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ABSTRACT 
 

ADAPTATION OF MULTIWAY-MERGE SORTING 
ALGORITHM TO MIMD ARCHITECTURES 

WITH AN EXPERIMENTAL STUDY 
 

Levent Cantürk 
M.S. in Computer Engineering 

Supervisor: Prof. Dr. Cevdet Aykanat 
April, 2002 

 

Sorting is perhaps one of the most widely studied problems of computing. Numerous 

asymptotically optimal sequential algorithms have been discovered. Asymptotically 

optimal algorithms have been presented for varying parallel models as well. Parallel 

sorting algorithms have already been proposed for a variety of multiple instruction, 

multiple data streams (MIMD) architectures. In this thesis, we adapt the multiway-

merge sorting algorithm that is originally designed for product networks, to MIMD 

architectures. It has good load balancing properties, modest communication needs and 

well performance. The multiway-merge sort algorithm requires only two all-to-all 

personalized communication (AAPC) and two one-to-one communications 

independent from the input size. In addition to evenly distributed load balancing, the 

algorithm requires only size of 2N/P local memory for each processor in the worst 

case, where N is the number of items to be sorted and P is the number of processors. 

We have implemented the algorithm on the PC Cluster that is established at 

Computer Engineering Department of Bilkent University. To compare the results we 

have implemented a sample sort algorithm (PSRS Parallel Sorting by Regular 

Sampling) by X. Liu et all and a parallel quicksort algorithm (HyperQuickSort) on 

the same cluster. In the experimental studies we have used three different benchmarks 

namely Uniformly, Gaussian, and Zero distributed inputs. Although the multiway-

merge algorithm did not achieve better results than the other two, which are 

theoretically cost optimal algorithms, there are some cases that the multiway-merge 

algorithm outperforms the other two like in Zero distributed input. The results of the 
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experiments are reported in detail. The multiway-merge sort algorithm is not 

necessarily the best parallel sorting algorithm, but it is expected to achieve acceptable 

performance on a wide spectrum of MIMD architectures. 

 Keywords: Sorting, parallel sorting, algorithms, multiway-merge sorting, sorting in 

clusters.
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ÖZET 
 

ÇOK YÖNLÜ PARALEL BİRLEŞTİRME SIRALAMA 
ALGORİTMASININ 

DENEYSEL ÇALIŞMALARI İLE BİRLİKTE 
ÇOKLU KOMUT ÇOKLU DATA MİMARİLERİNE 

UYARLANMASI  
 
 

Levent Cantürk 
Bilgisayar Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat 
Nisan, 2002 

 

Elemanları sıralama problemi, hesaplamalarda muhtemelen üzerinde en çok çalışmış 

olan problemlerin başında gelmektedir. Bu konuda oldukça fazla optimum 

algoritmalar geliştirilmiştir. Bu algoritmalar birçok paralel model üzerinde denendi. 

Bunlar arasında tabi ki çoklu komut çoklu data (ÇKÇD) mimarileri için önerilen ve 

oldukça iyi çalışan algoritmalar da yer aldı. Bu çalışmamızda biz de, esasen ürün 

ağları için tasarlanmış çok yönlü birleştirme paralel sıralama algoritmasını ÇKÇD 

mimarilerine uygun hale getirdik. Çalışmamız, iş yükünün parallel makinalara 

dengeli dağıtılması, bilgisayarlar arasındaki iletişim yükünün azaltilması ve kendine 

has performans özellikleriyle oldukça başarılı bir uyarlamadır. Çok yönlü birleştirme 

sıralama algoritması, sıralanacak eleman sayısından bağımsız olarak sadece iki kere 

bütün bilgisayarlardan bütün bilgisayarlara kişisel iletişim ve iki kere de 

bilgisayardan bilgisayara iletişime ihtiyaç duymaktadır. Ek olarak, bu algoritma en 

kötü olasılıkla 2N/P kadar lokal belleğe ihtiyaç duymaktadır. Burada N sıralanacak 

eleman sayısını, P ise sıralamada kullanılacak işlemci sayısını temsil etmektedir. 

Algoritmayı Bilkent Üniversitesi Bilgisayar Mühendisliğinde kurulmuş olan dağıtık 

bellekli bilgisayar kümesi üzerinde programlayarak test ettik. Sonuçları karşılaştırma 

açısından bir tane örneklemeye dayalı paralel sıralama algoritmalarından (PSRS) bir 
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tane de paralel hızlısıralama algoritması örneğini (Hyperquicksort) aynı sistem 

üzerinde geliştirdik. Deneylerimizde girdi verilerinin dağılımlarına dayanan üç farklı 

kalite testi  “uniformly”, “Gaussian” ve “Zero” olmak üzere uyguladık. Çok yönlü 

birleştirme algoritması diğer iki algoritmaya göre daha iyi sonuçlar elde etmemesine 

rağmen, “Zero” kalite testinde olduğu gibi bazı durumlarda da diğer algoritmaları 

geçmiştir. Deneylerin sonuçları raporda detaylı olarak sunulmuştur. Çok yönlü 

birleştirme algoritması en iyi sıralama algoritması olmamasına rağmen, bir çok 

ÇKÇD mimarisindeki bilgisayarda çalışabilecek ve kabul edilebilir performans 

verebilecek bir algoritmadır.  

Anahtar sözcükler: Sıralama, paralel sıralama, algoritmalar, çokyönlü-birleştirme 

sıralaması, bilgisayar kümelerinde sıralama. 
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Chapter 1 
 

1 Introduction 
 

1.1 Overview 

This thesis is devoted to the study of one particular computational problem and the 

various methods proposed for solving it on a parallel computer system. The chosen 

problem is that of sorting a sequence of items and is widely considered as one of the 

most important problems in the field of computing science. This work, therefore, is 

about parallel sorting. 

Unlike conventional computers, which have more or less similar architectures, 

a host of different approaches for organizing parallel computers have been proposed. 

For the designer of parallel algorithms (i.e., problem-solving methods for parallel 

computers), the diversity of parallel architectures provides a very attractive domain to 

work in.  

PC clusters are based on a recent technology and they apply supercomputer 

solutions to common hardware, saving a lot of money. The task for the parallel 

machine is divided among the cluster nodes and the communication among 

processors is performed through a local network. A PC cluster is really a parallel 

machine and it can be programmed with the same techniques used for 

supercomputers. The advantage of this solution is the extreme cheapness of 
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hardware components: with very low cost it is possible to buy a cluster with higher 

performance than a workstation, i.e. paying less money.  

 

Although there has been an increasing interest in computer clusters, there are 

not enough efficient parallel algorithms developed for cluster systems. Therefore 

adaptation of parallel algorithms for MIMD architectures like cluster systems and 

testing their performances appears to be an interesting problem for research. This 

work covers research on the new algorithms for Sorting in the lights of the new trends 

in parallel computing like PC clusters.  

 

We adapted a general algorithm for the problem of sorting a sequence of items 

on MIMD parallel computers like PC clusters. Whatever the input size, it requires 

only two all-to-all-personalized communication AAPC and two point-point 

communications.  Its expected asymptotical running time is about O ))log((
P

NPN , 

where N is the number of items to be sorted and P is the number of processors used 

for sorting. What is more, we present and support the efficiency and scalability of 

multiway-merge algorithm with experimental results on a Beowulf PC cluster system. 

We have implemented one parallel sample sort algorithm and one parallel quicksort 

algorithm on the same cluster for comparing these three algorithms.  

1.2 Outline of the Thesis 

This work describes a parallel sorting algorithm for the problem of sorting a sequence 

of items on MIMD parallel computers with an experimental work on PC clusters. 

There have been various parallel algorithms proposed for the specific problem 

“sorting” on a variety of parallel architectures. The algorithms differ on the 

architectures where they are executed. It means that most of them depend on the 

special properties of the architectures on which they run.  
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In the second chapter of the thesis, a definition of the sorting problem is 

introduced. What is more, related work is given for a detailed understanding of the 

concepts underlying the algorithm we presented in the following chapter.  In order to 

maintain a complete understanding edge, we briefly overviewed some important 

algorithms for parallel sorting. We tried to simplify the explanations of the algorithms 

and support with full examples. 

In third chapter, our implementation of  parallel sorting algorithm (which is 

the adaptation of multiway-merge algorithm to MIMD architectures) is described in 

details. A complete example is presented for a better understanding. Besides The 

complexity analysis of the adapted algorithm is also covered in this chapter. Lastly, a 

design approach, which is used in the implementation, is explained.  

In the fourth chapter, the experimental results that are obtained by 

implementation of the algorithm on a PC cluster are reported. In addition, the 

important criteria for evaluating a parallel algorithm are overviewed to follow the 

theme presented in the chapter. A comparison of the multiway-merge algorithm with 

PSRS (Parallel Sorting by Regular Sampling) and Hyperquicksort is presented. The 

results are supported with appropriate graphics. 

Finally, in the fifth chapter we concluded our work. 



 

 

 

 

 

 

Chapter 2 
 

2 Parallel Sorting 
 

2.1 Motivation 

With the growing number of areas in which computers are being used, there is an 

ever-increasing demand for more computing power than today’s machines can 

deliver. Today’s applications are required to process enormous quantities of data in 

reasonable amounts of time, because usage of computers is increasing dramatically in 

our daily life. In addition, the capacities of memories and storage devices are 

increased very fast. Thus, there is a need for extremely fast computers. However, it is 

becoming apparent that it will very soon be impossible to achieve significant 

increases in speed by simply using faster electronic devices, as was done in the past 

three decades.  

Using a parallel computer is an alternative route to the attainment of very high 

computational speeds. In a parallel computer where there are several processing units, 

or processors, the problem is broken into smaller parts, each of which is solved 

simultaneously by a different processor. This way the solution time for a problem can 

be reduced dramatically by assembling hundreds or even thousands of processors. 

Especially when the rapidly decreasing cost of computer components is considered 

the attractiveness of this approach becomes more apparent. 
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Recently, there has been an increasing interest in computer clusters. A number 

of different algorithms have been described in the literature on parallel computation 

for sorting on MIMD computers. Therefore adaptation of parallel algorithms for 

MIMD architectures like cluster systems appears to be an interesting problem for 

research. This work covers research on the new algorithms for Sorting in the lights of 

the new trends in parallel computing like PC clusters.  

2.2 Parallel Architectures 
 

Using a parallel computer is an alternative route to the attainment of very high 

computational speeds. Unlike the case with uniprocessor computers, which generally 

follow the model of computation first proposed by von Neumann in the mid-1940s, 

several different architectures exists for parallel computers. SISD (Single Instruction   

Single Data), SIMD (Single Instruction Multiple Data), MISD (Multiple Instruction 

Single Data), MIMD (Multiple Instruction Multiple Data) are four main 

classifications of parallel architectures. More about parallel architectures could be 

found on various sources [8, 9, 11, 12, 13, 14, and 36].  

 

In this part we will present a short introduction to the recent technology of PC 

(Server) Clusters and the BORG, the cluster system on which we are working.   

 

2.2.1 PC Clusters 
 

PC Clusters are piles of powerful PC or Alpha servers running the best available 

processors generally interconnected through a very high speed, low latency 

communication network. By working in parallel, they can provide huge amounts of 

computing power. Of course software has to be tuned to benefit from this 

architecture. Clustering technology offers by far the best price/performance ratio and 

can beat costly vector computers by an order of magnitude on many problem classes.  
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To date, supercomputer clusters can include mono or multiprocessor nodes, 

Intel, AMD and Alpha microprocessors, according to computing needs. High speed 

network can be chosen among Myrinet, SCI, Gigabit Ethernet, or simple Ethernet 

network, according to application and cost/performance objectives. Main features 

include easy-to-use administration graphical user interface, remote power on/off, 

remote boot of all or part of the cluster nodes, batch queuing of sequential and 

parallel jobs for optimal use of available power, intuitive user interface, full execution 

environment for MPI and OpenMP compliant parallel programs, performance 

monitoring tools, debuggers. 

 

PC clusters are based on a recent technology and they apply supercomputer 

solutions to common hardware, saving a lot of money. The task for the parallel 

machine is divided among the cluster nodes and the communication among 

processors is performed through a local network.  

 

A PC cluster is really a parallel machine and it can be programmed with the 

same techniques used for supercomputers. The advantage of this solution is the 

extreme cheapness of hardware components: with very low cost it is possible to 

buy a cluster with higher performance than a workstation, paying less money. Then a 

cluster is very scalable, and you can set up it with few PCs up to hundreds of nodes, 

building a machine comparable with medium-low parallel supercomputers.  

Performance being equal with supercomputers and workstations, PC clusters can 

reach price ratios up to 10-15 times lower.  

 

2.2.2 Bilkent University Beowulf PC Cluster ‘BORG’ 
 

In this section, ‘BORG’ computer system is introduced. Because of increasing interest 

on cluster systems in Parallel Computing encouraged us to test the multiway-merge 

sorting algorithm on BORG. This short introduction will help better understanding 

and interpretation of the results in Chapter 4.  
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BORG, the cluster in Bilkent University, is made up of a group of personal 

computers interconnected by a non-blocking 100 Mbit switch. The nodes of the 

cluster have no monitor, neither keyboard, but they have powerful processors and 

good RAM memory. All PCs in the cluster are set up with Linux operative system 

and some standard tools for parallel programming (PVM [26] and MPI [23] libraries), 

also used on supercomputers.  

 

As a base model Beowulf is applied in BORG. Beowulf is a kind of high-

performance massively parallel computer built primarily out of commodity hardware 

components, running a free-software operating system like Linux, interconnected by a 

private high-speed network. It consists of a cluster of PCs or workstations dedicated 

to running high-performance computing tasks. The nodes in the cluster don't sit on 

people's desks; they are dedicated to running cluster jobs. It is usually connected to 

the outside world through only a single node.  More information about Beowulf can 

be found in [25]. 

