
EFFECTIVE PRECONDITIONERS FOR ITERATIVE

SOLUTIONS OF LARGE-SCALE

SURFACE-INTEGRAL-EQUATION PROBLEMS

a dissertation

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Tahir Malas

March 2010

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of doctor of

philosophy.

Prof. Dr. Levent Gürel (Supervisor)

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of doctor of

philosophy.

Prof. Dr. Cevdet Aykanat

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of doctor of

philosophy.

Prof. Dr. Ayhan Altıntaş

ii

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of doctor of

philosophy.

Assoc. Prof. Dr. Vakur Ertürk

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of doctor of

philosophy.

Assist. Prof. Dr. Ergün Şimşek

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

iii

ABSTRACT

EFFECTIVE PRECONDITIONERS FOR ITERATIVE

SOLUTIONS OF LARGE-SCALE

SURFACE-INTEGRAL-EQUATION PROBLEMS

Tahir Malas

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Gürel

March 2010

A popular method to study electromagnetic scattering and radiation of three-

dimensional electromagnetics problems is to solve discretized surface integral

equations, which give rise to dense linear systems. Iterative solution of such

linear systems using Krylov subspace iterative methods and the multilevel fast

multipole algorithm (MLFMA) has been a very attractive approach for large

problems because of the reduced complexity of the solution. This scheme works

well, however, only if the number of iterations required for convergence of the

iterative solver is not too high. Unfortunately, this is not the case for many

practical problems. In particular, discretizations of open-surface problems and

complex real-life targets yield ill-conditioned linear systems. The iterative solu-

tions of such problems are not tractable without preconditioners, which can be

roughly defined as easily invertible approximations of the system matrices.

In this dissertation, we present our efforts to design effective preconditioners for

large-scale surface-integral-equation problems. We first address incomplete LU

(ILU) preconditioning, which is the most commonly used and well-established

iv

preconditioning method. We show how to use these preconditioners in a black-

box form and safe manner. Despite their important advantages, ILU pre-

conditioners are inherently sequential. Hence, for parallel solutions, a sparse-

approximate-inverse (SAI) preconditioner has been developed. We propose a

novel load-balancing scheme for SAI, which is crucial for parallel scalability.

Then, we improve the performance of the SAI preconditioner by using it for the

iterative solution of the near-field matrix system, which is used to precondition

the dense linear system in an inner-outer solution scheme. The last precondi-

tioner we develop for perfectly-electric-conductor (PEC) problems uses the same

inner-outer solution scheme, but employs an approximate version of MLFMA for

inner solutions. In this way, we succeed to solve many complex real-life problems

including helicopters and metamaterial structures with moderate iteration counts

and short solution times. Finally, we consider preconditioning of linear systems

obtained from the discretization of dielectric problems. Unlike the PEC case,

those linear systems are in a partitioned structure. We exploit the partitioned

structure for preconditioning by employing Schur complement reduction. In this

way, we develop effective preconditioners, which render the solution of difficult

real-life problems solvable, such as dielectric photonic crystals.

Keywords: Preconditioning, incomplete-LU preconditioners, sparse-approximate-

inverse preconditioners, flexible solvers, variable preconditioning, computational

electromagnetics, surface integral equations, multilevel fast multipole algorithm,

electromagnetic scattering, parallel computing.

v

ÖZET

BÜYÜK ÖLÇEKLİ YÜZEY İNTEGRAL DENKLEMİ

PROBLEMLERİNİN İTERATİF ÇÖZÜMLERI İÇİN ETKİN

ÖNİYİLEŞTİRİCİLER

Tahir Malas

Elektrik ve Elektronik Mühendisliḡi Bölümü Doktora

Tez Yöneticisi: Prof. Dr. Levent Gürel

Mart 2010

Üç boyutlu elektromanyetik saçılım ve ışınım problemlerinin çalışılmasında

yoğun doğrusal sistemlere yol açan ayrıklaştırılmış yüzey integral denklemlerini

çözmek yaygın bir yöntemdir. Çözümün karmaşıklığının azalmasından dolayı, bu

doğrusal denklemlerin Krylov altuzayı ve çok seviyeli hızlı çokkutup (ÇSHÇY)

yöntemleri kullanılarak iteratif çözümü son derece çekici hale gelmiştir. Fakat

bu yaklaşım sadece yakınsama için gereken iterasyon sayısı aşırı derecede yüksek

olmadığı sürece işe yaramaktadır. Maalesef, pek çok pratik durumda bu geçerli

olmamaktadır. Özellikle, açık yüzey ve karmaşık gerçek hayat problemleri

kötü koşullu doğrusal sistemlere yol açmaktadır. Bu tarz problemlerin iteratif

çözümleri, kabaca sistem matrislerine yaklaşan tersi alınabilir matrisler olarak

tanımlanan öniyileştiriciler olmadan mümkün olmamaktadır.

Bu doktora tezinde, büyük ölçekli yüzey integral denklemi problemleri için

geliştirdiğimiz etkin öniyileştiricileri sunmaktayız. İlk olarak, en yaygın ve

oturmuş bir öniyileştirme yöntemi olan eksik LU (ELU) öniyileştirmesini ele

aldık. Bu öniyileştiricilerin nasıl bir kara kutu formunda ve güvenli olarak kul-

lanılabileceklerini gösterdik. Önemli avantajlarına rağmen, ELU öniyileştiricileri

vi

temel olarak sıralı bir yapıda oldukları için, paralel çözümlerde kullanılmak

üzere bir seyrek yaklaşık ters (SYT) öniyileştiricisi geliştirdik. Ayrıca, par-

alel ölçeklenebilirlik için önemli olan özgün bir yük dengeleme yöntemi öne

sürdük. Daha sonra SYT öniyileştiricilerini, yoğun sistemi bir iç-dış çözümü

şeklinde öniyileştiren yakın alan matris sisteminin iteratif çözümünde kullanarak

geliştirdik. Mükemmel iletkenler için geliştirdiğimiz son öniyileştirici, benzer bir

iç-dış çözümü kullanmakta, ama iç çözümler için ÇSHY’nin yaklşık bir versi-

yonunu kullanmaktadır. Bu yolla, helikopterler ve metamalzemeler içeren çok

sayıda karmaşık gerçek hayat problemini makul iterasyon sayılarında çözmeyi

başardık.

Son olarak, diyelektrik problemlerinin ayrıklaştırılmasından elde edilen

doğrusal sistemlerin öniyileştirilmelerini hedefledik. Mükemmel iletkenlerden

farklı olarak, bu sistemler bölünmüş yapıdadırlar. Schur tümleyenine indirge-

meyle bu bölünmüş yapıyı öniyileştirme için kullandık. Bu yaklaşımla, diyelek-

trik fotonik kristaller gibi, çözümü zor gerçek hayat problemlerinin makul

sürelerde çözümünü mümkün kılan etkin öniyileştiricilerin geliştirilmesi mümkün

olmuştur.

Anahtar Kelimeler: Öniyileştirme, eksik LU öniyileştiricileri, seyrek yaklaşık

ters öniyileştiricileri, esnek çözücüler, değişken öniyileştirme, bilişimsel elektro-

manyetik, yüzey integral denklemleri, çok seviyeli hızlı çokkutup yöntemi, elek-

tromanyetik saçılım, paralel hesaplama.

vii

ACKNOWLEDGMENTS

I would like to express my eternal gratitude to my supervisor, Prof. Levent Gürel.

I have learned fundamental and very valuable skills from him. I have no doubt

that these will assist me a lot in my future academic career. I also would like to

thank him for his guidance and support throughout my Ph.D. study.

I would like to thank the committee members, Prof. Cevdet Aykanat, Prof. Ay-

han Altıntaş, Assoc. Prof. Vakur Ertürk, and Assist. Prof. Ergün Şimşek for

reading and commenting on this dissertation.

I was lucky to work with BiLCEM researchers, Dr. Özgür Ergül, Alp Manyas,

Burak Tiryaki, and Seçil Kılınç. I thank them for their collaboration and friend-

ship.

My final gratitude is to my wife and family, who gave me endless support in my

Ph.D. study.

This work was supported by the Scientific and Technical Research Council of

Turkey (TÜBİTAK) through a Ph. D. scholarship.

viii

Contents

1 Preliminaries 1

1.2 Introduction . 2

1.3 Notation . 3

1.4 Surface Integral-Equation Formulations 4

1.4.1 The Electric-Field Integral Equation (EFIE) 4

1.4.2 The Magnetic-Field Integral Equation (MFIE) 5

1.4.3 The Combined-Field Integral Equation (CFIE) 5

1.5 Discretization of the Surface Formulations 6

1.5.1 Method of Moments . 6

1.5.2 Discretization of EFIE . 7

1.5.3 Discretization of MFIE . 9

1.5.4 Discretization of CFIE . 10

1.5.5 Computation of the RHS Vectors 10

1.6 The Multilevel Fast Multipole Algorithm (MLFMA) 10

ix

1.6.1 Clustering . 11

1.6.2 Factorization of the Green’s Function 13

1.6.3 Far-Field Interactions . 15

1.7 Iterative Solvers . 17

1.7.1 Krylov Subspace Methods 18

1.7.2 The generalized minimal residual method (GMRES) 21

1.7.3 Convergence of GMRES 22

1.8 Preconditioning . 23

1.9 Spectral Analysis of the Surface Formulations 25

1.10 Contributions . 26

1.11 Computational Resources . 29

1.12 Organization . 30

2 Incomplete-LU (ILU) Preconditioners 32

2.1 Introduction . 32

2.2 Preconditioners based on Incomplete LU Factorization 35

2.3 Improving Stability of ILU Preconditioners 37

2.4 Numerical Results . 39

2.4.1 Open Geometries . 40

2.4.2 Closed Geometries . 44

x

2.5 Conclusion . 49

3 Sparse-Approximate-Inverse (SAI) Preconditioners 51

3.1 Introduction . 51

3.2 Brief Review of SAI . 54

3.2.1 Methods Derived from the Frobenius Norm Minimization . 54

3.3 Parallel Implementation Details 56

3.3.1 Pattern Selection and Filtering 58

3.3.2 Communication Phase and Enlarging the Local Submatrix 61

3.3.3 Load Balancing of SAI . 63

3.3.4 Construction of the Preconditioner 65

3.3.5 Application of the Preconditioner 65

3.4 Results . 66

3.4.1 Parallel Performance of the Construction Phase 67

3.4.2 EFIE Results . 68

3.4.3 CFIE Results . 72

3.4.4 Solutions of Metamaterial Structures 74

3.5 Conclusion . 76

4 The Iterative Near-Field (INF) Preconditioner 78

4.1 Introduction . 78

xi

4.2 Near-Field versus Full-Matrix Preconditioners 80

4.3 The Iterative Near-Field Preconditioner 81

4.4 Numerical Results . 82

4.4.1 EFIE Results . 83

4.4.2 CFIE Results . 86

4.5 Conclusion . 90

5 Preconditioners Utilizing More Than the Near-Field Matrix 93

5.1 Introduction . 93

5.2 The Approximate Multilevel Fast Multipole Algorithm 96

5.3 Iterative Preconditioning Based on the Approximate MLFMA . . 98

5.3.1 Preconditioning Operator 99

5.3.2 Inner Solver and the Secondary Preconditioner 99

5.3.3 Inner Stopping Criteria . 99

5.4 Numerical Results . 100

5.4.1 EFIE Results . 101

5.4.2 CFIE Results . 102

5.5 Conclusion . 103

6 Schur Complement Preconditioners For Dielectric Problems 105

6.1 Introduction . 106

xii

6.2 Surface Integral-Equation Methods for Dielectric Problems 112

6.2.1 The Combined Tangential Formulation (CTF) 112

6.2.2 The Combined Normal Formulation (CNF) 114

6.2.3 The Modified Normal Müller Formulation (MNMF) 115

6.2.4 The Electric and Magnetic Current Combined-Field For-

mulation (JMCFIE) . 115

6.2.5 Comparison of the Integral-Equation Formulations for Di-

electrics . 116

6.3 Discretization of the Surface Formulations of Dielectric Problems . 118

6.4 Preconditioning with Schur Complement Reduction 119

6.4.1 Schur Complement Reduction 120

6.5 Approximate Schur Complement Preconditioners 121

6.5.1 Approximations of the Solutions Involving the (1, 1) Par-

tition and the Schur complement 123

6.6 Iterative Schur Complement Preconditioners 131

6.6.1 Iterative Solutions Involving the (1, 1) Partition 133

6.6.2 Iterative Solutions Involving the Schur Complement 135

6.6.3 Stopping Criteria for Inner Solutions 138

6.7 Numerical Results . 139

6.7.1 The Sphere Problem . 141

6.7.2 The Lens Problem . 149

xiii

6.7.3 Periodic Slabs (PS) . 153

6.7.4 The Perforated-Waveguide Problem 158

6.7.5 Accuracy of the Solutions of the Photonic Crystal Waveguide162

6.8 Conclusions . 163

7 Conclusions and Future Work 166

xiv

List of Figures

1.1 Illustration of the oct-tree partitioning of the computational do-

main in MLFMA. 12

1.2 (a) Multilevel partitioning of the scatterer for the case of a sphere

with diameter 1λ. The shaded boxes are empty. (b) Tree structure

of MLFMA for the sphere. Unfilled nodes correspond to empty

boxes. 13

1.3 Sparse near-field matrices for (a) N = 930, (b) N = 1, 302, and

(c) N = 3, 723. 14

1.4 Comparison of the direct and iterative solvers for work performed

and acquired error levels. 18

1.5 The GMRES method. ǫ is a predetermined stopping threshold. . 22

1.6 Pseudospectra of the EFIE, MFIE, and CFIE formulations for

three ǫ values, i.e., 10−1, 10−1.25, and 10−1.5. The black dots denote

the exact eigenvalues of the unperturbed matrices. 27

2.1 Open geometries used to compare ILU preconditioners. 41

2.2 Closed geometries used to compare ILU preconditioners. 45

xv

3.1 Reduction of a 10 × 10 matrix for the generation of the 4th row

of SAI. 58

3.2 Filtering algorithm. 59

3.3 The pseudocode that finds the rows to be sent by the process Pk. 61

3.4 The pseudocode that finds the column indices of the sparse rows

to be received by the process Pk. 62

3.5 The pseudocode that exchanges the sparse rows. 62

3.6 Redistribution of the SAI rows according to the near-field parti-

toning. RNF
k and RSAI

k denote the row indices of process k with

respect to the near-field and SAI partitionings, respectively. . . . 64

3.7 The pseudocode for the sparse matrix-vector multiplication used

for right preconditioning. IA, JA, and V A are respectively row-

index, column-index, and value arrays of M k, which is stored in

CSR format. 66

3.8 Speedup curves for the patch, half sphere, and Flamme problems. 67

3.9 Load imbalance of the Flamme problem for (a) unbalanced and

(b) balanced cases. 68

3.10 Open geometries used in EFIE problems. 69

3.11 Approximate eigenvalues of the RA4 problem on the complex plane. 72

3.12 Closed-surface geometries used in CFIE problems. 73

3.13 Unit cells that are used to construct various metamaterial walls:

(a) SRR, (b) thin wires, and (c) a combination of SRR and thin

wires. 75

xvi

3.14 Processing time including the iterative solution and the setup of

the preconditioner for the 18×11×4 SRR wall. “NP” represents

the no-preconditioner case. 77

4.1 Nested solvers for iterative near-field preconditioning. 81

4.2 Closed-surface geometries formulated with CFIE. 87

4.3 Total solution times of the helicopter problem. The lines fit the

solution times in a least-squares sense. 90

5.1 Inner-outer solution scheme that use an approximate version of

MLFMA. 95

6.1 Illustration of the solution of dielectric problems using MLFMA

and approximate Schur complement preconditioners. As explained

in Section 6.5, M 11 is an approximate inverse for ANF
11 and MS

is an approximate inverse for the Schur complement. w′
1 and w′

2

take different forms depending on the type of the preconditioner. . 110

6.2 Illustration of the solution of dielectric problems using MLFMA

and iterative Schur complement preconditioners. Here, instead of

direct solves, iterative solutions are employed to find approximate

solutions to reduced systems. As explained in Section 6.6, S̃ is

an approximation to the Schur complement and w′
1 and w′

2 take

different forms depending on the type of the preconditioner. . . . 111

6.3 Eigenvalues of M 11 ·A
NF
11 for different formulations and increasing

dielectric constants of 4, 8, and 12. 125

xvii

6.4 Incomplete matrix-matrix multiplication of C = D ·E, where C,

D, and E are block near-field matrices with the same sparsity

pattern. Cij denotes the block of the near-field matrix C that

corresponds to the interaction of cluster i with cluster j. N (i)

denotes the clusters that are in the near-field zone of cluster i. . . 129

6.5 Eigenvalues of preconditioned Schur complement S for increasing

dielectric constants of 4, 8, and 12. CTF is preconditioned with

MMF , whereas MBD is used as the preconditioner for the other

formulations. 130

6.6 Eigenvalues of M 22 · S for different formulations and increasing

dielectric constants of 4, 8, and 12. 131

6.7 Eigenvalues of MS · S for different formulations and increasing

dielectric constants of 4, 8, and 12. 132

6.8 Comparison of iterative solutions of (6.33) without a precon-

ditioner and using M 11 for a periodic-slabs problem involving

262,920 unknowns. 134

6.9 Comparison of iterative solutions of (6.33) without a precondi-

tioner and using M 11 for perforated waveguide involving 162,420

unknowns. 135

6.10 Iterative solutions of (6.46) with various preconditioners for a

periodic-slabs problem involving 262,920 unknowns. 137

6.11 Iterative solutions of (6.46) with various preconditioners for a per-

forated waveguide involving 162,420 unknowns. 138

6.12 Comparisons of iteration counts for the sphere problem. 148

xviii

6.13 Illustration of the filtering capability of the periodic slabs problem.

At 250 MHz and 350 MHz, the power transmission is unity in the

transmission region on the left-hand side of the structure. On

the other hand, a shadowing occurs at 300 MHz and the device

becomes opaque. 155

6.14 (a) A perforated photonic crystal waveguide. (b) Near-zone mag-

netic fields of the problem when illuminated by a Hertzian dipole. 159

6.15 Near-zone magnetic fields for a perforated waveguide (PW3 in

Table 6.19) illuminated by a Hertzian dipole. 162

6.16 Near-zone magnetic fields for a perforated PhC waveguide involv-

ing 7 × 10 holes illuminated by a Hertzian dipole. Solutions are

obtained with (a) CTF and λ/20 triangulation, (b) JMCFIE and

λ/20 triangulation, (c) CTF and λ/40 triangulation, and (d) JM-

CFIE and λ/40 triangulation. 163

7.1 Decision chart for the selection of preconditioners for PEC prob-

lems. 168

xix

List of Tables

2.1 Information about the open geometries used to compare ILU pre-

conditioners. 42

2.2 ILU results for open geometries. 42

2.3 Comparison of ILU preconditioners for open geometries. 43

2.4 Information about the closed geometries used to compare ILU

preconditioners. 44

2.5 ILU results for closed geometries using CFIE. 46

2.6 ILU results for closed geometries using EFIE. “MLE” stands for

“Memory Limitation Exceeded.” 47

2.7 Comparisons of ILU preconditioners for closed geometries using

CFIE. 48

3.1 Quantitative features of the open geometries. 69

3.2 The solutions with no preconditioning for open geometries formu-

lated by EFIE. 70

3.3 Comparison of SAI preconditioners for open geometries formulated

by EFIE. 71

xx

3.4 Quantitative features of the closed geometries. 73

3.5 The solutions with BDP for closed-surface problems formulated

by CFIE. 73

3.6 Comparison of SAI preconditioners for closed-surface problems

formulated by CFIE. 74

4.1 Experimental results for comparing the SAI and INF precondi-

tioners to NF-LU. 84

4.2 Quantitative features of the open-surface geometries used for the

numerical experiments. 85

4.3 Experimental results for comparing the SAI and INF precondi-

tioners. 86

4.4 Memory costs (in MB) of MLFMA, SAI/INF setup, and GMRES

solutions. 87

4.5 Quantitative features of the closed-surface geometries used for the

numerical experiments. 88

4.6 Experimental results for comparing the INF preconditioner with

DP, BDP, and the SAI preconditioner for closed-surface problems. 89

4.7 Memory costs (in MB) of MLFMA, SAI/INF setup, and GMRES

solutions. 90

5.1 Electromagnetics problems involving open metallic objects. 101

5.2 Processing time (seconds) and the number of iterations∗ for the

solution of electromagnetics problems involving open metallic ob-

jects. 102

xxi

5.3 Electromagnetics problems involving closed metallic objects. . . . 103

5.4 Processing time (seconds) and the number of iterations∗ for the

solution of electromagnetics problems involving closed metallic ob-

jects. 103

6.1 Number of iterations for the solution of ANF
11 · v1 = w′

1 to reduce

the residual error by 10−6. 134

6.2 Number of iterations for the solution of S̃ · v2 = w′
2 to reduce the

residual error by 10−6. 137

6.3 Number of iterations for the sphere problem involving 65,724 un-

knowns using the iterative Schur complement preconditioners with

varying inner tolerances. For 10−6 inner tolerance, extra inner

solves for the Schur complement and for the RHS of ISP are used. 139

6.4 Salient features of the sphere problems investigated in this study. 141

6.5 Setup times (in minutes) of ILU-type preconditioners and SAIs of

ANF
11 and the Schur complement matrix S for the sphere problem. 142

6.6 Performances of the 4PBDP and ILU(0) preconditioners and No

PC on the sphere problem. 144

6.7 Performances of the Approximate Schur complement precondi-

tioners on the sphere problem. 145

6.8 Performances of the Schur complement preconditioners on the

sphere problem. 147

6.9 Memory requirements of the Schur complement preconditioners,

MLFMA, and solutions with the no-restart GMRES for the sphere

problems. 149

xxii

6.10 Salient features of the lens problems investigated in this study. . . 150

6.11 Performances of the 4PBDP and ILU(0) preconditioners and No

PC on the lens problems. 151

6.12 Performances of the Approximate Schur complement precondi-

tioners on the lens problems. 152

6.13 Number of iterations obtained with NF-LU for the lens problems. 153

6.14 Memory requirements of the Schur complement preconditioners,

MLFMA, and solutions with the no-restart GMRES for the lens

problems. 154

6.15 Salient features of the periodic-slab problems investigated in this

study. 155

6.16 Comparison of ILU and simple preconditioners for the periodic

slab problems. 156

6.17 Comparison of the Schur complement preconditioners for the PS

problems. 157

6.18 Memory requirements of the Schur complement precondition-

ers, MLFMA, and solutions with the no-restart GMRES for the

periodic-slab problems. 159

6.19 Salient features of the perforated waveguide (PW) investigated in

this study. 160

6.20 Comparison of the preconditioners for the PW1 and PW2 problems.161

6.21 Comparison of the Schur complement preconditioners for PW3

and PW4 problems. 161

xxiii

Dedicated to my wife and my family . . .

Chapter 1

Preliminaries

It is widely recognized that preconditioning is the most critical

ingredient in the development of efficient solvers for challenging prob-

lems in scientific computation, and that the importance of precondi-

tioning is destined to increase even further.

Michele Benzi. Journal of Computational Physics, Vol. 182, 2002.

The first chapter starts with an introduction of the dissertation, which

motivates the use of preconditioners for the solutions of computational-

electromagnetics (CEM) problems. After defining the notation that we adopt,

we continue with the background information about the surface integral-

equation formulations, their discretization, the multilevel fast multipole algo-

rithm (MLFMA), iterative solvers, and preconditioning. We note that surface

integral-equation formulations we define in this chapter are related to perfectly-

electric-conductor (PEC) objects. We postpone the information about dielectric

problems to related chapter. Then, we state contributions of the Ph.D. to the

CEM community. Since we extensively compare the performances of the pre-

conditioners that we develop with each other and also with previously developed

1

ones, we explain our hardware and software resources. Finally, we conclude with

the organization of the dissertation.

1.2 Introduction

A popular approach to study electromagnetic scattering and radiation of three-

dimensional (3-D) CEM problems is to solve discretized surface integral equa-

tions, which give rise to large, dense, and complex linear systems. For the solution

of such dense systems, direct methods based on Gaussian elimination have been

preferred in the past due to their robustness [1]. However, the large problem sizes

confronted in CEM prohibit the use of these methods, which have the O(N2)

memory and O(N3) computational complexity for N unknowns.

On the other hand, iterative solutions of linear systems using Krylov sub-

space methods make it possible to solve large-scale scientific problems with mod-

est computing requirements [1, 2, 3, 4]. Krylov subspace methods access the

system matrix through matrix-vector multiplications (MVMs). Even though the

system matrix is dense in our case, the MVMs can be performed in O(N log N)

time and memory complexity using MLFMA. Hence, iterative solution of such

dense systems with MLFMA has been a very attractive approach for large CEM

problems [5].

This approach works well, however, only if the number of iterations required

for convergence of the iterative solver is not too high. Unfortunately, this is

not the case for many practical problems. In particular, discretizations of open-

surface problems and complex real-life targets yield ill-conditioned linear systems.

Also, there are many other practical problems that degrades the conditioning of

the system matrix. These include non-uniformity of the surface meshes that can-

not be avoided for some complex objects and fine discretizations of the surface

2

mesh, which can be obliged because of the geometry or to increase solution accu-

racy. For such problems, iterative solvers may even not converge, or convergence

may require too many iterations.

At this point, preconditioners, which can be roughly defined as easily invert-

ible approximations of the system matrices, come into the picture. With the

help of the preconditioners, we try to render the system matrix have spectral

properties that favor iterative convergence. In this dissertation, we present our

efforts to design effective preconditioners for large-scale surface-integral-equation

problems.

1.3 Notation

In general, we adopt the style of the CEM community in our notation. Greek

or roman letters with an italic font are used for scalars. Bold-face, italic, capital

letters with an over bar, such as A, are used to denote matrices. We reserve A for

the system (coefficient) matrix. Vectors are denoted with bold-face, italic, small

letters without a bar, such as x. For matrix-matrix or matrix-vector products,

we use a dot between the matrices or vectors to differentiate them from scalar

products. Unit vectors are denoted with a hat over the vector, such as n̂. For

complexity estimates, we use the calligraphic capital letter (O) to indicate a

worst-case running time [6].

3

1.4 Surface Integral-Equation Formulations

Surface integral equations are extensively used in CEM for solving scattering

and radiation problems [7, 8, 9]. Integral-equation formulations can be ob-

tained by defining equivalent currents on the surface of an arbitrary 3-D geom-

etry and applying boundary conditions. Various integral-equation formulations

can be derived by employing different sets of boundary conditions and the test-

ing procedure [10]. For PEC problems, we consider the most commonly used

electric-field integral equation (EFIE), magnetic-field integral equation (MFIE),

and combined-field integral equation (CFIE) formulations.

1.4.1 The Electric-Field Integral Equation (EFIE)

EFIE is based on a physical boundary condition, which states that the total

tangential electric field vanishes on a conducting surface. Mathematically, EFIE

can be expressed as

t̂ ·

∫

S′

dr′ G(r, r′) · J(r′) =
i

kη
t̂ · Einc(r), (1.1)

where Einc(r) represents the incident electric field, S ′ is the surface of the object,

t̂ is any tangential unit vector on S ′, J(r′) is the unknown induced current

residing on the surface, and η =
√

µ/ǫ is the intrinsic impedance of the medium.

In (1.1), G(r, r′) is the dyadic Green’s function defined as

G(r, r′) =

[
I +

∇∇

k2

]
g(r, r′), (1.2)

where

g(r, r′) =
eik|r−r′ |

4π|r − r′|
(1.3)

is the scalar Green’s function for the 3-D scalar Helmholtz equation. The scalar

Green’s function represents the response at the observation point r due to a

point source located at r′. In (1.1), (1.2), and (1.3), k denotes the wavenumber

(k = 2π/λ, where λ is the wavelength).

4

EFIE belongs to the class of first-kind integral equations, which have a

weakly-singular kernel. Due to the weak singularity of the kernel, the integral

equation acts as a smoothing operator and provides high accuracy with low-order

basis functions, such as the commonly used Rao-Wilton-Glisson (RWG) basis

functions [7]. On the other hand, because of the weak singularity of the ker-

nel, matrices obtained with the discretization of EFIE tend to be ill-conditioned

[11, 12].

1.4.2 The Magnetic-Field Integral Equation (MFIE)

Using the boundary condition for the tangential magnetic field on a conducting

surface, MFIE can be expressed as

−J(r) + n̂ ×

∫

S′

dr′J(r′) ×∇′g(r, r′) = −n̂ × H inc(r), (1.4)

where n̂ is any unit normal vector on S ′ and H inc(r) is the incident magnetic

field. In (1.4), note that the boundary condition for the magnetic field is tested

via the unit normal vector n̂. This is necessary to obtain stable solutions using

a Galerkin scheme [10].

Unlike EFIE, MFIE is a second-kind integral equation that leads to diagonally

dominant and well-conditioned matrices [13]. However, due to the singularity

of its kernel, the accuracy of MFIE is significantly lower than that of EFIE

[12, 14, 15, 16]. The identity term that results from the J(r) term in (1.4) is

also another source for error [17].

1.4.3 The Combined-Field Integral Equation (CFIE)

CFIE is a more accurate second-kind integral equation than MFIE. It is obtained

by linearly combining EFIE and MFIE, i.e.,

CFIE = αEFIE + (1 − α)MFIE, (1.5)

5

where α is a parameter between 0 and 1. It is shown that α = 0.2 or α = 0.3 yields

minimum iteration counts [18]. Among the three integral equations considered

in this study, CFIE is the only formulation that is free from internal-resonance

problems [13]. Furthermore, CFIE leads to well-conditioned systems, particularly

for simple objects [19]. Currently, the solution of a sphere problem involving more

than 200 million unknowns has been reported, where the solution is obtained

in only 25 iterations with a simple block-diagonal preconditioner [20]. On the

other hand, CFIE is not applicable to open geometries since it contains MFIE.

Therefore, CFIE is preferred to MFIE for closed geometries, but EFIE, which

produces ill-conditioned linear systems, particularly for large problems [17], is

the mandatory choice for geometries with open surfaces.

1.5 Discretization of the Surface Formulations

Following a simultaneous discretization of the integral-equation formulations and

geometry surfaces, electromagnetics problems involving complicated targets can

be discretized and solved numerically. In this section, we present the details of

the discretization procedures.

1.5.1 Method of Moments

We can convert the surface integral equations described in Section 1.4 to dense

linear systems using the method of moments (MOM). Using a linear operator L,

these integral equations can be denoted as

L{J} = G, (1.6)

where G is one of the known right-hand-side (RHS) vectors in (1.1) or (1.5).

Projecting (1.6) onto the N -dimensional space span{j1, j2, . . . , jN} formed by

6

the divergence-conforming RWG basis functions, we obtain

〈jm,L{J}〉 = 〈jm,G〉, m = 1, 2, . . . N, (1.7)

where

〈f , g〉 =

∫
drf(r) · g(r) (1.8)

denotes the inner product of two vector functions f and g. Then, adopting

Galerkin’s approach, we expand the unknown current using the same set of basis

functions, i.e.,

J ≈
N∑

n=1

xnjn. (1.9)

Hence, the coefficient vector x becomes the solution of the N ×N linear system

A · x = b, (1.10)

where

(
A

)
mn

= 〈jm,L{jn}〉, (b)m = 〈jm,G〉, m, n = 1, 2, . . . N. (1.11)

A matrix entry
(
A

)
mn

defined in (1.11) can be interpreted as an electromagnetic

interaction between the mth testing function and the nth basis function.

The RWG basis functions are defined on planar triangles. Therefore, surfaces

of CEM problems are meshed accordingly using planar triangles. Each RWG

basis function is associated with an edge; hence the number of unknowns for a

problem becomes equal to the total number of edges in the mesh, except for the

boundary edges of an open surface.

