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ABSTRACT

CONSTRAINED DELAUNAY TRIANGULATION FOR
DIAGNOSIS AND GRADING OF COLON CANCER

Süleyman Tuncer Erdoğan

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Çiğdem Gündüz Demir

July, 2009

In our century, the increasing rate of cancer incidents makes it inevitable to em-

ploy computerized tools that aim to help pathologists more accurately diagnose

and grade cancerous tissues. These mathematical tools offer more stable and

objective frameworks, which cause a reduced rate of intra- and inter-observer

variability. There has been a large set of studies on the subject of automated

cancer diagnosis/grading, especially based on textural and/or structural tissue

analysis. Although the previous structural approaches show promising results for

different types of tissues, they are still unable to make use of the potential infor-

mation that is provided by tissue components rather than cell nuclei. However,

this additional information is one of the major information sources for the tissue

types with differentiated components including luminal regions being useful to

describe glands in a colon tissue.

This thesis introduces a novel structural approach, a new type of constrained

Delaunay triangulation, for the utilization of non-nuclei tissue components. This

structural approach first defines two sets of nodes on cell nuclei and luminal

regions. It then constructs a constrained Delaunay triangulation on the nucleus

nodes with the lumen nodes forming its constraints. Finally, it classifies the

tissue samples using the features extracted from this newly introduced constrained

Delaunay triangulation.

Working with 213 colon tissues taken from 58 patients, our experiments

demonstrate that the constrained Delaunay triangulation approach leads to

higher accuracies of 87.83 percent and 85.71 percent for the training and test

sets, respectively. The experiments also show that the introduction of this new

structural representation, which allows definition of new features, provides a more

robust graph-based methodology for the examination of cancerous tissues and
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better performance than its predecessors.

Keywords: Constrained Delaunay triangulation, histopathological image analysis,

automated cancer diagnosis and grading, colon cancer, adenocarcinoma.



ÖZET

KOLON KANSERİNİN KISITLI DELAUNAY
ÜÇGENLEMESİ İLE TEŞHİSİ VE

SINIFLANDIRILMASI

Süleyman Tuncer Erdoğan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Y. Doç. Dr. Çiğdem Gündüz Demir

Temmuz, 2009

Yüzyılımızda artan kanser vakaları, bilgisayar destekli araçların kullanımını

kaçınılmaz kılmıştır; bunlar patologların kanserli dokulara daha kesin tanı koy-

malarına ve sınıflandırmalarına yardımcı olmayı amaçlamaktadır. Bu matema-

tiksel araçlar, daha tutarlı ve nesnel yapılar sunarak gözlemci-içi ve gözlemciler-

arası değişkenliği azaltmaya olanak sağlar. Günümüzde, özellikle dokusal ve/veya

yapısal doku analizi temelli otomatik kanser tanı ve sınıflandırması üzerine

çok miktarda çalışma bulunmaktadır. Önceki yapısal yaklaşımların farklı tipte

dokular için umut verici sonuçlar göstermelerine rağmen, bu yaklaşımlar hücre

çekirdeği dışındaki doku bileşenlerinden sağlanabilecek potansiyel bilgiyi kullana-

bilmekten yoksundurlar. Hâlbuki bu ek bilgi, farklılaşmış bileşenlerden oluşan

doku tipleri için ana bilgi kaynaklarından birisini oluşturmaktadır; örneğin lümen

bölgeleri, kolon dokusu içindeki bezleri tanımlamaya yardımcı olmaktadır.

Bu tez çalışması, hücre çekirdeği dışındaki doku bileşenlerinin kullanımı için

yeni bir yapısal yaklaşımı, yeni bir çeşit kısıtlı Delaunay üçgenlemesini, ortaya

koymaktadır. Bu yapısal yaklaşım öncelikle hücre çekirdekleri ve lümen bölgeleri

üzerinde iki düğüm kümesi tanımlar. Daha sonra, lümen düğümleri kısıtları

oluşturacak şekilde, çekirdek düğümleri üzerinde bir kısıtlı Delaunay üçgenlemesi

oluşturur. Son olarak, bu yeni tanımlanan kısıtlı Delaunay üçgenlemesinden

çıkarılacak öznitelikleri kullanarak doku örneklerini sınıflandırır.

Elli sekiz farklı hastadan alınan 213 kolon doku örneği üzerinde

gerçekleştirdiğimiz deneyler, kısıtlı Delaunay üçgenlemesi yaklaşımı ile eğitim

kümesi için yüzde 87.83, test kümesi içinse yüzde 85.71 gibi yüksek doğruluk

değerleri elde edildiğini ortaya koymuştur. Ayrıca deneylerimiz, yeni özniteliklerin
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tanımlanmasına izin veren bu yeni yapısal gösterimin, kanserli dokuların incelen-

mesi için daha gürbüz bir çizge-tabanlı yöntem olduğunu ve önceki yöntemlere

göre daha yüksek başarı sağladığını göstermektedir.

Anahtar sözcükler : Kısıtlı Delaunay üçgenlemesi, histopatolojik görüntü analizi,

otomatik kanser teşhisi ve sınıflandırılması, kolon kanseri, adenokarsinom.
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under the number TÜBİTAK 106E118 for their financial support to me and our

project.

I am extremely grateful to my closest friends for their guidance, encourage-
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Chapter 1

Introduction

Cancer, which is also known as malignant neoplasm, is a serious, lethal class of

human diseases that occurs with the ungoverned expansion, division, and spread

of abnormal cells. 12.5 percent of deaths worldwide is due to cancer and cancer

results in more deaths than AIDS, tuberculosis, and malaria combined, as pre-

sented in Table 1.1. It is also the second leading cause of death in economically

developed countries, following heart diseases, and the third leading cause of death

in developing countries, right after heart diseases and diarrhoeal diseases [52].

Cancer affects a variety of organs or systems. Most types of cancer, such as

prostate, breast, and colorectal, form a tumor and affect the organ they originate

from. On the other hand, some types do not form a tumor, like leukemia. One

of the most common tumor-forming-cancer type is colon cancer, which is also

named as colorectal cancer or large bowel cancer. According to studies, it is the

third leading cause of cancer-related deaths in developed countries for both men

and women [52].

According to World Health Organization, one third of these cancer incidents

could be reduced by enforcing cancer-preventing strategies [127]. Another third

could be cured if they are diagnosed early and treated adequately. Regular screen-

ing examinations by health care professionals may prevent the cancer to be formed

and result in the removal of pre-malignancy growths. Considering the occurrence

1



CHAPTER 1. INTRODUCTION 2

Worldwide Developing Developed
Rank % Rank % Rank %

Heart diseases 1 19.6 1 18.1 1 28.6
Malignant neoplasms 2 12.5 3 10.2 2 26.2
CV diseases 3 9.6 4 9.5 3 9.9
Lower resp. infections 4 6.7 5 7 4 4.4
COPD* 5 4.8 8 4.9 5 3.8
HIV/AIDS 6 4.6 6 5.3 - 0.3
Perinatal conditions** 7 4.5 7 5.1 - 0.4
Diarrhoeal diseases 8 3.2 2 16.1 - 0.1
Tuberculosis 9 2.9 9 3.3 - 0.2
Road traffic accidents 10 2.0 - 2.2 9 1.5
Malaria 11 2.1 10 2.5 - 0.0
Diabetes mellitus 12 1.7 - 1.6 7 2.6
Suicide 13 1.6 - 1.5 8 1.6
Cirrhosis of the liver 14 1.4 - 1.4 10 1.5
Measles 15 1.4 - 1.6 - 0.0
The number zero in a cell indicates a non-zero estimate of less than 500 deaths.
*COPD is chronic obstructive pulmonary disease.
**This cause category includes “causes arising in the perinatal period” as defined in the
International Classification of Diseases, principally low birthweight, prematurity, birth as-
phyxia, and birth trauma, and does not include all causes of deaths occurring in the perinatal
period.
Source: Lopez AD, Mathers CO, Ezzati M, et al. Global and regional burden of dis-
ease and risk factors, 2001: Systematic analysis of population health data. Lancet.
2006;367(9524):1747-57.

Table 1.1: Leading causes of death worldwide (in developing and developed coun-
tries), 2001
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and death rate of cancer throughout the world, the value of early and accurate

detection of the cancerous tissues and the selection of the correct treatment plan

are very important.

It should be noted that the correct treatment selection is always the key to

recovery and convalescence. One of the main factors that affects the treatment

selection is accurate diagnosis and grading of cancer. In the current practice of

medicine, several methods have been proposed for cancer diagnosis. The first cat-

egory of these methods consists of medical imaging techniques, such as magnetic

resonance imaging (MRI), nuclear MRI (NMRI), computed tomography (CAT

scan), and positron emission tomography (PET scan). These techniques are used

to diagnose the cancerous regions, but they are incapable of providing reliable

information for grading process. The second group of formerly proposed can-

cer diagnosis methods is molecular diagnosis [33, 38, 65, 78, 110]. This type of

diagnostic methods is not for widespread use, due to the fact that genetic infor-

mation is highly complicated and there exists a requirement for both specialists

and complex and costly apparatus.

For these reasons, in the current practice of medicine, histopathological ex-

amination is still the gold standard for both cancer diagnosis and grading. For

the examination, a sample tissue, which is called biopsy, is surgically removed

from a patient. Afterwards, the biopsy is placed onto a glass slide and stained

with a special technique to enhance contrast in the microscopic image. In the

histopathological examination, a pathologist examines the structure of the tis-

sue to determine whether it is cancerous or not. If it is cancerous, s/he also

determines the type and grade of cancer.

Histopathological examination yields valuable clinical information and pro-

vides accuracy both in diagnosis and grading [14, 22, 63, 69]. Neverthless, cancer

diagnosis is still a major challenge for cancer specialists worldwide [95, 102]. The

main drawback of the histopathological examination is that the analysis is sub-

jective to visual interpretation and experience of the pathologist, especially in

grading process [3, 36, 114].

To decrease the subjectivity level, and thus, to help pathologists make more
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reliable decisions, computer-aided diagnosis has been proposed. Computer-aided

diagnosis is becoming more robust and reliable with the development of novel ap-

proaches and evolution of algorithms in the long run. They also gain momentum

and become widely accepted with the falling prices and improvement of hardware

infrastructure. Cheap processing power is coming into the picture as a natural

result of these maturing computer technologies. However, the existing systems

present their own challenges and have their own shortcomings.

1.1 Motivation

Ongoing development in computer technologies has already been canalized into

cancer research projects. Many studies have been proposed to use computerized

image analysis to support pathologists and to reduce the variability between the

decisions of the pathologists. In these studies, a tissue is represented with a set of

mathematical features and these features are then used in automated diagnosis

and grading process. These studies mainly focus on textural and/or structural

tissue analysis.

In the first group of these studies, the texture of the entire tissue is character-

ized with a set of textural features such as those calculated from co-occurrence ma-

trices [40, 43, 103], run-length matrices [126], multiwavelet coefficients [67, 126],

fractal geometry [7, 37, 44], and optical density [43, 126].

In the second group, the cell distribution within a tissue is represented as a

graph and structural features are extracted from this graph representation. Pre-

vious studies consider the locations of cell nuclei as nodes to generate such graphs

including Delaunay triangulations [40, 72], Gabriel graphs [112, 124], minimum

spanning trees [18, 124], and probabilistic graphs [32].

The major drawback of the previous graph-based studies is their incapability

of using potential information that is provided by other tissue components rather

than cell nuclei. Because of their nature, such information becomes useful espe-

cially for the representation of the tissue types where tissues consist of hiearchical
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Lumen

Epithelial cell

(a) Healthy (b) Healthy

(c) Low-grade cancerous (d) Low-grade cancerous

(e) High-grade cancerous (f) High-grade cancerous

Figure 1.1: Histopathological images of colon tissues. These tissues are stained
with the hematoxylin-and-eosin technique, which is routinely used to stain biop-
sies in hospitals.
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structures. For example, in colon tissues, epithelial cells are lined up around a

lumen to form a glandular structure. The gland architecture for a normal colon

tissue is shown in Figures 1.1a and 1.1b with the lumen and an epithelial cell of a

single gland being indicated with arrows. Colon adenocarcinoma, which accounts

for 90–95 percent of all colorectal cancer incidents, distorts the gland formations.

At the beginning, the degree of distortion is lower such that the gland forma-

tions are well to moderately differentiated; examples of such low-grade cancerous

tissues are shown in Figures 1.1c and 1.1d. Then the distortion level becomes

higher such that the gland formations are only poorly differentiated; examples

of such high-grade cancerous tissues are shown in Figures 1.1e and 1.1f. For

the automated diagnosis and grading of colon cancer, these distortions should be

quantified. Obviously, for a colon tissue, the additional information obtained from

luminal components facilitates better tissue quantification compared to the case

where the information is obtained from only cellular/nuclear tissue components.

Another drawback of the previous graph-based techniques is their require-

ment of high-quality segmentation. Accurate extraction of nuclei information is

crucial for the proposed algorithms and it surely ensures higher and more reli-

able recognition rates, because the algorithms make use of spatial information

provided by these nodes. However, in the image magnification on which a graph

is extracted, the boundaries of individual cell nuclei of colon tissues are occasion-

ally uncertain and they are even inseparable by an expert. Figure 1.2 points out

the indistinguishability of some nuclei groups. Therefore, An alternative node

definition algorithm is necessary to eliminate the requirement of a high-quality

segmentation.

