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ABSTRACT

Identification of Some Nonlinear Systems by Using Least-Squares

Support Vector Machines

Mahmut Yavuzer

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ömer Morgül

August 2010

The well-known Wiener and Hammerstein type nonlinear systems and their various com-

binations are frequently used both in the modeling and the control of various electrical,

physical, biological, chemical, etc... systems. In this thesis we will concentrate on the

parametric identification and control of these type of systems. In literature, various iden-

tification methods are proposed for the identification of Hammerstein and Wiener type

of systems. Recently, Least Squares-Support Vector Machines (LS-SVM) are also applied

in the identification of Hammerstein type systems. In the majority of these works, the

nonlinear part of Hammerstein system is assumed to be algebraic, i.e. memoryless. In

this thesis, by using LS-SVM we propose a method to identify Hammerstein systems

where the nonlinear part has a finite memory. For the identification of Wiener type sys-

tems, although various methods are also available in the literature, one approach which is

proposed in some works would be to use a method for the identification of Hammerstein

type systems by changing the roles of input and output. Through some simulations it

was observed that this approach may yield poor estimation results. Instead, by using

LS-SVM we proposed a novel methodology for the identification of Wiener type sys-

tems. We also proposed various modifications of this methodology and utilized it for

some control problems associated with Wiener type systems. We also proposed a novel
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methodology for identification of NARX (Nonlinear Auto-Regressive with eXogenous in-

puts) systems. We utilize LS-SVM in our methodology and we presented some results

which indicate that our methodology may yield better results as compared to the Neural

Network approximators and the usual Support Vector Regression (SVR) formulations.

We also extended our methodology to the identification of Wiener-Hammerstein type

systems. In many applications the orders of the filter, which represents the linear part of

the Wiener and Hammerstein systems, are assumed to be known. Based on LS-SVR, we

proposed a methodology to estimate true orders.

Keywords: System Identification, Wiener Systems, Hammerstein Systems, Wiener-Hammerstein

Systems, Nonlinear Auto-Regressive with eXogenous inputs (NARX), Least-Squares Sup-

port Vector Machines (LS-SVM), Least-Squares Support Vector Regression (LS-SVR),

Control.
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ÖZET

DOĞRUSAL OLMAYAN BAZI SİSTEMLERİN EN KÜC. ÜK KARELİ

DESTEK VEKTÖR MAKİNELERİYLE TANILANMASI

Mahmut Yavuzer

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ömer Morgül

Ağustos 2010

Bilindik Wiener ve Hammerstein türü doğrusal olmayan sistemler ve onların değişik kom-

binasyonları, çeşitli elektriksel, fiziksel, biyolojik, kimyasal v.b. sistemlerin modellen-

mesinde sıklıkla kullanılmaktadır. Bu tezde, bu tür sistemlerin parametrik tanılanması

ve kontrolü üzerine yoğunlaşacağız. Konuyla ilgili olarak, Hammerstein ve Wiener türü

sistemlerin tanılanmasıyla ilgili olarak çeşitli metotlar önerilmektedir. Son çalışmalarda,

En Küçük Kareli - Destek Vektör Makineleri (EK-DVM) de Hammerstein türü sis-

temlerin tanılanmasında kullanılmıştır. Bu çalışmaların büyük kısmında, Hammerstein

sisteminin doğrusal olmayan bölümünün cebirsel, yani belleksiz olduğu varsılmaktadır.

Bu tezde EK-DVM kullanarak, Hammerstein sistemlerini tanılayacak, doğrusal olmayan

bölümün kısıtlı bir belleğe sahip olduğu bir metot öneriyoruz. Wiener türü sistemlerin

tanılanması için literatürde pek çok metot mevcut olsa da, bazı çalışmalarda öne sürülmüş

bir yaklaşım, girdi ve çıktıların rolleri değiştirilerek Hammerstein sistemi için kullanılan

metotun uygulanması şeklindedir. Bazı simülasyonlar sırasında bu yöntemin zayıf tahmin

sonuçları verdiği gözlemlenmiştir. Bunun yerine EK-DVM kullanarak Wiener türü sis-

temlerin tanılanması için yeni bir teknik öneriyoruz. Ayrıca bu tekniği, bazı değişiklikler

önererek, Wiener türü sistemlerle ilgili bazı kontrol problemlerinde kullandık. Ayrıca

DOBH (Doğrusal Olmayan Otomatik Bağlanımlı ve Harici Girdili) sistemlerin tanılanması

için yeni bir metot sunduk. Yaklaşımımızda EK-DVM den faydalanarak, sinirsel ağ
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yakınlaştırıcılar ve Destek Vektör Bağlanımı (DVB) kullanımından daha iyi sonuçlar

elde ettik. Ayrıca metodumuzu Wiener-Hammerstein türü sistemlerin tanılanması için

genişlettik. Pek çok uygulamada Wiener ve Hammerstein türü sistemlerin doğrusal

kısmını temsil eden filtrelerin derecelerinin bilindiği varsayılmaktadır. EK-DVB ye daya-

narak, doğru dereceyi tahmin edecek bir metot önerdik.

Anahtar Kelimeler: Sistem Tanılama, Wiener Sistemleri, Hammerstein Sistemleri, Wiener-

Hammerstein Sistemleri, Doğrusal Olmayan Otomatik Bağlanımlı ve Harici girdili (DOBH)

Sistemler, En Küçük Kareli-Destek Vektör Makineleri (EK-DVM), En Küçük Kareli-

Destek Vektör Bağlanımı (EK-DVB), Kontrol
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for his guidance and support throughout my study. This work is an achievement of his

invaluable advice and guidance.

I would like to thank Prof. Dr. A. Enis Çetin and Assist. Prof. Selim Aksoy for
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Chapter 1

INTRODUCTION

System identification in its broadest sense is a powerful technique for building accurate

mathematical models of complex systems from noisy data [1]. In this thesis, we mainly

deal with Bilinear, Wiener and Hammerstein type nonlinear systems, and their various

combinations. These type of systems have simple structures, which is composed of a cas-

cade combination of a static nonlinear block with a linear block, see Figures 1.1, 1.2. In

many cases, we will model the linear system as a filter, and use the term linear system and

filter interchangeably. Although these structures are quite simple, these models are used

quite frequently in many control applications, and many identification methods have been

developed for these structures, see e.g [2], [3], . We first note that, various combinations of

these models, e.g. Wiener-Hammerstein, or Hammerstein-Wiener, can also be considered

as a new model. Also, identification of Hammerstein and Hammerstein-Wiener models

are easier as compared to the identification of Wiener and Wiener-Hammerstein models.

We will mainly focus on identification of the latter systems, e.g. Wiener and Wiener-

Hammerstein systems, by improving and/or modifying the identification methods for the

Hammerstein and Hammerstein-Wiener systems.

A Hammerstein system may be used for the modeling of many physical systems, see

e.g [4]. In [5] it was shown that a power amplifier may be modeled by a Hammerstein

system with an IIR filter or by a Wiener system, which will be explained below, with FIR

filter. It was also shown in [5] that for high (gain) power amplifiers, Hammerstein models
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give better results. In [2], in order to precompensate a power amplifier, a predistorter

modeled as a Hammerstein system was developed, and this development was based on

an indirect learning architecture (ILA) presented in [2] . In this methodology, instead

of ILA, a direct Learning architecture (DLA) can also be used to obtain the required

predistorter in Hammerstein form [2].

Figure 1.1: Block diagram of a Hammerstein model

AWiener model is composed of a linear time invariant system and a static nonlinearity.

The linear time invariant system is followed by the static nonlinear function. The block

diagram of the model is shown in the Figure 1.2.

Figure 1.2: Block diagram of a Wiener model

Despite its simplicity the Wiener model has been successfully used to describe a

number of systems, the most important ones being :

� Joint mixing and chemical reaction processes in the chemical process industry. Var-

ious types of pH-control processes constitute typical examples, see e.g. [6].

� Biological processes, including e.g. vision, see e.g. [4].

� Also, as indicated above, a power amplifier may be modeled by using a Wiener

system with a FIR filter, see e.g. [5]

2



What is less well known is that the Wiener model is also useful for the description of a

number of situations where the measurement of the output of a linear system is highly

nonlinear and non-invertible. Important examples include

� Saturation in the output measurements, see e.g. [7].

� Dead zones in the output measurements, see e.g. [7].

� Output measurements which insensitive to sign, e.g. pulse counting angular rate

sensors, see e.g [3].

� Quantization in the output measurements. This case has received a considerable

interest recently with the emerging techniques for network control systems, see e.g.

[8] .

� Blind adaptation. This follows since the blind adaptation problem can sometimes

be cast into the form of a Wiener system, see e.g. [9]

Wiener models have also been successfully used for extremum control. A main moti-

vation for the use of Wiener models is that the dynamics is linear, a fact that simplifies

the handling of properties like statistical stationarity and stability, as compared to when

a general nonlinear model is applied.

We will also deal with NARX (Nonlinear Auto-Regressive with eXogenous inputs)

systems. These type of systems are also applied successfully to model many physical,

biological and other phenomenons. For example, in mechanical models for vibration

analysis specific polynomial nonlinearities are often used to describe well-known nonlinear

elastic or viscous behaviours, see e.g [10]. The well-known Bilinear systems can also be

considered as a subset of NARX models. Many objects in engineering, economics, ecology

and biology etc. can be described by using a bilinear system, see e.g [11]. The bilinear

systems are the simplest nonlinear systems which are similar to a linear system in its

form, [12]. In literature, mainly least-squares (LS) techniques and/or black box modeling

are used for the identification of NARX, and in particular bilinear systems.
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In this thesis we use Least Squares-Support Vector Machines (LS-SVM) to identify the

systems introduced above. The aim of identification is to determine both the linear part

and the nonlinearity in the system. The linear part represents a Linear Time Invariant,

Single Input, Single Output (SISO) discrete time systems, hence can be modeled by a

transfer function H(q−1), where q−1 denotes unit delay operator. H(q−1) can be given

as a ratio of two polynomials, namely the numerator and denominator polynomials, and

the knowledge of the orders of these polynomials are also required in many cases. In

the identification of Wiener systems the invertibility of the nonlinearity is required in

various works available in the literature, see e.g. [13], [14] and [15]. Recently, LS-SVM

are applied to the identification of Hammerstein systems, see [16]. However, since each

system has its own structure, we cannot apply the approach proposed in [16] to Wiener

or Wiener-Hammerstein systems, since the optimization problem to be solved becomes

highly nonlinear and consequently to obtain an optimal solution becomes very difficult.

In [1] it is proposed that the same method applied to identify Hammerstein systems

can be applied to identify Wiener systems too, by changing the role of input and output

given that the nonlinearity is invertible. In this thesis we tested this conjecture through

various simulations, and our results indicates that this conjecture does not hold in general.

Our contributions in this thesis can be summarized as follows:

� For the identification of NARX type systems by using SVM, we have developed

a new formulation which improves the identification performance significantly ,

compared to usual SVM, LS-SVM and PL-LSSVM (Partial Linear- Least Squares

Support Vector Machines).

� By using LS-SVR (Support Vector Regression ) we have developed a new formula-

tion to determine the order of the filters.

� Many identification algorithm for Hammerstein systems require that nonlinear block

be static, i.e memoryless. We relaxed this assumption and proposed a method

for the identification of Hammerstein systems whose nonlinear block has a finite

memory. Note that in this case, the usual static nonlinear block of Hammerstein
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model is replaced by a non-static nonlinear block.

� We have developed new formulations for the identification of Wiener systems, which

does not require the nonlinear block to be invertible. Note that many identification

schemes proposed in the literature for Wiener systems assume that the nonlinear

block be invertible.

� We designed feedback control schemes for the control of Wiener systems by using

SVM.

� In [16] Hammerstein systems are identified by using LS-SVM, and the identification

of Wiener-Hammerstein systems by using LS-SVM is set as a future problem. We

developed a methodology for the identification of Wiener-Hammerstein systems by

using LS-SVM.

In Chapter 2, we first give a brief description about system identification and some

procedures. Then we provide some mathematical preliminaries that are necessary for

the development of the work which will be presented in this thesis. Chapter 3 addresses

the mathematical model and the algorithm we developed for identification of NARX

systems. We first obtain the performance of the usual LS-SVM, then we compare it with

the performance of Neural Networks. Then we comment on the improvement we obtained

on the performance in the identification of NARX systems. In Chapter 4, we show how

LS-SVM are used for identification of Hammerstein systems. Then we modify, and design

that approach in various ways to identify Wiener systems and to control them. We also

compare and contrast our proposed algorithm with the existing algorithms presented in

[17] and [18] in terms of the mean squared errors between outputs. In Chapter 5 we

propose a novel methodology for the identification of Wiener-Hammerstein systems. by

using LS-SVM and compare the performance with some other existing methodologies,

see e.g. [19]. Finally we give some concluding remarks in Chapter 6.
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Chapter 2

SYSTEM IDENTIFICATION AND

PRELIMINARIES

In this chapter, basic concepts of system identification are explained and some mathe-

matical preliminaries are given briefly. We will introduce system identification procedure.

Then the main systems we deal with in this thesis, namely Wiener and Hammerstein sys-

tems will be introduced. Their application areas will be explained briefly. Then we will

present some basic formulations for Support Vector Machine (SVM) classification and

regression.

2.1 System Identification

System identification is a general term that is used to describe mathematical tools and

algorithms that build dynamical models from measured data. A dynamical system is

considered to be as in Figure 2.1 The input signal is ut and the system may have some

disturbances vt. We are able to determine the input signal but not the disturbances.

Sometimes the input signal may also be assumed to be unknown. The output is assumed

to be obtained with some measurement errors as usual.

The need for a model to represent a physical system has various reasons. Consider

a human body muscle system. After Spinal Cord Injury (SCI), the loss of volitional
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Figure 2.1: A dynamic system with input ut output yt and disturbance vt

muscle activity triggers a range of deleterious adaptations. Muscle cross-sectional area

declines by as much as 45 % in the first six weeks after injury, with further additional

atrophy occurring for at least six months, see e.g. [19]. Muscle atrophy impairs weight

distribution over bony prominences, predisposing individuals with SCI to pressure ulcers,

a potentially life threatening secondary complication. The neuron (nerve cell) is the

fundamental unit of the nervous system. The basic purpose of a neuron is to receive

incoming information and, based upon that information, send a signal to other neurons,

muscles, or glands. Neurons are designed to rapidly send signals across physiologically

long distances. They do this using electrical signals called nerve impulses or action

potentials . When a nerve impulse reaches the end of a neuron, it triggers the release

of a chemical, or neurotransmitter, see e.g. [20]. The input signal for a muscle is also

those signals from neuron cells. The output in such a system is the torque applied by

the muscle. Now considering all these relations , the system that transfer the signals

from neuron cells to a torque applied by the muscle is a highly complex system. It is

composed of a series of biological, chemical, electrical and mechanical processes, and it

may be impossible to find an exact mathematical representation of all these processes.

Instead we model all these processes by a mathematical structure (in this thesis by a

Wiener-Hammerstein model) and try to find the model parameters such that the input

(e.g neuron cells signals) and output (e.g torque applied by muscle) relations are satisfied.

In Figure 2.2 the pictures of muscles are shown.

In many cases the primary aim of modeling is to aid the controller design process.

In other cases the knowledge of a model can itself be the purpose, as for example when

describing the effect of a drug. If the model justifies the measured data satisfactorily
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Figure 2.2: Torque applied to ankles which is stimulated by neuron cells’ inputs

then it may also be used to justify and understand the observed phenomena. In a more

general sense modeling is used in many branches of science as an aid to describe and

understand reality [21].

2.1.1 Types of Models

A system can be modeled as a box with an input and output. Then the problem is

how to model the box. In literature, more emphasis is given on mainly three types of

modeling, namely white, gray and black box modeling . White box models are the results

of diligent and extensive physical modeling from first principles. This approach consists

of writing down all known relationships between relevant variables and using software

support to organize them suitably. For a gray box model we may not know the physical

model exactly. Nevertheless, we can construct a mathematical model to describe it and

try to find the parameters of the model based on measured data. For a black box model

no prior model is available, see e.g. [22].

Systems can be either symbolic such as digital computers or numeric. Numeric sys-

tems can also be classified as static, dynamic, linear, nonlinear etc. A model can be

characterized by three components: first, its structure; secondly the parameters related

to this structure; and finally the input signals which are used to excite the system. A

structure is a mathematical form and is instantiated by its parameters. The input signals

should be chosen carefully for best estimation of the parameters.
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2.1.2 Typical System Identification Procedure

In general terms, an identification experiment is performed by exciting the system (using

some sort of input signal such as a step, a sinusoid or a random signal -etc.) and observing

its input and output over a time interval. These signals are normally recorded in a

computer mass storage for subsequent ’information processing’. We then try to fit a

parametric model of the process to the recorded input and output sequences. The first

step is to determine an appropriate form of the model ( typically a linear difference

equation of a certain order). As a second step, some statistically based methods are used

to estimate the unknown parameters of the model (such as the coefficients in the difference

equation). In practice, the estimation of the structure and the parameters are often

done iteratively. This means that a tentative structure is chosen and the corresponding

parameters are estimated. The model obtained is then tested to determine whether it is

an appropriate representation of the system. If this is not the case, some more complex

model structures may be considered, its parameters should be estimated, the new model

should be validated, etc. The overall identification process may be given by a flowchart

as shown in Figure 2.3, which summarizes the basic steps involved in the process, see

e.g. [21].

2.2 Support Vector Machines For Various Tasks

Support vector machines (SVM) are basically used for pattern recognition and in partic-

ular for classification tasks. For simplicity, let us assume that the patterns belong to the

distinct classes, say C1 and C2. Furthermore let us assign class membership value as +1 if

a pattern belongs to C1 and −1 if a pattern belongs to C2. More precisely, let us assume

that the patterns are represented by L dimensional vectors, i.e xi ∈ RL for pattern xi,

and let us associate an output value yi for xi such that if xi ∈ C1, we have yi = +1,

and if xi ∈ C2 we have yi = −1. Furthermore let us assume that we have N training

samples, each are represented by a pair {xi, yi}, i = 1, . . . , N . For pattern recognition

(classification), we try to estimate a function f : RL → {±1} using training data, that is
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Figure 2.3: A flowchart for system identification
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L dimensional patterns xi and class labels yi

{x1, y1}, . . . , {xN , yN} ∈ RL × {±1}, (2.1)

such that f will correctly classify new examples (x, y). That is, f(x) = y for examples

(x, y) which are generated from the same underlying probability distribution P (x, y) as

the training data. If we put no restriction on the class of functions that we choose our

estimate f from, even a function that does well on the training data for example by

satisfying f(xi) = yi need not generalize well to unseen examples. Suppose that we do

not have additional information on f (for example, about its smoothness). Then the

values on the training patterns carry no information whatsoever about values on novel

patterns. Hence learning is impossible, and minimizing the training error does not imply

a small expected test error. Statistical learning theory, or VC (Vapnik-Chervonenkis)

theory, shows that it is crucial to restrict the class of functions that the learning machine

can implement to one with a capacity that is suitable for the amount of available training

data. For more information, please refer to [23].