 

Specifically BORG is a Pentium-based pile-of-PCs of 32 machines, each with the 

following:  

• GenuineIntel 400 MHz Pentium II CPU with 512KB cache size 

• 128 MB SDRAM     

• 13 GB IDE disk  

• 100 Mbit Ethernet cards  

• Debian GNU/Linux woody distribution (3.0) 

 

The experimental results in Chapter 4 were obtained by executing the algorithms on 

this system. 
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2.3 The Sorting Problem 

Sorting is probably the most well studied problem in computing science due to 

practical and theoretical reasons. It is often said that 25-50% of all the work 

performed by computers consists of sorting data. The problem is also of great 

theoretical appeal, and its study has generated a significant amount of interesting 

concepts and beautiful mathematics. A formal definition is given as follows in [14]. 

Definition 1.1 The elements of set A are said to satisfy a linear order < if and only if  

(1) for any two elements a and b of A, either a < b, a = b, or b < a; and 

(2) for any three elements a, b, and c of A, if a < b and b < c, then a  < c. 

The linear order < is usually read “precedes”. 

Definition 1.2 Given a sequence S = {x1, x2, …, xn} of n items on which a linear order 

is defined, the purpose of sorting is to arrange the elements of S into a new sequence 

S’ = { x1’, x2’, …, xn’} such that xi’ < xi+1’ for i = 1, 2, …, n – 1. 

 

2.4 Related Works 
 

Sorting is used in many applications and many of the algorithms in computer science 

depend on sorting. They require sorted data, since they are easier to manipulate than 

randomly ordered data. Simply if computer world would be thought as a world of 

zeros and ones, the only distinguished property of these are their orderings. Hence 

rearrangement of the ordering, sorting, has an important role in computer science. 

There are many asymptotically optimal algorithms found in this area. After parallel 

computing takes attention of scientists, parallelism of sorting was an interesting topic. 

Therefore today there are lots of parallel sorting algorithms offered for many varieties 

of parallel architectures [27]. Detailed information could be obtained from [14] which 

is a summary of the known parallel sorting algorithms proposed till 1985 and 
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following sections for later works. Since most of the famous sorting algorithms are 

well known, only the algorithms related with multiway-merge algorithm are covered 

in this section.  

 

Most of the parallel sorting algorithms are based on the ideas in [2] of 

Batcher. The ideas in [2] form a basis even for today's works about parallel sorting. 

As mentioned in [1], algorithms that take the intuition from the ideas presented by 

Batcher applied to variety of parallel architectures like the shuffle-exchange network 

[30], the grid [10, 31], the cube-connected cycles [32], and the mesh of trees [33]. 

What is more, PSRS from [19, 20], and a series of works by D. Bader and et al [7] are 

considerable studies that could able to achieve the optimum algorithms. We can split 

these algorithms in two groups as Li and Sevick [38] did; the single–step algorithms 

and the multi-step algorithms. In the former one data, is moved only once between 

processors. PSRS [19, 20], sample sort [7, 39, 41] and parallel sorting by 

overpartitioning [38] could be classified in this group. Irregular communication 

requirements and difficulties in load balancing are disadvantages of the algorithms 

that fall into this group. The latter one -multi-step algorithms- may require multiple 

rounds of communication in order to obtain better load balancing.  Bitonic sort [2], 

Column  Sort [15, 16], SmoothSort [40], Hyperquicksort [18, 42], B-Flashsort [43], 

and Brent’s sort [44] fall into the second category. We have selected one sample 

algorithm from each group and implemented them in our cluster system BORG  with 

MPI to compare with the multiway-merge algorithm.  

 

In order to summarize famous algorithms in parallel sorting and to follow the 

work presented here much better, we reviewed related sorting algorithms in literature 

in the next following sections with a complete example for each. Batchers [2] Bitonic 

Sort and Odd-Even Merge Sort are important for the concept of parallel sorting. 

Leightons [15, 16] Column Sort is also crucial for understanding the Multiway-

Merge Sort [1], and also for the adapted algorithm. PSRS and Hyperquicksort are 

covered since they are the selected algorithms for comparison. 
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2.4.1 Bitonic Sort Algorithm 
 

One of the two efficient sorting algorithms of Batcher [2] is Bitonic Sorting. The 

algorithm sorts some special kind of sequence called bitonic sequences. A bitonic 

sequence [18, 1, 14] is a sequence of elements (a1, a2, …, an ) which satisfies either 

following properties: 

 

( 1 ) there exists an index i, 1 ≤ i ≤ n, such that (a1, a2, …, ai ) is monotonically 

increasing and       (ai+1, ai+2, …, an ) is monotonically decreasing, or 

( 2 )  there exists a cyclic shift of indices so that (1) is satisfied, i.e. any rotation of a 

sequence which satisfies (1). 

 

For instance, (2, 3, 5, 7, 9, 8, 4, 0) is a bitonic sequence, since it first increases 

and then decreases. On the other hand (1, 4, 8, 6, 5, 9) is not a bitonic sequence, 

because the last element 9 violates the property (1). (7, 8, 3, 1, 5) is also a bitonic 

sequence, because it is a cyclic shift of (5, 7, 8, 3, 1) which first increases and then 

decreases. 

 

 A monotonically increasing sequence can always be obtained from a bitonic 

sequence by applying recursively the bitonic split algorithm. A bitonic split is defined 

as the  operation of splitting a bitonic sequence into two bitonic sequences. The 

bitonic split algorithm is as follows. 

 

Consider A = (a1, a2, …,an ) as a bitonic sequence such that a1 ≤ a2 ≤ …, ≤ an/2-1  and 

an/2 ≥ an/2+1 ≥ …, ≥ an  then the following subsequences A1  and A2  will give two 

bitonic subsequences of A. 

A1  = (min[a1, an/2], min[a2, an/2+1],…, min[an/2-1, an] ) and 

A2  = (max[a1, an/2], max[a2, an/2+1],…, max[an/2-1, an] ).  

Sorting a bitonic sequence using bitonic splits is called bitonic merge. 
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EXAMPLE: Simulation of a merge operation on bitonic sequence of n = 16 element, 

that requires log216 bitonic splits. 

 

Initial sequence:  4, 6, 8, 9, 10, 11, 14, 16, 80, 70, 60, 50, 40, 30, 20, 3 

Split 1:    4, 6, 8, 9, 10, 11, 14,  3, 80, 70, 60, 50, 40, 30, 20, 16 

Split 2:    4, 6, 8, 3, 10, 11, 14, 9, 40, 30, 20, 16, 80, 70, 60, 50 

Split 3:    4, 3, 8, 6, 10, 9, 14, 11, 20, 16, 40, 30, 60, 50, 80, 70  

Split 4:   3, 4, 6, 8, 9, 10, 11, 14, 16, 20, 30, 40, 50, 60, 70, 80 

 

Sorting a sequence of length n elements by repeatedly merging bitonic 

sequences of increasing length is called bitonic sort. Since any subsequence with two 

elements is a bitonic sequence, the algorithm starts from the subsequences of length 

two, and then length of four, and goes like that. In each intermediate stage the 

adjacent bitonic sequences are merged in increasing and decreasing order 

respectively. The sequences obtained in the intermediate steps are also bitonic 

sequences, because concatenations of increasing and decreasing sequences are also 

bitonic sequences. The Bitonic Sorting Network was the first network that is capable 

of sorting n elements in O(log2n) time.  

 

EXAMPLE: Simulation of Bitonic Sorting on a sequence of n = 8 elements. The 

intermediate merges are omitted for simplicity; however the final bitonic 

merge is simulated in details for clarity. 

X : increasing order 

X: decreasing order  

Initial sequence:     0, 3, 2, 6, 4, 1, 5, 7 

Bitonic Merging sequences of length two:  0, 3, 2, 6, 4, 1, 5, 7 

Result:        0, 3, 6, 2, 1, 4, 7, 5 

Bitonic Merging sequences of length four:  0, 3, 6, 2, 1, 4, 7, 5 

Result:        0, 2, 3, 6, 7, 5, 4, 1 

Bitonic Merging sequences of length eight:  0, 2, 3, 6, 7, 5, 4, 1 
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Final merge in details:    0, 2, 3, 6, 7, 5, 4, 1 

Split 1.        0, 2, 3, 1, 7, 5, 4, 6 

Split 2.       0, 1, 3, 2, 4, 5, 7, 6 

Split 3.        0, 1, 2, 3, 4, 5, 6, 7 

 

Sorting algorithms based on this method are called bitonic sorters and there are many 

papers about generalization of bitonic sorters in the literature. [3], [4], [5], [34].  

2.4.2 Odd-Even Merge Sort Algorithm 
 

Odd-Even Merge Sort [13, 10] is one of the oldest and most famous algorithms in 

parallel computing. Let A be a sequence of n keys to be sorted. The odd-even merge 

sort algorithm [2] applies the odd-even merge algorithm repeatedly to merge two 

sequences at a time. Initially it forms n/2 sorted sequences of length two each. Next, it 

merges two sequences at a time so that at the end n/4 sorted sequences of length four 

each will remain. This process of merging continued until only two sequences of 

length n/2 each are left. Finally, these two sequences are merged. The odd-even 

merge algorithm can be ruled simply as follows.  

 

Step 1. Assume we want to merge two sorted sequences A and B, where  

A= a1, a2, …, an and B = b1, b2, …, bn . In the first step, two sequences are partitioned 

in to two subsequences like Aodd  = a1, a3, a5, …, an-1 and Aeven  = a2, a4, a6, …, an.   

Similarly B is partitioned into two sequences Bodd  = b1, b3, b5, …, bn-1 and  

Beven  = b2, b4, b6, …, bn. 

 

Step 2. Aodd and Beven are merged and Aeven and Bodd are merged recursively. Let call 

the results as O= o1, o2, …, on and E = e1, e2, …, en , respectively. 

 

Step 3. Combine the sequences O and E and generate a new sequence C by taking 

one element from O and one element from E until all elements are exhausted. Hence 

C will be o1, e1, o2, e2, …, on, en . 
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Step 4. Finally, starting from element 2, sorting the subsequences of length two 

successively in C, will give the result of merging the initial sequences A and B. 

 

Although [15] uses this algorithm, there are many variations of the odd-even 

merge in the literature. For example, in [17] step 2 is changed as recursively merging 

Aodd with Bodd and Aeven with Beven to yield corresponding results O and E. In step 4, 

they sort the subsequences of length two successively in C starting from the second 

element. 

 

EXAMPLE: Simulation of Odd-Even Merge algorithm. Let us consider the problem 

of merging two sorted sequences A and B, where A = 0, 2, 3, 6, 8, 10, 12,13 and B = 

1, 4, 5, 7, 9, 11, 14, 15 

Step 1.  Aodd  = 0, 3, 8, 12  and  Aeven  = 2, 6, 10, 13 

   Bodd  = 1, 5, 9, 14  and  Beven  = 4, 7, 11, 15 

Step 2.  O = 0, 3, 4, 7, 8, 11, 12, 15 and E = 1, 2, 5, 6, 9, 10, 13, 14 

Step 3.  C = 0, 1, 3 , 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14 

Step 4.  C = 0, 1, 3 , 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14 

     Result = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 

 

EXAMPLE: Simulation of Odd-Even Merge Sort on a sequence of n = 8 elements.  

Initial sequence:    1, 3, 7, 6, 2, 0, 4, 5 

forms n/2 sorted sequences of length 2: 1, 3, 6, 7, 0, 2, 4, 5 

odd-even merge of successive sequences: 1, 3, 6, 7, 0, 2, 4, 5 

finally merge the 2 last sequences:  0, 1, 2, 3, 4, 5, 6, 7 

 

Like the Bitonic Sort, Odd-Even Merge Sorting Network was one of the first 

network that is capable of sorting n elements in O(log2n) time. Although it is one of 

the oldest parallel algorithms, it is still one of the most widely used and important 

algorithms in parallel sorting.  
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2.4.3 Column Sort 
 

In this section, we review the Leightons Column Sort [15], which plays an important 

role in the adapted algorithm, and also in the following Multiway-merge Algorithm.  

 

As in many algorithms, there are many variations of Column Sort in the 

literature. The simplest version of Column Sort presented by Leighton in [15] is a 

seven phase algorithm that sorts N items into column major order in an r x s matrix. 

Steps 1, 3, 5, and 7 are all the same: sort each column individually. The only 

exception is the sorting in Step 5. In Step 5, adjacent columns are sorted in reverse 

order, however in other steps sorting is in the same order (smallest-first) for all 

columns. Each of Steps 2, 4, and 6 permutes the matrix entries. In Step 2, the matrix 

is transposed by picking up the items in column-major order and setting them down 

in row-major order (preserving the r x s shape, illustrated in Figure 2.1). As Leighton 

stated, the reverse permutation in the Step 2 is applied, picking up items in row-major 

order and setting them down in column-major order. Step 6 consists of two steps of 

odd-even transposition sort to each row. Column Sort is always sorts N items into 

column-major order provided that r  ≥ s2.  

 

 

 

Figure 2.1  The operations of Steps 2 and 4 of columnsort. This figure is taken from 

[16]. For simplicity, this small matrix is chosen to illustrate the steps, even though its 

dimensions fail to obey the Column Sort restrictions on r and s. 
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As in [16] and [37] one other famous version of column sort is an eight phase 

algorithm. Steps 1, 3, 5, 7 are similar with the previous, just sorting the columns 

individually in smallest-first order without any exception i.e. even in Step 5 the 

ordering is same. Step 2 and 4 are also same as in previous. In Step 6, each column is 

shifted down by r/2 positions. This shift operation empties the first r/2 entries of the 

leftmost column, which are filled with keys of -∞, and it creates a new column on the 

right, the bottommost r/2 entries of which are filled with keys of ∞. In another words, 

top half of each column is shifted into the bottom half of that column, and the bottom 

half of each column is shifted into the top half of the next column. In Step 8, the 

reverse permutation of Step 6 is applied. Step 6 and 8 are illustrated in Figure 2.2. 

 

 

 

Figure 2.2 The operations of Steps 6 and 8 of Column Sort. This figure is taken from 

[16]. 

 

EXAMPLE: Simulation of Column Sort on a sequence of N = 8 elements with r = 4 

and s = 2.  