1.2 Contribution

The formation of glandular structures is characterized with the locations of cells

and luminal regions with respect to each other and it affects the decisions of

pathologists for diagnosis and grading. Thus, it should also affect the results

acquired by computer-aided diagnosis systems. However, traditional graph-based
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Figure 1.2: In the image magnification on which a graph is extracted, the bound-
aries of individual cell nuclei of colon tissues are occasionally uncertain.

approaches ignore this fact and use the information provided by the features that

are extracted from any type of graph which is just built onto cell nuclei structures.

On the contrary, for better characterization of a tissue, it is beneficial to define

representative graph nodes on luminal regions rather than defining them only on

nuclear regions. These nodes can be used in such a way that they facilitate the

luminal information for recognition systems.

In this thesis, we report a new structural method that considers the loca-

tions of both nuclear and luminal components for tissue representation. Unlike

the previous studies that use the standard Delaunay triangulation and its corre-

sponding Voronoi diagram on nuclei, we propose to use a new type of constrained

Delaunay triangulation (and its corresponding Voronoi diagram) to represent the

tissue. In this representation, we assign edges between nuclear components where

luminal components form the constraints. Then we define a new set of structural

features on this constrained Delaunay triangulation, and use these features in

the classification of colon tissues. The constrained Delaunay triangulation of an

exemplary colon tissue image, which is shown in Figure 1.3e, and its correspond-

ing Voronoi diagram are shown in Figures 1.3a and 1.3b, respectively. In their

construction, both nuclear and luminal components are considered as opposed to

the construction of standard Delaunay triangulation and Voronoi diagram where

only nuclei components are utilized but non-nuclei components are not consid-

ered. For the same tissue image, the standard Delaunay triangulation and its
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corresponding Voronoi diagram are shown in Figures 1.3c and 1.3d, respectively.

In this representation, a set of circular primitives, formed by a technique called

circle-fit transform [115], is used as the nodes of the triangulation. With the help

of this approach, the problem that arises from the necessity of using classical and

inefficient segmentation algorithms is alleviated. Furthermore, images with lower

resolution are sufficient for the proposed circle-fit transform, which decreases the

CPU-time.

1.3 Organization of the Thesis

The remaining of this thesis is organized as follows: In the first section of the

following chapter, a brief explanation of medical background and terminology is

presented. The following section exposes the previous studies in this research area

of cancer diagnosis, emphasizing their disadvantages for colon tissues, and revises

the related work on the use of constrained Delaunay triangulation. Chapter 3

explains the details of our proposed structural method. Consequently, Chapter

4 describes the experimental framework and analyzes the experimental results.

Finally, Chapter 5 provides a summary of our work and discusses the future

directions of our study.
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(a) Constrained Delaunay triangulation (b) Voronoi diagram of constrained Delau-
nay triangulation

(c) Delaunay triangulation (d) Voronoi diagram of Delaunay triangu-
lation

(e) Tissue image

Figure 1.3: A sample Delaunay triangulation built onto nuclei structures of colon
tissues. It can be observed that nuclei around or in the middle of a luminal region
are connected to each other in the traditional Delaunay triangulation, where they
are not suppossed to be.



Chapter 2

Background

In this chapter, the underlying medical terminology of this thesis is presented.

The structure of colon tissues, staining process, structural changes in different

grades of colon cancer are some of the topics investigated in the first section.

Following the medical background, a brief overview of the previous computa-

tional methods for the diagnosis of cancerous tissues other than the graph-based

methods is given. Afterwards, broader knowledge on the subject of graph-based

methods is presented. Finally, other applications of constrained Delaunay trian-

gulation are overviewed.

2.1 Medical Terminology

2.1.1 Colon tissues

The colon, or the large intestine or large bowel, is the last portion of the digestive

track and is responsible for extracting water and electrolytes from feces just before

they are excreted. The remaining solid waste is also stored until leaving the body

through the anus.

10
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When cancer is suspected, a variety of methods can be applied to detect the

status of a tissue. In the current practice of medicine, histopathological examina-

tion is the gold standard. For diagnostic evaluation, a sample tissue is surgically

removed from the patient. This procedure is called a biopsy. The biopsy specimen

is sent to a pathologist for the microscopic examination.

In the next step, sections are taken from the biopsy specimen and they

are stained with special chemical compounds for the ease of visibility at mi-

croscopic level. In this thesis, we use the images of colon tissues stained with

the hematoxylin-and-eosin technique (H&E). This staining technique is a conven-

tional one and is routinely used to stain tissues at hospitals. In this technique,

hematoxylin is the active ingredient of the staining solution and colors nucleic

acids with a blue-purple hue. On the other hand, alcohol-based acidic eosin col-

ors eosinophilic structures (i.e., proteins) with bright pink. Consequent view un-

der the microscope carries the characteristic blue-stained nuclei and pink-stained

stroma [47, 75]. Therefore the color spectra of the images of tissues stained with

the H&E technique are commonly rich of blue-purple, pink, and white pixels.

Gland borders

Arbitrary empty region

Lamina propria

Epithelial cell nucleus

Luminal area

Epithelial cell cytoplasm

Stromal cell nucleus

Figure 2.1: The layout of a colon tissue stained with the H&E technique

Figure 2.1 exhibits the layout of a colon tissue stained with the H&E tech-

nique. Cells in a tissue could be grouped into two: epithelial cells and stromal

cells. Simple columnar, non-ciliated epithelial cells form the epithelium tissue of
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colon [96]. A sample epithelial cell is highlighted in Figure 2.1 with a red circle, of

which the dark purple region constitutes its nucleus, and the lighter white section

next to nucleus is cytoplasm. A group of epithelial cells is lined up around an

oval vacant region called luminal area to form a gland all together. Luminal area

of a gland body is also marked in this figure. Also, there may exist an arbitrary

vacant region around or inbetween gland bodies, which is just an artifact that

arises from the sectioning procedure.

The remaining region outside the gland bodies consists of loose connective

tissue, which makes up the support structure of biological tissues and holds all of

the structures in the tissue together. The cells found in the loose connective tissue

could be called as stromal cells. These are diffused around glandular bodies and

they are not part of a gland structure. Moreover, the pink area around stromal

cells is composed of noncellular material called lamina propria.

2.1.2 Colon adenocarcinoma

Colon tissues may easily become cancerous in course of time, due to the fact that

an uninterrupted stress provided by storaged solid waste is present. The risk fac-

tors of colon cancer also include a diet low in fiber and high in fat, certain types of

colorectal polyps, inflammatory bowel disease such as Crohn’s disease or ulcera-

tive colitis, smoking, alcohol, and some inherited genetic disorders transmitted at

birth. Improper nutrition habits tending to pervade in developing countries, as a

natural result of intense life routines, heighten the risk of colon cancer. Colon ade-

nocarcinoma is its most common type, which accounts for approximately 90− 95

percent of all colon cancers.

In a typical healthy colon tissue, there exists an harmonious and coherent

composition of gland bodies and loose connective tissue. With the abnormal

growth and division of cells, due to the aforementioned reasons, tumors may

grow out of healthy tissues and consistent structure of colon may get corrupted.

A tumor can be benign (non-cancerous) or malignant (cancerous). If the tumor is

malignant and has expansionary properties, it may diffuse into other organs and
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become lethal in case of not being cured. Tumor grading is the scheme used to

catalogue the status of cancer cells in the sense of how anomalistic they appear

and how rapidly the tumor is likely to grow and spread.

Tumors may be graded on four-tier, three-tier and two-tier scales [46]. In

two-tier grading scheme, which is the scheme used in this thesis, there are

• Low-grade cancer, in which the glands are well to moderately differentiated,

and

• High-grade cancer, in which the glands are only poorly differentiated.

2.2 Previous Studies on Tissue Analysis

Many studies have been proposed to use computerized image analysis to support

the pathologists and to reduce the variability between the decisions of pathol-

ogists. Previous studies have focused on different aspects of image process-

ing. Mainly, these studies made use of textural and structural representation

of histopathological images. Less number of studies used other types of informa-

tion such as color based features and/or morphological features. In this chapter,

we will overview the fundamental textural and structural features of histopatho-

logical image processing.

2.2.1 Textural features

In the first group of previous studies, the texture of the entire tissue is charac-

terized with a set of textural features such as those calculated by the following

approaches:

Co-occurrence matrix : Co-occurrence matrix is accumulation of pixel

level data which is the distribution of co-occurring values at varying offsets. It

is initially defined by Haralick et al. in 1973 [61]. The other known identities are
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co-occurrence distribution, gray-level co-occurrence matrix (GLCM), and spatial

dependence matrix. For a w × h image I parameterized by an offset (∆x, ∆y),

the co-occurrence matrix C is defined in Equation 2.1:

C (i, j) =
w∑

p=1

h∑
q=1





1, if I (p, q) = i and I (p + ∆x, q + ∆y) = j

0, otherwise
(2.1)

Co-occurrence matrix is sensitive to rotation, so the use of a set of offsets

corresponding to 0, 45, 90 and 135 degrees results in a degree of rotational invari-

ance. Also, the value of the image is generally referred to the gray-scale value

of the specified pixel. However, in literature, co-occurrence matrices have been

commonly used to extract texture information not only from gray-scale images

[8, 18, 42, 43, 60, 103, 124, 126], but also from colored images [107, 108].

The resulting co-occurrence matrices are not sufficient to be analyzed by them-

selves, so many features are extracted from these matrices such as inertia, en-

tropy, total energy, angular second moment, contrast, correlation, variance, sum

average-variance-entropy, and difference variance-entropy-moment, also known as

Haralick’s features [61].

Run-length matrix : Gray-level run-length method has been initially

defined by Galloway [51] and its features are then extended by Chu et al. [19]. It

is another effective way of accessing higher order statistical texture features [2].

Although it is shown that run-length method is slightly less adequate for texture

analysis comparing to other methods [21, 122], later improvements consolidate

the employability of the algorithm [113].

Galloway’s proposition of run-length matrix is as follows: For a given image, a

run-length matrix p (i, j) is defined as the number of runs with pixels of gray-level

i and run length j, where a run is defined as a set of linearly sequential pixels

belonging to the same intensity. In literature, there exist some features defined on

run-length matrices such as short runs emphasis, long runs emphasis, gray-level

non-uniformity, run length non-uniformity, run percentage, low gray-level run
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emphasis, and high gray level run emphasis [113]. Later, additional features like

short run low gray-level emphasis, short run high gray-level emphasis, long run

low gray-level emphasis, and long run high gray-level emphasis are also defined

on these matrices [26]. High gray-level run emphasis (HGRE) feature is presented

as an example in Equation 2.2:

HGRE =
1

nr

M∑
i=1

N∑
j=1

p (i, j) · i2 (2.2)

These features are also used for the diagnosis and grading of cancerous tis-

sues in previous studies conducted by Weyn et al. [125] and Bibbo et al. [8].

Extracted features are used for classification with KNN classification [126], his-

togram method [125], or three-way discriminant analysis [8].

Multiwavelet coefficients : Wavelets are special classes of functions that

are used to represent data or other functions by dividing them into different scale

components [54]. They have very important applications especially in image

(data) compression and denoising (image enhancement) [5, 15, 24, 25, 27, 55, 66,

83, 87, 90, 93, 99]. The details of the wavelets are out of the scope of this thesis

and references will be left to the reader for future investigation.

Three classes in which wavelet transforms are divided are continuous, discrete,

and multiresolution-based wavelets. Multiwavelets are superior to former classes

and possess additional properties like orthogonality, symmetry, and vanishing

moments, which are known to be important in signal and image processing, and

resulting in being advantageous over scalar ones [1, 111, 116].

Multiwavelet coefficients enable researchers to lower the dimension of data and

analyze it through some features. Some set of features like energy and entropy

can be extracted from multiwavelet coefficients and they are also used to improve

accuracy on colon image classification in previous studies [29, 67, 123, 126].

Fractal dimension : Mandelbrot defined a fractal as an image and/or geo-

metric shape that appears identical and repeats itself as it is scaled down, which
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cannot be represented by classical geometry [80]. In fractal geometry, the fractal

dimension, D, is a measure of complexity which gives an indication of how a

fractal appears to fill space as it is zoomed further. The statistical quantity D

is acquired with the following equation, where N (ε) is the number of self-similar

structures of diameter ε necessary to cover the structure:

D = lim
ε→0

log N (ε)

log 1
ε

(2.3)

Previous studies on histopathological image analysis make use of fractal di-

mension information to improve accuracy achieved by other methods [7, 37, 44].

Although the analysis shows that fractal dimension is highly correlated with fea-

tures like correlation and entropy, it is shown that fractal dimension information

improves sensitivity and can be useful for automated techniques in clinical prac-

tice in the future [44].

2.2.2 Structural features

In the second group of previous studies, the cell distribution within a tissue is

represented as a graph or diagram and structural features are extracted from

these representations. These studies are mainly focused on the following repre-

sentations:

Voronoi diagram : Voronoi diagram is defined as the decomposition of a

regular plane with n data points into convex polygons such that each polygon

encloses its unique origin point and every point inside is closer to the origin point

of its polygon than any other data points. For each point pi in the set of coplanar

points P , a boundary enclosing all the intermediate points lying closer to the

corresponding origin point pi than other points in the set P can be drawn. Each

one of the enclosing points are called Voronoi polygons. Figure 2.2 demonstrates

the schema of a Voronoi diagram constructed on 50 random points.

