Performance of PEs
Timing Constraint ALU MUL MEM

THOP (ns) 0.188 0.188 0.188
TPE(ns) 1.47 1.43 1.00

Table 6.2: Areas of PEs with 90nm UMC process
ALU MUL MEM

# of cells 9823 9322 4525
Height (µ) 300 300 300
Width (µ) 240 240 400
Area (mm2) 0.072 0.072 0.12

Layout Utilization 87 85 87

Table 6.2 shows the silicon area for PEs. The area of a PE contains both

the area of the PC and the area of the PRBs. The area of the PRBs, is about

0.03mm2. 42% of the PE area is used for PRBs in ALU and MUL and 25% for

MEM. PEs were first synthesized with the Cadence RTL compiler and then placed

and routed with the Cadence Encounter tool. The last row in Table 6.2 shows

the percentage utilization of the rectangular area of the layout. The heights of

PEs are chosen to be the same value: 300µm. However the widths are variable.

Since PEs can be connected by abutment to neighboring PEs, no further area is

required for interconnections. The area value for MEM contains both the area of

the logic cells and the area of SRAM.

6.2 Comparison to TI C64+ DSP

Table 6.3 depicts the cycle count performance of all algorithms mapped to BilRC.

The area results and the utilization of the PEs are shown in Table 6.4. The

achieved clock frequencies for the applications are listed in Table 6.6. When

mapping applications to BilRC, the minimum rectangular area containing a suf-

ficient number of PEs is selected. Table 6.3 shows the cycle count performance of

the applications mapped on BilRC and a TI C64+ 8 issue VLIW processor. BilRC

always outperforms TI C64+ DSP. The improvements are due to adjustable par-

allelism in BilRC, whereas in TI C64+ the maximum number of instructions that
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Table 6.3: Cycle count performance of benchmarks
Application Notes BilRC Cy-

cle Count
TI C64+
Cycle
Count

Ratio

2D-IDCT 100 Frames [48] 931 9262 9.95
maxval Array size [48] 128 22 42 1.91
dotprod Dot product, arrays

size 256 [48]
41 79 1.93

maxidx Index of maximum,
array size 128 [48]

22 82 3.73

FIR 32-tap FIR filter, data
size 256 [48]

266 2065 8.07

vecsum Vector addition, size
256 [48]

36 106 2.94

FIR Complex 16-tap Complex FIR
Filter, data size
256 [48]

266 4112 15.5

16-State Viterbi Information of size
100

513 NA NA

8-State Turbo Chapter 5.7 8590 NA NA
FFT Radix-2, 1024 Point 10351 NA NA

Multirate FIR Rate 2, 16-tap FIR fil-
ter

1032 NA NA

Multichannel FIR 2 channel 16-tap FIR
filter

2057 NA NA
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can be executed in a single clock cycle is limited. For example, the UMTS Turbo

decoder and 2D-IDCT implementations on BilRC have average instruction per

cycle (IPC) values of about 30 and 128, respectively [2]. For TI’s 8-issue VLIW

processor, the maximum IPC is 8.

Further improvements are possible. For example, the performance of the

maxval and dotprod algorithms can be doubled by storing the arrays in 16 mem-

ory blocks and processing accordingly. The performances for the TI C64+ im-

plementations are obtained by coding these algorithms in the assembly language.

Obtaining these performances is quite difficult and requires considerable expertise

in the specific assembly language for the targeted VLIW processor. Table 6.4 and

Table 6.6 show the area and timing results for BilRC. Although TMS320C64 has

a faster clock of 1000 MHz, BilRC provides better throughput results (except for

the maxval and dotprod algorithms). The TMS320C64’s processor core area is

reported to be 2mm2 [22], while the whole chip area, including two level caches

and peripherals, is 20mm2. As is clear from Table 6.7, all of the applications

mapped on BilRC requires an area of less than 20mm2 (except the FIR Complex

algorithm). If the primary concern in regard to implementing an application is

the area, the parallelism degree can be decreased to fit the given area. For ex-

ample, the area of the FIR Complex can be reduced to a quarter of the value

indicated by performing complex multiplication operations in the algorithm se-

quentially. BilRC and its computation model allow the designer to balance the

area and performance.

6.3 Comparison to Xilinx Virtex-4 FPGA

One of the main advantages of CGRA as compared to FPGAs is the reduction

in the configuration size. This reduction allows CGRA to be configured at run

time. For a comparison of configuration size, Xilinx Virtex4 FPGA is used. This

FPGA is partitioned into four rows. Inside a row, 16 configurable logic blocks

(CLB) form a column. Similarly, there are four BRAMs and eight DSP48 blocks

in a column. The resources forming a column are configured together. Table 6.5
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shows the number of frames required to configure different column types [55]. A

configuration frame is composed of 1312 bits. For CLB and DSP48 (the multiplier

block), the configuration stream configures both the functionality of the blocks

in the column and the interconnection network. The configuration stream for

BRAM initialization and interconnect is separately provided [55].

To make a fair configuration size comparison, only the required number of

configuration columns should be taken into account. This is done by using the

Xilinx PlanAhead tool which allows all resources (CLB, DSP48, BRAM) to be

placed and routed within a partition block (PBlock). When drawing a PBlock, the

height must be at a row boundary since the resources in a column are configured

together. The width of the PBlock, on the other hand, must be selected so that

enough resources exist in the PBlock.

HDL code generated from the LRC-HDL converter is used as the input to

the Xilinx ISE tool. When mapping the applications to the FPGA, the locations

of the PBlocks are manually selected to increase the utilization of resources to

reduce configuration size. When mapping the applications to BilRC, a minimum-

sized rectangle, starting from the top-left PE, is formed containing sufficient

resources (ALU, MEM, MUL). The BilRC placement and routing tool places

PEs in the selected rectangle. Only the interconnect resources within the selected

rectangle area are used for signal routing. The tool is forced to use only three

ports per PE side (Np = 3), and all applications are routed without congestion.

Although three ports are enough for the selected applications, all performance

results (configuration size, area and timing) are given for Np = 4, leaving extra

flexibility for more complex applications. The results are summarized in Table 6.4.

For example, the FFT algorithm requires 39 PEs arranged in nine rows and five

columns with an utilization ratio of 87% and it can be configured with just 8016

bits2. To implement the same algorithm, Virtex4 requires 8 CLBs, 2 DSP and

2 BRAM columns configured with 338,496 bits. Utilizations of various logic

resources are shown in the ninth column of the table. The last column lists the

improvements in the configuration size varying from 17.6× to 47.2×.

2This number includes the configuration bits for unused PEs.
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Table 6.5: Configuration Frames for FPGA Resources
Column
Type

CLB BRAM
inter-
connect

BRAM
content

DSP48

# of
frames

22 20 64 21

CGRAs are expected to provide better timing performance as compared to

FPGAs. The arithmetic units of a CGRA are pre-placed and routed, whereas in

an FPGA, these units are formed from LUTs. The critical path for an instruc-

tion in a CGRA is formed from gates that are, in general, faster than LUTs.

In [56] the gap between FPGA and ASIC implementations are measured, it is

found that ASICs are on the average three times faster than FPGA implementa-

tions. This value is found by allowing the use of the hard blocks (multiplier and

memory) during algorithm mapping to an FPGA. Since CGRAs cannot be faster

than ASICs, a well-designed CGRA is at best three times faster than an FPGA.

Table 6.6 shows the critical path delays of BilRC and Xilinx Virtex4 implemented

with the same 90nm CMOS technology. The second column shows the worst case

hop count between a source PE and a destination PE. The critical path of PEs

is taken as 1.47ns, which is the worst performance among PEs. Improvements in

the range of 1.53× and 3.6× are obtained.

6.4 Comparison to other CGRAs

The 2D-IDCT algorithm has been implemented on many CGRAs. The results

are shown in Table 6.7. In terms of cycle count, BilRC is 3.2 times faster than the

fastest CGRA, ADRES [22]. In terms of throughput, BilRC is 2.2 times faster

than ADRES. The maximum clock frequency of BilRC for IDCT algorithm is

found to be 415 MHz. ADRES and MORA work at a constant frequency of

600 and 1000 MHz respectively. The timing result of MorphoSys is not available

for 90nm technology, and its area result is scaled to 90nm in the table. The

lower operating frequency of BilRC is due to its segmented interconnect network.

BilRC uses a larger silicon area for implementing the IDCT algorithm, mainly
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Table 6.6: Critical Path Comparison of BilRC and FPGA
Application # of Hops BilRC

Clock
(MHz)

Virtex4
Clock
(MHz)

Speedup

idct 5 415 147 2.82
maxval 4 450 251 1.79
dotprod 4 450 125 3.6
maxidx 4 450 244 1.84
FIR 3 492 174 2.82

vecsum 4 450 247 1.82
FIR Complex 4 450 145 3.1

16-State Viterbi 5 415 204 2.03
8-State Turbo 6 385 251 1.53

FFT 3 492 147 3.34
Multirate FIR 3 492 152 3.23

Multichannel FIR 3 492 167 2.94

Arithmetic Mean 2.57

Table 6.7: Area, Timing and Cycle Count Results for the 2D-IDCT Algorithm
CGRA # of PEs Area

(mm2)
Granu-
larity

Average
Cycle
Count

Clock
Freq.
(MHz)

Throughput
(Million
IDCT/sec)

BilRC 152 11.90 16-bit 9.3 415 44.6
ADRES 64 4 32-bit 30 600 20
MORA 22 1.749 8-bit 108 1000 10.2

MorphoSys 64 11.11 16-bit 37 NA NA
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Table 6.8: IPC and Scheduling Density Comparison
FFT IDCT

IPC SD IPC SD
BilRC 17.8 54% 128 85%

ADRES[18] 23.3 37% 31(V),42(H) 45%(V),47%(H)
ADRES[58] 10.4 65% NA NA
ADRES[59] 12.4 78% 13.3 83%

due to its flexible segmented interconnect architecture which is crucial for the

high performance implementation of a broad range of applications. The area

result for MorphoSys includes the area for a small RISC processor and some

other peripherals. It was reported that more than 80% of the whole chip area

was used for the reconfigurable arrays [57]. The area result for ADRES includes

the area of the VLIW processor as well.

BilRC does not require an external processor for loop control or execution

control, however an external processor can be attached to BilRC for the execution

of sequential code for initializations and parameter loading.

ADRES processor is a mature CGRA. ADRES has the significant advantage

of mapping full applications from the C language, a property that BilRC does

not yet have.

In BilRC, PEs are statically configured, whereas the reported CGRAs rely

on dynamic reconfiguration. In general, dynamically reconfigurable CGRAs are

expected to provide better PE utilization. However, due to its execution-triggered

computation model and flexible interconnect architecture, BilRC provides better

or comparable PE utilization. For example, BilRC requires 152 PEs for the IDCT

algorithm with an average IPC (instruction per cycle) of about 128 [2]. Therefore,

the scheduling density is about 85%, whereas ADRES [18] has scheduling densities

(SD) of 45% for the vertical phase of IDCT (V) and 66% for the horizontal phase

of IDCT (H). Table 6.8 compares BilRC with 3 ADRES implementations.
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Chapter 7

Conclusion

We have presented BilRC and its LRC language, capable of implementing state

of the art algorithms with very good performance in speed, area utilization, and

configuration size. BilRC contains three different kinds of PEs. Using 90nm

technology, 14 16-bit PEs can fit into 1mm2 of silicon. The total number of PEs

is equal to the number of instructions in LRC code. The FFT algorithm can be

implemented with just 39 instructions.

The reduction in configuration size is possible mainly for two reasons. First,

17-bit signals are routed together in BilRC, whereas in an FPGA each bit is

individually routed. Second, the functionality of a PE is selected with an 8-bit

opcode, whereas in an FPGA functionality is programmed by filling in several

look-up-tables (LUT). The configuration size, area and timing performance can

be further improved by optimizing the interconnect architecture.

BilRC can be used as an accelerator attached to a DSP processor for appli-

cations requiring high computation power. Due to the run-time configurability

of BilRC, several applications can be run in a time-multiplexed manner. BilRC

may also be used as an alternative to FPGAs, especially for applications having

word level granularity. Almost all telecommunications and signal processing algo-

rithms have word-level granularity. The main advantages of BilRC as compared

to FPGAs are run-time configurability due to reduced configuration size, reduced
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compilation time and faster frequency of operation.
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Appendix A

Acronyms

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction-set Processors

ALU Arithmetic Logic Unit

BRAM Block Random Access Memory

BilRC Bilkent Reconfigurable Computer

CDFG Control Data Flow Graphs

CGRA Coarse Grained Reconfigurable Architecture

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CR Configuration Register

DCT Discrete Cosine Transform

DSP Digital Signal Processor

EE Execute Enable
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FIR Finite Impulse Response

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IDCT Inverse Discrete Cosine Transform

IPC Instruction Per Cycle

LDPC Low Density Parity Check

LRC a Language for Reconfigurable Computing

LTE Long Term Evolution

MemID Memory Identification

p2p Point to Point

PC Processing Core

PE Processing Element

PRB Port Route Box

RA Reconfigurable Architectures

RAM Random Access Memory

RC Reconfigurable Computer

RISC Reduced Instruction Set Computer

SRAM Static Random Access Memory

VCD Value Change Dump

VLIW Very Long Instruction Word

WIMAX Worldwide Interoperability for Microwave Access
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Appendix B

Instruction Set Of BilRC

B.1 ABS

Syntax: [result(init)]=ABS(A)<-[EE,init EE]

Description:Calculates the absolute value of A when EE is active. The output

variable result is assigned to init when init EE is active.