1.5.2 Discretization of EFIE

After the discretization of EFIE defined in (1.1) with MOM, the matrix entries

can be derived as

(
AEFIE

)
mn

=

∫

Sm

dr tm(r) ·

∫

Sn

dr′ bn(r′)g(r, r′)

−
i

k2

∫

Sm

dr tm(r) ·

∫

Sn

dr′ bn(r′) · [∇∇′g(r, r′)], (1.12)

7

where tm denotes a testing function and bn denotes a basis function. Due to

the double differentiation of the scalar Green’s function, EFIE is highly singular

in this form. However, using the divergence-conforming feature of RWG basis

functions, it is possible to distribute the two differential operators onto the basis

and testing functions and obtain [7]

(
AEFIE

)
mn

= ik

∫

Sm

dr tm(r) ·

∫

Sn

dr′ bn(r′)g(r, r′)

−
i

k2

∫

Sm

dr ∇ · tm(r)

∫

Sn

dr′ ∇′ · bn(r′)g(r, r′). (1.13)

The outer integrals in (1.13) can be evaluated numerically by employing Gaussian

quadrature rules [21]. The inner integrals can be evaluated as

∫

Sn

dr′





1

x′

y′





g(r, r′) = I1 + I2, (1.14)

where

I1 =
1

4π

∫

Sn

dr′





1

x′

y′





exp(ikR) − 1

R
(1.15)

and

I2 =
1

4π

∫

Sn

dr′





1

x′

y′





1

R
. (1.16)

For I1, an adaptive integration method or a Gaussian quadrature rule can be

used [5]. Furthermore, for accurate computations, singularity extraction tech-

niques are employed by sufficiently subtracting the singular parts of the inte-

grands. The integral I2 can be evaluated analytically [22, 23].

8

1.5.3 Discretization of MFIE

The discretization of MFIE in (1.4) with RWG basis functions and a Galerkin

scheme leads to

(
AMFIE

)
mn

= −

∫

Sm

dr tm(r) · bn(r′)

+

∫

Sm

dr tm(r) · n̂ ×

∫

Sn

dr′ bn(r′) ×∇′g(r, r′). (1.17)

Since the second term in the RHS of (1.17) contains a singularity, we perform

an efficient singularity extraction technique for the outer integral [14]. After the

singularity extraction, (1.17) becomes

(
AMFIE

)
mn

= −
1

2

∫

Sm

dr tm(r) · bn(r′)

+

∫

Sm,PV

dr tm(r) · n̂ ×

∫

Sn

dr′ bn(r′) ×∇′g(r, r′),(1.18)

where PV indicates the principal value of the integral. The double integral in

the second RHS term of (1.18) can be modified as [23]

∫

Sm

dr
(
tm(r) × n̂

)
· bn(r) ×

∫

PV,Sn

dr′ ∇′g(r, r′). (1.19)

Note that only the principal values are required for (1.19) since the the limit part

is extracted. Nonetheless, the singularity extraction is applied again to smooth

the integrand before an adaptive integration. The inner integral in (1.19) can be

calculated as ∫

PV,Sn

dr′ ∇′g(r, r′) = I1 + I2 + I3, (1.20)

where

I1 =
1

4π

∫

PV,Sn

dr′ ∇′

(
exp(ikR) − 1 + 0.5k2R2

R

)
, (1.21)

I2 =
1

4π

∫

PV,Sn

dr′ ∇′

(
1

R

)
, (1.22)

and

I3 = −
k2

l

8π

∫

PV,Sn

dr′ ∇′R. (1.23)

I1 is calculated using an adaptive integration method or a Gaussian quadrature,

whereas I2 and I3 are evaluated analytically [24, 22].

9

1.5.4 Discretization of CFIE

Since CFIE is a linear combination of EFIE and MFIE, both formulations should

be discretized to form CFIE. Once these formulations are discretized, the ele-

ments of CFIE matrices can be derived as

(
ACFIE

)
mn

= α
(
AEFIE

)
mn

+ (1 − α)
(
AMFIE

)
mn

. (1.24)

1.5.5 Computation of the RHS Vectors

Elements of the RHS vector for EFIE are obtained by testing the incident electric

field in the RHS of (1.1), i.e.,

(b)EFIE
m = −

i

kη

∫

Sm

dr tm(r) · Einc(r). (1.25)

Similarly, the RHS vector for MFIE can be found using

(b)MFIE
m = −

∫

Sm

dr tm(r) · n̂ × H inc(r). (1.26)

Then the RHS vectors for CFIE can be calculated as the linear combination of

(1.25) and (1.26), i.e.,

(b)CFIE
m = α (b)EFIE

m + (1 − α) (b)MFIE
m . (1.27)

1.6 The Multilevel Fast Multipole Algorithm

(MLFMA)

The discretization of the surface formulations with MOM leads to dense linear

systems due to the nonlocal nature of the electromagnetic interactions between

the basis and testing functions. Surfaces of objects are usually meshed with

one-tenth of the wavelength for accuracy. Hence, for high frequencies, where

10

the scatterer or the radiator sizes become large in terms of the wavelength, the

system matrix also becomes large. For solving such matrix systems, direct solu-

tion methods become too expensive due to their high computational complexity.

Iterative methods may be preferred as a more viable option provided that the

number of iterations remains limited even for large numbers of unknowns. How-

ever, iterative methods require matrix-vector multiplications, which have O(N2)

complexity for N×N dense matrices. Although lower than the O(N3) complex-

ity of direct solvers, O(N2) complexity is still prohibitive for large problems. As

a result, in addition to effective preconditioners, iterative solutions of real-life

CEM problems require acceleration methods for performing fast matrix-vector

multiplications with low-complexity. In this context, MLFMA is a method of

choice since it renders the solution of large CEM problems possible by reduc-

ing the complexity of matrix-vector multiplications to O(N log N). The main

components of MLFMA are outlined in the following.

1.6.1 Clustering

In order to compute the interactions between the basis and testing functions

in a multilevel scheme, an oct-tree strategy is employed. For this purpose, the

whole geometry is placed inside a cube, which is recursively divided into smaller

cubes until the smallest cubes contain only a few basis functions, as illustrated

in Fig. 1.1. If any of the cubes becomes empty during the partitioning, recursion

stops there. An example of the clustering and the corresponding oct-tree for a

sphere problem is shown in Fig. 1.2.

In any level, pairs of same-size cubes touching at any point are in the near-

field zone of each other and the others are in the far-field zone. In the lowest

level (Level 1 in Fig. 1.2), interactions between the near-field clusters, including

the self interactions, constitute the near-field matrix and the remaining far-field

interactions constitute the far-field matrix. In the course of an iterative solution,

11

Level 3

Level 2

Level 1

Figure 1.1: Illustration of the oct-tree partitioning of the computational domain
in MLFMA.

MLFMA decomposes matrix-vector multiplications as

A · x = ANF · x + AFF · x. (1.28)

In (1.28), ANF denotes the near-field matrix, which is calculated directly as

described in Section 1.5 and stored in memory to perform the partial matrix-

vector multiplication ANF · x. Examples for ANF are depicted in Fig. 1.3. Note

that these matrices are composed of small blocks, which correspond to the near-

field interactions of the lowest-level clusters. However, the matrices do not exhibit

any structured sparsity pattern, except for the apparent larger diagonal blocks.

Those diagonal blocks are formed from the interactions of the lowest-level clusters

that have the same parent cluster. AFF · x denotes the multiplication with far-

field interactions, which will be detailed in Section 1.6.3. To achieve O(N log N)

complexity, this stage is performed approximately but with controllable error,

i.e., with the desired level of accuracy.

12

(a)

0

1

1 2 7

2

8 9 14

8

50 51 56

Level 3

Level 2

Level 1

Basis

Functions

(b)

Figure 1.2: (a) Multilevel partitioning of the scatterer for the case of a sphere
with diameter 1λ. The shaded boxes are empty. (b) Tree structure of MLFMA
for the sphere. Unfilled nodes correspond to empty boxes.

1.6.2 Factorization of the Green’s Function

MLFMA is proposed as a multilevel extension of the single-level fast multipole

method (FMM) [25, 26], and the factorization of the Green’s function is at the

core of FMM.

Consider two far-zone clusters that are defined with the reference points C ′

and C. For the interactions between the basis functions that are clustered around

C ′ and testing functions that are clustered around C, the scalar Green’s function

can be factorized as [27]

g(r, r′) =
eik|r−r′ |

4π|r − r′|
=

eik|D+d|

4π|D + d|
≈

1

4π

∫
d2k̂ eik̂·dαT (k,D, D̂ · k̂), (1.29)

where D = |D| represents the distance between C ′ and C. The integration in

(1.29) is performed on the unit sphere and k̂ is the unit vector normal to the

13

(a) (b)

(c)

Figure 1.3: Sparse near-field matrices for (a) N = 930, (b) N = 1, 302, and (c)
N = 3, 723.

14

unit sphere. The translation function

αT (k,D, D̂ · k̂) =
T∑

t=0

it(2t + 1)h
(1)
t (kD)Pt(D̂ · k̂) (1.30)

involves the spherical Hankel function of the first kind h
(1)
t and the Legendre

polynomial Pt. The translation function defined in (1.30) can be used to evaluate

the group interactions between the basis and testing functions clustered around

C ′ and C, instead of calculating the interactions separately.

By diagonalizing [28] the scalar Green’s function as in (1.29) and (1.30),

single-level interactions can be derived as

(
A

)
mn

=

(
ik

4π

)2 ∫
d2k̂ F

rec

Cm(k̂) · αT (k,D, D̂ · k̂) F
rad

C′n(k̂), (1.31)

where F
rec

Cm represents the receiving pattern of the mth testing function with

respect to the reference point C and F
rad

C′n represents the radiation pattern of the

nth basis function with respect to the reference point C ′.

In any MLFMA level l, radiation and receiving patterns are defined and

sampled at O(T 2
l) angular points, where Tl is the truncation number for the

series in (1.30). Since we set the minimum cluster size at the lowest level as

0.25λ, the cluster size at level l is al = 2l−3λ. For a cluster of size al, the

truncation number is determined by using the excess bandwidth formula [29] for

the worst-case scenario and the one-box-buffer scheme [30], i.e.,

Tl ≈ 1.73ka + 2.16(d0)
2/3(kal)

1/3, (1.32)

where d0 is the number of accurate digits desired.

1.6.3 Far-Field Interactions

In MLFMA, far-field interactions are calculated in a multilevel scheme and in

a group-by-group manner. For this purpose, the aggregation, translation, and

15

disaggregation stages are performed in each matrix-vector multiplication. These

stages are described below.

• Aggregation: Radiated fields of clusters are calculated from the bottom

of the tree structure to the highest level. At the lowest level, radiation

patterns of basis functions are multiplied with the elements of the input

vector provided by the iterative solver. Then, the radiated field of a cluster

is determined by combining the radiation patterns inside the cluster. At

higher levels, the radiated field of a cluster is obtained by combining the

radiated fields of the clusters in the lower levels. Between two consecutive

levels, interpolations are employed to match the different sampling rates of

the fields using a local interpolation method [31, 32].

• Translation: For each pair of far-field clusters, whose parents are in the

near-field zone of each other, the cluster-to-cluster interaction is computed

via a translation. Note that the sizes of the cubic clusters are identical

in each level. Hence, the number of translation operators is reduced to

O(1) using the symmetry. For those clusters whose parents are in the far-

field zone of each other, the cluster-to-cluster interaction is performed in a

higher-level translation.

• Disaggregation: Total incoming fields at the cluster centers are calculated

from the top of the tree structure to the lowest level. The total incoming

field for a cluster is obtained by combining incoming fields due to transla-

tions and the incoming field from its parent cluster, if it exists. Incoming

fields to the center of a cluster are shifted to the centers of the clusters in

the lower levels by using transpose interpolations, or anterpolations [33].

Finally, in the lowest level, incoming fields are received by the testing func-

tions via angular integrations.

16

1.7 Iterative Solvers

In this section, we give a brief introduction to Krylov subspace iterative solvers

and the generalized minimal residual (GMRES) method, which has been pre-

ferred in our numerical experiments for the reasons that will be explained. For a

comprehensive introduction, we refer to books [1, 2, 4]. A shorter and yet neat

explanation of iterative methods and GMRES can be found in [34].

The main motivation behind the development of iterative methods is the

prohibitive O(N3) complexity of direct methods. If we use a direct method and

need to increase the size of the problem from thousands to say just ten thousands,

then the solution time increases by an order of 103. That is, if we can solve the

small problem in a few hours, we should wait for days for the solution of the larger

problem. If we need a more radical increase, e.g., to millions, than the waiting

period can be tremendous. Another limitation of direct methods is their memory

use. Even though the memory consumption of direct methods is proportional

to O(N2), this requirement can still easily easily exceed the available memory.

Ideally, we would like to have a linear increase in both memory and solution time

with respect to problem size, which means an O(N)– or O(N log N)–complexity

solver.

The iterative algorithms can approach that ideal complexity by exploiting

the structure of matrices. For finite-difference or finite-element methods, the

structure is in the form of sparsity, i.e., most of the matrix entries are zero.

Sparsity is preserved in iterative methods since they access the system matrix

in the form of matrix-vector products. That is, regarding the system matrix,

an iterative method requires only the ability to determine the product A · z for

a given z. This property can also be used for some dense matrices, which can

be stored and multiplied in a “data-sparse form”. The solution of discretized

integral equations by MLFMA is a typical example.

17

Another advantage of the iterative solvers is that they provide an approximate

solution that is “accurate enough” and satisfies practical needs. For instance, for

the computation of radar cross sections in CEM, a residual error ǫ about 10−3

demonstrates remarkable consistency with the analytical solutions obtained with

the Mie series. If the number of iterations can be kept constant or increase slowly

with number of unknowns, the iterative solvers can reach the optimal solution

complexity. However, in order to guarantee a low-iteration count, precondition-

ing is in general required. Direct solution methods, on the other hand, require N

steps and in each step they require O(N2) floating point operations, for a total

work of O(N3) to achieve a solution to machine precision ǫmachine, which is about

10−15 for double precision arithmetic. We illustrate these ideas in Fig. 1.4.

1

Preconditioned

iterative solution

Direct solution

R
e

la
ti

ve
 R

e
si

d
u

a
l E

rr
o

r
(l

o
g

)

Floating Point Operations

Satisfactory error level

3

Figure 1.4: Comparison of the direct and iterative solvers for work performed
and acquired error levels.

1.7.1 Krylov Subspace Methods

Krylov subspace methods start with an initial guess, mostly a zero-vector. Then,

the true solution is approximated from a Krylov subspace, which is augmented

at each iteration. The Krylov subspace generated by A and the right-hand-side

18

(RHS) vector b at the kth iteration is defined as

Kk(A, b) = span{b,A · b, . . . ,Ak−1 · b}. (1.33)

Krylov subspace is a suitable space to search an approximation to x = A
−1

· b

because of the Cayley-Hamilton theorem [35], which allows us to express A
−1

in

terms of powers of A.

The Krylov subspace Kk(A, b) is generated by a process known as Arnoldi

iteration, which forms an orthonormal subspace. For Hermitian positive definite

(HPD) matrices, the Lancsoz iteration is used instead. The approximate solu-

tion at iteration k is found by solving a reduced k×k system, which corresponds

to projection of the N -dimensional system A · x = b into the k-dimensional

Krylov subspace Kk(A, b). For HPD matrices, it is possible to construct a well-

conditioned orthonormal subspace with a three-term recurrence, hence, the re-

duced system is tridiagonal. For non-Hermitian matrices, on the other hand, it is

shown that such a short-term recurrence relation does not exist [36]. Hence, for

such matrices, one needs to construct the kth subspace with a k-term recurrence

relation, and the projected system becomes Hessenberg (i.e., an upper triangular

matrix with an additional off-diagonal below the diagonal) [4].

The aforementioned approach leads to the conjugate gradient (CG) method

for HPD matrices and to the generalized minimal residual method (GMRES)

for non-Hermitian matrices. These solvers are optimal in the sense that they

guarantee a non-increasing residual norm and convergence in N iterations ignor-

ing finite precision effects. Because of the three-term recurrence, per iteration

cost of CG is constant both in terms of memory and CPU time. As a result, it

is always the method of choice for HPD systems. On the other hand, GMRES

needs to call the Arnoldi’s method at each iteration to orthonormalize the current

Krylov vector against all previous Krylov vectors. Hence, its CPU and memory

costs increase linearly with iteration number. To eliminate this, the optimal-

ity is sacrificed, and CG-like solvers are developed with short-term recurrence

19

relations, such as the conjugate gradient squared (CGS), bi-conjugate gradient

(BiCG), and its stabilized version, bi-conjugate gradient stabilized (BiCG-Stab).

For an overview of such methods, see [36]. Another approach to limit the cost of

GMRES is to use its restarted or truncated versions [2], again with the cost of

forgoing its robustness.

We have used GMRES without a restart or truncation in our numerical ex-

periments. We notice that for systems originated from the first-kind integral

equations, such as EFIE, there is a severe difference in the performances of GM-

RES and other non-optimal solvers. This is valid for both preconditioned and

unpreconditioned solutions. For sparse linear systems, the long recurrences asso-

ciated with GMRES may be significant, and solutions with non-optimal solvers

may require shorter CPU times, even though numbers of matrix-vector multi-

plications increase compared to GMRES (e.g., see [1]-Chapter 39.) In our case,

on the other hand, the cost of GMRES is much less than that of MLFMA, both

in terms of CPU time and memory. One reason for this is the high constant

term hidden in the O(N log N) complexity of MLFMA, and the other is that

we usually set a modest upper limit for number of iterations, typically 1,000. A

comparison of the memory of MLFMA and GMRES can be found in the results

sections of Chapter 4 and 6. Another reason of the use of GMRES is that with

a small modification, it leads to a flexible version, for which the preconditioner

is allowed to change from iteration to iteration. This feature allows us to use

the iterative solution of the near-field matrix and the MLFMA itself as effective

preconditioners. These methods will be described in Sections 4 and 5.

Next, we present a high-level description of GMRES and comment briefly on

its convergence. A detailed explanation can be found in books [1] and [2].

20

1.7.2 The generalized minimal residual method (GM-

RES)

As mentioned, GMRES picks the best approximation xk from the orthonormal-

ized Krylov subspace Kk(A, b). (We assume a zero initial guess for simplic-

ity.) The selection is performed by minimizing the norm of the kth residual

rk = b − A · xk, i.e., GMRES solves the least-squares problem

min
xk∈Kk(A,b)

∥∥b − A · xk

∥∥ . (1.34)

For this purpose, a set of orthonormal vectors {q1, q2, . . . qk} that span the

subspace Kk(A, b) is constructed by means of the Arnoldi iteration. Let Qk de-

note the N×k matrix obtained by collecting those vectors. Since xk ∈ Kk(A, b),

we have xk = Qk · z for some k-length vector z and the least-squares problem

in (1.34) is reduced to N × k system

min
z

∥∥b − A · Qk · z
∥∥ . (1.35)

This problem can be further reduced to (k+1)×k size as follows. The Krylov

subspace property A ·Kk(A, b) ∈ Kk+1(A, b) implies that there is a (k + 1)× k

Hessenberg matrix Hk such that

A · Qk = Qk+1 · Hk. (1.36)

Using this equality, (1.35) can be transformed to

min
z

∥∥b − Qk+1 · Hk · z
∥∥ . (1.37)

Note that b is the first member of the Kk(A, b), hence

b = ‖b‖q1 = ‖b‖Qk+1 · e1, (1.38)

where e1 is the fist vector of the (k + 1) × (k + 1) identity matrix. Combining

(1.37) and (1.38), we have

min
z

∥∥Qk+1 ·
(
‖b‖e1 − Hk · z

)∥∥ . (1.39)

21

Having orthonormal vectors, multiplying a vector by Qk+1 leave the norm un-

changed. Therefore, an equivalent problem to (1.39) is

min
z

∥∥‖b‖e1 − Hk · z
∥∥ , (1.40)

which is (k + 1) × k size. Once we find the least-error solution z, kth-

approximation to x is xk = Qk · z. We outline the method with a pseudocode

shown in Fig. 1.5. Note that convergence can be checked without the need to

compute xk.

k = 0
‖rk‖ = ‖b‖
while‖rk‖/‖b‖ > ǫ do

k = k + 1

Find Qk and Hk with Arnoldi iteration

Solve min ‖rk‖ = minz

∥∥‖b‖e1 − Hk · z
∥∥

endwhile

xk = Qk · z

Figure 1.5: The GMRES method. ǫ is a predetermined stopping threshold.

The least-squares solution of minz

∥∥‖b‖e1 − Hk · z
∥∥ can be obtained in O(k)

time using Givens rotation [2]. Hence, both the memory and CPU costs of

GMRES increase linearly with iteration number.

1.7.3 Convergence of GMRES

GMRES demonstrates a monotonic decrease of the residual norm, and in exact

arithmetic convergence is obtained in at most N steps. Of course, this bound

does not have a practical importance for large-scale problems. In practice, how-

ever, convergence to satisfactory threshold can be achieved for some k ≪ N ,

particularly if a suitable preconditioner is used.

Unlike the CG solver, convergence of GMRES is mostly governed by the

settlement of eigenvalues on the complex plane, not on the condition number of

22

A. The reliability of the eigenvalues, on the other hand, depends on the normality

of A, which can be measured with the condition number of the matrix composed

of eigenvectors of A. Another tool that can be used to measure normality is the

pseudospectrum [37]. A comparison of pseudospectra of the matrices obtained

from surface integral equations will be presented in Section 1.9. Regarding the

convergence of GMRES, one can say that a clustered spectrum that does not

contain the origin, and for which the eigenvalues are not too close to the origin

results in rapid convergence [1, 38].

1.8 Preconditioning

Preconditioners can be broadly classified as one of two types: forward (or im-

plicit) and inverse (or explicit). Forward preconditioning (implicit) refers to

finding an easily invertible operator M for the system A · x = b, while M

approximates A in some sense. Then, instead of the original system, the precon-

ditioned system

M
−1

· A · x = M
−1

· b (1.41)

is solved. For inverse preconditioning (explicit), M directly approximates the

inverse of the system matrix, and the preconditioned system becomes

M · A · x = M · b. (1.42)

The idea is based on the observation that as M approximates A, the product

M
−1

· A approximates the identity matrix (for forward preconditioners), and

convergence can be attained in fewer iterations.

In Equations (1.41) and (1.42), we apply left preconditioning. We can also

apply right preconditioning, in which case we should solve the systems

A · M
−1

· y = b, x = M
−1

· y (1.43)

23

and

A · M · y = b, x = M · y (1.44)

for forward and inverse preconditioning, respectively. At step k, GMRES min-

imizes the true residual norm ‖rk‖ with right preconditioning, instead of the

preconditioned residual norm ‖M
−1

· rk‖. This is a desired situation, especially

if there is an instability issue with the preconditioner.

For a useful preconditioner M , in addition to approximating the system

matrix A, the construction (or setup) and application of M should be performed

efficiently. By application, we mean the solution of the system

M · v = w (1.45)

for implicit preconditioning, and the computation of the product

v = M · w (1.46)

for explicit preconditioning. The two requirements, i.e., approximation of A and

the fast construction and application, are in competition with each other. The

better the approximation, the faster the convergence, but the more costly setup

and application. Hence, useful preconditioners satisfy both requirements in a

balanced way. In particular, we limit ourselves with the O(N log N) complexity

of MLFMA for the construction and application of a preconditioner.

Since the convergence of the non-Hermition systems of surface integral equa-

tions mostly depends on the distribution of eigenvalues, we try to change the

distribution in a way that favors convergence. The desired distribution is, in gen-

eral, a clustered spectrum around the point (1, 0). The matrices obtained from

surface integral equations are indefinite, meaning that some of the eigenvalues

have a negative real-part, i.e., they are scattered in the left side of the complex-

plane. A successful preconditioner must move these eigenvalues towards (1, 0),

but because of the approximations errors that are intentionally made to render

the construction efficient, some of the eigenvalues may be arbitrarily close to the

24

origin. In that case, the convergence may slow down compared to no precondi-

tioning or a cheaper preconditioner. We have also faced with this phenomena

for the first-kind integral-equation formulations. This is a severe difficulty in

preconditioning of such indefinite systems.

1.9 Spectral Analysis of the Surface Formula-

tions

In this section, we present a brief analysis about the algebraic properties of the

matrices obtained from the discretization of surface integral equations.

Though they are indefinite and non-hermitian, CFIE produces well-

conditioned systems that are close to being diagonally dominant. As a conse-

quence, the number of iterations required for convergence has been limited with a

simple block-diagonal preconditioner even for large-scale problems [5]. Nonethe-

less, for some complex geometries, the number of iterations is still large. Con-

sidering the dominant cost of matrix-vector product for large problems, stronger

preconditioners for CFIE are still desirable.

Systems resulting from EFIE are much more difficult to solve. In addition

to being indefinite and non-hermitian, EFIE matrices may have large elements

away from the diagonal, and some of the non-stored far-field interactions may be

stronger than the near-field interactions.

For a better understanding of the properties of the systems resulting from

surface integral equations, we show in Fig. 1.6 both the eigenvalues and the

pseudospectra of the EFIE, MFIE, and CFIE matrices for the 930-unknown

sphere problem. For non-normal matrices, information obtained from eigenvalues

may be misleading, since they may become highly unstable [37]. More reliable

and insightful information can be obtained using the ǫ-pseudospectrum, ∧ǫ(A),

25

which can be defined as

∧ǫ(A) =

{
z | z ∈ C

n, ‖(zI − A)−1‖2 ≥
1

ǫ

}
. (1.47)

Denoting the spectrum of A with ∧(A), if an eigenvalue λ ∈ ∧(A), then ‖(zI −

A)−1‖2 = ∞, so ∧(A) ⊂ ∧ǫ(A) for any ǫ > 0. Pseudospectrum represents the

topology of the eigenvalues of the perturbed matrices associated with the exact

matrix A, and thus gives an idea about the non-normality.

The ultimate aim in preconditioning is to move all eigenvalues towards the

point (1,0). However, if the matrix is close to normal, a spectrum clustered

away from the origin also implies rapid convergence for Krylov subspace meth-

ods [38, 39]. Comparison of the EFIE and CFIE pseudospectra in Fig. 1.6 indi-

cates that combining EFIE with MFIE (to obtain CFIE) has the effect of clus-

tering the distributed eigenvalues and moving them towards the right half-plane.

In contrast, most of the eigenvalues of EFIE are scattered in the left half-plane.

Moreover, the 0.1-pseudospectrum of the EFIE matrix contains the origin, sig-

naling the near-singularity of the matrix. Hence, effective preconditioning for

EFIE becomes more difficult, and also more crucial.

In Chapter 3.4.2, we also present some spectral information of unprecondi-

tioned and preconditioned matrices using the approximate eigenvalues, which are

obtained during GMRES iterations as a byproduct [1].

1.10 Contributions

Our contributions to integral-equation methods have been two folds. First, we

adapted some of the well-proven algebraic preconditioning techniques used in

scientific computing to CEM problems. Second, we propose some application-

specific preconditioners that are more effective than general-purpose algebraic

preconditioners. We summarize these studies as follows:

26

-2 -1.5 -1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

EFIE

-1.5

-1.25

-1

(a)

-2 -1.5 -1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

MFIE

-1.5

-1.25

-1

(b)

-2 -1.5 -1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

CFIE

-1.5

-1.25

-1

(c)

Figure 1.6: Pseudospectra of the EFIE, MFIE, and CFIE formulations for three ǫ
values, i.e., 10−1, 10−1.25, and 10−1.5. The black dots denote the exact eigenvalues
of the unperturbed matrices.

• For sequential implementations of integral equations and MLFMA, we

adapted incomplete LU (ILU) preconditioners to CEM problems [40, 41,

42, 43]. Among various ILU preconditioners, we demonstrated that ILU(0)

fits best for the CFIE formulation and ILUT fits best to the EFIE formula-

tion. We also showed that the reason behind the instability that occurs for

some open-surface problems can be circumvented using partial pivoting.

• We introduced an efficient implementation of the sparse approximate in-

verse (SAI) preconditioner for the solution of large-scale electromagnetic

27

problems with parallel MLFMA. Thanks to our effective load-balancing

algorithm, we obtain high scalability up to 128 processors [44, 45]. Fur-

thermore, we have been able to solve ill-conditioned open-surface problems

up to 33 millions of unknowns [46, 47, 48]. SAI preconditioner has also

been applied to metamaterial problems with a high success [49, 50, 51].

• ILU and SAI preconditioners are constructed from the near-field matrix,

which is a sparse portion of the dense coefficient matrix. For difficult

problems, we observed that SAI is not as effective as ILU [52, 53]. For this

reason, we proposed to use the iterative solution of the near-field matrix as a

preconditioner, which provides faster convergence compared to SAI [54, 55,

56]. We call this approach as the iterative near-field (INF) preconditioner.

• Using an inner-outer solution scheme similar to INF, we introduced pre-

conditioners that can make use of the far-field elements of MLFMA. We

propose an approximate version of MLFMA [57, 58] to be used for the in-

ner iterations, which performs a much faster matrix-vector multiplication

compared to the regular MLFMA. Thanks to this effective strategy, we

have been able to solve extremely large and ill-conditioned problems with

modest computational requirements [59, 60, 48, 61, 62, 63].

• Finally, we proposed novel preconditioners based on the Schur complement

reduction for partitioned linear systems arising from integral-equation for-

mulations of dielectric problems. We proposed non-iterative and iterative

versions of those preconditioners. For the reduced systems obtained from

the Schur complement reduction, we constructed effective SAIs to be used

as an approximate direct inverse, or, as preconditioners to accelerate in-

ner solves. Real-life problems show that those preconditioners either render

many difficult problems solvable, or significantly decrease the solution times

[64, 65, 66, 67, 68].

28

1.11 Computational Resources

The performance of an implementation of a numerical technique depends on the

chosen hardware and software components, in addition to its algorithmic features.

For example, commonly used numerical kernels, such as basic linear algebra sub-

programs (BLAS) and linear algebra package (LAPACK), significantly affect the

setup time of our SAI preconditioner. Similarly, for parallel programs on a com-

puter cluster, the speed of the interconnect network affects the parallel perfor-

mance (e.g., speedup) of an algorithm. In addition to devising high-performance

solvers, we have given utmost importance to optimize our hardware and software

resources by selecting suitable components.

The information related to computers on which numerical experiments per-

formed will be presented in the results sections of the Chapters 2–7. Here, we

present a brief information about the selected software resources.

Compilers: We have implemented our preconditioners using Fortran and used

Intel Fortran compilers for this purpose. With this choice, we received high-

est performance among other compilers, on both Intel and AMD servers.

Numeric Kernels: Intel’s math kernel library (MKL) [69], which includes high-

performance implementations of BLAS and LAPACK, are used as numeric

kernels in our programs.

Message Passing Interface (MPI): MPI is a message passing standard de-

signed to ease the development parallel programs. We have compared In-

tel MPI [70], Open MPI [71], and MVAPICH MPI [72], which are high-

performance implementations of MPI over InfiniBand network connect.

Our observations impelled us to use MVAPICH, which demonstrated the

most successful results on our clusters considering both latency and band-

width.

29

Iterative Solvers and ILU Preconditioners: We borrowed GMRES and

ILU preconditioners from PETSc, which stands for portable, extensible

toolkit for scientific computation [73, 74]. PETSc employs MPI for parallel

programming and is developed for large-scale application projects. It also

supports complex numbers and Fortran language.

1.12 Organization

This dissertation involves seven chapters, first of which is this introduction. In

Chapter 2, we address ILU preconditioners, which is the most commonly used

and well-established preconditioning method. We show how to use these pre-

conditioners in CEM problems in a black-box form and in a safe manner. De-

spite their important advantages, ILU preconditioners are inherently sequential.

Hence, for parallel solutions, a SAI preconditioner has been developed. We ex-

plain the parallel implementation details, such as load-balancing and pattern

selection, in Chapter 3. We improve the performance of the SAI preconditioner

by using it for the iterative solution of the near-field matrix system, which is

used to precondition the dense system in an inner-outer solution scheme. This

preconditioner, which we call the INF preconditioner, is explained in Chapter 4.

The last preconditioner we develop for PEC problems uses the same inner-outer

solution scheme, but employs an approximate version of MLFMA for the inner

solutions. We give the details about the MLFMA approximations and tuning

the inner solutions for efficiency in Chapter 5.

Chapter 6 is about preconditioning of matrix systems obtained from the dis-

cretization of dielectric problems. Unlike the PEC case, those matrix systems are

in a partitioned structure. We exploit the partitioned structure for precondition-

ing by employing Schur complement reduction. In this way, we develop effective

preconditioners, which render the solution of difficult real-life problems possible.