Hyperplane classifiers

Given the training set, {xi, yi}, i = 1, . . . , N , and a parameterized form of the func-

tion f(.) : RL → {±1}, finding the parameters of f(.) is of crucial importance for the

classification problem as stated above. There are various ways for the solution of this

problem, see e.g. [24]. and utilizing learning algorithms which basically give us an up-

date rule/algorithm to find these coefficients, is a frequently used method. To design

learning algorithms, we thus must come up with a class of functions whose capacity can

be computed. SV classifiers are based on the class of hyperplanes as given below:

< w,ϕ(x) > +d = 0 w ∈ RL, d ∈ R, (2.2)

where w ∈ RL and d ∈ R are unknown parameters to be found, < ., . > represents the

standard inner product in RL, xi ∈ RL is the pattern vector and ϕ(.) : RL → RH is

called as the ”Kernel function” , [25]. Then the corresponding decision function can be
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given as:

f(x) = sign(< w,ϕ(x) > +d), (2.3)

where sign(.) is the standard signum function, i.e

sign(t) =





+1, if t ≥ 0,

−1, if t < 0

(2.4)

We note that the hyperplane given by ( 2.2) separates the pattern space into two half

spaces, if this hyperplane separates C1 and C2, then the signum function achieves correct

classification. One can show that the optimal hyperplane, defined as the one with the

maximal margin of separation between the two classes (see Figure 2.4), has the lowest

capacity [23]. It can be uniquely constructed by solving a constrained quadratic opti-

Figure 2.4: Optimal hyperplane is the plane that divides convex hulls of both classes.

mization problem whose solution w has an expansion w =
∑N

i=1 αixi in terms of a subset

of training patterns that lie on the margin (see Figure 2.4). These training patterns,

called support vectors, carry all relevant information about the classification problem.

Because we are using kernels, we will thus obtain a nonlinear decision function of the

following form, see e.g. [25].

f(x) = sign(
N∑
i=1

αiK(x,xi) + d). (2.5)
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Here xi’s represent the support vectors, and K(., .) : RH × RH → R is an appropriate

kernel function. In literature, various kernel functions such as Gaussian, Polynomial, etc.

are successfully used [26]. In our work we will mainly utilize Gaussian kernel functions,

which are given asK(xi, xj) = e(−‖xi−xj‖2) The parameters αi are computed as the solution

of a quadratic programming problem.

The most important restriction up to now has been that we consider only the classifi-

cation problem. However, a generalization to regression estimation,that is, to y ∈ R, can
also be given, see e.g. [27]. In this case, the algorithm tries to construct a linear function

in the feature space such that the training points lie within a distance ε > 0. Similar to

the pattern-recognition case, we can write this as a quadratic programming problem in

terms of kernels. The nonlinear regression estimate takes the form

f(x) =
N∑
i=1

αiK(x,xi) + d (2.6)

To apply the algorithm, we either specify ε a priori, or we specify an upper bound

on the fraction of training points allowed to lie outside of a distance ε from the regres-

sion estimate (asymptotically, the number of SVs) and the corresponding ε is computed

automatically. For more information refer to [26].
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Chapter 3

A NEW FORMULATION FOR

SUPPORT VECTOR

REGRESSION AND ITS USAGE

FOR BILINEAR SYSTEM

IDENTIFICATION

In this chapter, basic concepts of Support Vector Regression (SVR) are explained. First

we will show how nonlinear functions are modeled with SVM in general. We will then

show LS-SVM regression in particular and examine its performance. Then we will present

performance of Neural Network regression. We will also present a novel methodology and

will illustrate its performance compared to usual SVM regression approach and Neural

Network approach. We will make comparisons between these three methods in terms of

their performances. Finally we will present a novel methodology to determine the order

of the filter representing the linear blocks in our model, see Figure 1.1 and 1.2
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3.1 Nonlinear System Regression

Any nonlinear function (system) can be modeled with Support Vector Regression (SVR).

Support Vector Regression uses the same principle as the Support Vector Machine clas-

sification, with only a few minor differences. In the case of classification only two output

values are possible. But since we are trying to model a nonlinear function, the output

has infinitely many possible values, that is while in classification we have y ∈ {∓1}, here
we have y ∈ R. However, the main idea is similar: to minimize the error and maximize

the margin between the optimal hyperplanes.

The nonlinear dynamical systems with an input u and an output y can be described in

discrete time by the NARX (nonlinear autoregressive with exogenous input) input output

model:

y(k) = f(x(k)), (3.1)

where f(.) is a nonlinear function, y(k) ∈ R denotes the output at the time instant

k and x(k) is the regressor vector, consisting of a finite number of past inputs and

outputs. If we assume that the current output y(k) depends on past outputs y(i) for i ∈
[k − ny − 1, k − 1] and inputs u(i) for i ∈ [k − nu − 1, k], where ny and nu are appropriate

integers, then an appropriate regression vector x(k) to be used in 3.1 can be given as

follows:

x(k) =




y(k − 1)

...

y(k − ny)

u(k)

...

u(k − nu)




(3.2)

where nu is the dynamical order for the inputs and ny is the dynamical order for the

outputs, i.e. the present output depends on past ny outputs and nu inputs, as explained

above. Hence, with the above notation, we have x ∈ Rnu+ny+1, y ∈ R and f : Rnu+ny+1 →
R. We note that, here the regression relation is deterministic. In a realistic situation,

output measurements are usually corrupted by some noise. For such cases, instead of
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3.1, we may consider the following regression relation.

y(k) = f(x(k)) + ξ(k), (3.3)

where the regression vector x(.), the output y(.) and the nonlinear function f(.) are

the same as explained above; here ξ(.) represents the meausurement noise, and typically

modeled by a gaussian noise with zero mean and finite variance. Note that, for notational

simplicity we will use the notation ξi to denote ξ(i) in the sequel.

The task of system identification here is essentially to find suitable mappings, which

can approximate the mappings implied in the nonlinear dynamical system of (3.1). The

function f(.) can be approximated by some general function approximators such as neural

networks, neuro-fuzzy systems, splines, interpolated look-up tables, etc. [25]. The aim

of system identification is only to obtain an accurate predictor for y. In this work we

will show how we may increase the performance of the predictor by using appropriate

kernel mappings for each nonlinearity in the function f(.). The details will be given in

the sequel.

3.2 LS-SVM Regression

Consider a given training set of N data points {xi, yi} for i = 1, . . . , N , where xi ∈ Rn,

y ∈ R, (note that with the notation of (3.3), we have n = nu+ny+1). Let us assume that

the input output relation is as given by (3.1). Our aim will be based on the training data,

to find an estimation of the nonlinear function f(.). Although several techniques may

be utilized to estimate f(.), we will use SVM technique introduced in section 2. Hence,

referring to (2.6), we will try to approximate the nonlinear function f(.) as follows:

y(x) =< w,ϕ(x) > +d = wTϕ(x) + d, (3.4)

where ϕ : Rn → Rnf , where nf is left undetermined yet and usually nf ≥ n, d ∈ R. ϕ(.)
is called the feature map; its role is to map the data into a higher dimensional feature

space, which could also be infinite dimensional (i.e nf = ∞) in theory. Various forms of

ϕ(.) may be used, see [28]; in this thesis we will mainly use Gaussian functions, see (3.7)
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If we use the well-known Least Squares (LS) technique for function approximation by

using SVM’s, the approximation problem can be formulated as an optimization problem,

which is labeled as LS-SVM. In this case, the standard optimization problem can be given

as follows.

min
w,ξ

F (w, ξt) = 1/2‖w‖2 + γ/2
∑

ξ2t (3.5)

subject to yt = wTϕ(xt) + d+ ξt, ∀t = 1, . . . , N

Note that here ‖.‖ is the standard euclidian norm in Rn, i.e ‖w‖2 = wTw. γ is the

penalty term, the bigger it is the less it will be tolerant to error.

Here the quadratic programming problem has equality constraints. The problem is

convex and can be solved by using Lagrangian multipliers, αi, see [26]. If there were no

constraints while minimizing the objective function in (3.5) we could have just taken the

partial derivative of the objective function and set it to zero. Since the objective function

is convex, the point where the derivative is zero would be the solution for the minimiza-

tion. But since we have some constraints we have to construct the Lagrangian and set

its partial derivatives w.r.t all of its variables and set them to zero. The Lagrangian is

given as follows:

L (w, d, ξt, α) = F (w, ξt)−
N∑
t=1

αt(w
Tϕ(xt) + d+ ξt − yt). (3.6)

Using the Karush-Kuhn-Tucker (KKT) conditions we obtain the following equations.

∂L

∂w
= 0 → w =

N∑
t=1

αtϕ(xt) (3.7a)

∂L

∂d
= 0 →

N∑
t=1

αt = 0 (3.7b)

∂L

∂ξt
= 0 → αt = γξt, t = 1, . . . , N (3.7c)

∂L

∂αt

= 0 → yt = wTϕ(xt) + d+ ξt, t = 1, . . . , N (3.7d)
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If we put (??) and (3.7c) in (3.7d) we obtain the following:

yk =
N∑
t=1

αtϕ(xt)
Tϕ(xk) + d+ ξk, k = 1, . . . , N (3.8)

Note that in (3.8), we have N equations. We can rewrite (3.8) and (3.7b) as a set

of linear equations in the following form:


 0 1T

N

1N K+ γ−1I1T
N




 d

α


 =


 0

Y


 (3.9)

Where K is a positive definite matrix and K(i, j) = ϕ(xi)
Tϕ(xj) = e

(−‖xi−xj‖2)
2σ2 , where

σ is a scaling factor, α = [α1α2 . . . αN ], 1
T
N is a vector, whose entries are 1 and d is the bias

term. The mapping ϕ(.) can be polynomial, linear etc. In 3.9 a least squares solution

is obtained in order to find α and d parameters. Since this is almost standard, we omit

the details here, interested reader may refer to [26] for details. After obtaining these

parameters, the resulting expression for estimated function will be as the following: Note

that 3.9 is a linear equation of the form Az = b, where z = [d α]T is the unknown

vector which gives the sum parameters. A LS solution to this equation can be obtained by

using various techniques see e.g.[29]. After obtaining the SVM parameters, the regressor

function f(.) can be approximated by using (3.4) as,

f(x) = wTϕ(x) + d, (3.10)

If we use (3.7a) in (3.10) we obtain

f(x) =
N∑

k=1

αkϕ(x(k))
Tϕ(x) + d. (3.11)

Finally if we denote the kernel K(x, xk) as K(x, xk) = ϕ(x(k))Tϕ(x), we obtain:

f(x) =
N∑

k=1

αkK(x, xk) + d. (3.12)

In order to see the performance of the resulting estimated function we have done various

simulations for different systems . Assume that the system dynamics is given by (3.1),

where the nonlinear function f(x(k)) is given as:
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f(x(k)) = (a0 + a1sin(u(k − 1)) + a2cos(u(k − 2)))y(k − 1)

+(b0 + b1sin(u(k − 1)) + b2u(k − 2))y(k − 2) + c1u(k − 1) + c2u(k − 2) (3.13)

The function f(.) given by 3.13 can be rewritten as

f(xk) = a0yk−1 + f1(uk−1, yk−1) + f2(uk−2, yk−1)

+f3(uk−1, yk−2) + f4(uk−2, yk−2). (3.14a)

f1(uk−1, yk−1) = a1sin(u(k − 1))y(k − 1) (3.14b)

f2(uk−2, yk−1) = a2cos(u(k − 2))y(k − 1) (3.14c)

f3(uk−1, yk−2) = b1sin(u(k − 1))y(k − 2) (3.14d)

f4(uk−2, yk−2) = b2u(k − 2)y(k − 2) (3.14e)

Therefore we can think of f(.) as a function that depends on xk = [uk−1 uk−2 yk−1 yk−2]
T .

Hence, this function can be modeled with SVR by using xk as the regressor vector. The

leading formulations will be as the following:

min
wx,ek

F (w, ξk) = 1/2wTw + γ/2
N∑

k=r

ξ2k

subject to y(k) = a0y(k − 1) + b0y(k − 2) + c1u(k − 1) + c2u(k − 2)

+ wTϕ(x(k)) + d+ ξk, k = r, . . . , N (3.15a)

N∑

k=1

wTϕ(x(k)) = 0 . (3.15b)

The problem is quadratic and the appropriate Lagrangian is:

L (w, ai, bi, ci, d, ξk, α, β) = F (w, ξk)−
N∑

k=r

αk(a0y(k − 1) + b0y(k − 2) + c1u(k − 1)

+c2u(k − 2) + wTϕ(x(k)) + ek − yk)− β

N∑

k=1

wTϕ(x(k)) (3.16)

Using the Karush-Kuhn-Tucker (KKT) conditions we obtain the following equalities.
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∂L

∂w
= 0 → w =

N∑

k=r

αkϕ(xk) + β

N∑

k=1

ϕ(xk), (3.17a)

∂L

∂a0, b0, c1, c2
= 0 →

N∑

k=r

αky(k − i) = 0, i = 1, 2.
N∑

k=r

αku(k − i) = 0 i = 1, 2

(3.17b)

∂L

∂d
= 0 →

N∑

k=r

αk = 0 (3.17c)

∂L

∂ξk
= 0 → αk = γξk, k = r, . . . , N (3.17d)

∂L

∂αk

= 0 → yk = a0y(k − 1) + b0y(k − 2) + c1u(k − 1) + c2u(k − 2)

+ wTϕ(x) + d+ ξk, k = r, . . . , N (3.17e)

∂L

∂β
= 0 →

N∑

k=1

wTϕ(x(k)) = 0 (3.17f)

If we put (3.17a) and (3.17d) into (3.17e) we obtain the following set of linear

equations.




0 0 0 1T 0

0 0 0 Yp 0

0 0 0 Up 0

1 Y T
p U T

p K + γ−1I K0

0 0 0 K0T 1TNΩ1NIm+1







d

a

c

α

β




=




0

0

0

Yf

0




(3.18)

where a = [a0 b0] and c = [c1 c2]. A LS solution is taken in order to obtain a, c and

SVM parameters.

Now let us consider the example given by (3.13) with the actual parameters chosen

as a0 = 0.3, b0 = 0.2, c1 = 0.5, c2 = 0.6. with these parameters we simulated the

system given by (3.1) , (3.2), (3.13) by using input as a random signal of Gaussian

distribution with 0 mean and standard deviation 2. We created N = 300 samples of

training data. Noise also has a Gaussian distribution of 0 mean and standard deviation

less than 0.2. Then by solving (3.18), we obtained the estimated parameters as shown
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in Table 3.1. By using the same input which is used obtaining the training data, and

by using (3.13) with the estimated parameters, we also obtained the estimated outputs.

The distribution of actual outputs and estimated outputs are also shown in Figure 3.1.

As can be seen from the Figure 3.1 and the Table 3.1, the performance of the scheme

as outlined above is not satisfactory.

We will now show the resulting estimated outputs ŷk and actual outputs in terms

of RMSE (Root Mean Squared Error), output correlation etc. and compare them with

neural network regression. And then we will show how we improved these performances

by using some new formulations.
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Figure 3.1: The actual output values vs the estimated output values.

Table 3.1: Actual and estimated linear parameters

Actual parameters Identified parameters
a0 = 0.3 â0 = 0.413

b0 = 0.2 b̂0 = 0.126
c1 = 0.5 ĉ1 = 0.671
c2 = 0.6 ĉ2 = 0.704

The performance of the estimated system may be appropriate for some applications
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and may be not for some others. We will now compare these results with neural network

regression. But with neural networks we will not be able to estimate the parameters of

the linear part in (3.14). Only the inputs and outputs will be mapped and both will be

compared in terms of some performance criterions such as RMSE, correlation coefficients

etc. Regression (R) Values measure the correlation between estimated outputs and targets

(actual outputs). While an R = 1 means a close relationship, R = 0 means a random

relationship. Mean Squared Error is the average squared difference between outputs and

targets (actual outputs). Obviously lower values of RMSE indicates better performance.

3.3 Feedforward Neural Network Regression

An elementary neuron with R inputs is shown in Figure 3.2. Here P1, . . . , PR denotes

the input values and w1,1, . . . , w1,R denotes their corresponding weights and b represents

the bias term. Hence, the weighted sum n can be represented as:

n =
R∑
i=1

w1,iPi + b (3.19a)

The function f(.) determines the output a , as

a = f(n) (3.19b)

Note that although any function f(.) can be used for neural representations, sigmoidal

functions, which will be introduced later , are most frequently used. Moreover, to solve

optimization problems, mostly differentiable functions are used.

We can simplify (3.19a) and (3.19b) by introducing the input and weight values as

follows.

Multilayer networks often use the log-sigmoid transfer function logsig, which is defined

as

logsig(n) =
1

1 + e−λn
(3.20)

A typical figure of such a function is given in Figure 3.3. Here λ > 0 is a parameter

which determines the steepness of the function around x = 0. Note that as λ → ∞,

logsig(.) function approximates the unit-step function 1(.).
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Figure 3.2: The neuron model used in the feedforward network.©MATLAB

Figure 3.3: A possible transfer function used to activate neurons.©MATLAB

3.3.1 Feedforward Network

A single-layer network of S logsig neurons having R inputs is shown below in full detail

on the left and with a layer diagram on the right.

Mathematical formulation of input output relation of the structure shown in Figure

3.4 is straightforward if we use the representation of single neuron. We can define the

weight matrix w as: w = (w1 . . . wS)
T where wi = (wi,1, . . . , wi,R) i = 1, . . . , S. More-

over, we can define the linear sum vector n, bias vector b, and output vector a similarly

as:
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Figure 3.4: A Feedforward neural network.©MATLAB

n = (n1 . . . nS) b = (b1 . . . bS) a = (a1 . . . aS). Hence, with this notation, we have

n = WP+ b (3.21)

and finally

a = F (.) = F (WP+ b) (3.22)

where F (.) : RS → RS is defined as

F (n) = (logsig(n1), . . . , logsig(ns))
T , (3.23)

where the superscript T denotes the transpose.

If we concatenate such layers in cascade form, we obtain the so-called multilayer

neural networks. It is well known that a 2-layer neural network with linear activation

functions in the second layer (e.g f(n) = n in Fig. 3.2) can approximate any continuous

function with arbitrary degree of precision, see eg. [30]. For a given function, or for a

given training set, the appropriate weights of the neural network can be found by using

the so-called Back Propagation Algorithm, see e.g [31]. In this work we will use the

MATLAB toolbox for neural network simulations.

The network will be trained with Levenberg-Marquardt backpropagation algorithm

(a MATLAB function : trainlm).
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Figure 3.5: The actual output values vs the estimated output values using Neural Net-
works.

The nonlinear system that is to be modeled is the one that we have used in the

previous section, i.e. the function (3.13). The length of the training data is N = 300,

the input used to excite the system is the same as before, i.e u(k) = N (0, 2), hence the

output is also the same in order for the comparisons be sensible. The performance results

are shown in the Figure 3.5. In the Figure 3.5 the target, i.e axis x, denote the actual

output, i.e y(k), while axis y denote the estimated output, i.e ŷ(k). The value R denote

the correlation between actual y(k) (target) and estimated outputs ŷ(k) (axis y).

The results show that the Neural Networks perform much better than LS-SVM Re-

gression, in terms of both RMSE and correlation (R) values. However, note that here we

do not estimate the parameters a0, . . . , c2, but estimate the input-output relation.
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3.4 Improved performance using multiple kernels

Now we will show how the overall identification performance can be improved by using

multiple kernels. Note that this is similar to the concept of mK kernels used in the

literature, see e.g [32]. In the usual SVM regression, the formulation given in Section

3.2 is used. Now we will modify this methodology and interpret the resulting perfor-

mance. Now consider the system given previously, i.e. by (3.1) , (3.2) and (3.13).