Initial sequence: 3, 2, 1, 5, 6, 0, 7, 4 
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After writing the elements in r x s, 4 x2 array: 

 

Figure 2.3  A complete example for column sort 

 

2.4.4 Multiway-Merge Algorithm 
 

In this section, we will present the previous related works with the topic of sorting, 

especially the multiway- merge sorting algorithm that in fact gives the spirit of this 

thesis, in [1].  
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0 4 

1 5 

2 6 

3 7 

Step 7. Sort columns 
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In [1] the well known odd-even merge sorting algorithm, originally due to 

Batcher[2]  is generalized and its application on product networks are presented. In 

addition, they developed a new multiway-merge algorithm that merges several sorted 

sequences into a single sorted sequence. By using their multiway-merge algorithm 

they obtained a new parallel sorting algorithm that they claimed probably the best 

deterministic algorithm, which can be found in terms of the low asymptotic 

complexity with a small constant in product networks. Therefore, adaptation of that 

algorithm for MIMD architectures was an interesting research. In [1], the application 

of the multiway-merge sorting algorithm to some special product networks is 

covered. Efe and Fernandez give the asymptotic analysis of the algorithm for Grid, 

Mesh-Connected Trees (MCT), Hypercube, Petersen Cube, Product of de Brujin, and 

Shuffle-Exchange Networks in [1]. For Grid and Mesh-Connected Trees they obtained 

a bound O (N), which is optimal. For other product networks they also obtained quite 

optimal asymptotical bounds.  

 

In the sorting algorithm [1], they applied the proposed multiway-merge 

operation recursively to the sorted subsequences. In the paper, the multiway-merge 

algorithm is defined as follows.  

 

 Assume we consider to merge N sorted subsequences, Ai = (a0, a1, …, am-1), for       

i = 0, 1, …, N-1, into a large sorted sequence N’. 

  

Step 1. Initially, the algorithm requires the distribution of each sorted sequence Ai  

among N sorted subsequences Bi, v, for i = 0, 1, …, N-1 and v = 0, 1, …, N-1. This is 

equivalent to writing the keys of each Ai on a m/N by N array in snake order and then 

reading the keys column-wise to obtain each Bi, v.  

 

Step 2. The N subsequences  Bi, v found in column v are merged into a single sorted 

sequence Cv for v = 0, 1, …, N-1. This step is handled in parallel for all columns by a 

recursive call to the multiway-merge itself, if the total number of keys in the column 
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m is at least N3. For the columns whose length is less than N3 like N2 a sorting 

algorithm is used instead of a recursive call to merge. 

 

Step 3. The sequences Cv for v = 0, 1, …, N-1 are interleaved into a single sequence 

D = (d0, d1, …, dmN -1), by reading the columns Cv’s in row-major order starting from 

the top row. 

 

Step 4.  To clean the ‘dirty area’ (i.e. unsorted portion), D is divided into m/N 

subsequences of N2 consecutive keys each. These subsequences are called as Ez, 

where z = 0, 1, …, m/N – 1. Next, these subsequences are sorted in alternate orders, 

that is, sequence is sorted in nondecreasing order for even z and in nonincreasing 

order for odd z. Then two step odd-even transposition is applied between the sorted 

sequences in the vertical direction. In the first transposition, the elements in the rows 

z and z + 1 are compared and the smallest is stored in row z, while the largest is stored 

in the z+1th row for even z values. The second transposition is application of the 

same to the odd z values. Lastly, the final subsequences Ez’s are sorted in alternate 

orders as in previous one. The whole sorted sequence N’ is just concatenation of the 

sequences Ez’s in snake-order. 

 

Lemma 1[1]: “When sorting an input sequence of zeros and ones, the sequence D 

obtained after the completion of Step 3 is sorted except for a dirty area which is never 

larger than N2.” 

 

Proof of this Lemma is also presented in [1]. 

 

EXAMPLE: Simulation of multiway-merge algorithm. Assume we merge N=3 

sorted subsequences , Ai = (a0, a1, …, am-1), for    i = 0, 1, …, 2 and m = 9 into a large 

sorted sequence N’.  
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Initial sequences: 

A0 =    0, 2, 5, 5, 6, 7, 8, 9, 9 

A1 =    0, 2, 3, 6, 6, 7, 7, 8, 9 

A2 =    1, 2, 4, 5, 6, 6, 7, 8, 9 

After Step1: 

B0 =    0, 7, 8, 2, 6, 9, 5, 5, 9 

B1 =    0, 7, 7, 2, 6, 8, 3, 6, 9 

B2 =   1, 6, 7, 2, 6, 8, 4, 5, 9 

After Step 2: 

  C0 C1 C2 

  0 2 3 

  0 2 4 
  1 2 5 
  6 6 5 
  7 6 5 
  7 6 6 
  7 8 9 
  7 8 9 
  8 9 9 

After Step 3: D : 0, 2, 3, 0, 2, 4, 1, 2, 5, 6, 6, 5, 7, 6, 5, 7, 6, 6, 7, 8, 9, 7, 8, 9, 8, 9, 9 

For Step 4: 

 E0 : 0, 2, 3, 0, 2, 4, 1, 2, 5 

 E1 : 6, 6, 5, 7, 6, 5, 7, 6, 6 

 E2 : 7, 8, 9, 7, 8, 9, 8, 9, 9 

After sort alternate order 

 E0 : 0, 0, 1, 2, 2, 2, 3, 4, 5 

 E1 : 7, 7, 6, 6, 6, 6, 6, 5, 5 

 E2 : 7, 7, 8, 8, 8, 9, 9, 9, 9 

After odd-even transitions and sort alternate order 

 E0 : 0, 0, 1, 1, 2, 2, 3, 4, 5 

 E1 : 7, 7, 6, 6, 6, 6, 6, 5, 5 

 E2 : 7, 7, 8, 8, 8, 9, 9, 9, 9 

So, N’ = 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9 
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2.4.5  Parallel Sorting by Regular Sampling (PSRS) 
 

One of the famous algorithm among the recent parallel sample sorting algorithms is 

parallel sorting by regular sampling offered by X.Li et al [19, 20] in 1996. This 

algorithm is suitable for a diverse range of MIMD architectures. The time complexity 

of PSRS is asymptotic to O( n
p
n log ) when 3pn ≥ , which is cost optimal [20] . It has 

a good theoretical upperbound on the worst case load balancing among other sample 

sort algorithms. If we assume there is no duplicate keys, it has proven that in PSRS 

no processor has to work on more than 2n/p data elements if  3pn ≥ .  

 

The algorithm consists of four phases; a sequential sort, a load balancing 

phase, a data exchange and a parallel merge. In order to sort n numbers (with indices 

1, 2, 3, …, n) the algorithm uses p processors (1, 2, 3, …, p), so as in previous 

algorithms initially the data  n is distributed over p processors. Basically we assume 

each processor has its random portion of the data already stored within them.  

 

Phase 1. In parallel, each processor sorts their contiguous block of n/p items 

that is assigned to them. A sequential quicksort or merge sort can be used here. 

Expected runtime of the quicksort algorithm is O(nlogn), but may have a worst case 

of O(n2). If this is a problem, an algorithm with a worst case of O(nlogn), such as 

merge sort, can be used. After local sorting, processors select the samples that 

represent the locally sorted blocks. Here in this part, processors select the elements at 

local indices 1, n/p+1, 2n/p+1, …, (p-1)n/p+1, to form the samples. These p elements 

are called regular samples of the local elements and represent the value distribution at 

each processor. Therefore collection of these p elements from p processors will give 

the regular sample of the initial n numbers to be sorted. This process is called regular 

sampling load balancing heuristic. 
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Phase 2. This phase consists of pivot finding and local partitioning according 

to the pivots. In order to find pivots each processor sends the local regular samples 

which are potential candidates of the pivots, to a specific processor. The designated 

processor sorts the regular samples and selects the elements with indices p + p/2, 2p 

+ p/2, 3p + p/2, …, (p-1) + p/2. These selected (p-1) elements forms the pivots. 

These pivots are distributed to each processor. Upon receiving the processors, each 

processor forms p partitions (s1, s2, s3, …,sp) from their sorted local blocks according 

to the pivots. 

 

Phase 3. Processors apply the total exchange algorithm for their p partitions. 

In other words, each processor i keeps the ith partition si itself and assigns the j 

partitition sj to the jth processor. As an example, processor 3 keeps the 3rd partition 

itself and gathers all the 3rd partitions of other p-1 processors, while sending its 

remaining partitions to the appropriate processors.  

 

Phase 4.   In this phase, each processor merges its p partitions in parallel. 

Since the partitions are already sorted, P-way merge algorithm will give a whole 

sorted sequence. After completion of phase 4, any element in processor i is greater 

than any element in processor j where i > j and within each processor n/p elements 

are sorted among themselves. So the concatenation of all local lists will give the final 

n element sorted list. 

 

The implementation details and experimental results are explained in later 

chapters. 

 

EXAMPLE: Simulation of PSRS on a sequence of n = 27 elements with p = 3 

processors [42].  

 

Initial unsorted sequence:   

8, 23, 15, 3, 12, 22, 6, 21, 0, 9, 26, 11, 4, 20, 14, 2, 16, 24, 19, 18, 13, 7, 5, 1, 

17, 25, 10 
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The elements are distributed to the processors evenly: 

P1 = 8, 23, 15, 3, 12, 22, 6, 21, 0 

P2 = 9, 26, 11, 4, 20, 14, 2, 16, 24 

P3 = 19, 18, 13, 7, 5, 1, 17, 25, 10 

 

PHASE 1 

Each processor sort its local elements (n/p = 27/3=9) with a sequential sorting 

algorithm. Then they select, in parallel, their local regular samples. 

 P1 = 0, 3, 6, 8, 12, 15, 21, 22, 23        Local regular samples: 0, 8, 21 

 P2 = 2, 4, 9, 11, 14, 16, 20, 24, 26 Local regular samples: 2, 11, 20 

 P3 = 1, 5, 7, 10, 13, 17, 18, 19, 25 Local regular samples: 1, 10, 18 

 

 

PHASE 2 

Local regular samples are gathered and sorted (p2 = 9 elements). Two (p-1) pivots are 

selected and distributed to the processors. Each processor generates three partitions 

according to the pivots. 

 Gathered Regular Sample: 0, 8, 21, 2, 11, 20, 1, 10, 18 

 Sorted Regular Sample    :  0, 1, 2, 8, 10, 11, 18, 20, 21 

 Pivots : 8, 18 

    

 P1 = 0, 3, 6, 8,       12, 15,                  21, 22, 23         

 P2 = 2, 4,   9, 11, 14, 16,       20, 24, 26  

 P3 = 1, 5, 7,   10, 13, 17, 18,  19, 25  

 

PHASE 3 

Total exchange algorithm on the partitions. 

 P1 = 0, 3, 6, 8,  2, 4,             1, 5, 7         

 P2 = 12, 15,        9, 11, 14, 16,  10, 13, 17, 18 

 P3 = 21, 22, 23,       20, 24, 26,   19, 25  
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PHASE 4 

Each processor merges its new p partitions after total exchange.  

 P1 = 0, 1, 2, 3, 4, 5, 6, 7, 8         

 P2 = 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 

 P3 = 19, 20, 21, 22, 23, 24, 25, 26 

Final sorted array:  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 
 

2.4.6 Hypercube Quicksort 
 

Quicksort is one of the most common sorting algorithms for sequential computers 

because of its simplicity, low overhead and optimal average complexity. Quicksort is 

often the best practical choice for sorting because its very efficient on the average that 

is, its expected running time is Θ(nlogn) for sorting n numbers. Although its worst 

case running time is Θ(n2), it also uses the advantages of inplace algorithms and 

performs well even in virtual memory environments. Of course, there are variety of 

parallel versions of such a famous algorithm in the literature [39, 46, 47, 48]. They 

are similar in the main idea, but differ in the architectures they run, selection of the 

pivots, or some parallel specific concepts like load balancing etc. In this section we 

present one of the parallel formulations of the quicksort algorithm [18, 42]. 

 

 As it is known, Quicksort is a diviede&conquer paradigm algorithm. The 

simple algorithm to sort an array A[p, r] given in [45] is as follows: 

 

Divide : The array A[p,r] is partitioned into two nonempty sub arrays A[p,q] and 

A[q+1, r], such that each element in the former is less than or equal to each element in 

the latter. The index q is computed as a part of this partitioning process. 

Conquer: The two subarrays A[p, q] and A[q+1, r] are sorted recursively by calling 

Quicksort. 

Combine: The entire array A[p, r] is sorted, since the subarrays are sorted in place, so 

work for combine step. 
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One of the basic ways of parallelizing of Quicksort is running of the recursive 

calls in parallel processors. Since sorting of the subarrays are two completely 

independent subproblems, they can be solved in parallel. Three distinct parallel 

formulations of Quicksort : one for a CRCW PRAM, one for a hypercube, and one 

for a mesh is presented in [18]. In this section, we are briefly focused on HyperQuick1 

sort algorithm which we have implemented in BORG for comparison purposes.  

 

 Hypercube Quicksort, as it is understood from its name, uses advantage of 

topological properties of a hypercube. The hyperquicksort algorithm works as 

follows. Let n be the number of elements to be sorted and p=2d be the number of 

processors in a d-dimensional hypercube. Initially we assume, as it is a convention in 

most algorithms in this work, the n numbers are evenly distributed to each processor. 