The very first Voronoi-like diagram was proposed by René Descartes when he
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Figure 2.2: A Voronoi diagram of random points. It is observable that every
single point has its own mutually disjoint convex polygon, i.e., Voronoi polygon.

was trying express the division of universe by stars in 1644 [88]. The original

definition of Voronoi diagrams goes back to 1850 with Lejeune Dirichlet [35], but

later, Voronoi extended the investigation of Voronoi diagrams to higher dimen-

sions in 1907 [120]. Due to its history, Voronoi diagrams are also called Dirichlet

tessellation (also medial axis transform, Wigner-Seitz zones, domains of action,

and Thiessen polygons [98]). Each mutually disjoint convex polygon of a Voronoi

diagram is called Dirichlet regions, Thiessen polytopes, or Voronoi polygons.

Voronoi diagram has become a classical approach and has been applied across

many studies in computer vision and image analysis [6, 45, 88, 98]. Intrinsically,

cancer studies have taken advantage of the Voronoi diagrams [9, 72, 81, 101, 124,

126]. In these studies, the very fundamental features such as area and shape

of the polygons are sufficed to ensure the satisfying discriminative power among

other types.

Delaunay triangulation : Delaunay triangulation is a special type of graph

of which edges satisfies the following rule: The circumcircle of each individual

triangle is an empty circle, pointing out that there must not exist any other point

inside the circle. The triangulation is named after Boris Delaunay, who defined
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it in 1934 [30]. The original formal definition of a single Delaunay triangle for

two-dimensional space is as follows:

Definition 1 Let P be a finite set of points. Non-collinear points pi,pj and pk

of set P form a Delaunay triangle t if and only if there exists a location x which

is equally close to pi,pj and pk and closer to pi,pj,pk than any other pm ∈ P.

The location x is the center of a circle which passes through the points pi,pj,pk

and contains no other points pm of P. For the 2D space, there exist only one

circle which is the circumcircle of t [48].

Figure 2.3a visualizes the circumcircle of a single Delaunay triangle. Delaunay

triangulation is the dual of Voronoi diagram in R2. It maximizes the minimum

interior angle of all of the angles of the triangles in the triangulation. Delaunay

triangulation of ten random points is visualized in Figure 2.3b, and presented

together with its corresponding Voronoi diagram in Figure 2.4:

(a) Circumcircle of a Delaunay triangle (b) Delaunay triangulation of ten random
points

Figure 2.3: Delaunay triangulation

There are many features available to be calculated using Delaunay triangula-

tion, since it is a variation of graphs. Most of the features below are also common

to the following graph representations, which are to be explained in this section.

For each feature type, some statistics such as mean, standard deviation, skewness,
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and kurtosis can be calculated over the corresponding feature values, creating a

broad selection pool of subfeature types.

Figure 2.4: Delaunay triangulation together with its corresponding Voronoi di-
agram. In this figure, dashed lines represent the boundary lines for Voronoi
polygons, and the solid lines belong to Delaunay triangulation.

• Length of edges - Features can be defined on the information of distance

between the nodes which share a common edge. The feature can be defined

on global scale (e.g., the mean of edge lengths), or defined per node (e.g., the

standard deviation of edge lengths for each node). An alternative feature

can be the distance to nearest neighbors per node (which is connected by

an edge) or the distance to the farthermost neighbor [72, 124]. Another

modification of the feature can be the average distance to, for instance, the

five closest neighbors [71].

• Number of edges - Similar to the previous feature, total number of edges in

the entire image or a variation of statistical data per node can be used for

classification [72, 124].
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• Triangle area - The mean of the triangle area for the entire image or the

kurtosis of areas of triangles that share a common vertex per node are two

examples of how this feature can be utilized [72].

• Number of triangles - The number of triangles per unit area or per node

can be other types of features [72].

• Polarity of the edges - Angles inbetween the edges can also be utilized for

polarity information [18].

Not only Delaunay triangulation, but all of the graph types used in the pre-

vious studies are built on a set of nodes which, in fact, represents the positional

information of nuclei of the tissues. Previous studies have adopted this approach

as a general rule and defined features on these graphs [10, 18, 40, 72, 124]. As

mentioned before, most of the aforementioned features are also common to these

graphs.

Gabriel graphs : Gabriel graph is another type of neighborhood graph which

attempts to represent the overall spatial arrangement of the points in a set of P ,

named after Gabriel who proposed the use of newborn graph in 1969 [50]. It

is a subgraph of Delaunay triangulation [94]. Gabriel graph forbids inclusion of

any other point to the circle accepting an edge between two points as diameter,

unlike the Delaunay triangulation, which defines the circle on three points forming

a Delaunay triangle. A Gabriel graph edge is defined as follows:

Definition 2 Let P be a finite set of points. Two points pi and pj of set P

are connected by an edge of the Gabriel graph, and they are said to be Gabriel

neighbors, if and only if the circle having line segment pipj as its diameter does

not contain any other points of P in its interior. DG (P) contains the Gabriel

graph of P, GG (P).

A sample Gabriel graph of the point set presented in Figure 2.5a, is given

in Figure 2.5c. It is obvious that this Gabriel graph is a subgraph of Delaunay

triangulation presented in Figure 2.5b.
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Gabriel graphs have been used in various applications, but have not been

employed widely in cancer diagnosis applications. Sudbo et al. [112] and Weyn

et al. [124] made use of Gabriel graphs to increase accuracy in their work.

Minimum spanning tree : A spanning tree T of connected, undirected, and

unweighted graph G is a subgraph that reaches out to all the nodes with n − 1

edges and is a tree, which is a connected graph without cycles. On the other

hand, a minimum spanning tree of a weighted graph is the one of the alternative

spanning trees with the least total weight. A minimum spanning tree for the

given point set is also constructed and presented in Figure 2.5d.

Similar to the Gabriel graphs, the minimum spanning tree are used to improve

discriminative power of image analysis systems in the previous studies of Choi et

al. [18] and Weyn et al. [124].

Probabilistic graphs : Unlike the previous graph types, probabilistic graphs

are constructed by probabilisticly assigning edges between every pair of nodes.

Then the cell distribution in a tissue is quantized by the features extracted from

these probabilistic graphs [32, 59]. For example, in [32], the probability of the

existence of an edge P (u, v) is defined as:

P (u, v) = d (u, v)−α (2.4)

where d (u, v) is the Euclidean distance from node u to node v, and 0 < α ≤ 1

is the parameter that controls the edge density of the graph. Larger values of α

increase the number of edges in the graph. Formal definition of these probabilistic

graphs is as follows; a sample of a probabilistic graph is given in Figure 2.5f.

Definition 3 Let G = (V, E) be a generated graph with V being the set of nodes

and E representing the edges of the graph. The binary relation E of V is defined

as E =
{
(u, v) : r < d (u, v)−α , ∀u, v ∈ V

}
, where r is a generated random real

number between 0 and 1.

Augmented (complete) graphs : Augmented graphs are undirected,
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(a) Point set (b) Delaunay triangulation

(c) Gabriel graph (d) Minimum spanning tree

(e) Voronoi diagram with Delaunay
triangulation

(f) Probabilistic graph with r = 0.1

Figure 2.5: Various structural types of computational geometry
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weighted, complete graphs without self loops. With the use of augmented graphs

in a study by Demir et al. [31], usage of several control parameters are eliminated

due to the fact that augmented graphs are complete graphs. Inclusion of all pos-

sible edges between every pair of nodes prevents the loss of any kind of existing

spatial information. The study revealed a remarkable and exceptional accuracy

achieved in the classification of glioma, which is a type of brain cancer.

2.3 Constrained Delaunay Triangulations

As its definition is given earlier in Section 2.2.2, Delaunay triangulations are one

of the most commonly used structural entities in the history of mathematics and

computational geometry. There exist an extension to Delaunay triangulation,

constrained Delaunay triangulation, which satisfies the following properties:

• The prespecified edges that are obliged to be included in the final graph

representation appear in the triangulation.

• The triangulation is as close as possible to the Delaunay triangulation.

More formally, constrained Delaunay triangulation is originally defined by

Chew in [17] as follows:

Definition 4 Let G be a straight-line planar graph. A triangulation T is a con-

strained Delaunay triangulation (CDT) of G if each edge of the G is an edge of

T and for each remaining edge e of T , there exists a circle C with the following

properties: (1) the endpoints of edge e are on the boundary of C, and (2) if any

vertex v of G is in the interior of C then it cannot be “seen” from at least one of

the endpoints of e (i.e., if you draw the line segments from v to each endpoint of

e then at least one of the line segments crosses an edge of G).

Figure 2.6a demonstrates ten points in 2D space. Suppose that the thick lines

are the constraint edges and they must appear in the final triangulation. Figure
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2.6b shows the conventional Delaunay triangulation calculated with empty-circle

rule, disregarding the constraints. On the other hand, Figure 2.6b points out the

structuring of constrained Delaunay triangulation. Note that the prespecified

edges are included in the final triangulation, and the graph is kept as close as to

Delaunay triangulation.

(a) Data points and the con-
straint edges

(b) Delaunay triangulation
of data points

(c) Constrained Delaunay
triangulation of data points
and constraint edges

Figure 2.6: Constrained Delaunay triangulation

Constrained Delaunay triangulation is introduced by Lee et al. [74] and Chew

[16] separately, but later the definition has been expanded to higher dimensions

by other studies [56, 105, 109]. There have been many studies about the con-

struction of Delaunay triangulation from scratch and reconstruction of deformed

or swelled triangulations. Construction of constrained Delaunay triangulation

can be achieved via adaptation of proposed methods. Delaunay construction al-

gorithms and current succesful adaptations are categorized under three general

groups:

• Divide and conquer algorithms: In divide and conquer algorithms, the in-

put set is partitioned into subsets, the smaller subsets of the input set

are triangulated individually and the resulting triangulations are merged

in the final step. These type of algorithms are generally sophisticated and

require complex data types, but they are well suited for parallel program-

ming. Chew [16], Dwyer [41], Ruppert [97], Hardwick [62], and Cingoni et

al. [20] developed algorithms for triangulation in the context of divide and
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conquer approach. The runtime of these algorithms is generally O (n log n),

buth Dwyer proposed an algorithm with O (n log log n) expected time on

uniformly distributed sites.

• Sweep-line algorithms: Sweep-line algorithms (or plane sweep algorithms)

use an imaginary line (generally a vertical line for the sake of simplicity)

that is sweeped across the set of nodes. One of the regions that the sweep-

line separates is being processed as the line moves further. Every time the

sweep line encounters a point pm ∈ P or the status changes due to the

change of a considered criterion, the triangulation is enhanced to cover the

new point.

First sweep-line algorithm for Voronoi diagram and Delaunay triangulation

was proposed by Fortune in 1987 [49], with a complexity of O (n log n).

Later, Shewchuk [106], Domiter and Žalik [39, 130] have improved the

sweep-line algorithms for constrained Delaunay triangulation.

• Incremental algorithms : This category holds incremental insertion and in-

cremental search algorithms. Incremental algorithms have probably been

the simplest and most popular algorithms for constructing the Delaunay tri-

angulations. In the construction phase, new vertices or edges are inserted

iteratively, and in every iteration, the empty circle rule is obeyed. Incre-

mental update of a complex, previously constructed constrained Delaunay

triangulation with addition of new nodes or deletion of nodes is also feasible

in these algorithms. Guibas launched the studies in incremental algoritms

of Delaunay triangulations with the studies [58] and [57] in 1985 and 1992,

respectively. Later, quite a few studies came on the scene and developed the

school of incremental algorithms [4, 34, 70, 73, 76, 117, 119, 118, 129, 131].

• Other triangulation algorithms include high-dimensional embedding,

convex-hull based algorithms, and gift-wrapping algorithms [130], sparse

matrix algorithms, quadtree, and Dewall.

Constrained Delaunay triangulations (CDTs) have played an important role

in practical applications of diverse fields, including:
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• Surface modelling and 3D object reconstruction: Delaunay triangulation

(DT) is famous for producing high quality triangular mesh, in which the

triangles are comparably neat and elongated triangles are eliminated. Thus,

surface modelling and 3D object reconstruction have been important areas

in which DTs and CDTs deployed widely. Floriani and Puppo have devel-

oped a new algorithm for multiresolution surface description [28]. Moreover,

triangulated irregular networks (TIN) make use of the benefits of the De-

launay triangulation and reflect the surface morphology of terrain in various

applications in geographical information systems (GIS) [39, 117]. Xue et al.

matured the idea of reconstruction of three-dimensional complex objects for

geological research [128]. Other studies around the topic include the study

by Park et al., who developed a system based on incremental CDT algo-

rithms to compress TIN data [89]. Also, Muckell et al. developed the idea

of using CDT together with a modified TIN to create a hydrology-aware

triangulation of terrain data [86].

• Finite element methods: Shenoy et al. made use of CDTs to construct a

finite element mesh with the representative atoms as nodes. In [104], the

linear triangular finite elements are utilized to link atomistic and continuum

models. In another paper, Lu and Dai developed another approach for the

construction of CDTs for the sake of meeting demands of multichip module

layout design [77].

• Segmentation: Hu et al. demonstrated the success of a novel method using

image foreground and background estimation based on the CDT. Back-

ground seed estimation, and noise suppression are independently developed

on top of a CDT algorithm [64]. Although the study is dependent on the

success of face and torso detection, an interesting methodology in the use

of CDTs has been exhibited.

• Motion planning: Motion planning problems involve the dynamic nature

of constraints, because in robotics, for example, collusion-free path may

change in time due to the movement of obstacles. Kallman et al. developed

a fully dynamic CDT algorithm, which allows the degenerations and repairs

itself automatically in case of edge overlapping or self-intersections [70]. In
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the study, other applications of the dynamic CDT algorithm in visualiza-

tion, geometric modelling, reconstruction, GIS are also emphasized.