30

We conclude the dissertation in Chapter 7 by stating some concluding remarks

and listing some of the future research areas that we foresee in preconditioning

of CEM problems.

31

Chapter 2

Incomplete-LU (ILU)

Preconditioners

By not applying these algorithms blindly, for example, by looking

at the structure of the matrix in this case, we were able to make ILU

work.

E. Chow and Y. Saad, Journal of Computational and Applied

Mathematics, Vol. 86, 1997.

2.1 Introduction

Since the sparse near-field matrix ANF is the best available approximation to

the coefficient matrix A, it makes sense to use the near-field matrix as a precon-

ditioner and solve (for example) the left-preconditioned system

(
ANF

)−1
· A · x =

(
ANF

)−1
· b. (2.1)

The inversion of the near-field matrix ANF can be accomplished using direct

methods, which decompose the matrix into a product of a unit lower-triangular

matrix L and an upper-triangular matrix U . However, during the factorization

32

of sparse matrices, in general, fill-in occurs and the resulting factors lose their

sparsity [75]. This may make it difficult to preserve the O(N log N) complexity of

MLFMA. Nevertheless, we can discard part of the fill-in and partially incorporate

the robustness of the LU factorization into the iterative method by using the

incomplete factors of ANF as a preconditioner. This is the general idea behind

the incomplete LU (ILU) preconditioners.

In a general setting, depending on the dropping strategy, we can talk about

two kinds of ILU-class preconditioners. The first one depends on the matrix

structure and the entries are dropped by their position. A “levels of fill-in” con-

cept is introduced and stronger preconditioners can be constructed by increasing

the level of fill-in [2]. Since this technique does not consider numerical values, it

becomes ineffective in predicting the locations of the largest entries, particularly

for matrices that are far from being diagonally dominant and indefinite [76]. This

is the case for the matrices arising from the EFIE formulation. Alternatively,

one can drop the matrix elements depending on their magnitudes, and the zero

pattern is generated dynamically during the factorization. Among such methods,

ILUT(τ, p) proposed by Saad has been successful for many general systems [38].

During the factorization, ILUT drops matrix elements that are smaller than τ

times the 2-norm of the current row; and of all the remaining entries no more than

the p largest ones are kept. ILUT is known to yield more accurate factorizations

than the level-of-fill methods with the same amount of fill-in [76].

Although ILUT is more robust than its counterparts depending on the level of

fill-in, it may occasionally encounter problems of instability for real-life problems.

Even when factorization terminates normally, the resulting incomplete factors

may sometimes be unstable. The common reasons of instability are in general

excessive dropping and small pivots [76]. If the problem is related to the small

pivots, one can significantly increase the quality of the ILUT preconditioner

33

by using partial pivoting as in the complete factorization case. The resulting

preconditioner is called ILUTP [2].

In order to understand the quality of the preconditioner, or to understand

the reason for failure when it occurs, we can use ‖(L · U)−1 · e‖∞, where e is

the vector of ones. This statistic is called condest (for condition estimate) and

it provides an upper bound for ‖(L · U)−1‖∞ [76]. If the condest value is not

very high, but the preconditioner still does not work, one can deduce that fill-in

should be increased to achieve a successful preconditioner. On the other hand,

if the condest value is high, one can first try pivoting to remedy the situation

instead of including more elements in the incomplete factors.

Considering the remarkable success of ILU-class preconditioners for general

nonsymmetric and indefinite systems [76] and the wide availability of ILU-class

preconditioners in various packages [73, 77, 78], the present study aims to develop

a strategy for both selecting the most appropriate ILU-class preconditioner and

determining their parameters to use them as black-box preconditioners for CFIE

and EFIE formulations. We perform tests on canonical, quasi-canonical, and

real-life problems with increasing number of unknowns and show that when these

preconditioners fail for the reasons stated earlier, the failure can be circumvented

using pivoting strategies without increasing the memory cost. We also show

that the condest value is very useful for determining the quality of the resulting

factorization before starting the iterative solution.

ILU-class preconditioners have been tested for electromagnetic problems in

[79, 80, 81]. In [79], ILU(0) was tried on systems resulting from EFIE formula-

tion with discouraging results in all test problems. Sertel and Volakis [80] tried

ILU(0) on two model problems. For the very small problem of 480 unknowns,

ILU(0) was successful with the EFIE and CFIE formulations, but clearly such a

small problem is not representative of large-scale CEM simulations. They pre-

sented only CFIE results for the 50000-unknown problem; in this case, ILU(0)

34

was quite successful in reducing the number of iterations. Probably the most

impressive results are those of Lee et al. [81], who tried the ILUT preconditioner

on hybrid surface-volume integral equations and showed it to be successful on

many test problems. However, they neither tried commonly used EFIE or CFIE

formulations, nor did they apply pivoting or any other techniques to increase the

effectiveness of the preconditioner.

In the next section we briefly review ILU preconditioners. Then, in Sec-

tion 2.3, we discuss the stability of ILU preconditioners and the ways to improve

their conditioning. In Section 2.4, we compare open-surface and closed-surface

problems, formulated with EFIE and CFIE, respectively. Then, we conclude in

Section 2.5, where we propose a strategy for the selection of appropriate precon-

ditioner among ILU-class preconditioners and suitable parameters that render

them robust for CEM problems.

2.2 Preconditioners based on Incomplete LU

Factorization

Various preconditioners have been used for the solution of CEM problems. For

CFIE, a block-diagonal (or block-Jacobi) preconditioner (BDP) is frequently

used. In an MLFMA setting, a BDP can be constructed from the self interactions

of the lowest-level clusters. Since there are O(N) such blocks and each block is

composed of a fixed number of unknowns, both the construction and the appli-

cation of the preconditioner scale with O(N). Because of its optimal complexity

and success with many problems, this simple preconditioner is a common choice

for CFIE. However, probably due to the weaker diagonal dominance and indefi-

niteness of EFIE, the BDP performs even worse than the no-preconditioner case.

Sparse approximate inverse (SAI) preconditioners depending on a fixed a priori

pattern have been thoroughly studied in some recent works [82, 83, 84, 85, 86].

35

The electromagnetics community has started to use SAI preconditioners more

frequently because of ease of parallelization. However, the construction cost of

SAI can become prohibitively large unless one chooses the pre-filtering and post-

filtering threshold parameters carefully [85]. Hence, it is not suitable for use as

a black-box preconditioner; there is still the need for a more easily attainable

preconditioner, particularly for sequential implementations.

As an alternative, the ILU-class preconditioners have been widely used and

included in several solver packages. They were historically developed for positive-

definite and structured matrices arising from the discretization of partial differen-

tial equations. For general systems, the failure rate of ILU-class preconditioners

is still high. Nonetheless, there have been many improvements to increase their

robustness [76, 87, 88].

For iterative solvers utilizing MLFMA, the near-field matrix ANF is the nat-

ural candidate to generate the incomplete factors. Consider an incomplete fac-

torization of the near-field matrix, ANF ≈ L · U . If we let the sparsity patterns

of ANF and L + U be the same, that is if we retain nonzero values of L and

U only at the nonzero positions of ANF , we end up with the no-fill LU method,

or ILU(0). This simple idea successfully works for well-conditioned matrices [2].

Denser and potentially more effective preconditioners can be obtained by increas-

ing the level of fill-in, but this strategy is unsuccessful in determining the largest

entries, particularly for matrices that are indefinite and far from being diagonally

dominant. A more robust strategy is to drop the nonzero elements by comparing

the magnitudes during the factorization. Such a strategy discards elements that

are small with respect to a suitably chosen drop tolerance τ .

One of the disadvantages of the dropping strategy, which depends on the

size of matrix entries, is the difficulty in predicting storage. For this purpose,

a dual threshold strategy can be used [89]. The resulting preconditioner, called

36

ILUT(τ, p) retains no more than p elements in the incomplete factors after drop-

ping all the elements that are smaller than τ times the 2-norm of the current

row. The threshold parameter τ determines the CPU time and p determines the

storage requirement of the preconditioner. This preconditioner is known to be

quite powerful and robust.

Despite ILUT’s good reputation, there are two important drawbacks pre-

venting its use as a black-box and general library software. The first problem

is determining the appropriate parameters. For our specific applications and in

the context of MLFMA, we propose to select a small drop tolerance and then

set the parameter p so that the preconditioner will have approximately the same

number of nonzero elements as the near-field matrix ANF . Once the near-field

matrix is generated, this value can easily be found. With this strategy, we aim

to obtain a powerful preconditioner with modest storage and low complexity.

2.3 Improving Stability of ILU Preconditioners

Probably the more problematic aspect of threshold-based ILU-class precondi-

tioners is their potential inaccuracy and/or instability. Accuracy refers to how

close the incomplete factors are to A; this is measured by the norm of the error

matrix, i.e.,

accuracy = ‖E‖ = ‖A − L · U‖. (2.2)

Stability refers to how close the preconditioned matrix to the identity matrix and

is measured by the norm of the preconditioned error, i.e.,

stability = ‖(L · U)−1 · E‖. (2.3)

If ‖L
−1
‖ or ‖U

−1
‖ are extremely large, a factorization may turn out to be accu-

rate but unstable; in that case, the preconditioner may not work even if fill-in is

increased [76]. Thus, for general matrices, stability is a more informative measure

of the preconditioning quality.

37

Although we cannot compute these metrics with MLFMA, a rough estimate

of ‖(L ·U)−1‖, called condest, gives a clue about the instability of the triangular

factors [76]. This condition estimate is defined as

‖(L · U)−1 · e‖∞, e = [1, . . . , 1]T . (2.4)

One can easily compute condest before the iterations, by using a forward substi-

tution followed by a backward substitution, and it provides a strong indicator of

the quality of the ILU preconditioner.

When the incomplete factors turn out to be unstable, there are some remedies

that can be utilized depending on the cause. Preprocessing steps such as diagonal

perturbation, reordering, and scaling can be applied on the coefficient matrix to

stabilize the preconditioner. To increase the stability, diagonal perturbations can

be used to make the LU factors more diagonally dominant, but quite large per-

turbations may be required for indefinite systems, and such large perturbations

may introduce too much inaccuracy in the preconditioner. Diagonal shifts are

already tried on EFIE systems to increase the robustness of ILU, but the effect

of the shift is undetermined, and furthermore it is difficult to select suitable shift

parameters [90]. Reorderings aimed at improving the condition of the incom-

plete factors are widely studied. Indeed, some reordering schemes significantly

improve the convergence of the Krylov methods [87]. However, the effect of or-

dering becomes significant when the incomplete factors are allowed to be denser

than the original matrix [38]. We usually prefer to keep the memory required

by the preconditioner bounded by the storage needed for the near-field matrix.

Hence, this remedy is not a good candidate because of the storage considera-

tions. Finally, for threshold-based ILU-class preconditioners, it is recommended

to scale matrix so that each column has unit 2-norm, and then scale it again so

that each row has unit 2-norm. This suggestion is not applicable in the context

of MLFMA, since the preconditioner is constructed from a sparse portion of the

coefficient matrix and the coefficient matrix is not explicitly available.

38

On the other hand, if the instability is caused by the small pivots, partial

pivoting is helpful. This is a well-known and a much simpler method. Column

pivoting can be applied in a row-wise factorization with negligible cost. The

resulting preconditioner is known as ILUTP [2]. In some cases, it may be useful

to include a permutation tolerance permtol, and perform the permutation for the

ith row when permtol × |aij| > |aii|. It is best not to select a very small value

for permtol; 0.5 is accepted as a good choice [2].

2.4 Numerical Results

In this section, we show the effectiveness of ILU-class preconditioners for electro-

magnetic scattering problems. We first identify the most appropriate ILU-class

preconditioner for the problem type (i.e., open geometries vs. closed geometries,

EFIE vs. CFIE), then compare the selected ILU preconditioner with other com-

monly used preconditioners. For this purpose, we implement a SAI precondi-

tioner, whose sparsity pattern is chosen to be the same as the near-field matrix.

In this way, it has the same storage cost as that of ILU(0).

Instead of giving several results with varying parameters for ILUT, we adopt

the following strategy for the selection of the parameters. We set the drop toler-

ance τ to a low value such as 10−6 and set p, the maximum number of nonzero

elements per row, such that the memory cost of factorization does not exceed

that of the no-fill ILU preconditioner. We accomplish this by simply letting p be

the average number of nonzero elements in a row of the near-field matrix. In this

way, we obtain robust preconditioners with modest computational requirements.

For the specific implementation of the MLFMA considered here, we set the

size of the smallest clusters to 0.25λ, the number of accurate digits d0 to three,

and the α parameter of CFIE to 0.2. The CPU times reported in this section

are obtained on a 64-bit server with 1.8 GHz AMD Opteron 244 processors and

39

4 GB of memory. In addition to performing numerical experiments involving

ILU-class preconditioners, we also obtain the exact solution of the near-field

matrix to use it as a benchmark preconditioner. This solution, which is denoted

by LU, is performed on another 64-bit server with 24 GB of memory. Due to

its excessive computational requirements, this LU preconditioner is presented

merely for comparison purposes.

For the iterative solver, starting with the zero initial guess, we try to reduce

the initial residual norm by 10−6 and set the maximum number of iterations at

1500. We use the generalized minimal residual method (GMRES) with no-restart

and apply right-preconditioning in order to minimize the true residual norm. For

CFIE solution of closed geometries, the performance of other Krylov subspace

methods, such as conjugate gradient squared (CGS), biconjugate gradient (Bi-

CG) or biconjugate gradient stabilized (Bi-CGSTAB), approximates GMRES

in terms of the number of matrix-vector products. However, for EFIE, other

solvers are less robust and do not always converge with preconditioning. Even

when they converge, they require more number of matrix-vector multiplications

than GMRES. Though GMRES with no-restart brings extra CPU and memory

costs with increasing number of iterations, reduction in the number of matrix-

vector products significantly decreases the overall solution time due to the high

cost of matrix-vector multiplications, particularly for large problems.

2.4.1 Open Geometries

Fig. 2.1 displays the open geometries used in the numerical experiments, i.e., a

patch (P), a half sphere (HS), an open prism (OP), and an open cube (OC).

These geometries are solved at various frequencies, requiring different meshes

and numbers of unknowns as shown in Table 2.1. In Table 2.1 the “Size” column

stands for the diameter for the spheres, and the maximum side length for others.

The subsection sizes of different meshes are consistently selected as one-tenth of

40

PATCH OPEN CUBE

HALF SPHERE HALF WING

Figure 2.1: Open geometries used to compare ILU preconditioners.

the wavelength. As mentioned in Section 1.4, EFIE is the only choice for these

geometries.

We compare the ILU-class preconditioners in Table 2.2. The summary of our

observations are as follows:

• It is easily noticed that, as the number of unknowns increases, ILU(0)

produces highly unstable and hence useless factorizations. ILU(0) works

well for small problems due to the fact that the near-field matrices used

to generate the preconditioner and consequently the incomplete factors are

nearly dense for such problems.

• ILUT produces stable factors for all geometries except HS3. When we use

0.5 pivoting tolerance (ILUTP5) or 1.0 pivoting tolerance (ILUTP), we

overcome the problem. However, for HS3, ILUTP yields a larger condest

value and requires more iterations compared to ILUTP5. A similar situa-

tion is also encountered in some other experiments and the high value of

condest for full pivoting is related to a poor pivoting sequence [76].

41

Table 2.1: Information about the open geometries used to compare ILU precon-
ditioners.

Frequency Size
Problem (MHz) (λ) N

P1 2,000 2 1,301
P2 6,000 6 12,249
P3 20,000 20 137,792

OC1 313 1.0 1,690
OC2 781 2.6 16,393
OC3 2,370 7.9 171,655

OP1 683 2.3 1,562
OP2 2,270 7.6 14,705
OP3 6,820 22.7 163,871

HS1 750 1.5 1,101
HS2 2,310 4.6 9,911
HS3 7,890 15.8 116,596

Table 2.2: ILU results for open geometries.
ILU(0) ILUT ILUTP5 ILUTP

Problem N condest iter condest iter condest iter condest iter

P1 1301 189 37 83 22 73 21 69 21
P2 12249 60,855 228 712 42 309 39 5,606 56
P3 137792 6.3E+09 - 1,398 82 1,350 81 2,545 78

OC1 1690 59 76 14 37 12 35 11 33
OC2 16393 2,154 333 52 110 48 109 44 109
OC3 171655 9.6E+05 - 192 377 240 376 2,892 376

OP1 1562 198 65 41 27 50 26 151 39
OP2 14705 1.3E+05 416 161 98 164 92 151 91
OP3 163871 5.3E+05 - 948 268 835 253 2,424 251

HS1 1101 47 48 26 26 31 24 27 23
HS2 9911 990 248 1,095 73 126 46 95 45
HS3 116596 6.3E+05 - 1.5E+15 - 582 110 22,755 156

• From the results, we also see a strong relationship between condest and the

usefulness of the preconditioner. When the condest value is very high (i.e.,

higher than 105), the iterative method either requires too many iterations

or do not converge at all.

Since ILUTP5 is robust for all our geometries, in Table 2.3, we compare it with

other commonly used preconditioners. BDP preconditioning performs poorer

than the no-preconditioner case, hence the diagonal (or Jacobi) preconditioner

(DP) is used instead. We emphasize the following observations:

42

Table 2.3: Comparison of ILU preconditioners for open geometries.
LU DP ILUTP5 SAI

Problem N iter iter time iter setup time iter setup time

P1 1301 15 201 15 21 1 3 25 101 103
P2 12249 26 431 503 39 33 88 45 1,524 1,573
P3 137792 53 833 16,209 81 661 2,167 92 19,955 21,384

OC1 1690 28 224 26 35 4 9 35 569 574
OC2 16393 97 617 854 109 141 273 114 15,040 15,167
OC3 171655 332 - - 376 2,243 9,833 354 207,436 213,619

OP1 1562 18 315 39 26 2 5 48 663 668
OP2 14705 78 991 1,894 92 97 224 173 12,301 12,524
OP3 163871 195 - - 253 996 6,883 396 57,606 66,093

HS1 1101 17 187 15 24 3 5 26 165 167
HS2 9911 38 490 748 46 107 186 61 1,712 1,813
HS3 116596 93 1052 25,947 110 1,353 3,579 156 22,079 25,066

• Although we use a robust solver, for a simple preconditioner such as DP,

either the number of iterations turns out to be very high, or convergence

is not attained in 1500 iterations. This is in good agreement with the

conclusions derived in Section 2.2.

• ILUTP5 reduces iteration numbers by an order of magnitude compared to

DP. Moreover, the iteration numbers of ILUTP5 are not extremely higher

than those of LU, indicating that the ILUTP5 preconditioners provide good

approximations to the near-field matrices.

• We see that the setup cost of SAI is prohibitively large, proving its inap-

propriateness for sequential implementations. Moreover, except for OC3,

ILUTP5 yields fewer number of iterations compared to SAI.

• Furthermore, the iteration counts reveal that the algebraic scalability of

ILUTP5 is favorable for open geometries. For two orders of increase in the

number of unknowns, the iteration numbers increase approximately four

times for patch and half sphere, and 10 times for the open cube and open

prism.

43

Table 2.4: Information about the closed geometries used to compare ILU pre-
conditioners.

Frequency Size
Problem (MHz) (λ) N

S1 500 1 930
S2 1,500 3 8,364
S3 6,000 12 132,003

C1 210 0.7 918
C2 600 2.0 8,046
C3 2,410 8.0 131,436

W1 390 1.3 1,050
W2 1,200 4.0 10,512
W3 4,000 13.3 117,945

TB 1 188 1.9 1,650
TB 2 600 6.0 10,122
TB 3 2,400 24.0 147,180

F1 4,000 8 12,750
F2 6,000 12 28,866
F3 10,000 20 78,030

H1 222 9.6 33,423
H2 636 27.6 183,546

2.4.2 Closed Geometries

As mentioned in Section 1.4, both EFIE and CFIE can be used for closed ge-

ometries. However, CFIE yields better-conditioned systems, hence it is usually

preferred to EFIE. Nonetheless, we will present some of the results obtained from

EFIE for comparison purposes.

Fig. 2.2 shows the model problems that we consider for the numerical exper-

iments. These include two canonical geometries, i.e., a sphere (S) and a cube

(C); two quasi-canonical geometries, i.e., a thin box (TB) and a wing (W); and

two real-life problems, i.e., a helicopter (H) and Flamme (F), which is a stealth

target [91]. Table 2.4 presents the operating frequency and the size of the geome-

tries in terms of the wavelength. For Flamme and the helicopter, “Size” denotes

the length of the objects in longitudinal direction.

Due to the well-conditioning of CFIE, ILU(0) is expected to be free from

instability problems. In Table 2.5, we compare ILU(0) and ILUT, by presenting

44

SPHERE

CUBE

WING

FLAMME HELICOPTER

THIN BOX

Figure 2.2: Closed geometries used to compare ILU preconditioners.

45

Table 2.5: ILU results for closed geometries using CFIE.
ILU(0) ILUT

Problem N condest iter condest iter

S1 930 8 13 3 13
S2 8364 24 21 9 20
S3 132003 108 29 108 29

C1 918 3 11 8 12
C2 8046 9 20 24 20
C3 131436 34 26 33 26

TB1 1650 13 11 12 10
TB2 10122 13 23 14 22
TB3 147180 97 45 96 42

W1 1050 8 10 8 9
W2 10512 26 16 26 15
W3 117945 83 32 82 32

F1 12750 174 24 150 23
F2 28866 198 34 207 33
F3 78030 327 66 325 65

H1 33423 6 30 6 30
H2 183546 18 44 18 44

the condest values and corresponding number of iterations for the systems ob-

tained with CFIE. Pivoting does not change the iteration counts, hence is not

included in this case.

We note that ILU(0) and ILUT produce very similar preconditioners for

CFIE. This is also observed for regular problems arising from the discretiza-

tion of partial differential equations [4]. Since ILU(0) has a lower computational

cost and is easier to implement compared to ILUT, we conclude that ILU(0) is

the most appropriate choice among ILU-class preconditioners for CFIE.

When we use EFIE with closed geometries, it becomes even more difficult

to solve the linear systems. Table 2.6 shows the condest values and iteration

numbers for ILU-class preconditioners. W3 does not converge in 1500 iterations

and for H2 memory limitation is exceeded during the iterations. All other prob-

lems converge with ILUTP5, but with higher iteration counts compared to open

geometries.

46

Table 2.6: ILU results for closed geometries using EFIE. “MLE” stands for
“Memory Limitation Exceeded.”

ILU(0) ILUT ILUTP(0.5) ILUTP
Problem N condest iter condest iter condest iter condest iter

S1 930 65 46 61 37 16 28 20 29
S2 8364 4.3E+04 416 3.4E+04 246 65 108 427 116
S3 132003 1.9E+06 - 1.5E+131 - 381 572 1,346 589

C1 918 22 - 9 32 7 30 7 29
C2 8046 3.1E+05 - 30 77 37 75 99 77
C3 131436 2.9E+07 - 210 574 181 563 800 557

TB1 1650 22 37 49 26 72 30 22 27
TB2 10122 1.8E+05 - 414 169 166 151 7.5E+05 -
TB3 147180 1.1E+14 - 48,600 1090 13,410 1084 867 709

W1 1050 128 - 38 23 38 22 43 30
W2 10512 6.6E+04 - 240 102 88 95 106 91
W3 117945 4.5E+07 - 538 - 540 - 1,455 -

F1 12750 4.7E+06 - 1,043 184 623 159 1,006 170
F2 28866 9.5E+07 - 2,011 421 2,012 393 2,071 440
F3 78030 1.5E+09 - 2,830 1106 3,066 1042 85,812 1131

H1 33423 1,359 469 38 206 39 203 59 206
H2 183546 29,184 MLE 61 MLE 71 MLE 1,799 MLE

In Table 2.7, for CFIE, ILU(0) is compared to the BDP (where only the self

interactions of the smallest MLFMA clusters are used in the near-field matrices)

and the SAI preconditioner. We summarize the results as follows:

• For canonical geometries, compared to the BDP preconditioner,

ILU(0) decreases the iteration numbers slightly. However, due to the

larger setup time of ILU(0), total solution times become comparable. For

multiple-RHS solutions, ILU(0) may be still preferable.

• For quasi-canonical geometries and real-life problems, ILU(0) performs re-

markably better compared to the BDP preconditioner. The number of

iterations are halved for the largest problems, and more than halved for

smaller sizes. Also, total solution times are significantly smaller.

• Even though SAI has iteration numbers similar to ILU(0), the setup time

of SAI is too large.

47

Table 2.7: Comparisons of ILU preconditioners for closed geometries using CFIE.
LU BDP ILU(0) SAI

Problem N iter iter time iter setup time iter setup time

S1 930 13 17 1 13 0 1 14 229 230
S2 8364 20 23 23 21 6 23 21 1,453 1,474
S3 132003 29 32 684 29 23 665 29 23,102 23,722

C1 918 11 18 0 11 1 1 12 941 941
C2 8046 20 25 17 20 2 16 21 2,170 2,184
C3 131436 26 28 419 26 28 485 27 25,066 25,489

TB1 1650 9 44 3 11 2 3 20 132 135
TB2 10122 21 60 40 23 6 22 33 10,468 10,489
TB3 147180 37 106 1,290 45 271 1,025 64 298,479 299,301

W1 1050 9 30 1 10 1 1 13 970 971
W2 10512 15 39 31 16 7 21 21 14,445 14,462
W3 117945 31 52 779 32 46 542 37 73,100 73,587

F1 12750 21 77 89 24 11 40 40 22,930 22,976
F2 28866 32 81 264 34 20 130 45 42,214 42,389
F3 78030 63 115 1,096 66 43 694 76 96,369 96,369

H1 33423 30 125 326 30 40 142 51 94,150 94,282
H2 183546 42 106 3,081 44 145 1,739 61 234,614 236,463

• ILU(0) iteration numbers are very close to those of LU. Hence, among

sequential-algebraic preconditioners for CFIE, ILU(0) emerges as the opti-

mal choice for preconditioning MLFMA in the context of this study.

• Finally, even though the near-field matrix becomes sparser as the number of

unknowns gets larger, we observe that the algebraic scalability of ILU(0)

is surprisingly favorable. For the canonical geometries, as N increases

two orders of magnitude, the iteration numbers only double. For quasi-

canonical geometries, the iteration numbers increase by a factor of only 3 or

4. For Flamme, as the number of unknowns increases 15 times, the iteration

number only triples. For the helicopter, the increase in the iteration number

is 1.4 compared to 5.5 times increase in the number of unknowns.

48

2.5 Conclusion

For iterative solvers, ILU-class preconditioners have been intensively studied and

widely used. However, potential instability is still a shortcoming that reduces

their reliability. We show that this drawback can be eliminated when it occurs,

and ILU-class preconditioners can be safely applied to CEM problems employing

MLFMA.

For open geometries, EFIE is the only choice of formulation. For the resulting

systems, ILUT works remarkably well (about 10 times faster than DP and with

disproportionately lower setup time compared to SAI), but sometimes incomplete

factors turn out to be unstable. We show that this situation can be handled by

pivoting without incurring significant CPU costs; 0.5 pivoting tolerance gives

the best results. We also show that the condest value is a strong indicator

of the resulting preconditioner. Hence, considering the extra cost of pivoting

(though not very significant), we propose the following strategy for the solution

of problems involving open geometries. Before the iterations begin, compute

condest for ILUT. If the condition estimate is not high, (such as less than 104), use

ILUT as the preconditioner. Otherwise, switch to ILUTP5. With this strategy,

we have obtained robust and effective preconditioners for all our test problems.

CFIE can be used for closed geometries and yields linear systems that are

well-conditioned. ILU(0) and ILUT produce very similar factorizations, and

therefore cheaper ILU(0) should be preferred. With ILU(0), overall solution times

have been decreased by at least one-half compared to the commonly used BDP

preconditioner for real-life problems. Iteration numbers obtained with ILU(0)

are very close those of the exact solution of the near-field matrix, showing that

ILU(0) is the optimum preconditioner in the context of this study. Though

EFIE can also be used with closed geometries, it becomes harder to obtain fast

convergence even with the exact solution of the near-field matrix.

49

Despite the success of ILU techniques, both construction and application of

those preconditioners are inherently sequential. Therefore, it is difficult to obtain

parallel scalability with ILU. For this reason, we develop other preconditioners

that provides high scalability for parallel solutions. These will be the subject of

the next three chapters.

50

Chapter 3

Sparse-Approximate-Inverse

(SAI) Preconditioners

Nevertheless, it is often the case that many of the entries in the

inverse of a sparse matrix are small in absolute value, thus making

the approximation of A
−1

with a sparse matrix possible.

Michele Benzi, Journal of Computational Physics, Vol. 182, 2002.

3.1 Introduction

Iterative solutions of linear systems using Krylov subspace methods make it

possible to solve large-scale scientific problems with modest computing require-

ments [1]. Effective parallelization of the matrix-vector multiplication, which is

used at least once in an iteration, and the iterative solvers are possible, allow-

ing even larger systems to be solved with cost-effective parallel computers [2].

However, iterative solvers usually require preconditioning in order to be effective.

51

Most preconditioners use methods similar to direct solution techniques, render-

ing their parallelization a difficult task. As a result, preconditioning is currently

an important bottleneck for the solution of large scientific problems [38].

Constructing parallel and efficient preconditioners for CEM applications can

also be difficult. MLFMA stores only the near-field matrix, which is composed of

the interactions of the neighboring (touching) boxes or clusters in the lowest level

of the tree structure. When the ordering of the unknowns is in accordance with

the cluster membership, the near-field matrix takes a block structure. In Fig. 1.3,

we show the near-field patterns of three problems involving sphere geometries of

different sizes. Both the maximum size of the blocks and the maximum number of

the nonzero blocks per row are fixed. Therefore, as the problem size increases, the

near-field matrix becomes sparser. Since preconditioners are usually built from

near-field matrices, effective preconditioning of CEM problems may become a

challenge, particularly for large problem sizes.

Nonetheless, effective utilization of the near-field matrix provides strong pre-

conditioners for problems up to certain large sizes. Each element of the matrix

represents the electromagnetic interaction of a basis function and a testing func-

tion. The Green’s function used for the computation of the matrix elements

decays with 1/R, where R is the distance between the pair of basis and testing

functions under consideration. Due to this rapid decay of the Green’s function,

magnitudes of the matrix elements display a variety. The general trend of this

variety obeys physical proximity, i.e., basis and testing functions that are close to

each other are expected to have strong electromagnetic coupling, resulting in ma-

trix elements with relatively larger magnitudes. Therefore, the sparse near-field

matrix is likely to retain the most relevant contributions of the dense matrix. The

exact inverse of such a sparse matrix is, in general, a dense matrix. Neverthe-

less, the inverse matrix also displays a similar variation among the magnitudes

52

of its elements. Hence, the inverse matrix can also be approximated by a sparse

matrix.

In this work, we consider sparse approximate inverse (SAI) preconditioners

for large CEM problems. This is partly because an efficient parallelization of the

more standard ILU preconditioners [40] is difficult for matrices with unstructured

sparsity patterns [38]. Application of the SAI preconditioners to CEM problems

in the context of MLFMA has been analyzed by the CERFACS group [92] and

by Lee et al. [85]. Here, we present an effective construction scheme with an

effective load-balancing method that produces high parallel efficiency. We also

propose to use the near-field pattern for the approximate inverse with filtered

matrices and then compare different filtering strategies. Moreover, for conductor

problems, the earlier work [92] considered only the electric-field integral equation

(EFIE). However, for conducting geometries with closed surfaces, the combined-

field integral equation (CFIE) should also be considered. Even though EFIE can

also be used in such problems, this has no practical use since CFIE can solve the

closed-surface problems much faster. Furthermore, we show that CFIE solutions

of large real-life problems with closed surfaces can benefit more from SAI than

from simple preconditioners, such as the block-diagonal preconditioner.

This chapter is organized as follows. After presenting a brief summary of

the SAI preconditioners in the next section, we dwell upon the implementation

details in Section 3.3. In particular, we explain pattern selection and filtering

strategies. For a parallel implementation, we present a load-balancing algorithm

and show how the communication in the construction phase can be efficiently

performed. The results section analyzes CFIE and EFIE problems separately.

Then, in Section 3.5, we discuss some conclusions.