B.2 ADD

Syntax: [result(init),carry]=ADD(A,B)<-[EE,init EE]

Description:Calculates the sum of two operands A and B when EE is active. The

output variable result is assigned to init when init EE is active.

B.3 ADD MM

Syntax: [result(init),carry]=ADD MM(A,B)<-[EE,init EE]

Description: Sign inverts A and B and then calculates the sum of -A and -B when

EE is active. The output variable result is assigned to init when init EE is
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active.

B.4 ADD C

Syntax: [result(init),carry]=ADD(A,B,carry in)<-[EE,init EE]

Description:Calculates the sum of three operands A, B and carry in when EE is

active. It must be noted that only the least significant bit of the carry in is taken

into account. The output variable result is assigned to init when init EE is

active.

B.5 AND

Syntax: [result(init)]=AND(A,B)<-[EE,init EE]

Description:Calculates the logical AND of two operands A and B when EE is active.

The output variable result is assigned to init when init EE is active.

B.6 BIGGER

Syntax: [result(init),cond result]=BIGGER(A,B,C,D)<-[EE,init EE]

Description: The instruction is executed only when EE is active. result is as-

signed to C if A>B otherwise it is assigned to D. cond result is assigned to C only

if A>B. The Execute Enable part of cond result is activated only if A>B. The

output variable result is assigned to init when init EE is active.

B.7 DELAY

Syntax: [result(init)]=DELAY(A)<-[EE,init EE]

Description: result is assigned to A when EE is active. The output variable
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result is assigned to init when init EE is active.

B.8 EQUAL

Syntax: [result(init),cond result]=EQUAL(A,B,C,D)<-[EE,init EE]

Description: The instruction is executed only when EE is active. result is as-

signed to C if A is equal to B otherwise it is assigned to D. cond result is assigned

to C only if A is equal to B. The Execute Enable part of cond result is activated

only if A is equal to B. The output variable result is assigned to init when

init EE is active.

B.9 FOR BIGGER

Syntax: [i,i Exit]=FOR BIGGER(Start,Final,Incr)<-[LoopStart,Next]

Description: It corresponds to the for loop in C language with syntax

for(i=Start,i>Final,i=i+Incr). Detailed explanation can be found in Chap-

ter 3.3.1

B.10 FOR SMALLER

Syntax: [i,i Exit]=FOR SMALLER(Start,Final,Incr)<-[LoopStart,Next]

Description: It corresponds to the for loop in C language with syntax

for(i=Start,i<Final,i=i+Incr). Detailed explanation can be found in Chap-

ter 3.3.1
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B.11 MAX

Syntax: [result(init),IndexOut]=MAX(A,IndexA,B,IndexB)<-[EE,init EE]

Description: result is assigned to maximum of A and B when EE is active. The

second output IndexOut is assigned IndexA if A is the maximum, otherwise it

is assigned to B. The first output result is initialized to init when init EE is

active.

B.12 MAX

Syntax: [result(init),IndexOut]=MAX(A,IndexA,B,IndexB)<-[EE,init EE]

Description: result is assigned to maximum of A and B when EE is active. The

second output IndexOut is assigned IndexA if A is the maximum, otherwise it

is assigned to B. The first output result is initialized to init when init EE is

active.

B.13 MERGE

Syntax: [result(init)]=MERGE(BitWidth,A,B,C,D)<-[EE,init EE]

Description: Below description is in VHDL notation. It is assumed that all signals

are of type STD LOGIC VECTOR.

if BitWidth=x"0000" then

result(3 downto 0)<=A(0)&B(0)&C(0)&D(0);

elsif BitWidth=x"0001" then

result(7 downto 0)<= A(1 downto 0)

&B(1 downto 0)

&C(1 downto 0)

&D(1 downto 0);

elsif BitWidth=x"0002" then
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result(15 downto 0)<=A(3 downto 0)

&B(3 downto 0)

&C(3 downto 0)

&D(3 downto 0);

elsif BitWidth=x"0003" then

result(15 downto 0)<=A(7 downto 0)

&B(7 downto 0);

end if;

B.14 MUL SHIFT

Syntax: [result lsb(init),result msb]=MUL SHIFT(A,B,C)<-[EE,init EE]

Description: A and B multiplied and the result is shifted to the right by C and

then the 16 least significant bits of the result is assigned to result lsb and 16

most significant bits are assigned to result msb.

B.15 MULTIPLEX

Syntax: [result(init)]=MULTIPLEX(sel,A,B,C,D)<-[EE,init EE]

Description: result is assigned to A, B, C or D if sel is 0, 1, 2 or 3, respectively.

The instruction is executed only when EE is active. result is initialized to init

when init EE is active.

B.16 NOT

Syntax: [result(init)]=NOT(A)<-[EE,init EE]

Description: result is assigned to logical complement of A when EE is active.

The output variable result is assigned to init when init EE is active.
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B.17 NOT EQUAL

Syntax: [result(init),cond result]=NOT EQUAL(A,B,C,D)<-[EE,init EE]

Description: The instruction is executed only when EE is active. result is as-

signed to C if A is not equal to B otherwise it is assigned to D. cond result is

assigned to C only if A is not equal to B. The Execute Enable part of cond result

is activated only if A is not equal to B. The output variable result is assigned to

init when init EE is active.

B.18 OR

Syntax: [result(init)]=OR(A,B)<-[EE,init EE]

Description:Calculates the logical OR of two operands A and B when EE is active.

The output variable result is assigned to init when init EE is active.

B.19 SAT

Syntax: [result(init)]=SAT(A,B,C)<-[EE,init EE]

Description:result is assigned to A, if A is greater than B and smaller than C. If

A is greater than C, it is assigned to C, i.e., saturated to C. If A is smaller than

B, it is assigned to B. The instruction is executed only when EE is active. The

output variable result is assigned to init when init EE is active.

B.20 SMUX

Syntax: [result]=SMUX(A,B,C,D)<-[]

Description:result is assigned to one of the operands with active Execute Enable

part. A has the highest priority while D has the lowest. If more than one operand

is active in a cycle, the operand with higher priority is assigned to result.
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B.21 SFOR BIGGER

Syntax: [i,i Exit]=SFOR BIGGER(Start,Final,Incr,IID)<-[LoopStart]

Description: It corresponds to the for loop in C language with syntax

for(i=Start,i>Final,i=i+Incr). Detailed explanation can be found in Chap-

ter 3.3.1

B.22 SFOR SMALLER

Syntax: [i,i Exit]=SFOR SMALLER(Start,Final,Incr,IID)<-[LoopStart]

Description: It corresponds to the for loop in C language with syntax

for(i=Start,i<Final,i=i+Incr). Detailed explanation can be found in Chap-

ter 3.3.1

B.23 SHL AND

Syntax: [result(init)]=SHL AND(A,B,C)<-[EE,init EE]

Description:A is shifted to the left by B and logically ANDed with C. The in-

struction is executed only when EE is active. result is initialized to init when

init EE is active.

B.24 SHL OR

Syntax: [result(init)]=SHL OR(A,B,C)<-[EE,init EE]

Description:A is shifted to the left by B and logically ORed with C. The instruction

is executed only when EE is active. result is initialized to init when init EE

is active.
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B.25 SHR AND

Syntax: [result(init)]=SHR AND(A,B,C)<-[EE,init EE]

Description:A is shifted to the right by B and logically ANDed with C. The

instruction is executed only when EE is active. result is initialized to init when

init EE is active.

B.26 SHR OR

Syntax: [result(init)]=SHR OR(A,B,C)<-[EE,init EE]

Description:A is shifted to the right by B and logically ORed with C. The in-

struction is executed only when EE is active. result is initialized to init when

init EE is active.

B.27 SMALLER

Syntax: [result(init),cond result]=SMALLER(A,B,C,D)<-[EE,init EE]

Description: The instruction is executed only when EE is active. result is as-

signed to C if A<B otherwise it is assigned to D. cond result is assigned to C only

if A<B. The Execute Enable part of cond result is activated only if A<B. The

output variable result is assigned to init when init EE is active.

B.28 SUB

Syntax: [result(init),carry]=SUB(A,B)<-[EE,init EE]

Description:Calculates the difference of two operands A and B when EE is active.

The output variable result is assigned to init when init EE is active.
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B.29 XOR

Syntax: [result(init)]=XOR(A,B)<-[EE,init EE]

Description:Calculates the logical XOR of two operands A and B when EE is active.

The output variable result is assigned to init when init EE is active.
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Appendix C

LRC code of the Algorithms

C.1 2D IDCT Algorithm

#################################################################

# C code reference of the algorithm can be found in

# http://focus.ti.com/en/download/dsp/c64plusbmarksasmfiles.zip

#################################################################

%PI:INPUT

%ver_f0s:OUTPUT

%ver_f1s:OUTPUT

%ver_f2s:OUTPUT

%ver_f3s:OUTPUT

%ver_f4s:OUTPUT

%ver_f5s:OUTPUT

%ver_f6s:OUTPUT

%ver_f7s:OUTPUT

#Primary Input(PI) pulse to initiate execution

[delay_out, 0 ]=DELAY(PI)<-[PI]

#There are 100 frames each of which is 8x8 blocks.

[frame_cnt, frame_Exit ] = SFOR_SMALLER( 0,100,1,8)<-[delay_out]

#The loop below is for horizontal line counting

[hor_line_cnt,hor_line_Exit]=SFOR_SMALLER(0,8,1,0)<-[frame_cnt]

#the memory address is calculated from frame counter and

#horizontal line counter

[hor_line_adres]=SHL_OR(frame_cnt,3,hor_line_cnt)<-[hor_line_cnt]

#8 input data are read from the memory

[data_1] = MEM(0,hor_line_adres(2),data_1,0,0)<-[]#1

[data_2] = MEM(0,hor_line_adres(2),data_2,0,0)<-[]

[data_3] = MEM(0,hor_line_adres(2),data_3,0,0)<-[]

[data_4] = MEM(0,hor_line_adres(2),data_4,0,0)<-[]
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[data_5] = MEM(0,hor_line_adres(2),data_5,0,0)<-[]

[data_6] = MEM(0,hor_line_adres(2),data_6,0,0)<-[]

[data_7] = MEM(0,hor_line_adres(2),data_7,0,0)<-[]

[data_8] = MEM(0,hor_line_adres(2),data_8,0,0)<-[]

#[16384 4520 8867 12873 16384 19266 21407 22725]

# C_set1=[C4 C7 C6 C5 C4 C3 C2 C1];

[mul_1_0] = MUL_SHIFT(data_1,16384,15)<-[data_1]#2

[mul_1_1] = MUL_SHIFT(data_2,4520,15) <-[data_2]

[mul_1_2] = MUL_SHIFT(data_3,8867,15) <-[data_3]

[mul_1_3] = MUL_SHIFT(data_4,12873,15)<-[data_4]

[mul_1_4] = MUL_SHIFT(data_5,16384,15)<-[data_5]

[mul_1_5] = MUL_SHIFT(data_6,19266,15)<-[data_6]

[mul_1_6] = MUL_SHIFT(data_7,21407,15)<-[data_7]

[mul_1_7] = MUL_SHIFT(data_8,22725,15)<-[data_8]

#[16384 22725 21407 19266 16384 12873 8867 4520]

#C_set2=[C4 C1 C2 C3 C4 C5 C6 C7];

[mul_2_0] = MUL_SHIFT(data_1,16384,15)<-[data_1]

[mul_2_1] = MUL_SHIFT(data_2,22725,15)<-[data_2]

[mul_2_2] = MUL_SHIFT(data_3,21407,15)<-[data_3]

[mul_2_3] = MUL_SHIFT(data_4,19266,15)<-[data_4]

[mul_2_4] = MUL_SHIFT(data_5,16384,15)<-[data_5]

[mul_2_5] = MUL_SHIFT(data_6,12873,15)<-[data_6]

[mul_2_6] = MUL_SHIFT(data_7,8867,15)<-[data_7]

[mul_2_7] = MUL_SHIFT(data_8,4520,15)<-[data_8]