Other areas that applications of CDTs can be found include image processing

systems such as skeletonisation [85] or network routing [100]. It must be taken into

account that limitless numbers of studies in Delaunay triangulations are available

while the new fields of application of CDTs are being discovered recently.



Chapter 3

Methodology

In Chapter 1, we have mentioned that histopathological examination is subjec-

tive to visual interpretation and experience of a pathologist. To decrease the

subjectivity level, and thus, to help pathologists make more reliable decisions,

computer-aided diagnosis has been proposed. There have been many methods

and studies on the subject of computer-aided diagnosis, given in Chapter 2. How-

ever, graph based studies in this area are still lack of utilizing other components

rather than cell nuclei in favor of obtaining higher classification accuracy. In this

chapter, we introduce a new type of constrained Delaunay triangulation for the

purpose of fulfilling the expectations of a gap-sensitive methodology, which in our

case lumen entities in a colon tissue.

The proposed method comprises a series of processing steps. In the first

step, the pixels of the image are clustered into three groups which correspond to

nuclei, cytoplasm, and white (including lumen) areas using the k-means clustering

algorithm. After a slight preprocessing is applied, the following step fits circular

objects into these enclosed spaces of white areas and nuclei pixels with the help

of circle-fit transform. The outcome constitutes the input, white and purple

nodes, to the next step. Afterwards, a Delaunay triangulation is built on the set

of nodes initially. A graph is constructed out of the initial triangulation with

the use of our novel constraint definition on constrained Delaunay triangulation,

and various features are extracted from this resulting graph. Finally, training

28
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and classification of the images is accomplished by using these feature sets. The

overall system architecture is shown in Figure 3.1.

Input Image in Lab color space

Node segmentation

K−means (k=3)

Preprocessing

Circle transformation

Graph generation

Delaunay construction

Constrained Delaunay construction

Feature extraction

Training and classification

Figure 3.1: Overall system architecture

As demonstrated in Figure 3.1, the system architecture consists of four

main components: Node segmentation, graph generation, feature extraction, and

classification. Details of these components are given in the rest of this chapter.

Throughout these sections, biopsy images shown in Figures 3.2a, 3.2b, and 3.2c

will be used to demonstrate the output of the corresponding step. They are

the images of the tissues that are healthy, low-grade cancerous, and high-grade

cancerous, respectively.

3.1 Node Segmentation

Increasing the accuracy of diagnosis and grading in graph-based approaches is

directly concerned with proper positioning of nodes. High-quality node segmen-

tation results in a more representative graph which reflects the architecture of
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(a) Healthy

(b) Low-grade cancerous

(c) High-grade cancerous

Figure 3.2: Colon tissue samples



CHAPTER 3. METHODOLOGY 31

the tissue it is built on better. It also reduces the effects of artifacts, noise, and

color variation due to hematoxylin-and-eosin (H&E) staining. In our problem,

for colon tissues stained with the H&E staining technique, it may sometimes be

impossible to cope with indistinguishability of nuclei from each other. Besides,

we also need symbolic white nodes which will represent the lumen structures.

For the node segmentation problem, we follow the steps whose details are given

below.

3.1.1 Transforming into Lab color space

Lab color space is a color-opponent space, which is originally aforethought to

estimate cognitive vision of homogeneity of human. The color space, with the

components L for lightness, a and b for the color-opponent dimensions, improves

the computerized image analysis methods with its L component closely matching

human perception of lightness [53].

The segmentation component of our system first transforms the RGB biopsy

images to Lab color space for the histopathological analysis. The intent was

to simulate human perception of color at first, and later experiments proved the

advantages of the use of Lab color space over RGB color space, and more accurate

segmentation is provided by this color space.

3.1.2 K-means clustering

The well known k-means clustering algorithm is a process to partition N-

dimensional population into k sets and it has been one of the simplest unsuper-

vised learning algorithms [79]. The algorithm attempts to locate cluster centers

of k sets by minimizing the sum of distances over all clusters, where different

distance approaches are proposed. Basically, the sum of squared Euclidean dis-

tances from points to cluster centroids is accepted as the distance function in our

system. With k being the desired number of clusters; Si, i = 1, 2, . . . , k being the

clusters; and µi being the centroid of all points xj ∈ Si, Equation 3.1 presents
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the distance function:

D =
k∑

i=1

∑
xj∈Si

(xj − µi)
2 (3.1)

The k-means algorithm is useful to discriminate the white, nuclei and cytoplas-

mic regions’ pixels of the biopsy images. In our problem, the k-means algorithm

is applied on the images with k = 3 to differentiate these three disjoint regions.

Right after detecting which pixels belong to which regions, average L values of

the regions are used to determine the type of cluster vectors (white, nuclei or

cytoplasm). In Lab color space, L represents the lightness of color, which yields

0 for black and 100 for diffuse white. Hence, the cluster vector with the highest

L value, and its corresponding pixels can be labeled as white and the darkest one

and its corresponding pixels can be labeled as nucleus, leaving the remaining one

left and its pixels as cytoplasm, which has a pink color in RGB space.

It is observed that selecting k value as 3 is adequate and sufficient for our

problem, because the H&E staining technique dyes chromatin-rich nuclei regions

with dark purple, eosinophilic cytoplasm regions (belonging to stromal cells and

connective tissues) with pink, and releases the vacant regions as it is, white.

Consequently, the k-means algorithm easily recognizes and distinguishes pixels of

three dissimilar zones in the image, and Lab conversion also increases the rate of

separation. The clustered output of the k-means algorithm for the sample tissue

images (Figure 3.2) are presented in Figure 3.3.

3.1.3 Preprocessing

After k-means clustering, we have labeled maps (pixels), which have noise on a

small scale. To eliminate noise, we have preprocessed these maps and applied

some morphological operations. These operations include a morphological close

operation followed by a morphological open operation with a flat, square struc-

turing element with edge length of 3 (for the histopathological images at the

resolution 640 × 480). Close operation removes small gaps and eliminates noisy
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(a) Healthy

(b) Low-grade cancerous

(c) High-grade cancerous

Figure 3.3: Clustered biopsy samples
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data, while open operation disqualifies the undesired results of close operation,

turning the regions back into their original penetration and scope.

3.1.4 Circle-fit transform

With the execution of the k-means clustering algorithm and preprocessing step,

the pixels of the original image are classified and appointed to the correct pixel

group. Although the pixel classification provides the essential information about

tissue distribution, the outcome itself does not contribute to nuclei and lumen

segmentation. The reason is that, given earlier in Section 1.1, the boundaries

of individual nuclei of colon tissues are occasionally uncertain and they are even

inseparable to the experienced specialists’ eye. An alternative segmentation and

node definition algorithm, which better suits the needs of segmentation of colon

tissues, should be applied to eliminate the necessity of a high-quality segmenta-

tion.

In literature, there exist some studies which split the segmentation problem

into subproblems covering the nucleus segmentation, luminal region segmentation

and epithelial cytoplasm segmentation, and then unify the solutions altogether

to create a unique, segmented tissue image [82, 91, 92]. However, this approach

put forwards the problematic nature of segmentation. They also require high-

magnification biopsy images or high-dimensional hyperspectral data. Besides,

according to our present knowledge, there do not exist any studies on cytoplasm

and lumen segmentation.

From another perspective, the solution to the node segmentation problem

might turn into decomposing the clustered image into a series of connected com-

ponents and using each individual connected component as a separate node. How-

ever, our experiments have shown that this methodology results in a significant

decrease in classification quality, because of the aforementioned reasons.

To overcome all these problems, we have decided not to segment each actual

individual histological component, but approximately represent them. For this
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purpose, we have made use of a technique called circle-fit transform, which fits

the largest circles available into the given connected components. The algorithm

of circle-fit transform is detailed in [71, 115].

The motivation behind the use of circle-fit transform is that cell nuclei gen-

erally have globular forms, and appear circular in two dimensional microscope

scanning. These entities are represented by a single circle in the resulting map

of circle-fit transform. On the other hand, wide lumen areas are represented by

a single large circle, and/or a few smaller circles inside the luminal area. The

circle-fit algorithm removes the circles with a radius below a certain predefined

threshold, therefore, this scheme gives rise to the elimination of the artifacts.

Epithelial cytoplasms are usually transformed into medium-sized circles around

lumen circles, however, the rest of our methodology does not require this distinc-

tion. Henceforth, the circles fitted into nuclei regions are referred to as purple

circles, and those which are fitted into luminal or arbitrary vacant regions around

or inbetween gland bodies or epithelial cell cytoplasms are referred to as white

circles. Fitted circles for the previous sample tissues in Figure 3.2 are presented

in Figure 3.4, where cyan circles corresponds to the white circles.

Having two distinct types of nodes, purple circles and white circles, we may

utilize these circles as nodes to enhance the graph generation algorithms. In the

next section, we will be discussing the details of our graph generation approach.

3.2 Graph Generation

The center of the fitted circles release the coordinates of nodes in two dimensional

space, on which we will build our novel graph, constrained Delaunay triangula-

tion. In this section, we will first define the conventional Delaunay triangulation

on the set of nodes which reside at the middle of white circles and purple cir-

cles, white nodes and purple nodes, respectively. Afterwards, we will explain the

details of the mechanism that vitalizes the constrained Delaunay triangulation.
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(a) Healthy

(b) Low-grade cancerous

(c) High-grade cancerous

Figure 3.4: Circle-fit transform



CHAPTER 3. METHODOLOGY 37

3.2.1 Delaunay triangulation

In previous studies (see Section 2.2.2), Delaunay triangulation algorithm is exten-

sively used for the characterization and description of the tissue. Those studies

used Delaunay triangulation, which is built on a set of nodes that represent nu-

clei of cells in the tissue for the favor of histopathological analysis. The reason

behind is that Delaunay triangulation carries the required characteristics which

reflects the structuring of the tissue it is built on better than some of the other

graph types. Another reason is that the generality of the Delaunay triangulation

shall provide the fundamental skeleton to the other types of graph. For exam-

ple, a minimum spanning tree of a set of points P is a subgraph of Delaunay

triangulation of P .

These former approaches have been beneficial for tissues without dominant

hierarchical structures and have provided a distinctive set of features that in-

creases the diagnosis and grading accuracy. However, not every tissue is plain as

those like liver or lymph node tissues. For the tissues with hierarchical structures

such as colon tissues with gland structures, these approaches are insufficient in

recognizing such structuring of the tissue on its entirety. Presented in Figure 3.5,

the outcome is not that representative enough to analyze the status of glandular

structures.

As a solution to this problem, one may think of utilizing the representative

nodes we have defined on the other tissue components, as explained in the pre-

vious section. For this purpose, we first form a Delaunay triangulation on the

set of nodes composed of purple nodes and white nodes. The formal definition of

this Delaunay triangulation is given as follows:

Definition 5 Let Sp be the finite set of primary nodes and Ss be the finite set

of secondary nodes. Non-collinear points pi,pj and pk of set Sw ∪ Sp form a

Delaunay triangle t if and only if there exists a location x which is equally close to

pi,pj and pk and closer to pi,pj,pk than any other pm ∈ Sw ∪ Sp. The location

x is the center of a circle which passes through the points pi,pj,pk and contains

no other points pm of P. For the 2D space, there exists only one circle, which is
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(a) Healthy

(b) Low-grade cancerous

(c) High-grade cancerous

Figure 3.5: Delaunay triangulation constructed on only the purple nodes
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the circumcircle of t.

Figure 3.6 shows the resulting Delaunay triangulation of the set of nodes that

are given in Figure 3.4. In this figure, white and purple nodes are represented

with empty circles and dots, respectively.

3.2.2 Constrained Delaunay triangulation

The advantages of the utilization of white nodes are explained in the previous

section. However, any features that can be obtained from the resulting Delaunay

triangulation are no more significant than those that was obtained from the former

definitions of Delaunay triangulation. For example, the average edge length in

a graph, where the representative white nodes and purple nodes are connected,

does not provide better understanding of the health status of the tissue.

To this end, we have defined novel constraints on the constrained Delaunay

triangulation and used that graph representation for cancer diagnosis and grading

of colon tissues. This triangulation has the following properties:

• The triangulation includes both white and purple nodes for its initial con-

struction.

• The initial triangulation treats the white and purple nodes in the same way,

that is the difference of these nodes is not considered and the joint set of

these two types of nodes is processed for the construction.

• After the initial triangulation, the white nodes and the edges that are con-

nected to at least one of the white nodes are deleted from the triangulation.

More formally, the constrained Delaunay triangulation can be defined as fol-

lows:
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(a) Healthy

(b) Low-grade cancerous

(c) High-grade cancerous

Figure 3.6: Delaunay triangulation constructed on both the white and purple
nodes
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Definition 6 Let Sp be the finite set of primary nodes, Ss be the finite set of

secondary nodes, and Ec be the final edges of the constrained Delaunay triangu-

lation. Non-collinear points pi,pj and pk of set Sw ∪ Sp has the right to form a

Delaunay triangle t if and only if there exists a location x which is equally close to

pi,pj and pk and closer to pi,pj,pk than any other pm ∈ Sw ∪ Sp. The location

x is the center of a circle which passes through the points pi,pj,pk and contains

no other points pm of P. For the 2D space, there exists only one circle which is

the circumcircle of t. An edge eij is an element of Ec if and only if it also is an

edge of any of the aforementioned triangles and pi,pj ∈ Sp.