53

3.2 Brief Review of SAI

In each step of an iterative method, preconditioning is performed by backward

and forward solves for ILU preconditioners. In contrast, SAI preconditioners are

based on approximating the inverse of the matrix directly. For this purpose,

an approximate inverse is explicitly constructed and stored. Then, the precon-

ditioner is applied by a sparse matrix-vector multiplication. In the context of

MLFMA, we use A
NF

to generate the preconditioner and our approximation is

of the form M ≈ (A
NF

)−1.

In this work, we concentrate on the SAI preconditioners derived from the

Frobenius norm minimization. There are two other classes of approximate in-

verses that have been proposed in the literature [93]. One of the classes involves

the factorized sparse approximate inverses. Two important members of this

group, FSAI [94] and AINV [95], have already been tried on CEM problems

and their performances have been discouraging [79]. The third group of SAI

preconditioners are the inverse ILU techniques, which consist of approximately

inverting an incomplete factorization of the matrix. Because of the initial incom-

plete factorization phase, the inverse ILU methods have some serious drawbacks

for parallel computing [93].

3.2.1 Methods Derived from the Frobenius Norm Mini-

mization

For this class of preconditioners, the approximate inverse of the near-field matrix

is computed by minimizing

∥∥∥I − M · A
NF

∥∥∥
F

. (3.1)

The approximation is implemented by forcing M to be sparse. With the Frobe-

nius norm choice, the minimization can be performed independently for each row

54

by using the identity

∥∥∥I − M · A
NF

∥∥∥
2

F
=

N∑

i=1

∥∥∥ei − mi · A
NF

∥∥∥
2

2
, (3.2)

where ei is the ith unit row vector and mi is the ith row of the preconditioner.

Various preconditioners have been developed with different pattern selection

and minimization techniques. Saad and Chow proposed to solve each equation

(
A

NF
)T

· mT
i = eT

i (3.3)

iteratively and approximately [96]. One way to do this is to use the first few

iterations of the generalized minimal residual (GMRES) solver. However, the cost

of this method is of order O(N2) for sparse matrices, assuming a fixed number

of nonzero elements per row. To avoid this high cost, the authors proposed to

keep the iterates and other vectors sparse, as well as the matrix. This is done

by filtering iterates as they become denser. Then, matrix-vector multiplications

are carried out in sparse-sparse mode. However, such a multiplication scheme is

not efficiently implemented with MLFMA.

Considering the difficulty in finding a suitable nonzero pattern for the ap-

proximate inverse, Grote and Huckle [97] proposed to find the sparsity pattern

adaptively starting with an initial sparsity pattern. Construction time of this

preconditioner can be very high [93], hence it should be used only if simpler

methods fail.

On the other hand, the nonzero structure of the near-field matrix itself is a

natural candidate for the nonzero pattern of the SAI preconditioner. The storage

scheme used for the block-sparse matrices consumes less memory than regular

sparse matrices. Moreover, as noted in [92], when using the block structure of

the near-field matrix, QR factorization involved in the least-squares solutions

of (3.2) can be done once for each diagonal block, which corresponds to self

interactions of the last-level clusters in MLFMA. In this way, construction time of

55

the preconditioner can be reduced substantially. If filtering is required, however,

the block structure is distorted and both the setup time and memory consumption

of the preconditioner can be even higher than the no-filtering case. Moreover, in

a parallel implementation, load balancing should be ensured and communications

in the construction phase should be carefully performed, since this phase involves

all-to-all exchanges of rows. In the next section, we analyze these issues in more

detail.

3.3 Parallel Implementation Details

In this work, we adopt K-way row-wise conformable partitionings of the near-

field matrix A
NF

, the approximate inverse M , and the right-hand-side (RHS)

vector b as

A
NF

=




A
NF

1
...

A
NF

k
...

A
NF

K




, M =




M 1

...

M k

...

MK




, b =




b1

...

bk

...

bK




, (3.4)

where A
NF

k and M k are Nk×N submatrices, bk is an Nk × 1 subvector, and

K∑

k=1

Nk = N. (3.5)

Process Pk holds A
NF

k , bk, and M k. However, we use a different partitioning for

M during the generation of SAI, as explained in Section 3.3.3.

The construction of the SAI preconditioner is accomplished by solving

mi · A
NF

= ei for i = 1, 2, . . . , N (3.6)

subject to sparsity conditions. Left-preconditioning is consistent with row-wise

decomposition, because in this scheme the computations involve the rows of the

56

original matrix, and each row-block M k of the approximate inverse is gener-

ated by a different process. However, for the EFIE formulation, which produces

symmetric complex matrices, right-preconditioning is also viable. This can be

accomplished by a transpose matrix-vector multiplication operation in the ap-

plication phase, as will be detailed in Section 3.3.5.

In a row-wise decomposition of the matrix, each process Pk solves part of

(3.6). For a given row i ∈ Pk, let I ⊂ {1, 2, . . . , N} denote the set of column

indices j for which mi(j) is nonzero. Then, only the rows of the near-field matrix

included in this set affect the solution. Therefore, the ith minimization problem

is reduced to

mi(I) · A
NF

(I, :) = ei. (3.7)

This step incurs a communication among the processes, because not all of the

rows in I belong to Pk. Hence, Pk requires some sparse rows (i.e., nonzero values

and column indices) from other processes. Once A
NF

(I, :) is formed, because of

the sparsity of the near-field matrix, some of the columns of A
NF

(I, :) will be

zero. Denoting the indices of the nonzero columns by J , the N×N problems in

(3.6) are reduced to n1×n2 problems

mi(I) · A
NF

(I, J) = ei(J) for i = 1, 2, . . . , N, (3.8)

where n1 and n2 are the number of elements in the sets I and J , respectively.

An example of reduction of a 10× 10 sparse matrix for the 4th row is illustrated

in Fig. 3.1. In this example, the sparsity pattern of SAI is the same as that of

the original matrix.

The n2×n1 problems

A
NF

(I, J)T · mi(I)T = ei(J)T (3.9)

can be solved, by first computing the reduced QR factorization

A
NF

(I, J)T = Q · R, (3.10)

57

Figure 3.1: Reduction of a 10 × 10 matrix for the generation of the 4th row of
SAI.

and then obtaining the solution as

mi(I)T = R
−1

· Q
H
· ei(J)T . (3.11)

For the near-field matrix, the maximum number of nonzero elements in a

row or a column is fixed for a given problem irrespective of the problem size.

Therefore, a constant number of rows are involved in (3.7), i.e., n1 = O(1). In

A
NF

(I, :), each row again contains a fixed number of nonzero entries. The worst

case occurs when the locations of the nonzero elements do not coincide for all rows

i ∈ I. Even in that case, n2 = O(1)O(1) = O(1). This makes the complexity

of the SAI preconditioner O(N). On the other hand, the QR factorization used

in the solution of the n2×n1 least-squares problem requires asymptotically n2n
2
1

flops, causing the setup time of the SAI preconditioner be high, even though it

has a low complexity.

Because of this possible high construction cost, the implementation of the SAI

preconditioner deserves close attention. The following subsections will detail the

main steps for the generation and application of the preconditioner.

3.3.1 Pattern Selection and Filtering

In a Frobenius-norm minimization technique that depends on a fixed inverse

pattern, the main issue for an efficient and effective preconditioner is the selection

58

of an appropriate sparsity pattern. Because of the possible high cost of the SAI

preconditioner, filtering is used in general. Filtering refers to dropping small

elements from the original matrix. Then, the preconditioner is constructed from

this sparser matrix. In our work, we have used the algorithm detailed in Fig. 3.2

for filtering.

find the largest entry maxk of A
NF
k

global max = reduce all maximum(maxk)

for each aij ∈ A
NF
k do

if aij/global max < threshold then

drop aij

endif

endfor

Figure 3.2: Filtering algorithm.

Filtering only decreases n2 if a different pattern from the filtered matrix is

used for the approximate inverse. In that case, n1 is determined by the pattern

of the approximate inverse. However, filtering causes smaller n1 and n2 values if

the pattern of the filtered matrix is used for the approximate inverse.

Considering MLFMA and the special structure of the near-field matrix, we

think that the following pattern selection and filtering strategies are appropriate

for low-cost SAI generation:

No Filtering

In this strategy, no filtering is applied to the near-field matrix and the same

pattern is used for the approximate inverse. Because of the block structure of

A
NF

, all rows of the SAI preconditioner that reside in the same diagonal block

require the same rows of A
NF

for their computation; hence, the reduced ma-

trices A
NF

(I, :) and A
NF

(I, J) become the same. Therefore, QR factorization

59

is done only once for each diagonal block and the least-squares solution is ob-

tained for multiple RHSs. Since the least-squares solution is dominated by the

QR factorization, substantial savings can be achieved.

Preserving Block Structure in Filtering

Even though the near-field matrices become sparser as the number of unknowns

increases, filtering may be required. This may be due to the possible high cost

of SAI construction or because of some special problems, such as densely packed

meta-material structures [49], which produce denser near-field matrices. To be

able to use the advantage of the block structure, we suggest using the near-field

pattern for the approximate inverse and filtering only the near-field matrix, from

which the approximate inverse is generated. In this way, the row size n1 does

not change, but n2 can be much smaller. Hence, we expect cheaper construction

time compared to the no-filtering case.

Using a Filtered Pattern for the Approximate Inverse

If we use the block structure for the approximate inverse, the memory require-

ment of the preconditioner will be the same as the near-field matrix, which is

the largest data in MLFMA. One way to reduce the memory cost is to use a

filtered pattern for the preconditioner. On the other hand, with this strategy,

we will not be able to use the advantage of the block structure. Therefore, we

have to perform N factorizations instead of N/m, where m is the average size of

the diagonal blocks. Hence, substantial filtering should be employed in order to

decrease the memory and construction costs with this scheme.

60

Block Filtering

Another strategy to take advantage of the block structure can be to drop an

entire block, instead of only the nonzero entries, with the hope that dropped

blocks do not carry significant information. To determine which blocks to drop,

the Frobenius norm of each one is computed; those having a relative norm smaller

than a prescribed tolerance are dropped.

3.3.2 Communication Phase and Enlarging the Local

Submatrix

After a suitable pattern is selected for SAI, each process Pk exchanges some

rows of A
NF

k with others. In this way, they enlarge their local submatrix A
NF

k ,

so that no communication is required during the generation of M k. For this

purpose, Pk scans the nonzero pattern of M k and decides which rows it needs

for the generation of the kth block. Then, after an all-to-all communication, each

process learns the row identities it has to send. This communication pattern is

detailed in Fig. 3.3.

for each mij ∈ Mk do

if j is not marked then

p = findProcId(j)
append j into rowRecvList[p]
mark j

endif

endfor

send rowRecvList; receive into rowSendList ! All-to-all communication

Figure 3.3: The pseudocode that finds the rows to be sent by the process Pk.

However, the information obtained is not sufficient for the exchange of rows

because the processes do not yet know the column indices of the nonzero entries

61

for each row i ∈ rowSendList do

append column indices of row i to sendColIndices
endfor

send sendColIndices; receive into recvColIndices ! All-to-all communication

Figure 3.4: The pseudocode that finds the column indices of the sparse rows to
be received by the process Pk.

of the rows to be received. Hence, another scan and exchange of data regarding

to the column indices is performed. Finally, the values are exchanged. These

two steps are illustrated in Fig. 3.4 and Fig. 3.5.

for each row i ∈ rowSendList do

append aij to sendColV alues
endfor

send sendColV alues; receive into recvColV alues ! All-to-all communication

Figure 3.5: The pseudocode that exchanges the sparse rows.

The near-field matrix and SAI are held in compressed sparse row (CSR)

format. This has two advantages. First, access to memory is minimized for the

sparse matrix-vector multiplications. More importantly, with CSR storage, the

access of the matrix is done by rows, hence the communications in the last two

steps are done in-place.

There could be another way to exchange the rows, in which the communica-

tion is done during the construction of the SAI preconditioner. This approach

allows communications and computations to overlap by exchanging data for the

next row while computing the current row. However, in this method, a row can

be exchanged many times. Moreover, as shown in Section 3.4.1, our implemen-

tation produces superior parallel performance; hence, we did not need to try this

alternative strategy.

62

3.3.3 Load Balancing of SAI

Load Balancing for the Generation Phase

The computation of the nonzero elements of the near-field matrix constitutes an

expensive part of the setup phase in MLFMA. In this part, the cost of a row is

proportional to the number of nonzero elements in that row. To ensure load bal-

ancing, the rows of the near-field matrix are distributed among the processes so

that each process acquires approximately an equal number of nonzero elements.

Since the application of the near-field matrix in the iterative phase is also pro-

portional to the number of nonzero elements in a submatrix, this approach serves

the load balancing of the near-field matrix-vector multiplication as well.

On the other hand, the cost of the generation of the ith row mi of SAI is

proportional to n2n
2
1, where n1 and n2 are the dimensions of the reduced matrix.

Note that n1 is the number of the nonzero elements in that row if filtering is

not applied. If the near-field partitioning is also used for SAI, this high cost can

cause the SAI generation to be unbalanced. For this reason, we repartition the

near-field matrix in accordance with the load-balancing scheme of the SAI setup.

After the pattern of SAI is decided, we can quickly determine the cost of each

row by finding n1 and n2 values. Then, the workload of SAI is distributed among

the processes so that each process has approximately equal amount of work. Al-

ternatively, it is also possible to apply an incremental partitioning to existing

near-field partitioning to decrease the overhead of repartitioning, as detailed in

[98]. We follow the former approach, where we use a separate partitioning for the

SAI generation that is different from the partitioning of the near-field matrix.

This way, we obtain a better load balance, and we can still limit the overhead

of repartitioning by overlapping the communications with computations, as ex-

plained in the next section.

63

for each row i ∈ RNF
k do

if row i /∈ RSAI
k then

p = findProcId(i)
start the reception of mi from p ! Non-blocking communication

endif

endfor

for each row i ∈ RSAI
k do

if row i /∈ RNF
k then

p = findProcId(i)
generate mi and start the transfer to p ! Non-blocking communication

endif

endfor

for each row i ∈ RSAI
k do

if row i ∈ RNF
k then

generate mi

endif

endfor

finish all non-blocking communications

Figure 3.6: Redistribution of the SAI rows according to the near-field partitoning.
RNF

k and RSAI
k denote the row indices of process k with respect to the near-field

and SAI partitionings, respectively.

Load Balancing for the SAI Application

To ensure load balancing for the application phase, we have to redistribute the

rows of SAI according to the near-field partitioning. The overhead of this data

transfer can be eliminated by overlapping communications with computations,

as detailed in Fig. 3.6. In the first loop, all processes initiate the receptions

of the rows that they should have with respect to the near-field partitioning,

but they do not generate. Then, all processes generate those rows in their SAI

partitioning that do not belong to themselves and initiate their transfers to ap-

propriate processes. While the communications take place, local computations,

i.e., the generation of the rows that belong to process k with respect to both

near-field and SAI partitionings, are performed. Finally, all processes wait for

the non-blocking communications to finish.

64

3.3.4 Construction of the Preconditioner

For the generation of the ith row mi, first a map of length N is prepared to map

the sets I and J to Ī = {1, 2, . . . , n1} and J̄ = {1, 2, . . . , n2}, respectively. Then,

we form the n2×n1 dense matrix

A
NF

(Ī , J̄)T = A
NF

(J̄ , Ī). (3.12)

Finally, we solve the least-squares problem

A
NF

(J̄ , Ī) · mi(I)T = ei(J)T (3.13)

via QR factorization and generate the ith row of M k.

3.3.5 Application of the Preconditioner

The application of the preconditioner is performed with the sparse matrix-vector

multiplication yk = M k · x. Since Pk computes xk, an expand operation, i.e.,

x = expand(xk) (also known as “gather-all”), is required before the multiplica-

tion so that all processes possess the entire x vector.

For EFIE, using the symmetry of the near-field matrix, we have

∥∥∥I − M · A
NF

∥∥∥
F

=
∥∥∥I − (M · A

NF
)T

∥∥∥
F

=
∥∥∥I − A

NF
· M

T
∥∥∥

F
. (3.14)

Therefore, right-preconditioning can be achieved with the operation yk =

(M k)
T · xk, or equivalently (yk)T = (xk)

T · M k, where y =
∑K

k=1 yk. This

multiplication can be done in CSR format using the outer product form of matrix-

vector multiplication, i.e.,

yk =

Nk∑

i=1

xk(i)M k(i, :). (3.15)

We outline this operation in Fig. 3.7. Finally, a fold operation, i.e., yk = fold(yk)

(also known as “reduce-scatter”) is required so that partial sums yk are summed

across the processes, and each process Pk ends up with the kth subvector yk of

y.

65

yk = 0
for i = 1 to Nk do

xval = xk(i)
kStart = IA(i); kEnd = IA(i + 1) − 1
for k = kStart to kEnd do

j = JA(k)
yk(j) = yk(j) + xval ∗ V A(k)

endfor

endfor

Figure 3.7: The pseudocode for the sparse matrix-vector multiplication used for
right preconditioning. IA, JA, and V A are respectively row-index, column-
index, and value arrays of M k, which is stored in CSR format.

3.4 Results

In this section, we present the parallel performance of the generation phase of

the SAI preconditioner. Then, for EFIE and CFIE formulations, we compare

different versions of SAI with other preconditioners.

The solutions presented in this section are obtained on a 16-node cluster

connected with an Infiniband network. Each node includes two quad-core Intel

Xeon processes and 16 GB of RAM. All of the results are obtained on 32 cores

(4 processes on each node). For robustness, we use the generalized minimal

residual method (GMRES) with no restart as the solver. Contrary to results

presented in [92], orthogonalization cost of GMRES is negligible, compared to

the time spent on the matrix-vector multiplications. For example, the largest

problem shown in this study involves 3,838,496 unknowns. For the solution of

this problem, the time spent on GMRES orthogonalization is only 2.3% of the

time spent on matrix-vector multiplications by MLFMA. We use zero as the

initial guess and set the stopping criteria as a six orders of magnitude relative

decay in the initial residual or a maximum of 1,000 iterations. In our MLFMA

implementation, we use the Rao-Wilton-Glisson (RWG) functions [7] for both

66

basis and testing functions. We set the size of the smallest clusters to 0.25λ

and the number of accurate digits to three. Three digits of accuracy has proven

to yield accurate results, as shown in [99] by comparing the numerical results

with the analytical ones for the sphere problem formulated with CFIE. For the

patch problem formulated with EFIE, accuracy is demonstrated by comparing

the numerical solution with a physical optics solution that gives accurate results

at some specific observation angles for high frequencies [48].

3.4.1 Parallel Performance of the Construction Phase

In Fig. 3.8, we show the speedup curves for the construction of SAI with no

filtering for a patch geometry with 344,000 unknowns, a half sphere with 408,064

unknowns, and for the stealth target Flamme [91], which has 312,120 unknowns.

To show the worst-case performance, the processes are distributed so that the

inter-node communications are maximized. Thanks to our efficient paralleliza-

tion scheme and the load-balancing method, we obtain superior speedups for all

problems.

1 16 32 48 64 80 96 112 128
1

16

32

48

64

80

96

112

128

Speedup for SAI

Processors

S
p

e
e

d
u

p

Ideal

Patch

Half Sphere

Flamme

Figure 3.8: Speedup curves for the patch, half sphere, and Flamme problems.

67

1 4 8 12 16 20 24 28 32

−40

−20

0

20

40

60

Unbalanced Setup

Processors

L
o

a
d

 Im
b

a
la

n
ce

 (
%

)

(a)

1 4 8 12 16 20 24 28 32
−4

−2

0

2

4

Balanced Setup

Processors

L
o

a
d

 Im
b

a
la

n
ce

 (
%

)

(b)

Figure 3.9: Load imbalance of the Flamme problem for (a) unbalanced and (b)
balanced cases.

The effect of the load-balancing algorithm is demonstrated in Fig. 3.9 on the

Flamme problem. The load imbalance εk of process k is defined as

εk =
timek − timeavg

timeavg

. (3.16)

In (3.16), timek is the setup time of SAI for process k, and timeavg is the average

setup time. Particularly for complex geometries, such as Flamme, adopting the

same partitioning of the near-field for SAI can cause significant imbalance and

inefficiency. Using the proposed load-balancing method, we reduce the average

imbalance of 18.5% to 1.5% and achieve high efficiency.

3.4.2 EFIE Results

The sample geometries that are solved with EFIE in this paper are illustrated

in Fig. 3.10, and their quantitative features are listed in Table 3.1. Only open

68

Patch (P) Half Sphere (HS)

Reflector Antenna (RA)

Figure 3.10: Open geometries used in EFIE problems.

Table 3.1: Quantitative features of the open geometries.
Frequency Size MLFMA

Problem (GHz) (λ) Levels N

P1 16 16 7 85,840
P2 32 32 8 344,000
P3 64 64 9 1,377,280
P4 96 96 10 3,062,400

HS1 16 32 8 101,888
HS2 32 64 9 408,064
HS3 64 96 10 1,633,280
HS4 96 192 10 3,838,496

RA1 4 13 7 47,870
RA2 8 27 8 187,144
RA3 16 53 9 748,024
RA4 32 107 10 2,991,067

geometries are solved with EFIE since closed geometries can be solved more easily

with CFIE. In Table 3.1, patch is abbreviated with P, half sphere with HS, and

reflector antenna with RA. The “Size” value stands for the diameter of the half

sphere and the reflector antenna, and it is the length of one side for the square

patch. Mesh lengths are chosen as one-tenth of the corresponding wavelength.

The experimental results indicate that there is no significant difference be-

tween left and right preconditioning of SAI. For consistency with the CFIE

results, we prefer left preconditioning with EFIE. The results for the no-

preconditioning case and comparisons of the three types of SAI precondition-

ers are shown in Tables 3.2 and 3.3, respectively. We omit the results with the

69

Table 3.2: The solutions with no preconditioning for open geometries formulated
by EFIE.

Problem Iterations Time (s)

P1 814 346
P2 > 1, 000 -
P3 > 1, 000 -
P4 > 1, 000 -

HS1 913 1,363
HS2 > 1, 000 -
HS3 > 1, 000 -
HS4 > 1, 000 -

RA1 795 446
RA2 > 1, 000 -
RA3 > 1, 000 -
RA4 > 1, 000 -

block-filtering version of SAI, because it performs worse than other SAI precondi-

tioners. We also omit the results with the block-diagonal preconditioner (BDP),

because it deteriorates the convergence rate, compared to no preconditioning. In

Table 3.3, “Ratio” stands for the ratio of the sparsity of the filtered near-field

matrix to the original near-field matrix. “Setup” stands for the generation time

of SAI and “Time” for the solution time, both in seconds. For EFIE, we set the

threshold of filtering at 0.5%.

We outline our observations as follows:

• Without an effective preconditioner, EFIE solutions converge only for small

problems. On the other hand, SAI preconditioners solve all problems within

reasonable iteration counts. Even for those that converge without precon-

ditioning, SAI with no filtering decreases the iteration counts by an order

of magnitude for the patch and the reflector antenna, and by six times for

the half sphere.

• When we apply filtering, using the block structure of the near-field matrix

for the approximate inverse decreases setup times significantly. Even for

the reflector antenna, for which 90% of the near-field entries are dropped

with filtering, setup times of SAI preconditioners that use the near-field

70

Table 3.3: Comparison of SAI preconditioners for open geometries formulated
by EFIE.

Prob Filtered Pattern Near-Field Pattern No Filtering
lem Ratio Setup Iter Time Setup Iter Time Setup Iter Time

P1 51% 14 94 41 2 91 38 2 74 31
P2 50% 62 139 224 10 132 209 10 109 174
P3 49% 370 194 1,431 45 190 1,384 48 157 1,147
P4 50% 1,495 243 7,849 129 231 7,368 132 194 6,225

HS1 73% 32 159 246 4 146 217 5 132 196
HS2 73% 133 266 1,762 19 246 1,583 20 221 1,424
HS3 71% 703 426 12,382 87 392 11,235 92 351 10,046
HS4 59% 2,512 599 30,828 343 570 28,295 350 480 23,458

RA1 6% 0 599 336 1 228 127 2 63 36
RA2 7% 1 859 1,890 9 557 1,230 9 93 204
RA3 36% 80 171 1,539 33 173 1,552 37 139 1,266
RA4 13% 1,142 598 22,269 148 303 11,144 201 200 7,276

Notes: “Ratio” is the ratio of the sparsity of the SAI to that of the near-field matrix.
“Setup” and “Time” denote the setup and solution times, given in seconds.
“Iter” denotes the number of iterations.

pattern are much smaller. However, for large simulations, memory savings

can be an important motivation to use the filtered pattern. For example,

for RA4, SAI with a filtered pattern requires 840 MB of RAM, whereas

SAI with the near-field pattern and SAI with no filtering require 4.2 GB

of RAM. However, we note that there should be considerable filtering to

provide memory gain, because the format used in a block-structured sparse

matrix is more economical than regular sparse matrices.

• In terms of the solution times, SAI with no filtering produces the best

results for all geometries. The setup times of the filtered SAI that uses the

near-field pattern are the lowest, except for RA1 and RA2; however, SAI

with no filtering is more successful in reducing the iteration counts and

solution times.

• We observe superior algebraic scalability for the unfiltered SAI precondi-

tioner. For all targets, the largest problem is approximately 64 times larger

than the smallest, whereas the iteration count of the P4 is only 2.6 times

that of P1, that of HS4 is 3.6 times that of HS1, and that of RA4 is only

3.2 times that of RA1.

71

Finally, in Fig. 3.11, we demonstrate the Arnoldi estimates for the eigenvalues

of the RA4 problem. These estimates are found as a byproduct of the GMRES

solver, and they are known to approximate the bounding eigenvalues of the spec-

trum [1]. SAI with filtered pattern leaves some of the eigenvalues in the left

half-plane, and there are many small eigenvalues around the origin, accounting

for its slow convergence. If filtered pattern is used for the approximate inverse

or filtering is not applied at all, then all of the eigenvalues are clustered in the

right half-plane. However, SAI with no filtering produces also smaller radius for

the spectrum, hence converges faster.

−0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.2

0

0.2

0.4

No Preconditoner

−0.01 0 0.01
−0.01

0

0.01

0 5 10 15

−6

−4

−2

0

2

4

6

Filtered Pattern

−0.2 0 0.4
−0.4

0

0.4

0 5 10 15

−6

−4

−2

0

2

4

6

Near−Field Pattern

−0.2 0 0.4
−0.4

0

0.4

0 5 10 15

−6

−4

−2

0

2

4

6

No Filtering

−0.2 0 0.4
−0.4

0

0.4

Figure 3.11: Approximate eigenvalues of the RA4 problem on the complex plane.

3.4.3 CFIE Results

Many real-life problems confronted in CEM involve complicated structures en-

closing a volume. Due to its favorable properties, CFIE is the preferred integral-

equation formulation for those targets with closed surfaces. In Fig. 3.12, we

illustrate two such geometries, a helicopter (H) and the Flamme (F). We solve

these problems at increasing frequencies, as detailed in Table 3.4.

72

Flamme (F) Helicopter (H)

Figure 3.12: Closed-surface geometries used in CFIE problems.

Table 3.4: Quantitative features of the closed geometries.
Frequency Size MLFMA

Problem (GHz) (λ) Levels N

F1 10 20 8 78,030
F2 20 40 9 312,120
F3 40 80 10 1,248,480
F4 60 120 10 3,166,272

H1 0.3 14 8 46,383
H2 0.6 28 9 185,532
H3 1.2 56 10 742,128
H4 2.4 112 11 2,968,512

Contrary to EFIE, BDP is the commonly used preconditioner for CFIE prob-

lems. BDP has negligible setup time and is easily parallelized. In addition, BDP

enables fast convergence for a variety of problems due to the diagonal-dominance

behavior of CFIE matrices to some extent. Hence, we first provide the solutions

of the closed-surface problems with BDP in Table 3.5, and then compare differ-

ent versions of SAI preconditioners in Table 3.6. With CFIE, we use a smaller

threshold value for filtering, i.e., 0.05%, because such a small threshold causes

significant filtering due to the diagonal-dominance feature of CFIE matrices.

Table 3.5: The solutions with BDP for closed-surface problems formulated by
CFIE.

Problem Iterations Time (s)

F1 116 122
F2 122 563
F3 211 4,451
F4 347 11,734

H1 99 73
H2 109 391
H3 121 1,939
H4 138 10,192

73

Table 3.6: Comparison of SAI preconditioners for closed-surface problems for-
mulated by CFIE.

Prob- Filtered Pattern Near-Field Pattern No Filtering
lem Ratio Setup Iter Time Setup Iter Time Setup Iter Time

F1 25% 31 99 133 14 81 95 17 76 90
F2 21% 55 113 583 43 96 490 53 97 493
F3 19% 196 198 4,253 124 181 3,916 163 174 3,836
F4 33% 1,889 318 10,767 328 297 9,112 374 316 9,530

H1 11% 7 93 76 8 51 45 12 51 48
H2 6% 3 110 391 20 84 326 41 59 241
H3 6% 43 123 2,019 78 97 1,619 152 80 1,403
H4 6% 1,176 152 11,701 366 114 8,649 644 97 7,515

Notes: “Ratio” is the ratio of the sparsity of the SAI to that of the near-field matrix.
“Setup” and “Time” denote the setup and solution times, given in seconds.
“Iter” denotes the number of iterations.

We summarize our observations and comments about the CFIE results as

follows:

• We observe that both the filtered SAI that uses the near-field pattern and

the unfiltered SAI decrease the number of iterations and total solution

times with respect to BDP for both problems. For instance, if we compare

the largest targets, the solution times of F4 and H4 are shortened by 20%

and 26%, respectively.

• In terms of the solution time, the unfiltered SAI is the most successful

preconditioner, except for F2 and F4. Surprisingly, for these problems,

obtaining the preconditioner from a sparser matrix instead of the original

near-field matrix improves performance.

3.4.4 Solutions of Metamaterial Structures

We finish this section with the solutions of metamaterial structures. Metama-

terials are artificial structures that are constructed by periodically arranging

unit cells, such as split-ring resonators (SRRs) and thin wires. Due to the res-

onant nature of the cells, electromagnetic properties of the host medium, i.e.,

74

y

x

y

x

y

x

(a) (b) (c)

Figure 3.13: Unit cells that are used to construct various metamaterial walls:
(a) SRR, (b) thin wires, and (c) a combination of SRR and thin wires.

permittivity, permeability, or both, can effectively become negative for some fre-

quencies. Because of these unique features, metamaterials have been utilized in

various applications, such as sub-wavelength focusing [100],[101], cloaking [102],

and designing improved antennas [103]. It is possible to solve scattering prob-

lems involving three-dimensional metamaterials hundreds and even thousands of

unit cells at a time with MLFMA. Since the conductor surfaces are modeled by

perfectly conducting sheets with zero thicknesses, it is mandatory to use EFIE

for metamaterials.

Fig. 3.13 presents the unit cells that are used to construct the metamate-

rial structures investigated in this study. A single SRR, which is depicted in

Fig. 3.13(a), has dimensions in the order of microns. The SRR resonates at

about 100 GHz, when it is located in a medium with a relative permittivity of

4.8 [104]. Around the resonance frequency, the SRR stimulates negative effective

permeability in the medium. Dimensions of the thin wires depicted in Fig. 3.13(b)

are compatible with the dimensions of the SRRs and they exhibit negative effec-

tive permittivity in a wide range of frequencies, including 100 GHz. Finally, as

depicted in Fig. 3.13(c), we also consider composite metamaterials (CMMs) by

combining SRRs and thin wires in the same medium to obtain a double-negative

property.

75

In Fig. 3.14, we present the solutions of an 18×11×4 SRR wall discretized

with 64,944 unknowns. Fig. 3.14 depicts the solution times required as a func-

tion of frequency. For a fair comparison, we include the setup time required by

the preconditioners, together with the solution time. Without using a precon-

ditioner, the processing time is less than 400 seconds at all frequencies, except

for 95 GHz. Due to a numerical resonance, the processing time increases to

1700 seconds at 95 GHz. Using BDP, the processing time is reduced at ordinary

frequencies, as opposed previous problems presented. This is due to a finer mesh

size used to model small unit cells. Nonetheless, the solution at 95 GHz is again

decelerated, compared to the no-preconditioner case. On the other hand, using

a sparse-approximate-inverse preconditioner with a threshold parameter of 0.05

and with a filtered sparsity pattern, the solution is accelerated at all frequen-

cies, including the resonance frequency, again compared to the no-preconditioner

case. The processing time is reduced to 800 seconds at 95 GHz, corresponding to

less than half the time required without preconditioning. The gain obtained by

using the sparse-approximate-inverse preconditioner is more significant for larger

metamaterial problems.