In order to model this system with LS-SVM we used only a regression vector of form

xk = [uk−1 uk−2 yk−1 yk−2]
T . In that case the resulting model has only one kernel

function. We can divide the regression vector and construct a kernel from each divided

vector. Now consider the nonlinear function given by (3.14a)- (3.14e). Instead of using

only a single SVM for the total nonlinear function, we could utilize one SVM for each of

the nonlinear parts. More precisely, we could express f1, f2, f3, f4 as:

f1(uk−1, yk−1) = wT
a1
ϕ(xa1(k)) + d1 (3.24a)

f2(uk−2, yk−1) = wT
a2
ϕ(xa2(k)) + d2 (3.24b)

f3(uk−1, yk−2) = wT
b1
ϕ(xb1(k)) + d3 (3.24c)

f4(uk−2, yk−2) = wT
b2
ϕ(xb2(k)) + d4 (3.24d)

where xai , xbi i = 1, 2 are given as:

xa1 =


 u(k)

y(k − 1)


 , xa2 =


 u(k − 2)

y(k − 1)


 , xb1 =


 u(k − 1)

y(k − 2)


 , xb2 =


 u(k − 2)

y(k − 2)


 ,

(3.25)

If we substitute (3.24a)- (3.24d) in (3.14a), we obtain

y(k) = f(x(k)) = (a0y(k − 1) + b0y(k − 2) + c1u(k − 1) + c2u(k − 2)

+wT
a1
ϕ(xa1(k)) + wT

a2
ϕ(xa2(k)) + wT

b1
ϕ(xb1(k)) + wT

b2
ϕ(xb2(k)) + d+ ek, k = r, . . . , N

(3.26)

where d = d1 + d2 + d3 + d4
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As seen in the above equation instead of only one SVM , 4 SVM are used to model

the function f(.). To obtain the optimal points, the optimization problem is constructed

as follows:

min
wx,ξk

F (w, ξk) = 1/2
∑
x

wT
xwx + γ/2

N∑

k=r

ξ2k

subject to y(k) = f(x(k)) = (a0y(k − 1) + b0y(k − 2) + c1u(k − 1) + c2u(k − 2)

+wT
a1
ϕ(xa1(k)) + wT

a2
ϕ(xa2(k)) + wT

b1
ϕ(xb1(k)) + wT

b2
ϕ(xb2(k)) + d+ ξk,

k = r, . . . , N (3.27a)

N∑

k=1

wT
xϕ(xx(k)) = 0 for x = a1, a2, b1, b2. (3.27b)

The problem is quadratic and the associated lagrangian can be given as:

L (w, a,b, c, d, ξk, α, β) = F (w, ξk)−
N∑

k=r

αk(a0y(k − 1) + b0y(k − 2) + c1u(k − 1)+

c2u(k − 2) + wT
a1
ϕ(xa1(k))+wT

a2
ϕ(xa2(k)) + wT

b1
ϕ(xb1(k)) + wT

b2
ϕ(xb2(k)) + d+ ξk − yk)

−
∑

x=a0,b0,c1,c2

βx

N∑

k=1

wT
xϕ(xx(k)) (3.28)

Again by using the Karush-Kuhn-Tucker (KKT) conditions we obtain the following

equations.

∂L

∂wx

= 0 → wx =
N∑

k=r

αkϕ(xk) + βx

N∑

k=1

ϕ(xk), x = a0, b0, c1, c2 (3.29a)

∂L

∂a0, b0, c1, c2
= 0 →

N∑

k=r

αky(k − i) = 0, i = 1, 2.
N∑

k=r

αku(k − i) = 0 i = 1, 2

(3.29b)

∂L

∂d
= 0 →

N∑

k=r

αk = 0 (3.29c)

∂L

∂ek
= 0 → αk = γξk, k = r, . . . , N (3.29d)

∂L

∂αk

= 0 → (3.27a) (3.29e)

∂L

∂βk

= 0 →
N∑

k=1

wT
xϕ(xx(k)) = 0 for x = a1, a2, b1, b2. (3.29f)
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If we put (3.29a) into (3.27a) and (3.29f), the following equations are obtained respec-

tively:

y(k) = a0y(k − 1) + b0y(k − 2) + c1u(k − 1) + c2u(k − 2)

+
N∑
t=r

αtKa1(t, k) + βa1

N∑
t=1

Ka1(t, k) +
N∑
t=r

αtKa2(t, k) + βa2

N∑
t=1

Ka2(t, k)

+
N∑
t=r

αtKb1(t, k) + βb1

N∑
t=1

Kb1(t, k) +
N∑
t=r

αtKb2(t, k) + βb2

N∑
t=1

Kb2(t, k) + d+ ek ,

k = r, . . . , N (3.30)

N∑

k=1

N∑
t=r

αtKa1(t, k) + βa1

N∑

k=1

N∑
t=1

Ka1(t, k) = 0 (3.31a)

N∑

k=1

N∑
t=r

αtKa2(t, k) + βa2

N∑

k=1

N∑
t=1

Ka2(t, k) = 0 (3.31b)

N∑

k=1

N∑
t=r

αtKb1(t, k) + βb1

N∑

k=1

N∑
t=1

Kb1(t, k) = 0 (3.31c)

N∑

k=1

N∑
t=r

αtKb2(t, k) + βb2

N∑

k=1

N∑
t=1

Kb2(t, k) = 0 (3.31d)

The equations given above can be put into a set of linear equations, whose matrix

form is given below:




0 0 0 1T 0

0 0 0 Yp 0

0 0 0 Up 0

1 Y T
p U T

p K + γ−1I K0

0 0 0 K0T 1TNΩ1NIm+1







d

a

c

α

β




=




0

0

0

Yf

0




(3.32)

where a = [a0 b0] and c = [c1 c2]. A LS solution is taken in order to obtain a, c and

SVM parameters.

Although the linear part parameters are not estimated accurately in both procedures

( 1K and mK) the overall results are accurate in terms of RMSE. Now let us consider
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Figure 3.6: The corrleation between actual and estimated output. Left using LS-SVR,
right using LS-SVR mK.

the example given by (3.13) again with the actual parameters chosen the same as a0 =

0.3, b0 = 0.2, c1 = 0.5, c2 = 0.6. with these parameters we simulated the system

given by (3.1) , (3.2), (3.13) by using input as a random signal of Gaussian distribution

with 0 mean and standard deviation 2. We created N = 300 samples of training data.

Noise also has a Gaussian distribution of 0 mean and standard deviation less than 0.2.

Then by solving (3.32), we obtained the estimated parameters as shown in Table 3.2.

By using the same input which is used obtaining the training data, and by using (3.13)

with the estimated parameters, we also obtained the estimated outputs. The distribution

of actual outputs and estimated outputs are also shown in Figure 3.7. As can be seen

from the Figure 3.7, the performance of the scheme as outlined above is satisfactory.

Finally to further signify the effectiveness of using LS-SVR mK some performance

comparisons are shown in the Tables 3.3, 3.4 and 3.5. As can be seen from the

tables the LS-SVR mK and neural network regression performs much better than the

conventional LS-SVR regression. If we compare LS-SVR mK and neural networks , each
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Figure 3.7: The actual output values vs the estimated output values using LS-SVR mK.

Table 3.2: Actual and estimated linear parameters

Actual parameters Identified parameters
a0 = 0.3 â0 = 0.406

b0 = 0.2 b̂0 = 0.135
c1 = 0.5 ĉ1 = 0.683
c2 = 0.6 ĉ2 = 0.710

has better performance for some combinations and worse performance for some other

combinations of chosen parameters. But the best performance is achieved by LS-SVR

mK for the test data.

3.5 Determining the orders of an ARMA(p,q) by LS-

SVR

In this section we will give a novel application of SVR to determine the orders of a

linear filter, i.e the degrees of numerator and denominator polynomials. In the following

chapters we will mainly assume that we know the orders of the filters in the systems to
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Table 3.3: Correlation and RMSE errors by LS-SVR

RMSE Correlation

method γ σ train test trainreg testreg

LS-SVR

1000 0.5 0.4119 1.4834 0.8922 0.4682
1500 0.3872 0.6744 0.9100 0.9003
2000 0.5650 1.4034 0.8778 0.5772
1000 1.0 0.9421 1.7880 0.8715 0.3967
1500 0.6797 1.1063 0.9119 0.6826
2000 0.3800 0.7726 0.9329 0.8827

Table 3.4: Correlation and RMSE errors by LS-SVR mK

RMSE Correlation

method γ σ train test trainreg testreg

LS-SVR

1000 0.5 0.0233 0.1313 0.9996 0.9878
1500 0.0111 0.2057 0.9998 0.9953
2000 0.0245 0.1197 1.00008 0.9751
1000 1.0 0.0038 0.1732 1.0000 0.9806
1500 0.0188 0.6185 1.0000 0.9949
2000 0.0011 0.6631 1.0000 0.9955

Table 3.5: Correlation and RMSE errors by Neural Networks

RMSE Correlation

method ]Neurons ]Layer train test trainreg testreg

NN LM BackProp
15 1 0.0056 0.3633 0.9999 0.9954
20 0.0067 0.2715 0.9998 0.9997
25 0.0074 0.3768 0.9999 0.8979
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be identified, i.e we assume that we know the number nu and ny in (3.2). There are

various ways to determine the orders of the filter in the literature, [33]. In the sequel we

will give a novel way to determine these orders. We will use LS-SVR to determine these

orders. Our method is based on a trial and error technique. The order for which the

error is least will be taken as the correct order. The AR (i.e ny in 3.2) and MA orders

(i.e nu in 3.2) are determined separately. Consider an arma(p,q) filter given as follows:

yk =

p∑
i=1

aiyk−i +

q∑
j=0

bjuk−j (3.33)

The aim is to determine the values of p which is AR(Auto-Regressive) order and

q which is MA(Moving-Average) order. By using LS-SVR we can train support vectors

such that the input and output training data {uk, yk}Nk=1 are mapped with the least error.

We can train SVR in various ways. The difference is the order of the training vector xk,

where xk is as defined before

x(k) =




y(k − 1)

...

y(k − ny)

u(k)

...

u(k − nu)




(3.34)

The filter will be modeled as in (3.35), similar to the mapping in (3.4).

y(xk) =< w,ϕ(xk) > +d = wTϕ(xk) + d, (3.35)

For a training data {uk, yk}, we may construct the following optimization problem.

min
w,ξ

F (w, ξk) = 1/2‖w‖2 + γ/2
∑

ξ2k (3.36)

subject to yk = wTϕ(xk) + d+ ξk, ∀k = 1, . . . , N

We will mainly change the lags ny and nu and compare the errors between the actual and

estimated outputs. Note that the lag nu can be considered to be related to the order q,

whereas the lag ny can be considered to be related to the order p.
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The solution to the optimization problem (3.36) is the same as the solution (3.9) in

section 3.2. The resulting estimated outputs can be given as :

ŷk =
N∑
t=1

αkK(xt, xk) + d (3.37)

At the first iteration the lag nu is set to 0, i.e only the current input is present in the

regression vector xk, whereas the lag ny is increased by 1 for each training iteration. The

MSE (Mean Squared Error ) between the actual yk and ŷk is computed. As can be seen

from the Figure 3.8, the error is maximum for the lag ny = 1, then it decreases up to

the lag ny = 6, which is the true order, i.e p = 6, then it increases. To obtain the order

q, i.e numerator order, a similar approach is applied. The lag ny is taken to be 0 at

first iteration, the lag nu is increased starting from nu = 1 at first iteration. The errors

between actual yk and ŷk are computed, the lag for which the error is minimum is taken

to be true order. This can be seen from the Figure 3.9. The true order is 3 and the error

is minimum at that point. So in this way the order of the filter is obtained correctly.

Figure 3.8: The normalized error between actual and estimated outputs as the lags
increases.

Various input signals are used to see the best results. Choosing input as a signal of

uniform distribution between some points [p1, p2] did not give accurate results. The best

results are obtained when the input signal is chosen to be a random variable of normal

distribution.

In order to obtain the numerator order i.e.q) more attention is required. The regression

vector is composed of only input values. For the previous case the lag for input was chosen
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to be 0 , that is only the current input is taken. But in this case, there is no output value

in the regression vector. Also the SVM parameters sigma, σ, gamma γ need to be chosen

carefully for optimal results.

Figure 3.9: The normalized error between actual and estimated outputs as the lags
increases for numerator order.
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Chapter 4

IDENTIFICATION AND

CONTROL OF WIENER

SYSTEMS BY LS-SVM

In this chapter we will first show how a method which utilizes LS-SVM for the identifi-

cation of Hammerstein systems. We then propose a novel method when the nonlinearity

in Hammerstein systems has a finite memory. We will then give some results on Wiener

systems when the same procedure used for identification of Hammerstein systems is ap-

plied. Then we will develop our own methodology to improve the performance of the

identification of Wiener systems. We then propose a novel method for the control of

Wiener systems. Finally we will make comparisons between performances of all these

procedures.

4.1 Hammerstein Model Identification Using LS-SVM

In this section we will briefly explain how Hammerstein models can be identified by

using LS-SVM. In the following sections we will explain how the method proposed in

Chapter 2 can be used for the identification of Hammerstein type systems and how it

can be modified for the identification of Wiener type systems . The block diagram of a
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Hammerstein model is given in the Figure 4.1 for convenience.

Figure 4.1: Block diagram of a Hammerstein model

The input signal ut is used to excite the system and has a normal distribution of 0

mean and standard deviation 2. The reason that such a signal is used will be explained

later. The dynamics of the whole structure can be given as follows:

yk =
n∑

i=1

aiyk−i +
m∑
j=0

bjf(uk−j) + ek. (4.1)

Here k ∈ Z, uk, yk ∈ R, denotes the input and measured outputs. The so-called

equation error ek is assumed to be a white noise and m and n are the order of the

numerator and denominator in the transfer function of the linear model. Also the orders

m and n are assumed to be known a priori, [16]. The aim of identification is to estimate

the parameters ai and bj i = 1, . . . , n, j = 1, . . . ,m. The static-nonlinear function

f(.) is also to be estimated. If f(.) is known, the parameters ai, bj in (4.1) could easily

be estimated by using standard optimization techniques, such as LSE. Hence we will use

SVM to model the static-nonlinear function f(.). As introduced in chapter 2, the SVM

approximation of the nonlinear function f(.) can be given as follows:

f(uk) = wTϕ(uk) + d (4.2)

For the meaning of various parameters in 4.2, see Chapter 2. If we use (4.2) in (4.1),

we obtain

yk =
n∑

i=1

aiyk−i +
n∑

j=0

bj(w
tϕ(uk) + d) (4.3)
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The cost function together with the constraints become as the following:

min
w,e

F (w, ξk) = 1/2‖w‖2 + γ/2
N∑

k=1

2
k

yk =
n∑

i=1

aiyk−i +
m∑
j=0

bjw
Tϕ(uk−j) + d+ ξk,∀k = 1, . . . , N (4.4)

The relative importance between the smoothness of the solution and the data fitting

is governed by the scalar γ ∈ R+, [1]. In order to solve the optimization problem given

above, we construct the following Lagrangian:

L (w, d, ξk, α) = F (w, ξk)−
N∑

k=1

αk

(
n∑

i=1

aiyk−i +
m∑
j=0

bjw
Tϕ(uk−j) + d+ ξk − yk

)
(4.5)

In this case the optimization problem is highly nonlinear and it is almost impossible

to find an optimal solution. To find a suboptimal solution, following [16], we replace the

terms bjw
Tϕ(uk−j) with the terms wT

j ϕ(uk−j) in (4.5). This is equivalent to considering

the filter coefficients bj as a part of the SVM parameters. After this change , (4.5)

becomes:

min
wj ,ek

F (w, ξk) = 1/2
∑
j

wT
j wj + γ/2

N∑

k=r

ξ2k

subject to yk =
n∑

i=1

aiyk−i +
m∑
j=0

wT
j ϕ(uk−j) + d+ ξk, ∀k = 1, . . . , N (4.6a)

N∑

k=1

wT
j ϕ(uk) = 0,∀j = 0, . . . ,m. (4.6b)

The corresponding Lagrangian can be given as follows:

L (wj, d, ξk, α, β) = F (w, ξk)−
N∑

k=1

αk

(
n∑

i=1

aiyk−i +
m∑
j=0

wT
j ϕ(uk−j) + d+ ek − yk

)

−
m∑
j=0

βj

N∑

k=1

wT
j ϕ(uk) (4.7)
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The optimality conditions can be obtained as:

∂L

∂wj

= 0 → wj =
N∑

k=r

αkϕ(uk) + βj

N∑

k=1

ϕ(uk), j = 0, . . . ,m (4.8a)

∂L

∂ai
= 0 →

N∑

k=r

αky(k − i) = 0, i = 1, . . . , n (4.8b)

∂L

∂d
= 0 →

N∑

k=r

αk = 0 (4.8c)

∂L

∂ξk
= 0 → αk = γek, k = r, . . . , N (4.8d)

∂L

∂αk

= 0 → yk =
n∑

i=1

aiyk−i +
m∑
j=0

wT
j ϕ(uk−j) + d+ ek, ∀k = 1, . . . , N (4.8e)

∂L

∂βj

= 0 →
N∑

k=1

wT
j ϕ(uk) = 0, ∀j = 0, . . . ,m. (4.8f)

Since we replaced bjw
T with wT

j , by solving (4.8a)- (4.8f) we can not find the co-

efficients bj, but we can find the estimates of AR parameters ai, and the Lagrangian

coefficients αi, βj. We also need to obtain the MA parameters bj. In order to obtain

them, a singular value decomposition is used and the nonlinear function and those pa-

rameters are obtained using a singular value decomposition. From (4.8a) :

wj =
N∑

k=r

αkϕ(uk) + βj

N∑

k=1

ϕ(uk), j = 0, . . . ,m

and for each input in the training data we have:

wT
j ϕ(ut) =

N∑

k=r

αkϕ(uk)
Tϕ(ut) + βj

N∑

k=1

ϕ(uk)
Tϕ(ut) t = 1, . . . , N (4.9)

If we put these together we obtain :




b0
...

bm







f̂(u1)

...

f̂(uN)




T

=




αN . . . αr 0

αN . . . αr

. . . . . .

0 αN . . . αr



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×




ΩN,1 ΩN,2 . . .ΩN,N

ΩN−1,1 ΩN−1,2 . . .ΩN−1,N

...
...

...

Ωr−m,1 Ωr−m,2 . . .Ωr−m,N




+




β0

...

βm




N∑
t=1




Ωt,1

...

Ωt,N




T

(4.10)

By taking a rank 1 approximation to the right hand side of (4.10), and noting that

b0 = 1, we can obtain an estimation of both the MA parameters bj, and the nonlinearity

f(.), see [16]. Note that there are various ways of obtaining a rank 1 approximation to a

matrix; the simplest way is to apply Singular Value Decomposition. We will utilize the

latter approach throughout the thesis to find a rank 1 approximation of a given matrix,

wherever applicable.

4.1.1 An illustrative example

As an example, we will consider a SISO system as given below:

A(z)y = B(z)f(u) + e (4.11)

where A(z) = (z−0.98e±i)(z−0.98e±1.6i)(z−0.97e±0.4i) , B(z) = z6+0.8z5+0.3z4+0.4z3

and f : R→ R : f(u) = sinc(u)u2 is chosen. uk is gaussian signal of 0 mean and standard

deviation 2. The training data contains 200 uk, yk pairs, i.e N = 200. After obtaining the

singular value decomposition of right hand side of (4.10), it will be observed that the first

singular value is about 10 times than the second singular value. Hence it is reasonable

to take the rank 1 approximation. Table 4.1 and 4.2 shows the actual ARMA and

estimated ARMA parameters.