[Q1] = SUB(mul_1_1, mul_1_7)<-[mul_1_7]#3

[Q0] = SUB(mul_1_5, mul_1_3)<-[mul_1_5]#3

[S0] = ADD(mul_2_5, mul_2_3)<-[mul_1_5]#3

[S1] = ADD(mul_2_1, mul_2_7)<-[mul_2_7]#3

[p0] = ADD(mul_1_0 , mul_1_4)<-[mul_1_4]#3

[p1] = SUB(mul_2_0 , mul_2_4)<-[mul_2_4]#3

[r1] = SUB(mul_1_2 , mul_1_6)<-[mul_1_6]#3

[r0] = ADD(mul_2_2 , mul_2_6)<-[mul_2_6]#3

[ss1] = ADD(S1, S0)<-[S1]#4

[qq1] = ADD(Q1, Q0)<-[Q1]#4

[ss0] = SUB(S1, S0)<-[S1]#4

[qq0] = SUB(Q1, Q0)<-[Q1]#4

[g0] = ADD(p0, r0)<-[r0]#4

[g1] = ADD(p1, r1)<-[r1]#4

[h0] = SUB(p0, r0)<-[r0]#4

[h1] = SUB(p1, r1)<-[r1]#4

[mulA]=MUL_SHIFT(ss0,23170,15)<-[ss0]#5

[mulB]=MUL_SHIFT(qq0,23170,15)<-[qq0]#5

[g3] = SUB(mulA , mulB)<-[mulA]#6

[h3] = ADD(mulA , mulB)<-[mulA]#6

[f0] = ADD(g0(2) , ss1(2))<-[ss1(2)]#7

[f7] = SUB(g0(2) , ss1(2))<-[ss1(2)]#7

[f1] = ADD(g1(2) , h3)<-[h3]#7

[f6] = SUB(g1(2) , h3)<-[h3]#7

[f2] = ADD(h1(2) , g3)<-[g3]#7

[f5] = SUB(h1(2) , g3)<-[g3]#7
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[f3] = ADD(h0(2) , qq1(2))<-[qq1(2)]#7

[f4] = SUB(h0(2) , qq1(2))<-[qq1(2)]#7

[sel10]=AND(hor_line_adres(6),3)<-[hor_line_adres(6)]#7

[sel3] =SHR_AND(hor_line_adres(7),2,1)<-[hor_line_adres(7)]#8

[reg1_wd_m1]=MULTIPLEX(sel10(2),f0(2),f1(3),f2(4),f3(5))<-[sel10(2)]

[reg1_wd_m2]=MULTIPLEX(sel10(2),f4(6),f5(7),f6(8),f7(9))<-[sel10(2)]

[reg1_wd]=MULTIPLEX(sel3(2),reg1_wd_m1,reg1_wd_m2,0,0)<-[sel3(2)]#9

[reg2_wd_m1]=MULTIPLEX(sel10(3),f0(2),f1(3),f2(4),f3(5))<-[sel10(3)]

[reg2_wd_m2]=MULTIPLEX(sel10(3),f4(6),f5(7),f6(8),f7(9))<-[sel10(3)]

[reg2_wd]=MULTIPLEX(sel3(3),reg2_wd_m1,reg2_wd_m2,0,0)<-[sel3(3)]

[reg3_wd_m1]=MULTIPLEX(sel10(4),f0(2),f1(3),f2(4),f3(5))<-[sel10(4)]

[reg3_wd_m2]=MULTIPLEX(sel10(4),f4(6),f5(7),f6(8),f7(9))<-[sel10(4)]

[reg3_wd]=MULTIPLEX(sel3(4),reg3_wd_m1,reg3_wd_m2,0,0)<-[sel3(4)]

[reg4_wd_m1]=MULTIPLEX(sel10(5),f0(2),f1(3),f2(4),f3(5))<-[sel10(5)]

[reg4_wd_m2]=MULTIPLEX(sel10(5),f4(6),f5(7),f6(8),f7(9))<-[sel10(5)]

[reg4_wd]=MULTIPLEX(sel3(5),reg4_wd_m1,reg4_wd_m2,0,0)<-[sel3(5)]

[reg5_wd_m1]=MULTIPLEX(sel10(6),f0(2),f1(3),f2(4),f3(5))<-[sel10(6)]

[reg5_wd_m2]=MULTIPLEX(sel10(6),f4(6),f5(7),f6(8),f7(9))<-[sel10(6)]

[reg5_wd]=MULTIPLEX(sel3(6),reg5_wd_m1,reg5_wd_m2,0,0)<-[sel3(6)]

[reg6_wd_m1]=MULTIPLEX(sel10(7),f0(2),f1(3),f2(4),f3(5))<-[sel10(7)]

[reg6_wd_m2]=MULTIPLEX(sel10(7),f4(6),f5(7),f6(8),f7(9))<-[sel10(7)]

[reg6_wd]=MULTIPLEX(sel3(7),reg6_wd_m1,reg6_wd_m2,0,0)<-[sel3(7)]

[reg7_wd_m1]=MULTIPLEX(sel10(8),f0(2),f1(3),f2(4),f3(5))<-[sel10(8)]

[reg7_wd_m2]=MULTIPLEX(sel10(8),f4(6),f5(7),f6(8),f7(9))<-[sel10(8)]

[reg7_wd]=MULTIPLEX(sel3(8),reg7_wd_m1,reg7_wd_m2,0,0)<-[sel3(8)]

[reg8_wd_m1]=MULTIPLEX(sel10(9),f0(2),f1(3),f2(4),f3(5))<-[sel10(9)]

[reg8_wd_m2]=MULTIPLEX(sel10(9),f4(6),f5(7),f6(8),f7(9))<-[sel10(9)]

[reg8_wd]=MULTIPLEX(sel3(9),reg8_wd_m1,reg8_wd_m2,0,0)<-[sel3(9)]

[reg1_read]=REG(ver_line_cnt(2),0,hor_line_adres(9) ,reg1_wd)<-[]

[reg2_read]=REG(ver_line_cnt(2),0,hor_line_adres(10),reg2_wd)<-[]

[reg3_read]=REG(ver_line_cnt(2),0,hor_line_adres(11),reg3_wd)<-[]

[reg4_read]=REG(ver_line_cnt(2),0,hor_line_adres(12),reg4_wd)<-[]

[reg5_read]=REG(ver_line_cnt(2),0,hor_line_adres(13),reg5_wd)<-[]

[reg6_read]=REG(ver_line_cnt(2),0,hor_line_adres(14),reg6_wd)<-[]

[reg7_read]=REG(ver_line_cnt(2),0,hor_line_adres(15),reg7_wd)<-[]

[reg8_read]=REG(ver_line_cnt(2),0,hor_line_adres(16),reg8_wd)<-[]

[ver_line_cnt,ver_line_Exit]=SFOR_SMALLER(0,8,1,0)<-[hor_line_Exit(9)]

#[16384 4520 8867 12873 16384 19266 21407 22725]

# C_set1=[C4 C7 C6 C5 C4 C3 C2 C1];

[ver_mul_1_0] = MUL_SHIFT(reg1_read,16384,15)<-[reg1_read]#2

[ver_mul_1_1] = MUL_SHIFT(reg2_read,4520,15) <-[reg2_read]

[ver_mul_1_2] = MUL_SHIFT(reg3_read,8867,15) <-[reg3_read]

[ver_mul_1_3] = MUL_SHIFT(reg4_read,12873,15)<-[reg4_read]

[ver_mul_1_4] = MUL_SHIFT(reg5_read,16384,15)<-[reg5_read]

[ver_mul_1_5] = MUL_SHIFT(reg6_read,19266,15)<-[reg6_read]

[ver_mul_1_6] = MUL_SHIFT(reg7_read,21407,15)<-[reg7_read]

[ver_mul_1_7] = MUL_SHIFT(reg8_read,22725,15)<-[reg8_read]

#[16384 22725 21407 19266 16384 12873 8867 4520]
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#C_set2=[C4 C1 C2 C3 C4 C5 C6 C7];

[ver_mul_2_0]=MUL_SHIFT(reg1_read,16384,15)<-[reg1_read]

[ver_mul_2_1]=MUL_SHIFT(reg2_read,22725,15)<-[reg2_read]

[ver_mul_2_2]=MUL_SHIFT(reg3_read,21407,15)<-[reg3_read]

[ver_mul_2_3]=MUL_SHIFT(reg4_read,19266,15)<-[reg4_read]

[ver_mul_2_4]=MUL_SHIFT(reg5_read,16384,15)<-[reg5_read]

[ver_mul_2_5]=MUL_SHIFT(reg6_read,12873,15)<-[reg6_read]

[ver_mul_2_6]=MUL_SHIFT(reg7_read,8867,15)<-[reg7_read]

[ver_mul_2_7]=MUL_SHIFT(reg8_read,4520,15)<-[reg8_read]

[ver_Q1] = SUB(ver_mul_1_1, ver_mul_1_7)<-[ver_mul_1_7]

[ver_Q0] = SUB(ver_mul_1_5, ver_mul_1_3)<-[ver_mul_1_5]

[ver_S0] = ADD(ver_mul_2_5, ver_mul_2_3)<-[ver_mul_1_5]

[ver_S1] = ADD(ver_mul_2_1, ver_mul_2_7)<-[ver_mul_2_7]

[ver_p0] = ADD(ver_mul_1_0 , ver_mul_1_4)<-[ver_mul_1_4]

[ver_p1] = SUB(ver_mul_2_0 , ver_mul_2_4)<-[ver_mul_2_4]

[ver_r1] = SUB(ver_mul_1_2 , ver_mul_1_6)<-[ver_mul_1_6]

[ver_r0] = ADD(ver_mul_2_2 , ver_mul_2_6)<-[ver_mul_2_6]

[ver_ss1] = ADD(ver_S1, ver_S0)<-[ver_S1]

[ver_qq1] = ADD(ver_Q1, ver_Q0)<-[ver_Q1]

[ver_ss0] = SUB(ver_S1, ver_S0)<-[ver_S1]

[ver_qq0] = SUB(ver_Q1, ver_Q0)<-[ver_Q1]

[ver_g0] = ADD(ver_p0, ver_r0)<-[ver_r0]

[ver_g1] = ADD(ver_p1, ver_r1)<-[ver_r1]

[ver_h0] = SUB(ver_p0, ver_r0)<-[ver_r0]

[ver_h1] = SUB(ver_p1, ver_r1)<-[ver_r1]

[ver_mulA]=MUL_SHIFT(ver_ss0,23170,15)<-[ver_ss0]

[ver_mulB]=MUL_SHIFT(ver_qq0,23170,15)<-[ver_qq0]

[ver_g3] = SUB(ver_mulA , ver_mulB)<-[ver_mulA]

[ver_h3] = ADD(ver_mulA , ver_mulB)<-[ver_mulA]

[ver_f0]=ADD(ver_g0(2) , ver_ss1(2)) <-[ver_ss1(2)]

[ver_f7]=SUB(ver_g0(2) , ver_ss1(2)) <-[ver_ss1(2)]

[ver_f1]=ADD(ver_g1(2) , ver_h3) <-[ver_h3]

[ver_f6]=SUB(ver_g1(2) , ver_h3) <-[ver_h3]

[ver_f2]=ADD(ver_h1(2) , ver_g3) <-[ver_g3]

[ver_f5]=SUB(ver_h1(2) , ver_g3) <-[ver_g3]

[ver_f3]=ADD(ver_h0(2) , ver_qq1(2))<-[ver_qq1(2)]

[ver_f4]=SUB(ver_h0(2) , ver_qq1(2))<-[ver_qq1(2)]

[ver_f0r1] = ADD(ver_f0,ver_f0)<-[ver_f0]

[ver_f1r1] = ADD(ver_f1,ver_f1)<-[ver_f1]

[ver_f2r1] = ADD(ver_f2,ver_f2)<-[ver_f2]

[ver_f3r1] = ADD(ver_f3,ver_f3)<-[ver_f3]

[ver_f4r1] = ADD(ver_f4,ver_f4)<-[ver_f4]

[ver_f5r1] = ADD(ver_f5,ver_f5)<-[ver_f5]

[ver_f6r1] = ADD(ver_f6,ver_f6)<-[ver_f6]

[ver_f7r1] = ADD(ver_f7,ver_f7)<-[ver_f7]

[ver_f0r2] = ADD(ver_f0r1,31)<-[ver_f0r1]
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[ver_f1r2] = ADD(ver_f1r1,31)<-[ver_f1r1]

[ver_f2r2] = ADD(ver_f2r1,31)<-[ver_f2r1]

[ver_f3r2] = ADD(ver_f3r1,31)<-[ver_f3r1]

[ver_f4r2] = ADD(ver_f4r1,31)<-[ver_f4r1]

[ver_f5r2] = ADD(ver_f5r1,31)<-[ver_f5r1]

[ver_f6r2] = ADD(ver_f6r1,31)<-[ver_f6r1]

[ver_f7r2] = ADD(ver_f7r1,31)<-[ver_f7r1]

[ver_f0s]=SAT(ver_f0r2,-16384,16383)<-[ver_f0r2];

[ver_f1s]=SAT(ver_f1r2,-16384,16383)<-[ver_f1r2];

[ver_f2s]=SAT(ver_f2r2,-16384,16383)<-[ver_f2r2];

[ver_f3s]=SAT(ver_f3r2,-16384,16383)<-[ver_f3r2];

[ver_f4s]=SAT(ver_f4r2,-16384,16383)<-[ver_f4r2];