3.5 Conclusion

In this work, we analyze SAI preconditioning for dense linear systems arising

from the discretization of integral equations. We describe in detail practical

issues, such as pattern selection, filtering, and load balancing to obtain a highly

parallel and efficient preconditioner.

For large open-surface problems that are modelled by EFIE, linear systems

can be challenging to solve. We conclude that, for such problems, it is better

to avoid filtering and to construct a SAI preconditioner that has the same block

structure as the near-field matrix. The use of the block structure has advantages

76

85 90 95 100 105 110

10
2

10
3

Frequency (GHz)

S
e

tu
p

 +
 S

o
lu

ti
o

n
 T

im
e

 (
s)

NP

BDP

SAI

Figure 3.14: Processing time including the iterative solution and the setup
of the preconditioner for the 18×11×4 SRR wall. “NP” represents the no-
preconditioner case.

in reducing the setup cost and memory requirement of the preconditioner. How-

ever, if filtering is required for further memory saving, we show that our filtering

strategy is robust.

For complex closed-surface problems that can make use of the well-

conditioned CFIE, we show that SAI is more beneficial than the commonly used

BDP. The benefit will be even more dominant for the computation of backscat-

tering with different incident angles, which requires the solution of linear systems

involving many RHSs.

77

Chapter 4

The Iterative Near-Field (INF)

Preconditioner

Yet another possibility is to approximate the action of S
−1

on

a vector v by performing a few steps of an iterative method on the

Schur complement system S · z = v.

Michele Benzi, Gene H. Golub, and Jörg Liesen, Acta Numerica,

Vol. 14, 2005.

4.1 Introduction

To achieve a strong preconditioner in surface-integral-equation methods employ-

ing MLFMA, the information provided by the near-field matrix should be effec-

tively used. As mentioned before, using the exact factorization of the near-field

matrix for preconditioning is too expensive because of fill-ins. In Chapter 2, we

show that, among various ILU preconditioners, ILUT [89] and ILUTP [2] are

successful in CEM problems and produce iteration counts that are very close to

78

those obtained by the exact factorization of the near-field matrix. However, be-

cause ILU methods are inherently sequential, we resorted to SAI preconditioners

in parallel MLFMA implementations, as detailed in the previous chapter.

On the other hand, it is widely observed that SAI is not as successful as ILU

in reducing the number of iterations and the solution times [93]. As an alterna-

tive strategy, the entire near-field matrix can be used in an iterative solver for

preconditioning purposes. This can be accomplished with low cost and complex-

ity since Krylov subspace solvers merely require matrix-vector multiplications

and the near-field matrix is sparse. Therefore, the preconditioning solution can

be obtained by another iterative process, nested in the outer solver, provided

that the outer Krylov subspace solver is flexible. With this strategy, we propose

to use the iterative solution of the near-field system as a preconditioner for the

original system, which is also solved iteratively. Furthermore, we use a fixed pre-

conditioner obtained from the near-field matrix as a preconditioner to the inner

iterative solver. MLFMA solutions of several model problems establish the effec-

tiveness of the proposed nested iterative near-field preconditioner, allowing us to

report the efficient solution of electric-field and combined-field integral-equation

problems involving difficult geometries and millions of unknowns.

In the next section, we compare the proposed preconditioner with precondi-

tioners that can make use of dense system matrix through MLFMA, such as the

one that will be described in the next chapter. Then, we detail the proposed

preconditioning method in Section 4.3. In Section 4.4, we present the numeri-

cal results and comparisons of INF with SAI. We summarize our conclusions in

Section 4.5.

79

4.2 Near-Field versus Full-Matrix Precondi-

tioners

Since only the interactions corresponding to the lowest-level near-field clusters

are kept in memory, it is common practice to construct preconditioners from ANF,

assuming that it is a good approximation to A. However, since the size of the

lowest-level clusters is kept fixed in MLFMA, the number of nonzero elements in a

row of ANF also remains constant. Therefore, ANF becomes increasingly sparser

as the problem size grows. As a result, it has been shown that preconditioners

that make use of the full A matrix, as in some nested-solver schemes [105], are

usually stronger than preconditioners that depend on only near-field interactions

[92, 58].

Nonetheless, for matrices obtained from the discretizations of surface integral

equations, magnitudes of matrix elements change with physical proximity, as a

general trend. Therefore, the available near-field matrix ANF is likely to preserve

the most relevant contributions of the dense system matrix. As Section 4.4 will

reveal, the proposed preconditioner renders solutions of large EFIE problems

possible with modest iteration counts by effectively using all information provided

by the near-field matrix. The results will also reveal that the scaling of iteration

counts with respect to increasing problem sizes is remarkably favorable, e.g.,

iteration counts increase less than three fold, even when problem sizes increase

36 fold in some cases. Furthermore, once a fixed preconditioner, such as SAI, is

constructed, the proposed scheme has no extra costs in terms of setup time and

memory. On the other hand, preconditioners that make use of the full matrix

require less-accurate versions of MLFMA, which can be obtained using extra

setup time and significant amounts of memory.

80

4.3 The Iterative Near-Field Preconditioner

It is known that SAI is not as successful as ILU with the same amount of mem-

ory [93]. We confirm this assertion by comparing SAI with the exact solution of

the near-field matrix, which we name NF-LU. Though ILUT produces iteration

counts very close to those of NF-LU [40], SAI deviates from this optimum behav-

ior as the number of unknowns increases. For a remedy, increasing the density

of the preconditioner is undesirable because of a possible high setup time and

memory considerations.

On the other hand, an iterative solution of the near-field matrix can be used

as a preconditioner, provided that the original system is solved using a flexible

solver [2]. Since SAI is a good approximation to the inverse of the near-field

matrix, the iterative solution of the near-field system can be accelerated using

SAI as a preconditioner. This approach produces a nesting of the iterative solvers.

For the outer solver that solves the original system, we use the flexible GMRES

(FGMRES) method, which allows the preconditioner to change from iteration to

iteration [2]. The preconditioner of this solver is another preconditioned Krylov

subspace solver, which we call the inner solver. We solve the sparse near-field

system in the inner solver using SAI as the fixed preconditioner. We illustrate

this nested inner-outer preconditioning scheme in Figure 4.1.

Outer solver: FGMRES; solve A · x = b

Matrix-vector product: MLFMA

Inner solver (Preconditioner): GMRES; solve ANF · v = w

Matrix-vector product: Sparse mat-vec
Fixed preconditioner: SAI

Figure 4.1: Nested solvers for iterative near-field preconditioning.

81

Since the inner solver is used for preconditioning purposes, a rough solution

is adequate. We use GMRES as the inner solver since it provides a fast drop of

the residual norm in early iterations.

The proposed scheme, which we name the iterative near-field (INF) precon-

ditioner, yields a forward-type preconditioner, as the ILU preconditioner is. The

difference is that, in ILU preconditioning, the preconditioner approximates the

near-field matrix in factorized form, i.e., M = L · U ≈ ANF, but the system

M · v = w is solved exactly by using backward and forward solves for a given

vector w. On the other hand, for INF, the preconditioner is the exact near-field

matrix, i.e., M = ANF, but we approximately solve the system M · v = w with

an iterative method.

4.4 Numerical Results

In this section, we compare the performances of the SAI and INF preconditioners

since the SAI preconditioner has been widely used and proven to be successful in

parallel implementations of integral-equation methods [86, 85, 83, 44]. Further-

more, when the near-field matrix pattern is selected as the nonzero pattern of

the approximate inverse, the setup time of the SAI preconditioner can be lowered

using the block structure, as shown in [92, 44]. Regarding the stopping criteria

of the inner solver for the INF preconditioner, we conclude that the one-order

residual drop provides a successful preconditioner that can be attained in a few

iterations. Hence, we set the stopping criteria of the inner solver as a one-order

residual drop from the initial residual norm or a maximum of five iterations,

whichever is satisfied first.

82

4.4.1 EFIE Results

For small problems, we can evaluate the quality of the SAI and INF precondition-

ers by comparing them with a preconditioner obtained from the exact factoriza-

tion of the near-field matrix. This preconditioner, which we call NF-LU, can be

used only as a benchmark due to its excessive memory and setup costs. Nonethe-

less, it is useful for evaluation purposes since its iteration count is expected to

be the minimum that can be achieved with a preconditioner constructed from

the near-field matrix. Then, we can evaluate other preconditioners on the basis

of how close their iteration counts are to those of NF-LU.

In Table 4.1, we present the solutions of three geometries with various pre-

conditioners, i.e., the diagonal preconditioner (DP), SAI, INF, NF-LU, and the

no-preconditioner case (No PC). Computations are performed on a 16-core par-

allel cluster constructed with eight dual-core AMD Opteron 870 processors in

a symmetric multiprocessing (SMP) configuration. The geometries are depicted

in Figure 2.1. We choose geometries with open surfaces, since closed-surface

geometries can be solved more easily using CFIE. Mesh size is chosen as one-

tenth of the wavelength at the frequency of operation. Due to its robustness, we

use GMRES (FGMRES for INF) with no-restart as the iterative solver. We set

the the initial guess as a vector of zeros and the stopping criterion as either a

six-order-of-magnitude relative decay from the initial residual or a maximum of

1,000 iterations. In our MLFMA implementation, the size of the smallest clusters

is fixed to 0.25 wavelength and the number of accurate digits to three.

The results presented in Table 4.1 show that the SAI preconditioner succeeds

in accelerating the convergence of these relatively small problems since their

solutions without a preconditioner or with DP require either several hundreds of

or more than 1,000 iterations. On the other hand, the iteration counts are not

close to those of NF-LU. This observation can be interpreted as that there is more

room for improvement between an approximate inverse generated with the SAI

83

Table 4.1: Experimental results for comparing the SAI and INF preconditioners
to NF-LU.

Geometry N
No PC DP SAI INF NF-LU

Iter Time Iter Time Iter Time Iter Time Iter

Patch
12,249 447 106 432 103 44 12 29 9 26

137,792 894 3,241 851 3,087 91 336 59 253 53

Half 9,911 514 178 485 438 60 24 40 17 38

Sphere 116,596 - 3,257 - 3,259 156 510 103 383 93

Reflector 12,142 564 453 545 458 44 22 28 13 27

Antenna 105,570 - 4,285 - 4,288 80 344 51 236 49

Notes: “Iter” denotes the number of iterations and “Time” denotes the solution times.

A dash “-” indicates that convergence is not attained in 1,000 iterations.

preconditioner and the exact inverse computed with NF-LU for benchmarking

purposes. One can actually increase the density of the approximate inverses using

two different tree structures for MLFMA and for the construction of the SAI

preconditioner, as detailed in [92], but this comes at the cost of extra memory,

which is a potential source of problem for large CEM computations. With the

INF preconditioner, however, we achieve iteration counts that are very close to

those of NF-LU. This means that the INF preconditioner makes good use of the

available sparse near-field matrix and produces nearly optimal approximations

for the inverse. In addition, these approximations are achieved in at most five

iterations; hence the solution times are also decreased significantly.

To further assess the performance of the INF preconditioner, we solve larger

instances of the problems in Figure 3.10 with increasing frequencies, as shown

in Table 4.2. The solutions of these problems are carried out on 32 cores of an

eight-node cluster interconnected with an Infiniband network. Each node of the

cluster has two Intel Xeon 5345 quad-core processors and 32 GB of RAM. We

note that none of the problems in Table 4.2 can be solved without an effective

preconditioner even if the no-restart GMRES solver is used.

Iteration counts and timings pertaining to the solutions of the problems listed

in Table 4.2 for the SAI and INF preconditioners are presented in Table 4.3.

These results indicate that the proposed INF preconditioner consistently achieves

84

Table 4.2: Quantitative features of the open-surface geometries used for the
numerical experiments.

Geometry
Frequency Size MLFMA

N
(GHz) (λ) Levels

P1 32 32 8 344,000

P2 64 64 9 1,377,280

P3 96 96 10 3,062,400

P4 128 128 11 5,511,680

HS1 32 64 9 408,064

HS2 64 96 10 1,633,280

HS3 96 192 10 3,838,496

HS4 128 256 11 6,535,168

RA1 8 27 8 187,144

RA2 16 53 9 748,024

RA3 32 107 10 2,991,067

RA4 48 160 11 6,849,398

Notes: “Size” denotes the edge length for the patch and

the diameter for the sphere. λ denotes the wavelength

at the frequency of operation.

better performance than the SAI preconditioner in all cases. The INF precondi-

tioner decreases the solution times of the patch and reflector antenna problems

by about 30% and those of the half-sphere problem by about 25%, with respect

to the SAI preconditioner.

In each iteration, GMRES stores the preconditioned residual vector [2], hence

its memory cost can be significant for large problems when the number of iter-

ations is high. In Table 4.4, we present the parallel memory costs (per process)

of GMRES for solutions with SAI and INF preconditioners. We also present the

memory consumptions of MLFMA and the SAI setup. Since the sparsity pattern

of SAI is the same as that of the near-field matrix, we do not need to store in-

dexing arrays for SAI [44]. As a result, the amount of memory required by SAI is

much less than that of MLFMA. On the other hand, memory amounts required

by GMRES are significant and they are even higher than those of the SAI setup.

INF reduces the iteration counts with respect to the SAI preconditioner, but

85

Table 4.3: Experimental results for comparing the SAI and INF preconditioners.

Geometry

SAI INF

SAI Inner Outer

Setup Iter Time Iter Iter Time

P1 10 109 174 217 73 132

P2 48 157 1,147 316 106 812

P3 132 194 6,225 391 131 4,393

P4 308 234 27,902 478 160 19,620

HS1 20 221 1,424 480 160 999

HS2 92 351 10,046 780 260 7,258

HS3 350 480 23,458 1,101 367 18,374

HS4 839 546 66,778 1,218 406 51,285

RA1 9 93 204 184 62 136

RA2 37 139 1,266 272 95 832

RA3 201 200 7,276 408 138 5,138

RA4 671 252 31,784 509 172 22,404

Notes: “SAI Setup”denotes the construction time of SAI (in

seconds) and applies to both SAI and INF. “Time” denotes the

solution times, given in seconds. “Inner Iter” and “Outer Iter”

denote the total number of inner and outer iterations.

GMRES memory for INF is larger than that of SAI, since for INF we use the

flexible version of GMRES, whose memory cost is twice that of usual GMRES.

Nonetheless, we note that the memory consumption of GMRES is much less than

that of MLFMA.

4.4.2 CFIE Results

We investigate the performance of the INF preconditioner on two closed-surface

problems formulated with CFIE. Even though CFIE is expected to produce

better-conditioned systems compared to the EFIE formulation of open geome-

tries, the two closed-surface problems are selected as particularly difficult real-life

problems. These problems involve a wing geometry (W) and a helicopter (H), as

illustrated in Figure 4.2. The wing geometry (W) has sharp edges and corners.

The helicopter geometry (H) has a closed surface, but with very thin features

and complicated surfaces, causing the deterioration of its condition numbers.

86

Table 4.4: Memory costs (in MB) of MLFMA, SAI/INF setup, and GMRES
solutions.

Geometry MLFMA
SAI/INF GMRES

Setup SAI INF

P1 78 16 9 12

P2 261 64 52 70

P3 430 139 142 191

P4 2,955 256 307 421

HS1 201 17 22 31

HS2 788 69 137 202

HS3 1,769 169 439 672

HS4 3,145 277 851 1,265

RA1 87 8 4 6

RA2 327 33 25 34

RA3 1,274 133 143 197

RA4 3,114 313 407 556

The quantitative features of the various numerical experiments are listed in Ta-

ble 4.5. Both the wing (W) and the helicopter (H) problems are discretized with

very large numbers of unknowns, 7.5 million and 13 million, respectively. Fur-

thermore, the surface of the real-life helicopter (H) geometry is triangulated with

three different mesh types, and each mesh type is created with three different

mesh sizes, hence obtaining 9 different problems. For example, H31 in Table

4.5 denotes the third mesh size for the first mesh type. This is a very realistic

approach since different mesh generators and different users of mesh generators

produce different types of meshes, which, in turn, influence the condition of the

resulting matrix equations. We will demonstrate the effectiveness of the INF

preconditioner on these difficult real-life problems.

Helicopter (H) Wing (W)

Figure 4.2: Closed-surface geometries formulated with CFIE.

87

Table 4.5: Quantitative features of the closed-surface geometries used for the
numerical experiments.

Geometry
Frequency Size MLFMA

N
(GHz) (λ) Levels

W1 4 13 7 117,945

W2 8 27 8 471,780

W3 16 53 9 1,887,120

W4 32 107 10 7,548,480

H11 1.3 74 10 556,515

H21 2.6 147 11 2,226,060

H31 5.2 295 12 8,904,240

H12 1.4 79 10 644,133

H22 2.8 159 11 2,576,532

H32 5.6 317 12 10,306,128

H13 1.6 91 10 817,260

H23 3.2 181 11 3,269,040

H33 6.4 363 12 13,076,160

Notes: “Size” denotes the largest dimension, i.e., edge

length of the smallest cube enclosing the geometry. λ

denotes the wavelength at the frequency of operation.

For the closed-surface problems, in addition to DP, SAI, and INF, we consider

also the block-diagonal preconditioner (BDP), which is commonly used with the

CFIE formulation. BDP is obtained by exactly solving the diagonal blocks that

represent the self-interactions of the lowest-level clusters of the MLFMA tree

structure (Figure 1.2). Iteration counts and timings of the solutions are compared

in Table 4.6. With the INF preconditioner, we observe a significant decrease in

the solution time. For the wing geometry, the gain is about 40% with respect to

BDP and 25% to 35% with respect to the SAI preconditioner. For the real-life

helicopter problem, which has thin and complicated surfaces, the gain is about

27% to 57% with respect to BDP, and 16% to 25% with respect to the SAI

preconditioner.

We further analyze helicopter solutions in Figure 4.3, where we plot the total

solution times, including the setup and solution times of the preconditioner. For

all instances of problem sizes and mesh types, the INF preconditioner consistently

provides faster solutions than the other preconditioners. Figure 4.3 shows that all

88

Table 4.6: Experimental results for comparing the INF preconditioner with DP,
BDP, and the SAI preconditioner for closed-surface problems.

Geometry
DP BDP SAI SAI INF

Iter Time Iter Time Setup Iter Time Inner Iter Time

W1 100 61 60 37 12 42 34 60 31 22

W2 127 300 78 186 33 57 150 78 40 111

W3 166 1,667 98 985 111 74 832 103 53 617

W4 211 8,951 131 5,559 576 96 4,139 212 65 3,166

H11 170 2,722 115 1,848 54 75 1,249 202 55 960

H21 170 12,581 115 8,490 172 92 7,026 222 74 5,771

H31 195 65,151 134 44,804 644 112 38,164 273 91 31,293

H12 169 2,996 110 1,871 62 77 1,374 197 57 1,045

H22 170 12,892 114 8,655 215 94 7,454 234 78 6,325

H32 205 74,821 136 48,416 856 117 42,836 283 94 35,072

H13 167 3,032 150 2,730 70 79 1,513 197 59 1,168

H23 177 14,209 160 12,886 267 98 8,270 240 80 6,915

H33 205 77,240 187 70,549 1,054 127 49,344 297 99 39,268

Notes: “SAI Setup” denotes the construction time of SAI (in seconds) and applies to both

SAI and INF. “Time” denotes the solution times, given in seconds. “Iter” denotes the

number of iterations and “Inner” denotes the total number of iterations of the inner solver.

solution times obey the O(N log N) complexity of MLFMA, in general. As the

problem sizes grow and MLFMA levels increase, it is well known that the solution

times experience discrete jumps [106], without violating the general O(N log N)

complexity. For this reason, we plot the solution times in the three groups,

corresponding to the three MLFMA levels, i.e., 10, 11, and 12. In each group,

the solution times with the INF preconditioner are significantly lower than those

with the other preconditioners, especially considering that the vertical axis in

Figure 4.3 is scaled logarithmically.

Finally, in Table 4.7, we present the parallel memory costs for CFIE solu-

tions. We include the group that contains the largest problem of the helicopter.

Closed-surface problems can be solved with CFIE in fewer iterations, compared

to open-surface problems solved with EFIE. Therefore, memory required by the

GMRES solver is significantly less than those presented in Table 4.4. Even

though the memory requirement of FGMRES employed by INF is higher than

that of GMRES, the memory cost of INF is not significant compared to that of

89

10
6

10
7

10
3

10
4

10
5

Number of Unknowns

S
ol

ut
io

n
T

im
e

(s
ec

.)

DP
BDP
SAI
INF

Figure 4.3: Total solution times of the helicopter problem. The lines fit the
solution times in a least-squares sense.

Table 4.7: Memory costs (in MB) of MLFMA, SAI/INF setup, and GMRES
solutions.

Geometry MLFMA
SAI/INF GMRES

Setup DP BDP SAI INF

W1 68 7 3 2 1 2

W2 232 26 14 9 6 9

W3 774 97 75 44 33 48

W4 2,360 371 380 236 173 234

H13 437 46 33 29 15 23

H23 1,831 167 138 125 76 125

H33 7,431 637 639 583 396 617

MLFMA. We also note that memory costs of the SAI setup and GMRES are

much less than that of MLFMA.

4.5 Conclusion

For the iterative solution of EFIE via MLFMA, designing preconditioners that ef-

fectively use the information provided by the sparse near-field matrix is crucial for

fast convergence. Even though the CFIE formulation yields better-conditioned

linear systems than EFIE, its use is limited to closed-surface problems. Further-

more, real-life problems usually involve thin and complex parts, and this causes

90

an increase in the iteration counts required for convergence, even with CFIE.

Hence, iterative solutions of CFIE also benefit from preconditioning. ILU [40]

and SAI [44] preconditioners are designed for this purpose. ILU preconditioners

are not suitable for scalable parallel implementations. SAI preconditioners accel-

erate the iterative convergence to some extent, but they have limited success in

taking full advantage of the available sparse near-field matrix, as demonstrated

by the comparisons with the benchmark LU solutions (NF-LU) in Table 4.1.

To increase their effectiveness, one can increase the density of the approximate

inverses beyond that of the near-field matrix, but this is not the best solution

because of the memory considerations. Moreover, the benefit obtained even with

this costly solution is limited, as shown in [83].

In this work, we propose an alternative way to increase the efficiency using

flexible solvers. In this scheme, the near-field matrix is iteratively solved and

used as a preconditioner in addition to a fixed preconditioner, such as a SAI pre-

conditioner, which is used to accelerate the inner iterative solver. This approach

has the following advantages:

• By using the available SAI as the preconditioner of the inner system, only

a few iterations suffice to achieve a strong preconditioner, and the iteration

counts of the outer solver become very close to those obtained from the

benchmark exact solution of the near-field system. Hence, the cost of

applying the preconditioner is lowered, and the overall solution times are

significantly decreased.

• The proposed INF preconditioner is demonstrated to provide faster (i.e.,

shorter CPU times and fewer iterations) and scalable solutions for problems

involving as many as 13 million unknowns. The advantage of the INF

preconditioner over the other near-field preconditioners is consistent and

does not vanish as the problem size grows.

91

• The proposed preconditioner’s parallel scalability is very good because the

application of the preconditioner consists merely of repeated sparse matrix-

vector multiplications, which are highly parallelizable.

• The only cost of the proposed scheme is the extra storage of the precon-

ditioned residual vectors of FGMRES in memory, because of the variable

preconditioning [2]. However, since the iteration counts are reduced, the

required FGMRES memory is not significant, especially compared to the

MLFMA memory.

92

Chapter 5

Preconditioners Utilizing More

Than the Near-Field Matrix

For very large problems, the near-field matrix itself becomes insuf-

ficient to approximate the dense system matrix, and preconditioners

generated from the near-field interactions cannot be effective.

Tahir Malas, Özgür Ergül, and Levent Gürel, 2007 Computational

Electromagnetics Workshop (CEM’07).

5.1 Introduction

In the previous two chapters, we have investigated parallel preconditioners con-

structed from the sparse near-field matrix, and shown the effectiveness of these

approaches for problems up to a few millions of unknowns. For some problems

formulated with EFIE, however, iteration counts significantly increase as the

problem size increases. Since we use the no-restart GMRES solver, in addition

to increasing solution times, high iteration counts cause a significant memory

consumption, such as the HS4 problem in Table 4.4. The increase in iteration

93

counts is, in part, due to the degrading conditioning of EFIE for large problems,

and, in part, due to the increasing sparsity of near-field matrices. Hence, be-

cause of this second effect, the near-field preconditioners become insufficient to

accelerate the iterative convergence as desired. This is the case, even if we use

almost all of the near-field information efficiently by the INF preconditioner.

In addition to preconditioning, another option for reducing the cost of an

iterative solution can be the relaxation methods. These methods aim to reduce

the accuracy of the matrix-vector multiplications as the convergence takes place

during iterations. For example, Bouras and Frayssé [107] propose decreasing the

accuracy of the matrix-vector multiplications in the jth iteration by relating the

relative error δj of the matrix-vector multiplication to the norm of the residual

vector ρj, i.e.,

δj =





ǫ, ‖ρj‖2 > 1

ǫ

‖ρj‖2

, ǫ ≤ ‖ρj‖2 ≤ 1

1, ‖ρj‖2 < ǫ,

(5.1)

where ǫ ≤ 1 denotes the target residual error. Using (5.1), the relative error

of the matrix-vector multiplication is relaxed from ǫ to 1 as the iterations pro-

ceed. However, using a similar relaxation strategy by adjusting the accuracy of

MLFMA during the course of an iterative solution is not trivial. This is because

the implementation details of MLFMA depend on the targeted accuracy. In prin-

ciple, it is possible to construct a fixed number of MLFMA versions with various

levels of accuracy. Nevertheless, each version increases the cost of the setup sub-

stantially. Moreover, a less-accurate MLFMA obtained by decreasing the number

of accurate digits is not significantly cheaper than the ordinary MLFMA.

In this study, we use a similar idea, but use a “relaxed” version of MLFMA

for preconditioning. We present an efficient inner-outer solution scheme [108],

similar to INF. Outer iterative solutions are performed by using a flexible solver

accelerated by an ordinary MLFMA. However, inner solutions are performed by

94

an approximate MLFMA (AMLFMA). We further accelerate the inner solutions

using the SAI preconditioner. We illustrate the proposed solution strategy in

Fig. 5.1. There are two explanations to describe the advantages of the proposed

strategy:

SAI Preconditioner

z ′

y ′

Flexible Iterative Outer Solver

⋅ =A x b

Matrix-Vector Product

= ⋅y A z

y

z

v

w

Inner Solver

v M w′ ′= ⋅

v′

Preconditioner

w′

b x

MLFMA

A v w′ ⋅ =

Matrix-Vector Product

y A z′ ′ ′= ⋅

AMLFMA

Figure 5.1: Inner-outer solution scheme that use an approximate version of
MLFMA.

1. Matrix-vector products performed by an ordinary MLFMA are replaced

with more efficient multiplications performed by AMLFMA. Different from

the relaxation strategies, however, only a single specific implementation of

AMLFMA is sufficient to construct an inner-outer scheme. In addition, a

reasonable accuracy (without strict limits) is sufficient for the approxima-

tion.

2. Iterative solutions by an ordinary MLFMA are preconditioned with a very

strong preconditioner that is constructed by approximating the full matrix

instead of the sparse part of the matrix.

95

In this study, AMLFMA is introduced and proposed as a tool to construct ef-

fective preconditioners. We consider the iterative solutions of large-scale electro-

magnetics problems and demonstrate the acceleration provided by the proposed

strategy based on AMLFMA, compared to the conventional near-field precondi-

tioners.

The rest of the Chapter is organized as follows. In Section 5.2, we introduce

the proposed AMLFMA scheme. Section 5.3 present some further details of the

proposed preconditioning technique. Next, we provide numerical examples in

Section 5.4, followed by our concluding remarks in Section 5.5.

5.2 The Approximate Multilevel Fast Multipole

Algorithm

As explained in Section 1.6, MLFMA can perform a matrix-vector multiplication

with a specific level of accuracy, which is controlled by the excess bandwidth

formula, given in (1.32). To calculate the interactions between the clusters at a

level l, radiation and receiving patterns are defined and sampled at O(T 2
l) angular

points, where Tl is the truncation number for the series in (1.30). For a cluster

of size al = 2l−3λ at level l, the truncation number is determined by using the

excess bandwidth formula [29] for the worst-case scenario and the one-box-buffer

scheme [30]. The work performed at each MLFMA level depends on

• the number of clusters in that level and

• the truncation number Tl, which depends on the size of the clusters in that

level and the the number of accurate digits d0.

The maximum truncation number is linearly proportional to the electrical size

of the object, hence the truncation number grows rapidly as a function of the

96

cluster size. For the highest MLFMA level L, Tmax = TL = O(kD), where k

is the wave number and D is the size of the problem. However, the truncation

number loosely depends on the value of d0 for large clusters [32].

A direct way to construct a less-accurate MLFMA is to reduce the trunca-

tion numbers using (1.32). For example, in [92], a similar inner-outer solution

scheme has been used where the ordinary MLFMA has four digits of accuracy,

i.e., d0 = 4, and the less-accurate MLFMA may have only one digits of accu-

racy. This strategy, however, has major disadvantages in terms of efficiency and

memory use. First of all, a less-accurate MLFMA obtained in this way is not

significantly faster than the ordinary MLFMA, because, the truncation number

loosely depends on d0 for large boxes at the higher levels of MLFMA [58, 48].

Moreover, a new set of patterns is required for the less-accurate MLFMA with

the reduced truncation numbers.

In this work, we generate an inexpensive version of MLFMA by relaxing the

accuracy in a flexible way. We balance the accuracy and efficiency by redefining

the truncation number for level l as

L′
l = L1 + af (Ll − L1), (5.2)

where L1 is the truncation number defined for the first level, Ll is the original

truncation number for the level l calculated by using the translation function

given in (1.32). The approximation factor af is defined in the range from 0.0

to 1.0. As af increases from 0.0 to 1.0, the AMLFMA becomes more accu-

rate but less efficient, while it corresponds to the full MLFMA when af = 1.

Hence, this parameter provides us important flexibility in designing the precon-

ditioner. Moreover, the truncation number of the lowest level is not modified,

hence AMLFMA does not require extra computation load for the radiation and

receiving patterns of the basis and testing functions when it is used in conjunction

with MLFMA in a nested manner.

97

5.3 Iterative Preconditioning Based on the Ap-

proximate MLFMA

Preconditioners that are based on the near-field interactions can be insufficient

to accelerate the iterative solutions of large-scale problems, especially those for-

mulated with EFIE. For more efficient solutions, it is possible to use the far-field

interactions in addition to the near-field interactions and construct more effective

preconditioners. This can be achieved by using flexible solvers and employing

approximate and ordinary versions of MLFMA in an inner-outer scheme. Using

a reasonable approximation for the inner solutions, the number of outer itera-

tions can be reduced substantially. In addition to more efficient solutions, the

inner-outer scheme prevents numerical errors that arise because of the deviations

of the computed residual from the true residual by significantly decreasing the

number of outer iterations. This is because the “residual gap,” i.e., the differ-

ence between the true and computed residuals, increases with the number of

iterations [109]. Another benefit of the reduction in iteration counts appears

when the iterative solutions are performed with the generalized minimal residual

(GMRES) algorithm, which is usually an optimal method for EFIE in terms of

the processing time [92],[40]. Nested solutions by flexible variants of GMRES,

namely, FGMRES [2] or GMRESR [110], require significantly less memory than

the ordinary solutions by GMRES.

There are many factors that affect the performance of an inner-outer scheme,

such as the primary preconditioning operator, the choice of the inner solver and

the secondary preconditioner to accelerate the inner solutions, and the inner

stopping criteria. Now, we discuss these factors in detail.

98

5.3.1 Preconditioning Operator

In an extreme case, one can use the full matrix itself as a preconditioner by em-

ploying the ordinary MLFMA to perform the matrix-vector multiplications for

the inner solutions. On the other hand, an inner-outer scheme usually increases

the total number of matrix-vector multiplications compared to the ordinary solu-

tions [109]. In addition, an approximate solution instead of an ordinary solution

can be sufficient to construct a robust preconditioner. As discussed in Section 5.2

and in [58], AMLFMA is an appropriate choice to perform the inner solutions.