We may define parameter error (PE) as :

‖PEAR − P̂EAR‖ =
√

(a1 − â1)2 + . . .+ (an − ân)2 (4.12a)

‖PEMA − P̂EMA‖ =

√
(b0 − b̂0)2 + . . .+ (bm − b̂m)2 (4.12b)
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Table 4.1: Actual and identified AR parameters

Parameters of actual system Parameters of identified system
a1 = 2.7890 â1 = 2.7880
a2 = -4.5910 â2 = -4.5882
a3 = 5.2290 â3 = 5.2244
a4 = -4.3920 â4 = -4.3880
a5 = 2.5530 â5 = 2.5507
a6 = -0.8679 â6 = -0.8673

Table 4.2: Actual and Estimated MA parameters

Parameters of actual system Parameters of identified system

b0 = 1 b̂0 = 1.0000

b1 =.8 b̂1 = 0.7998

b2 =.3 b̂2 = 0.3010

b3 =.4 b̂3 = 0.4000

i.e RMSE of actual and estimated parameters. In our example, we have PEAR = 0.0108

and PEMA = 8.7578e − 004. As can be seen, RMSE in the identification error for both

AR and MA parameters are quite low, and hence may be considered acceptable.

4.2 Identification of Hammerstein Model in Case of

Nonlinearity with Memory

In the previous section the nonlinearity was assumed to be static (memoryless). However

in the sequel we will show that even if the nonlinearity is not static, i.e contains some

memory, we could still use the same technique for the identification. As an example, we

will consider the system given in the Figure 4.3. Note that here, input to the nonlinearity

is not ut but ut+ut−1, hence the input to the linear system is f(ut+ut−1). Here, the unit

delay is represented by z−1 block, and we could also use a constant gain c multiplying the

unit delay, in which case the input to the nonlinearity becomes ut + cut−1. For simplicity

we will assume c = 1.

Now consider the system given by Figure 4.3. Here the input to the linear block can
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Figure 4.2: Actual and estimated outputs

Figure 4.3: Hammerstein model where the nonlinearity has memory
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be given by f(xk) where

xk =


 uk

uk−1


 .

Assume that we are given a training data {xk, yk}, k = 1, . . . , N . Based on this data,

our objective is to estimate the coefficients ai, bj, as well as the nonlinearity f(.). The

dynamics of the system can be given as:

yk =
n∑

i=1

aiyk−i +
m∑
j=0

bjf(xk−j) + ek. (4.13)

As in chapter 2, we can model the nonlinear function f(.) by using SVM’s as follows:

f(xk) = wTϕ(xk) + d (4.14)

For the meaning of various parameters in (4.14) see Chapter 2. By using (4.14) in

(4.13), we obtain the following:

yk =
n∑

i=1

aiyk−i +
n∑

j=0

bj(w
Tϕ(xk) + d). (4.15)

Similar to the previous cases, the cost function to be optimized can be given as :

min
w,e

F (wj, ξk) = 1/2
∑

‖wj‖2 + γ/2
N∑

k=1

ξ2k

subject to yk =
n∑

i=1

aiyk−i +
m∑
j=0

bjw
Tϕ(xk−j) + d+ ξk, ∀k = 1, . . . , N (4.16a)

N∑

k=1

wT
j ϕ(xk) = 0,∀j = 0, . . . ,m. (4.16b)

The Lagrangian for (4.16) is:

L (wj, d, ξk, α, β) = F (wj, ξk)−
N∑

k=1

αk

(
n∑

i=1

aiyk−i +
m∑
j=0

wT
j ϕ(xk−j) + d+ ξk − yk

)

−
m∑
j=0

βj

N∑

k=1

wT
j ϕ(xk). (4.17)

By taking the conditions for optimality:

∂L

∂wj

= 0,
∂L

∂ai
= 0,

∂L

∂d
= 0,

∂L

∂ξk
= 0,

∂L

∂αk

= 0,
∂L

∂βj

= 0 (4.18)
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and putting them together we obtain the following linear set of equations.




K + γ−1I K0 Y T
p 1

K0T 1T
NΩ1NIm+1 0 0

Yp 0 0 0

1T 0 0 0







α

β

a

d



=




Yf

0

0

0




(4.19)

Where 1T = [11 . . . 1]N−r+1, [a1a2 am] ,Yf = [yr, . . . , yN ]
T ,α = [αr, . . . , αN ]

T , β =

[β0, . . . , βn]

Yp =




yr−1 yr . . . yN−1

yr−2 yr−1 . . . yN−2

...
... . . .

...

yr−m yr−m+1 . . . yN−m




In order to obtain the parameters bj, a singular value decomposition is obtained and

rank 1 approximation is taken as explained in the section identification of Hammerstein

Models.

4.2.1 Example

In this example the nonlinearity is a function of current and one step previous input.

That is f(.) = sinc(uk + c1uk−1) where c1 = .9. The poles of the linear system are chosen

as: p1,...,n = 0.94e±i, 0.97e±3.6i, 0.95e±2.5i and zeroes are as: z1,...,m = 0.93, 0.89e±0.69πi The

input signal uk has gaussian distribution of 0 mean and standard deviation 1. A training

data of length N = 300 is taken. The results show that the performance is acceptable.

Table 4.3: Actual and identified AR parameters

Parameters of actual system Parameters of identified system
a1 = 2.2461 â1 = 2.2651
a2 = 2.0618 â2 = 2.0844
a3 = 1.3221 â3 = 1.3271
a4 = 1.7682 â4 = 1.7727
a5 = 1.7903 â5 = 1.8046
a6 = 0.7503 â6 = 0.7549
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Table 4.4: Actual and Estimated MA parameters

Parameters of actual system Parameters of identified system

b0 = 1.000 b̂0 = 1.0000

b1 =-0.2251 b̂1 = -0.2306

b2 = 0.1332 b̂2 = 0.1416

b3 =-0.7382 b̂3 = -0.7320

The RMSE between actual and estimated parameters are :PEAR = 0.0073 and

PEMA = 0.0118. The numerator parameters are estimated a little worse than the case of

the static-nonlinearity. This might be due to the fact the output of the system is highly

oscillatory. Moreover, after obtaining rank 1 approximation of the right hand side of

equivalent matrix (4.10), the first singular value is 3 to 4 times larger than the second

singular value. In the case that the nonlinearity was static , the first singular value was

about 10 times larger than the second singular value. Hence rank 1 approximation leads

more error in the case the nonlinearity has some memory.

Since the nonlinearity is a function of a two dimensional vector , namely xk, we can

still visualize the nonlinearity modeled by SVM, which is shown in the Figure 4.4.
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0

1
2

3
−2

0

2
−2
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0

1

2

 

u(k−1)

Nonlinearity with memory: f(.)= sinc(u + .9*us).*(u +.9*us)

u(k)

 

y(
k)

Actual nonlinearity
Estimated nonlinearity

Figure 4.4: The actual and estimated nonlinear function. RMSE = 0.8402
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The RMSE between actual and estimated nonlinearity is 0.8402

4.3 Proposed Wiener Identification and Results

In [16] , an SVM based identification method was proposed for the identification of

Hammerstein systems, and in [1] it was stated that the same methodology could also

be applied to the identification of Wiener systems, by changing the roles of inputs and

outputs. In this section, we will first examine the method proposed [16] for the identifica-

tion of Wiener systems. Then we will propose a novel methodology for the identification

of Wiener systems and we will compare the performances of both methods. The block

diagram of a Wiener model is given in the Figure 4.5 for convenience.

Figure 4.5: Block diagram of a Wiener model

We are given a set of training data {uk, yk}, k = 1, . . . , N , and our aim is to esti-

mate the transfer function of the linear part (e.g. the coefficients of the numerator and

denominator polynomials), as well as to estimate the nonlinear function. The dynamical

equations of the system in Figure 4.5 can be given as follows:

zk =
n∑

i=1

aizk−i +
m∑
j=0

bjuk−j

yk = f(zk) (4.20)

Here zk is the output of the linear part which is also input to the nonlinear block, uk is

the input used to excite the system and is assumed to be known. For estimation, we will

assume that uk is generated by a gaussian process with 0 mean and standard deviation
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is taken to be 2; ek is also assumed to be a gaussian noise where magnitude is at most

10 percent of the input signal. Both uk and ek are assumed to be independent. In [1]

it is proposed that by considering the outputs of the model as inputs and the inputs as

outputs, the method used to identify Hammerstein systems can be applied to identify the

Wiener systems assuming that the static nonlinearity is invertible. In the sequel, we will

use this methodology in an example and examine its performance.

Following the methodology mentioned above, we may obtain the following relation

between uk and yk.

uk =
m∑
i=1

biuk−i +
n∑

j=1

wT
j ϕ(yk−j) + d+ ξk, ∀k = 1, . . . , N (4.21)

The cost function together with the constraints become as the following:

min
w,ξk

F (w, ξk) = 1/2‖w‖2 + γ/2
N∑

k=1

ξ2k

uk =
m∑
i=1

biuk−i +
n∑

j=1

wT
j ϕ(yk−j) + d+ ξk, ∀k = 1, . . . , N (4.22)

L (w, d, ξk, α) = F (w, ξk)−
N∑

k=1

αk

(
m∑
i=1

biuk−i +
n∑

j=0

wT
j ϕ(yk−j) + d+ ξk − uk

)
(4.23)

Note that here the training data {uk, yk} is taken from the Wiener system given by

(4.20), and hence yk also contains the measurement noise. The optimization problem is

similar to the optimization problem for identification of Hammerstein models. Following

the steps as given in (sec 2), i.e. taking derivative of Lagrangian w.r.t all of its vari-

ables and setting them to zero, we obtain the following linear set of equations for the

identification of Wiener systems:




0 0 1T 0

0 0 Up 0

1 U T
p K+ γ−1I K0

0 0 K0T 1TNΩ1NIm+1







d

b

α

β



=




0

0

Uf

0




(4.24)
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where 1T = [1 1 . . . 1]N−r+1, b = [b1 b2 bm] ,Uf = [ur, . . . , uN ]
T , α = [αr, . . . , αN ]

T ,

β = [β0, . . . , βn]

Up =




ur−1 ur . . . uN−1

ur−2 ur−1 . . . uN−2

...
... . . .

...

ur−m ur−m+1 . . . uN−m




(4.25)

Ωi,j = K(yi, yj) = ϕ(yi)
Tϕ(yj) = e(−‖yi−yj‖2) ,K (p, q) =

∑n
i=0Ωp+r−i−1,q+r−i−1,

K0(p, q) =
∑N

t=1Ωt,r+p−q.

4.3.1 Example

To test the methodology given above, we consider the following example. The filter is

given as before as H(z−1) = B(z−1)/A(z−1), where B(z−1) = b0 + b1z
−1 + b2z

−2 + b0z
−3,

A(z−1) = a0 + a1z
−1+ . . .+ anz

−n, and the parameters are chosen as given in Tables 4.5

and 4.6. The nonlinearity is chosen as a simple gain, i.e., 5. This is actually a linear

system and is one of the simplest case that can be encountered. For training, we chose

the input as a random signal that has a Gaussian distribution of 0 mean and standard

deviation 2. The measurement noise is assumed to has a Gaussian distribution of 0

mean and standard deviation 0.2. We obtained N = 200 samples of input and output

pairs {uk, yk}. A least squares solution of (4.24) is taken and the parameters a will

be the filter’s numerator. Finally a singular value decomposition is used to obtain the

nonlinear function the denominator parameters b as in the following equation. A rank 1

approximation of the equation is taken and the resulting column vector is b parameters,

the row vector is a model of the nonlinearity, as explained in the previous section.




a0
...

an







f̂(u1)

...

f̂(uN)




T

47



=




αN . . . αr 0

αN . . . αr

. . . . . .

0 αN . . . αr




×




ΩN,1 ΩN,2 . . .ΩN,N

ΩN−1,1 ΩN−1,2 . . .ΩN−1,N

...
...

...

Ωr−n,1 Ωr−n,2 . . .Ωr−n,N




+




β0

...

βn




N∑
t=1




Ωt,1

...

Ωt,N




T

(4.26)

Table 4.5 shows the actual and estimated parameters.

Table 4.5: Actual and identified AR parameters

Parameters of actual system Parameters of identified system
a1 = 2.0900 â1 = 2.8400
a2 = -2.0630 â2 = -5.6821
a3 = 1.2090 â3 = 1.7784
a4 = -0.4656 â4 = 4.9684
a5 = 0.1164 â5 = -5.5828
a6 = -0.0297 â6 = 2.4112

Table 4.6: Actual and Estimated MA parameters

Parameters of actual system Parameters of identified system

b0 = 1 b̂0 = 1.0000

b1 =.8 b̂1 = 1.0e+009 2.2078

b2 =.3 b̂2 = 1.0e+009 2.9717

b3 =.4 b̂3 = 1.0e+009 1.2305

As it is seen from the tables 4.5 and 4.6 the results are not even close to be optimal.

Besides the output is assumed to be measured without noise which is impossible in real

world applications. The assumption was that if the nonlinearity is invertible the same

procedure used to identify Hammerstein models can be used to identify Wiener models
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too just by changing the role of inputs and outputs. The nonlinearity used is a piecewise

nonlinear function and is invertible. However, the parameter errors are very large as

compared to the previous methods. In the sequel, we will first discuss the possible reasons

for this unacceptably low performance. Then we will propose a novel identification scheme

for Wiener systems and compare the performances of both methods.

Now, assume that the training data {uk, yk}, k = 1, . . . , N is obtained from aWiener

system as shown in Figure 4.5. Let us assume that the linear part is given by a transfer

function H(z) = n(z)/d(z), where the degree of the numerator polynomial is m and

the denominator polynomial is n and the nonlinear part is given by a function f(.).

Furthermore, assume that m < n. If we interchange the roles of inputs and outputs, we

may view the new system as a Hammerstein system, as given by Figure 4.1. In this case,

the training data for the Hammerstein will be {yk, uk}, k = 1, . . . , N . The linear part in

Figure 4.1 will be given by a transfer function Ĥ(z), and the nonlinear part will be given

by a nonlinear function f̂(.). Obviously, we will have f̂(.) = f−1(.) and Ĥ(z) = H−1(z).

It appears that the invertibility of the nonlinear function f(.) is quite important for the

proposed scheme. Since in the equivalent Hammerstein model, the linear part is given by

Ĥ(z) = H−1(z). and Ĥ(z) = d(z)/n(z), where n > m, the new transfer function Ĥ(z)

becomes non-proper. Since the input to Ĥ(z) is the output of the original Wiener system,

which is corrupted by noise , one may assume that non-properness of Ĥ(z) may be the

reason for this poor estimation results. To test this we performed various simulations.

First we assumed f(.) = 1(.) i.e the identity function as shown in Figure 4.6, to see

the effect of linear part on the estimation, we considered various Ĥ(z) and performed

various simulations. In these simulations, we observed that if there is no noise in the

output, we obtained acceptable estimation results for m = n and m < n cases. From

this perspective, one may conclude that the poor estimation results presented before are

not likely to be related to non-proper nature of Ĥ(z). If Ĥ(z) is non-minimum phase ,

simulations for the system shown in Figure 4.6 also yielded acceptable results. When

we added a nonlinearity, the estimation results became unacceptably poor. From this

perspective, we may conclude that the unacceptable results for the estimation of the
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Wiener system by using the technique proposed in [16]is more likely related to

1. The noise especially colored noise, in the output

2. the nature of the nonlinearity

Figure 4.6: Block diagram of a Wiener model the case that the nonlinear function is
identity

To further support these claims we have tested identification of Hammerstein systems,

for the case that there is no measurement noise in the output, yet some noise is added

to input. The identification performance were not as before . Hence some noise on input

also caused poor estimation results. This is due to the fact that, while constructing the

kernel matrix, the noise in the input , is also mapped to an infinite dimension. This is a

highly nonlinear mapping. Some small magnitude noise may lead to extremely different

mapping from the case that there is no noise.

As a last attempt, to see the effect of the kernel mapping, we have tried polynomial

mapping instead of Gaussian mapping. The results were not as we have expected. There

was not a significant difference between the performances of both mapping.

4.4 Wiener Model Identification Using Small Signal

Analysis

To overcome the problems of the method proposed in [16] for the identification of Wiener

systems, we propose a novel technique which is based on small signal analysis, or equiv-

alently linearization of nonlinear function around some operating points. Linearization
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of nonlinear systems is well-known technique which is widely used in many control ap-

plications, see e.g [34], [35], [36]. For illustrative reasons, we first consider a nonlinear

function given in Figure 4.7. Note that this is a piecewise linear nonlinear function, which

is determined by break points (e.g b1, b2, b3, b4), and the slopes of the function between

these points. One reason to choose such a nonlinear function will be the fact that, the

class of piecewise functions can be used to approximate arbitrary continuous functions.

Obviously such a function is typically non-invertible, hence the technique proposed in

[16] can not be applied for such cases.

Figure 4.7: A non-invertible nonlinear function of various break points and slopes

If the output of the linear part remains between the break points b2 and b3, then

we can model the nonlinearity as a linear function. To further simplify our analysis, we

assume that f(0) = 0. In the sequel we will show that this assumption is not critical and

can be relaxed. In this case the nonlinear function can be modeled as constant gain and

the whole structure can be viewed as an LTI system. We note that, by choosing input

signal sufficiently small, we may force the output of the linear block to be between the

break points b2 and b3. This system can be viewed as composed of a filter followed by a

constant gain. The new model is shown in the Figure 4.8

In this case we can consider the constant gain as if it is in front of the linear time

invariant system. As before we can identify the parameters of H(z) and model the

constant gain. Up to this point, we only estimated the linear part H(.). To estimate, or

model the nonlinear part f(.), we will consider the system given in Figure 4.9.
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Figure 4.8: The equivalent model when small signal is used

Figure 4.9: The designed system to obtain all the nonlinear function and breakaway
points
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Now assume that the input to the nonlinear block is z. Then, with the addition of

constant gain K, the output of the nonlinear block in Figure 4.10 can be viewed as

f(z) + Kz. If K > 0 is sufficiently big, then the new nonlinearity, which is given by

f(.) + K, can be made invertible. To see this , let us set y(z) = f(z) + Kz. Then

y′(z) = f ′(z) +K. If |f ′(z)| is bounded in the operating region Ω of the Wiener system,

and if we set M = maxz∈Ω |f ′(z)|, then by choosing K > M , we have y′(z) > 0 for

z ∈ Ω, which implies that y(.) is invertible in Ω, i.e in the operating region of the Wiener

filter. In fact, if f(.) is (piecewise) differentiable, this statement can be true for arbitrary

compact region Ω. Moreover, for piecewise linear nonlinearities as given by Figure 4.7, if

we set the slopes as M1, . . . ,MR, where R is the number of regions in which the function

is linear, then we may choose K > maxi |Mi|.

Figure 4.10: Equivalent modified system

Now consider the modified system as shown in Figure 4.9, where a constant gain K

is added to the nonlinearity f(.) so that the overall nonlinearity g(z) = f(z) + Kz is

invertible. Obviously, if we can model g(.) by using SVM, then obtaining f(.) is quite

straightforward since we know the gain K. The basic problem with the modified system

given in Figure 4.9 is that, since we cannot reach the signal z, which is the output of

the linear part, it is not implementable. However, by applying a simple block-diagram

modification we obtain an equivalent form as given in Figure 4.10, where Ĥ(z) is the

estimate of H(z). Note that in Figure 4.10, if we use H(.) instead of Ĥ(z), then the

system in Figure 4.10 and Figure 4.9 will be equivalent. Since at this point an estimate
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Ĥ(z) of H(z) is available, we propose to replace H(.) with Ĥ(.), and obtain the system

given in Figure 4.10.

4.4.1 Example

In this example the poles of the filter are p1,...,n = 0.7097±0.2998i, 0.3455±0.5384i,−0.0102±
0.3498i and zeroes are as z1,...,m = −0.9360, 0.0680 ± 0.6502i. The piecewise linear non-

linear function is :

y =





−2z, if − 10 < x < 10,

0.5z, if − 20 < x < −10 and 10 < x < 20

1z, if otherwise.