To make it clear, the final triangulation for the aforementioned healthy, low-

grade cancerous, and high-grade cancerous tissues is given in Figure 3.7. This

figure exposes the differentiation of triangulation characteristics with the devel-

opment of cancer. The constraints preserve the prolonged tracks of gland borders

for the healthy tissues (Figure 3.7a), while the triangulation reveals the fact of

gland thickening for the low-grade cancerous tissues (Figure 3.7b). As the can-

cer develops and the distortion of the glandular structures increases, the number

of constrained edges decreases (in fact, the number decreases down to zero and

edges vanish in some samples), due to the fact that individual cells become more

and more isolated from each other (Figure 3.7c).

3.3 Feature Extraction

After the construction of constrained Delaunay triangulation, we have a set of

primary (purple) nodes Sp and a set of edges Ec. We shall define a set of features

on this triangulation for the classification of histopathological images. Feature

extraction step makes both use of the classical Delaunay triangulation and con-

strained Delaunay triangulation and extracts many quantitative features, which

represent the qualitative measures considered by pathologists.
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(a) Healthy

(b) Low-grade cancerous

(c) High-grade cancerous

Figure 3.7: Constrained Delaunay triangulation
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3.3.1 Connectivity based features

Figure 3.2 shows the deviations in the tissue with the development of cancer and

it points out that cancer damages the association among cells. The conformity

of cells decays with the distortion level, and cells belonging to glands become to

get isolated. Hence, connectivity characteristics of the nodes can be used for the

understanding of distortion in gland structures. The following set of extracted

features reflects the structural properties of the tissue, and thus, provides infor-

mation about its organizational characteristics. For this purpose, we first define

the terms and expressions and give the definition of the features:

The neighborhood Ni for a node pi is defined as its immediately connected

neighbors:

Ni = {pj : eij ∈ Ec} (3.2)

For each individual node pi ∈ Sp in a triangulation, node degree d (pi) = |Ni|
is the number of nodes that node pi is connected with an edge eij ∈ Ec.

In an undirected and unweighted graph, the distance between two nodes is

the number of edges in any one of the shortest paths connecting these two nodes.

This is also known as the geodesic distance, because it is the length of the graph

geodesic between those two nodes [13, 84]. Besides, within graph theory and

network analysis, there are various measures of the centrality of a node within a

graph, which is based on the idea of geodesic distance, that determine the relative

importance of a node within the graph. The definitions of the extracted features

are given as follows.

• Average degree : Averaging the node degrees on the whole triangulation

presents a good indicator of the tissue connectivity. Given the degree of a

node d (pi), average degree in a triangulation is
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∑
pi∈Sp

d (pi)

|Sp| (3.3)

• Average degree for nodes with d (pi) ≥ 2 : In the graph representation of

the tissue, there exist some isolated nodes with a degree of d (pi) = 0. These

nodes generally correspond to isolated cells in luminal areas in healthy

samples, shown in Figure 3.8, or the poorly-differentiated colon carcinoma

cells. Additionally, there exist some end nodes with d (pi) = 1, which

constitute the boundaries of the clustered cells. Including the degree of

these cells in the calculation of average degree may affect the quality of the

feature, so we chose to separate these nodes from the calculation. For this

purpose, we have defined another feature that excludes these nodes, and

computes the average degree of nodes with a degree of at least 2.

Figure 3.8: An isolated node in a luminal area

• Isolated node number and end node number : As we have decided to sep-

arate the isolated nodes and end nodes from the rest for the purification

of information, we also include this information to the feature set. To this

end, the number of isolated nodes with d (pi) = 0, and the number of end

nodes with d (pi) = 1 in a triangulation is also included in the recent feature

set.

• Average clustering coefficient for nodes with d (pi) ≥ 2: Clustering

coefficient is a metric to compute how a node and its neighbors tend to
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become a complete graph. The metric, introduced by Watts and Strogatz

in [121], is defined as follows:

Definition 7 The clustering coefficient Ci for a node pi is the percentage

of the existing edges between the neighboring nodes divided by the number

of edges that could potentially exist between these nodes. For an undirected

graph, if a node pi has |Ni| neighbors, |Ni|·(|Ni|−1)
2

edges could exist among

the nodes within its neighborhood. Thus, the clustering coefficient Ci is

Ci =
2 |{ejk}|

|Ni| · (|Ni| − 1)
: Vj, Vk ∈ Ni, ejk ∈ E (3.4)

The clustering coefficient estimates the cliquishness of a typical neighbor-

hood of a node, hence it exactly is a local property. With the use of the

definition above, we have defined a global property, the average clustering

coefficent for nodes with d (pi) ≥ 2, as the arithmetic mean of clustering

coefficients for all but isolated and end nodes in the triangulation.

• Average eccentricity : In graph theory, the eccentricity of a node is defined

as follows:

Definition 8 The eccentricity ε (pi) of a node pi in a connected graph G

is the maximum geodesic distance between pi and any other node pj of G.

Given the node pi ∈ Sp, the eccentricity of the node is:

ε (pi) = max {dg (pi, pj) |pj ∈ Sp} (3.5)

where dg (pi, pj) is the geodesic distance between nodes pi and pj.

In short, eccentricity is a measure of the deviation from a common center.

In our work, average eccentricity of all nodes is thought to be reflecting the

status of global connectivity or the isolation. For nodes with |Ni| = 0, the

eccentricity value is assumed to be zero.
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• Diameter : Given the definition of eccentricity, diameter of a graph is the

maximum eccentricity of any node in the triangulation; that is, it is the

greatest distance between any two nodes. Diameter D (Sp) is defined as:

D (Sp) = max {ε (pi) |pi ∈ Sp} (3.6)

For a graph with no accessible nodes, the diameter is set to be zero.

3.3.2 Component related features

In a graph, a connected component is a subgraph in which any of its two nodes pi

and pj are connected to each other with at least one path and no any other node

pk ∈ Sp can be added to this subgraph. We can extract the following features

from this definition:

• Number of components : The number of components in a triangulation

might present a good indication of whether the cells are grouped together

and form gland structures (as in healthy tissues) or become isolated (as in

cancerous tissues).

• Number of components with n ≥ 2 : As we mentioned earlier in average

degree feature, we also chose to separate the components with a single

node from the rest, and defined this feature as the number of connected

components with at least 2 nodes. The number of remaining components

with a single node is equal to isolated node number.

• Giant component ratio : Giant component ratio is the proportion of the

number of nodes in the connected component with the highest number of

nodes to the number of primary nodes in the triangulation.
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3.3.3 Spatial features

The spatial properties of the connected nodes can be used for the definition of

some features.

• Average edge length and standard deviation of edge length: Average edge

length is based on the Euclidean distances between nodes where the location

of nodes are the centers of the corresponding circles. The average edge

length is calculated as

ael(Ec) =

∑
dE(pi, pj)

|Sp| : pi, pj ∈ Sp (3.7)

where dE(pi, pj) is the Euclidean distance between nodes pi and pj. On the

other hand, the standard deviation of edge length is simply the standard

deviation of edge length values and given as

sdel(Ec) =

√∑
(dE(pi, pj)− ael (Ec))

2

|Sp| − 1
: pi, pj ∈ Sp (3.8)

• Average triangle area and standard deviation of triangle area: In the tri-

angulation, every three nodes forming a triangle gives a good indication

of connectivity and positioning of these nodes. The average and standard

deviation of these values are also included in the feature set.

In Table 3.1, the summary of the extracted features that we use in our work

is given.

3.4 Classification and Feature Reduction

Classification is the last step of our proposed system. So far, we have developed

our system to enable ourselves to define biopsy images quantitatively, by extract-

ing distinctive features. After calculating these features, we can train a suitable
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Feature type Feature

∗

Average degree
Average degree for nodes with d (pi) ≥ 2
Isolated node number
End node number
Average clustering coefficient for nodes with d (pi) ≥ 2
Average eccentricity
Diameter

∗∗
Number of components
Number of components with n ≥ 2
Giant component ratio

∗∗∗
Average edge length
Standard deviation of edge length
Average triangle area
Standard deviation of triangle area

∗ Connectivity based features
∗∗ Component related features
∗∗∗ Spatial features

Table 3.1: The list of extracted features

classifier and classify new samples according to its quantifiable measures. In this

section, we will explain the classifier we select and discuss how we seek for the

new ways to develop our system further, including feature reduction.

3.4.1 Classification

The definition of features and the selection of a classifier are two important factors

that affect the classification accuracy. After the selection of features, we have

many options of a classifier to use. We have experimented on some of these

classifiers for the classification of colon tissue samples. Among these algorithms,

we have chosen the support vector machines (SVM), which perform the best.
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3.4.1.1 Support vector machines

Support vector machine (SVM) is a supervised learning algorithm and it is used

for regression and classification [23]. SVM basically builds a linear decision sur-

face which separates two sets of data points in an N-dimensional space and it

aims to build the one with the maximized margin between these sets. Original

proposal of SVM was a linear classifier, which means it is sufficient to build a

(N − 1)-dimensional hyperplane to separate the data. However, with an exten-

sion to this original definition, SVM also became a non-linear classifier [12].

Figures 3.9a and 3.9b illustrate the selection of two different hyperplanes

(shown with solid lines), which separate two data sets from each other in 2-

dimensional space. In these figures, the data points closest to dashed lines are

called support vectors. The distance between these dashed lines is called the

margin. The goal of the SVM classifier is to split the space with the most suitable

hyperplane, which maximizes the margin. This perfection of division provides a

better and more accurate framework when it comes to the classification of unseen

data. In Figures 3.9a and 3.9b, both hyperplanes are valid in terms of separating

data, but the second one offers a larger margin.
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Figure 3.9: The hyperplane separating two data sets in 2-dimensional space.

It must be noted that some data sets may not be linearly separable. Figure

3.10a presents a sample of such data set, which has to be separated by a nonlinear

region. For such data sets, a kernel function is used to map them into a different
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space, in which the data points are linearly separable. Figure 3.10b demonstrates

the layout of the data points after the transformation. There exists a limitless

number of kernel functions, but there are some commonly used ones such as radial

basis function (RBF), sigmoid function, and polynomial kernel function.
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Figure 3.10: Separable classification with kernel mapping.

Dealing with SVM (or any other types of classifier) may bring some problems

into equation. To begin with, standard SVM implementation can only deal with

binary problems with instances of two classes. We used Multiclass SVM in our

implementation, because our problem contains three distinct classes: healthy,

low-grade cancerous, and high-grade cancerous.

Another problem is that it is not always possible or feasible to provide a

perfect split between data sets. If the classifier trains itself beyond its limits to

handle every individual sample, it may not generalize well to test samples. The

classification accuracy may decrease dramatically, and this effect is called over

fitting. To avoid over fitting, SVM provides a cost parameter, C, which allows

the user to control the trade-off between training errors and strict margins. The

increase in the value of C leads to the rise of the cost of misclassified data samples,

but it causes the construction of a more precise hyperplane which may not cope

with unseen samples. The selection of C and the optimization of SVM classifier

is another topic, and it will be discussed in Section 3.4.1.2.

In our experiments, we used SVMlight implementation of SVM in C, which

is developed by Thorsten Joachims [68], and available at http://svmlight.
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joachims.org/.

3.4.1.2 Cross-validation

In the previous section, we have mentioned that the selection of cost parameter C

highly affects the classification accuracy of SVM. For the accurate localization of

C, we can statistically analyze our training set and estimate error in generalization

(estimate how our classifier is capable of predicting data that it is not trained for)

by using k-fold cross-validation. For the k-fold cross-validation, the training set is

partitioned into k distinct subsets. One of these k subsets is chosen as the test set,

and the remaining ones are used as training data. The accuracy of the classifier

is validated with the predefined C parameter using this particular test set, and

this training/validation process is repeated for each distinct subset. The average

classification accuracy of these trials is used to determine the effectiveness of this

particular C value. For a reasonable interval, the accuracies acquired from the use

of these C values are used to find the maximum accuracy, and the corresponding

C value. In our experiments, we chose to use 10-fold cross-validation, which

adequately partitions our training data and does not bring high computational

complexity.

3.4.2 Feature reduction

The features we have defined may provide our classifier the ability to classify the

test samples at high rates. But we may encounter a problem which occurs with the

increase in dimension of the feature vector and redundancy. With the growing

numbers of features, the classifier starts not being able to create a successful

model which maps the feature values to their corresponding class labels. This

phenomenon is called curse of dimensionality. The curse of dimensionality brings

computational complexity and it generally lowers the classification rates.

To address this problem, we may use several feature reduction algorithms. In

this thesis, we employ the following methods to decrease the number of features
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and select the most representative ones:

3.4.2.1 Principle component analysis

Principle component analysis (PCA) is a common and simple statistical proce-

dure used in various fields. PCA provides the methodology to break a set of

complex and correlated feature set into a lower dimension. The resulting reduced

set becomes a set of uncorrelated features. The transformed features are called

principal components.

The goal of PCA is to find the most meaningful basis for the feature set,

and to redefine the features based on this basis. Simply we must find a basis

P for the transformation of our original feature vector X, which will satisfy the

equation Y = PX, where Y is the new representation of the feature vector.

For this purpose, the eigenvalue decomposition of the co-variance matrix of the

feature values is calculated. We have applied the cross product on our feature

vector by combining the eigenvectors, starting from the eigenvector with the

highest eigenvalue. The resulting data, the projection of our feature vector on

the eigenvectors, are then used for classification. We used PCA in order to

understand how correlated our features are. Results are given in Section 4.2.2.2.

3.4.2.2 Forward selection

Forward selection is one of the main procedures for the automated selection of

variables. In forward selection, a single feature is selected and tested each time for

the inclusion in the final feature subset. Starting with an empty set of features, we

use each single feature in the training process of the classifier and use 10-fold cross

validation set classification accuracy as a measure to or not to include the feature

to the feature set. The feature which provides the highest classification accuracy

is added to the feature set, and excluded from the candidate set. The remaining

candidate features are tested in the next iteration, and if the feature combination

with the highest accuracy exceed the achievement of the previous feature set (or
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less than the previous one at most some value of ε), this combination is used as the

base in the next iteration. This process continues until none of the combinations

comply with aforementioned conditions.