[ver_f5s]=SAT(ver_f5r2,-16384,16383)<-[ver_f5r2];

[ver_f6s]=SAT(ver_f6r2,-16384,16383)<-[ver_f6r2];

[ver_f7s]=SAT(ver_f7r2,-16384,16383)<-[ver_f7r2];

C.2 Maxval Algorithm

#################################################################

# C code reference of the algorithm can be found in

# http://focus.ti.com/en/download/dsp/c64plusbmarksasmfiles.zip

#################################################################

#IO Connections

%PI:INPUT

%max_result :OUTPUT

#PI is the Primary Input pulse to initiate execution

[LoopStart, 0 ]=DELAY(PI)<-[PI]

#FOR loop generates an index value, i, every clock cycle

[i, i_Exit] = SFOR_SMALLER( 0,16,1,0)<-[LoopStart]

#8 data are read from the memory

[d1] = MEM(0,i,aData1.txt,0,0)<-[]

[d2] = MEM(0,i,aData2.txt,0,0)<-[]

[d3] = MEM(0,i,aData3.txt,0,0)<-[]

[d4] = MEM(0,i,aData4.txt,0,0)<-[]

[d5] = MEM(0,i,aData5.txt,0,0)<-[]

[d6] = MEM(0,i,aData6.txt,0,0)<-[]

[d7] = MEM(0,i,aData7.txt,0,0)<-[]

[d8] = MEM(0,i,aData8.txt,0,0)<-[]

#Each clock cycle, the maximum value is updated

[m1(-32768)] = MAX(m1,0,d1,0)<-[d1,LoopStart(1)]

[m2(-32768)] = MAX(m2,0,d2,0)<-[d2,LoopStart(1)]

[m3(-32768)] = MAX(m3,0,d3,0)<-[d3,LoopStart(1)]

[m4(-32768)] = MAX(m4,0,d4,0)<-[d4,LoopStart(1)]

[m5(-32768)] = MAX(m5,0,d5,0)<-[d5,LoopStart(1)]

[m6(-32768)] = MAX(m6,0,d6,0)<-[d6,LoopStart(1)]

[m7(-32768)] = MAX(m7,0,d7,0)<-[d7,LoopStart(1)]
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[m8(-32768)] = MAX(m8,0,d8,0)<-[d8,LoopStart(1)]

#after the FOR loop finishes, the MAX tree below

#finds the maximum value.

[m1_2] = MAX(m1,0,m2,1)<-[i_Exit(1)]

[m3_4] = MAX(m3,2,m4,3)<-[i_Exit(1)]

[m5_6] = MAX(m5,4,m6,5)<-[i_Exit(1)]

[m7_8] = MAX(m7,6,m8,7)<-[i_Exit(1)]

[m1_4] = MAX(m1_2,0,m3_4,0)<-[m1_2]

[m5_8] = MAX(m5_6,0,m7_8,0)<-[m5_6]

[max_result] = MAX(m1_4,0,m5_8,0)<-[m1_4]

C.3 Dot Product Algorithm

#################################################################

# C code reference of the algorithm can be found in

# http://focus.ti.com/en/download/dsp/c64plusbmarksasmfiles.zip

#################################################################

#PI is the Primary Input pulse to initiate execution

[LoopStart]=DELAY(PI)<-[PI]

[i,i_Exit] = SFOR_SMALLER( 0,32,1,0)<-[LoopStart]

[a.1] = MEM(0,i(4),aData1.txt,0,0)<-[]

[a.2] = MEM(0,i(4),aData2.txt,0,0)<-[]

[a.3] = MEM(0,i(4),aData3.txt,0,0)<-[]

[a.4] = MEM(0,i(4),aData4.txt,0,0)<-[]

[a.5] = MEM(0,i(4),aData5.txt,0,0)<-[]

[a.6] = MEM(0,i(4),aData6.txt,0,0)<-[]

[a.7] = MEM(0,i(4),aData7.txt,0,0)<-[]

[a.8] = MEM(0,i(4),aData8.txt,0,0)<-[]

[b.1] = MEM(0,i(4),bData1.txt,0,0)<-[]

[b.2] = MEM(0,i(4),bData2.txt,0,0)<-[]

[b.3] = MEM(0,i(4),bData3.txt,0,0)<-[]

[b.4] = MEM(0,i(4),bData4.txt,0,0)<-[]

[b.5] = MEM(0,i(4),bData5.txt,0,0)<-[]

[b.6] = MEM(0,i(4),bData6.txt,0,0)<-[]

[b.7] = MEM(0,i(4),bData7.txt,0,0)<-[]

[b.8] = MEM(0,i(4),bData8.txt,0,0)<-[]

[c_lsb.1:8,c_msb.1:8]=MUL_SHIFT(a.1:8,b.1:8,0)<-[a.1:8];

[d_lsb.1:8(0),d_c.1:8]=ADD(d_lsb.1:8,c_lsb.1:8)<-[c_lsb.1:8,LoopStart(3)];

[d_msb.1:8(0),0]=ADDC(d_msb.1:8,c_msb.1:8(1),d_c.1:8)<-[c_lsb.1:8(1),LoopStart(4)];

[lsb_sum1_1,carry1_1] = ADD(d_lsb.1,d_lsb.2)<-[i_Exit(3)]

[lsb_sum1_2,carry1_2] = ADD(d_lsb.3,d_lsb.4)<-[i_Exit(3)]

[lsb_sum1_3,carry1_3] = ADD(d_lsb.5,d_lsb.6)<-[i_Exit(3)]

[lsb_sum1_4,carry1_4] = ADD(d_lsb.7,d_lsb.8)<-[i_Exit(3)]

[msb_sum1_1] = ADDC(d_msb.1,d_msb.2,carry1_1)<-[carry1_1]

[msb_sum1_2] = ADDC(d_msb.3,d_msb.4,carry1_2)<-[carry1_2]
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[msb_sum1_3] = ADDC(d_msb.5,d_msb.6,carry1_3)<-[carry1_3]

[msb_sum1_4] = ADDC(d_msb.7,d_msb.8,carry1_4)<-[carry1_4]

[lsb_sum2_1,carry2_1] = ADD(lsb_sum1_1,lsb_sum1_2)<-[lsb_sum1_1]

[lsb_sum2_2,carry2_2] = ADD(lsb_sum1_3,lsb_sum1_4)<-[lsb_sum1_3]

[msb_sum2_1] = ADDC(msb_sum1_1,msb_sum1_2,carry2_1)<-[carry2_1]

[msb_sum2_2] = ADDC(msb_sum1_3,msb_sum1_4,carry2_2)<-[carry2_2]

[lsb_sum3_1,carry3_1] = ADD(lsb_sum2_1,lsb_sum2_2)<-[lsb_sum2_1]

[msb_sum3_1] = ADDC(msb_sum2_1,msb_sum2_2,carry3_1)<-[carry3_1]

C.4 Maxidx Algorithm

#################################################################

# C code reference of the algorithm can be found in

# http://focus.ti.com/en/download/dsp/c64plusbmarksasmfiles.zip

#################################################################

#IO Connections

%PI:INPUT

%w_addr:INPUT

%w_d1:INPUT

%w_d2:INPUT

%w_d3:INPUT

%w_d4:INPUT

%w_d5:INPUT

%w_d6:INPUT

%w_d7:INPUT

%w_d8:INPUT

%max_index:OUTPUT

#PI is the Primary Input pulse to initiate execution

[LoopStart, 0 ]=DELAY(PI)<-[PI]

[i, i_Exit] = SFOR_SMALLER( 0,32,1,0)<-[LoopStart]

[a.1,0] = MEM(0,i(1),aData1.txt,w_addr,w_d1)<-[]

[a.2,0] = MEM(0,i(1),aData2.txt,w_addr,w_d2)<-[]

[a.3,0] = MEM(0,i(1),aData3.txt,w_addr,w_d3)<-[]

[a.4,0] = MEM(0,i(1),aData4.txt,w_addr,w_d4)<-[]

[a.5,0] = MEM(0,i(1),aData5.txt,w_addr,w_d5)<-[]

[a.6,0] = MEM(0,i(1),aData6.txt,w_addr,w_d6)<-[]

[a.7,0] = MEM(0,i(1),aData7.txt,w_addr,w_d7)<-[]

[a.8,0] = MEM(0,i(1),aData8.txt,w_addr,w_d8)<-[]

[m.1:8(-32768),index.1:8] = MAX(m.1:8,index.1:8,a.1:8,i(2))<-[a.1:8,LoopStart(2)]

[m1_2,idx1_1] = MAX(m.1,0,m.2,1)<-[i_Exit(2)]

[m3_4,idx1_2] = MAX(m.3,2,m.4,3)<-[i_Exit(2)]

[m5_6,idx1_3] = MAX(m.5,4,m.6,5)<-[i_Exit(2)]

[m7_8,idx1_4] = MAX(m.7,6,m.8,7)<-[i_Exit(2)]

[m1_4,idx2_1] = MAX(m1_2,idx1_1,m3_4,idx1_2)<-[m1_2]

[m5_8,idx2_2] = MAX(m5_6,idx1_3,m7_8,idx1_4)<-[m5_6]

[max_result,max_index] = MAX(m1_4,idx2_1,m5_8,idx2_2)<-[m1_4]
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C.5 32-Tap FIR Fiter

#PI is the Primary Input pulse to initiate execution

[LoopStart, 0 ]=DELAY(PI)<-[PI]

[i, i_Exit] = SFOR_SMALLER( 0,1024,1,0)<-[LoopStart]

[data,0] = MEM(0,i,data.txt,0,0)<-[]

#qf=[-23 -39 87 182 -348 -638 1257 4095

# 4095 1257 -638 -348 182 87 -39 -23];

#data is multiplied with the first filter coefficient

[mul0] = MUL_SHIFT(data ,-23 ,11)<-[data]

#one cycle delayed data is multiplied with

#the second filter coefficient.

[mul1] = MUL_SHIFT(data(1) ,-39 ,11)<-[data(1)]

[mul2] = MUL_SHIFT(data(2) ,87 ,11)<-[data(2)]

[mul3] = MUL_SHIFT(data(3) ,182 ,11)<-[data(3)]

[mul4] = MUL_SHIFT(data(4) ,-348,11)<-[data(4)]

[mul5] = MUL_SHIFT(data(5) ,-638,11)<-[data(5)]

[mul6] = MUL_SHIFT(data(6) ,1257,11)<-[data(6)]

[mul7] = MUL_SHIFT(data(7) ,4095,11)<-[data(7)]

[mul8] = MUL_SHIFT(data(8) ,4095,11)<-[data(8)]

[mul9] = MUL_SHIFT(data(9) ,1257,11)<-[data(9)]

[mul10] = MUL_SHIFT(data(10),-638,11)<-[data(10)]

[mul11] = MUL_SHIFT(data(11),-348,11)<-[data(11)]

[mul12] = MUL_SHIFT(data(12),182 ,11)<-[data(12)]

[mul13] = MUL_SHIFT(data(13),87 ,11)<-[data(13)]

[mul14] = MUL_SHIFT(data(14),-39 ,11)<-[data(14)]

[mul15] = MUL_SHIFT(data(15),-23 ,11)<-[data(15)]

#adder tree stage-1

[add1_0] = ADD(mul0 ,mul1)<-[mul0]

[add1_1] = ADD(mul2 ,mul3)<-[mul2]

[add1_2] = ADD(mul4 ,mul5)<-[mul4]

[add1_3] = ADD(mul6 ,mul7)<-[mul6]

[add1_4] = ADD(mul8 ,mul9)<-[mul8]

[add1_5] = ADD(mul10,mul11)<-[mul10]

[add1_6] = ADD(mul12,mul13)<-[mul12]

[add1_7] = ADD(mul14,mul15)<-[mul14]

#adder tree stage-2

[add2_0] = ADD(add1_0 ,add1_1)<-[add1_0]

[add2_1] = ADD(add1_2 ,add1_3)<-[add1_2]

[add2_2] = ADD(add1_4 ,add1_5)<-[add1_4]

[add2_3] = ADD(add1_6 ,add1_7)<-[add1_6]

#adder tree stage-3

[add3_0] = ADD(add2_0 ,add2_1)<-[add2_0]

[add3_1] = ADD(add2_2 ,add2_3)<-[add2_2]

#filter output

[filter_out] = ADD(add3_0 ,add3_1)<-[add3_0];
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C.6 Vecsum Algorithm

#################################################################

# C code reference of the algorithm can be found in

# http://focus.ti.com/en/download/dsp/c64plusbmarksasmfiles.zip

#################################################################

#IO Connections

%PI:INPUT

%r_addr:INPUT

%d_1:OUTPUT

%d_2:OUTPUT

%d_3:OUTPUT

%d_4:OUTPUT

%d_5:OUTPUT

%d_6:OUTPUT

%d_7:OUTPUT

%d_8:OUTPUT

[LoopStart, 0 ]=DELAY(PI)<-[PI]

[i, i_Exit] = SFOR_SMALLER( 0,32,1,0)<-[LoopStart]