(4.27)

The constant gain is chosen to be as K = 3. The length of the training data N is chosen

as N = 300. The input signal ut is a gaussian distribution of 0 mean and standard

deviation 2. It is assumed that there is no noise, since in the previous section we have

already shown that, noise causes poor estimation performance. By applying the method

proposed as in the identification of Hammerstein model we have obtained the following

results. Here the signal used to excite the system is not a small one but a usual signal

used for working conditions of the system. The results are as shown in the following

figures and tables. Here ai and bj’s shows actual and âi, b̂j’s shows estimated parameters.

Table 4.7: Ar parameters of actual and estimated Wiener Model

parameters of actual system Parameters of identified system
a1 = 2.0900 â1 = 2.0900
a2 = -2.0630 â2 = -2.0630
a3 = 1.2090 â3 = 1.2080
a4 = -0.4650 â4 = -0.4650
a5 = 0.1164 â5 = 0.1164
a6 = -0.0297 â6 = -0.0297

Up until now we show that in order to identify the Wiener model it is not always

necessary that the nonlinear function be invertible. If it is invertible between some points

around zero then we have shown that we can identify the overall system. But still there
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Table 4.8: MA parameters of actual and estimated Wiener Model

Parameters of actual system Parameters of identified system

b0 = 1 b̂0 = 1.000

b1 = .8 b̂1 = 0.800

b2 = .3 b̂2 = 0.300

b3 = .4 b̂3 = 0.400
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Figure 4.11: The estimated nonlinear function in the case that there is no noise. RMSE
= 0.2822

are some issues with noise. The results above obtained under the assumption that there

is no noise. If there is some noise in the system the results were far from being optimal.

In the following section we will show how we can further improve the performance of the

identification.
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4.5 Another Approach for Wiener Model Identifica-

tion

In this section, we will propose another method for the identification of Wiener systems

based on the ideas presented in previous section. Similar to the technique presented in

previous section, the new method is also based on linearization, hence we utilize small-

signal analysis. Subsequently by applying an approach similar to the identification of

Hammerstein models we can also identify the Wiener model. Consequently, similar to the

previous method, we obtain the transfer function of the linear part and a gain K. Then

by designing various system models and using SVM appropriately we can determine the

static nonlinear function by using least-squares support vector regression. Consequently,

the overall Wiener system can be identified.

4.5.1 Determination of the magnitude of the input signal

If we choose sufficiently small input signals, then the signal z which is the input to the

nonlinear block will be sufficiently small, and consequently we can linearize the nonlinear

block around the operating point. In this instance the question ’how small the input

signal should be?’ raises. The answer for this question varies considerably from system

to system and also depends on the method that is used to identify the system. Since

we use SVM in this work the rank of the kernel matrix should not be small, [1]. SVM

parameters should be chosen such that this condition is satisfied.

We propose a solution for the problems stated above. The proposed method that we

apply is an algorithm composed of some steps. The method determines experimentally

how small the magnitude of the input signal should be . The steps are given below.

step 1: Choose a signal of small magnitude randomly.

step 2: Excite the system with this signal and obtain the output.

step 3: Multiply the magnitude of the input signal in the 1st step with a gain of positive

k that is greater than 1.
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step 4: Excite the system with the signal that is obtained at the step 3 and obtain

the output of the system. If the magnitude of the obtained output at step 4 is

sufficiently close to k times the magnitude of the output obtained at step 2 then

we say that the system is working in its linear range. In that case multiply the

magnitude of the signal at the step 3 with a gain k which is not necessarily the

same as the gain k used before and apply this new signal to the system as input,

obtain the outputs and compare them. Keep applying these steps as long as the

output is also k times the output of the previous step. If not, record the signal

obtained at the last step and choose the magnitude of the input signal such that it

remains in the margin of the magnitude of the signal obtained at the last step.

These steps are shown as an algorithm flowchart as in the Figure 4.12.

Note that this algorithm may not give an exact solution, [37]. But our simulations

indicate that it improves the estimations considerably. We could have chosen an extremely

small input signal to excite the system which would justify the linearization. But since

there will always be some noise while obtaining the output data, and since the input is

small the output will also be small and thus the noise will have more effect than the filter.

In that case we will be simply trying to fit the noise, in which case obviously estimation

error will increase and the results will not be meaningful.

4.5.2 Identification of Wiener Model

After determining the input signal we can utilize SVM.

SVM will model a static linear gain (K) instead of a static nonlinear function. Besides

we will be able to obtain the numerator and denominator parameters of the filter. The

identification task will not end even after obtaining these parameters. To identify the

nonlinear part, we use a system as shown in the Figure 4.14.

Note that in Figure 4.14 Ĥ(.) represents the estimated transfer function of the linear

part. Obviously, we can not measure zt, which is the input to the nonlinear block, but

we can compute its estimation ẑt. Then by applying ut, we can measure yt and compute
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Figure 4.12: The flowchart for choosing the optimal signal to identify the system.
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Figure 4.13: The actual Wiener model is as at the top figure. We can put the gain in
front of the filter when small signals are used as in the bottom figure.

Figure 4.14: The designed system for identifying the whole of static nonlinear function.
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ẑt. By using the pair {ẑt, yt}, t = 1, . . . , N as the training data, we can train SVM to

obtain a model for the nonlinearity.

4.5.3 Example

In this example the parameters of the filter are chosen as in the Tables 4.9 and 4.10.

The nonlinearity is chosen as yt = sin(zt), i.e. invertible for a small region around zero.

N = 300 data points are used to obtain parameters and to model the nonlinear function.

Table 4.9: AR parameters of actual and estimated Wiener Model

Parameters actual system Parameters of identified system
a1 = 0.5204 â1 = 0.5049
a2 = 1.2378 â2 = 1.2256
a3 = 0.9654 â3 = 0.9449
a4 = 1.1367 â4 = 1.1194
a5 = 0.5357 â5 = 0.5277
a6 = 0.8324 â6 = 0.8232

Table 4.10: MA parameters of actual and estimated Wiener Model

Parameters actual system Parameters of identified system

b0 = 1 b̂0 = 1.0000

b1 =.8 b̂1 = 0.7778

b2 =.3 b̂2 = 0.2915

b3 =.4 b̂3 = 0.3759

The proposed identification algorithm for the Wiener model can be summarized in

the following steps:

step 1: Apply small signal to the system being identified and record the output signal.

Make sure that the amplitude of the input signal is small enough to ensure linear

perturbation of the nonlinear system. Use the algorithm explained in the section

4.5.1.

step 2: Use SVM identification method explained in the previous sections and input-

output data to estimate the parameters of the linear part.
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Figure 4.15: The actual and estimated static nonlinear function.

step 3: Increase the amplitude of the input signal and apply it to the system being

identified and record the output signal.

step 4: Apply the same signal generated in step (3) to compute the signal between the

linear and the static nonlinearity.

step 5: The computed signal in step (4), together with the recorded output of step (3) ,

can now be used to identify the static nonlinearity using SVM regression algorithm.

step 6: Terminate the training of the SVM when an acceptable sum of square errors is

achieved.

step 7: The parameters of the ARMAmodel obtained in step (2) and the support vectors

of SVM from step (6) represent the overall system.
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4.6 Identification for any nonlinear function

In the previous section we have assumed the static nonlinear function be invertible at

least for some region around zero. Actually we may relax this condition. Our method

essentially starts with finding an operating point z∗ for the input z of the nonlinear block,

such that around z∗, the nonlinearity is invertible. In fact, for almost all differentiable

functions, such an operating point can be found. We can determine such a point where

small perturbations at the input lead to linear perturbations around that operating point.

Consider the static nonlinear function yk = sinc(uk)u
2
k, which is shown in the Figure 4.16.

Figure 4.16: The static nonlinear function sinc(u)u2, and the margins where it can be
approximated by some linear gains.

In the Figure 4.16, the static nonlinear function is symmetric and non-invertible. It

is not invertible even for the region around the zero. The static nonlinear function can be

considered approximately as a linear gain between the margins shown by the red lines.

We can change the working conditions of the system such that the output of the filter

which is input to the static nonlinear function remains between those points. Then some

small perturbations around the operating point (dc) value of input will produce some
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small perturbations around the operating point (dc) value of the output. We can train

the SVM by these small perturbations which can be obtained simply by subtracting those

dc values both from the input and the output.

4.6.1 Example

For illustrative purposes, consider aWiener system where linear block is given byH(z−1) =

B(z−1)/A(z−1), where B(z−1) = b0 + b1z
−1 + b2z

−2 + b0z
−3, A(z−1) = a0 + a1z

−1 + . . .+

anz
−n, and the parameters are chosen as given in Table 4.11 and 4.12. The nonlinearity

is chosen as yt = sin(zt)zt The signal that is used to excite the system is of the form

ut = c1 + N (m1, σ1) where c1 is a constant dc term and the second term on the right is

a signal of Gaussian distribution of mean m standard deviation σ1. The output of the

overall system will be of the form, yt = c2 + N (m2, σ2) where c2 is the dc term at the

output and m2 and σ2 are the mean and standard deviation of the output respectively.

The signals at various points are shown in the Figure 4.17. When such types of signals

are chosen we have to be careful while constructing the training data for identification.

At first we have simply used exactly the same values of input and output values of system

{ut, yt}Nt=1. But the results were not as we have expected. Instead we extract some new

signals where only perturbations are present. This is done by choosing input data as

ut − c1 and output data as yt − c2. We know the value of c1 since it is our own decision.

But we do not know the value of output dc value c2. Instead we use an estimation of c2.

The estimation is simply the mean value of the training data of output {yt}Nt=1. However

we have to be careful while obtaining this estimation. These values of output should be

chosen after the transient dies out. In the Figure 4.17, the transient response continues

until the crossing red lines. And the training data should be chosen starting from some

points after the time indices of crossing red lines.

To further assure whether the working conditions are appropriate or not, we can

examine the output probability density function of the signal. The input signal has a

Gaussian distribution. If a Gaussian process X(t) is passed through an LTI system, the

output of the system is also a Gaussian process, [38]. The effect of the system on X(t)
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Figure 4.17: Signals on various points of the Wiener system. Upper plot: input to the
system, middle plot : output of the linearity which is also input to the nonlinearity,
bottom plot: output of the whole system.

is simply reflected by the change in mean(m) and covariance (C) of X(t). In order to

claim that the perturbations of the system are linear, the output signal should also have

a Gaussian distribution of probably different mean and standard deviation. If at the

chosen working condition the system is nonlinear then the distribution output will also

not have a Gaussian distribution. Hence a different working condition should be chosen.

The Figure 4.18 shows the histogram of the input and the output data. We can conclude

that both have the same probability density function which is a Gaussian distribution.

The difference is the mean and standard deviation .

Now that we have constructed the training data we can use it to identify the model.

The leading equations are similar to the ones in the previous sections. We obtain a

constant gain and parameters of numerator and denominator. As a result we will have

an estimated filter. We can design a similar system as in the Figure 4.14 to model the

non-invertible static nonlinear function.
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4.6.2 Example

In this example the nonlinearity is chosen as yt = sin(zt)zt. This is a symmetric func-

tion, i.e, not invertible around zero. The poles of the linear subsystem are chosen as .

p1,...,n = 0.98e±i, 0.98e±1.6i, 0.95e±2.5i and zeroes are as: z1,...,m = 0.9360, 0.6537e±1.4666i.

The input signal uk has gaussian distribution of 0 mean and standard deviation .35.

The measurement error also has a gaussian density of 0 mean and standard deviation

.035. A training data of length N = 300 is taken. c1 = 24 which is found by trial

and error. c2 = −1.9710 which is obtained by taking the mean value of output, i.e

c2 = 1
N

∑200+N
i=200 y(i). The mean value is taken after 200 cycles where the transient re-

sponse has passed.

23.5 24 24.5
0

5

10

15

20

25

30

35

40

45
histogram of input data

−10 −5 0 5 10
0

5

10

15

20

25

30

35

40
histogram of output data

Figure 4.18: The histogram of the input and output data. As it is seen both seem to
have gaussian distribution of different mean and standard deviation

The RMSE between actual and estimated parameters are :PEAR = 0.0173 and

PEMA = 0.0124. The actual and estimated parameters of linearity are as shown in

the Tables 4.11 and 4.12.

As it is seen from the Figure 4.19 both the estimated and actual nonlinearity are
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Figure 4.19: Non-invertible sin(x)x is modeled with an accurate precision. RMSE =
0.1682

almost indistinguishable.

Table 4.11: AR parameters of actual and estimated Wiener Model

Parameters of actual system Parameters of identified system
a1 = 0.5204 â1 = 0.5103
a2 = 1.2378 â2 = 1.2310
a3 = 0.9654 â3 = 0.9551
a4 = 1.1367 â4 = 1.1256
a5 = 0.5357 â5 = 0.5323
a6 = 0.8324 â6 = 0.8234

4.7 Control of Wiener Systems After Identification

The overall aim of identification is to model an unknown system and more importantly

to control it, see e.g. [39] , [40]. After we have estimated the filter and modeled the static

nonlinear function we can design a closed loop system and control the overall system.

The designed system is as in the Figure 4.20.
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Table 4.12: MA parameters of actual and estimated Wiener Model

Parameters of actual system Parameters of identified system

b0 = 1 b̂0 = 1.0000

b1 =.8 b̂1 = 0.7970

b2 =.3 b̂2 = 0.2880

b3 =.4 b̂3 = 0.3990

Figure 4.20: The designed closed loop Wiener system for control.

In the Figure 4.20, the output is fed to SVM which models the inverse of the static

nonlinearity. Obviously, at this point, we assume that the nonlinearity f(.) is invertible.

It is trained such that given the output yt the input to the static nonlinearity zt which is

the output of the filter is obtained. The overall model can be considered as if the output

of the filter is taken as shown by the dashed line. Hence we can use the well known linear

control theory. The closed loop system may be unstable even if the filter itself is stable.

As shown in the Figure 4.22. the step response diverges to infinity.

Figure 4.21: A controller is added to make the overall system stable and meet design
specifications.
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The added controller is a PI (proportional-integral) which is given as C(q−1) = Kp +

Kiq
−1. The system is stable and the step response is as shown in the Figure 4.23

Figure 4.22: The step response of the closed loop system is unstable.

Since we have designed a system as if it is a linear time invariant system we can design

a controller to make the system stable. The system with the controller is shown in the

Figure 4.23

Here are some other results for various input signals.

4.7.1 Example

The system that is considered has linearity B(z−1)/A(z−1) where the chosen parameters

are as in the Tables 4.11 and 4.12. The nonlinearity is chosen as yt = 3(−0.5 +

1/(1 + e−0.5zt)), i.e. tangent hyperbolic function. For training N = 200 data points are

used. Same number of data points are used to model the inverse of the nonlinearity.

The aim of control is to track the input signal. The input signal could be either step

or sinusoidal. The controller parameters Kp and Ki are chosen by trial and error on a

computer simulation environment, e.g. MATLAB. The actual nonlinearity and estimated
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Figure 4.23: After the controller is added the system became stable.

nonlinearity together with their inverses are shown in the Figure
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Figure 4.24: Actual nonlinearities and their inverses.
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Figure 4.25: Sinusoidal response of the actual filter.
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Figure 4.26: Sinusoidal response of the filter. The response is oscillatory for the chosen
integral controller gain.
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Figure 4.27: Sinusoidal response of the filter. The controller gain is still not appropriate
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Figure 4.28: Sinusoidal response of the filter. The oscillations have died.
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Chapter 5

IDENTIFICATION OF

WIENER-HAMMERSTEIN

SYSTEMS BY LS-SVM

In this chapter we will use LS-SVM to identify Wiener-Hammerstein systems. We note

that this problem is set as a future work in [1]. First we will assume that we know the

static nonlinear function and identify the system. Then we will develop a new procedure

to identify Wiener-Hammerstein systems in which case we will assume that nonlinear

function is unknown. Then we will identify it as a black box model and compare it with

some other approaches.

A Wiener-Hammerstein system, as the name implies, is composed of a Wiener system

followed by a Hammerstein system. It is a more complicated nonlinear model compared

to the Wiener and Hammerstein models. The model is as shown in the Figure 5.1.

There are two LTI systems separated by a static nonlinear function. Let us assume

that the transfer functions H1(.) and H2(.) are given as follows

H1(q
−1) =

b0 + b1q
−1 + . . .+ bmq

−m

1 + a1q−1 + . . .+ anq−n
(5.1)

H2(q
−1) =

d0 + d1q
−1 + . . .+ dlq

−l

1 + c1q−1 + . . .+ ckq−k
(5.2)

The orders of these transfer functions may be arbitrary. But we will assume that we
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Figure 5.1: The Wiener-Hammerstein system

know the orders of both H1(.) and H2(.) separately. In [16] , a method based on LS-SVM

was developed to identify the Hammerstein type systems. In [1], it was also claimed

that the same methodology could be used to identify Wiener type systems as well, by

changing the roles of input and output. However, in previous Chapter we have shown that

this methodology may yield poor estimation results for Wiener systems. Also in [1], the

identification of Wiener-Hammerstein systems by LS-SVM were considered as a future

problem. In this chapter, we will develop a LS-SVM based method for the identification

of Wiener-Hammerstein type systems.

5.1 Identification For Known Nonlinearity

Let us assume that H1(.) is given by

H1(q
−1) =

B(q−1)

A(q−1)
(5.3a)

where q−1 is the unit delay operator, A(.) and B(.) are given as follows:

A(q−1)) = 1 + a1q
−1 + . . .+ anq

−n (5.3b)

B(q−1)) = b0 + b1q
−1 + . . .+ bmq

−m (5.3c)
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In terms of input uk and output vk of the first linear block, we can write the following

dynamical equation:

B(q−1)uk − A(q−1)vk = 0. (5.4a)

By adding vk to both sides of (5.4a), we obtain

vk = B(q−1)uk + [1− A(q−1)]vk. (5.4b)

Now let us assume that similarly H2(.) is also given by

H2(q
−1) =

D(q−1)

C(q−1)
, (5.4c)

where the polynomials D(q−1) and C(q−1) are given as

C(q−1)) = 1 + c1q
−1 + . . .+ ckq

−k, (5.4d)

D(q−1)) = d0 + d1q
−1 + . . .+ dlq

−l. (5.4e)

Let us denote input to the second linear block H2(.) as zk, which is the output of the

nonlinear block, then, similar to (5.4b), we can write the following dynamical equations:

yk = D(q−1)zk + [1− C(q−1)]yk (5.4f)

and zk is related to vk as

zk = f(vk) (5.4g)

In Wiener-Hammerstein model given in Figure 5.1, the input uk and the output yk are

measurable while the internal variables vk and zk are not measurable. The input-output

description of a Wiener-Hammerstein system resulting from direct substitutions of SVM

to the corresponding static nonlinear function as in done previously for identification

of Hammerstein systems, would be strongly nonlinear both in the variables and in the

parameters. Hence, without a modification, estimating both transfer functions H1(.),

H2(.) and the nonlinearity f(.) by using LS-SVM technique might be a difficult task. We

propose the following methodology.

The idea is that the Wiener and Hammerstein models can also be considered as subsets

of Wiener-Hammerstein model. The Wiener-Hammerstein model is the more general case.

Now by considering the first filter and the static nonlinearity as a nonlinear block, then
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the overall system can be seen as a Hammerstein model which has a non-static nonlinear

function. The new diagram is shown as in the Figure 5.2.