By using the approximation factor af , the accuracy of AMLFMA can be adjusted

to achieve a maximum overall efficiency.

5.3.2 Inner Solver and the Secondary Preconditioner

For the inner solutions, GMRES is preferable due to its rapid convergence in a

small number of iterations. The inner solutions are also accelerated by using a

secondary preconditioner based on the near-field interactions. Among the various

choices described in this dissertation, we prefer the SAI preconditioner, which

effectively increases the convergence rate, especially in the early stages of the

iterative solutions [92].

5.3.3 Inner Stopping Criteria

The relative residual error ǫin and the upper limit for the number of inner itera-

tions jin
max are also important parameters that affect the overall efficiency of the

inner-outer scheme. Van den Eshof et al. [109] showed that fixing ǫin is nearly

optimal if relaxation is not applied. However, even 0.1 (10%) residual error can

cause a significant number of inner iterations for large-scale problems. Therefore,

in addition to ǫin, the maximum number of iterations jin
max should be set carefully

99

to avoid unnecessary iterations during the inner solutions. For large problems, a

small value of jin
max is more likely to keep the inner iteration counts under control

than a large value of ǫin.

5.4 Numerical Results

Finally, we demonstrate the performance of the proposed inner-outer scheme us-

ing AMLFMA, compared to the solutions accelerated with BD, SAI, and INF

preconditioners. Fortran 90 programming language is used for all implemen-

tations. Solutions are performed on a distributed-memory parallel computer

containing Intel Xeon Harpertown processors with 3.0 GHz clock rate. A to-

tal of 32 cores located in 16 nodes (2 cores per node) are used, and the nodes

are connected via an Infiniband network. Iterative solvers, namely, GMRES and

FGMRES, are provided by the PETSc library [73]. In all solutions, matrix-vector

multiplications are performed by MLFMA with three digits of accuracy. For the

inner solutions with AMLFMA, the target residual error and the approximation

factor are set to 10−1 and 0.2, respectively. To avoid unnecessary work, inner

solutions are stopped at maximum 10th iteration (jin
max=10). For the INF pre-

conditioner, however, the target residual error for the inner solutions is in the

range of 10−2 to 10−1, whereas the maximum number of iterations is set to be-

tween 3 and 5, depending on the problem. A small number of inner iterations

is usually sufficient for INF since the SAI preconditioner used to accelerate the

inner solutions provides a good approximation to A
NF

.

Parameters for the preconditioners are determined by testing the implemen-

tations on a wide class of problems and choosing the optimal combination to

minimize the total processing time for each preconditioner. For example, by set-

ting the approximation factor to 0.2 in AMLFMA, most of the matrix elements

are calculated with less than 10% error [58, 48]. Then, using 10−1 residual error

100

Table 5.1: Electromagnetics problems involving open metallic objects.

Problem
Frequency Size MLFMA Number of

(GHz) (λ) Levels Unknowns

P1 96 96 8 3,062,400
P2 128 128 9 5,511,680
P3 192 192 9 12,253,440

HS1 96 192 8 3,838,496
HS2 128 256 9 6,535,168
HS3 192 384 9 15,356,992

RA1 32 107 8 2,991,067
RA2 48 160 9 6,849,398
RA3 64 214 9 11,967,620

for the inner iterations provides the best performance. Choosing a smaller error

threshold leads to unnecessary iterations and a larger error threshold wastes the

relatively high accuracy of AMLFMA. Setting the maximum number of itera-

tions to more than 10 increases the processing time, even though the accuracy

of the inner solutions is not improved significantly.

EFIE is notorious for generating ill-conditioned matrix equations, which are

difficult to solve iteratively, especially when the problem size is large [79],[40].

Therefore, the proposed inner-outer scheme employing AMLFMA is particularly

useful for open surfaces that must be formulated with EFIE. In addition, we show

that the iterative solutions of complicated problems involving closed surfaces that

are formulated with CFIE are also improved by the proposed method.

5.4.1 EFIE Results

We use the three different metallic objects involving open surfaces, namely, a

patch (P), a half sphere (HS), and a reflector antenna (RA), which are depicted

in Fig. 3.10. Discretizations of the objects for various frequencies lead to large

matrix equations with millions of unknowns, as listed in Table 5.1. Dimensions

of the objects in terms of the wavelength and the number of active levels (L) in

MLFMA are also listed in Table 5.1.

101

Table 5.2: Processing time (seconds) and the number of iterations∗ for the solu-
tion of electromagnetics problems involving open metallic objects.

Problem
SAI∗∗ SAI INF AMLFMA

Setup Outer Time Outer Inner Time Outer Inner Time

P1 132 194 6,225 131 391 4,393 35 345 3,278

P2 308 234 27,902 160 478 19,620 43 425 9,860

P3 1,136 276 36,677 174 868 25,650 52 516 17,454

HS1 350 480 23,458 367 1,101 18,374 68 680 11,085

HS2 839 546 66,778 406 1,218 51,285 75 750 23,143

HS3 5,620 357 59,734 276 1,380 48,786 51 510 31,740

RA1 201 200 7,276 138 408 5,138 33 327 4,233

RA2 671 252 31,784 172 509 22,404 42 417 13,746

RA3 2,077 336 43,912 228 1,138 32,710 57 567 24,595
∗ The relative residual error is 10−3 for HS3 and RA3, and 10−6 for other problems.
∗∗ Setup of the SAI preconditioner is also required for INF and AMLFMA.

Table 5.2 presents the number of iterations and the processing time for the

solutions of the problems in Table 5.1. We observe that using the INF precondi-

tioner accelerates the solutions significantly compared to the SAI preconditioner

used alone. Employing the inner-outer scheme with AMLFMA further reduces

the processing time, and we are able to solve the largest problem discretized with

about 12 million unknowns in less than 7 hours. Although not shown in Table 5.2,

the memory required for the iterative algorithm is also reduced substantially by

the proposed method since the memory requirements of both GMRES and FGM-

RES increase with the number of iterations. As an example, for the solution of

P3 with SAI, GMRES requires 2614 MB per processor. Using an inner-outer

scheme and AMLFMA, the memory requirement is reduced to 820 MB.

5.4.2 CFIE Results

We use the two objects modelled with closed conducting surfaces, namely, a

helicopter (H) and a stealth airborne target named Flamme (F) [91]. These

objects are illustrated in Figure 3.12. Electromagnetics problems involving those

objects are are formulated with CFIE (α = 0.2) and listed in Table 5.3. Table 5.4

presents the number of iterations and the processing time when the solutions are

102

Table 5.3: Electromagnetics problems involving closed metallic objects.

Problem
Frequency Size MLFMA Number of

(GHz) (λ) Levels Unknowns

F1 40 80 10 1,248,480
F2 60 120 10 3,166,272
F3 80 160 11 4,993,920

H1 1.7 80 10 1,302,660
H2 2.4 113 11 2,968,512
H3 3.4 160 11 5,210,640

accelerated with the BD and SAI preconditioners, as well as the inner-outer

scheme using AMLFMA. We observe that the proposed method reduces the

solution time significantly compared to both the BD and SAI preconditioners.

Table 5.4: Processing time (seconds) and the number of iterations∗ for the solu-
tion of electromagnetics problems involving closed metallic objects.

Problem
BD∗∗ SAI∗∗∗ SAI AMLFMA

Outer Time Setup Outer Time Outer Inner Time

H1 117 2,287 183 90 1,869 16 239 813

H2 138 10,192 644 97 7,515 19 137 2,562

H3 125 10,986 627 104 9,386 25 240 4,938

F1 211 4,451 163 174 3,836 40 305 1,917

F2 347 10,087 402 316 9,276 58 331 6,641

F3 724 66,094 505 706 64,365 125 733 28,593
∗ The relative residual error is 10−6 for all problems.
∗∗ The BD preconditioner has a negligible setup time.
∗∗∗ Setup of the SAI preconditioner is also required for AMLFMA.

5.5 Conclusion

For very large electromagnetics problems, achieving a rapid convergence in a

reasonable iteration count is only viable by means of robust preconditioners. In

the context of MLFMA, the general trend is to develop sparse preconditioners

by using the near-field interactions. However, as the problem size gets larger and

the number of unknowns also increases, those preconditioners become sparser

and they may not be sufficient to obtain an efficient solution.

103

In this study, we propose an inner-outer scheme to improve iterative solu-

tions with MLFMA. For the inner solutions, matrix-vector multiplications are

performed efficiently by AMLFMA, which is obtained by systematically reduc-

ing the accuracy of the ordinary MLFMA. We show that the resulting solver

accelerates the iterative solutions of electromagnetics problems involving open

and closed geometries formulated with EFIE and CFIE, respectively.

104

Chapter 6

Schur Complement

Preconditioners For Dielectric

Problems

When applied to saddle point systems, on the other hand, stan-

dard algebraic preconditioners are often found to perform poorly.

Because of the indefiniteness and lack of diagonal dominance, these

preconditioners are often unstable. Even when the computation of

the preconditioner does not suffer from some type of breakdown (e.g.,

zero pivots in an incomplete factorization), the quality of the result-

ing preconditioner is often not very satisfactory, and slow convergence

is observed. Also, because of the absence of decay in A
−1

, it is dif-

ficult to construct good sparse approximate inverse preconditioners

for saddle point matrices.

Michele Benzi, Gene H. Golub, and Jörg Liesen, Acta Numerica,

Vol. 14, 2005.

105

6.1 Introduction

Many real-life problems in CEM involve dielectrics, such as the development of

effective lenses [111], simulations of photonic crystals [112], and optical analysis

of blood for blood-related diseases [113]. Recently developed surface integral-

equation formulations provide suitable mechanisms for the electromagnetic anal-

ysis of such dielectric problems. Examples include the combined tangential for-

mulation (CTF), which is a first-kind integral equation, and the combined nor-

mal formulation (CNF), which is a second-kind integral equation [10]. For those

formulations, similar to the PEC case, the multilevel fast multipole algorithm

(MLFMA) can be applied to overcome the computational bottleneck of result-

ing dense matrices [114]. Hence, accurate analysis of three-dimensional, real-life

dielectric problems become possible with low computational costs.

We analyze four types of surface formulations that are commonly used in

CEM: the combined tangential formulation (CTF), the combined normal formu-

lation (CNF), the modified normal Müller formulation (MNMF), and the electric

and magnetic current combined-field integral equation (JMCFIE), which is de-

rived from the combination of CTF and CNF, as shown in (6.17) [10, 115, 116].

Discretizations of those formulations with MOM yield 2× 2 partitioned matrices

in the form 
A11 A12

A21 A22


 ·


xJ

xM


 =


b1

b2


 , or A · x = b, (6.1)

where

A ∈ C
2N×2N and A11, A12, A21, A22 ∈ C

N×N . (6.2)

In (6.1), xJ and xM are N × 1 coefficient vectors of the Rao-Wilton-Glisson

(RWG) [7] basis functions expanding the equivalent electric and magnetic electric

currents, respectively, and b1,2 represent N × 1 excitation vectors obtained by

testing incident fields.

106

The resulting partitioned matrices are, in general, highly indefinite and have

poor spectral properties [12]. Significant effort has been devoted to devising

second-kind formulations that produce well-conditioned system matrices, such

as the electric and magnetic current combined-field integral equation (JMCFIE)

[116]. Another example is the modified normal Müller formulation (MNMF),

which is a meticulously scaled version of the normal Müller formulation [117].

Nonetheless, strong preconditioners are still required for efficient solutions of

dielectric problems because of the following reasons:

• It is known that the accuracy of second-kind integral equations is lower

than that of first-kind integral equations [12]. For the PEC case, CFIE,

which is a second-kind fomulation, produces successful enough results even

for very large problems [20]. In the case of dielectric problems, however,

comparing solutions of a photonic crystal problem shows that the accuracy

of JMCFIE can be much worse than that of CTF, and the results obtained

with the former can be severely misleading [67].

• Even though second-kind formulations JMCFIE and MNMF produce more

diagonally dominant and easier-to-solve systems than those of CTF, the

diagonal dominance of these formulations disappears with an increasing

dielectric constant. (Dielectric constant, ǫr, is defined as the ratio of the

electric permittivity of the outer region of the object to that of the inner

region.) As a result, the unpreconditioned solutions of such formulations

can necessitate too many iterations for convergence [114, 64].

• Finally, we note that the well-conditioning of recently developed formu-

lations, such as JMCFIE and MNMF, is shown by algebraic analysis of

system matrices that belong to small-size canonical problems (e.g., [12]).

However, recent studies [114, 64] show that real-life problems resulting in

large matrix systems, such as periodic dielectric structures, may represent

107

a significant challenge in terms of convergence, even when those problems

involve fairly small dielectric constants.

In the literature of scientific computing, preconditioning techniques for sys-

tems similar to (6.1) are usually studied in the context of generalized saddle-point

problems [118, 119, 120, 121, 34, 122, 123, 124, 125, 126, 127]. By approximating

the dense system matrix in (6.1) by a sparse near-field matrix, preconditioners

developed for saddle-point problems can be adapted to integral-equation formu-

lations of dielectric problems. The partitions in (6.1), however, do not satisfy any

of the conditions that generally exist in saddle-point problems, such as symmetry

or positive definiteness [118]. Moreover, contrary to our case, in many applica-

tions that lead to partitioned systems, the (2,2) partition is zero or has a much

smaller dimension than other partitions. In general, preconditioners are tailored

depending on the specific properties of the underlying problem [118]. Hence,

preconditioners developed for other applications may not be readily applicable

to surface integral-equation formulations.

In CEM, the effect of preconditioning on surface formulations of dielectric

problems has been studied only in a few papers. In [10], the authors employ

the diagonal preconditioner and a simple incomplete LU (ILU) preconditioner

for sphere problems with a low (ǫr = 4) and a very high dielectric constant

(ǫr = 36 + 0.3i). For the low-contrast sphere (i.e., with a low dielectric con-

stant), these preconditioners slightly decrease the iteration counts, whereas for

the high-contrast sphere, the preconditioners decelerate the convergence rate.

In [114], a four-partition block-diagonal preconditioner (4PBDP) is proposed,

which is constructed by using small diagonal blocks of each partition. 4PBDP

reduces iteration counts only for low-contrast problems that are formulated by

second-kind formulations. For problems formulated with CTF or involving a

high contrast, 4PBDP either decelerates the convergence rate or fails to provide

a significant improvement.

108

In this work, we consider preconditioners that are obtained with some approx-

imations to Schur complement reduction. We use the sparse near-field matrix

to construct preconditioners. The near-field matrix is formed naturally in the

context of the multilevel fast multipole algorithm (MLFMA), which is employed

to accelerate the dense matrix-vector multiplications (MVMs). The success of

the Schur complement preconditioners depends on effective approximations for

the solutions of systems involving the (1,1) partition and the Schur complement.

Similar to the work in [119], we use sparse approximate inverses (SAIs) in these

approximations. In [119], however, the authors use an iterative method [96] to

generate the sparsity pattern of a SAI in the course of construction. In our case,

the near-field pattern is a natural candidate for the sparsity pattern of a SAI, and

this approach leads to successful preconditioners for the surface integral-equation

formulations of PEC objects [44, 92]. Therefore, we employ the Frobenius-norm

minimization technique and use the available near-field pattern for approximate

inverses. The advantages of using SAIs over ILU-type preconditioners are ro-

bustness and ease of parallelization. Furthermore, by using the block structure

of the near-field matrix, we eliminate the high setup time of SAI. The approx-

imation for the Schur complement is more delicate than the (1,1) partition. In

the literature, most of the proposed approaches are limited to cases in which the

(2,2) partition is zero. We propose to obtain an approximate Schur complement

via incomplete matrix-matrix multiplications that retain the near-field sparsity

pattern. Then, we construct a SAI from the approximate Schur complement.

We also consider iterative Schur complement preconditioners. Instead of us-

ing SAIs directly to approximate the solutions of systems involving the (1,1)

partition and the Schur complement, we solve these linear systems iteratively,

and use SAIs as preconditioners for these “inner” solutions. The solution of di-

electric problems with MLFMA and the proposed preconditioning schemes are

illustrated in Figs. 6.2 and 6.1. For iterative Schur complement preconditioners

(Fig. 6.2), iterative solvers are employed for preconditioning, hence, a flexible

109

solver must be used for the outer solver [2]. When iterative solvers are used

for the reduced systems, it is in general possible to improve the direct approx-

imations and obtain stronger preconditioners. For sparse partitioned systems,

such a scheme may incur a significant application cost due to the extra MVMs

needed for the inner solutions [118, 128]. In our case, however, the required

sparse MVMs cause a small extra computational cost, since the computations

related to the far-field matrix elements (which are performed by MLFMA) are

usually dominant to near-field MVMs. Another advantage of the iterative Schur

complement preconditioners is that when iterative solutions are employed for pre-

conditioning, it is possible to use the same SAI for both the (1,1) partition and

the Schur complement, hence reduce the memory cost of the Schur complement

preconditioners shown in Fig. 6.1 by one half.

1
w

1
v

Iterative Solver

⋅ =A x b

Matrix-Vector Product

= ⋅y A z

y

z

v

w

Approximate Solution of the
Near-Field System

11 12 1 1

2 211 22

NF NF

NF NF

     
⋅ =     

         

A A v w

v wA A

1 11 1
v M w′= ⋅

2 2
v M w′= ⋅

S

2
v

Preconditioner

2
w
1
w

b x

MLFMA

Figure 6.1: Illustration of the solution of dielectric problems using MLFMA and
approximate Schur complement preconditioners. As explained in Section 6.5,
M 11 is an approximate inverse for ANF

11 and MS is an approximate inverse for
the Schur complement. w′

1 and w′
2 take different forms depending on the type

of the preconditioner.

This chapter is organized as follows. In the next section, we introduce some

of the recently developed surface integral-equation formulations for dielectrics.

However, we specifically concentrate on CTF, which produces the most accurate

110

Iterative Inner Solver

1
w

1
v

Flexible Iterative Outer Solver

⋅ =A x b

Matrix-Vector Product

= ⋅y A z

y

z

v

w

Approximate Solution of the
Near-Field System

11 12 1 1

2 211 22

NF NF

NF NF

     
⋅ =     

         

A A v w

v wA A

Iterative Inner Solver

11 1 1

NF ′⋅ =A v w
2 2

′⋅ =S v w
ɶ

2
v

SAI Preconditioner SAI Preconditioner

Preconditioner

2
w
1
w

b x

MLFMA

Iterative Inner Solver

1
w

1
v

Flexible Iterative Outer Solver

⋅ =A x b

Matrix-Vector Product

= ⋅y A z

y

z

v

w

Approximate Solution of the
Near-Field System

11 12 1 1

2 211 22

NF NF

NF NF

     
⋅ =     

         

A A v w

v wA A

Iterative Inner Solver

11 1 1

NF ′⋅ =A v w
2 2

′⋅ =S v w
ɶ

2
v

SAI Preconditioner SAI Preconditioner

Preconditioner

2
w
1
w

b x

MLFMA

Figure 6.2: Illustration of the solution of dielectric problems using MLFMA
and iterative Schur complement preconditioners. Here, instead of direct solves,
iterative solutions are employed to find approximate solutions to reduced systems.

As explained in Section 6.6, S̃ is an approximation to the Schur complement and
w′

1 and w′
2 take different forms depending on the type of the preconditioner.

results, and JMCFIE, which produces the lowest iteration counts among recently

developed surface formulations [114]. Then, we briefly review the discretization

process for dielectric problems. We introduce our proposed approaches in Sec-

tions 6.5 and 6.6. Then, in the results section, we show the superiority of the

proposed preconditioners both in terms of memory and solution times in various

problems.

A note on the use of partition and block : Throughout this chapter, we

will use the term partition to denote one of the submatrices of a 2×2 partitioned

system, i.e., we call A11 in (6.1) as the (1,1) partition of A. Partitions of the near-

field matrix are composed of interactions between pairs of neighboring lowest-

level MLFMA clusters. In the CEM community, the term block is used to denote

111

these interactions. We will adopt this convention and imply building blocks of a

near-field partition by the term block.

6.2 Surface Integral-Equation Methods for Di-

electric Problems

The surface integral-equation approach is an important class of numerical meth-

ods in electromagnetics scattering analyses of 3-D dielectric objects having arbi-

trary shapes [129]. Recently, significant progress has been made in devising new

formulations that are well suited for iterative solutions [10, 115, 116]. In this

section, we will briefly review these methods.

For all formulations, consider a closed homogeneous dielectric object that

resides in a homogeneous medium. Let the electric permittivity and the electric

permeability of the outer region of the object be ǫ1, µ1 and those of the inner

region be ǫ2, µ2, respectively. Using the equivalence principle, an equivalent

electric current J and an equivalent magnetic current1 M are defined on the

surface S of the object. Depending on the testing procedure and the considered

electromagnetic field, various integral-equation formulations can be derived.

6.2.1 The Combined Tangential Formulation (CTF)

If the boundary condition on the surface is tested directly, tangential electric-

field and magnetic-field integral equations for the outer and the inner regions can

be defined. For example, the tangential electric-field integral equation (T-EFIE)

1Preconditioning matrices
(
M

)
and magnetic currents (M) are denoted with similar sym-

bols, following conventions. Since one of them is a matrix
(
M

)
and the other one is a vector

(M), they should be clearly distinguishable from the context.

112

for the outer region is defined as [130]

t̂ · η1T1 {J} − t̂ · K1 {M} − t̂ ·
1

2
n̂ × M = −t̂ · Einc, (T-EFIE-O) (6.3)

where t̂ is any tangential vector on the surface, η1 =
√

µ1/ǫ1 is the impedance

of the outer medium,

Tl{X} = ikl

∫

S

dr′
[
X(r′) +

1

k2
l

∇′ · X(r′)∇
]
gl(r, r′), (6.4)

and

Kl{X} =

∫

PV,S

dr′X(r′) ×∇′gl(r, r′) (6.5)

are the operators that can be defined for both the outer (l = 1) and inner

(l = 2) regions, n̂ is the outward normal vector on the surface S, and Einc is the

incident electric field on the object. In (6.4) and (6.5), kl is the wavenumber in

the corresponding medium, PV is the principal value of the integral, and

gl(r, r′) =
eikl|r−r′ |

4π|r − r′|
(6.6)

is the scalar Green’s function of the 3-D scalar Helmholtz equation for medium

l, which represents the response at r due to a point source located at r′. For the

inner region, the tangential electric-field integral equation is

t̂ · η2T2 {J} − t̂ · K2 {M} + t̂ ·
1

2
n̂ × M = 0, (T-EFIE-I) (6.7)

where η2 is the impedance of the inner medium. Similar equations can also be

obtained by testing the tangential magnetic fields. Respectively, the tangential

magnetic-field integral equation (T-MFIE) for the outer and inner regions are

t̂ ·
1

η1

T1 {M} + t̂ · K1 {J} + t̂ ·
1

2
n̂ × J = −t̂ · H inc (T-MFIE-O) (6.8)

and

t̂ ·
1

η2

T2 {M} + t̂ · K2 {J} − t̂ ·
1

2
n̂ × J = 0. (T-MFIE-I) (6.9)

The four sets of integral equations, i.e., (6.3), (6.7), (6.8), and (6.9), can be

combined in several ways to solve for the unknown currents J and M [129].

113

In particular, the combination of the outer and the inner equations produces

internal-resonance-free formulations. Among such formulations, we consider the

recently proposed CTF [10], which is defined as

1

η1

T-EFIE-O +
1

η2

T-EFIE-I,

η1T-MFIE-O + η2T-MFIE-I.

(6.10)

Note that in (6.10), the identity terms cancel each other and CTF turns out to

be a first-kind integral equation. Also note that J is well tested in T-EFIE and

M is well tested in T-MFIE [10], hence the combination used in CTF leads to a

stable matrix equation. The scaling of the tangential equations further improves

the condition of the formulation compared to its former variants [10], such as the

tangential Poggio-Miller-Chang-Harrington-Wu-Tsai formulation [131, 132].

6.2.2 The Combined Normal Formulation (CNF)

Although CTF produces a stable formulation, it still suffers from slow conver-

gence since it is a first-kind integral equation. Hence, several authors proposed

second-kind and better-conditioned integral-equation formulations by making use

of the normal formulations [12]. These formulations can be obtained by testing

the fields after they are projected onto the surface via a cross-product by n̂. The

normal outer and inner electric-field integral equations are, respectively,

−n̂ × η1T1 {J} + n̂ ×K1 {M} −
1

2
M = n̂ × Einc (N-EFIE-O) (6.11)

and

n̂ × η2T2 {J} − n̂ ×K2 {M} −
1

2
M = 0. (N-EFIE-I) (6.12)

For the magnetic field, normal formulations yield

n̂ ×
1

η1

T1 {M} + n̂ ×K1 {J} −
1

2
J = −n̂ × H inc (N-MFIE-O) (6.13)

and

−n̂ ×
1

η2

T2 {M} − n̂ ×K2 {J} −
1

2
J = 0. (N-MFIE-I) (6.14)

114

Then, similar to CTF, CNF is formed by the linear combinations of the outer

and inner integral equations, i.e.,

N-MFIE-O + N-MFIE-I,

N-EFIE-O + N-EFIE-I.
(6.15)

However, contrary to CTF, the identity terms do not cancel out in CNF, and

a second-kind integral equation is obtained. When the Galerkin scheme is used

to discretize (6.15), these well-tested identity operators appear on the diagonal

partitions of the coefficient matrix and this results in more diagonally dominant

linear systems than tangential formulations.

6.2.3 The Modified Normal Müller Formulation (MNMF)

In [115], the authors show that a scaled version of the normal Müller formulation

[117] leads to a well-conditioned and stable formulation. Later, it is shown by

the same authors that MNMF produces the lowest iteration counts for iterative

solutions of dielectric problems compared to other stable formulations. Hence,

we also consider MNMF, which is actually a scaled version of CNF. MNMF is

defined as [115]

µ1

µ1 + µ1

N-MFIE-O +
µ2

µ1 + µ1

N-MFIE-I,

ǫ1

ǫ1 + ǫ1

N-EFIE-O +
ǫ2

ǫ1 + ǫ1

N-EFIE-I.

(6.16)

6.2.4 The Electric and Magnetic Current Combined-Field

Formulation (JMCFIE)

For non-dielectric PEC metallic objects, a combination of the electric-field inte-

gral equation and the magnetic-field integral equation yields the combined-field

integral equation [8], which has favorable characteristics for iterative solutions

[9]. In the dielectric case, a similar combination of CTF and CNF can be formed

115

as [116]

JMCFIE = αCTF + βCNF, (6.17)

where 0 ≤ α ≤ 1 and β = 1 − α. Similar to the PEC case, the matrix systems

of the JMCFIE formulation are more stable and can usually be solved in fewer

iterations compared to those of CTF and CNF [114].

6.2.5 Comparison of the Integral-Equation Formulations

for Dielectrics

All of the aforementioned integral-equation formulations have pros and cons in

terms of storage, accuracy, and conditioning. In terms of memory use, CTF re-

quires the least memory when MLFMA is applied to the solution. The reason is

that CTF has identical diagonal partitions and the same set of far-field patterns

for the inner and outer regions. CNF and JMCFIE also have identical diagonal

partitions but they have different far-field patterns for each region. Finally, in

addition to having different far-field patterns, MNMF also has different diagonal

partitions due to different scaling of N-MFIE-O and N-EFIE-I in (6.16). These

differences between the formulations can be remarkable, because the storage of

the near-field matrix and the radiation patterns constitute the highest memory

requirements in MLFMA. For example, the solution of a sphere geometry with

approximately 413,000 unknowns leads to 1.1 GB difference of memory use be-

tween CTF and MNMF [114]. In that example, the sphere has a radius of 7.5λ,

where λ denotes the wavelength in free space.

CTF is a first-kind integral-equation formulation, whereas the other formu-

lations (CNF, MNMF, and JMCFIE) are all second-kind formulations. In CTF,

the singularity of the hypersingular operator T can be decreased by moving the

differential operator from the Green’s function to the testing function. Hence,

CTF has a smoothing kernel, in contrast to other formulations with singular

116

kernels [12]. The smoothing property of the CTF kernel results in coefficient

matrices that are far from being diagonally dominant and that have poor condi-

tioning. On the other hand, due to the smoothing property of its kernel, CTF has

a better solution accuracy compared to normal formulations (CNF and MNMF).

JMCFIE includes CNF, therefore is also less accurate than CTF. Despite the

accuracy drawbacks, the singular kernels and the identity terms of normal for-

mulations and JMCFIE lead to more diagonally-dominant matrices and better

conditioning than CTF.

To evaluate the integral-equation formulations, however, one should also con-

sider two important parameters that seriously affect the accuracy and the sta-

bility of the resulting matrices: the dielectric constant (or relative permittivity)

of the medium (ǫr = ǫ2/ǫ1) and the shape of the geometry. Both the solution

accuracy and the conditioning of second-kind integral equations decrease as the

dielectric constant increases [12]. Irregularities of the geometry, i.e., surfaces hav-

ing sharp edges and corners, also have a negative effect on the accuracy of second-

kind integral equations. Therefore, when the dielectric constant is high and/or

the surface of the object has non-smooth sections, the accuracy of second-kind

integral equations can be much poorer than the accuracy of CTF [12]. Finally,

integral equations of the second kind are also shown to be more sensitive to dis-

cretization quality of the surface and to the accuracy of the numerical integration

than integral equations of the first kind.

From these discussions, it can be deduced that preconditioning is a critical

issue for accurate and efficient electromagnetics simulations of dielectric objects.

When the surface of the object has non-smooth regions or the dielectric constant

of the object is high, the accuracy of second-kind equations can be unacceptable

and one may have to employ CTF, for which the solutions are tough to obtain

without effective preconditioning. Moreover, a high dielectric constant impairs

117

the conditioning of normal formulations, and this can necessitate applying effec-

tive preconditioners to these formulations.

6.3 Discretization of the Surface Formulations

of Dielectric Problems

We can denote the surface integral equations described in Section 1.4 as

L11{J} + L12{M} = G1

L21{J} + L22{M} = G2

(6.18)

using linear operators Lkl. Projecting each operator in (1.6) onto the N -

dimensional space span{f 1,f 2, . . . ,fN} formed by the divergence-conforming

RWG testing functions [7], we have

〈fm,L11{J}〉 + 〈fm,L12{M}〉 = 〈fm,G1〉

〈fm,L21{J}〉 + 〈fm,L22{M}〉 = 〈fm,G2〉
1 ≤ m ≤ N, (6.19)

where

〈f , g〉 =

∫
drf(r) · g(r) (6.20)

denotes the inner product of two vector functions f and g. This process is also

known as “testing the integral equation.” By choosing the basis functions to

be the same as the testing functions, we adopt a Galerkin scheme and seek the

discrete solutions of

J ≈
N∑

n=1

xJnfn (6.21)

and

M ≈
N∑

n=1

xM nfn (6.22)

in the same N -dimensional space. As a result, the coefficient vectors xJ and xM

become the solution of the 2N × 2N linear system

118


A11 A12

A21 A22


 ·


xJ

xM


 =


b1

b2


 , (6.23)

where

(
Akl

)
mn

= 〈fm,Lkl{fn}〉, (bi)m = 〈fm,Gi〉, k, l = 1, 2, m, n = 1, 2, . . . N.

(6.24)

Since the RWG basis functions are defined on planar triangles, geometry

surfaces are discretized accordingly, i.e., via planar triangulation. Each basis

function is associated with an edge; hence the number of unknowns is equal to

the total number of edges in a mesh. Unless dictated by the geometry, we set the

average size of an edge about one-tenth of the wavelength as a rule of thumb.

6.4 Preconditioning with Schur Complement

Reduction

Similar to the PEC case, the interactions among touching lowest-level clusters

constitute the near-field matrix, whose entries are calculated directly using nu-

merical integration techniques [21, 22, 14, 24] and stored in the memory for later

use in MVMs. In this way, the dense system matrix is decomposed into its

far-field and near-field parts as


A11 A12

A21 A22


 =


ANF

11 ANF
12

ANF
21 ANF

22


 +


AFF

11 AFF
12

AFF
21 AFF

22


 , or A = ANF + AFF . (6.25)

Since the lowest-level cluster is fixed to a certain size (i.e., 0.25λ) and the number

of touching clusters is also fixed by the shape of the geometry, there are O(N)

near-field interactions in each partition. In addition, the clustering of the geome-

try leads to a near-field matrix with block-structured partitions, where the blocks

of partitions correspond to interactions of the lowest-level near-field clusters [40].