[a.1] = MEM(0,i(1),aData1.txt,0,0)<-[]

[a.2] = MEM(0,i(1),aData2.txt,0,0)<-[]

[a.3] = MEM(0,i(1),aData3.txt,0,0)<-[]

[a.4] = MEM(0,i(1),aData4.txt,0,0)<-[]

[a.5] = MEM(0,i(1),aData5.txt,0,0)<-[]

[a.6] = MEM(0,i(1),aData6.txt,0,0)<-[]

[a.7] = MEM(0,i(1),aData7.txt,0,0)<-[]

[a.8] = MEM(0,i(1),aData8.txt,0,0)<-[]

[b.1] = MEM(0,i(1),bData1.txt,0,0)<-[]

[b.2] = MEM(0,i(1),bData2.txt,0,0)<-[]

[b.3] = MEM(0,i(1),bData3.txt,0,0)<-[]

[b.4] = MEM(0,i(1),bData4.txt,0,0)<-[]

[b.5] = MEM(0,i(1),bData5.txt,0,0)<-[]

[b.6] = MEM(0,i(1),bData6.txt,0,0)<-[]

[b.7] = MEM(0,i(1),bData7.txt,0,0)<-[]

[b.8] = MEM(0,i(1),bData8.txt,0,0)<-[]

[c.1:8] = ADD(a.1:8,b.1:8)<-[a.1:8];

#Above instruction is a vector addition

[d.1:8] = MEM(0,r_addr,0,i(3),c.1:8)<-[]

C.7 Fircplx Algoritm

#################################################################

# C code reference of the algorithm can be found in

# http://focus.ti.com/en/download/dsp/c64plusbmarksasmfiles.zip

#################################################################

[LoopStart, 0 ]=DELAY(PI)<-[PI]
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[i,i_Exit] = SFOR_SMALLER( 0,256,1,0)<-[LoopStart]

[data_r] = MEM(0,i,data_r.txt,0,0)<-[]

[data_i] = MEM(0,i,data_i.txt,0,0)<-[]

[mul_rr.1] = MUL_SHIFT(data_r ,-43 ,17)<-[data_r]

[mul_rr.2] = MUL_SHIFT(data_r(1) ,50 ,17)<-[data_r(1)]

[mul_rr.3] = MUL_SHIFT(data_r(2) ,186 ,17)<-[data_r(2)]

[mul_rr.4] = MUL_SHIFT(data_r(3) ,345 ,17)<-[data_r(3)]

[mul_rr.5] = MUL_SHIFT(data_r(4) ,417 ,17)<-[data_r(4)]

[mul_rr.6] = MUL_SHIFT(data_r(5) ,232 ,17)<-[data_r(5)]

[mul_rr.7] = MUL_SHIFT(data_r(6) ,-329 ,17)<-[data_r(6)]

[mul_rr.8] = MUL_SHIFT(data_r(7) ,-1190 ,17)<-[data_r(7)]

[mul_rr.9] = MUL_SHIFT(data_r(8) ,-1996 ,17)<-[data_r(8)]

[mul_rr.10] = MUL_SHIFT(data_r(9) ,-2168 ,17)<-[data_r(9)]

[mul_rr.11] = MUL_SHIFT(data_r(10),-1109 ,17)<-[data_r(10)]

[mul_rr.12] = MUL_SHIFT(data_r(11),1499 ,17)<-[data_r(11)]

[mul_rr.13] = MUL_SHIFT(data_r(12),5460 ,17)<-[data_r(12)]

[mul_rr.14] = MUL_SHIFT(data_r(13),10014 ,17)<-[data_r(13)]

[mul_rr.15] = MUL_SHIFT(data_r(14),14029 ,17)<-[data_r(14)]

[mul_rr.16] = MUL_SHIFT(data_r(15),16384 ,17)<-[data_r(15)]

[mul_rr.17] = MUL_SHIFT(data_r(16),16384 ,17)<-[data_r(16)]

[mul_rr.18] = MUL_SHIFT(data_r(17) ,14029,17)<-[data_r(17)]

[mul_rr.19] = MUL_SHIFT(data_r(18) ,10014,17)<-[data_r(18)]

[mul_rr.20] = MUL_SHIFT(data_r(19) ,5460 ,17)<-[data_r(19)]

[mul_rr.21] = MUL_SHIFT(data_r(20) ,1499 ,17)<-[data_r(20)]

[mul_rr.22] = MUL_SHIFT(data_r(21) ,-1109,17)<-[data_r(21)]

[mul_rr.23] = MUL_SHIFT(data_r(22) ,-2168,17)<-[data_r(22)]

[mul_rr.24] = MUL_SHIFT(data_r(23) ,-1996,17)<-[data_r(23)]

[mul_rr.25] = MUL_SHIFT(data_r(24) ,-1190,17)<-[data_r(24)]

[mul_rr.26] = MUL_SHIFT(data_r(25) ,-329 ,17)<-[data_r(25)]

[mul_rr.27] = MUL_SHIFT(data_r(26),232 ,17)<-[data_r(26)]

[mul_rr.28] = MUL_SHIFT(data_r(27),417 ,17)<-[data_r(27)]

[mul_rr.29] = MUL_SHIFT(data_r(28),345 ,17)<-[data_r(28)]

[mul_rr.30] = MUL_SHIFT(data_r(29),186 ,17)<-[data_r(29)]

[mul_rr.31] = MUL_SHIFT(data_r(30),50 ,17)<-[data_r(30)]

[mul_rr.32] = MUL_SHIFT(data_r(31),-43 ,17)<-[data_r(31)]

[mul_ri.1] = MUL_SHIFT(data_r ,-43 ,17)<-[data_r]

[mul_ri.2] = MUL_SHIFT(data_r(1) ,50 ,17)<-[data_r(1)]

[mul_ri.3] = MUL_SHIFT(data_r(2) ,186 ,17)<-[data_r(2)]

[mul_ri.4] = MUL_SHIFT(data_r(3) ,345 ,17)<-[data_r(3)]

[mul_ri.5] = MUL_SHIFT(data_r(4) ,417 ,17)<-[data_r(4)]

[mul_ri.6] = MUL_SHIFT(data_r(5) ,232 ,17)<-[data_r(5)]

[mul_ri.7] = MUL_SHIFT(data_r(6) ,-329 ,17)<-[data_r(6)]

[mul_ri.8] = MUL_SHIFT(data_r(7) ,-1190 ,17)<-[data_r(7)]

[mul_ri.9] = MUL_SHIFT(data_r(8) ,-1996 ,17)<-[data_r(8)]

[mul_ri.10] = MUL_SHIFT(data_r(9) ,-2168 ,17)<-[data_r(9)]

[mul_ri.11] = MUL_SHIFT(data_r(10),-1109 ,17)<-[data_r(10)]

[mul_ri.12] = MUL_SHIFT(data_r(11),1499 ,17)<-[data_r(11)]

[mul_ri.13] = MUL_SHIFT(data_r(12),5460 ,17)<-[data_r(12)]
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[mul_ri.14] = MUL_SHIFT(data_r(13),10014 ,17)<-[data_r(13)]

[mul_ri.15] = MUL_SHIFT(data_r(14),14029 ,17)<-[data_r(14)]

[mul_ri.16] = MUL_SHIFT(data_r(15),16384 ,17)<-[data_r(15)]

[mul_ri.17] = MUL_SHIFT(data_r(16),16384 ,17)<-[data_r(16)]

[mul_ri.18] = MUL_SHIFT(data_r(17) ,14029,17)<-[data_r(17)]

[mul_ri.19] = MUL_SHIFT(data_r(18) ,10014,17)<-[data_r(18)]

[mul_ri.20] = MUL_SHIFT(data_r(19) ,5460 ,17)<-[data_r(19)]

[mul_ri.21] = MUL_SHIFT(data_r(20) ,1499 ,17)<-[data_r(20)]

[mul_ri.22] = MUL_SHIFT(data_r(21) ,-1109,17)<-[data_r(21)]

[mul_ri.23] = MUL_SHIFT(data_r(22) ,-2168,17)<-[data_r(22)]

[mul_ri.24] = MUL_SHIFT(data_r(23) ,-1996,17)<-[data_r(23)]

[mul_ri.25] = MUL_SHIFT(data_r(24) ,-1190,17)<-[data_r(24)]

[mul_ri.26] = MUL_SHIFT(data_r(25) ,-329 ,17)<-[data_r(25)]

[mul_ri.27] = MUL_SHIFT(data_r(26),232 ,17)<-[data_r(26)]

[mul_ri.28] = MUL_SHIFT(data_r(27),417 ,17)<-[data_r(27)]

[mul_ri.29] = MUL_SHIFT(data_r(28),345 ,17)<-[data_r(28)]

[mul_ri.30] = MUL_SHIFT(data_r(29),186 ,17)<-[data_r(29)]

[mul_ri.31] = MUL_SHIFT(data_r(30),50 ,17)<-[data_r(30)]

[mul_ri.32] = MUL_SHIFT(data_r(31),-43 ,17)<-[data_r(31)]

[mul_ii.1] = MUL_SHIFT(data_i ,-43 ,17)<-[data_i]

[mul_ii.2] = MUL_SHIFT(data_i(1) ,50 ,17)<-[data_i(1)]

[mul_ii.3] = MUL_SHIFT(data_i(2) ,186 ,17)<-[data_i(2)]

[mul_ii.4] = MUL_SHIFT(data_i(3) ,345 ,17)<-[data_i(3)]

[mul_ii.5] = MUL_SHIFT(data_i(4) ,417 ,17)<-[data_i(4)]

[mul_ii.6] = MUL_SHIFT(data_i(5) ,232 ,17)<-[data_i(5)]

[mul_ii.7] = MUL_SHIFT(data_i(6) ,-329 ,17)<-[data_i(6)]

[mul_ii.8] = MUL_SHIFT(data_i(7) ,-1190 ,17)<-[data_i(7)]

[mul_ii.9] = MUL_SHIFT(data_i(8) ,-1996 ,17)<-[data_i(8)]

[mul_ii.10] = MUL_SHIFT(data_i(9) ,-2168 ,17)<-[data_i(9)]

[mul_ii.11] = MUL_SHIFT(data_i(10),-1109 ,17)<-[data_i(10)]

[mul_ii.12] = MUL_SHIFT(data_i(11),1499 ,17)<-[data_i(11)]

[mul_ii.13] = MUL_SHIFT(data_i(12),5460 ,17)<-[data_i(12)]

[mul_ii.14] = MUL_SHIFT(data_i(13),10014 ,17)<-[data_i(13)]

[mul_ii.15] = MUL_SHIFT(data_i(14),14029 ,17)<-[data_i(14)]

[mul_ii.16] = MUL_SHIFT(data_i(15),16384 ,17)<-[data_i(15)]

[mul_ii.17] = MUL_SHIFT(data_i(16),16384 ,17)<-[data_i(16)]

[mul_ii.18] = MUL_SHIFT(data_i(17) ,14029,17)<-[data_i(17)]

[mul_ii.19] = MUL_SHIFT(data_i(18) ,10014,17)<-[data_i(18)]

[mul_ii.20] = MUL_SHIFT(data_i(19) ,5460 ,17)<-[data_i(19)]

[mul_ii.21] = MUL_SHIFT(data_i(20) ,1499 ,17)<-[data_i(20)]

[mul_ii.22] = MUL_SHIFT(data_i(21) ,-1109,17)<-[data_i(21)]

[mul_ii.23] = MUL_SHIFT(data_i(22) ,-2168,17)<-[data_i(22)]

[mul_ii.24] = MUL_SHIFT(data_i(23) ,-1996,17)<-[data_i(23)]

[mul_ii.25] = MUL_SHIFT(data_i(24) ,-1190,17)<-[data_i(24)]

[mul_ii.26] = MUL_SHIFT(data_i(25) ,-329 ,17)<-[data_i(25)]

[mul_ii.27] = MUL_SHIFT(data_i(26),232 ,17)<-[data_i(26)]

[mul_ii.28] = MUL_SHIFT(data_i(27),417 ,17)<-[data_i(27)]

[mul_ii.29] = MUL_SHIFT(data_i(28),345 ,17)<-[data_i(28)]

[mul_ii.30] = MUL_SHIFT(data_i(29),186 ,17)<-[data_i(29)]
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[mul_ii.31] = MUL_SHIFT(data_i(30),50 ,17)<-[data_i(30)]

[mul_ii.32] = MUL_SHIFT(data_i(31),-43 ,17)<-[data_i(31)]

[mul_ir.1] = MUL_SHIFT(data_i ,-43 ,17)<-[data_i]

[mul_ir.2] = MUL_SHIFT(data_i(1) ,50 ,17)<-[data_i(1)]

[mul_ir.3] = MUL_SHIFT(data_i(2) ,186 ,17)<-[data_i(2)]

[mul_ir.4] = MUL_SHIFT(data_i(3) ,345 ,17)<-[data_i(3)]

[mul_ir.5] = MUL_SHIFT(data_i(4) ,417 ,17)<-[data_i(4)]