The advantage of the forward selection is that it includes the best represen-

tative and discriminative features one-by-one and eliminates the ones with lower

discriminative power. We make use of 10-fold cross validation for each feature

subset combination in each iteration for the selection of the cost parameter C for

its SVM classifier, and then we train this SVM classifier with the selected C and

the corresponding features.

3.4.2.3 Backward elimination

Backward elimination mirrors the former algorithm, forward selection. In back-

ward elimination, contrary to the forward selection, the process is started by se-

lecting the full feature set and excluding one feature at a time. The best feature

subset, which provides higher accuracy, points to a feature that is less important

than the rest, because the excluded feature has decreased the accuracy less than

the others (if the accuracy acquired with the corresponding subset is higher than

that of the previously used feature subset). Removing low performing features in

each iteration (choosing the subset with the highest accuracy and keeping it in

the next step), this stepwise procedure generally converges to a highest accuracy

available at some step, and then (with the removal of required features), the ac-

curacy starts to diminish. On the other hand, removal of any one of the features

may not improve the accuracy, so the algorithm does not remove any feature.

Briefly, this algorithm runs until no features improve the accuracy further.

For the feature analysis with backward elimination, we have found the cost

parameter C of SVM with the same process as in the case of forward selection;

10-fold cross validation is utilized to find C in each iteration for each individual

feature subset.



Chapter 4

Experimental Results

This chapter is devoted to the evaluation of our experiments on histopathological

colon biopsies. The preparation of our data set, inners of parameter selection,

the way that the correlation between the features are analyzed, the success of our

method, and comparisons are detailed in sequence.

4.1 Experimental Setup

The data set we used in our experiments consists of 213 biopsy samples taken

from 58 individual patients, which are selected and collected from the cancer

records of the patients during the years 2004-2007 in Hacettepe University1. The

biopsies are stained with the hematoxylin-and-eosin technique, which is routinely

used to stain biopsies in hospitals, and their images are acquired using a 20×
microscope objective lens. 115 of these images are used as the training set and

the remaining 98 of these as the test set. We employ 10-fold cross validation on

the 115 images in the training set; the test samples are not used in this process

at all. For the experiments, our data set has been examined and graded (if

cancerous) by a pathologist. This process is repeated at different times to reduce

1The samples are collected from Department of Pathology of Hacettepe University, Ankara,
Türkiye.

54
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the intra-observer variability. The number of healthy, low-grade cancerous, and

high-grade cancerous samples in these data sets are presented in Table 4.1:

Healthy
Low-grade High-grade

Total
Individual

cancerous cancerous patients
Training set 38 37 40 115 29
Test set 34 35 29 98 29

Table 4.1: Number of samples in the training and test sets

The software is implemented as a blend of MATLAB, Java, and ANSI C code,

where applicable. The software language used in each individual step is given

in Appendix A. The experiments are conducted on a server with a GNU/Linux

operating system, two quad-core Intel Xeon CPUs, 4 GB of DDR2 memory, three

170GB/15K SCSI hard disk drives configured as RAID 0.

4.2 Results

4.2.1 Parameter selection

In our experiments, the aim is to select the class (healthy, low-grade, high-grade)

of a given biopsy sample with the best possible accuracy. For this purpose, it is

fundamental to set input parameters of each step to their optimum values. The

description of parameters and their effects on accuracy, how they are examined

and the optimum value is found is given below:

4.2.1.1 Number of clusters k

In the k-means clustering step, the decision of appropriate k value, which is the

number of clusters, yields in better segmentation of white, nuclei and stromal

regions’ pixels of the biopsy images. In our experiments, the decision of k = 3
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is sufficient enough to discriminate these three regions. Usage of k with greater

numbers does not increase discriminative power of the k-means clustering step.

The reason is that these three regions generally have well-differentiated color

distributions, even though the hematoxylin-and-eosin staining technique may not

provide sharp details every time. The color distribution and conversion to Lab

color space make it possible to cluster these regions with just k = 3. Please note

that greater values of k increase the complexity and runtime of the process.

4.2.1.2 Preprocessing

Preprocessing the labeled maps may increase the classification accuracy with

the removal of noise. We should analyze the impacts of the preprocessing to

understand whether it is necessary or not. For this purpose, we examined how

the existence of preprocessing affects the classification accuracy by a series of

experiments, in which the circle-fit transform threshold value is set between 5

and 45, increasing 5 by 5. In these experiments, the multiclass classifier SVM

is used with a cost parameter C of 500. The selection of this parameter value

relies on the results obtained for the selection of the best C, which are shown in

Figures 4.3 and 4.4. Classification results, as a function of the threshold value,

are presented in Figure 4.1.

From the chart, it can be derived that preprocessing improves the classification

and increases accuracy approximately ten percent for the circle-fit threshold val-

ues greater than 10. Preprocessing also preserves the acquired accuracy values

at the highest peak with an accuracy of 88.78% (where the circle-fit threshold

is 10). For the rest of the experiments, both preprocessed and unpreprocessed

maps are used, because at the point where we achieve the highest classification

rates, the discriminative power of these maps are close to each other.
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Figure 4.1: Classification results with and without preprocessing. These results
are obtained by fixing the SVM cost parameter C to 500.

4.2.1.3 Circle-fit transform threshold

In the circle-fit transform step, there exists a threshold parameter for the algo-

rithm which causes the elimination of the circles with fewer pixels below this

predefined threshold value. This elimination lessens the number of circles, thus

reducing the complexity, and runtime of this step. Circles for Figure 3.2a (see

Page 30) are presented in Figures 4.2a and 4.2b, which are generated with circle-

fit threshold values of 5 and 45 for both luminal and nuclei regions. In these

figures, white nodes are represented by cyan circles.

Tiny circles act as noise and decrease the quality of the triangulation, so this

elimination may increase the classification rates. However, with larger threshold
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(a) Circle-fit threshold = 5

(b) Circle-fit threshold = 45

Figure 4.2: Circle representations of the tissue image shown in Figure 3.2a
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values and the omission of required circles, it may become impossible to cre-

ate a substantive triangulation and make classification. The former experiment

shown in Figure 4.1 exhibits that the circle-fit algorithm maximizes the overall

classification accuracy at threshold values in the close range of 10. At the highest

values, the accuracy seems to increase, but at threshold value 50, most of the nu-

clei circles disappear and it becomes impossible to create a triangulation in some

of the samples. All of these outputs are also included in the final experiments to

understand the nature of the processes better.

4.2.1.4 SVM classifier and its cost parameter C

After the extraction of features, various classifiers can be chosen to examine

the data: naive Bayes classifier, support vector machines, decision trees, neural

networks, and so on. In our earlier experiments, we have seen that support vector

machines with linear kernels work better than aforementioned classifiers for our

data. However, with the selection of SVM as the classifier, another problem

arises: The cost parameter C highly affects the classification accuracy. We first

decided to find an optimum value for C, and to this end, we trained the classifier

directly with the use of training set and varying values of C, and test the accuracy

on the test set. In Figure 4.3, the effects of varying C values between 1 and 10000

against the data set obtained with different circle-fit threshold values (5, 10, and

45) are presented.

The results lead us to analyze the peak values of the classification at the be-

ginning of the curve, where cost parameter C takes values between 1 and 2000.

Figure 4.4 exhibits that the most successful classification rate of 88.78% is ob-

tained with the circle-fit threshold value of 10 and c ≈ 500.

The results also point out the deviation of accuracy with the change in cost

parameter C and threshold values. They look promising, but present their own

challenge. For each training and test set combination, a predefined C value may

not strengthen the classifier, because the accuracy highly fluctuates. Thus, we

can conclude that it is not rational to constrain or fix these values. Therefore, we



CHAPTER 4. EXPERIMENTAL RESULTS 60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
70

72

74

76

78

80

82

84

86

88

90

SVM parameter C

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 

Circle−fit threshold=5
Circle−fit threshold=10
Circle−fit threshold=45

Figure 4.3: Classification results for the test set with varying values of SVM cost
parameter C between 1 and 10000. These results are obtained with preprocessed
data.

make use of 10-fold cross-validation to conceive the most appropriate C value for

the use of SVM classifiers in the classification process. We applied 10-fold cross-

validation on the training set (115 biopsy images), which is randomly divided

to 5 sets of size 12 and 5 sets of size 11. In each set, there exist nearly the

same amount of healthy, low-grade cancerous, and high-grade cancerous samples.

In each iteration, nine of these sets are used as training data, and the remaining

single set is retained as the validation set. The accuracy is calculated by averaging

the accuracy results of all K = 10 trials. The C value which provides the most

reliable classification, the one with the maximum classification accuracy, is used

in the training of the classifier over the training set and the classification results

of the test set is acquired.
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Figure 4.4: Classification results for the test set with varying values of SVM cost
parameter C between 1 and 2000. These results are obtained with preprocessed
data.

4.2.2 Feature selection and reduction

In the previous section, we discussed how the parameters are analyzed and

fixed. Even with the best parameter selection, classification accuracy could be

insufficient. The reason is that some features may be malicious, and they may

not be concerned with the health status of the tissues. Besides, some of these

features may also correlated with some other features, and with the increase in

feature space dimension, the classifier may not work well as expected with the

introduction of curse of dimensionality. In this section, we will be investigating

the techniques on feature selection and reduction. We will analyze the informa-

tion obtained from forward selection and backward elimination results, and also

experiment on a set of preselected features.
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4.2.2.1 Manual selection of features

We have decided to use a subset of the predefined features to improve the quality

of classification process and eliminated some features. For the reason, we analyzed

the features and chose the subset below:

1. Average degree, number of isolated nodes, number of end nodes : Degree of a

node is a local feature and, in our case, it reflects the connectivity properties

of each individual cell. On a larger scale, the average degree, number of

isolated nodes and number of end nodes features help us understand the

connectivity of the tissue. For example, with the development of cancer,

regular structure of luminal components suffer a severe loss and cells get

separated from each other. This fact affects the average degree and number

of isolated nodes in the constrained Delaunay triangulation directly.

2. Average clustering coefficient for nodes with d (pi) ≥ 2 , diameter, average

edge length: These features go beyond the local connectivity and present

us the information about the neighborhood characteristics of the nodes in

our graph, the constrained Delaunay triangulation. We did not use average

clustering coefficient directly, because the nodes with no or one neighbor are

already symbolized by number of isolated nodes and number of end nodes.

3. Average triangle area, standard deviation of triangle area: Cell groups

around the luminal regions get thickened with the development of a low-

grade cancer. However, the structure is completely distorted in high-grade

cancerous tissues, and the local connectivity of the cells is lost. Only some

cell groups may form a line of cells and some thin, long triangles are formed

in these regions. The structuring of the tissues can be represented by the

triangles of the constrained Delaunay triangulation and the variation in

these tissues can be measured with these properties. We have added the

features related to the triangulation to our predefined feature set for this

reason.
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With the use of these features and constrained Delaunay triangulation, we

have acquired the classification accuracies that are shown in Tables 4.2 and 4.3

for the training and test set, respectively. These experiments are carried out with

circle-fit threshold value of 10 and preprocessed images. Here, the SVM param-

eter C is selected using 10-fold cross validation. Tables 4.4 and 4.5 demonstrate

the accuracies acquired with the use of features extracted from Delaunay trian-

gulation. These results show that constrained Delaunay triangulation improves

the classification at a rate of 2.61 for the training set and 12.24 for the test set.

Healthy Low-grade High-grade Accuracy
Healthy 30 8 0 78.95
Low-grade 0 27 10 72.97
High-grade 0 5 35 87.50

Overall Accuracy 80.00

Table 4.2: The confusion matrix and the training set classification accuracy of the
constrained Delaunay triangulation approach with the circle-fit threshold value
being selected as 10. These results are obtained with using preprocessed images.

Healthy Low-grade High-grade Accuracy
Healthy 30 1 3 88.24
Low-grade 0 28 7 80.00
High-grade 0 2 27 93.10

Overall Accuracy 86.73

Table 4.3: The confusion matrix and the test set classification accuracy of the
constrained Delaunay triangulation approach with the circle-fit threshold value
being selected as 10. These results are obtained with using preprocessed images.

4.2.2.2 PCA

We have used PCA to find out the prevalence of correlation within our feature

set. For this purpose, we have sorted the eigenvectors V of the correlation matrix

of our feature set according to the magnitude of their eigenvalues λi

V1 > V2 > · · · > VD (with λ1 ≥ λ2 ≥ · · · ≥ λD)
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Healthy Low-grade High-grade Accuracy
Healthy 33 2 3 86.84
Low-grade 3 19 15 51.35
High-grade 0 3 37 92.50

Overall Accuracy 77.39

Table 4.4: The confusion matrix and the training set classification accuracy of the
Delaunay triangulation approach with the circle-fit threshold value being selected
as 10. These results are obtained with using preprocessed images.

Healthy Low-grade High-grade Accuracy
Healthy 29 0 5 85.29
Low-grade 3 20 12 57.14
High-grade 1 4 24 82.76

Overall Accuracy 74.49

Table 4.5: The confusion matrix and the test set classification accuracy of the
Delaunay triangulation approach with the circle-fit threshold value being selected
as 10. These results are obtained with using preprocessed images.
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Subsequently, we have multiplied our feature set with the first k eigenvectors

V1, V2, · · · , Vk and reduced the dimension from D to k. The results obtained with

the different values of k are given in Figures 4.5 and 4.6 for the training and test

set, respectively.
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Figure 4.5: Classification results in PCA for the training set. These results are
obtained by choosing the SVM cost parameter C individually with 10-fold cross-
validation in each iteration and with preprocessed images.