119

Since the whole matrix is not explicitly available in our case, we first approx-

imate the dense system matrix with the sparse near-field matrix, i.e.,

A ≈ ANF . (6.26)

In general, magnitudes of the elements of the matrix A change with physical

proximity [44]. Therefore, the near-field matrix ANF is likely to preserve the

most relevant contributions of the dense system matrix.

For iterative solutions of partitioned linear systems, preconditioners are fre-

quently based on segregated methods. In such methods, the unknown vectors are

computed separately [118]. The main representative of the segregated approach

is the Schur complement reduction method.

6.4.1 Schur Complement Reduction

Consider the 2 × 2 partitioned near-field system,


ANF

11 ANF
12

ANF
21 ANF

22


 ·


v1

v2


 =


w1

w2


 , (6.27)

which can be rewritten as

ANF
11 · v1 + ANF

12 · v2 = w1 (6.28)

ANF
21 · v1 + ANF

22 · v2 = w22. (6.29)

When ANF
11 is nonsingular, from (6.28)

v1 =
(
ANF

11

)−1
· (w1 − ANF

12 · v2). (6.30)

If we insert (6.30) in (6.29) and rearrange, we can find v2 from

S · v2 = w2 − ANF
21 ·

(
ANF

11

)−1
· w1, (6.31)

where

S = ANF
22 − ANF

21 ·
(
ANF

11

)−1
· ANF

12 (6.32)

120

is the Schur complement. Once v2 is found from (6.31), v1 can be found using

ANF
11 · v1 = w1 − ANF

12 · v2. (6.33)

Schur complement reduction is an attractive solution technique if the order

of the Schur complement S is small and if linear systems with matrix ANF
11 can

be solved efficiently. Even when these requirements are not entirely satisfied,

approximate solutions of (6.31) and (6.33) can serve as useful preconditioners.

Hence, we consider the approximate solution of the system (6.27) as an important

step of constructing and applying a preconditioner.

6.5 Approximate Schur Complement Precondi-

tioners

Next, we describe four types of preconditioners derived from the Schur com-

plement reduction with different approximations to the solutions of (6.33) and

(6.31) [118].

Diagonal Approximate Schur Preconditioner (DASP)

The diagonal approximate Schur preconditioner (DASP) is derived with the ap-

proximations

ANF
12 = ANF

12 ≈ 0 (6.34)

performed in the right-hand sides (RHSs) of (6.33) and (6.31). Then, these

equations reduce to

ANF
11 · v1 = w1 (6.35)

and

S · v2 = w2. (6.36)

121

Therefore, the preconditioning matrix of DASP is given by

MDASP =


ANF

11 0

0 S


 . (6.37)

Upper Triangular Approximate Schur Preconditioner (UTASP)

If we set only one of the off-diagonal partitions ANF
12 and ANF

21 in the RHSs

of (6.33) and (6.31) to zero, we obtain a partition triangular preconditioner.

When we set ANF
21 ≈ 0, we obtain the upper triangular approximate Schur

preconditioner (UTASP). First, we have to solve for v2 from

S · v2 = w2. (6.38)

Then, we can find v1 using v2:

ANF
11 · v1 = w1 − ANF

12 · v2. (6.39)

Given the same RHS, UTASP finds the same v2 with DASP, but it computes

a more accurate v1. The preconditioning matrix of UTASP is defined as

MUTASP =


ANF

11 ANF
12

0 S


 . (6.40)

Lower Triangular Approximate Schur Preconditioner (LTASP)

If we set ANF
12 ≈ 0 instead of ANF

21 , we obtain the lower triangular approximate

Schur preconditioner (LTASP). In this case, we have to first solve for v1 from

ANF
11 · v1 = w1. (6.41)

Then, we can find v2 using v1:

S · v2 = w2 − ANF
21 ·

(
ANF

11

)−1
· w1 = w2 − ANF

21 · v1. (6.42)

122

Compared to DASP, LTASP finds the same v1 but a more accurate v2 for a given

RHS. The preconditioning matrix of LTASP is defined as

MLTASP =


ANF

11 0

ANF
21 S


 . (6.43)

Approximate Schur Preconditioner (ASP)

In an effort to devise an effective preconditioner, it is also an option not to omit

any of the off-diagonal blocks in ANF . For efficiency, however, solutions of the

systems involving S and ANF
11 should be performed approximately, as will be

detailed in Section 6.5.1. Hence, we call this preconditioner the approximate

Schur preconditioner (ASP), for which the preconditioning matrix is given by

MASP = ANF =


ANF

11 0

ANF
21 S


 ·


I

(
ANF

11

)
−1 · ANF

12

0 I


 . (6.44)

6.5.1 Approximations of the Solutions Involving the (1, 1)

Partition and the Schur complement

The performance of the preconditioners explained in the previous Section de-

pends on the availability of fast and approximate solutions to

ANF
11 · v1 = w′

1 (6.45)

and

S · v2 = w′
2, (6.46)

where w′
1 and w′

2 take different forms depending on the type of preconditioner.

Since the approximations performed in these solutions define a preconditioner for

the linear system (6.1), accurate solutions are not required. On the other hand,

very crude approximations of the exact solutions may deteriorate the quality of

the preconditioner, and iteration counts may not be decreased as desired.

123

In the literature, several approximation strategies for the solutions of (6.45)

and (6.46) have been proposed, but many of them are strongly problem de-

pendent [118]. For surface integral-equation formulations, we discuss possible

approximations and our approach for A11 and S.

Approximating the Solutions Involving ANF
11

For some specific problems, many efficient techniques are available for a fast and

accurate solution of (6.45). For example, if the system matrix were obtained

from the discretization of a differential operator, in many cases a few multigrid

sweeps would yield efficient and yet sufficiently accurate solutions [133]. In gen-

eral situations, however, one must resort to algebraic approaches, such as ILU

factorizations, SAIs, or approximations by a few iterations of a Krylov subspace

method.

In this work, we approximate the solution of the system (6.45) by a SAI of

ANF
11 . We denote the SAI of ANF

11 as M 11. Hence, our approximation becomes

(
ANF

11

)−1
≈ M 11. (6.47)

SAI preconditioners have been successfully used in CEM for PEC problems

[44, 86, 92, 85]. Two important advantages of SAI preconditioners over ILU-

type preconditioners are robustness and ease of parallelization [93]. In our case,

it is also possible to alleviate the high construction cost of SAI using the block

structure of the near-field matrix [92, 44], as we describe in the following para-

graph.

Approximate inverses of sparse matrices can be obtained in several ways

[94, 95, 96, 97, 93]. Among these methods, we make use of the Frobenius-norm

technique [93], which decouples the generation of an N × N SAI into N inde-

pendent least-squares problems for each row. Then, each least-squares problem

can be solved by employing a QR factorization and an upper-triangular system

124

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=12

Figure 6.3: Eigenvalues of M 11 · A
NF
11 for different formulations and increasing

dielectric constants of 4, 8, and 12.

solution [1]. On the other hand, due to the block structure of ANF
11 , we need

to perform only N/m QR factorizations, where m is the average block size of

ANF
11 . For a 0.25λ lowest-level box size and λ/10 mesh size, typical values of m

lie between 20 and 50, depending on the geometry. Since the QR factorization

constitutes the dominant cost in a least-squares solution, we significantly reduce

the construction time of SAI.

We evaluate the approximation (6.47) in Fig. 6.3, where we depict eigenvalues

of matrices M 11 · A
NF
11 for different formulations and increasing dielectric con-

stants of 4, 8, and 12. The geometry is a 0.5λ sphere involving 1,860 unknowns.

We see that eigenvalues are very tightly clustered around (1, 0) for normal for-

mulations (CNF and MNMF). For CTF, we see a slightly looser clustering than

CNF and MNMF. JMCFIE lies between the two cases. Also note that the spectra

of ANF
11 are unaffected by the increase of the dielectric constant.

125

Approximating the Solutions Involving S

The approximation involving the Schur complement matrix S is more subtle than

that of ANF
11 . Moreover, it is shown that the approximation quality provided

to the system involving S should accommodate the approximation level to the

system involving ANF
11 [120]. Therefore, we try to find an approximation for S

that is as good as the approximation for ANF
11 .

In the literature related to saddle-point problems, several choices exist when

the system matrix A is symmetric [118]. These choices include multigrid sweeps

and low-order discretization of the related operator. Many purely algebraic ap-

proaches have also been proposed for the nonsymmetric case, in which the (2,2)

partition is zero. Those approaches include approximating the inverse of the

(1,1) partition in the Schur complement by the inverse of the diagonal or block-

diagonal part of the (1,1) partition. Better approximations can be provided in

the form of incomplete factors (e.g., [134]). However, a limited number of meth-

ods exist for the case of a nonzero (2,2) partition [118, 120, 119]. Perhaps one

of the most applicable methods is to use a Krylov subspace solver to obtain

an approximate solution of the system (6.46). MVMs with S can be provided

to the solver by multiplications with the (2,2) and off-diagonal partitions, and

by another iterative solve with ANF
11 . The required solve with ANF

11 , however,

can significantly increase the application cost of the preconditioner. Moreover,

in many cases, a preconditioner for S is still required to accelerate the Krylov

subspace solver.

In this work, we consider the following strategies to approximate the inverse

of S for the solution of (6.46):

1. As a simple approach, we can approximate the inverse of S using its block-

diagonal part. Let Bij denote the block-diagonal part of the near-field

partition (i, j), which consists of the self-interactions of the lowest-level

126

clusters. Then, the approximation is

S−1 ≈ MBD =
(
B22 − B21 ·

(
B11

)−1
· B12

)−1

. (6.48)

2. For normal formulations and JMCFIE, the resulting partitions and the

Schur complement are likely to have some degree of diagonal dominance.

Therefore, we expect to benefit from the approximation (6.48). On the

other hand, CTF partitions are far from being diagonally dominant and

indeed block-diagonal preconditioners decelerate the convergence rate of

iterative solvers for tangential formulations of PEC problems [13]. Thus, for

CTF, instead of the approximation in (6.48), we consider the modification

formula [135] that expresses the inverse of S as

S
−1

=
(
ANF

22

)−1
+

(
ANF

22

)−1
· ANF

21 · S
′−1

· ANF
12 ·

(
ANF

22

)−1
, (6.49)

where

S
′
= ANF

11 − ANF
12 ·

(
ANF

22

)−1
· ANF

21 . (6.50)

The modification formula is also known as the Woodbury matrix identity

[35] or the matrix inversion lemma in control theory [136]. To obtain an ap-

proximate inverse for S, we discard the second term in S
′
and approximate

the inverses of ANF
11 and ANF

22 with SAIs, i.e.,

S
−1

≈ MMF = M 22 + M 22 · A
NF
21 · M 11 · A12 · M 22 (6.51)

= M 22 ·
(
I + ANF

21 · M 11 · A
NF
12 · M 22

)
, (6.52)

where M 22 denotes the SAI of ANF
22 . Note that ANF

22 = ANF
11 for CTF,

hence, we need to construct and store only one SAI. The application of

(6.52) can be performed by sparse MVMs during the iterative solution of

(6.1), without the need to store any matrices other than SAI.

3. We can approximate the inverse of the Schur complement matrix by

S
−1

≈
(
ANF

22

)−1
≈ M 22, (6.53)

127

assuming the first term in the RHS of (6.32) is the dominant term in the

Schur complement matrix. M 22 denotes the SAI of ANF
22 . Again, we need

to construct a second SAI only for MNMF.

4. Finally, by employing an incomplete matrix-matrix multiplication, we gen-

erate an explicit SAI for S that involves both of its first and second terms.

First, we compute a sparse approximation to S in the form of

S̃ = A
NF

22 − A
NF

21 ⊙ M 11 ⊙ A12, (6.54)

where ⊙ denotes an incomplete matrix-matrix multiplication obtained by

retaining the near-field sparsity pattern and M 11 is the SAI of ANF
11 . Then,

the approximation is performed as

S−1 ≈ S̃−1 ≈ MS, (6.55)

where MS denotes a SAI approximation to the inverse of S̃. In our imple-

mentation, the block entries of the near-field partitions are stored row-wise.

Therefore, the incomplete matrix-matrix multiplication can be performed

in O(N) time using the ikj loop order of the block matrix-matrix multipli-

cation [35] so that the block entries of the matrices are accessed row-wise.

Details of this operation are elucidated with a pseudocode in Fig. 6.4. Note

that the “if statement” in the innermost loop ensures that a block Cij is

updated only if clusters i and j are in the near-field zone of each other. In

this way, the near-field sparsity pattern is preserved for the product matrix

C.

We evaluate the aforementioned approximations in Figs. 6.5, 6.6, and 6.7,

where we depict the eigenvalues of the preconditioned Schur complement matri-

ces. We summarize our comments as follows:

• In Fig. 6.5, we depict MMF · S for CTF and MBD · S for other for-

mulations. We see that the clustering (or localization) of the eigenvalues

128

C = 0

for each lowest-level cluster i do

for each cluster k ∈ N (i) do

for each cluster j ∈ N (k) do

if j ∈ N (i) then

Cij = Cij + Dik · Ekj

endif

endfor

endfor

endfor

Figure 6.4: Incomplete matrix-matrix multiplication of C = D · E, where C,
D, and E are block near-field matrices with the same sparsity pattern. Cij

denotes the block of the near-field matrix C that corresponds to the interaction
of cluster i with cluster j. N (i) denotes the clusters that are in the near-field
zone of cluster i.

diminishes with the increasing dielectric constant, particularly for CTF and

CNF. Even though the scattering (or spread) of the eigenvalues of CTF with

MBD is much worse than of CNF (not shown here), interestingly, the spec-

tra of JMCFIE are less affected from the increase in the dielectric constant

than those of CTF and CNF. This can be related to the stronger diagonal

dominance of matrices produced with combined formulations than those of

tangential formulations [13]. Nonetheless, from the spectra in Fig. 6.5, we

conclude that the approximations (6.48) and (6.52) are significantly poorer

than (6.47) for all formulations.

• When we omit the second term of the Schur complement matrix in (6.32)

and perform the approximation (6.53), we observe from Fig. 6.6 that the

spectra of CNF are extensively scattered with an increasing dielectric con-

stant. Even though not as much as those of CNF, the spectra of CTF are

also scattered. JMCFIE, being a combination of CTF and CNF, is also af-

fected from the scattering of CNF and CTF. Hence, we conclude that this

approximation is problematic for high dielectric constants in CTF, CNF,

and JMCFIE. MNMF, on the other hand, is less affected from the increase

129

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=12

Figure 6.5: Eigenvalues of preconditioned Schur complement S for increasing
dielectric constants of 4, 8, and 12. CTF is preconditioned with MMF , whereas
MBD is used as the preconditioner for the other formulations.

in the dielectric constant. However, when we compare Figs. 6.6 and 6.3,

we conclude that the approximation (6.53) is also significantly poorer than

(6.47) for MNMF.

• From Fig. 6.7, it is clear that the best approximation for the Schur comple-

ment S is provided by MS. Clusterings of CTF, MNMF, and JMCFIE are

tight, whereas CNF exhibits slightly looser clustering. When we compare

Figs. 6.7 and 6.3, we observe that the approximation (6.47) is as good as

(6.55) for CTF. For other formulations, clusterings in Fig. 6.7 are a little

looser compared to those in Fig. 6.3.

From these discussions, we conclude that MS provides the most appropriate

approximation to the inverse of the Schur complement matrix S. The other two

approximate inverses MBD and M 22 have lower setup and memory costs, but

130

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=12

Figure 6.6: Eigenvalues of M 22 · S for different formulations and increasing
dielectric constants of 4, 8, and 12.

they are far from ensuring the requirement that the approximation for S should

be as good as that of A11. On the other hand, in the context of a nested iterative

solver (e.g., [56]), MS and other approximations, i.e., (6.48), (6.52), and (6.53),

can also be utilized as inner preconditioners for iterative solutions of S, and this

will be the subject of the next section.

6.6 Iterative Schur Complement Precondition-

ers

These preconditioners are formed by solving (6.45) and (6.46) iteratively and

with controllable accuracy. We consider the following ones:

131

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=4

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=8

−2 0 2 4
−4

−2

0

2

4

CTF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

CNF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

MNMF, ε
r
=12

−2 0 2 4
−4

−2

0

2

4

JMCFIE, ε
r
=12

Figure 6.7: Eigenvalues of MS · S for different formulations and increasing di-
electric constants of 4, 8, and 12.

1. The upper triangular iterative Schur preconditioner (UTISP), which is

formed by omitting ANF
21 in the RHS of (6.31).

2. The lower triangular iterative Schur preconditioner (LTISP), which is

formed by omitting ANF
12 in (6.33).

3. The iterative Schur preconditioner (ISP), which is formed by iteratively

solving (6.45) and (6.46) with some approximations that will be described.

These preconditioners, respectively, have the same form with UTASP, LTASP,

and ASP introduced in Section 6.5. However, we solve those reduced systems via

preconditioned Krylov subspace iterative methods. Sifert and de Sturler showed

that there is no advantage in solving one system significantly better than the

other [120]. Hence, we solve both systems using the same stopping tolerance. In

this case, one should use a flexible solver, such as FGMRES, for the solution of the

partitioned linear system [2]. The extra cost of using FGMRES is to store two sets

132

of preconditioned residual vectors instead of one, hence, the memory requirement

of GMRES doubles. However, it is possible to use regular GMRES by ensuring

a fixed number of inner iterations per solution for both systems. In the next

two sections, we separately analyze the solutions of (6.45) and (6.46). Then,

we determine an appropriate inner stopping tolerance for these two solutions by

comparing the preconditioners with varying inner tolerances.

6.6.1 Iterative Solutions Involving the (1, 1) Partition

To reduce the application cost of the Schur complement preconditioners, approx-

imate solutions of the reduced systems should be obtained in a few iterations.

For the solutions of the systems involving ANF
11 , we use the SAI preconditioner

that has been described in Section 6.5, which has proven to be successful both

in EFIE and CFIE [44, 83].

In Table 6.1, we compare solutions of (6.45) obtained without a precondi-

tioner (No PC) and using SAI. No-restart GMRES is used as the iterative solver.

This problem involves a sphere illuminated with a plane wave. The problem

size is increased by increasing the frequency and using λ/10 mesh size for all

cases. We observe that SAI is very successful in reducing the iteration counts

for all formulations. Furthermore, iteration counts obtained with the SAI pre-

conditioner remain fixed as the number of unknowns is increased. Hence, its use

significantly increases the efficiency of the Schur complement preconditioners. In

this problem, the sphere involves a moderate relative dielectric constant of 4.0,

however, as shown in Section 6.5, the approximation quality of SAI to ANF
11 is

not adversely affected from an increase in the dielectric constant.

We repeat the experiment on two photonic crystal problems: a periodic slabs

with 262,920 unknowns and a perforated waveguide with 162,420 unknowns.

For both problems RHSs are found using Hertzian dipoles for both structures.

133

Table 6.1: Number of iterations for the solution of ANF
11 · v1 = w′

1 to reduce the
residual error by 10−6.

N
CTF CNF JMCFIE MNMF

No PC SAI No PC SAI No PC SAI No PC SAI

1,860 167 9 13 4 38 7 13 4

7,446 195 10 14 3 37 6 14 3

29,742 217 10 13 3 38 6 13 3

65,724 243 10 14 3 39 6 14 3

264,006 294 10 14 3 41 6 14 3

In Figs. 6.8 and 6.9, we compare the no-restart GMRES solutions of the no-

preconditioner case (No PC) and SAI (M 11). We analyze convergence for the first

ten iterations since a rough solution, generally up to 0.1 residual error, is shown

to be sufficient to yield a successful preconditioner [118, 65]. For both problems

we observe that M 11 significantly accelerates the solutions of all formulations

except MNMF. Note that convergence is too slow without a preconditioner for

CTF solutions and for the JMCFIE solution of the perforated waveguide. On the

other hand, it is possible to achieve 0.1 residual error in a few iterations when

M 11 is employed, even though solutions stagnate later for CTF.

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CTF

No PC

M 11

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CNF

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

JMCFIE

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

MNMULLER

Figure 6.8: Comparison of iterative solutions of (6.33) without a preconditioner
and using M 11 for a periodic-slabs problem involving 262,920 unknowns.

134

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CTF

No PC

M 11

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CNF

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

JMCFIE

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations
R

es
id

ua
l N

or
m

MNMULLER

Figure 6.9: Comparison of iterative solutions of (6.33) without a preconditioner
and using M 11 for perforated waveguide involving 162,420 unknowns.

6.6.2 Iterative Solutions Involving the Schur Comple-

ment

For solving the system in (6.46), we do not need to explicitly form the Schur com-

plement S, because matrix-vector products required by Krylov subspace solvers

can be performed by multiplications with ANF
22 , ANF

21 , ANF
12 , and solves with

ANF
11 [118]. However, we get rid of the solves with ANF

11 by approximating the

Schur complement in the form

S̃ = ANF
22 − ANF

21 · M 11 · A
NF
12 , (6.56)

where M 11 is the SAI of A11. Hence, we solve

S̃ · v2 = w′
2, (6.57)

instead of (6.46). In this way, we significantly reduce the application cost of

the preconditioners. Note that M 11 is also used as a preconditioner for the

iterative solution of (6.45), hence, this choice has no additional setup or memory

135

cost. We adopt the same approach for the RHS of ISP and approximate w′
2 =

w2 − ANF
21 ·

(
ANF

11

)−1
· w1 by

w̃2
′ = w2 − ANF

21 · M 11 · w1 (6.58)

to avoid an inner solve in each iteration.

The approximate inverses mentioned in Section 6.5 can be considered as

preconditioners for the iterative solution of (6.56). Assuming the first term in

the RHS of (6.32) is the dominant term and using the equality of the diagonal

partitions, M 11, which is the approximate inverse of ANF
11 , can also be used as

a preconditioner for the Schur complement. Even though it is shown that M 11

is not suitable for use as a direct inverse, the spectra shown in Fig. 6.6 reveal

that it can still be used as an effective preconditioner. To verify this claim, we

analyze the solution of (6.57) for No PC and SAI (M 11) in Table 6.2. The no-

restart GMRES solver is used to solve the sphere problem with a 4.0 relative

dielectric constant and the RHSs are found by plane-wave excitations. Similar

to the solution of (6.45), we observe a remarkable decrease in iteration counts of

all formulations. Furthermore, six-order reduction of initial residual norms can

be obtained in merely 10 iterations for both CTF and JMCFIE formulations.

However, if the dielectric object has a very high dielectric constant, one may

have to use a more robust preconditioner for the Schur complement. Such a

preconditioner, called MS, has been constructed in Section 6.5 by approximating

the Schur complement using incomplete matrix-matrix multiplications and then

approximately inverting the resulting sparse matrix.

In Figs. 6.10 and 6.11, we compare the solutions of (6.46) with photonic crys-

tal problems for the no-preconditioner case, and three approximate inverses, i.e.,

M 11, MBD, and MS. First, observe that Schur complement solutions are more

difficult to solve than the solutions involving ZNF
11 , shown in Figs. 6.8 and 6.9.

In particular, it is not possible attain fast convergence for normal formulations

136

Table 6.2: Number of iterations for the solution of S̃ · v2 = w′
2 to reduce the

residual error by 10−6.

N
CTF CNF JMCFIE MNMF

No PC SAI No PC SAI No PC SAI No PC SAI

1,860 166 10 26 17 40 10 18 11

7,446 193 10 26 17 40 10 18 11

29,742 213 10 26 16 43 9 19 11

65,724 238 9 27 16 44 9 20 11

264,006 282 9 29 16 45 9 21 11

CNF and MNMF. As a result, we prefer to use JMCFIE in photonic-crystal prob-

lems instead of CNF and MNMF. Note that JMCFIE produces more accurate

solutions compared to CNF and MNMF [114]. Among the three approximate

inverses, MS performs the best and accelerates the iterative solutions signifi-

cantly. On the other hand, for the perforated waveguide problem that has a

high contrast, attaining fast convergence is still difficult and solution starts to

stagnate even with MS after first five iterations. Hence, it is wise to set a low

maximum number of inner iterations for ISP to avoid wasted effort.

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CTF

No PC

M 11

MBD

MS

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CNF

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

JMCFIE

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

MNMULLER

Figure 6.10: Iterative solutions of (6.46) with various preconditioners for a
periodic-slabs problem involving 262,920 unknowns.

137

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CTF

No PC

M 11

MBD

MS

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

CNF

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations

R
es

id
ua

l N
or

m

JMCFIE

0 5 10
10

−3

10
−2

10
−1

10
0

Number of Iterations
R

es
id

ua
l N

or
m

MNMULLER

Figure 6.11: Iterative solutions of (6.46) with various preconditioners for a per-
forated waveguide involving 162,420 unknowns.

6.6.3 Stopping Criteria for Inner Solutions

Thanks to SAI, the fast convergence of the linear systems (6.45) and (6.57)

can provide efficient solutions for preconditioning. Nonetheless, applying the

iterative Schur complement preconditioners is more costly compared to simple

preconditioners, such as 4PBDP [114], and the non-iterative Schur complement

preconditioners [64]. For this purpose, we compare the following three versions

of iterative Schur complement preconditioners, which are obtained by increasing

the tolerances of inner solutions:

1. The stopping tolerances of (6.45) and (6.46) are set to 10−6. Furthermore,

extra solves are used to approximate the inverse of ANF
11 in the Schur com-

plement and for the RHS term of ISP. This benchmark preconditioner cor-

responds to an accurate solution of the near-field matrix and is expected to

provide a lower bound for the Schur complement preconditioners in terms

of iteration counts.

138

2. Stopping tolerances of (6.45) and (6.57) are set to 10−3.

3. Stopping tolerances of (6.45) and (6.57) are set to 0.1.

In Table 6.3, we show the number of iterations obtained using these inner so-

lutions for the sphere problem involving 65,724 unknowns. From the results, it is

evident that accurate inner solves are not required for the Schur complement pre-

conditioners. A low inner tolerance, such as 10−6, can even increase the iteration

counts of highly indefinite systems obtained from CTF. Also for other formula-

tions, extra solves to approximate the inverse of ANF
11 in the Schur complement

and the RHS term of ISP are very costly and do not lead to a significant reduc-

tion in the outer iteration counts. Besides, the iteration counts corresponding to

10−3 and 0.1 inner tolerances are quite close, but applying preconditioners using

a 0.1 inner tolerance is much cheaper. Hence, for the experiments reported in

the next section, we set the inner tolerance at 0.1 residual error and a maximum

of three or five inner iterations, depending on the difficulty of the problem.

Table 6.3: Number of iterations for the sphere problem involving 65,724 un-
knowns using the iterative Schur complement preconditioners with varying inner
tolerances. For 10−6 inner tolerance, extra inner solves for the Schur complement
and for the RHS of ISP are used.

LTISP UTISP ISP

SIE 10−6 10−3 0.1 10−6 10−3 0.1 10−6 10−3 0.1

CTF 87 87 89 79 77 83 68 65 69

CNF 59 59 60 46 46 51 38 38 43

JMCFIE 57 57 55 66 68 71 49 49 51

6.7 Numerical Results

We use the following setup in our experiments:

• Computations are performed on an Intel Xeon 5355 processor with 16 GB

of available memory.

139

• The generalized minimal residual method (GMRES) [2] with no restart is

used as the iterative solver [73]. Even though it is not reported in detail

here, contrary to findings in [137], we observe a significant difference be-

tween the performances of GMRES and other non-optimal solvers, such

as conjugate gradient squared (CGS) or biconjugate gradient stabilized

(BiCGStab). Comparisons of MVM counts for the sphere problem pre-

sented in Section 6.7.1 and in [114] demonstrate the superiority of GMRES.

We note that the performance difference of GMRES and other non-optimal

solvers is even more severe for the real-life problems of Sections 6.7.2 and

6.7.4.

• Iterations are performed until the norm of the initial residual is reduced by

a factor of 10−3. This error level is practical [26] and in accordance with

the controllable error performed in MLFMA.

• Solutions are started with a zero initial guess and terminated if a maximum

of 1,000 iterations is reached.

For comparison purposes, we provide solutions with the no-preconditioner

case (No PC), with 4PBDP [114], and with an ILU-type preconditioner. 4PBDP

is a simple preconditioner constructed by the inclusion of only self-interactions

of the lowest-level clusters in each partition. Among several types of ILU pre-

conditioners, the dual-threshold ILUT preconditioner [2] has been shown to be

very ineffective in a finite-element implementation of the Navier-Stokes equa-

tions [119]. In CEM, however, ILU-type preconditioners have been successfully

employed for surface integral-equation formulations of PEC problems [40]. For

the ILUT preconditioner, we set the threshold values so that it uses up the same

amount of memory as ILU(0) and the near-field matrix [40]. We also include,

whenever possible, iterative counts obtained using the exact factorization of the

whole near-field matrix by an LU factorization. This preconditioner, which we

140

Table 6.4: Salient features of the sphere problems investigated in this study.
Frequency Size MLFMA Number of

Problem (GHz) (λ) Levels Unknowns

S1 1.0 2 4 7,446

S2 1.5 3 5 16,728

S3 3.0 6 6 65,724

S4 6.0 12 7 264,006

S5 8.5 17 8 540,450

Note: λ denotes the wavelength at the frequency of operation.

call NF-LU, has prohibitive memory and time requirements, and is used merely

for benchmarking purposes.

We first evaluate the proposed preconditioners on a sphere problem, which

has an inner dielectric constant of 4.0. The sphere is a widely used geometry

in CEM since its analytical solutions are available via Mie-series solutions. Fur-

thermore, since the sphere geometry is trivially reproducible, it is an important

benchmarking problem, providing an opportunity for the evaluation of the per-

formance of the proposed preconditioners with respect to other preconditioners.

However, with possible high dielectric constants and complex shapes, real-life

problems are more important for judging the quality of a preconditioner. There-

fore, we also consider three real-life problems: a lens with a dielectric constant

of 12.0 [111], a periodic dielectric structure (periodic slabs) with a dielectric

constant of 4.8, and a photonic crystal waveguide with a dielectric constant of

11.56 [138].

6.7.1 The Sphere Problem

In Table 6.4, we present solution frequencies, diameters in terms of wavelength,

number of MLFMA levels, and number of unknowns relating to the sphere prob-

lem. We deliberately solve problems with increasing sizes to make a reasonable

judgment about the preconditioner, because near-field matrices become sparser

as the number of MLFMA levels increases.

141

Setup Times

The setup of the Schur complement preconditioners is composed of the construc-

tion of M 11 (SAI of ANF
11) and MS (SAI of the approximate Schur complement

matrix S). In Table 6.5, we compare these setup times with those of ILUTP

(ILUT with 0.5 pivoting tolerance) and ILU(0). The setup of 4PPBDP is negli-

gible.

Table 6.5: Setup times (in minutes) of ILU-type preconditioners and SAIs of
ANF

11 and the Schur complement matrix S for the sphere problem.
Problem ILUTP ILU(0) M11 MS

S1 0.16 0.02 0.08 0.08

S2 0.56 0.05 0.18 0.19

S3 3.84 0.19 0.68 0.73

S4 20.54 0.77 2.82 3.05

S5 158.21 2.17 5.75 6.23

From Table 6.5, we see that setup times of ILUTP are disproportionately

larger than those of the others, particularly for the S5 problem. The time re-

quired for the setup of ILU(0) is six to eight times less than that of the Schur

complement preconditioners, which require the constructions of both M 11 and

MS. As the following tables will reveal, however, both of these times are in-

significant compared to the iterative solution times of the problems. Finally,

note that the setup time of MS is only slightly higher than that of M 11 because

of the efficiently implemented incomplete matrix-matrix multiplication described

in Fig. 6.4.

ILU-Type and Simple Preconditioners

For the first-kind integral formulation CTF, similar to the results of [119], we

observe that the ILU-type preconditioners have an instability issue. In particu-

lar, with ILU(0), the condition estimates [76] turn out to be very high for some

142

large sphere problems. The same situation also arises for ILUT, but the in-

stability can be removed in this case if pivoting with 0.5 tolerance is applied.