So each processor gets a block of n/p elements. At the end, elements in processor i is 

less than or equal to the elements in processor j where i < j. The algorithm starts by 

selecting a pivot element, which is broadcast to all processors. After receiving the 

pivot, each processor partitions its local elements into two blocks according to the 

pivot. All the elements smaller than the pivot are stored in one part and all the 

elements larger than the pivot are kept in other sub block. A d-dimensional hypercube 

can be decomposed into two (d-1) dimensional subcubes such that each processor in 

one subcube is connected a processor in other subcube. The corresponding processors 

could separate the subcubes according to the pivot by keeping smaller elements in 

one (d-1) subcube and sending the larger elements to the processors in the other 

subcube. Thus the processors connected along the dth communication link exchange 

appropriate blocks so that one retains elements smaller than the pivot and the other 

retains elements larger than the pivot. The proposed algorithm in [18] for this 

communication is, each processor with a 0 in the dth bit (the most significant bit) 

position of the binary representation of its processor label retains the smaller 

elements, and each processor with a 1 in the dth bit retains the larger elements. After 

                                                 
1 HyperQuicksort and Hypercube QuicksortQuicksort were used interchangeble. 
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this step, each processor in the (d-1)-dimensional hypercube whose dth label bit is 0 

will have elements smaller than the pivot and each processor in the other (d-1)-

dimensional hypercube will have elements larger than the pivot. This procedure is 

performed recursively in each subcube, splitting the subcubes further. After d such 

splits – one along each dimension- the sequence is sorted with respect to the global 

ordering imposed on the processors. Finally, each processor sorts its local elements 

by using sequential Quicksort.  

  

 One important point in this algorithm is the selection of the pivot, because a 

bad selection of the pivot will yield poor performance. Since at each recursive step 

the elements are distributed according to the pivot, if the pivot does not split almost 

equally the elements, then this will result with a poor load balancing. What is more, 

the performance will degrade further at each recursive step. For example during the 

ith split partitioning a sequence among two subcubes with a bad pivot may cause the 

elements in one subcube more than the others (load imbalance). There are numerous 

ways of selecting the pivot. It can be the first element of a randomly selected 

processor or average of the average of the elements in the processors, or average of a 

randomly picked sample and etc. The important point here is whatever the method is; 

the pivot should divide almost equally the numbers to be sorted. A good 

approximation for a good pivot is selection of the medians at each processor for each 

subcube and then taking the average or median of them again. Thus the median for 

each processor will give a good approximation for the elements in that processor and 

collection of the medians of each processor will give a good sample space for that 

subcube in order to divide the elements evenly. 

 

 As stated in [18], the hypercube formulation of Quicksort is depends on the 

pivot selection. If pivot selection is good, then its scalability is relatively good. If the 

pivot selection is bad (worst case) then it has an exponential isoefficiency function. 

On the other hand, mesh formulation of Quicksort has an exponential isoefficiency 

function and is practical only for small values of p. 



 

 

 

 

 

 

Chapter 3 
 

3 Adaptation of Multiway-Merge 

Algorithm to MIMD 

Architectures 
 

3.1 The Adapted Algorithm 
 

This section develops the basic steps of the multiway-merge sorting algorithm. 

According to the problem definition of the sorting, the multiway-merge algorithm is 

expected to rearrange the sequence of keys (for the clarity, keys are assumed to be 

integers, but not necessarily) such that the resulting sequence follows the definition of 

a sorted sequence. As explained in [1] and [6], if an algorithm is able to sort any 

sequence of zeros and ones and based on compare-exchange operations, it can sort 

any items. 

 

A sorted sequence [1] is defined as a sequence of keys (a0, a1, …, an-1) such 

that a0 ≤ a1 ≤ … ≤ an-1. For clarity, let’s assume Pi denotes the ith processor and Ai 

denotes the sequence A stored in the processor i.  
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Initially we have N numbers to be sorted, and P processors available. We will 

assume N/P is some power of P, so each processor gets some power of Pk-1 elements 

where N= Pk and k > 2. Like in similar works, the number of processors P is a power 

of two. To start the algorithm, it is supposed that N/P numbers are distributed evenly 

to the processors and stored as a sequence Ai(a0, a1, …, aN/P-1) in each processor. The 

output consists of the elements in non-descending order arranged amongst the 

processors so that the elements at each processor are in sorted order and no element at 

processor Pi is greater than any element at processor  Pj , for all i < j.  

 

 

 

 

 

 

 

Figure 3.1 Initial unsorted N numbers distributed to P processors 

 

Step 1. Each P processor sorts its sequence A containing N/P numbers in parallel, 

using a sequential sorting algorithm like Quicksort. Here Quicksort is preferred 

due to its storage requirements since Quicksort is an inplace algorithm and 

performs very well if the whole array resides on the memory. Therefore this 

step requires Θ(N/P log(N/P)) expected running time. On the other hand, if 

memory is not a concern than usage of merge sort offers an O (N/P log(N/P)) 

as an upper bound for the worst case.  

Step 2. Each P processor puts the sorted A containing N/P numbers into a local 2D 

array N/P2 by (N/P2 x P) in row-major or snake order. [1] Used snake order in 

the algorithm, because the orderings in snake order is more suitable for the 

structure of product networks. For our case, since we have two options that are 
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feasible, in the rest of the algorithm, we preferred the row-major order. This 

step is illustrated in Figure 3.2 below. In the implementation of the algorithm, 

this should not be interpreted to imply the physical organization of data in a 

two dimensional array. Actually, step 2 and 3 could be handled by just 

rearrangement of indices of a one dimensional array. 

 

Sorted A: 

 

Pi  :    

 

  

Figure 3.2 Logical representation of step 2 for one processor, arrows           
                indicate row-major order 

 

Step 3. Every processor reads its local 2D array column by column and generates P 

subsequences S0, S1, …, SP-1. Such that each contains N/ P2 numbers as 

shown in Figure 3.3. The resulting sequences S0, S1, …, SP-1 are sorted 

subsequences, since the elements within a subsequence are in the same 

relative order as they appeared in A which is already sorted after the result of 

the sorting algorithm in Step 1.   

 

 

 

 

N / P2 -1 

0 •  •  •  • P-1

0 

•
•
•
•

P P P 

•  •  •  •

N/P
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Pi  : 

 

A: 

 

 

Figure 3.3 Logical representation of step 3 for one processor, arrows indicate 

column wise   reading order 

Step 4. Every processor applies the total exchange (AAPC) algorithm on A with 

message size N/P2. That is the processors exchanges the generated 

subsequences S0, S1, …, SP-1 among each other in a way that Si is send to the 

processor  Pi. For example, processor P0 keeps S0 itself sends S1 to processor 

P1, S2 to processor P2, and so on, while receiving S0 of P1 from processor P1, 

S0 of P2 from processor P2, …, S0 of PN-1 from processor PN-1. The resulted 

sequence A accumulated in each processor AAPC with message size m = N/ 

P2. 

 

Step 5. Each processor sorts A, which is resulted from the total exchange in Step 4, 

using an appropriate sequential sorting algorithm. Here, P-way merge sort, 

where P is the number of processors, is one of the appropriate sorting 

algorithms, since the p subsequences S0, S1, …, SP-1 are sorted subsequences. 

Or another alternative which I used in my implementation can be merging 

subsequences two by two for logP steps in a binary tree fashion. This step 

requires O(N/P logP) time.  

N / P2 -1 

0 •  •  •  • P-1
0

•
•
•
•

N/P

S0 S1 SP-1 

N/P2

•  •  •  •

N/P2 N/P2
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Step 6. In this step processors divide A into subsequences S0, S1, …, SP-1  of length N/ 

P2. That is simply Si gets the elements 2/* PNia , 
1)/*( 2 +PNi

a ,..., 
1//* 22 −+ PNPNi

a . For 

example, S0 gets the elements (a0, a1, …, 
1/ 2−PN

a ), S1 gets the elements 

( 2/ PN
a ,

1/ 2+PN
a , …, 

1/2 2−PN
a ) and so on. 

 

Step 7. Again P processors apply the total exchange (AAPC) algorithm on A with 

message size m = N/ P2. Therefore in this step, processors exchange their 

subsequences S0, S1, …, SP-1 among each other. 

 

Step 8. Every processor sorts its N/P numbers stored in A using a sequential sorting 

algorithm parallel. As the same reasons with the Step 5 P-way merge sort can 

be used here, too. 

 

Step 9. According to Lemma 1 in [1] we know that after Step 8, the "dirty area" (i.e. 

unsorted portion) is P2 length from each ends of the A. “Dirty area” is defined 

as the sorted subsequences within the processors whose elements may be 

away from their original places in the resulted sorted sequence at most P2 

distance. Since every processor sorted their elements in the Step 8, only the 

elements at the ends of the A, may not be in the correct places for the final 

sorted result, because they may belong to the previous or next  P2 elements. 

As Lemma 2 in [1] points out, if the dirty area falls into a place outside these 

P2 elements, then the sorting in Step 8 had to be already cleared the dirty area.  

This is figured out below Figure. 

For one processor 

 

 

   

   

 

P2

N / P

P2

Represents Dirt Area 
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To clear the dirty area, neighboring processors exchange the first and last P2 

elements with each other while keeping their own copy, except the first and last 

processors. The first processor needs only to exchange its last P2 elements, and 

the last needs only to exchange the first P2 elements. Now, individual 

processors have all the potential elements that should reside on them in the 

result set. To make the algorithm more efficient, since we know the dirty areas 

are  2P2 length from ends with coming P2 elements from the neighbors, we do 

not need to be sort all the array. What is more, these 2P2 length subsequences 

are combinations of two P2 length sorted subsequences. Therefore applying 

merge algorithm in increasing order until obtaining the first P2 elements (just 

for P2 iterations) is enough for each processor to obtain their last P2 elements.  

On the contrary case, that is for the first P2 elements, applying the merge 

operation in decreasing order for P2 iterations and getting the first P2 elements 

in the reverse order will be enough to obtain correct first P2 elements. So this 

step requires only O(P2) time, where P is the number of processors.  

Since the input is evenly distributed among the processors and the processors 

are assigned by almost equal amount of work at each stage of the algorithm, 

load balancing of the multiway-merge algorithm is evenly distributed.  

 

A similar approach to multiway-merge algorithm is applied for simple sorting 

algorithms on parallel disk systems in [17]. 

P2P2 P2P2 P2 

Dirty Area Dirty Area

N / P 

•  •  •
P2
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3.2 A Complete Example 
A more sophisticated example can be obtained with N = 256 and P = 4 for observing 

the details in cleaning the dirty area, but for simplicity we used N = 64 numbers with 

P = 4 number of processors. 

Initial array N = 64. Let the numbers to be sorted are: 

31, 16, 3, 21, 27, 7, 6, 52, 9, 10, 11, 12, 13, 14, 15, 2, 62, 18, 40, 20, 4, 22, 23, 24, 38, 

26, 5, 28, 29, 30, 1, 32, 58, 34, 35, 36, 64, 25, 59, 19, 44, 42, 43, 41, 45, 46, 47, 48, 

49, 50, 51, 8, 53, 54, 55, 63, 57, 33, 39, 60, 61,17, 56, 37.  

 

After distributing the N numbers equally to the processors, we obtain: 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 : 31 16 3 21 27 7 6 52 9 10 11 12 13 14 15 2

                   

P1 : 62 18 40 20 4 22 23 24 38 26 5 28 29 30 1 32

                   

P2 : 58 34 35 36 64 25 59 19 44 42 43 41 45 46 47 48

                   

P3 : 49 50 51 8 53 54 55 63 57 33 39 60 61 17 56 37

 

 

After Step 1, sorting own data: 

 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 : 2 3 6 7 9 10 11 12 13 14 15 16 21 27 31 52

        

P1 : 1 4 5 18 20 22 23 24 26 28 29 30 32 38 40 62

        

P2 : 19 25 34 35 36 41 42 43 44 45 46 47 48 58 59 64

        

P3 : 8 17 33 37 39 49 50 51 53 54 55 56 57 60 61 63
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After Step 2, write data in 2D array: 

P0,          P1,    P2,            P3, 
2 3 6 7   1 4 5 18 19 25 34 35 8 17 33 37 

9 10 11 12   20 22 23 24 36 41 42 43 39 49 50 51 

13 14 15 16   26 28 29 30 44 45 46 47 53 54 55 56 

21 27 31 52   32 38 40 62 48 58 59 64 57 60 61 63 

 

 

 

After Step 3, read 2D array and generate P subsequences.  

index 0 1 2 3  4 5 6 7 8 9 10 11 12 13 14 15

P0 : 2 9 13 21   3 10 14 27  6 11 15 31  7 12 16 52

        

P1 : 1 20 26 32  4 22 28 38  5 23 29 40  18 24 30 62

        

P2 : 19 36 44 48  25 41 45 58  34 42 46 59  35 43 47 64

        

P3 : 8 39 53 57  17 49 54 60  33 50 55 61  37 51 56 63

 

 

After Step 4, Total Exchange (AAPC) 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 : 2 9 13 21 1 20 26 32 19 36 44 48 8 39 53 57

        

P1 : 3 10 14 27 4 22 28 38 25 41 45 58 17 49 54 60

        

P2 : 6 11 15 31 5 23 29 40 34 42 46 59 33 50 55 61

        

P3 : 7 12 16 52 18 24 30 62 35 43 47 64 37 51 56 63
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After Step 5, Sorting with successive merge operations 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 : 1 2 8 9 13 19 20 21 26 32 36 39 44 48 53 57

        

P1 : 3 4 10 14 17 22 25 27 28 38 41 45 49 54 58 60

        

P2 : 5 6 11 15 23 29 31 33 34 40 42 46 50 55 59 61

        

P3 : 7 12 16 18 24 30 35 37 43 47 51 52 56 62 63 64

 

 

After Step 6, generating subsequences 

index 0 1 2 3  4 5 6 7 8 9 10 11 12 13 14 15

P0 : 1 2 8 9  13 19 20 21  26 32 36 39  44 48 53 57

        

P1 : 3 4 10 14  17 22 25 27  28 38 41 45  49 54 58 60

        

P2 : 5 6 11 15  23 29 31 33  34 40 42 46  50 55 59 61

        

P3 : 7 12 16 18  24 30 35 37  43 47 51 52  56 62 63 64

 

After Step 7, Total Exchange (AAPC) 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 : 1 2 8 9 3 4 10 14 5 6 11 15 7 12 16 18

        

P1 : 13 19 20 21 17 22 25 27 23 29 31 33 24 30 35 37

        

P2 : 26 32 36 39 28 38 41 45 34 40 42 46 43 47 51 52

        

P3 : 44 48 53 57 49 54 58 60 50 55 59 61 56 62 63 64
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After Step 8, Sorting with successive merge operations 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 : 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18

        

P1 : 13 17 19 20 21 22 23 24 25 27 29 30 31 33 35 37

        

P2 : 26 28 32 34 36 38 39 40 41 42 43 45 46 47 51 52

        

P3 : 44 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64

 

 

 

 

After Step 9, Cleaning the dirty area 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

        

P1 : 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

        

P2 : 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

        

P3 : 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

 

 

3.3 Complexity Analysis 
To analyze the performance of the algorithm, following computational model from 

[6] is used, because it is a simple model and used in many similar works related with 

the work covered in this thesis. Therefore, it allows us to compare the algorithm with 

previous ones. In this model, powerful processors are connected by a communication 

network like the nodes in a complete graph. The only restrictions on the 

communication are the restrictions imposed by the latency and the bandwidth 
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properties of the network. The multiway-merge algorithm consists of a sequence of 

local computations interleaved with communication steps. The overall complexity of 

the algorithm depends on these communication and computation steps.  