[mul_ir.6] = MUL_SHIFT(data_i(5) ,232 ,17)<-[data_i(5)]

[mul_ir.7] = MUL_SHIFT(data_i(6) ,-329 ,17)<-[data_i(6)]

[mul_ir.8] = MUL_SHIFT(data_i(7) ,-1190 ,17)<-[data_i(7)]

[mul_ir.9] = MUL_SHIFT(data_i(8) ,-1996 ,17)<-[data_i(8)]

[mul_ir.10] = MUL_SHIFT(data_i(9) ,-2168 ,17)<-[data_i(9)]

[mul_ir.11] = MUL_SHIFT(data_i(10),-1109 ,17)<-[data_i(10)]

[mul_ir.12] = MUL_SHIFT(data_i(11),1499 ,17)<-[data_i(11)]

[mul_ir.13] = MUL_SHIFT(data_i(12),5460 ,17)<-[data_i(12)]

[mul_ir.14] = MUL_SHIFT(data_i(13),10014 ,17)<-[data_i(13)]

[mul_ir.15] = MUL_SHIFT(data_i(14),14029 ,17)<-[data_i(14)]

[mul_ir.16] = MUL_SHIFT(data_i(15),16384 ,17)<-[data_i(15)]

[mul_ir.17] = MUL_SHIFT(data_i(16),16384 ,17)<-[data_i(16)]

[mul_ir.18] = MUL_SHIFT(data_i(17) ,14029,17)<-[data_i(17)]

[mul_ir.19] = MUL_SHIFT(data_i(18) ,10014,17)<-[data_i(18)]

[mul_ir.20] = MUL_SHIFT(data_i(19) ,5460 ,17)<-[data_i(19)]

[mul_ir.21] = MUL_SHIFT(data_i(20) ,1499 ,17)<-[data_i(20)]

[mul_ir.22] = MUL_SHIFT(data_i(21) ,-1109,17)<-[data_i(21)]

[mul_ir.23] = MUL_SHIFT(data_i(22) ,-2168,17)<-[data_i(22)]

[mul_ir.24] = MUL_SHIFT(data_i(23) ,-1996,17)<-[data_i(23)]

[mul_ir.25] = MUL_SHIFT(data_i(24) ,-1190,17)<-[data_i(24)]

[mul_ir.26] = MUL_SHIFT(data_i(25) ,-329 ,17)<-[data_i(25)]

[mul_ir.27] = MUL_SHIFT(data_i(26),232 ,17)<-[data_i(26)]

[mul_ir.28] = MUL_SHIFT(data_i(27),417 ,17)<-[data_i(27)]

[mul_ir.29] = MUL_SHIFT(data_i(28),345 ,17)<-[data_i(28)]

[mul_ir.30] = MUL_SHIFT(data_i(29),186 ,17)<-[data_i(29)]

[mul_ir.31] = MUL_SHIFT(data_i(30),50 ,17)<-[data_i(30)]

[mul_ir.32] = MUL_SHIFT(data_i(31),-43 ,17)<-[data_i(31)]

#LRC has support for vector operations.

[real.1:32] = SUB(mul_rr.1:32 ,mul_ii.1:32)<-[mul_rr.1:32]

[imag.1:32] = ADD(mul_ri.1:32 ,mul_ir.1:32)<-[mul_ri.1:32]

#Adder Tree Stage-1:real parts

[add1_0_r] = ADD(real.1 ,real.2) <-[real.1]

[add1_1_r] = ADD(real.3 ,real.4) <-[real.3]

[add1_2_r] = ADD(real.5 ,real.6) <-[real.5]

[add1_3_r] = ADD(real.7 ,real.8) <-[real.7]

[add1_4_r] = ADD(real.9 ,real.10) <-[real.9]

[add1_5_r] = ADD(real.11,real.12) <-[real.11]

[add1_6_r] = ADD(real.13,real.14) <-[real.13]

[add1_7_r] = ADD(real.15,real.16) <-[real.15]

[add1_8_r] = ADD(real.17 ,real.18)<-[real.17]

[add1_9_r] = ADD(real.19 ,real.20)<-[real.19]

[add1_10_r] = ADD(real.21 ,real.22)<-[real.21]
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[add1_11_r] = ADD(real.23 ,real.24)<-[real.23]

[add1_12_r] = ADD(real.25 ,real.26)<-[real.25]

[add1_13_r] = ADD(real.27, real.28)<-[real.27]

[add1_14_r] = ADD(real.29, real.30)<-[real.29]

[add1_15_r] = ADD(real.31, real.32)<-[real.31]

#Adder Tree Stage-1:imaginary parts

[add1_0_i] = ADD(imag.1 ,imag.2) <-[imag.1]

[add1_1_i] = ADD(imag.3 ,imag.4) <-[imag.3]

[add1_2_i] = ADD(imag.5 ,imag.6) <-[imag.5]

[add1_3_i] = ADD(imag.7 ,imag.8) <-[imag.7]

[add1_4_i] = ADD(imag.9 ,imag.10) <-[imag.9]

[add1_5_i] = ADD(imag.11 ,imag.12) <-[imag.11]

[add1_6_i] = ADD(imag.13 ,imag.14) <-[imag.13]

[add1_7_i] = ADD(imag.15 ,imag.16) <-[imag.15]

[add1_8_i] = ADD(imag.17 ,imag.18) <-[imag.17]

[add1_9_i] = ADD(imag.19 ,imag.20) <-[imag.19]

[add1_10_i] = ADD(imag.21 ,imag.22) <-[imag.21]

[add1_11_i] = ADD(imag.23 ,imag.24) <-[imag.23]

[add1_12_i] = ADD(imag.25 ,imag.26) <-[imag.25]

[add1_13_i] = ADD(imag.27, imag.28) <-[imag.27]

[add1_14_i] = ADD(imag.29, imag.30) <-[imag.29]

[add1_15_i] = ADD(imag.31, imag.32) <-[imag.31]

#Adder Tree Stage-2:real parts

[add2_0_r] = ADD(add1_0_r ,add1_1_r) <-[add1_0_r]

[add2_1_r] = ADD(add1_2_r ,add1_3_r) <-[add1_2_r]

[add2_2_r] = ADD(add1_4_r ,add1_5_r) <-[add1_4_r]

[add2_3_r] = ADD(add1_6_r ,add1_7_r) <-[add1_6_r]

[add2_4_r] = ADD(add1_8_r ,add1_9_r) <-[add1_8_r]

[add2_5_r] = ADD(add1_10_r ,add1_11_r)<-[add1_10_r]

[add2_6_r] = ADD(add1_12_r ,add1_13_r)<-[add1_12_r]

[add2_7_r] = ADD(add1_14_r ,add1_15_r)<-[add1_14_r]

#Adder Tree Stage-2:imaginary parts

[add2_0_i] = ADD(add1_0_i ,add1_1_i) <-[add1_0_i]

[add2_1_i] = ADD(add1_2_i ,add1_3_i) <-[add1_2_i]

[add2_2_i] = ADD(add1_4_i ,add1_5_i) <-[add1_4_i]

[add2_3_i] = ADD(add1_6_i ,add1_7_i) <-[add1_6_i]

[add2_4_i] = ADD(add1_8_i ,add1_9_i) <-[add1_8_i]

[add2_5_i] = ADD(add1_10_i ,add1_11_i)<-[add1_10_i]

[add2_6_i] = ADD(add1_12_i ,add1_13_i)<-[add1_12_i]

[add2_7_i] = ADD(add1_14_i ,add1_15_i)<-[add1_14_i]

#Adder Tree Stage-3:real parts

[add3_0_r] = ADD(add2_0_r ,add2_1_r)<-[add2_0_r]

[add3_1_r] = ADD(add2_2_r ,add2_3_r)<-[add2_2_r]

[add3_2_r] = ADD(add2_4_r ,add2_5_r)<-[add2_4_r]

[add3_3_r] = ADD(add2_6_r ,add2_7_r)<-[add2_6_r]

#Adder Tree Stage-3:imaginary parts

[add3_0_i] = ADD(add2_0_i ,add2_1_i)<-[add2_0_i]

[add3_1_i] = ADD(add2_2_i ,add2_3_i)<-[add2_2_i]

[add3_2_i] = ADD(add2_4_i ,add2_5_i)<-[add2_4_i]

[add3_3_i] = ADD(add2_6_i ,add2_7_i)<-[add2_6_i]
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#Adder Tree Stage-4:real parts

[add4_0_r] = ADD(add3_0_r ,add3_1_r)<-[add3_0_r];

[add4_1_r] = ADD(add3_2_r ,add3_3_r)<-[add3_2_r];

#Adder Tree Stage-4:imaginary parts

[add4_0_i] = ADD(add3_0_i ,add3_1_i)<-[add3_0_i];

[add4_1_i] = ADD(add3_2_i ,add3_3_i)<-[add3_2_i];

#Real and Imaginary Filter Outputs

[fout_r] = ADD(add4_0_r ,add4_1_r)<-[add4_0_r];

[fout_i] = ADD(add4_0_i ,add4_1_i)<-[add4_0_i];

C.8 16-State Viterbi Algorithm

% PI:INPUT

% decoded:OUTPUT

[delay_out]=DELAY(PI)<-[PI]

[i, i_Exit ]=SFOR_SMALLER( 0,100,1,1)<-[delay_out]

#Parity LLRs

[Par1] = MEM(0,i,r_par1.txt,0,0)<-[]

[Par2] = MEM(0,i,r_par2.txt,0,0)<-[]

#Calculate gamma values

[G1] = ADD_MM(Par2(1),Par1(1))<-[Par1(1)]

[G2] = SUB (Par2(1),Par1(1))<-[Par1(1)]

[G3] = SUB (Par1(1),Par2(1))<-[Par1(1)]

[G4] = ADD (Par1(1),Par2(1))<-[Par1(1)]

#Calculate the branches for state-1

[S1_metric1]=ADD(S1,G1(1))<-[G1(1)]

[S1_metric2]=ADD(S2,G4(1))<-[G4(1)]

#calculate max of the branches and surviving bit

[S1(0),bit1]= MAX(S1_metric1,0,S1_metric2,1)<-[S1_metric1,delay_out(2)]

[S2_metric1]=ADD(S3,G3(1))<-[G3(1)]

[S2_metric2]=ADD(S4,G2(1))<-[G2(1)]

[S2(-128),bit2]=MAX(S2_metric1,0,S2_metric2,1)<-[S2_metric1,delay_out(2)]

[S3_metric1]=ADD(S5,G3(1))<-[G3(1)]

[S3_metric2]=ADD(S6,G2(1))<-[G2(1)]

[S3(-128),bit3]=MAX(S3_metric1,0,S3_metric2,1)<-[S3_metric1,delay_out(2)]

[S4_metric1]=ADD(S7,G1(1))<-[G1(1)]

[S4_metric2]=ADD(S8,G4(1))<-[G4(1)]

[S4(-128),bit4]=MAX(S4_metric1,0,S4_metric2,1)<-[S4_metric1,delay_out(2)]

[S5_metric1]=ADD(S9,G2(1))<-[G2(1)]

[S5_metric2]=ADD(S10,G3(1))<-[G3(1)]

[S5(-128),bit5] = MAX(S5_metric1,0,S5_metric2,1)<-[S5_metric1,delay_out(2)]

[S6_metric1]=ADD(S11,G4(1))<-[G4(1)]

[S6_metric2]=ADD(S12,G1(1))<-[G1(1)]

92



[S6(-128),bit6] = MAX(S6_metric1,0,S6_metric2,1)<-[S6_metric1,delay_out(2)]

[S7_metric1]=ADD(S13,G4(1))<-[G4(1)]

[S7_metric2]=ADD(S14,G1(1))<-[G1(1)]

[S7(-128),bit7]=MAX(S7_metric1,0,S7_metric2,1)<-[S7_metric1,delay_out(2)]

[S8_metric1]=ADD(S15,G2(1))<-[G2(1)]

[S8_metric2]=ADD(S16,G3(1))<-[G3(1)]

[S8(-128),bit8]=MAX(S8_metric1,0,S8_metric2,1)<-[S8_metric1,delay_out(2)]

[S9_metric1]=ADD(S1,G4(1))<-[G4(1)]

[S9_metric2]=ADD(S2,G1(1))<-[G1(1)]

[S9(-128),bit9]=MAX(S9_metric1,0,S9_metric2,1)<-[S9_metric1,delay_out(2)]

[S10_metric1]=ADD(S3,G2(1))<-[G2(1)]

[S10_metric2]=ADD(S4,G3(1))<-[G3(1)]

[S10(-128),bit10]=MAX(S10_metric1,0,S10_metric2,1)<-[S10_metric1,delay_out(2)]

[S11_metric1]=ADD(S5,G2(1))<-[G2(1)]

[S11_metric2]=ADD(S6,G3(1))<-[G3(1)]

[S11(-128),bit11]=MAX(S11_metric1,0,S11_metric2,1)<-[S11_metric1,delay_out(2)]