The results expose the fact that the use of 10-fold cross-validation optimizes

the results for the training set and the accuracy increases regularly with the

increase in the value of k. The training accuracy reaches its peak value (89.57%)

when k = 12 with circle-fit threshold value of 10. However, test set accuracy does

not follow the behaviors of the training set accuracy, and produces an unstable

curve. The test set accuracy is only 79.59% where the training set earns its

maximum.
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Figure 4.6: Classification results in PCA for the test set. These results are
obtained by choosing the SVM cost parameter C individually with 10-fold cross-
validation in each iteration and with preprocessed images.
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4.2.2.3 Forward selection

Both manual selection and PCA gives us an idea that we can use the forward

selection. Likewise, for the detection of C parameter of SVM, 10-fold cross-

validation is used. After selecting the value of C, the classification accuracy for

both training and test sets are calculated. The decision on whether to continue

the iteration or to stop is based on the accuracy of 10-fold cross-validation set.

Table 4.6 demonstrates the classification results for the 10-fold cross-validation.

In Tables 4.7 and 4.8, classification accuracies with the selected C values are

demonstrated for the training set and the test set, respectively.

10-fold Iteration
cross val. #1 #2 #3 #4 #5 #6 #7 #8 #9

5 56.94 63.86 77.73 78.56 78.64 79.47 81.20 81.97 –
10 58.42 76.67 79.12 82.80 86.21 87.12 87.12 – –
15 56.82 61.82 65.30 66.20 66.36 67.12 68.11 68.26 68.26

Circle-fit 20 56.82 61.60 – – – – – – –
threshold 25 56.82 61.60 – – – – – – –

30 56.82 61.60 – – – – – – –
35 56.82 62.80 65.56 – – – – – –
40 57.70 64.55 65.30 65.45 65.53 66.52 69.92 71.73 –
45 56.74 64.14 64.31 – – – – – –

Table 4.6: Forward selection results for 10-fold cross-validation

For the circle-fit threshold value of 10, which helps us acquire the highest

classification accuracy, the accuracy results for 10-fold cross-validation, training

and test sets are also given in Figure 4.7.

From these and the previous results, we can derive that the best performing

circle-fit threshold value is 10. At this value, the selected features and the test set

accuracies at the corresponding iterations are given in Table 4.9. In the first iter-

ation, the selected feature “end node number” itself may provide a classification

accuracy of 55.10%, and with the use of other features, the accuracy can reach
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Training Iteration
set #1 #2 #3 #4 #5 #6 #7 #8 #9

5 52.17 60.87 77.39 76.52 79.13 81.73 82.61 82.61 –
10 57.39 75.65 79.13 83.48 86.96 86.96 86.96 – –
15 48.70 62.61 64.34 67.83 69.56 66.95 68.70 72.17 73.91

Circle-fit 20 48.70 63.48 – – – – – – –
threshold 25 48.70 63.48 – – – – – – –

30 48.70 63.48 – – – – – – –
35 48.70 60.87 63.48 – – – – – –
40 48.70 60.87 62.61 66.95 62.61 71.30 71.30 74.78 –
45 52.17 59.13 66.95 – – – – – –

Table 4.7: Forward selection results for the training set

Test Iteration
set #1 #2 #3 #4 #5 #6 #7 #8 #9

5 46.94 64.29 63.37 73.47 72.45 69.39 70.41 68.37 –
10 55.11 78.56 82.65 79.59 80.61 80.61 80.61 – –
15 36.72 52.40 63.27 65.31 66.33 63.27 66.33 66.33 67.34

Circle-fit 20 36.72 53.60 – – – – – – –
threshold 25 36.72 53.60 – – – – – – –

30 36.72 53.60 – – – – – – –
35 36.72 52.40 66.33 – – – – – –
40 36.72 52.40 64.29 62.24 62.24 68.37 68.37 69.39 –
45 50.00 55.10 60.20 – – – – – –

Table 4.8: Forward selection results for the test set
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Figure 4.7: Classification results in forward selection. These results are obtained
by choosing the SVM cost parameter C individually with 10-fold cross-validation
in each iteration and with preprocessed images.
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approximately upto 80%. However, when we examine the results presented in Fig-

ure 4.1, we can see that with the use of all features, preprocessing, and circle-fit

threshold value of 10, we can easily reach 86.73%. The drawback of forward selec-

tion is that it does not consider the collective power of feature subsets [11]. The

addition of a feature may turn an existing selected feature into a non-significant

one. For example, any feature a and b may provide less idea about the structure

by themselves, considering the contribution of remaining features, but the subset

composed of these two features a and b may bring out the highest classification

accuracy in the subset collection of feature couples. Therefore, we attempted to

test another feature reduction method, backward elimination.

Iteration Selected feature Classification accuracy
#1 End node number 55.10%
#2 Standard deviation of triangle area 78.57%
#3 Average degree for nodes with d (pi) ≥ 2 82.65%
#4 Standard deviation of edge length 79.59%
#5 Average eccentricity 80.61%
#6 Number of components with n ≥ 2 80.61%
#7 Average degree 80.61%
#8 Isolated node number 78.57%
#9 Average triangle area 79.59%

Table 4.9: Selected features and the corresponding test set accuracies in forward
selection. Our manually selected features are written in italics.

4.2.2.4 Backward elimination

The resulting classification accuracy values are given in Tables 4.10, 4.11, and

4.12, for 10-fold cross-validation, training set, and test set, respectively.

The disadvantage of backward elimination is its dependence of large number of

feature subsets. But, in our case, the number of features are small that this draw-

back does not become the main disadvantage. It also has the same disadvantage

of forward selection, that is it does not consider the unified effects of eliminated

features, so one or more of the dropped features may become significant if added
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10-fold Iteration
cross val. #1 #2 #3 #4 #5

5 81.6 – – – –
10 85.46 86.29 87.20 88.11 –
15 69.17 69.17 – – –

Circle-fit 20 69.23 – – – –
threshold 25 69.23 – – – –

30 69.92 – – – –
35 69.92 – – – –
40 69.92 70.76 70.83 71.67 72.50
45 70.00 70.76 71.67 72.50 72.50

Table 4.10: Backward elimination results for 10-fold cross-validation

Training Iteration
set #1 #2 #3 #4 #5

5 86.9 – – – –
10 88.70 89.57 90.44 92.17 –
15 77.39 77.39 – – –

Circle-fit 20 73.91 – – – –
threshold 25 73.91 – – – –

30 72.17 – – – –
35 72.17 – – – –
40 73.40 73.4 72.17 73.91 74.78
45 73.40 73.40 73.40 73.91 74.78

Table 4.11: Backward elimination results for the training set
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Test Iteration
set #1 #2 #3 #4 #5

5 79.59 – – – –
10 83.67 87.76 81.63 80.61 –
15 66.33 66.33 – – –

Circle-fit 20 67.34 – – – –
threshold 25 67.34 – – – –

30 67.34 – – – –
35 66.33 – – – –
40 65.31 65.31 64.29 65.31 63.27
45 64.29 65.31 66.33 64.29 67.34

Table 4.12: Backward elimination results for the test set

Iteration Selected feature Classification accuracy
#1 Average degree 83.67%
#2 End node number 87.76%
#3 Avg. clust. coeff. for nodes with d (pi) ≥ 2 81.63%
#4 Giant component ratio 80.61%
#5 Diameter 79.59%
#6 Isolated node number 79.59%

Table 4.13: Eliminated features and the corresponding test set accuracies in
backward elimination.
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to the optimized feature subset. As in our experiments, the use of backward

elimination may provide better accuracy for the experiments on cross-validation

and training sets, but the highest accuracy for the test set may remain the same.

Figure 4.8 shows the classification results for 10-fold cross-validation, training

and test sets for the circle-fit threshold value fixed at 10. The selected features

are also presented in Table 4.13 at this circle-fit threshold level.
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Figure 4.8: Classification results in backward elimination. These results are
obtained by choosing the SVM cost parameter C individually with 10-fold cross-
validation in each iteration and with preprocessed images.

4.2.3 Comparison with Delaunay Triangulation

Earlier in this chapter, we analyzed the effects of parameters and feature selection

on our constrained Delaunay triangulation (CDT) and we attempted to maximize
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the classification accuracy by using the features acquired from the CDT. With the

maximization of CDT in terms of classification accuracy, we should examine its

achievement over the classical Delaunay triangulation. Towards this end, we first

used the same set of features (in fact, using a subset of features which includes the

applicable ones on DT). Tables 4.14 and 4.15 present the classification accuracy

of constrained Delaunay triangulation acquired with the use of samples which are

preprocessed by morphological operators and processed with a circle-fit threshold

of 10. Here we use all of the features defined for CDT.

Healthy Low-grade High-grade Accuracy
Healthy 38 0 0 100.00
Low-grade 3 26 8 70.27
High-grade 0 3 37 92.50

Overall Accuracy 87.83

Table 4.14: Training set accuracy obtained by the constrained Delaunay triangu-
lation. The circle-fit threshold value is selected as 10.

Healthy Low-grade High-grade Accuracy
Healthy 31 0 3 91.18
Low-grade 2 25 8 71.43
High-grade 0 1 28 96.55

Overall Accuracy 85.71

Table 4.15: Test set accuracy obtained by the constrained Delaunay triangulation.
The circle-fit threshold value is selected as 10.

From Tables 4.14 and 4.15, we can see that we reach 87.83% accuracy for the

training set and 85.71% accuracy for the test set, with the use of constrained

Delaunay triangulation. However, if we made use of Delaunay triangulation, the

results would come out as in Tables 4.16 and 4.17. We would be reaching 77.39%

accuracy for the training set and 76.53% accuracy for the test set.

Figure 4.9 compares the test set accuracies for constrained Delaunay triangu-

lation (CDT) and Delaunay triangulation (DT), while Figure 4.10 presents the
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Healthy Low-grade High-grade Accuracy
Healthy 33 2 3 86.84
Low-grade 3 21 13 56.76
High-grade 2 3 35 87.50

Overall Accuracy 77.39

Table 4.16: Training set accuracy obtained by the Delaunay triangulation. The
circle-fit threshold value is also selected as 10.

Healthy Low-grade High-grade Accuracy
Healthy 29 0 5 85.29
Low-grade 4 21 10 60.00
High-grade 1 3 25 86.21

Overall Accuracy 76.53

Table 4.17: Test set accuracy obtained by the Delaunay triangulation. The circle-
fit threshold value is also selected as 10.

accuracy difference between these two. From the results, we can derive that use of

CDT introduces an improvement of 2.04% at minimum and 18.36% at maximum

at different threshold values over the use of DT. When the circle-fit threshold is

selected as 10, where both triangulations provide the highest classification accu-

racy, CDT provides 9.18% better rate.

We must study the effects of CDT and DT on individual classes (healthy,

low-grade cancerous, high-grade cancerous) as well in order to better understand

and evaluate the effects of different triangulation schemes. Figures 4.11, 4.12,

and 4.13 present the test set accuracies for different classes of healthy, low-grade

cancerous, and high-grade cancerous.

From Figure 4.11, we can understand that the healthy tissues are classified

well by both using features extracted from CDT and DT. With the use of circle-

fit threshold value of 10 and higher, the tissues are classified well enough, and

at least 85% accuracy is obtained. This fact may show that either the healthy

tissues are classified well or the classifier is prone to mark all test images as
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Figure 4.9: Test accuracies of constrained Delaunay triangulation and Delaunay
triangulation. These results are obtained by choosing the SVM cost parameter C
individually with 10-fold cross-validation in each iteration and with preprocessed
images.

healthy, bringing higher classification accuracy for healthy tissues, and resulting

in the loss of classification for other classes. To understand the system further, we

have to look at the classification results for low-grade and high-grade cancerous

tissues.

Figure 4.12 demonstrates that the low-grade cancerous tissues constitute a

problem for our classification. With the use of Delaunay triangulation, at most

62.86% accuracy is obtained when the circle-fit threshold value is selected to be

5. Furthermore, when the circle-fit threshold value is set to be 10, where we reach

our maximum classification performance in general, 60% of the test samples are

classified correctly. However, this percentage points out that more than one-third
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Figure 4.10: The difference in test accuracies of constrained Delaunay triangula-
tion and Delaunay triangulation. (See Figure 4.9)
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Constrained Delaunay triangulation (Healthy samples)
Delaunay triangulation (Healthy samples)

Figure 4.11: The test set accuracies obtained by constrained Delaunay triangu-
lation and Delaunay triangulation in healthy tissues. (See Figure 4.9)
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Constrained Delaunay triangulation (Low−grade samples)
Delaunay triangulation (Low−grade samples)

Figure 4.12: The test set accuracies obtained by constrained Delaunay triangu-
lation and Delaunay triangulation on low-grade cancerous tissues. (See Figure
4.9)
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Constrained Delaunay triangulation (High−grade samples)
Delaunay triangulation (High−grade samples)

Figure 4.13: The test set accuracies obtained by constrained Delaunay triangu-
lation and Delaunay triangulation on high-grade cancerous tissues. (See Figure
4.9)
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of all low-grade cancerous samples are misclassified.