 

In order to evaluate the communication time, following cost model is used. 

With the assumption of no congestion, O (τ + σm) will give the transfer time of a 

block consisting of m contiguous words between two processors. As stated in [6] τ is 

an upper bound on the latency of the network and σ is the time required for either 

injecting or receiving one word data from network. So O(τ + σmax(m, p)) will give 

the cost of a collective communication primitive, where m is defined as the maximum 

amount of data transmitted or received by a processor. This communication model is 

applied in several works [28], [29].  

 

The analysis of the adapted algorithm is as follows. Define Tcomp as the 

maximum time that is necessary for a processor to perform all the local computation 

steps. Steps 1, 2, 3, 5, 6, 8 involve no communication and are dominated by the cost 

of the sequential sorting in Step 1 and the merging in Step 5 and 8. For the sorting in 

Step 1 like floating point numbers (doubles), can be sorted with merge sort and 

requires only O(N/P log(N/P))  time. As mentioned earlier both Step 5 and 8 (P-way 

merge) require O(N/P logP) time.  Steps 4 and 7 call the communication primitive 

AAPC with message length m= N/ P2. So both require Tcomm (N, P) ≤ ( τ + σ N(P-1)/ 

P2 ). And the Step 9, which is the final step, consists of two one-to-one 

communication with message length m = P2, requires Tcomm (N, P) ≤ ( τ + σ2P2 ). 

Additionally two merge operations for input size P2 which requires O(P2). That is 

also being dominated.  

 

Hence the overall complexity of the new sorting algorithm is given by 

 

T(N, P) = Tcomp (N, P) + Tcomm (N, P)      ( 3.1 ) 

             = O ( N/P  log(NP) + τ + σ N/ P), for N >> P.  
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It is not exactly asymptotically optimal, but we can say that the algorithm is about 

asymptotically optimal with small coefficients.  In general, the overall performance 

Tcomp  + Tcomm involves a tradeoff between Tcomp  and Tcomm . Like many works in 

parallel algorithm, my aim here was also to achieve cost optimality which implies 

Tcomp  = O (Tseq / P) such that Tcomm is minimum and Tseq is the complexity of the best 

sequential algorithm. As seen from ( 3.1 ) , the adapted algorithm is not cost optimal. 

Since P x T(N,P) is not equal to Tseq,which is  O(NlogN).  

 

 

If we want to figure out the relative benefit of sorting the items with the 

adapted algorithm in parallel, then we are interested in Speedup, which is simply how 

much performance gain is achieved by the parallel algorithm over the sequential one. 

If we denote speedup as S, then from ( 3.1) 

 

S = 
P)T(N,
 Tseq  ,   

S= O(
NP

NP
log

log )  ( 3.2 ) 

 

The efficiency of our algorithm can be calculated with using (3.2), Hence the 

efficiency, E is 

 

E= 
P
S  = O(

NP
N

log
log )      ( 3.3 ) 

 

In the ideal case efficiency must be 1, which means all the processors devote 

100 percent of their time to the computations of the algorithm. However, real parallel 

systems do not achieve this result, due to the communication overhead and some 

other factors. Generally, the difference between the total time spent by all processors  
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and the time required by the fastest known sequential algorithm for solving the same 

problem is called the total overhead, To. 

 

To = P x T(P, N) -  Tseq  

 To = O( N logP )    ( 3.4 )  

 

Since the To grows slower than Tseq for a fixed P, efficiency can be maintained 

at a desired value for increasing P, provided N is also increased. Thus the algorithm is 

scalable. 

3.4 Design Approach 
 

This section gives the design patterns about an efficient implementation of the 

multiway-merge algorithm. Multiway-merge algorithm was implemented in a high-

level language so it can run on a variety of platforms. In our implementation, we used 

MPI (Message Passing Interface) [22, 23, 24], a specification for message passing 

libraries, designed to be a standard for distributed memory, message passing, parallel 

computing. MPI aims to provide a widely used standard for writing message-passing 

programs and to establish a practical, portable, efficient, and flexible standard for 

message passing.  

Reasons for using MPI:  

• Standardization - MPI is the only message passing library which can be 

considered a standard. It is supported on virtually all HPC platforms.  

• Portability - there is no need to modify your source code when you port your 

application to a different platform which supports MPI.  

• Performance - vendor implementations should be able to exploit native hardware 

features to optimize performance.  

• Functionality (over 115 routines)  

• Availability - a variety of implementations are available, both vendor and public 

domain.  
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Necessary data structure for each processor is an array of size N/P + 2P2 for 

storing the initial numbers and the P2 elements coming from both neighbors in Step 9.  

We have dedicated one processor called as master for initially creating the unsorted 

array length N and distributing it equally to the other processors that we called 

workers. Therefore, our implementation has an evenly distributed load balancing. 

We decided to choose this approach, in order to keep the homogeneity of the worker 

processors in the cluster system. By doing this, isolation of irrelevant works from the 

steps of the algorithm is achieved. For example, generation of the input numbers 

before starting the algorithm or checking the orders of the result sequences after the 

algorithm finishes can be done in master processor. Since these operations requires 

extra storage that may disturb the homogeneity.  

 

In the first step, Quicksort could be used as a sequential algorithm if memory 

limitation is a concern and it gives better results in practice, otherwise merge sort 

theoretically gives the best time. What is more, Step 2, 3 and 6 can be achieved by 

reordering of the indexes of data. The merge operation in step 5 and 8 is a P-way 

merge since the whole sequence to be merged, consists of P sorted subsequences. In 

our implementation, we preferred merging subsequences two by two for logP steps in 

a binary tree fashion. In the last step, one possible optimization is to use the merge 

operation in the reverse order only for P2 iterations to get the lowest numbers that 

falls to a processor. In order to find the last P2 numbers, running the merge operation 

for P2 iteration is enough. 

 

Consequently, the algorithm requires at least 2N/P storage area for each 

processor due to the merge operation. However, some efficient inplace sequential 

sorting algorithm could be replaced by merge operations in step 5 and 8, if possible. 

Hence the sorting and merging steps could be optimized in the future works. 

 



 

 

 

 

 

 

Chapter 4 
 

4 Experimental Results and 

Analysis 
 

4.1 Evaluating Algorithms 
A number of metrics are available when evaluating a parallel algorithm for some 

problem. These are defined in the next few paragraphs. 

4.1.1  Running Time 

Since speeding up computations appears to be the reason for parallel computers, 

parallel running time is probably the most important measure in evaluating a parallel 

algorithm. This is defined as the time required to solve a problem, that is, the time 

elapsed fro the moment the algorithm starts to the moment it terminates. Running 

time is usually obtained by counting two kinds of steps executed by the algorithm: 

routing steps and computational steps. In a routing step, data travel from one 

processor to another through the communication network or via the shared memory. 

A computational step, on the other hand, is an arithmetic or logic operation performed 

on data within a processor. For a problem of size n, the parallel worst-case running 

time of an algorithm, a function of n, will be denoted by t(n). 
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 A good indication of the quality of a parallel algorithm for some problem is 

the speedup it produces. This is defined as 

 

          Worst-case running time of fastest known sequential algorithm for the problem 

Speedup =                              ( 4.1 ) 
    Worst-case running time of parallel algorithm 
 
 

It is clear that the larger the ratio, the better the parallel algorithm. Ideally, of course, 

one hopes to achieve a speedup of N when solving a problem using N processors 

operating in parallel. In practice, such a speed up cannot generally be achieved since 

 

(1) in most cases it is impossible to decompose a problem into N tasks 

each requiring 1/N of the time taken by one processor to solve the 

original problem, and 

(2) the structure of the parallel computer used to solve a problem 

usually imposes restrictions that render the desired running time 

unattainable.  

 

4.1.2  Number of Processors 
 

Another criterion for assessing the value of a parallel algorithm is the number of 

processors it requires to solve a problem. Clearly, the larger the number of 

processors, the more expensive the solution becomes to obtain. For a problem of size 

n, the number of processors required by an algorithm, a function of n, will be denoted 

by p(n). the processors, numbered 1 to p(n), will be denoted by P1, P2, … , Pp(n),.    
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4.1.3  Cost 

The cost of a parallel algorithm is defined as the product of the previous two 

measures; hence 

 Cost = parallel running time x number of processors used.  ( 4.2 ) 

In other words, cost equals the number of steps executed in solving a problem 

in the worst case. If a lower bound is known on the number of sequential operations 

required in the worst case to solve a problem and the cost of a parallel algorithm for 

the problem matches this lower bound to within a constant multiplicative factor, the 

algorithm is said to be cost-optimal, since any parallel algorithm can be simulated on 

a sequential computer. In the particular case of sorting, a parallel algorithm whose 

cost is O(n log n) will be cost-optimal. Alternatively, when a lower bound is not 

known, the efficiency of the parallel algorithm, defined as 

  Worst-case running time of fastest known sequential algorithm for the problem 

Efficiency =                          ( 4.3 ) 
  Cost of parallel algorithm  

 

Is used to evaluate its cost. In the most cases,   

   Efficiency ≤ 1; 

Otherwise a faster sequential algorithm can be obtained from the parallel one! 

For a problem of size n, the cost of a parallel algorithm, a function of n, will be 

denoted by c(n). Thus  c(n) = t(n) x p(n). 

4.1.4  Other Measures 
 

Besides the three criteria outlined above, other measures are sometimes used to 

evaluate parallel algorithms. Like the chip area, length of the communication wires, 

period of a circuit are important for the VLSI technology, which is used in most 

parallel computers. However these measures are not necessary for the work presented 

here. 
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4.2 Experimental Data 
 

The algorithm was implemented using MPI and run on BORG system, which is a 32 

node PC-cluster. Our experimental results illustrate the efficiency and the scalability 

of our algorithm. The results are competitive with previous works.  

 

For each experiment, the input is evenly distributed amongst the processors. 

The output consists of the elements in non-descending order arranged amongst the 

processors so that the elements at each processor are in sorted order and no element at 

processor Pi is greater than any element at processor  Pj , for all i < j. In other words, 

the final sorted data array remains distributed among the different processors at the 

end of the sort. 

 

Quicksort was used to sequentially sort integers. Wherever possible, we tried 

to use the MPI standards in our implementations, to prevent vendor-specific 

properties. In fact, MPI does provide all of our communication primitives as part of 

its collective Communication Library. Since MPI becomes the universal standard in 

Parallel Computing gradually, we have preferred it, so we could able to compare the 

algorithm with similar ones also implemented in MPI.  

 

We tested our code with 4-byte integer numbers on three different 

conventional benchmarks. Firstly, for generating the input, we have applied the 

Uniform benchmark [U], which requires a uniformly distributed random input, 

obtained by calling the C library random number generator random(). The values are 

uniformly distributed in the range 0 through 232 – 1. Secondly, we tested our code on 

a Gaussian [G] distributed input, which is obtained by calling the random() function 

four times and then taking the average value for each input key. Finally, we have used 

an input that consists of all zero values, Zero [Z]. In the previous works related on 

this topic, these benchmarks are accepted as standard. [7]  
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In order to preserve the homogeneity of the nodes (worker processors), we 

have isolated the heterogeneous code from the core one which is executed similarly in 

all worker processors. As mentioned in implementation details section, one node 

called master is dedicated for generation of the unsorted sequence and distribution of 

it evenly to the worker processors. To generate the unsorted sequence in Uniform 

Benchmark [U], we have applied the following strategy. Firstly, the master node 

generates N numbers starting from 0 to N-1. Next it permutes the array, calling 

random() function repeatedly to shuffle the array. After execution, the master node 

also gathers the resulted sequences from each worker, and checks whether the total 

result was correctly sorted or not. 

 

We have measured the time by calling the MPI library function MPI_Wtime () 

first at the start of the algorithm and next at the end of the step 9, so the difference 

will give the execution time of the algorithm. As is the convention in the literature, 

the data to be sorted is already distributed among the processors before the timing is 

begun. Since each processor could have different execution times, we have put 

MPI_Barrier () before each MPI_Wtime () to keep the synchronicity. Thus the time 

measured is the maximum execution time of the individual execution times of worker 

processors. During the experiments, no other MPI programs or processes that require 

the processors of BORG were allowed to execute.   

 

The execution times for various input sizes with different processors are given 

in Table 4.1 for Uniform benchmark, Table 4.2 for Gaussian benchmark, and Table 

4.3 for Zero benchmark. Each data point reported in the tables below represent the 

average results over five different sets of random data. More detailed versions of 

these tables could be found in Appendices. Each set of data is created using a 

different random number generator seed value. The performance of multiway-merge 

parallel sorting algorithm as a function of input size is represented by graphics in 

Figure 4.2 . 
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Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1,335011 2,820501 5,965523 12,45525 24,03498 50,40286 

2 0,839626 1,739909 3,62222 7,554462 15,8012 30,75736 

4 0,484416 1,036845 2,085567 4,258955 8,859255 18,02189 

8 0,273475 0,590014 1,204814 2,418979 4,805135 9,790042 

16 0,154148 0,326091 0,813763 1,832427 2,911867 5,367821 

Table 4.1 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 16M 

integers [U] with PSORT on various processors in the BORG PC cluster system. One 

processor data is obtained by running a sequential Quicksort algortihm on the input. 