[S12_metric1]=ADD(S7,G4(1))<-[G4(1)]

[S12_metric2]=ADD(S8,G1(1))<-[G1(1)]

[S12(-128),bit12]=MAX(S12_metric1,0,S12_metric2,1)<-[S12_metric1,delay_out(2)]

[S13_metric1]=ADD(S9,G3(1))<-[G3(1)]

[S13_metric2]=ADD(S10,G2(1))<-[G2(1)]

[S13(-128),bit13]=MAX(S13_metric1,0,S13_metric2,1)<-[S13_metric1,delay_out(2)]

[S14_metric1]=ADD(S11,G1(1))<-[G1(1)]

[S14_metric2]=ADD(S12,G4(1))<-[G4(1)]

[S14(-128),bit14]=MAX(S14_metric1,0,S14_metric2,1)<-[S14_metric1,delay_out(2)]

[S15_metric1]=ADD(S13,G1(1))<-[G1(1)]

[S15_metric2]=ADD(S14,G4(1))<-[G4(1)]

[S15(-128),bit15]=MAX(S15_metric1,0,S15_metric2,1)<-[S15_metric1,delay_out(2)]

[S16_metric1]=ADD(S15,G3(1))<-[G3(1)]

[S16_metric2]=ADD(S16,G2(1))<-[G2(1)]

[S16(-128),bit16]=MAX(S16_metric1,0,S16_metric2,1)<-[S16_metric1,delay_out(2)]

[bit_vector_1_4] = MERGE(0,bit1,bit2,bit3,bit4)<-[bit1]

[bit_vector_5_8] = MERGE(0,bit5,bit6,bit7,bit8)<-[bit5]

[bit_vector_9_12] = MERGE(0,bit9,bit10,bit11,bit12)<-[bit9]

[bit_vector_13_16] = MERGE(0,bit13,bit14,bit15,bit16)<-[bit13]

[bit_vector_1_16] = MERGE(2,bit_vector_1_4,bit_vector_5_8,

bit_vector_9_12,bit_vector_13_16)<-[bit_vector_1_4]
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[read_bit_vector,0] = MEM(0,k,0,i(8),bit_vector_1_16)<-[];

[max_S1_S2, index_S1_S2] = MAX(S1, 0, S2, 1) <-[i_Exit(5)]

[max_S3_S4, index_S3_S4] = MAX(S3, 2, S4, 3) <-[i_Exit(5)]

[max_S5_S6, index_S5_S6] = MAX(S5, 4, S6, 5) <-[i_Exit(5)]

[max_S7_S8, index_S7_S8] = MAX(S7, 6, S8, 7) <-[i_Exit(5)]

[max_S9_S10, index_S9_S10] = MAX(S9, 8, S10,9) <-[i_Exit(5)]

[max_S11_S12,index_S11_S12] = MAX(S11,10,S12,11)<-[i_Exit(5)]

[max_S13_S14,index_S13_S14] = MAX(S13,12,S14,13)<-[i_Exit(5)]

[max_S15_S16,index_S15_S16] = MAX(S15,14,S16,15)<-[i_Exit(5)]

[max_S1_S4,index_S1_S4]=MAX(max_S1_S2,index_S1_S2,max_S3_S4,index_S3_S4)

<-[max_S1_S2]

[max_S5_S8,index_S5_S8]=MAX(max_S5_S6, index_S5_S6,max_S7_S8,index_S7_S8)

<-[max_S5_S6]

[max_S9_S12,index_S9_S12]=MAX(max_S9_S10,index_S9_S10,max_S11_S12,index_S11_S12)

<-[max_S9_S10]

[max_S13_S16,index_S13_S16]=MAX(max_S13_S14, index_S13_S14,max_S15_S16,index_S15_S16)

<-[max_S13_S14]

[max_S1_S8,index_S1_S8]=MAX(max_S1_S4, index_S1_S4, max_S5_S8,index_S5_S8)

<-[max_S1_S4]

[max_S9_S16,index_S9_S16]=MAX(max_S9_S12, index_S9_S12,max_S13_S16,index_S13_S16)

<-[max_S9_S12]

[max_State,index_State]=MAX(max_S1_S8,index_S1_S8, max_S9_S16,index_S9_S16)

<-[max_S1_S8]

[k, k_Exit ]=SFOR_BIGGER( 99,-1,-1,2)<-[ index_State ]

# back ward state computation is optimized for the

# generator polynomial

[bw_bit_new]=SHR_AND(read_bit_vector,bw_state,1)<-[read_bit_vector]

[bw_index,0] = SHL_OR(bw_state,1,bw_bit_new)<-[bw_bit_new]

[decoded,0] = SHR_AND(bw_index,4,1)<-[bw_index];

[bw_state(index_State),0]=AND(bw_index,15)<-[bw_index,index_State]

#max_State inits bw_state

C.9 UMTS Turbo Decoder Algorithm

%PI:INPUT

%Le2:OUTPUT

[delay_out ]=DELAY(PI)<-[PI]

[k_m,0] = SELF_MUX(k,m)<-[]

[iter,iter_Exit]=FOR_SMALLER(0,10,1)<-[delay_out,SISO_Exit(1)]

[SISO, SISO_Exit ] = FOR_SMALLER( 0,2,1)<-[iter,m_Exit(14)]

[k, k_Exit ] = SFOR_SMALLER( 0,100,1,1)<-[SISO]

[par1] = MEM(0,k_m,rx_par1.txt,0,0)<-[]

[par2] = MEM(0,k_m,rx_par2.txt,0,0)<-[]

[interleaver] = MEM(0,k_m,interleaver.txt,0,0)<-[]

[0,inter_index] = EQUAL(SISO,0,k_m(2),interleaver(1))<-[k_m(2)]
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[syst ] = MEM(0,inter_index,rx_sys.txt,0,0)<-[]

[extr ] = MEM(0,inter_index,0,wr_extr,Le2)<-[];

[0,par ] = EQUAL(SISO,1,par2(2),par1(2))<-[par1(2)]

[g1 ] = ADD(syst,extr)<-[syst]

par_d1=par(1)#Renaming is possible in LRC

#here par(1), one cycle delayed version of par

#renamed as par_d1

[g3 ] = ADD(g1,par_d1)<-[g1]

#below are just renaming

g0_aligned = 0

g1_aligned = g1(1)

g2_aligned = par(2)

g3_aligned = g3

s0_A = s0(1)

[s0_B ] = ADD(s1,g3_aligned)<-[k(7)]

[s1_A ] = ADD(s3,g2_aligned)<-[k(7)]

[s1_B ] = ADD(s2,g1_aligned)<-[k(7)]

[s2_A ] = ADD(s4,g2_aligned)<-[k(7)]

[s2_B ] = ADD(s5,g1_aligned)<-[k(7)]

[s3_A ] = ADD(s7,g0_aligned)<-[k(7)]

[s3_B ] = ADD(s6,g3_aligned)<-[k(7)]

[s4_A ] = ADD(s1,g0_aligned)<-[k(7)]

[s4_B ] = ADD(s0,g3_aligned)<-[k(7)]

[s5_A ] = ADD(s2,g2_aligned)<-[k(7)]

[s5_B ] = ADD(s3,g1_aligned)<-[k(7)]

[s6_A ] = ADD(s5,g2_aligned)<-[k(7)]

[s6_B ] = ADD(s4,g1_aligned)<-[k(7)]

[s7_A ] = ADD(s6,g0_aligned)<-[k(7)]

[s7_B ] = ADD(s7,g3_aligned)<-[k(7)]

[s0(0) ] =MAX(s0_A,0,s0_B,1)<-[s0_B,SISO(4)];

[s1(-16384) ]=MAX(s1_A,0,s1_B,1)<-[s1_A,SISO(4)];

[s2(-16384) ]=MAX(s2_A,0,s2_B,1)<-[s2_A,SISO(4)];

[s3(-16384) ]=MAX(s3_A,0,s3_B,1)<-[s3_A,SISO(4)];

[s4(-16384) ]=MAX(s4_A,0,s4_B,1)<-[s4_A,SISO(4)];

[s5(-16384) ]=MAX(s5_A,0,s5_B,1)<-[s5_A,SISO(4)];

[s6(-16384) ]=MAX(s6_A,0,s6_B,1)<-[s6_A,SISO(4)];

[s7(-16384) ]=MAX(s7_A,0,s7_B,1)<-[s7_A,SISO(4)];

[wr_index(0) ] = ADD(wr_index,1)<-[k(8),SISO]

[alpha0] = MEM(0,m(6),alpha0.txt,wr_index,s0)<-[]

[alpha1] = MEM(0,m(6),alpha1.txt,wr_index,s1)<-[]

[alpha2] = MEM(0,m(6),alpha2.txt,wr_index,s2)<-[]

[alpha3] = MEM(0,m(6),alpha3.txt,wr_index,s3)<-[]

[alpha4] = MEM(0,m(6),alpha4.txt,wr_index,s4)<-[]

[alpha5] = MEM(0,m(6),alpha5.txt,wr_index,s5)<-[]

[alpha6] = MEM(0,m(6),alpha6.txt,wr_index,s6)<-[]

[alpha7] = MEM(0,m(6),alpha7.txt,wr_index,s7)<-[]

[m, m_Exit ] = SFOR_BIGGER( 99,-1,-1,1)<-[k_Exit(11)]
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ss0_A = ss0(1)

[ss0_B ] = ADD(ss4,g3_aligned)<-[m(7)]

[ss1_A ] = ADD(ss4,g0_aligned)<-[m(7)]

[ss1_B ] = ADD(ss0,g3_aligned)<-[m(7)]

[ss2_A ] = ADD(ss5,g2_aligned)<-[m(7)]

[ss2_B ] = ADD(ss1,g1_aligned)<-[m(7)]

[ss3_A ] = ADD(ss1,g2_aligned)<-[m(7)]

[ss3_B ] = ADD(ss5,g1_aligned)<-[m(7)]

[ss4_A ] = ADD(ss2,g2_aligned)<-[m(7)]

[ss4_B ] = ADD(ss6,g1_aligned)<-[m(7)]

[ss5_A ] = ADD(ss6,g2_aligned)<-[m(7)]

[ss5_B ] = ADD(ss2,g1_aligned)<-[m(7)]

[ss6_A ] = ADD(ss7,g0_aligned)<-[m(7)]

[ss6_B ] = ADD(ss3,g3_aligned)<-[m(7)]

[ss7_A ] = ADD(ss3,g0_aligned)<-[m(7)]

[ss7_B ] = ADD(ss7,g3_aligned)<-[m(7)]

[ss0(0)] = MAX(ss0_A,0,ss0_B,1)<-[ss0_B,SISO(4)];

[ss1(0)] = MAX(ss1_A,0,ss1_B,1)<-[ss1_A,SISO(4)];

[ss2(0)] = MAX(ss2_A,0,ss2_B,1)<-[ss2_A,SISO(4)]

[ss3(0)] = MAX(ss3_A,0,ss3_B,1)<-[ss3_A,SISO(4)]

[ss4(0)] = MAX(ss4_A,0,ss4_B,1)<-[ss4_A,SISO(4)]

[ss5(0)] = MAX(ss5_A,0,ss5_B,1)<-[ss5_A,SISO(4)]

[ss6(0)] = MAX(ss6_A,0,ss6_B,1)<-[ss6_A,SISO(4)]

[ss7(0)] = MAX(ss7_A,0,ss7_B,1)<-[ss7_A,SISO(4)]

[metric0_0]=ADD(alpha0,ss0)<-[alpha0]

[metric0_1]=ADD(alpha1,ss0)<-[alpha1]

[metric1_0]=ADD(alpha3,ss1)<-[alpha3]

[metric1_1]=ADD(alpha2,ss1)<-[alpha2]

[metric2_0]=ADD(alpha4,ss2)<-[alpha4]

[metric2_1]=ADD(alpha5,ss2)<-[alpha5]

[metric3_0]=ADD(alpha7,ss3)<-[alpha7]

[metric3_1]=ADD(alpha6,ss3)<-[alpha6]

[metric4_0]=ADD(alpha1,ss4)<-[alpha1]

[metric4_1]=ADD(alpha0,ss4)<-[alpha0]

[metric5_0]=ADD(alpha2,ss5)<-[alpha2]

[metric5_1]=ADD(alpha3,ss5)<-[alpha3]

[metric6_0]=ADD(alpha5,ss6)<-[alpha5]

[metric6_1]=ADD(alpha4,ss6)<-[alpha4]

[metric7_0]=ADD(alpha6,ss7)<-[alpha6]

[metric7_1]=ADD(alpha7,ss7)<-[alpha7]

[gmetric0_0]=ADD(metric0_0,g0_aligned)<-[metric0_0]

[gmetric0_1]=ADD(metric0_1,g3_aligned)<-[metric0_1]

[gmetric1_0]=ADD(metric1_0,g2_aligned)<-[metric1_0]

[gmetric1_1]=ADD(metric1_1,g1_aligned)<-[metric1_1]

[gmetric2_0]=ADD(metric2_0,g2_aligned)<-[metric2_0]