Figure 5.2: The Wiener-Hammerstein system as a Hammerstein model

Since the nonlinear block is non-static, instead of taking {uk, yk} as the training data,

we propose to take vectorial training data as {xk, yk} where regression vector x(k) is

given as:

x(k) =




u(k)

...

u(k − nu)


 (5.5)

where nu denotes the lag for input, i.e nu = l+m We have applied similar procedures in

the identification of Hammerstein model but the results were not successful. The reason

could be the fact that since the first filter is ARMA, we consider only the input values

while training. An ARMA filter causes an infinite memory. It could be better if we

also take into consideration the output of the first filter. But due to the structure of

Hammerstein systems, we can only measure the output yk, but not the output of the first

filter, i.e vk in Figure 5.1.

As we introduced in Chapter 4, we can apply a small signal analysis to see if we

can still identify the parameters of the filter and model the static nonlinearity. Many

assumptions are similar to the case of identification of Wiener models. If the input signal

is small enough then the static nonlinearity can be considered as constant gain while the

overall system will be seen as a linear system. The equivalent model when small signals

are used is as in the Figure 5.3.
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Figure 5.3: The equivalent Wiener-Hammerstein system when small signals are used.

In the Figure 5.3 the constant gain is considered to be in front of both filters. Note

that since we applied linearization, the nonlinear block can be replaced by a linear block,

which is represented by gain K. Since all blocks are linear, we may change the blocks.

In our formulation, we will use the constant gain as a linear block preceding the blocks

H1(.) and H2(.).

The problem can be stated as follows: we are given a set of input and output data

{uk, yk}Nk=1 and the aim is to obtain the parameters of the filters, that is coefficients of

A(q−1)), B(q−1)), C(q−1)), D(q−1)). The system in the Figure 5.3 is like a Hammerstein

model. If we apply the similar approach as explained before we obtain the following

equations.

yk =
n+l∑
i=1

aiyk−i +
k+m∑
j=0

bj(w
tϕ(uk) + d) (5.6)

Note that here, the coefficients ai and bj correspond to the coefficients of numerator and

denominator polynomials of H1(.)H2(.), and not to the coefficients of filter H1(.) or H2(.).

This point will be examined in the sequel. The associated minimization problem can be

given as follows:

min
wj ,ek

F (w, ξk) = 1/2
∑
j

1/2wT
j wj + γ/2

N∑

k=r

e2k (5.7a)

subject to yk =
n+l∑
i=1

aiyk−i +
k+m∑
j=0

wT
j ϕ(uk−j) + d+ ξk,∀k = 1, . . . , N (5.7b)

N∑

k=1

wT
j ϕ(uk) = 0, ∀j = 0, . . . ,m . (5.7c)
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The Lagrangian corresponding to the optimization problem given above can be formulated

as:

L (wj, d, ξk, α) = F (w, ξk)−
N∑

k=1

αk

(
n∑

i=1

aiyk−i +
m∑
j=0

wT
j ϕ(uk−j) + d+ ek − yk

)

−
m∑
j=0

βj

N∑

k=1

wT
j ϕ(uk) (5.8)

By using KKT conditions, we obtain :

∂L

∂wj

= 0 → wj =
N∑

k=r

αkϕ(uk) + βj

N∑

k=1

ϕ(uk), j = 0, . . . ,m (5.9a)

∂L

∂ai
= 0 →

N∑

k=r

αky(k − i) = 0, i = 1, . . . , n (5.9b)

∂L

∂d
= 0 →

N∑

k=r

αk = 0 (5.9c)

∂L

∂ek
= 0 → αk = γek, k = r, . . . , N (5.9d)

∂L

∂αk

= 0 → yk =
n∑

i=1

aiyk−i +
m∑
j=0

wT
j ϕ(uk−j) + d+ ek,∀k = 1, . . . , N (5.9e)

∂L

∂βk

= 0 →
N∑

k=1

wT
j ϕ(uk) = 0, ∀j = 0, . . . ,m. (5.9f)

All these equations can be stacked as a set of linear equations as given in (5.10).




0 0 1T 0

0 0 Yp 0

1 Y T
p K + γ−1I K0

0 0 K0T 1TNΩ1NIm+1







d

e

α

β



=




0

0

Yf

0




(5.10)

The solution of (5.10) gives us the AR parameters ai, support vector coefficients α and

β parameters. However the parameters ai here are convolution of the AR parameters of

first and second filter. In other words the parameters that we obtain for the denominator

are the values of coefficients of a new polynomial which is the multiplication of A(q−1))

and C(q−1)) . The numerator parameters are also obtained in a similar fashion, that

is these values are coefficients of the polynomial which is multiplication of B(q−1)) and

D(q−1)).
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Figure 5.4: The equivalent Wiener-Hammerstein system when small signals are used.
E(z) is convolution of the first and second filter.

5.1.1 Example

We applied the methodology to the following example. We assumed that H1(.) and H2(.)

are given as:

H1(q
−1) =

1 + 0.8q−1 + 0.3q−2 + 0.4q−3

1 +−0.7915q−1 + 1.3395q−2 − 0.6215q−3 + 0.4711q−4
(5.11a)

H2(q
−1) =

1 + 0.6q−1 + 0.4q−2

1 + 2.5374q−1 + 3.2864q−2 + 2.4053q−3 + 0.8851q−4
(5.11b)

A(q−1)) = 1 +−0.7915q−1 + 1.3395q−2 − 0.6215q−3 + 0.4711q−4 (5.11c)

B(q−1)) = 1 + 0.8q−1 + 0.3q−2 + 0.4q−3 (5.11d)

C(q−1)) = 1 + 2.5374q−1 + 3.2864q−2 + 2.4053q−3 + 0.8851q−4 (5.11e)

D(q−1)) = 1 + 0.6q−1 + 0.4q−2 (5.11f)

and the nonlinear block is given as:

zk = 3
−0.5 + 1

1 + e−0.5vk
(5.11g)

The input signal used is a small magnitude signal to assure linear perturbations. ut has

a gaussian density of zero mean and standard deviation 0.08. The training data {ut, yt}
is composed of N = 200 data points. The deviation of output measurement error is less

than 10 percent of the input signal. The results for estimated parameters are illustrated

in the Tables 5.1 and 5.2. The RMS error between the actual and estimated parameters

are as :PEAR = 0.0385 and PEMA = 0.0477.

Note that at this point we obtained the coefficients of H1(.)H2(.), hence poles and

zeroes of the combined (or convolved) filter H1(.)H2(.) . The poles and zeroes of this new
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Table 5.1: AR parameters of actual and estimated Wiener Model

Parameters of actual system Parameters of identified system
Convolution of both filters Convolution of both filters

e1 = 1.7459 ê1 = 1.7431
e2 = 2.6175 ê2 = 2.5873
e3 = 2.5816 ê3 = 2.5475
e4 = 2.2776 ê4 = 2.2347
e5 = 1.6745 ê5 = 1.6476
e6 = 1.2392 ê6 = 1.2148
e7 = 0.5832 ê7 = 0.5711
e8 = 0.4170 ê8 = 0.4062

Table 5.2: MA parameters of actual and estimated Wiener Model

Parameters of actual system Parameters of identified system
Convolution of both filters Convolution of both filters

f0 = 1 f̂0 = 1.0000

f1 =1.4000 f̂1 = 1.3846

f2 =1.1800 f̂2 = 1.1515

f3 =0.5000 f̂3 = 0.4675

f4 =0.1200 f̂4 = 0.1128

filter are shown as in the Figure 5.5 together with the actual ones. As it is seen from

the figure the locus of the poles are almost indistinguishable. However, the errors on the

estimation of zeroes are larger as compared to the errors on the estimation of poles. This

can also be seen from the estimation errors on AR coefficients, see Table 5.1, and the

estimation errors on MA coefficients, see Table 5.2. This can further be proved in the

step responses of the actual and estimated linear systems as in the Figure 5.6

Now the problem is how to share out the poles and zeroes between filters H1(.) and

H2(.). If we assume that we know the static nonlinear function then we can share out

poles and zeroes between two filters by trial and error. There are n+ l poles and m+ k

zeroes at total. So we can share poles in

(
n+ l

n

)
and zeroes in

(
m+ k

m

)
different

ways. At total we have

(
n+ l

n

)(
m+ k

m

)
different choices. We propose the following

solution: Choose the pole/zero selection combination which yields the minimum Root-

Mean-Square Output error as the optimal choice. For the example considered previously,

the RMS output errors corresponding two different selections are shown in Figure 5.7.
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Figure 5.5: The poles and zeroes of actual and estimated filter.

Figure 5.6: Step responses of actual and estimated filters at various points. As it is seen
in the bottom figure both responses are almost indistinguishable
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Figure 5.7: The actual and estimated output, top plot: correct sharing, bottom: wrong
sharing.

Also if we assume that we know the static nonlinearity then, we do not need to know

the orders of both filters separately. We can simply start with a first order filter for the

first filter and increase the order also sharing randomly poles and zeroes between both

filters until we obtain the least mean squared error.

5.2 Identification For Unknown Nonlinearity

In the case that we do not know the static nonlinear function, which is generally the

case since the nonlinearity is between two filters, we can design a system as shown in the

Figure 5.8 to model the nonlinearity. In the Figure 5.8 a test signal ut which is a signal

of normal magnitude is used. In order to design the system the poles and zeroes of Figure

5.5 are shared randomly. The input ut is also applied to the first estimated filter Ĥ1(q
−1)

, the output of this filter v̂1t is stored. The output of the whole system is taken and

applied to the inverse of the second estimated filter Ĥ2(q
−1). The inverse of the filter will

produce the estimated signal v̂2t. We know that the static nonlinearity maps the values
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v1t and v2t. We can use the estimated values of these signals , {v̂1t, v̂2t}Nt=1 to model the

static nonlinear function.

Figure 5.8: The designed system to model the static nonlinearity so that the identification
be complete.

Up to this point everything seems to be reasonable. But another important problem

is that how can we make sure that we shared the poles and zeroes correctly as in the

previous section. We propose the following solution: we simply share the poles and zeroes

randomly between both filters. Then we plot the output of the inverse of the second filter

Ĥ2(q
−1) which is v̂2t against the output of the first estimated filter Ĥ1(q

−1) which is v̂1t.

Some of the resulting plots are as in the Figure 5.9.

As can be seen from the plots of Figure 5.9 only the last plot in the figure is reasonable.

So for that configuration we can say that the poles and zeroes are shared correctly. The

formulations for the modeling are as the following:

min
w,ξ

F (w, ξt) = 1/2‖w‖2 + γ/2
∑

ξ2i (5.12)

subject to v̂2t = wTϕ(v̂1t) + d+ ξt, ∀t = 1, . . . , N

The quadratic programming problem 5.12 has equality constraints. The problem is

convex and can be solved using Lagrangian multipliers, αi.

83



Figure 5.9: The outputs of both estimated filters are plotted against each other. The
first one is the true nonlinearity, the last one is the true estimated nonlinearity.

The Lagrangian is:

L (w, d, ξi, α) = F (w, ξ)−
N∑
t=1

αt(w
Tϕ(v̂1t) + d+ ξi − v̂2t) (5.13)

Using the Karush-Kahn-Tucker (KKT) conditions we obtain the following equalities.

∂L

∂w
= 0 → w =

N∑
t=1

αtϕ(v̂1t) (5.14a)

∂L

∂d
= 0 →

N∑
t=1

αt = 0 (5.14b)

∂L

∂ξt
= 0 → αt = γξt, t = 1, . . . , N (5.14c)

∂L

∂αt

= 0 → v̂2t = wTϕ(v̂1t) + d+ ξt, t = 1, . . . , N (5.14d)

If we put first and third equation in 5.14 we would obtain the following:

v̂2k =
N∑
t=1

αtϕ(v̂1t)
Tϕ(v̂1k)) + d+ ξk (5.15)

We can also stack all these equations and obtain the following set of linear equations

system.
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Y


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Where K is a positive definite matrix and K(i, j) = ϕ(v̂1i))
Tϕ(v̂1j)) = e(−‖v̂1i)−v̂1j)‖2)

, α = [α1 . . . αN ]
T and d is the bias term. In (5.16) a least squares solution is obtained

in order to find α and d parameters. After obtaining these parameters, the resulting

expression for estimated function will be as the following:

v̂2t =
N∑

k=1

αkK(v̂1t, v̂1k) + d, (5.17)

5.2.1 Example

In this example H1(q
−1) and H2(q

−1) are chosen to be the same as in the Example

5.1.1. The nonlinearity is chosen as zk = 5 −0.5+1
1+e−0.5vk

. The length of training data used to

obtain the filter parameters is N = 200 , whereas it is chosen as N = 500 to model the

nonlinearity. The input signal ut has a Gaussian distribution of 0 mean and standard

deviation 2 while modeling the nonlinearity.

5.3 Black Box Identification of Wiener-Hammerstein

Models

In [19], Wiener-Hammerstein model is used to model paralyzed skeletal muscle and the

results are compared with the Hill Huxley model. We have also identified the Wiener-

Hammerstein model as a black box. We will compare the performances between these

approaches in terms of goodness of fit, (gof) and normalized mean approximation error

(nmae), where goodness of fit is defined as:

gof = 1−
√∑N

k=1(y(k)− ŷ(k))2∑N
k=1(y(k)− ȳ(k))2

(5.18)

and nmae as:
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nmae =
1
N

∑N
k=1 |(y(k)− ŷ(k))|
max{y(k)} (5.19)

The corresponding performance values are shown in Table 5.3

Table 5.3: Goodness-of-fit (gof) and normalized mean absolute error (nmae) of the pro-
posed model SVR model , LSL model and Hill Huxley model

SVR model LSL model Hill-Huxley model
gof nmae gof nmae gof nmae

0.8507 3.93% 0.7563 5.90 % 0.8426 0.09 %
0.6580 3.93% 0.6457 9.30% 0.6539 1.02%

SVR model is better than Linear-Saturation-Linear (LSL) model in terms of nmae .

Hill Huxley model is the best in terms of nmae. All of them are similar in terms of gof

performance.
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Chapter 6

CONCLUSIONS

In this thesis, we investigated identification of various nonlinear systems, e.g. (NARX,

Hammerstein, Wiener, Wiener-Hammerstein systems). The identification is held follow-

ing construction of a dataset (i.e. pairs of inputs and outputs) from the system under

investigation. In this work, we focused on using Least Squares-Support Vector Ma-

chines (LS-SVM) to identify these types of systems. We also designed closed loop control

schemes using LS-SVM.

In the first part of this thesis, we dealed with regression of nonlinear systems such

as Nonlinear Auto-Regressive with eXogenous inputs (NARX) and Bilinear systems. By

means of Least-Squares Support Vector Regression (LS-SVR) we developed new formu-

lations that decreased the mean squared error between actual and estimated outputs of

these type of systems. Through our simulations, we observed that usual SVR regression

method can not reach the performance of the Neural Network approximators. However

our formulations lead a comparable performance for training, and is better in terms of

test data error compared to Neural Network approximators.

In many works in the literature, the orders of the filter in nonlinear systems are

assumed to be known. Based on Least-Squares Support Vector Regression we showed

that we can determine these orders. The true orders are given in terms of percentages

and the proposed method may require a huge number of training data.

In the chapter 4 we dealed with parametric identification of Hammerstein and Wiener
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type of systems. Identification of Hammerstein systems by LS-SVM requires that the

nonlinearity be non-static, i.e. memoryless. We have shown that we can still identify

Hammerstein systems for the case that the nonlinearity has a finite memory.

The methodology proposed in [1] for identification of Wiener type of systems, which

is to change the roles of inputs and outputs , hence making it a Hammerstein systems,

leads poor estimation results. We have shown that this is due to the unconsidered uncol-

ored noise, that is mapped to an infinite dimensional space by kernel functions of Support

Vectors. We have developed new approaches that improved the estimation performance

significantly. The ideas are based on using small signal analysis, hence making the over-

all system linear. At first, we shoved that the nonlinearity need not to be invertible, as

required in many works in the literature, assuming there is no measurement error. We

further developed the methodology such that we proposed novel schemes for the iden-

tification of Wiener type systems for any differentiable and non-differentiable nonlinear

functions.

We also designed feedback control schemes for Wiener type systems, by putting SVM

in appropriate places in the designed system, and showed that SVM can be used for

applying the well known linear control theory.

In the chapter 5 we have concentrated on identification of Wiener-Hammerstein type

systems by using LS-SVM, which is set as a future problem in [1]. Using similar ideas

explained in the identification of Wiener type systems, we identified Wiener-Hammerstein

type systems for both the cased that the nonlinearity between the linear blocks is known or

unknown. Finally we proposed novel schemes for the identification of Wiener-Hammerstein

type systems as a black box and compared the results with various works in the literature.

Throughout the thesis we considered Single-Input, Single-Output (SISO), Discrete

Time Systems. The extension of the schemes proposed in this thesis to Multi-Input

and/or Multi-Output cases seem to be straightforward. However, this point requires

further investigation.

Our methodology to determine the orders of the filters in the nonlinear systems may

further be improved to determine the orders of any type of nonlinear system. The systems
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that we dealed in this thesis are in the open loop form. The methodologies may further be

modified to identify closed loop forms of these type of systems, such as closed loop Wiener,

Hammerstein (i.e. Lur’e model), see e.g. [41], and closed loop Wiener-Hammerstein

systems.
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APPENDIX A

The Matlab Codes

A.1 NARX System Identification Simulation Codes

NarxIdentEx2oneReg.m

%% narx model identification in the case that a fixed reg. vector is used

% simulate the system and get the inputs and outputs.

clear all

u = normrnd(0,2,1,1000);

e=normrnd(0,.2,1,1000);

y = zeros(1,1000); x = zeros(4,1000); N = 300; r = 7; K = zeros(N);

sg = 1.0; m =0;

% Inputs and outputs

a0=0.3;a1=.5;a2=.4;b0=0.2;b1=.3;b2=0.3;a=.75;c1=0.5;c2=0.6;

y(1)=0.1;u(1)=a*randn; y(2)=a0*y(1)+c1*u(1)+a1*u(1)*y(1); u(2)=a*randn;

% y(2) was : y(2)=-0.1

for i=3:1000

u(i)=a*randn;

y(i)=(a0+a1*sin(u(i-1))+a2*cos(u(i-2)))*y(i-1)+(b0+b1*sin(u(i-1))...

+b2*u(i-2))*y(i-2)+c1*u(i-1)+c2*u(i-2);

x(:,i) = [u(i-1) u(i-2) y(i-1) y(i-2)]';

end

y = y +e; % noise added to output
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figure(1);subplot(2,1,1);plot(u);title('u : input values');subplot(2,1,2);

plot(y);title('y : output values');

% Construct kernel and other required matrices

xtrain = x(:,201:200+N); ytrain = y(201:200+N);

for i = 1:N

for j = 1:N

K(i,j) = exp(-(( norm( x(:,200+i) - x(:,200+j) ) )ˆ2)/(2*sgˆ2));

end

end

Ksus = K(r:N,r:N);

%Construct Ko

Ko = zeros(N-r+1,m+1);

for k = r:N

Ko(k-r+1,1) = sum(K(:,k));

end

% Construct YpUp and Yf

for i = 1:2

Yp(i,:) = y(200+r-i:200+N-i);

Up(i,:) = u(200+r-i:200+N-i);

end

YpUp = [Yp;Up];

Yf = y(200+r:200+N);

gm = 1500;

bigEqMat = ...

[ 0 0 0 0 0 ones(N-r+1,1)' 0 ;...

zeros(4,1) zeros(4,4) YpUp zeros(4,1) ;...

ones(N-r+1,1) YpUp' Ksus + (1/gm)*eye(N-r+1) Ko ;...