 

 

 

Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1.311262 2.804137 5.85161 12.29549 23.93699 50.39432 

2 0.824045 1.720443 3.589029 7.536904 15.62571 30.52727 

4 0.482399 1.008216 2.078269 4.264622 8.783141 17.95082 

8 0.274923 0.576005 1.31283 2.490565 4.842571 9.800294 

16 0.144154 0.31275 1.058176 1.81683 2.885767 5.281401 

Table 4.2 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 16M 

integers [G] with PSORT on various processors in the BORG PC cluster system. One 

processor data is obtained by running a sequential Quicksort algortihm on the input. 
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Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 0.609718 1.27802 2.675383 5.560864 17.33328 35.99081 

2 0.477112 0.985661 2.060151 4.184864 8.532312 23.82078 

4 0.308333 0.642771 1.305432 2.695743 5.364357 10.5972 

8 0.193543 0.395494 0.943082 1.615056 3.115139 6.142575 

16 0.121054 0.2328 0.880503 1.527776 2.07019 3.588378 

Table 4.3 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 16M 

integers [Z] on with PSORT various processors in the BORG PC cluster system. One 

processor data is obtained by running a sequential Quicksort algortihm on the input. 

 

As expected, the run time is cut by almost a factor of two when increasing 

number of processors to twice as the previous. But it is not exactly two, because of 

the communication and interprocessor computations. The execution time is nearly 

inversely with the number of processors. However the ratio between execution times 

is decreasing when the number of processors increases. That is the gain obtained by 

using 16 processors instead of 8 is smaller than the gain obtained by using 8 

processors instead of 4. As the number of processors increases, each processor 

performs less computation but the amount of communication is not decreased with 

same ratio. In other words, the communication time is comparable to the computation 

time, because there are always just constant number of physical wires that connects 

the nodes of the cluster to the network and the local network’s bandwidth remains 

constant. When the problem size and the number of processors increase, more 

communication overhead is added.  

 

As seen from the results (Figure 4.1), the performance of the algorithm is not 

dependent tightly on the input distribution. The general characteristics of the 

performance function are observed for all three benchmarks similarly. The execution 

time for [Z] is smaller than the others, which is what we expect.   
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Also some deviations are observed for specific input sizes. We expect the 

reason for them is due to the all to all personalized communication in the 

implementation. When we have analyzed the distribution of the time for the algorithm 

in Figure 4.8 and Figure 4.9, we have discovered that the standard MPI 

communication primitive for all to all personalized communication is not as efficient 

as expected. MPI keeps some internal buffering mechanism to prevent the congestion, 

thus the cache size to hold that buffer plays an important role. The extra 

synchronization affects the performance in a negative way. 

 

 

 

Sorting integers on 16-node of BORG

0

1

2

3

4

5

6

512K 1M 2M 4M 8M 16M

Total Number of Integers

Ti
m

e 
(s

)

[U] [G] [Z]
 

Figure 4.1 Comparison of different benchmarks, while sorting on 16 nodes of BORG 

with PSORT 
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Figure 4.2 Scalibility of sorting integers [U] with respect to problem size, for 

different numbers of processors using PSORT. 

 

 

 

We can examine the scalability of multiway-merge sorting as a function of 

problem size for differing number of processors. As seen in Figure 4.2, there exists an 

almost linear dependence between the execution time and the input size for a fixed 

number of processors. This relationship is also illustrated in Figure 4.3 obviously for 

a fixed number (16) of processors. On the other way, to view the scalability in 

another perspective, Figure 4.4 marks the change between execution times for 

different number of processors, while sorting 8M integer data. If the number of 

processors increases, the graphic approximates to a stable level, which means after 

some point increase in the number of processors won’t affect the performance too 

much.  
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Figure 4.3 Scalability in problem size for 16 nodes  

 

 

Scalibility of Sorting 8M Integers

0

5

10

15

20

25

30

1 2 4 8 16

Number of Processors

Ti
m

e 
(s

)

 

Figure 4.4 Scalibility of sorting 8M integers for different number of processors 
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Speedup = Tsequential / Tparallel 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1 1 1 1 1 1 

2 1,590008 1,621063 1,646924 1,648727 1,521086 1,638725 

4 2,755919 2,720272 2,860384 2,924484 2,71298 2,796758 

8 4,881661 4,780395 4,951407 5,148969 5,001937 5,14838 

16 8,660593 8,64943 7,330785 6,79713 8,25415 9,389816 

Table 4.4 Speedup values of PSORT for different input [U] sizes on various number 

of processors  

 

Speedup = Tsequential / Tparallel 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1 1 1 1 1 1 

2 1.59125 1.629892 1.630416 1.631372 1.531897 1.650797 

4 2.718212 2.781285 2.815618 2.883138 2.725334 2.807355 

8 4.769564 4.868251 4.457247 4.93683 4.943034 5.142123 

16 9.096283 8.966059 5.5299 6.767554 8.294846 9.541846 

Table 4.5 Speedup values of PSORT for different input [G] sizes on various number 

of processors 

 

Speedup = Tsequential / Tparallel 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1 1 1 1 1 1 

2 1.277935 1.296612 1.298635 1.328804 2.031486 1.5109 

4 1.977465 1.988298 2.049424 2.062831 3.231194 3.396257 

8 3.150292 3.231454 2.83685 3.443141 5.564206 5.859239 

16 5.036732 5.489767 3.038472 3.639843 8.372796 10.02983 

Table 4.6 Speedup values of PSORT for different input [Z] sizes on various number 

of processors 
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Another way of viewing the same data is to use the so called fixed speedup, computed 

as the ratio of the time it takes to run a problem on a processor to the time is take to 

run the same problem on a given number of processors. Figure 4.5, Figure 4.6, and 

Figure 4.7 show the fixed speedup versus the number of processors on different sizes 

of input. For a fixed number of processors, increasing the problem size increases the 

speedup efficiency. Actually, the speedup curve grows closer to linear as the problem 

size is incrementally increased. As the number of processors increases, the fixed 

speedup curve deviates from a straight line and starts to saturate. It would be very 

crucial to expect exactly O(N/P) time as processors are added. For a fixed problem 

size, adding more processors to the solution results in diminishing speedup returns. 

The speedup results are respectable for BORG, a cluster based distributed memory 

MIMD architecture. They might be improved with a more optimized implementation. 

It is important to keep in mind the fact that communication over a LAN between 

cluster nodes is expensive.  

 

Figure 4.5 Speedup versus number of processors for different sizes of input [U]  
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Figure 4.6 Speedup versus number of processors for different sizes of input [G] 

 

Figure 4.7 Speedup versus number of processors for different sizes of input [Z] 
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As observed in three of the speedup figures, the speedup for the input data of 

size 2M and 4M is smaller than the others. This is because the small size inputs like 

512K and 1M are small enough to fit the interior cache size for buffer. On the other 

hand, for the large sizes of inputs like 8M and 16M, the ratio of computation over 

communication is large enough to suppress the loss comes from buffering. Hence, the 

actual behavior of the algorithm is observed for large N over P. It is clear that, larger 

data sets more effectively offset the overheads of the algorithm. 

 

efficiency = speedup / # of processors 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1 1 1 1 1 1 

2 0,795004 0,810531 0,823462 0,824364 0,760543 0,819363 

4 0,68898 0,680068 0,715096 0,731121 0,678245 0,699189 

8 0,610208 0,597549 0,618926 0,643621 0,625242 0,643547 

16 0,541287 0,540589 0,458174 0,424821 0,515884 0,586864 

Table 4.7 Efficiency of PSORT for various numbers of processors on different input 

[U] sizes  

 

 

efficiency = speedup / # of processors 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1 1 1 1 1 1 

2 0.795625 0.814946 0.815208 0.815686 0.765949 0.825399 

4 0.679553 0.695321 0.703904 0.720785 0.681333 0.701839 

8 0.596196 0.608531 0.557156 0.617104 0.617879 0.642765 

16 0.568518 0.560379 0.345619 0.422972 0.518428 0.596365 

Table 4.8 Efficiency of PSORT for various numbers of processors on different input 

[G] sizes 
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efficiency = speedup / # of processors 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1 1 1 1 1 1 

2 0.638967 0.648306 0.649317 0.664402 1.015743 0.75545 

4 0.494366 0.497075 0.512356 0.515708 0.807798 0.849064 

8 0.393787 0.403932 0.354606 0.430393 0.695526 0.732405 

16 0.314796 0.34311 0.189904 0.22749 0.5233 0.626864 

Table 4.9 Efficiency of PSORT for various numbers of processors on different input 

[Z] sizes 

 

The Table 4.7 gives the efficiency of multiway-merge sorting algorithm on 

various number of processors for different input sizes. Efficiency is a measure of how 

the observed speedup compares with linear speedup, which is ideal. In other words, 

efficiency measures the portion of the time each processor spends doing “useful” 

work that contributes to the final solution. As seen from the values, the efficiency of 

our implementation is not super, but it is not going to be unreasonably bad either. 

When the execution times spent for each step were examined in Figure 4.8 and Figure 

4.9 it can be seen that most of the time has spent to sequential sort in Step1. This step 

can be optimized using better sequential sorting algorithms for specific keys to be 

sorted. For example using Radix Sort for integers will give O(N). The next biggest 

time consuming steps are the communication steps that require AAPC for transpose 

operation. Although, we did not spent special effort to implement the AAPC, with an 

optimized version the performance could be improved. There are special interest 

groups like [35] which are professionally working on the MPI_AlltoAll() to making 

an improved version nowadays. Additionally, there are many recent works in 

literature about efficient data distribution between processors. There are efficient 

algorithms for block-cyclic array redistribution between processors like in [21]. 
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Figure 4.8 Distribution of execution time by step on 16 nodes of BORG 

Figure 4.9 Distribution of execution time by step on 8 nodes of BORG 
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4.3 Comparisons of the Results 
 

There are many factors that could quickly speeds up the execution times of the 

experiments. For example, using vendor-specific communication primitives or 

machine specific implementations can boost up the results. What is more, there are 

also implementation specific factors like using fast accessible registers for frequently 

used variables, or using faster methods for memory access, copy, or comparison 

operations etc. and some other tricks might also affect the results. In our 

implementation, we have applied some of these. However, our goal here is to 

investigate the potential performance of the multiway-merge algorithm in general, 

and not to benchmark specific machines or implementations. Therefore, our 

implementation is not optimized to the hardware. Although it performs comparable 

results, the implementation can be optimized more.  

 

 As it is to be emphasized in [7], although there are many theoretical interests 

in parallel sorting, we are able to find relatively few empirical studies. Most of the 

empirical studies that we found were obtained from tests on old-fashioned machines 

or for special designed parallel computers, not today’s pc-clusters. Additionally, some 

of the works that we have found did not supply convenient data for comparison like 

speedup. This work is also important due to its property of being the some of the 

unique studies that supply empirical results for parallel sorting on a PC cluster 

technology.   

  

 In order to compare our results with other algorithms, we have decided to 

implement two more algorithms- one from parallel sample sort algorithms and one 

from quicksort algorithms with MPI on our BORG cluster. Otherwise the comparison 

results may not be adequate due to the software and hardware dependent factors like 

programming, network speed, power of processors, and memory etc. We have 

implemented PSRS (Parallel Sorting by Regular Sampling) as an instance of sample 

sort algorithms – also known single step algorithms as mentioned in chapter 2-, and 
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hypercube quicksort algorithm as an instance for multistep algorithms. Both 

algorithms are efficient algorithms in their classes. We have run the three algorithms 

in the same cluster and obtained the experimental results below. For each algorithm 

we tried the three benchmarks U uniformly distributed, G Gaussian distributed, and Z 

zero filled input data. The experimental results for Hyperquicksort are as follows: 

 

Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1,335011 2,820501 5,965523 12,45525 24,03498 50,40286 

2 0,656181 1,36175 2,846882 5,733281 11,86855 28,24622 

4 0,422815 0,877076 1,800701 3,737121 7,74239 15,1991 

8 0,26118 0,540686 1,118924 2,242671 4,573165 9,146568 

16 0,170847 0,32431 0,648274 1,339215 2,64014 5,456549 

Table 4.10 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 

16M integers [U] with Hyperquicksort on various processors in the BORG PC cluster 

system. One processor data is obtained by running a sequential Quicksort algorithm 

on the input. 

Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1,311262 2,804137 5,85161 12,29549 23,93699 50,39432 

2 0,647346 1,342474 2,689541 5,763189 11,60979 26,71161 

4 0,407888 0,854147 1,776614 3,688194 7,573267 15,93311 

8 0,262176 0,539236 1,132204 2,256625 4,864059 9,718607 

16 0,159005 0,325405 0,656986 1,343272 2,812576 5,660201 

Table 4.11 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 

16M integers [G] with Hyperquicksort on various processors in the BORG PC 

cluster system. One processor data is obtained by running a sequential Quicksort 

algorithm on the input. 
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Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 0,609718 1,27802 2,675383 5,560864 17,33328 35,99081 

2 0,546109 1,11942 2,302662 4,70867 9,660501 21,80971 

4 0,356734 0,726149 1,480463 3,025802 6,194669 12,71959 

8 0,224758 0,45141 0,971524 1,858256 3,772465 7,656362 

16 0,133912 0,270888 0,556594 1,108306 2,267947 4,507517 

Table 4.12 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 

16M integers [Z] with Hyperquicksort on various processors in the BORG PC 

cluster system. One processor data is obtained by running a sequential Quicksort 

algorithm on the input. 

 

 For the PSRS, [Z] distribution is not applicable since the algorithm based on 

the regular sampling heuristic. When all elements are zero the pivot values could not 

able to partition the local samples so it might work for some cases worst than the 

sequential algorithm due to the extra communication overhead. The execution times 

for [U] and  [G] are given below: 

 

Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1,335011 2,820501 5,965523 12,45525 24,03498 50,40286 

2 0,767775 1,631442 3,352483 7,085041 14,69197 28,69112 

4 0,406358 0,855627 1,755299 3,739375 7,702234 16,07232 

8 0,220271 0,469623 0,966984 2,100859 4,203759 8,432961 

16 0,143817 0,252677 0,526959 1,146468 2,46587 4,766118 

Table 4.13 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 

16M integers [U] with PSRS on various processors in the BORG PC cluster system. 