[gmetric2_1]=ADD(metric2_1,g1_aligned)<-[metric2_1]

[gmetric3_0]=ADD(metric3_0,g0_aligned)<-[metric3_0]

[gmetric3_1]=ADD(metric3_1,g3_aligned)<-[metric3_1]

[gmetric4_0]=ADD(metric4_0,g0_aligned)<-[metric4_0]
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[gmetric4_1]=ADD(metric4_1,g3_aligned)<-[metric4_1]

[gmetric5_0]=ADD(metric5_0,g2_aligned)<-[metric5_0]

[gmetric5_1]=ADD(metric5_1,g1_aligned)<-[metric5_1]

[gmetric6_0]=ADD(metric6_0,g2_aligned)<-[metric6_0]

[gmetric6_1]=ADD(metric6_1,g1_aligned)<-[metric6_1]

[gmetric7_0]=ADD(metric7_0,g0_aligned)<-[metric7_0]

[gmetric7_1]=ADD(metric7_1,g3_aligned)<-[metric7_1]

[max01_0]=MAX(gmetric0_0,0,gmetric1_0,1)<-[gmetric0_0]

[max23_0]=MAX(gmetric2_0,0,gmetric3_0,1)<-[gmetric2_0]

[max45_0]=MAX(gmetric4_0,0,gmetric5_0,1)<-[gmetric4_0]

[max67_0]=MAX(gmetric6_0,0,gmetric7_0,1)<-[gmetric6_0]

[max0123_0]=MAX(max01_0,0,max23_0,1)<-[max01_0]

[max4567_0]=MAX(max45_0,0,max67_0,1)<-[max45_0]

[max_all_0]=MAX(max0123_0,0,max4567_0,1)<-[max0123_0]

[max01_1]=MAX(gmetric0_1,0,gmetric1_1,1)<-[gmetric0_1]

[max23_1]=MAX(gmetric2_1,0,gmetric3_1,1)<-[gmetric2_1]

[max45_1]=MAX(gmetric4_1,0,gmetric5_1,1)<-[gmetric4_1]

[max67_1]=MAX(gmetric6_1,0,gmetric7_1,1)<-[gmetric6_1]

[max0123_1]=MAX(max01_1,0,max23_1,1)<-[max01_1]

[max4567_1]=MAX(max45_1,0,max67_1,1)<-[max45_1]

[max_all_1]=MAX(max0123_1,0,max4567_1,1)<-[max0123_1]

[Lall]=SUB(max_all_1,max_all_0)<-[max_all_1];

[Le1]=SUB(Lall,syst(8))<-[Lall];

[Le2]=SUB(Le1,extr(9))<-[Le1];

[wr_extr]=DELAY(inter_index(10))<-[m(14)]

C.10 FFT Algorithm

#Radix-2 DIT 1024 Point FFT algorithm

#IO Connections

%PI:INPUT

%PI_ADDR:INPUT

%PI_DATA_REAL:INPUT

%PI_DATA_IMAG:INPUT

%DataReal:OUTPUT

%DataImag:OUTPUT

[delay_out, 0 ]=DELAY(PI)<-[PI]

#loop for stages:there are 10 stages in 1024 point FFT

[Stage,StageExit]=FOR_SMALLER(0,10,1)<-[delay_out(1),BflyExit(6)]

[mask2(65535)] = SHL_OR(mask2,1,0)<-[Stage,delay_out(1)]

[mask2_not] = NOT(mask2)<-[mask2]

[mask1] = SHR_OR(mask2_not,1,0)<-[mask2_not]

[StageRev] = SUB(9,Stage)<-[Stage]

#loop for butterflys
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[Bfly, BflyExit ] = SFOR_SMALLER( 0,512,1,1)<-[mask1]

[TwiddleAdr1] = SHL_OR(Bfly(5),StageRev,0)<-[Bfly(5)]

[TwiddleAdr] = AND(TwiddleAdr1,511)<-[TwiddleAdr1]

[TwdReal] = MEM(0,TwiddleAdr,TwiddleMemReal.txt,0,0)<-[]

[TwdImag] = MEM(0,TwiddleAdr,TwiddleMemImag.txt,0,0)<-[]

[bflyadr2, ] = SHL_OR(Bfly,1,0)<-[Bfly]

[bflymasked1] = AND(Bfly,mask1)<-[Bfly]

[bflymasked2] = AND(bflyadr2,mask2)<-[bflyadr2]

[bflyadr_a] = OR(bflymasked1,bflymasked2)<-[bflymasked2]

[bflyadr_b] = OR(bflyadr_a,powerstage)<-[bflyadr_a]

[DataAdres] = SELF_MUX(bflyadr_a,bflyadr_b)<-[]

[AdresRev] = MEM(0,DataAdres,BitReverseMem.txt,0,0)<-[]

[write_address]=SELF_MUX(AdresRev(7),PI_ADDR)<-[]

[write_R]=SELF_MUX(W_Data_R,PI_DATA_REAL)<-[]

[write_I]=SELF_MUX(W_Data_I,PI_DATA_IMAG)<-[]

[DataReal]=MEM(0,AdresRev,DataMemReal.txt,write_address,write_R)<-[];

[DataImag]=MEM(0,AdresRev,DataMemImag.txt,write_address,write_I)<-[];

[oprA_Real] = DELAY(DataReal)<-[bflyadr_a(3)]

[oprB_Real] = DELAY(DataReal)<-[bflyadr_b(3)]

[oprA_Imag] = DELAY(DataImag)<-[bflyadr_a(3)]

[oprB_Imag] = DELAY(DataImag)<-[bflyadr_b(3)]

[RR] = MUL_SHIFT(oprB_Real,TwdReal,12)<-[oprB_Real]

[RI] = MUL_SHIFT(oprB_Real,TwdImag,12)<-[oprB_Real]

[IR] = MUL_SHIFT(oprB_Imag,TwdReal,12)<-[oprB_Real]

[II] = MUL_SHIFT(oprB_Imag,TwdImag,12)<-[oprB_Real]

[RealSum] = SUB(RR,II)<-[RR]

[ImagSum] = ADD(RI,IR)<-[RI]

[OutAReal] = ADD(oprA_Real(2),RealSum)<-[RealSum]

[OutAImag] = ADD(oprA_Imag(2),ImagSum)<-[ImagSum]

[OutBReal] = SUB(oprA_Real(2),RealSum)<-[RealSum]

[OutBImag] = SUB(oprA_Imag(2),ImagSum)<-[ImagSum]

[W_Data_R] = SELF_MUX(OutAReal,OutBReal(1))<-[]

[W_Data_I] = SELF_MUX(OutAImag,OutBImag(1))<-[]

[powerstage(1)] = SHL_OR(powerstage,1,0)

<-[BflyExit(5),delay_out(1)]

C.11 Multirate FIR Filter Algorithm

#IO Connections
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%PI:INPUT

%w_addr:INPUT

%w_data:INPUT

%filter_out:OUTPUT

[LoopStart]=DELAY(PI)<-[PI]

[i, i_Exit] = SFOR_SMALLER( 0,1024,1,0)<-[LoopStart]

[data] = MEM(0,i,data.txt,w_addr,w_data)<-[]

#qf=[-23 -39 87 182 -348 -638 1257 4095

# 4095 1257 -638 -348 182 87 -39 -23];

[mul0] = MUL_SHIFT(data ,-23 ,11)<-[data]

[mul1] = MUL_SHIFT(data(2) ,-39 ,11)<-[data(2)]

[mul2] = MUL_SHIFT(data(4) ,87 ,11)<-[data(4)]

[mul3] = MUL_SHIFT(data(6) ,182 ,11)<-[data(6)]

[mul4] = MUL_SHIFT(data(8) ,-348,11)<-[data(8)]

[mul5] = MUL_SHIFT(data(10) ,-638,11)<-[data(10)]

[mul6] = MUL_SHIFT(data(12) ,1257,11)<-[data(12)]

[mul7] = MUL_SHIFT(data(14) ,4095,11)<-[data(14)]

[mul8] = MUL_SHIFT(data(16) ,4095,11)<-[data(16)]

[mul9] = MUL_SHIFT(data(18) ,1257,11)<-[data(18)]

[mul10] = MUL_SHIFT(data(20),-638,11)<-[data(20)]

[mul11] = MUL_SHIFT(data(22),-348,11)<-[data(22)]

[mul12] = MUL_SHIFT(data(24),182 ,11)<-[data(24)]

[mul13] = MUL_SHIFT(data(26),87 ,11)<-[data(26)]

[mul14] = MUL_SHIFT(data(28),-39 ,11)<-[data(28)]

[mul15] = MUL_SHIFT(data(30),-23 ,11)<-[data(30)]

#adder tree stage-1

[add1_0] = ADD(mul0 ,mul1)<-[mul0]

[add1_1] = ADD(mul2 ,mul3)<-[mul2]

[add1_2] = ADD(mul4 ,mul5)<-[mul4]

[add1_3] = ADD(mul6 ,mul7)<-[mul6]

[add1_4] = ADD(mul8 ,mul9)<-[mul8]

[add1_5] = ADD(mul10,mul11)<-[mul10]

[add1_6] = ADD(mul12,mul13)<-[mul12]

[add1_7] = ADD(mul14,mul15)<-[mul14]

#adder tree stage-2

[add2_0] = ADD(add1_0 ,add1_1)<-[add1_0]

[add2_1] = ADD(add1_2 ,add1_3)<-[add1_2]

[add2_2] = ADD(add1_4 ,add1_5)<-[add1_4]

[add2_3] = ADD(add1_6 ,add1_7)<-[add1_6]

#adder tree stage-3

[add3_0] = ADD(add2_0 ,add2_1)<-[add2_0]

[add3_1] = ADD(add2_2 ,add2_3)<-[add2_2]

[filter_out] = ADD(add3_0 ,add3_1)<-[add3_0];

C.12 Multichannel FIR Filter

#IO Connections
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%PI:INPUT

%filter_out:OUTPUT

[LoopStart, 0 ]=DELAY(PI)<-[PI]

[i, i_Exit] = SFOR_SMALLER( 0,1024,1,1)<-[LoopStart]

[data_ch1] = MEM(0,i,data.txt,0,0)<-[]

[data_ch2] = MEM(0,i(1),data1.txt,0,0)<-[]

[data] = SELF_MUX(data_ch1,data_ch2)<-[]

#qf=[-23 -39 87 182 -348 -638 1257 4095

# 4095 1257 -638 -348 182 87 -39 -23];

[mul0] = MUL_SHIFT(data ,-23 ,11)<-[data]

[mul1] = MUL_SHIFT(data(2) ,-39 ,11)<-[data(2)]

[mul2] = MUL_SHIFT(data(4) ,87 ,11)<-[data(4)]

[mul3] = MUL_SHIFT(data(6) ,182 ,11)<-[data(6)]

[mul4] = MUL_SHIFT(data(8) ,-348,11)<-[data(8)]

[mul5] = MUL_SHIFT(data(10) ,-638,11)<-[data(10)]

[mul6] = MUL_SHIFT(data(12) ,1257,11)<-[data(12)]

[mul7] = MUL_SHIFT(data(14) ,4095,11)<-[data(14)]

[mul8] = MUL_SHIFT(data(16) ,4095,11)<-[data(16)]

[mul9] = MUL_SHIFT(data(18) ,1257,11)<-[data(18)]

[mul10] = MUL_SHIFT(data(20),-638,11)<-[data(20)]

[mul11] = MUL_SHIFT(data(22),-348,11)<-[data(22)]

[mul12] = MUL_SHIFT(data(24),182 ,11)<-[data(24)]

[mul13] = MUL_SHIFT(data(26),87 ,11)<-[data(26)]

[mul14] = MUL_SHIFT(data(28),-39 ,11)<-[data(28)]

[mul15] = MUL_SHIFT(data(30),-23 ,11)<-[data(30)]

#adder tree stage-1

[add1_0] = ADD(mul0 ,mul1)<-[mul0]

[add1_1] = ADD(mul2 ,mul3)<-[mul2]

[add1_2] = ADD(mul4 ,mul5)<-[mul4]

[add1_3] = ADD(mul6 ,mul7)<-[mul6]

[add1_4] = ADD(mul8 ,mul9)<-[mul8]

[add1_5] = ADD(mul10,mul11)<-[mul10]

[add1_6] = ADD(mul12,mul13)<-[mul12]

[add1_7] = ADD(mul14,mul15)<-[mul14]

#adder tree stage-2

[add2_0] = ADD(add1_0 ,add1_1)<-[add1_0]

[add2_1] = ADD(add1_2 ,add1_3)<-[add1_2]

[add2_2] = ADD(add1_4 ,add1_5)<-[add1_4]

[add2_3] = ADD(add1_6 ,add1_7)<-[add1_6]

#adder tree stage-3

[add3_0] = ADD(add2_0 ,add2_1)<-[add2_0]

[add3_1] = ADD(add2_2 ,add2_3)<-[add2_2]

[filter_out] = ADD(add3_0 ,add3_1)<-[add3_0];
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