0 0 0 0 0 Ko' ones(1,N)*K*ones(N,1) ];

%solve linear equation

rigSide = [0 0 0 0 0 Yf 0]';

finSolution = bigEqMat\rigSide;
d1 = finSolution(1)

a es = finSolution(2:5)

alf = finSolution(6:end-1);

bet1 = finSolution(end)
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y es(1:20) = y(1:20);xtest = [y es(20) y es(19) u(20) u(19)]';

for t = 21:1000

y es(t) = a es(1)*y es(t-1) + a es(2)*y es(t-2)+a es(3)*u(t-1)+...

a es(4)*u(t-2)...;

+ svm out(xtest,xtrain,bet1,alf,d1,sg,r) ;

xtest = [y(t) y(t-1) u(t) u(t-1)]';

end

figure(2);plot(y es(500:650),'r:');hold on ;plot(y(500:650),'b:');

title('estimated output using one reg. vector');

legend('estimated model','actual model');grid;hold off;

%For for loop just below obtain training performance, the previous for loop

%seems not to do that

y es(1:200) = y(1:200);xttest = [y(200) y(199) u(200) u(199)]';

for t = 201:200+N

y es(t) = a es(1)*y(t-1) + a es(2)*y(t-2)+a es(3)*u(t-1)+a es(4)*u(t-2)...;

+ svm out(xttest,xtrain,bet1,alf,d1,sg,r) ;

xttest = [y(t) y(t-1) u(t) u(t-1)]';

end

%% PERFORMANCES: MSE, REGRESSION etc, output and target plots. for test tr.

rmse train =sqrt(mean( (y(201:200+N)-y es(201:200+N)).ˆ2 ))

figure(3);

subplot(2,1,1);plot(y(201:200+N));hold on;plot(y es(201:200+N),'r');

title(['RMSE of Training: ',num2str(rmse train)]);hold off

rmse test =sqrt(mean( (y(200+N:200+N+N)-y es(200+N:200+N+N)).ˆ2 ))

subplot(2,1,2);plot(y(200+N:200+N+N));hold on;plot(y es(200+N:200+N+N),'r')

title(['RMSE of Test:',num2str(rmse test)])

figure(4);title('Correlation between actual and estimated outputs, SVR-1K')

subplot(1,2,1);plot(y(201:200+N),y es(201:200+N),'bo');hold on ;

ezplot('x','r',[-4 10 -4 10])

reg train =corrcoef( y(201:200+N-100)',y es(201:200+N-100)' )

reg test =corrcoef( y(200+N:200+N+200)',y es(200+N:200+N+200)' )

NARXIdentEx2.m
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%% Identification of NARX models (Bilinear Case) ex:2

% simulate the system and get the inputs and outputs. SVM mK effects are

% seen in this program.

clear all

u = normrnd(0,2,1,1000);

e=normrnd(0,.2,1,1000);

y = zeros(1,1000); xa1 = zeros(2,1000); xa2=zeros(2,1000);xb1=zeros(2,1000)

;xb2=zeros(2,1000);

N = 300; r = 7; K = zeros(N); sg = 1.0; m =0;

Ka1 = zeros(N,N);Ka2 = zeros(N,N); Kb1 = zeros(N,N);Kb2 = zeros(N,N);

Koa1= zeros(N-r+1,1); Koa2 = zeros(N-r+1,1); Kob1 = zeros(N-r+1,1);

Kob2 = zeros(N-r+1,1);

Ko = zeros(N-r+1,4);

a0=0.3;a1=.5;a2=.4;b0=0.2;b1=.3;b2=0.3;a=.75;c1=0.5;c2=0.6;

y(1)=0.1;u(1)=a*randn; y(2)=a0*y(1)+c1*u(1)+a1*u(1)*y(1); u(2)=a*randn;

% y(2) was : y(2)=-0.1

%y(3) = c1*u(2)+c2*u(1) + (a0+a1*u(2)+a2*u(1))*y(2); % this part

%will already be done below:starting from i = 3.

for i=3:1000

u(i)=a*randn;

y(i)=(a0+a1*sin(u(i-1))+a2*cos(u(i-2)))*y(i-1)+(b0+b1*sin(u(i-1))...

+b2*u(i-2))*y(i-2)+c1*u(i-1)+c2*u(i-2);

xa1(:,i) = [y(i-1) u(i-1)]';xa2(:,i) = [y(i-1) u(i-2)]';

xb1(:,i) = [y(i-2) u(i-1)]';xb2(:,i) = [y(i-2) u(i-2)]';

end

y = y +e; % noise added to output

figure(11);subplot(2,1,1);plot(u()),title('inputs: u');

subplot(2,1,2),plot(y());title('outputs: y');

% construct kernel matrices: Ka1,Ka2,Kb1,Kb2; Koa1,Koa2,Kob1,Kob2. Data

% after 200 th cycle will be used.

for i = 1:N

for j = 1:N

Ka1(i,j) = exp(- ( (norm(xa1(:,200+i)-xa1(:,200+j)))ˆ2 )/(2*sgˆ2) );

Ka2(i,j) = exp(- ( (norm(xa2(:,200+i)-xa2(:,200+j)))ˆ2 )/(2*sgˆ2) );

Kb1(i,j) = exp(- ( (norm(xb1(:,200+i)-xb1(:,200+j)))ˆ2 )/(2*sgˆ2) );
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Kb2(i,j) = exp(- ( (norm(xb2(:,200+i)-xb2(:,200+j)))ˆ2 )/(2*sgˆ2) );

end

end; xtraina1 = xa1(:,201:200+N);xtraina2 = xa2(:,201:200+N);

xtrainb1 = xb1(:,201:200+N);xtrainb2 = xb2(:,201:200+N);

for t =1:N-r+1

Koa1(t,1) = sum(Ka1(t,:));

%since it is symmetric otherwise will also be the same. for all!..

Koa2(t,1) = sum(Ka2(t,:));

Kob1(t,1) = sum(Kb1(t,:));

Kob2(t,1) = sum(Kb2(t,:));

end

Ko = [Koa1 Koa2 Kob1 Kob2];

% Construct Ksus.

Ksus=Ka1(r:end,r:end)+Ka2(r:end,r:end)+Kb1(r:end,r:end)+Kb2(r:end,r:end);

% Construct YpUp and Yf

for i = 1:2

Yp(i,:) = y(200+r-i:200+N-i);

Up(i,:) = u(200+r-i:200+N-i);

end

YpUp = [Yp;Up];

Yf = y(200+r:200+N);

%% Construct the linear equation matrix and solve the equation

gm=1500; sumOmg =[sum(sum(Ka1)) sum(sum(Ka2)) sum(sum(Kb1)) sum(sum(Kb2))];

bigEqMat = [0 zeros(1,4) ones(1,N-r+1) zeros(1,4);...

zeros(4,1) zeros(4,4) YpUp zeros(4,4);...

ones(N-r+1,1) YpUp' Ksus+(1/gm)*eye(N-r+1) Ko ;...

zeros(4,1) zeros(4,4) Ko' diag(sumOmg)];

% diag(sumOmg)

rightSide = [0 zeros(1,4) Yf zeros(1,4) ]'; %

finSolution = bigEqMat\rightSide;
% partition the finSolution.

d = finSolution(1,1)

a es = finSolution(2:5,1) %estimaded a s
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alf = finSolution(6:end-4,1);

bet = finSolution(end-3:end,1);a0 es = a es(1);b0 es = a es(2);

c1 es = a es(3);c2 es = a es(4);

%% Now try to obtain the estimated nonlinearity values

for k = 1:N-r+1

fa1 es(k) = alf'*Ka1(r:end,k+r-1);

fa2 es(k) = alf'*Ka2(r:end,k+r-1);

fb1 es(k) = alf'*Kb1(r:end,k+r-1);

fb2 es(k) = alf'*Kb2(r:end,k+r-1);

end

figure(12); plot3(xa1(1,200+r:200+N),xa1(2,200+r:200+N),fa1 es,'r+');

grid on;xlabel('X');ylabel('Y');zlabel('Z');

hold on;plot3(xa2(1,200+r:200+N),xa2(2,200+r:200+N),fa2 es,'g+');

xlabel('X');ylabel('Y');zlabel('Z');hold off

% figure(4); plot3(xa2(1,200+r:200+N),xa2(2,200+r:200+N),fa2 es,'r+');

%grid;xlabel('X');ylabel('Y');zlabel('Z');

% figure(5); plot3(xb1(1,200+r:200+N),xb1(2,200+r:200+N),fb1 es,'r+');

%grid;xlabel('X');ylabel('Y');zlabel('Z');

% figure(6); plot3(xb2(1,200+r:200+N),xb2(2,200+r:200+N),fb2 es,'r+');

%grid;xlabel('X');ylabel('Y');zlabel('Z');

% figure(7); ribbon(xb2(1,200+r:200+N),fb2 es);

%% now try to obtain nonlinearity term parameters(coefficients).

finSola1d1 = [xa1(1,200+r:200+N)'.*xa1(2,200+r:200+N)'...

-ones(N-r+1,1)]\fa1 es',d1 = finSola1d1(2);

finSola2d2 = [xa2(1,200+r:200+N)'.*xa2(2,200+r:200+N)'...

-ones(N-r+1,1)]\fa2 es',d2 = finSola2d2(2);

finSolb1d3 = [xb1(1,200+r:200+N)'.*xb1(2,200+r:200+N)'...

-ones(N-r+1,1)]\fb1 es',d3 = finSolb1d3(2);

finSolb2d4 = [xb2(1,200+r:200+N)'.*xb2(2,200+r:200+N)'...

-ones(N-r+1,1)]\fb2 es',d4 = finSolb2d4(2);

% The results seems to be satisfactory for the paragraph just above.

%% Now obtain the estimated model's output. the inputs following training

% set can be used for testing. but no need for that! we can start fr begin.

y es(1:20) = y(1:20);xa1test = [y es(20) u(20)]';xa2test = [y es(20) u(19)]';

xb1test = [y es(19) u(20)]';xb2test = [y es(19) u(19)]';
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% below instead of d/4 we could use d1,d2,d3and d4 .result is almost the

% same.

for k = 21:900

y es(k) = a0 es*y es(k-1) + b0 es*y es(k-2) + c1 es*u(k-1) +c2 es*u(k-2)...;

+ svm out(xa1test,xtraina1,bet(1),alf,d/4,sg,r) +...

svm out(xa2test,xtraina2,bet(2),alf,d/4,sg,r)...;

+ svm out(xb1test,xtrainb1,bet(3),alf,d/4,sg,r) +...

svm out(xb2test,xtrainb2,bet(4),alf,d/4,sg,r);

xa1test = [y es(k) u(k)]'; xa2test = [y es(k) u(k-1)]';

xb1test = [y es(k-1) u(k)]';xb2test = [y es(k-1) u(k-1)]';

end

figure(13);plot(y es(500:800),'r:');hold on ;plot(y(500:800),'b-.');grid;hold off;

legend('estimated model','actual model');title('estimated and actual model outputs');

%For for loop just below obtain training performance, the previous for loop

%seems not to do that

y es(1:200) = y(1:200);xa1test = [y(200) u(200)]';xa2test = [y(200) u(199)]';

xb1test = [y(199) u(200)]';xb2test = [y(199) u(199)]';

% below instead of d/4 we could use d1,d2,d3and d4 .result is almost the

% same.

for k = 201:200+N

y es(k) = a0 es*y(k-1) + b0 es*y(k-2) + c1 es*u(k-1) +c2 es*u(k-2)...;

+ svm out(xa1test,xtraina1,bet(1),alf,d/4,sg,r) +...

svm out(xa2test,xtraina2,bet(2),alf,d/4,sg,r)...;

+ svm out(xb1test,xtrainb1,bet(3),alf,d/4,sg,r) +...

svm out(xb2test,xtrainb2,bet(4),alf,d/4,sg,r);

xa1test = [y(k) u(k)]'; xa2test = [y(k) u(k-1)]';

xb1test = [y(k-1) u(k)]';xb2test = [y(k-1) u(k-1)]';

end

%% PERFORMANCES: MSE, REGRESSION etc, output and target plots. for test tr.

rmse train =sqrt(mean( (y(201:200+N)-y es(201:200+N)).ˆ2 ))

figure(14);

subplot(2,1,1);plot(y(201:200+N));hold on;plot(y es(201:200+N),'r');

title(['RMSE of Training: ',num2str(rmse train)])

rmse test =sqrt(mean( (y(200+N:200+N+300)-y es(200+N:200+N+300)).ˆ2 ))

subplot(2,1,2);plot(y(200+N:200+N+300));hold on;plot(y es(200+N:200+N+300),'r');
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title(['RMSE of Test:',num2str(rmse test)]);hold off

figure(15);title('Correlation between actual and estimated outputs, SVR-mK');

subplot(1,2,2);plot(y(201:200+N),y es(201:200+N),'bo');hold on ;

ezplot('x','r',[-4 10 -4 10]);

reg train =corrcoef( y(201:200+N-200)',y es(201:200+N-200)' )

reg test =corrcoef( y(200+N:200+N+100)',y es(200+N:200+N+100)' )

svm out.m

%% now we will produce a function that computes the output of the svm

%% directly. that is w'*fi(x) + d.

function [val] = svm out(xtest,xtrain,bet,alph,d,sg,r)

%xtrain: xtrain must be in this form. each column is a seperate training

%data. it is assumed to be in this form.

%xtest : xtest is also in the form of xtrain. that is columns are seperate

%training datas.

%alph : is assumed to be in column.

%first we have to compute the kernel matrix. K is N by 1 in this case.

%first of all obtain the size of training data thus the kernel matrix

[m,n] = size(xtrain);

if(m>n)

sizeK = m;

else

sizeK = n;

end

K=zeros(sizeK,1);

for i = 1:sizeK

K(i,1) = exp(- ((norm( xtrain(:,i) - xtest ))ˆ2)/(2*sgˆ2) );

% Be carefull with the value of sg or sgˆ2

end

val = bet*sum(K(:,1)) + alph'*K(r:end,1) + d;
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A.2 Wiener System Identification Simulation Codes

WienerAsAHammersteinAnyNon.m

%% Wiener identification : thinking it as a Hammerstein model. Using small

%% signal analysis. here a stepwise constant is added to input. But the

%% results seem to be nice for denumerator paramters not good for numerator

%% parameters.( this has changed. because wrong calculations were done at

%% that time) In the case that the nonlinearity is not invertible around

%% zero. Noise exist in the output. A working condition is constructed.

%% Wait for the transient time and after some time (200 possibly) evaluate

%% mean of the things. The training data also should be chosen after the

%% transient time. Increasing the training data gave worse results.

%% Decreasing it below some points also gave worse results.

clear all

u=.35*normrnd(0,.32,1,700) + 24; % A white gaussian input sequence u with length

%700 0 mean and standard deviation 2

%u=8*rand(1,700)-4;

e=.05*normrnd(0,.2,1,1189); % A white gaussian with zero mean and standart de

% viation .2 with length 700. it is error term

%e = zeros(1,1189); % this is added after all. actually it should have

ic = i; % been done before

rts = [.98*exp(ic) .98*exp(-ic) .98*exp(1.6*ic) .98*exp(-1.6*ic)...

.95*exp(2.5*ic) .95*exp(-2.5*ic)];

a = poly(rts); % ai s

b = [1 .8 .3 .4] ; % bi s

% now we will get the input output data.

[h,tt] = impz(b,[a]); %filter impulse response

us = [0 u(1:end-1)]; % past values of "u"

v = conv(h,u); v2 = (sin(u).*u) ; y2 = conv(h,v2);figure(50);

plot(u,v2,'r+');title('v2 vs u . hammersteinish ');

y =(sin(v).*v)+e; % y = conv(h,v2); % 3*(-.5 + 1./(1 + exp(-.5*v)));%2*v;

y y2diff = y-y2;figure(51);subplot(4,1,4); plot(y y2diff(1:700));

title('y-y2: wiener output-hammerstein output')
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figure(1);subplot(3,1,1) ; plot(u(1:700)); title('input to the system');

subplot(3,1,2) ; plot(v(1:700));

title('output of the filter of wiener: before nonlinearity: v');

axis([1 700 -2 12])

subplot(3,1,3) ; plot(y(1:700));

title('output of the whole system of wiener');hold off

%subplot(4,1,4) ; plot(y2(1:700));

%title('output of the whole system of hammerstein; y2');

N=400; r=7; m=3;n= sum(size(a))-2; sg = .7071;

%% solve linear equation

% construct Kernel matrix . The last two hundred data points will be used.

xtrain = u(201:200+N);

for i=1:N % K is omega matrix

for j=1:N

K(i,j) = exp(-((u(1,i+200)-u(1,j+200))ˆ2)/(2*sgˆ2)); %itis oki

end

end

% Construct Yf. Again the last two hundred data points will be used .

Yf = y(1,200+r:200+N)-mean(y(200:700)); %it is okei

% Construct Yp:n*N-r+1. Again the last two hundred data points will be used.

for i=1:n

Yp(i,1:N-r+1) = y(1,200+r-i:N+200-i); %itis okei

end

% Construct Ko. Ko:194*4 (expected) it is okei.

for p = 1:N-r+1

for q = 1:m+1

sumk = 0;

for t = 1:N

sumk = sumk + K(t,r+p-q);

end

Ko(p,q) = sumk;

end

end

% Construct Ksus . Ksus:194*194 (expected, not sure): well Ksus2 = Ksus .

% it is great.
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for p = 1:N-r+1

for q = 1:N-r+1

sumks = 0;

for j =0:m % 0 dan 3 e olmas? gerekti?i tespit edilmi?ti.

sumks = sumks + K(p+7-j-1,q+7-j-1);

end

Ksus2(p,q) = sumks;

end

end

Ksus = zeros(N-r+1); ud =u(1,201:200+N)'; yd =y(1,201:200+N); %it is okei

for j=0:m

Ksus = Ksus + kernel matrix(ud(r-j:N-j),'RBF kernel',2*sgˆ2);

end;

%% Construct the linear equation matrix (205 by 205) and solve the equation

gm = 500;

bigEqMat = [0 zeros(1,n) ones(1,N-r+1) zeros(1,m+1);...

zeros(n,1) zeros(n,n) Yp zeros(n,m+1);...

ones(N-r+1,1) Yp' Ksus+(1/gm)*eye(N-r+1,N-r+1) Ko;...

zeros(m+1,1) zeros(m+1,n) Ko' ones(1,N)*K*ones(N,1)*eye(m+1,m+1)];

rightSide = [0 zeros(1,n) Yf zeros(1,m+1) ]';

finSolution = bigEqMat\rightSide;
% partition the finSolution.

d = finSolution(1,1)

a es = finSolution(2:n+1,1) %estimaded a s

alf = finSolution(n+2:N+1,1);

bet = finSolution(N+2:N+5,1);

%% Get the solutions for b s .

AlfM = [alf(end:-1:1,1)' 0 0 0;0 alf(end:-1:1,1)' 0 0;...

0 0 alf(end:-1:1,1)' 0 ;0 0 0 alf(end:-1:1,1)']; %Alfa matrix

%Construct Manipulated Kernel matrix

for i = 1:N-m

Kman(i,:) = K(N-i+1,:);

end

% Get the right hand side of matrix of which svd is to be taken

100



svdRight = AlfM*Kman + bet*sum(K);

[B , s, F] = svd(svdRight);

nf = s(1,1)*F(:,1); %fvec

b es = B(:,1)'; %bvec

meanf= d/sum(b es); %fmean

multm= b es;

esf = (nf + meanf)*multm(1);

b es = b es/multm(1)

figure(3);

plot(ud(:,1),esf(:,1),'r+'); title('estimated f vs inputs')

grid

figure(11); plot(ud(:,1),svdRight(1,:),'m+');grid;

title('w0''f(ut) vs ut');

sys or=tf([b],[a],-1);

sys es=tf([b es],[1 -a es'],-1);

figure(44);pzmap(sys or,'r',sys es,'b');

legend('actual filter','estimated filter');

figure(45);subplot(1,2,1);hist(xtrain,18);

title('histogram of input data');

subplot(1,2,2);hist(Yf,18);title('histogram of output data');

%% We are not done. We have to obtain the whole static nonlinear function.