One processor data is obtained by running a sequential Quicksort algorithm on the 

input. 
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Sequential versus Parallel Run time in seconds 

input size 
# of procs 512K 1M 2M 4M 8M 16M 

1 1,311262 2,804137 5,85161 12,29549 23,93699 50,39432 

2 0,764684 1,599278 3,411533 7,056921 14,70411 28,57786 

4 0,418736 0,890938 1,945153 3,866342 7,984475 16,73927 

8 0,244732 0,501521 1,181397 2,166164 4,461673 9,241586 

16 0,135747 0,276674 0,610951 1,197954 2,441376 4,913464 

Table 4.14 Total execution time (in seconds) for sorting 512K, 1M, 2M, 4M, 8M, 

16M integers [G] with PSRS on various processors in the BORG PC cluster system. 

One processor data is obtained by running a sequential Quicksort algortihm on the 

input. 

 

 For the sake of simplicity in the next following paragraphs we will present the 

related data together for these three algorithms. In order to eliminate duplication of 

the data, we decided to put the detailed experimental results in the Appendices. We 

present the experimental results in the tables which we call comparison charts, in a 

three dimensional view- one for each type of algorithm, one for the number of inputs, 

and one for the number of processors. Whenever it is possible, we create a 

comparison chart for each different input distributions like [U], [G], and [Z]. To make 

the sizes of comparison charts more compact, the experimental data results are 

truncated up to the second digit after comma, however detailed results are also 

supported in appendices. PSORT refers Multiway-merge Parallel Sorting Algorithm, 

PSRS refers Parallel Sorting with Regular Sampling and QSORT refers 

Hyperquicksort. The following tables are showing the execution times of the 

algorithms for various number of inputs and processors, corresponding speedup 

values and efficiencies respectively. The values of [19] are presented under the 

column of PSRS (Parallel Sorting with regular Sampling), our results are presented 

under the column PSORT, where it stands for Multiway-merge Parallel Sorting 

Algorithm and the results for hyperquicksort algorithm is presented under the column 

QSORT. The results are discussed after the tables.  
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Figure 4.10 Execution time versus number of uniformly distributed [U] inputs 

 

 

Comparison Chart [U] 

Sequential versus Parallel Run times in seconds 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

1 1,34 1,34 1,34 2,82 2,82 2,82 5,97 5,97 5,97 12,46 12,46 12,46 24,03 24,03 24,03 50,40 50,40 50,40

2 0,84 0,77 0,66 1,74 1,63 1,36 3,62 3,35 2,85 7,55 7,09 5,73 15,80 14,69 11,87 30,76 28,69 28,25

4 0,48 0,41 0,42 1,04 0,86 0,88 2,09 1,76 1,80 4,26 3,74 3,74 8,86 7,70 7,74 18,02 16,07 15,20

8 0,27 0,22 0,26 0,59 0,47 0,54 1,20 0,97 1,12 2,42 2,10 2,24 4,81 4,20 4,57 9,79 8,43 9,15 

16 0,15 0,14 0,17 0,33 0,25 0,32 0,81 0,53 0,65 1,83 1,15 1,34 2,91 2,47 2,64 5,37 4,77 5,46 

Table 4.15 Comparison of total execution times (in seconds) for sorting 512K, 1M, 

2M, 4M, 8M, 16M integers [U] with PSORT, PSRS, and QSORT on various 

processors in the BORG PC cluster system. One processor data is obtained by 

running a sequential Quicksort algortihm on the input. 
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Figure 4.11 Execution time versus number of Gaussian distributed [G] inputs 

 

 

Comparison Chart [G] 

Sequential versus Parallel Run times in seconds 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

1 1,31 1,31 1,31 2,80 2,80 2,80 5,85 5,85 5,85 12,30 12,30 12,30 23,94 23,94 23,94 50,39 50,39 50,39

2 0,82 0,76 0,65 1,72 1,60 1,34 3,59 3,41 2,69 7,54 7,06 5,76 15,63 14,70 11,61 30,53 28,58 26,71

4 0,48 0,42 0,41 1,01 0,89 0,85 2,08 1,95 1,78 4,26 3,87 3,69 8,78 7,98 7,57 17,95 16,74 15,93

8 0,27 0,24 0,26 0,58 0,50 0,54 1,31 1,18 1,13 2,49 2,17 2,26 4,84 4,46 4,86 9,80 9,24 9,72 

16 0,14 0,14 0,16 0,31 0,28 0,33 1,06 0,61 0,66 1,82 1,20 1,34 2,89 2,44 2,81 5,28 4,91 5,66 

Table 4.16 Comparison of total execution times (in seconds) for sorting 512K, 1M, 

2M, 4M, 8M, 16M integers [G] with PSORT, PSRS, and QSORT on various 

processors in the BORG PC cluster system. One processor data is obtained by 

running a sequential Quicksort algortihm on the input. 
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Figure 4.12 Execution time versus number of zero distributed [Z] inputs 

 

Table 4.17 Comparison of total execution times (in seconds) for sorting 512K, 1M, 

2M, 4M, 8M, 16M integers [Z] with PSORT, PSRS, and QSORT on various 

processors in the BORG PC cluster system. One processor data is obtained by 

running a sequential Quicksort algortihm on the input. NA means Not Applicable 

Comparison Chart [Z] 

Sequential versus Parallel Run times in seconds 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

1 0,61 0,61 0,61 1,28 1,28 1,28 2,68 2,68 2,68 5,56 5,56 5,56 17,33 17,33 17,33 35,99 35,99 35,99

2 0,48 NA 0,55 0,99 NA 1,12 2,06 NA 2,30 4,18 NA 4,71 8,53 NA 9,66 23,82 NA 21,81

4 0,31 NA 0,36 0,64 NA 0,73 1,31 NA 1,48 2,70 NA 3,03 5,36 NA 6,19 10,60 NA 12,72

8 0,19 NA 0,22 0,40 NA 0,45 0,94 NA 0,97 1,62 NA 1,86 3,12 NA 3,77 6,14 NA 7,66 

16 0,12 NA 0,13 0,23 NA 0,27 0,88 NA 0,56 1,53 NA 1,11 2,07 NA 2,27 3,59 NA 4,51 
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Figure 4.13 Speed up versus number of uniformly distributed [U] inputs 

 

Table 4.18 Comparison of speedup values for different input [U] sizes on various 

number of processors for PSORT, PSRS, QSORT algorithms 

 

 

 

Comparison Chart [U] 

Speedup = Tsequential / Tparallel 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

2 1,59 1,74 2,03 1,62 1,73 2,07 1,65 1,78 2,10 1,65 1,76 2,17 1,52 1,64 2,03 1,64 1,76 1,78 

4 2,76 3,29 3,16 2,72 3,30 3,22 2,86 3,40 3,31 2,92 3,33 3,33 2,71 3,12 3,10 2,80 3,14 3,32 

8 4,88 6,06 5,11 4,78 6,01 5,22 4,95 6,17 5,33 5,15 5,93 5,55 5,00 5,72 5,26 5,15 5,98 5,51 

16 8,66 9,28 7,81 8,65 11,16 8,70 7,33 11,32 9,20 6,80 10,86 9,30 8,25 9,75 9,10 9,39 10,58 9,24 
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Figure 4.14 Speed up versus number of Gaussian distributed [G] inputs 

 

 

Comparison Chart [G] 

Speedup = Tsequential / Tparallel 

  Input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

2 1,59 1,71 2,03 1,63 1,75 2,09 1,63 1,72 2,18 1,63 1,74 2,13 1,53 1,63 2,06 1,65 1,76 1,89 

4 2,72 3,13 3,21 2,78 3,15 3,28 2,82 3,01 3,29 2,88 3,18 3,33 2,73 3,00 3,16 2,81 3,01 3,16 

8 4,77 5,36 5,00 4,87 5,59 5,20 4,46 4,95 5,17 4,94 5,68 5,45 4,94 5,37 4,92 5,14 5,45 5,19 

16 9,10 9,66 8,25 8,97 10,14 8,62 5,53 9,58 8,91 6,77 10,26 9,15 8,29 9,80 8,51 9,54 10,26 8,90 

Table 4.19 Comparison of speedup values for different input [G] sizes on various 

number of processors for PSORT, PSRS, QSORT algorithms 
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Figure 4.15 Speed up versus number of zero distributed [Z] inputs 

 

Table 4.20 Comparison of speedup values for different input [Z] sizes on various 

number of processors for PSORT, PSRS, QSORT algorithms 

 

 

 

 

Comparison Chart [Z] 

Speedup = Tsequential / Tparallel 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

2 1,28 NA 1,12 1,30 NA 1,14 1,30 NA 1,16 1,33 NA 1,18 2,03 NA 1,79 1,51 NA 1,65 

4 1,98 NA 1,71 1,99 NA 1,76 2,05 NA 1,81 2,06 NA 1,84 3,23 NA 2,80 3,40 NA 2,83 

8 3,15 NA 2,71 3,23 NA 2,83 2,84 NA 2,75 3,44 NA 2,99 5,56 NA 4,59 5,86 NA 4,70 

16 5,04 NA 4,55 5,49 NA 4,72 3,04 NA 4,81 3,64 NA 5,02 8,37 NA 7,64 10,03 NA 7,98 
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As seen from the results in Table 4.15, Table 4.16, and Table 4.17 for small 

number of processors like in 2 and 4 Hyperquicksort gives the best execution times, 

while PSRS follows it and lastly PSORT comes. However when the number of 

processors increases PSRS gives the best execution time except the Zero[Z] 

benchmark, as explained early regular sampling heuristics fail for that case.  For 

uniformly and Gaussian distributed input data PSRS performs the best results, then 

Hyperquicksort and finally PSORT. However for the zero benchmark multiway-

merge algorithm outperforms the hyperquicksort and clearly PSRS as seen in the 

Table 4.17.  

 

Since, PSRS (Parallel Sorting by Regular Sampling) [19], and [7] have 

asymptotically optimal bounds O )log(
P

NN , for sorting N numbers with P 

processors, the algorithm outperforms the others in practice too (see Figure 4.10, 

Figure 4.11).  Although hyperquicksort has also theoretically good asymptotical 

bounds, in practice PSRS has better than it. Because the recursion in the nature of 

quicksort is somewhat costly and also in order to obtain a better laod balancing 

hyperquicksort has multiple rounds of communication. This is the generic 

disadvantage of the multistep parallel sorting algorithms like [2, 15, 16, 18, 40, 42, 

43, 44]. Here there is a tradeoff between having a better load balance and multiple 

rounds of communication overhead.  

 

The performance of multiway-merge algorithm approximates to the 

performances of PSRS and hyperquicksort. Although it is not as good as the other 

two but it is not  dramatically bad either. Compared to the other results, one of the 

main reasons that our implementation performs less than the others is the fact that it 

requires two total exchange algorithm and two successive merge operations after total 

exchanges while PSRS has only ones. These results obeys the theoretical analysis of 

the algorithm, which we had found as O(N/PlogNP). The multiway-merge algorithm, 

also performs well when the number of duplicate elements in the input sequence 

increases as in the zero benchmark (e.g. Figure 4.12).  
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When we compare the speed up values of the three algorithms for uniformly 

distributed data, for two processors hyperquicksort has the largest speedup value. As 

the number of processors increases PSRS reaches the best speed up values among 

three algorithms (see Table 4.18). PSRS obtained its maximum speed up for 

uniformly distributed data at 16 processor for input size of 2M integers as 11,32. For 

Gaussian distributed data [G], except for the 2M and 4M data, multiway-merge 

algorithm and hyperquicksort  have almost nearly speed up values. What is more, for 

some input sizes multiway-merge algorithm has slightly better speed up values then 

hyperquicksort for 16 processors as seen in Figure 4.14.  This small difference 

between speed up values of multiway-merge algorithm and hyperquicksort becomes 

noticeable large for zero benchmark [Z] as observed in Figure 4.15 and Table 4.20. 

Similarly as in the speedups, the efficiencies of the algorithms have the same ranking 

given with following tables Table 4.21, Table 4.22, and Table 4.23. For comparing 

our results with PSRS and hyperquicksort, we took the values of speedups and 

efficiencies in addition to the execution times for clarity.  

 

 

Table 4.21 Comparison of efficiencies for various numbers of processors on different 

input [U] sizes for PSORT, PSRS, QSORT algorithms 

 

 

Comparison Chart [U] 

efficiency = speedup / # of processors 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

2 0,80 0,87 1,02 0,81 0,86 1,04 0,82 0,89 1,05 0,82 0,88 1,09 0,76 0,82 1,01 0,82 0,88 0,89 

4 0,69 0,82 0,79 0,68 0,82 0,80 0,72 0,85 0,83 0,73 0,83 0,83 0,68 0,78 0,78 0,70 0,78 0,83 

8 0,61 0,76 0,64 0,60 0,75 0,65 0,62 0,77 0,67 0,64 0,74 0,69 0,63 0,71 0,66 0,64 0,75 0,69 

16 0,54 0,58 0,49 0,54 0,70 0,54 0,46 0,71 0,58 0,42 0,68 0,58 0,52 0,61 0,57 0,59 0,66 0,58 
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Table 4.22 Comparison of efficiencies for various numbers of processors on different 

input [G] sizes for PSORT, PSRS, QSORT algorithms 

 

 

 

 

Table 4.23 Comparison of efficiencies for various numbers of processors on different 

input [Z] sizes for PSORT, PSRS, QSORT algorithms 

 

 

 

 

Comparison Chart [G] 

efficiency = speedup / # of processors 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

2 0,80 0,86 1,01 0,81 0,88 1,04 0,82 0,86 1,09 0,82 0,87 1,07 0,77 0,81 1,03 0,83 0,88 0,94 

4 0,68 0,78 0,80 0,70 0,79 0,82 0,70 0,75 0,82 0,72 0,80 0,83 0,68 0,75 0,79 0,70 0,75 0,79 

8 0,60 0,67 0,63 0,61 0,70 0,65 0,56 0,62 0,65 0,62 0,71 0,68 0,62 0,67 0,62 0,64 0,68 0,65 

16 0,57 0,60 0,52 0,56 0,63 0,54 0,35 0,60 0,56 0,42 0,64 0,57 0,52 0,61 0,53 0,60 0,64 0,56 

Comparison Chart [Z] 

efficiency = speedup / # of processors 

  input size 

  512K 1M 2M 4M 8M 16M 

#pro PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT PSORT PSRS QSORT

2 0,64 NA 0,56 0,65 NA 0,57 0,65 NA 0,58 0,66 NA 0,59 1,02 NA 0,90 0,76 NA 0,83 

4 0,49 NA 0,43 0,50 NA 0,44 0,51 NA 0,45 0,52 NA 0,46 0,81 NA 0,70 0,85 NA 0,71 

8 0,39 NA 0,34 0,40 NA 0,35 0,35 NA 0,34 0,43 NA 0,37 0,70 NA 0,57 0,73 NA 0,59 

16 0,31 NA 0,28 0,34 NA 0,29 0,19 NA 0,30 0,23 NA 0,31 0,52 NA 0,48 0,63 NA 0,50 
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As a summary, for small number of processors like 2 and 4, hyperquicksort 

gives the best execution results. If the number of processors increases, PSRS has a 

dramatic superiority over two other algorithms in our experiments. For the zero 

benchmark [Z], the multiway-merge algorithm has better results than the others. 