Figure 4.12 also shows that the introduction of constrained Delaunay triangu-

lation increases the test set accuracy by 8.57%-28.57%, where circle-fit threshold

values are 5 and 20/45, respectively. These results show that constrained Delau-

nay triangulation performs more accurately than Delaunay triangulation (20.64%

increase in classification rates on average) for the classification of low-grade can-

cerous samples.

Last of all, we have the results acquired from the classification of high-grade

cancerous samples (Figure 4.13). The results for the CDT are more unsteady than

the healthy and low-grade cancerous classes. The accuracy starts from 86.21%

where the circle-fit threshold is 5, jumps to 96.55%, and then decreases to 58.52%.

The decrease is attributed to the accuracy increases for the other classes. The

results of other classes may not be improved without this compensation. The rise

in the classification rate of healthy and low-grade cancerous samples are cancelled

by this great fall in the classification accuracy of high-grade cancerous samples

at greater threshold values. The peak point of the rates is at threshold 10.

From these individual class observations, we can conclude that greater val-

ues of the circle-fit threshold provide us the chance to classify healthy and low-

grade cancerous samples better, but result in a total loss in high-grade cancer

classification. As presented in Figure 4.9, the optimum point, where we can

differentiate a set of healthy, low-grade cancerous, and high-grade cancerous tis-

sues, is the one where the circle-fit threshold value is set to be 10.

The previous results are obtained using preprocessed images. We also examine

the classification success of images without preprocessing. Figure 4.14 presents

the test set accuracies for constrained Delaunay triangulation and Delaunay tri-

angulation, while Figure 4.15 shows the difference between these accuracies.

From Figures 4.14 and 4.15, we may see that the introduction of CDT improves

the DT better than it did in the case of preprocessed images. It also has better

classification than those in preprocessed images where the circle-fit threshold is

10. However, if we examine the rest of the results, the CDT on non-preprocessed
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Figure 4.14: Test accuracies of constrained Delaunay triangulation and Delaunay
triangulation. These results are obtained by choosing the SVM cost parameter
C individually with 10-fold cross-validation and using non-preprocessed images.
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Figure 4.15: The difference between in test accuracies of constrained Delaunay
triangulation and Delaunay triangulation. (See Figure 4.14)
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images has obviously worse classification accuracies than those of the preprocessed

ones. We conclude that the set of preprocessed images forms a more solid base

for future development of the experiments.

4.3 Discussion

In this section, we will provide a discussion on the advantages and disadvantages

of the algorithms we used, our feature choices, and the success of the algorithm

we have developed.

4.3.1 Parameter selection

The selection of parameters is the first factor that is deeply interconnected with

the increase in classification accuracy. For the k-means step, it was easy to choose

k = 3 as the number of clusters and this selection is sufficient for the success of

segmentation. However, it was difficult to choose whether to apply preprocessing

or not on this clustered image maps, since they provide approximately equal

accuracy at their highest peak. Our experiments helped us understand that

preprocessing is better (least or more) and it provides a more solid base for the

future development of our algorithm.

The circle-fit threshold is another parameter that is easy to decide on. In most

of our experiments, a circle-fit threshold value of 10 turned out to be the most

accurate selection. It was the most stable and reliable choice. On the contrary, the

selection of cost parameter of our SVM classifier remained the biggest problem.

At first, we tried to maximize the accuracy by finding a fixed C value, using the

accuracy acquired from the training and test sets. However, the results had a

very unstable amplitude of accuracy, and it was nearly impossible to decide on

a generally accepted value. As a result, we have decided to use 10-fold cross-

validation on the training samples; in every single experiment, we chose C value

by using the accuracy maximizing C value in 10-fold cross-validation.
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4.3.2 Feature definition and selection

It is not possible to reach high classification rates without the use of expressive

features. It was required to define the best selection of features for the success of

constrained Delaunay triangulation, so we tried to define features on CDT that

consider and cover the spatial relationships, connectivity, and network related

properties of nodes.

To this end, we first made use of available features which are defined for Delau-

nay triangulation in the previous works of other researchers. However, these fea-

tures were simply not sufficient to represent the characteristics of our constrained

Delaunay triangulation, so we extended our feature set using the features defined

for other graph types which are also available in the literature. Features like the

number of isolated and end nodes, and the number of connected components are

not meaningful if they are defined on a regular Delaunay triangulation, but they

are so on constrained Delaunay triangulation. The combined set of these features

are still not enough, so to uncover the real discriminative power of CDT, we have

also defined features like average clustering coefficient for nodes with d (pi) ≥ 2.

These features are summarized in Table 4.18.

Another problem was to select the most representative features out of this

feature set. We made use of principle component analysis, forward selection, and

backward selection to understand the relationships and the effects of features in

a deeper manner. For the forward selection, we have added features until the

classification rate obtained from 10-fold cross-validation increases no more, and

for the backward selection, we continued to drop features until the same accuracy

rate does not increase. However, when we examine the results presented in the

corresponding sections, the results show that these algorithms could not improve

the classification and increase accuracy. The problem with these algorithms is

that once a feature is selected to be used in or removed from the feature subset,

this feature cannot be removed or included in a later iteration.

Considering all these results, we have decided that the final settings for the

algorithm should be as follows:
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Feature DT1 OG2 CDT3

Average degree X X X
Average degree for nodes with d (pi) ≥ 2 X X
Isolated node number X X
End node number X X
Average clustering coefficient for nodes with d (pi) ≥ 2 X X
Average eccentricity X X X
Diameter X X X
Number of components X X
Number of components with n ≥ 2 X X
Giant component ratio X X
Average edge length X X X
Standard deviation of edge length X X X
Average triangle area X X
Standard deviation of triangle area X X
1 Features that are definable for Delaunay triangulation
2 Features that are definable for other types of graphs
3 Features that are definable for constrained Delaunay triangulation

Table 4.18: The list of features

• K-means clustering with k = 3

• Preprocessing

• Circle transformation with a threshold value of 10

• Construction of the constrained Delaunay triangulation and the extraction

of all features defined in Table 3.1

• Training and classification with SVM by using the cost parameter C found

by 10-fold cross-validation, with the use of all features

With these settings, the obtained accuracy results and their comparison with

those of Delaunay triangulation are given in Tables 4.19, 4.20, 4.21 and 4.22.
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Healthy Low-grade High-grade Accuracy
Healthy 38 0 0 100.00
Low-grade 3 26 8 70.27
High-grade 0 3 37 92.50

Overall Accuracy 87.83

Table 4.19: Training set accuracy obtained by the constrained Delaunay triangu-
lation.

Healthy Low-grade High-grade Accuracy
Healthy 31 0 3 91.18
Low-grade 2 25 8 71.43
High-grade 0 1 28 96.55

Overall Accuracy 85.71

Table 4.20: Test set accuracy obtained by the constrained Delaunay triangulation.

Healthy Low-grade High-grade Accuracy
Healthy 33 2 3 86.84
Low-grade 3 21 13 56.76
High-grade 2 3 35 87.50

Overall Accuracy 77.39

Table 4.21: Training set accuracy obtained by the Delaunay triangulation.

Healthy Low-grade High-grade Accuracy
Healthy 29 0 5 85.29
Low-grade 4 21 10 60.00
High-grade 1 3 25 86.21

Overall Accuracy 76.53

Table 4.22: Test set accuracy obtained by the Delaunay triangulation.
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4.3.3 Complexity of algorithms

We should also analyze the computational complexity of our algorithms to demon-

strate that the introduction of constrained Delaunay triangulation does not bring

high computational complexity.

In the first group of algorithms in our methodology, the Lab conversion and

the k-means processing is common for both Delaunay triangulation (DT) and con-

strained Delaunay triangulation (CDT), so there is no difference in complexity

for DT and CDT. For preprocessing, circle-fit transform, and Delaunay triangu-

lation steps, the white regions and purple regions are processed individually, and

the computation time is usually doubled or quadrupled. However, the increase in

the number of pixels/nodes for the algorithms in this group does not affect the

asymptotic complexity.

Step
Complexity
DT CDT

Lab conversion
same

K-means clustering
Preprocessing

sameCircle-fit transform
Delaunay triangulation
Constrained Delaunay triangulation - O (N)
Feature extraction

same
Training and classification

Table 4.23: Complexity of algorithms

The formation of constrained Delaunay triangulation is simply O (N) after

the construction of Delaunay triangulation, where N is the total number of white

and purple nodes. The decrease in the number of edges does not affect the

complexity, but shortens the feature extraction step and decreases the run-time.

The feature extraction, training, and classification algorithms also do not increase

the computational complexity. In short, it can be concluded that these two

approaches present the same computational complexity.



Chapter 5

Conclusion and Future Work

The increasing risk of cancer in the 21st century raises more challenges for a

pathologist. The spread of contaminants and hormone-injected food, the rise

in cigarette and alcohol consumption, stressful lifestyle, and many other factors

cause more cancer incidents throughout the mankind, and this fact compels cancer

specialists to give more accurate decision in shorter times. Given the variability of

human decision, it becomes inevitable to employ computerized decision makers to

help pathologists since algorithmic approaches offer more stable and quantitative

frameworks.

There exists a large set of studies for automated cancer diagnosis, especially

based on textural and/or structural tissue analysis. The major drawback of the

previous structural, graph-based studies is their incapability of using potential

information that is provided by other tissue components rather than cell nuclei.

Because of their nature, such information becomes useful especially for the repre-

sentation of the tissue types where tissues consist of hierarchical structures, such

as gland structures in colon tissues.

In this thesis, we proposed a novel constrained Delaunay triangulation(CDT)-

based technique for diagnosis and grading of colon cancer. For the construction of

CDT, histopathological images of colon tissues are first transformed into Lab color

space and the pixels of these images are clustered using the k-means clustering

89
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algorithm. Resulting image maps are then preprocessed and circle-fit transform

is applied on these ones, to define circular primitives which will represent nuclei

and luminal regions. Afterwards, a standard Delaunay triangulation is built on

these two sets of nodes (nuclei and luminal nodes). The constrained Delaunay

triangulation is obtained with the removal of luminal (white) nodes and the edges

that are connected to these nodes.

Our proposed algorithm utilizes luminal regions for the construction of trian-

gulation. With the introduction of CDT, it becomes possible to come up with

a new and distinctive set of features, which could not be defined on standard

Delaunay triangulation (DT), such as number of isolated nodes, number of end

nodes, and giant component ratio. These novel features are better in terms of

reflecting the layout of a tissue with components rather than nuclei. On the

other hand, features which are already available for Delaunay triangulation be-

come more significant with the construction of a more expressive triangulation.

Tables 5.1 and 5.2 demonstrate the training and test accuracies for constrained

Delaunay triangulation, respectively. In these results, the features that are also

available to standard Delaunay triangulation, such as average degree and average

edge length, are used. The results show that the use of former features result in

a classification with lower accuracies. The test set accuracy of 76.53 percent is

9.18 percent lower than the results that are acquired with the use of all features.

Healthy Low-grade High-grade Accuracy
Healthy 35 1 2 92.11
Low-grade 3 25 9 67.57
High-grade 0 4 36 90.00

Overall Accuracy 83.48

Table 5.1: Training set accuracy obtained by the constrained Delaunay triangula-
tion. In this experiment, the common features that are also available to standard
Delaunay triangulation are used for the training and classification.

After the acquisition of the features, classification is conducted with the use

of a support vector machine classifier. 10-fold cross-validation is applied on the

cross validation set, which basically is the training set, for the detection of optimal
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Healthy Low-grade High-grade Accuracy
Healthy 25 3 6 73.53
Low-grade 2 23 10 65.71
High-grade 1 1 27 93.10

Overall Accuracy 76.53

Table 5.2: Test set accuracy obtained by the constrained Delaunay triangula-
tion. In this experiment, the common features that are also available to standard
Delaunay triangulation are used for the training and classification.

cost parameter C of SVM classifier.

In this study, principle component analysis, forward selection, and backward

elimination methods are used to find an optimal subset of features. These meth-

ods provided the necessary information for our analysis of individual features,

but they could not find the best feature subset. In forward selection algorithm, a

selected feature cannot be removed at later iterations, even if it becomes useless

with the insertion of other features. Furthermore, in backward elimination ap-

proach, a removed feature cannot be reincluded in the feature subset in backward

elimination approach. Therefore, we have decided to use all available features in

the training and classification steps.

The results indicate that, CDT provides better performance over DT in terms

of classification accuracy. 85.71% accuracy for the test set is achieved with a

classification over the use of whole feature set, while the Delaunay triangulation

provides 76.53% for the same configuration. Our preselected feature subset pro-

vides better classification for the test set with 86.73% accuracy, but not for the

training set. We choose to use the entire feature set, considering the lower ac-

curacy acquired for the training set with the use of manually selected features,

because the former produced more stable and non-random results. Considering

their peak values, a gain of 10% is obtained without the introduction of any

computational complexity.

The contribution of this thesis to literature is that, it proves the need for

the utilization of non-nuclei components of various tissue types, in which these
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components come into question, such as colorectal tissues. A novel constrained

Delaunay triangulation is designed for the use of multi-component image analysis

studies.

The future aspects of this study include running the experiments on other

types of tissues with dominating structures. A second possible improvement

and a future work shall be combining this idea of the utilization of non-nuclei

components with the other structural approaches.
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Appendix A

Implementation

Step Programming language

Transformation into Lab color space MATLAB
K-means clustering ANSI C
Preprocessing MATLAB
Circle-fit transform ANSI C

Delaunay triangulation MATLAB
Constrained Delaunay triangulation MATLAB

Feature extraction Java

Training and classification ANSI C

PCA MATLAB
Forward selection MATLAB
Backward elimination MATLAB

Table A.1: Implementation details of our approach
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