%% Estimated and actual filters are connected feedforwardly and SVM is

%% trained with those data.

%% we found filter parameters and now we have to find the nonlinearity.

%------now get the estimated filter's output and find nonlinearity- 1st

%check the nonlinear function used above!!! then use the same one here

u n = 1*normrnd(0,1,1,700); %input used for obtaining the nonlinear funct

v n = conv(h,u n);

y n =(sin(v n).*v n)+e ;

[hes,ttes] = impz(b es,[1 -a es']);%estimated filter impulse response

ves = conv(hes,u n);

% now from estimated filter's outputs(ves) we will compute Kernel K

xtraines = ves(201:200+N);
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for i=1:N % K is omega matrix

for j=1:N

Kes(i,j) = exp(-((ves(1,i+200)-ves(1,j+200))ˆ2)/(1*1ˆ2));%itis oki

end

end

gm = 1600;

RegMat = [0 ones(N,1)';ones(N,1) Kes+(1/gm)*eye(N)];

regRightSide = [0;y n(201:200+N)'];

regFinSol = RegMat\regRightSide;
des = regFinSol(1)

alfes=regFinSol(2:end);

for k=1:N

yes(k) = alfes'*Kes(:,k) + des;

end

figure(71);subplot(3,1,1) ; plot(u n(1:700)); title('input to the system');

subplot(3,1,2) ; plot(v n(1:700));

title('output of the filter: before nonlinearity');

subplot(3,1,3) ; plot(ves(1:700));

title('output of the estimated filter: before nonlinearity');

figure(72);subplot(3,1,1) ;plot(u n(1:200)); title('input to the system');

subplot(3,1,2) ; plot(y n(1:200)); title('output of the whole system');

%subplot(3,1,3) ; plot(yes(1:200));title('output of the estimated model');

figure(73);plot(xtraines,yes,'r.');hold on;

plot(v n(201:200+N),y n(201:200+N),'b.');

title('actual and estimated nolinearities')

legend('estimated nonlinearity','actual nonlinearity');grid;hold off

rmse Non Fun = sqrt(mean( (yes - y n(201:200+N)).ˆ2 ))

PE AR = norm(a-[1 -a es'])

PE MA = norm(b-b es)

kernel matrix.m
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function omega = kernel matrix(Xtrain,kernel type, kernel pars,Xt)

% Construct the positive (semi-) definite and symmetric kernel matrix

%

% >> Omega = kernel matrix(X, kernel fct, sig2)

%

% This matrix should be positive definite if the kernel function

% satisfies the Mercer condition. Construct the kernel values for

% all test data points in the rows of Xt, relative to the points of X.

%

% >> Omega Xt = kernel matrix(X, kernel fct, sig2, Xt)

%

%

% Full syntax

%

% >> Omega = kernel matrix(X, kernel fct, sig2)

% >> Omega = kernel matrix(X, kernel fct, sig2, Xt)

%

% Outputs

% Omega : N x N (N x Nt) kernel matrix

% Inputs

% X : N x d matrix with the inputs of the training data

% kernel : Kernel type (by default 'RBF kernel')

% sig2 : Kernel parameter (bandwidth in the case of the 'RBF kernel')

% Xt(*) : Nt x d matrix with the inputs of the test data

%

% See also:

% RBF kernel, lin kernel, kpca, trainlssvm, kentropy

% Copyright (c) 2002, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab

nb data = size(Xtrain,1);
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if nb data> 3000,

error(' Too memory intensive, the kernel matrix is restricted to size 3000 x 3000 ');

end

%if size(Xtrain,1)<size(Xtrain,2),

% warning('dimension of datapoints larger than number of datapoints?');

%end

if strcmp(kernel type,'RBF kernel'),

if nargin<4,

XXh = sum(Xtrain.ˆ2,2)*ones(1,nb data);

omega = XXh+XXh'-2*Xtrain*Xtrain';

omega = exp(-omega./kernel pars(1));

else

XXh1 = sum(Xtrain.ˆ2,2)*ones(1,size(Xt,1));

XXh2 = sum(Xt.ˆ2,2)*ones(1,nb data);

omega = XXh1+XXh2' - 2*Xtrain*Xt';

omega = exp(-omega./kernel pars(1));

end

else

if nargin<4,

omega = zeros(nb data,nb data);

for i=1:nb data,

omega(i:end,i) = feval(kernel type, Xtrain(i,:), Xtrain(i:end,:),kernel pars);

omega(i,i:end) = omega(i:end,i)';

end

else

if size(Xt,2) 6=size(Xtrain,2),

error('dimension test data not equal to dimension traindata;');

end

omega = zeros(nb data, size(Xt,1));
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for i=1:size(Xt,1),

omega(:,i) = feval(kernel type, Xt(i,:), Xtrain, kernel pars);

end

end

end

A.3 Wiener-Hammerstein System Identification Sim-

ulation Codes

WienerHammersteinIdent.m

%% Wiener - Hammerstein Identification (by convolution and small signal

%% analysis )

clear all

b1 = [1 .8 .3]; ic =i;

a1 = poly([.78*exp(ic) .78*exp(-ic) .88*exp(1.6*ic) .88*exp(-1.6*ic)]);

a2 = poly([.98*exp(2*ic) .98*exp(-2*ic) .96*exp(3.6*ic) .96*exp(-3.6*ic)]);

b2 = [1 .6 .4];

a = (poly([roots(a1)' roots(a2)']))',b = (poly([roots(b1)' roots(b2)']))'

u = .2*normrnd(0,2,1,700);%u st = ones(1,700);

%e = .2*normrnd(0,.012,1,1265);

e = zeros(1,1265);

[h1,tt1] = impz(b1,a1);

[h2,tt2] = impz(b2,a2);

v = conv(h1,u); % output of 1st filter

w = 5*(-.5 + 1./(1 + exp(-.5*v)) );% 2*v;% (sin(v).*v)+4*v;% output of nonlinearity

y = conv(h2,w)+e; %output of 2nd filter.

figure(1);subplot(4,1,1) ; plot(u(1:700)); title('input to the system');

subplot(4,1,2) ; plot(v(1:700)); title('output of the filter: before nonlinearity');

subplot(4,1,3) ; plot(w(1:700)); title('output of the nonlinearity');

subplot(4,1,4) ; plot(y(1:700));title('output of the whole system');
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N=200; r=9; m=4;n= sum(size([a1 a2]))-3; sg = 1/sqrt(2);

%% solve linear equation

% construct Kernel matrix . The last two hundred data points will be used.

xtrain = u(201:200+N);

for i=1:N % K is omega matrix

for j=1:N

K(i,j) = exp(-((u(1,i+200)-u(1,j+200))ˆ2)/(2*sgˆ2)); %itis oki

end

end

% Construct Yf. Again the last two hundred data points will be used .

Yf = y(1,200+r:200+N); %it is okei

% Construct Yp:n*N-r+1. Again the last two hundred data points will be used.

for i=1:n

Yp(i,1:N-r+1) = y(1,200+r-i:N+200-i); %itis okei

end

% Construct Ko. Ko:194*4 (expected) it is okei.

for p = 1:N-r+1

for q = 1:m+1

sumk = 0;

for t = 1:N

sumk = sumk + K(t,r+p-q);

end

Ko(p,q) = sumk;

end

end

% Construct Ksus . Ksus:194*194 (expected, not sure): well Ksus2 = Ksus .

% it is great.

for p = 1:N-r+1

for q = 1:N-r+1

sumks = 0;

for j =0:m % 0 dan 3 e olmas? gerekti?i tespit edilmi?ti.

sumks = sumks + K(p+r-j-1,q+r-j-1);

end

Ksus2(p,q) = sumks;

end
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end

Ksus = zeros(N-r+1); ud =u(1,201:200+N)'; yd =y(1,201:200+N); %it is okei

for j=0:m

Ksus = Ksus + kernel matrix(ud(r-j:N-j),'RBF kernel',2*sgˆ2);

end;

%% Construct the linear equation matrix (205 by 205) and solve the equation

gm = 500;

bigEqMat = [0 zeros(1,n) ones(1,N-r+1) zeros(1,m+1);...

zeros(n,1) zeros(n,n) Yp zeros(n,m+1);...

ones(N-r+1,1) Yp' Ksus+(1/gm)*eye(N-r+1,N-r+1) Ko;...

zeros(m+1,1) zeros(m+1,n) Ko' ones(1,N)*K*ones(N,1)*eye(m+1,m+1)];

rightSide = [0 zeros(1,n) Yf zeros(1,m+1) ]';

finSolution = bigEqMat\rightSide;
% partition the finSolution.

d = finSolution(1,1)

a es = finSolution(2:n+1,1) %estimaded a s

alf = finSolution(n+2:201,1);

bet = finSolution(202:end,1);

%% Get the solutions for b s .

AlfM = [alf(end:-1:1,1)' 0 0 0 0;0 alf(end:-1:1,1)' 0 0 0;...

0 0 alf(end:-1:1,1)' 0 0 ;0 0 0 alf(end:-1:1,1)' 0;0 0 0 0 alf(end:-1:1,1)'];%Alfa matrix

%Construct Manipulated Kernel matrix

for i = 1:N-m;

Kman(i,:) = K(N-i+1,:);

end

% Get the right hand side of matrix of which svd is to be taken

svdRight = AlfM*Kman + bet*sum(K);

[B , s, F] = svd(svdRight);

nf = s(1,1)*F(:,1); %fvec

b es = B(:,1)'; %bvec

meanf= d/sum(b es); %fmean

multm= b es;

esf = (nf + meanf)*multm(1);
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b es = b es/multm(1)

figure(3);

plot(ud(:,1),esf(:,1),'r+'); title('estimated f vs inputs')

grid

figure(11); plot(ud(:,1),svdRight(1,:),'m+');grid; title('w0''f(ut) vs ut');

PE AR = norm(a-[1;-a es])

PE MA = norm(b-b es')

%% ----------------------------- The System is identified as a whole. We----

%% ----------------------------have to divide the whole filter somehow--------------------

rots a = roots([1;-a es]);rots b = roots([b es]);

ra1 es = rots a(5:end);a1 es = poly(ra1 es); rb1 es = rots b(1:2);

b1 es = poly(rb1 es);

ra2 es = rots a(1:4) ;a2 es = poly(ra2 es); rb2 es = rots b(3:4);

b2 es = poly(rb2 es);

%------now get the estimated filter's output and compare with the originals-

%u = 1*normrnd(0,2,1,700);%u st = ones(1,700);

u(1:100) = 1*ones(1,100); u(101:200)=4*ones(1,100); u(201:300)=2*ones(1,100);

u(301:400)= 1*ones(1,100); u(401:500)=3*ones(1,100);

u(501:600)=1*ones(1,100);u(601:700)=2*ones(1,100);

v = conv(h1,u); % output of 1st filter

w =2*v; % (sin(v).*v); % 3*(-.5 + 1./(1 + exp(-.5*v)) );%% output of nonlinearity

y = conv(h2,w); %output of 2nd filter.

figure(20);title('Responses for various steps');subplot(4,1,1) ;

plot(u(1:700)); title('input to the system');

subplot(4,1,2) ; plot(v(1:700)); title('output of the filter: before nonlinearity');

subplot(4,1,3) ; plot(w(1:700)); title('output of the nonlinearity');

subplot(4,1,4) ; plot(y(1:700));title('output of the whole system');

N=200; r=9; m=4;n= sum(size([a1 a2]))-3; sg = 5;

[h1es,tt1es] = impz(b1 es,a1 es);

[h2es,tt2es] = impz(b2 es,a2 es);

ves = conv(h1es,u); % output of 1st estimated filter

wes =2*ves;% (sin(ves).*ves); % 3*(-.5 + 1./(1 + exp(-.5*ves)) );

%output of nonlinearity

yes = conv(h2es,wes); %output of 2nd filter.

figure(21);subplot(4,1,1) ; plot(u(1:700)); title('input to the system');
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subplot(4,1,2) ; plot(ves(1:700));

title('output of the estimated filter: before nonlinearity');

subplot(4,1,3) ; plot(wes(1:700)); title('output of the nonlinearity');hold off

subplot(4,1,4) ; plot(yes(1:700));title('output of the whole estimated system')

hold on; plot(y(1:700),'r');title('output of the whole system');

figure(22);subplot(4,1,4);plot(y(1:700)-yes(1:700));

title('difference between actual and estimated outputs')

%% ------------find a figure for step inputs of org. and estim. sys.--------

% Pole zero maps of original and estimated system

sys or=tf([b'],[a'],-1);

sys es=tf([b es],[1 -a es'],-1);

figure(34);pzmap(sys or,'r',sys es,'b');legend('actual filter','estimated filter');

%% Now we will share out poles and zeros between two filters.

%% We assume that we know the nonlinearity.

bf1 = poly(rb1 es); % the same with the actual

af1 = poly([ra1 es(1:2)' ra2 es(1:2)']);

af2 = poly([ra1 es(3:4)' ra2 es(3:4)']);

bf2 = poly(rb2 es);% the same with the actual

afc = (poly([roots(a1)' roots(a2)']))';bfc = (poly([roots(b1)' roots(b2)']))';

% whole a and b.

uf = 1.*normrnd(0,2,1,700);%u st = ones(1,700);

[hf1,tt1] = impz(bf1,af1); [h1 es,tt1]= impz(b1 es,a1 es);

[hf2,tt2] = impz(bf2,af2); [h2 es,tt2]= impz(b2 es,a2 es);

vfe = conv(hf1,uf); va = conv(h1,uf); v es = conv(h1 es,uf);

% output of 1st filter ;estimated, actual, well estimated.

wfe = 3*(-.5 + 1./(1 + exp(-.5*vfe)) ); wa = 3*(-.5 + 1./(1 + exp(-.5*va)) );

w es = 3*(-.5 + 1./(1 + exp(-.5*v es)) ); % 2*v; %(sin(v).*v)+4*v;

% output of nonlinearity, estimated, actual

yfe = conv(hf2,wfe); ya = conv(h2,wa); y es = conv(h2 es,w es);

%output of 2nd filter. estimated, actual, well estimated

figure(41);subplot(4,1,1) ; plot(uf(1:700)); title('input to the system');

subplot(4,1,2) ; plot(vfe(1:700)); title('output of the filter: before nonlinearity');

hold on;subplot(4,1,2); plot(va(1:700));legend('estimate','actual');

subplot(4,1,3) ; plot(wfe(1:700)); title('output of the nonlinearity');
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hold on; subplot(4,1,3);plot(wa(1:700));legend('estimate','actual');

subplot(4,1,4) ; plot(yfe(1:700));title('output of the whole system');

hold on; subplot(4,1,4);plot(ya(1:700));legend('estimate','actual');hold off

rmse ya yfe = sqrt( sum( (yfe(1:100)-ya(1:100)).ˆ2 ) )

rmse ya y es= sqrt( sum( (y es(1:100)-ya(1:100)).ˆ2 ) )

figure(42); subplot(2,1,1); plot(ya(1:100)); hold on ;subplot(2,1,1);

plot(y es(1:100),'r'); legend('actual', 'estimated');

title('poles and zeros shared correctly ' )

xlabel(['root mean squared error=',num2str(rmse ya y es)])

subplot(2,1,2); plot(ya(1:100)); hold on ;subplot(2,1,2); plot(yfe(1:100),'r');

legend('actual', 'estimated');title('poles and zeros shared wrongly')

xlabel(['root mean squared error=',num2str(rmse ya yfe)]); hold off

%% Now we will construct some random filters from the pool of poles and

%% zeros. Then we will plot the output of inverse of the 2nd estimated

%% filter vs the output of 1st estimated filter. If the relationship is

%% reasonable then we will train svm with that data. Use filter function of

%% matlab. be careful with the chosen nonlinearity 5*(-.5 + 1./(1 +

%% exp(-.5*v f1act)) )

u test = 1*normrnd(0,2,1,700);

v f1act = filter(b1,a1,u test); % actual 1st filter's output

w act = 5*(-.5 + 1./(1 + exp(-.5*v f1act)) );% output of nonlin of actual system

y f2act = filter(b2,a2,w act); % output of whole actual system

a1f1 = poly([ra1 es(1:2)' ra2 es(1:2)']); % for 1st filter of 1st system

a1f2 = poly([ra1 es(3:4)' ra2 es(3:4)']); % for 2nd filter of 1st system

v1f1e = filter(bf1,a1f1,u test); % output of 1st filter of 1st system

y1f2e = filter(bf2,a1f2,y f2act); % output of inverse of 2nd filter of 1st system

a2f1 = poly([ra1 es(3:4)' ra2 es(1:2)']); % for 1st filter of 2nd system

a2f2 = poly([ra1 es(1:2)' ra2 es(3:4)']); % for 2nd filter of 2nd system

v2f1e = filter(bf1,a2f1,u test); % output of 1st filter of 2nd system

y2f2e = filter(a2f2,bf2,y f2act); % output of inverse of 2nd filter of 2nd system

vf1 = filter(bf1,a1 es,u test); % output of 1st filter of correctly estimated system
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yf2 = filter(a2 es,bf2,y f2act);% output of inverse of 2nd filter of correctly estimated system

figure(61); subplot(2,2,1); plot(v f1act,w act,'b.');

title('actual nonlinearity');xlabel('v 1(t)'),ylabel('v 2(t)'); grid ;

subplot(2,2,2); plot(v1f1e,y1f2e,'b.');

title('unreasonable estimated nonlinearity');xlabel('v 1(t)'),ylabel('v 2(t)');grid;

subplot(2,2,3); plot(v2f1e,y2f2e,'b.');

title('unreasonable estimated nonlinearity');xlabel(' v 1(t)'),ylabel('v 2(t)');grid;

subplot(2,2,4); plot(vf1,yf2,'b.');

title('reasonable estimated nonlinearity');xlabel('v 1(t)')

ylabel('v 2(t)'); axis([-15 15 -3 3]); grid;

%% Now different from just above we will try particle swarm optimization

%% instead while sharing out poles and

%% zeros to see the performance.

% u test = .2*normrnd(0,2,1,700);

% a1f1 = poly([ra1 es(1:2)' ra2 es(1:2)']); % for 1st filter of 1st system

% a1f2 = poly([ra1 es(3:4)' ra2 es(3:4)']); % for 2nd filter of 1st system

% [h1f1,tt1] = impz(bf1,a1f1);

% [h1f2,tt2] = impz(bf2,a1f2);

% a2f1 = poly([ra1 es(3:4)' ra2 es(1:2)']); % for 1st filter of 2nd system

% a2f2 = poly([ra1 es(1:2)' ra2 es(3:4)']); % for 2nd filter of 2nd system

% [h2f1,tt1] = impz(bf1,a2f1);

% [h2f2,tt2] = impz(bf2,a2f2);

% v1f1e = conv(h1f1,u test); % output of 1st filter of 1st system

% w1f1e = 3*(-.5 + 1./(1 + exp(-.5*vfe)) ); % output of nonlinearity of 1st system

% y1f2e = conv(h1f2,w1f1e); % output of 2nd filter of 1st system

%

% v2f1e = conv(h2f1,u test); % output of 1st filter of 2nd system

% w2f1e = 3*(-.5 + 1./(1 + exp(-.5*vfe)) ); % output of nonlinearity of 2nd system

% y2f2e = conv(h2f2,w2f1e); % output of 2nd filter of 2nd system
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