Since we took the same sequential running time value for each algorithm in the 

experiments and all the algorithms are executed on the same machines with the same 

conditions, the speed up and efficiency values for the experiments are appropriate for 

comparisons. If sorting algorithm is needed in further works on the BORG system, 

we suggest to use PSRS algorithm on the average, for small number of processors 

like 2-4 to use hyperquicksort, and when the repeated values in the input sequence is 

too much (like in [Z]) then using the multiway-merge algorithm will yield better 

performance. 

 



 

 

 

 

 

 

Chapter 5 
 

5 Conclusion 
 

Computing science is always searching to find the ways of performing task efficiently 

and optimally. The total elapsed time for solving a problem, number of machines 

used to solve it and scalability of the solutions are only a few of important criteria 

which considered during this big research in computing science. 

 

The necessity of this research starts from the dawn of computer and 

continues still today. We believe that it could continue forever in the future, since 

there is no limit in humans imagination, in their creative thinking abilities, and in 

wishes of men. If the human being continues their life style in the way today, the 

wishes will never end in the future. 

 

To achieve maximum performance, various methods, architectures, 

programming approaches etc. are developed during this process. Parallel Processing 

is another approach to attack problems. It was born as a result of these researches in 

computing and has also got its share from them. Today, we have a diverse range of 

parallel architectures. Many special algorithms have been developed for specific 

architectures to become the best. But the problem here is that the efficient algorithms 

developed for one specific machine or architecture may not be adequate for others. 
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In this thesis, we present another parallel sorting algorithm, which is originally 

[1] designed for product networks and we have adapted it to MIMD architectures. It 

is suitable to wide range of MIMD architectures with its share of weaknesses and 

strengths. The algorithm requires only two AAPC (all-to-all personalized 

communication) and two one-to-one communications independent from the input 

size. The workload is distributed amongst the processors with evenly distributed load 

balancing. In addition, the algorithm requires only size of 2N/P local memory for 

each processor in the worst case, where N is the number of items to be sorted and P is 

the number of processors. It runs O ( N/P  log(NP) + τ + σ N/ P) time, for N >> P.  

 

We have tested the algorithm on PC cluster of Bilkent University (BORG), 

which is a kind of distributed memory MIMD architecture. Although it may not be 

the best algorithm for parallel sorting, the multiway-merge algorithm is a feasible one 

with its generality to a variety of MIMD architectures, evenly distributed load 

balancing properties and limited regular communication steps.  

 

In the experimental studies that are done under this work, we have selected 

two more algorithms which are instances of two different types of classifications in 

the parallel sorting [38], one from single-step algorithms and other one from multi-

step algorithms. We have also implemented the PSRS algorithm that is one of the 

famous one among the parallel sample sort algorithms and Hyperquicksort –an 

example for parallel quicksort algorithm- in the BORG system. In the experimental 

part of the study, for each algorithm we have experiments for 3 different benchmarks 

[U], [G], [Z], for six different sizes of inputs [512K, 1M, 2M, 4M, 8M, 16 Millions of 

integers] and for five different number of processors. Totally about 270 experimental 

results are gathered and reported. The repetitions of the experiments are not included 

in this number. Among these three algorithms, PSRS reached the best performance in 

the experiments for Uniformly and Gaussian distributed data. Initially, for small 

number of processors Hyperquicksort  algorithm gave better results than PSRS and 

multiway-merge algorithm. However on the average and for large number of 

processors, PSRS superiority was observed. For the Zero [Z] benchmark, the 
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multiway-merge algorithm is the best one amongst the other two algorithms. As a 

conclusion, the performances of the algorithms change depending on the number of 

processors, different sizes of inputs and distribution of the input streams. Thus, if 

sorting algorithm is needed in further works on the BORG system, we suggest to use 

PSRS algorithm on the average, for small number of processors like 2-4 to use 

hyperquicksort, and when the repeated values in the input sequence is too much (like 

in [Z]) then using the multiway-merge algorithm will yield better performance. 

 

To sum up, the multiway-merge algorithm performs well on cluster 

technology, which becomes very popular and takes the focus of interest in Parallel 

Computing Science. Although it did not obtain good results as the PSRS and 

Hyperquicksort, it is a successful adaptation of the multiway-merge algorithm, which 

is valid for a various number of MIMD like architectures. What is more, as mentioned 

above according to the input distribution and number of processors, we obtained 

some cases for which the multiway-merge algorithm performs better. The empirical 

results that obtained from this work will constitute a sample for further studies. 
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6 Appendices 
Input 
size 

512K = 219 1M = 220 2M = 221 4M = 222 8M = 223 16M = 224

# of 
proc 

524288 1048576 2097152 4194304 8388608 16777216

1 1,331556 2,82145 5,937117 12,457858 23,860795 51,60693

1 1,340341 2,81894 5,938312 12,453154 24,010314 49,953322

1 1,33595 2,820809 5,936176 12,452075 23,878915 49,833601

1 1,33332 2,825863 6,014676 12,460992 23,877341 50,217576

1 1,33389 2,815444 6,001336 12,452153 24,547551 51,433751

Avg 1,3350114 2,8205012 5,9655234 12,4552464 24,0349832 50,40285725

2 0,84815 1,740235 3,620729 7,63464 15,748585 30,824214

2 0,83404 1,740065 3,621162 7,527606 15,836642 30,730728

2 0,846087 1,739822 3,624371 7,528154 15,863817 30,717127

2 0,835047 1,73788 3,6202 7,538016 15,880906 30,716324

2 0,834804 1,741542 3,62464 7,543892 15,676042 30,505195

Avg 0,8396256 1,7399088 3,6222204 7,5544616 15,8011984 30,75735633

4 0,484829 1,03269 2,047932 4,245199 8,795382 18,504009

4 0,489565 1,060532 2,04696 4,249882 8,776898 18,201944

4 0,482546 1,009541 2,102681 4,238162 8,959687 17,867881

4 0,48452 1,026937 2,116242 4,281864 8,880975 17,797193

4 0,48062 1,054527 2,114022 4,279668 8,883335 17,738417

Avg 0,484416 1,0368454 2,0855674 4,258955 8,8592554 18,0218888

8 0,275967 0,587836 1,201419 2,346242 4,879598 9,74025

8 0,269595 0,583133 1,206666 2,482858 4,824711 9,844373

8 0,277492 0,590626 1,186264 2,368265 4,783823 9,82371

8 0,266146 0,601544 1,258594 2,524292 4,761079 9,817347

8 0,278174 0,586932 1,171126 2,373236 4,776463 9,724531

Avg 0,2734748 0,5900142 1,2048138 2,4189786 4,8051348 9,7900422

16 0,160118 0,320247 0,725158 1,663814 2,86068 5,421947

16 0,158398 0,336058 0,7431 1,610893 2,903732 5,349319

16 0,15337 0,321306 0,668518 1,903183 2,921287 5,40896

16 0,150118 0,312463 0,950699 1,74597 2,995499 5,361329

16 0,148735 0,340381 0,981341 2,238277 2,878135 5,297552

Avg 0,1541478 0,326091 0,8137632 1,8324274 2,9118666 5,3678214

Table 6.1 Data obtained from the experiments for sorting integers [U] on BORG with 

PSORT. 
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Input 
size 

512K = 219 1M = 220 2M = 221 4M = 222 8M = 223 16M = 224

# of 
proc 

524288 1048576 2097152 4194304 8388608 16777216

1 1.311402 2.826437 5.847682 12.301117 23.784586 50.331247

1 1.311304 2.775577 5.855555 12.289182 24.09196 50.733111

1 1.312682 2.771098 5.850357 12.301611 23.919278 50.733111

1 1.310748 2.780947 5.853703 12.288133 23.941938 49.779805

1 1.310174 2.866625 5.850753 12.297429 23.947187 49.543677

Avg 1.311262 2.8041368 5.85161 12.2954944 23.9369898 50.3943185

2 0.823266 1.719904 3.591976 7.565149 15.551137 30.544635

2 0.823755 1.720953 3.589323 7.566341 15.728051 30.533321

2 0.825109 1.720236 3.591642 7.562311 15.646591 30.503839

2 0.824635 1.720645 3.586868 7.514876 15.654865 30.530064

2 0.823462 1.720477 3.585335 7.475842 15.547923 30.684456

Avg 0.8240454 1.720443 3.5890288 7.5369038 15.6257134 30.527265

4 0.489234 0.977203 2.052974 4.253341 8.852495 17.760773

4 0.477921 0.998674 2.103432 4.229291 8.665496 17.962157

4 0.474659 1.006689 2.12547 4.363844 8.878012 17.920993

4 0.486426 1.054054 2.053381 4.199804 8.871281 17.947053

4 0.483754 1.004461 2.056086 4.276828 8.648423 18.163126

Avg 0.4823988 1.0082162 2.0782686 4.2646216 8.7831414 17.9508204

8 0.266984 0.562115 1.176946 2.525738 4.899292 9.827816

8 0.28269 0.575803 1.354918 2.504136 4.880004 9.773595

8 0.276173 0.571787 1.281885 2.473964 4.883803 9.754557

8 0.272937 0.576859 1.429068 2.405257 4.746033 9.926793

8 0.27583 0.593461 1.321335 2.543729 4.803721 9.718709

Avg 0.2749228 0.576005 1.3128304 2.4905648 4.8425706 9.800294

16 0.1387 0.307564 1.003127 1.650454 2.998168 5.245192

16 0.156937 0.304306 1.072952 1.999165 2.959577 5.264493

16 0.147562 0.311357 1.111057 2.168219 2.765706 5.284548

16 0.140498 0.326699 1.049302 1.579132 2.852557 5.30288

16 0.137071 0.313825 1.054444 1.68718 2.852826 5.309893

Avg 0.1441536 0.3127502 1.0581764 1.81683 2.8857668 5.2814012

Table 6.2 Row data obtained from the experiments for sorting integers [G] on BORG 

with PSORT. 
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Input 

size 512K = 219 1M = 220 2M = 221 4M = 222 8M = 223 16M = 224

# of 

proc 524288 1048576 2097152 4194304 8388608 16777216

1 0,607428 1,281447 2,671633 5,544792 17,370429 35,99424

1 0,609549 1,273434 2,676843 5,563932 17,380735 35,988456

1 0,619182 1,286043 2,691106 5,562792 17,390156 35,989307

1 0,606327 1,278813 2,669899 5,572786 17,380198 35,991249

1 0,606102 1,270363 2,667436 5,560017 17,144863 35,901343

Avg 0,6097176 1,27802 2,6753834 5,5608638 17,3332762 35,990813

2 0,477157 0,984349 2,022297 4,225383 8,512896 23,822524

2 0,477775 0,979606 2,112916 4,244817 8,514749 23,81894

2 0,475768 0,999785 2,053412 4,150021 8,629512 23,820873

2 0,478391 0,984213 2,089066 4,144266 8,498519 24,018429

2 0,476467 0,980351 2,023062 4,159833 8,505883 25,198367

Avg 0,4771116 0,9856608 2,0601506 4,184864 8,5323118 23,820779

4 0,311054 0,637339 1,280608 2,686521 5,313281 10,411763

4 0,30511 0,656613 1,347829 2,627289 5,261572 10,589217

4 0,309205 0,643719 1,29162 2,727654 5,43301 10,69407

4 0,312957 0,644722 1,324167 2,661194 5,507351 10,580495

4 0,303339 0,631461 1,282935 2,776059 5,306571 10,710446

Avg 0,308333 0,6427708 1,3054318 2,6957434 5,364357 10,5971982

8 0,187302 0,393551 1,089147 1,624537 3,14829 6,361053

8 0,192947 0,389531 1,027092 1,584266 3,13872 6,243545

8 0,197088 0,401502 0,972976 1,637642 3,123051 6,025125

8 0,195316 0,382138 0,810717 1,588441 3,077117 6,133831

8 0,195063 0,410747 0,81548 1,640392 3,088518 5,94932

Avg 0,1935432 0,3954938 0,9430824 1,6150556 3,1151392 6,1425748

16 0,117326 0,225012 0,869158 1,304136 2,147669 3,541467

16 0,125695 0,250186 0,890927 1,72667 1,94073 3,54921

16 0,128421 0,243825 0,882188 1,497912 2,115439 3,581412

16 0,106873 0,224691 0,899128 1,37998 2,071702 3,646695

16 0,126956 0,220288 0,861114 1,73018 2,075408 3,623104

Avg 0,1210542 0,2328004 0,880503 1,5277756 2,0701896 3,5883776

Table 6.3 Row data obtained by the experiments for sorting integers [Z] on BORG 

with PSORT. 