Other formulations that are of the second-kind do not exhibit any instability

and ILU(0) performs the best among the ILU-type preconditioners for those for-

mulations. Therefore, we employ ILU(0) for formulations other than CTF, and

ILUTP for CTF. Our comments on the results of No PC, 4PBDP and ILU-type

preconditioners are as follows:

• For all formulations, the no-restart GMRES solves all sphere problems suc-

cessfully. However, the number of iterations is very high in some instances,

such as the CNF solution of S4. Moreover, some large instances of these

problems cannot be solved with other non-optimal solvers. For example,

the solutions of S5 do not converge with BiCGStab for CNF, MNMF, and

JMCFIE.

• In accordance with the findings in [114], we observe that 4PBDP worsens

the convergence behavior of CTF. In that paper, it is shown that for other

formulations, CGS and BiCGStab solutions of the sphere geometry can

significantly be improved with 4PBDP. Nevertheless, 4PBDP is, in gen-

eral, less effective on the convergence of large problems when GMRES is

employed as the iterative solver.

• Considering the solutions with CTF, ILUTP provides a significant improve-

ment over No PC only for the S3 case. Solutions with CNF, on the other

hand, significantly benefit from ILU(0). For better-conditioned JMCFIE

and MNMF, ILU(0) provides minor improvements over 4PBDP.

Approximate Schur Complement Preconditioners

In Table 6.7, we present iteration counts and total solution times of approximate

Schur complement preconditioners. We omit the results related to DASP since

143

Table 6.6: Performances of the 4PBDP and ILU(0) preconditioners and No PC
on the sphere problem.

CTF CNF

Prob- No PC 4PBDP ILUTP No PC 4PBDP ILU(0)

lem iter time iter time iter time iter time iter time iter time

S1 179 7 467 18 149 6 67 3 45 2 27 1

S2 167 21 668 85 138 19 140 18 89 11 46 6

S3 471 313 † − 284 198 171 113 126 83 61 41

S4 291 912 † − 268 851 968 3,065 516 1,894 161 515

S5 271 2,028 † − 273 2,198 390 2,916 386 2,880 120 902

MNMF JMCFIE

No PC 4PBDP ILU(0) No PC 4PBDP ILU(0)

iter time iter time iter time iter time iter time iter time

S1 47 2 32 1 27 1 79 3 53 2 31 1

S2 71 9 51 7 39 5 93 12 62 8 36 5

S3 112 73 85 56 63 42 139 92 100 67 68 46

S4 192 605 161 504 116 368 223 706 141 444 102 326

S5 187 1,405 165 1,240 108 826 143 1,075 111 836 102 805

Notes: “iter” and “time” denote the number of iterations and total solution time in minutes.

Nonconvergence is denoted by a dagger “†”.

this preconditioner behaves consistently poorer than others do. We first note that

per-iteration times of all Schur complement preconditioners are very close to each

other. Even though the applications of UTASP and LTASP require three and the

application of ASP requires four multiplications with N × N sparse partitions,

the time required for these multiplications is much less than the time required for

the far-field computations performed by MLFMA. Furthermore, the complexity

of near-field partition is O(N), whereas MLFMA scales with O(N log N). As a

result, per-iteration times are dominated by the MLFMA operations and itera-

tion times are in accordance with the iteration counts. For a certain formulation,

when we can decide that some of the preconditioners behave worse than the oth-

ers, we omit them for the largest S5 problem. For example, we omit UTASP and

LTASP solutions of S5 for CTF.

Our comments on the results presented in Table 6.8, also compared to those

in Table 6.6, are as follows:

144

Table 6.7: Performances of the Approximate Schur complement preconditioners
on the sphere problem.

CTF CNF

Prob- UTASP LTASP ASP UTASP LTASP ASP

lem iter time iter time iter time iter time iter time iter time

S1 53 2.2 48 2.0 43 1.8 33 1.4 30 1.3 27 1.2

S2 60 7.9 55 7.3 47 6.3 57 7.7 57 7.7 46 6.2

S3 147 98.7 121 81.5 103 69.8 64 43.8 59 40.5 55 38.0

S4 209 664.4 178 566.7 144 459.2 130 416.7 204 651.7 158 506.9

S5 ∗ ∗ 147 1,109.7 97 747.8 ∗ 97 741.0

MNMF JMCFIE

UTASP LTASP ASP UTASP LTASP ASP

iter time iter time iter time iter time iter time iter time

S1 45 1.9 33 1.4 29 1.3 33 1.4 35 1.5 29 1.3

S2 66 8.7 43 5.8 42 5.7 40 5.5 40 5.5 34 4.7

S3 123 83.3 67 46.0 70 48.0 63 43.4 76 52.1 55 38.1

S4 235 752.0 122 391.9 132 423.8 93 301.7 124 400.9 84 273.6

S5 ∗ 103 788.7 128 982.3 ∗ ∗ 77 595.7

Notes: “iter” and “time” denote the number of iterations and total solution time in minutes.

An asterisk “∗” denotes that the problem is not solved with that particular preconditioner.

• ASP is the best-performing preconditioner among the Schur complement

preconditioners except for the S4 solution of CNF and the largest three

problems of MNMF; it is possible that the indefiniteness of the matrices

causes this [3]. While improving the preconditioner, the eigenvalues with a

negative real part move progressively towards the point (1, 0). Meanwhile,

however, some eigenvalues may be very close to zero, slowing down the

convergence.

• For CTF, ASP reduces solution times of the sphere problems by a factor

of two to four, compared to ILUTP and No PC. For CNF, ASP provides a

reduction by a factor of three to six with respect to 4PBDP. ILU(0) solves

CNF systems as fast as ASP, but for S5, solutions with ASP converge

faster. JMCFIE solutions are also obtained about two times faster than

ASP than with 4PBDP. ILU(0) is better than 4PBDP for JMCFIE, but it

is worse than ASP. Finally, MNMF benefits the least from the Schur com-

plement preconditioners. Nonetheless, for large problems, LTASP provides

145

an approximate 30% reduction in time compared to 4PBDP. ILU(0) solves

MNMF problems as fast as the Schur complement preconditioners do.

• When we compare the formulations considering their performances with

ASP, we observe that JMCFIE systems are solved with the lowest and CTF

systems are solved with the highest iteration counts. Although the iteration

counts of MNMF are much less than those of CNF without a preconditioner,

CNF benefits more from preconditioning. As a result, iteration counts of

these formulations become close to each other when an ILU-type or a Schur

complement preconditioner is employed.

Iterative Schur Complement Preconditioners

We compare non-iterative and iterative versions of Schur complement precondi-

tioners among with a simple preconditioner (No PC for CTF and 4PBDP for

other formulations) in Table 6.8. Our comments on the results are as follows:

• Among the iterative Schur complement preconditioners, ISP results in the

lowest iteration counts, except for the S4 solution of CNF. However, for

this case, the iteration count of UTISP is only slightly less than that of

ISP.

• For CTF, ISP solves sphere problems at least three times faster than No

PC, and also provides significant reductions (about 40%) in the solution

times of ASP. For CNF, solutions are obtained four to five times faster than

4PBDP, and 20% faster than ASP. For JMCFIE, ISP provides a reduction

of 50% with respect to 4PBDP, and a reduction of 10% with respect to

ASP.

• Compared to those obtained with No PC and 4PBDP, the gap in the so-

lution times between CTF and JMCFIE diminishes with ISP. Hence, it

146

becomes possible to obtain accurate CTF solutions with similar conver-

gence rates of JMCFIE. We refer to [114] for a detailed comparison of the

accuracy of CTF and JMCFIE on sphere problems.

Table 6.8: Performances of the Schur complement preconditioners on the sphere
problem.

CTF

Prob- No PC ASP UTISP LTISP ISP

lem iter time iter time iter time iter time iter time

S1 179 7 43 2 41 2 38 2 27 1

S2 167 21 47 6 41 5 38 5 31 4

S3 471 313 103 70 89 60 83 57 69 47

S4 291 912 144 459 133 428 109 351 83 268

S5 271 2,028 147 1110 100 767 97 743 91 696

CNF

4PBDP ASP UTISP LTISP ISP

iter time iter time iter time iter time iter time

S1 45 2 27 1 33 1 28 1 22 1

S2 89 11 46 6 57 8 50 7 36 5

S3 126 83 55 38 60 41 51 35 43 30

S4 516 1,894 158 507 121 393 167 540 125 406

S5 386 2,880 97 741 88 672 98 748 80 612

JMCFIE

4PBDP ASP UTISP LTISP ISP

iter time iter time iter time iter time iter time

S1 53 2 29 1 30 1 33 1 27 1

S2 62 8 34 5 37 5 38 5 32 4

S3 100 67 55 38 55 38 71 49 51 35

S4 141 444 84 274 78 255 117 380 75 245

S5 111 836 77 596 71 546 98 751 67 515

Notes: “iter” and “time” denote number of iterations and total solution

time in minutes.

The maximum number of inner iterations is set to three for the iterative

Schur complement preconditioners in Table 6.4. We note, however, that only

the S4 solution of CNF is sensitive to the stopping criteria of inner solutions.

For that problem, when we decrease the inner tolerance to 10−3, ISP yields the

best result and solves this problem in 85 iterations and 371 minutes. Other

problems produce similar results with 10−3 inner tolerance. Hence, unless a very

tight stopping criterion is selected, inner tolerance is not very important for the

iterative Schur complement preconditioners.

147

Next, we compare the iteration counts of ASP and ISP with a simple pre-

conditioner (No PC for CTF and 4PBDP for other formulations) and the exact

solution of the near-field system (NF-LU) in Fig. 6.12. ASP and ISP significantly

reduce the iteration counts compared to a simple preconditioner. However, the

proposed preconditioning scheme, ISP, further accelerates the convergence rates

and leads to iteration counts that are very close to those of NF-LU. This reveals

that ISP uses almost all of the information provided by the near-field matrix

efficiently for preconditioning.

10
4

10
5

10
6

25

50

100

200

400
CTF

Number of Unknowns

N
um

be
r

of
 It

er
at

io
ns

No PC
ASP
ISP
NF−LU

10
4

10
5

10
6

25

50

100

200

400
CNF

Number of Unknowns

N
um

be
r

of
 It

er
at

io
ns

4PBDP
ASP
ISP
NF−LU

10
4

10
5

10
6

25

50

100

200

400
JMCFIE

Number of Unknowns

N
um

be
r

of
 It

er
at

io
ns

4PBDP
ASP
ISP
NF−LU

Figure 6.12: Comparisons of iteration counts for the sphere problem.

Memory Comparisons

Finally, we compare the preconditioned solutions in terms of their memory use. In

Table 6.9, we present the memory requirements of the considered preconditioners,

along with the memory requirement of MLFMA and no-restart GMRES. As

mentioned in [114, 64], MLFMA requires more memory for CNF and JMCFIE

than for CTF. Here, the difference in memory use becomes remarkable (1.1 GB)

for the largest problem (S5). The memory requirement of both 4PBDP and ISP

is modest, and even that of ISP is less than 10% of that of MLFMA. On the other

hand, the memory consumed by GMRES is significant compared to the memory

use of preconditioners. Note that ISP yields fewer iterations than ASP, but

its memory use is higher due to the doubled memory requirement of FGMRES.

However, ISP consumes less total memory than ASP does due to storing just one

SAI (of ANF
11) for preconditioning. When we compare preconditioned solutions

148

of CTF and JMCFIE in terms of total memory requirements, we observe that

CTF uses significantly less memory than CNF or JMCFIE does.

Table 6.9: Memory requirements of the Schur complement preconditioners,
MLFMA, and solutions with the no-restart GMRES for the sphere problems.

CTF

Problem ML- PC Memory GMRES Memory Total Memory
FMA No PC ISP No PC ASP ISP No PC ASP ISP

S1 50 − 6 10 2 3 60 64 59
S2 117 − 13 21 6 8 138 148 138
S3 470 − 49 236 52 69 706 619 588
S4 1,931 − 197 586 290 334 2,517 2,615 2,462
S5 4,129 − 405 1,117 606 750 5,246 5,544 5,284

CNF

ML- PC Memory GMRES Memory Total Memory
FMA 4PBDP ISP 4PBDP ASP ISP 4PBDP ASP ISP

S1 66 2 6 3 2 2 71 79 74
S2 152 5 13 11 6 9 168 183 174
S3 607 18 49 63 28 43 688 732 699
S4 2,483 72 197 1,039 318 504 3,595 3,195 3,183
S5 5,279 149 405 1,592 400 660 7,020 6,488 6,343

JMCFIE

ML- PC Memory GMRES Memory Total Memory
FMA 4PBDP ISP 4PBDP ASP ISP 4PBDP ASP ISP

S1 66 2 6 3 2 3 71 79 75
S2 152 5 13 8 4 8 165 182 173
S3 607 18 49 50 28 51 675 732 707
S4 2,483 72 197 284 169 302 2,839 3,046 2,982
S5 5,279 149 405 458 317 553 5,886 6,406 6,236

MNMF

ML- PC Memory GMRES Memory Total Memory
FMA 4PBDP ISP 4PBDP ASP ISP 4PBDP ASP ISP

S1 71 2 11 2 2 3 75 84 85
S2 164 5 25 7 5 9 175 195 199
S3 656 18 97 43 35 62 716 788 816
S4 2,680 72 394 324 266 443 3,077 3,340 3,517
S5 5,680 149 809 680 528 915 6,509 7,017 7,405

Notes: All values are in MB. “PC Memory” stands for the memory requirement of the
preconditioner. For MNMF, the memory requirements of ASP and ISP are the same.
For others, the memory requirement of ASP is twice that of ISP.

6.7.2 The Lens Problem

For radiometric remote sensing applications, delicate simulations of dielectric

lenses are required for a wide spectrum, beginning from 30 GHz [111]. This

application gives rise to large problems that are difficult to solve without precon-

ditioning. In this section, we analyze preconditioned iterative solutions of this

149

important problem. We increase the frequency by 30 GHz intervals, up to 120

GHz. The resulting problems are listed in Table 6.10. The lens problem involves

a dielectric half sphere with a high dielectric constant of 12.0.

Table 6.10: Salient features of the lens problems investigated in this study.
Frequency Size MLFMA Number of

Problem (GHz) (λ) Levels Unknowns

L1 30 2.5 6 38,466

L2 60 5.0 7 158,286

L3 90 7.5 7 353,646

L4 120 10.0 8 632,172

Note: λ denotes the wavelength at the frequency of operation.

ILU-Type and Simple Preconditioners

CTF solutions of lens problems do not suffer from the instability of ILU-type

preconditioners. ILU(0) performs better than ILUT and ILUTP for all formula-

tions. Hence, for all formulations, we compare ILU(0) with No PC and 4PBDP

in Table 6.11. CNF solutions of L4 with No PC and 4PBDP cannot be completed

since the memory requirement cannot be met with the available memory after

500 GMRES iterations. Our comments on the results are as follows:

• We observe that CNF cannot solve L2, L3, and L4 problems without a

preconditioner. CTF and JMCFIE converge with similar rates and MNMF

converges the fastest. These results are in accordance with the discussion

in Section 6.2.5. A high dielectric constant degrades the conditioning of

normal formulations [12]. In addition, the spectra illustrated in Figs. 6.5,

6.6, and 6.7 reveal that CNF is negatively affected more than the others by

an increase in the dielectric constant. As a combination of CTF and CNF,

JMCFIE is also adversely affected by a high dielectric constant. Conse-

quently, its iteration counts turn out to be close to those of CTF for the

lens problem.

150

Table 6.11: Performances of the 4PBDP and ILU(0) preconditioners and No PC
on the lens problems.

CTF CNF

No PC 4PBDP ILU(0) No PC 4PBDP ILU(0)

Problem iter time iter time iter time iter time iter time iter time

L1 205 162 ∗ 105 61 368 292 140 102 44 26

L2 278 939 ∗ 152 442 † − 333 1,115 87 257

L3 276 1,853 ∗ 227 1,525 † − 406 2,734 87 589

L4 321 4,458 ∗ 229 3,165 MLE MLE 117 1,627

MNMF JMCFIE

No PC 4PBDP ILU(0) No PC 4PBDP ILU(0)

iter time iter time iter time iter time iter time iter time

L1 78 51 52 34 32 19 138 110 77 57 40 23

L2 114 386 86 288 43 124 227 786 114 391 67 198

L3 146 970 131 871 48 328 276 1,850 128 860 71 501

L4 166 2,282 166 2,284 52 720 310 4,310 135 1,872 88 1,224

Notes: “iter” and “time” denote the number of iterations and total solution time in minutes.

An asterisk “∗” denotes that the problem is not solved with that particular preconditioner.

A dagger “†” denotes nonconvergence. “MLE” denotes that memory limitation is exceeded.

• JMCFIE benefits more from 4PBDP than MNMF, and iteration counts for

these formulations become close to each other with 4PBDP. For the largest

problem L4, JMCFIE converges even faster than MNMF. Superiority of

JMCFIE over MNMF for large problems has also been demonstrated in

[114].

• ILU(0) performs significantly better than 4PBDP on the lens problem. All

of the formulations can be solved faster with ILU(0), but second-kind for-

mulations are accelerated more than CTF since they have more diagonally

dominant matrices than CTF does.

Approximate Schur Complement Preconditioners

In Table 6.12, we present solutions of the lens problems with the Schur comple-

ment preconditioners. Solutions of L1 and L2 show that ASP performs signifi-

cantly better than other Schur complement preconditioners, hence, we perform

151

Table 6.12: Performances of the Approximate Schur complement preconditioners
on the lens problems.

CTF CNF

UTASP LTASP ASP UTASP LTASP ASP

Problem iter time iter time iter time iter time iter time iter time

L1 129 75 93 55 57 34 101 59 70 41 45 27

L2 189 550 135 394 85 249 227 655 160 461 92 266

L3 ∗ ∗ 99 669 ∗ ∗ 94 635

L4 ∗ ∗ 114 1,592 ∗ ∗ 128 1,785

MNMF JMCFIE

UTASP LTASP ASP UTASP LTASP ASP

iter time iter time iter time iter time iter time iter time

L1 90 53 41 25 35 21 56 34 48 29 31 19

L2 133 386 54 159 48 142 100 292 80 235 52 154

L3 ∗ ∗ 54 369 ∗ ∗ 54 368

L4 ∗ ∗ 60 846 ∗ ∗ 64 901

Notes: “iter” and “time” denote the number of iterations and total solution time in minutes.

An asterisk “∗” denotes that the problem is not solved with that particular preconditioner.

solutions of larger L3 and L4 problems only with ASP. We summarize our com-

ments on the results as follows:

• With ASP, all of the formulations can be solved much faster than with No

PC or 4PBDP, and solution times are reduced two-fold to five-fold, depend-

ing on the type of formulation. The number of iterations for JMCFIE and

MNMF are close to each other, and are approximately half of the number

of iterations for CTF and CNF.

• For CTF and JMCFIE, ASP performs significantly better than ILU(0).

But for CNF and MNMF, ILU(0) performs slightly better than ASP.

In Table 6.13, we present solutions of the first two lens problems obtained with

NF-LU. When we compare these iteration counts with the ones in Table 6.12,

we observe that iteration counts obtained with ASP are already close to those of

NF-LU, except CNF. Therefore, we need not to use iterative Schur complement

preconditioners for this problem.

152

Table 6.13: Number of iterations obtained with NF-LU for the lens problems.
Problem CTF CNF MNMF JMCFIE

L1 58 32 39 29

L2 90 62 52 49

Memory Comparisons

We compare the memory consumptions of preconditioned solutions in Table 6.14.

In addition to providing more accurate results, with CTF and JMCFIE problems

are solved using less memory. For MLFMA setup, CTF requires less memory

than JMCFIE does, but this advantage disappears considering the total memory

because of the higher memory use of GMRES for CTF solutions.

6.7.3 Periodic Slabs (PS)

Periodic dielectric slabs can be used as filters in microwave circuits and antenna

systems [139]. As shown in Fig. 6.13, this structure is transparent to electro-

magnetic waves at 250 MHz and 350 MHz, whereas at 300 MHz, the structure

becomes opaque and a shadowing occurs. The filtering capability of the device

increases when the wall sizes or the number of walls increase. We analyze this

problem at its resonance frequency, i.e., 300 MHz, where it becomes transparent

to electromagnetic fields. The inner dielectric constant of the device is 4.8. In

Table 6.15, we present information about the cases investigated in this study.

For this problem, compared to CTF and JMCFIE, it is much more difficult to

obtain convergence with CNF and MNMF, hence, we omit those solutions. For

Schur complement preconditioners, we include solutions obtained with ASP or

ISP, which perform much better than other Schur complement preconditioners

for all cases.

153

Table 6.14: Memory requirements of the Schur complement preconditioners,
MLFMA, and solutions with the no-restart GMRES for the lens problems.

CTF

Prob- ML- PC Memory GMRES Memory Total Memory

lem FMA No PC ISP No PC ASP ISP No PC ASP ISP

L1 50 13 33 60 17 35 110 132 118

L2 117 52 133 336 103 210 453 485 460

L3 470 113 289 745 267 545 1,215 1,315 1,304

L4 1,931 201 517 1,548 550 1,109 3,479 3,514 3,557

CNF

ML- PC Memory GMRES Memory Total Memory

FMA 4PBDP ISP 4PBDP ASP ISP 4PBDP ASP ISP

L1 66 13 33 41 13 52 120 145 151

L2 152 52 133 402 111 432 606 528 717

L3 607 113 289 1,095 254 1,209 1,815 1,439 2,105

L4 2,483 201 517 3,376 617 3,222 6,060 4,133 6,221

JMCFIE

ML- PC Memory GMRES Memory Total Memory

FMA 4PBDP ISP 4PBDP ASP ISP 4PBDP ASP ISP

L1 66 13 33 23 9 18 101 141 117

L2 152 52 133 138 63 121 341 480 405

L3 607 113 289 345 146 275 1,065 1,331 1,171

L4 2,483 201 517 651 309 550 3,335 3,825 3,549

MNMF

ML- PC Memory GMRES Memory Total Memory

FMA 4PBDP ISP 4PBDP ASP ISP 4PBDP ASP ISP

L1 71 13 65 15 10 21 99 147 158

L2 164 52 265 104 58 121 320 487 550

L3 656 113 578 353 146 302 1,122 1,380 1,536

L4 2,680 201 1,033 801 289 608 3,681 4,002 4,321

Notes: All values are in MB. “PC Memory” stands for the memory requirement of the

preconditioner. For MNMF, the memory requirements of ASP and ISP are the same.

For others, the memory requirement of ASP is twice that of ISP.

ILU-Type and Simple Preconditioners

The iteration counts and solution times obtained with 4PBDP and ILU-type

preconditioners are presented in Table 6.16. For CTF, No PC fails to converge

in 1,000 iterations, even though we use the robust GMRES solver. ILU(0) results

in modest iteration counts for small problems, but it causes false convergence in

some instances, such as the CTF solution of PS4. For this problem, the condest

value, which provides an estimate of the condition number of the incomplete fac-

tors, turns out to be 1.2 106, indicating the instability of the incomplete factors.

154

z (m)

x
(m

)

250 MHz

−5 0 5

−6

−4

−2

0

2

4

6 0

0.2

0.4

0.6

0.8

1

z (m)

x
(m

)

300 MHz

−5 0 5

−6

−4

−2

0

2

4

6 0

0.2

0.4

0.6

0.8

1

z (m)

x
(m

)

350 MHz

−5 0 5

−6

−4

−2

0

2

4

6 0

0.2

0.4

0.6

0.8

1

Figure 6.13: Illustration of the filtering capability of the periodic slabs problem.
At 250 MHz and 350 MHz, the power transmission is unity in the transmission
region on the left-hand side of the structure. On the other hand, a shadowing
occurs at 300 MHz and the device becomes opaque.

Table 6.15: Salient features of the periodic-slab problems investigated in this
study.

Frequency Slab Number of MLFMA Number of

Problem (MHz) Size (m) Walls Levels Unknowns

PS1

300

0.41 × 2 × 2 5 5 38,700

PS2 0.41 × 2 × 2 10 6 77,400

PS3 0.41 × 4 × 4 5 6 131,460

PS4 0.41 × 4 × 4 10 6 262,920

Even though ILUTP produces stable factors, this preconditioner also fails to pro-

vide convergence for large problems. JMCFIE solutions can be obtained faster

than CTF solutions. On the other hand, the number of iterations of 4PBDP for

the largest problem PS4 is quite large. For JMCFIE, ILU(0) is preferred over

ILUTP because of its better performance, negligible setup time, and lower mem-

ory requirement due to in-place factorization [2]. On the other hand, the memory

requirement of ILU(0) is still significant; it consumes 2.15 GB of memory for PS4

problem in a single-precision implementation.

Schur Complement Preconditioners

In Table 6.17, we compare the three preconditioners obtained from Schur com-

plement reduction. In ISP1(5), we use M 11 as a preconditioner for the solution

of both reduced systems, and set the maximum number of inner iterations to five.

In ISP2, we construct MS for the inner solution of the system involving S, in

155

Table 6.16: Comparison of ILU and simple preconditioners for the periodic slab
problems.

No PC ILU(0) ILUTP

CTF iter time iter time setup iter time

PS1 473 1.6 186 0.6 0.8 409 1.4

PS2 † − 335 2.7 2.7 702 5.7

PS3 † − 353 5.1 11.2 † −

PS4 † − 237∗ 7.0 −

4PBDP ILU(0) ILUTP

JMCFIE iter time iter time setup iter time

PS1 149 0.5 87 0.3 0.8 124 0.4

PS2 107 0.9 175 1.4 2.6 205 1.7

PS3 276 4.0 197 2.9 - - -

PS4 698 20.7 408 12.2 −

Notes: “iter” denotes number of iterations. “setup” and

“time” denotes setup and solution times, in hours. A dagger

“†” denotes nonconvergence and ∗ denotes false convergence.

4PBDP and ILU(0) have negligible setup times.

addition to M 11 for the inner solution of the system involving ZNF
11 . Therefore,

the memory use and setup time of ISP2 is twice as that of ISP1. The setup times

of M 11 and MS seem to be identical, because the time spent during incomplete

matrix-matrix multiplications is negligible. For CTF solutions with ISP2, we set

the maximum number of iterations to three, since increasing this parameter be-

yond three does not decrease the iteration counts, but results in higher solution

times due to increased application cost.

Our comments on the results are as follows:

• Compared to the sphere, which has a similar dielectric constant, conver-

gence rates of both CTF and JMCFIE decrease remarkably for this prob-

lem. In particular, CTF solutions for PS2, PS3, and PS4 cannot be ob-

tained without an effective preconditioner. Note that CTF solutions of PS4

converges only with ISP1 or ISP2.

• When we compare JMCFIE solutions in Table 6.16 and Table 6.17, we

found that for the first three problems ISP1 results in significantly smaller

156

Table 6.17: Comparison of the Schur complement preconditioners for the PS
problems.

S
−1

≈ M11 S
−1

≈ MS

M11 ISP1(5) MS ASP ISP2(3) NF-LU

CTF setup iter time setup iter time iter time iter

PS1 0.1 107 0.4 0.1 104 0.4 109 0.4 157

PS2 0.2 210 2.0 0.2 216 1.8 206 1.9 358

PS3 0.3 358 6.0 0.3 490 7.1 386 6.1 MLE

PS4 0.7 933 31.9 0.7 † − 964 32.2 MLE

M11 ISP1(5) MS ASP ISP2(5) NF-LU

JMCFIE setup iter time setup iter time iter time iter

PS1 0.1 53 0.2 0.1 106 0.4 54 0.2 43

PS2 0.2 47 0.5 0.2 207 1.7 45 0.5 80

PS3 0.3 112 1.9 0.3 233 3.4 116 1.9 MLE

PS4 0.7 388 13.4 0.7 558 16.8 344 11.3 MLE

Notes: “iter” denotes number of iterations. “setup” and “time” denotes

setup and solution times, in hours. A dagger “†” denotes nonconvergence.

‘MLE” denotes that memory limitation is exceeded.

solution times than ILU(0) does. When we consider the solution times

including the setup of the preconditioner, ILU(0) produces smallest solution

times for the largest PS4 problem, but the improvement is minor compared

to ISP1 or ISP2.

• For CTF, ISP and ASP yield similar results for PS1 and PS2 problems. For

the largest problem (PS3), however, ISP solves the problem much faster

than ASP does. On the other hand, the memory requirement of ILU(0) is

around 1.5 GB more than ISP1 and 1 GB more than ISP2.

• The benefit of inner solves is more evident for JMCFIE solutions. For PS1,

PS3, and PS4, ASP fails to provide a significant improvement compared to

4PBDP, and even slows down the convergence for PS2. However, compared

to 4PBDP, ISP2 reduces total solution times by 50%.

157

• Interestingly, ISP leads to fewer iteration counts for PS solutions compared

to NF-LU. As explained in [3], this can be related to the indefiniteness of

the dense coefficient matrices.

• Due to the difficulty of this problem and its low dielectric constant, JMC-

FIE solves the matrix systems much faster compared to CTF. However, it

is still possible to obtain CTF solutions.

Memory Comparisons

Information about memory consumption is presented in Table 6.18. We first

note that the memory use of ASP with respect to MLFMA is larger compared to

the sphere because of the dense structure of this problem. For instance, memory

requirement of ISP is about 20% of that of MLFMA for the CTF solution of

PS3. The high iteration counts also cause a significant increase in the memory

cost of GMRES for CTF. ASP and ISP have similar total memory costs, because

the extra memory cost of ISP due to the use of FGMRES has been compensated

for by a decrease in the memory of the preconditioner. For this problem, there

is a significant gap between the iteration counts of CTF and JMCFIE. Hence,

the GMRES memory cost is much smaller for JMCFIE, for which the solution

of PS3 can be obtained with 10% less memory compared to CTF, even though

JMCFIE uses significantly more memory for MLFMA.

6.7.4 The Perforated-Waveguide Problem

We conclude this section with a comparative investigation of the performance of

Schur complement preconditioners on a complicated structure, namely, a pho-

tonic crystal waveguide, which is composed of a dielectric slab etched with a

waveguiding pattern of holes [138]. An example of the problem and its near-field

pattern are shown in Fig. 6.7.4. We increase the problem size by enlarging the

158

Table 6.18: Memory requirements of the Schur complement preconditioners,
MLFMA, and solutions with the no-restart GMRES for the periodic-slab prob-
lems.

CTF

Prob- ML- PC Memory GMRES Memory Total Memory

lem FMA No PC ISP No PC ASP ISP No PC ASP ISP

PS1 386 − 75 140 31 63 526 566 524

PS2 813 − 161 − 128 248 − 1,263 1,222

PS3 1,319 − 260 − 491 718 − 2,330 2,297

PS4 2,672 − 538 − − 3,743 − − 6,953

JMCFIE

ML- PC Memory GMRES Memory Total Memory

FMA 4PBDP ISP 4PBDP ASP ISP 4PBDP ASP ISP

PS1 471 16 75 44 31 31 531 651 577

PS2 984 32 161 63 122 56 1,079 1,428 1,201

PS3 1,608 50 260 277 234 225 1,935 2,361 2,092

PS4 3,249 99 538 1,400 1,119 1,557 4,749 5,444 5,343

Notes: All values are in MB. “PC Memory” stands for the memory requirement of the

preconditioner. Note that the memory requirement of ASP is twice that of ISP.

size of the structure and including more holes, as shown in Table 6.19. We in-

vestigate PW1 and PW2 at 8.3 GHz, and PW3 and PW4 at 7.6 GHz, at the

frequencies for the most efficient transmission. Diameters of the holes are on the

order of 0.1λ, hence, this problem requires a fine meshing of about 0.05λ in order

to model these small details. As a result, the lowest-level clusters of MLFMA

contain more basis functions and the resulting near-field matrices become denser

compared to previous problems.

0

2000

4000

6000

8000

10000

(a) (b)

Figure 6.14: (a) A perforated photonic crystal waveguide. (b) Near-zone mag-
netic fields of the problem when illuminated by a Hertzian dipole.

159

Table 6.19: Salient features of the perforated waveguide (PW) investigated in
this study.

Frequency Number of MLFMA Number of

Problem (GHz) Holes Levels Unknowns

PW1
7.6

0.6×5×10 38 27,798

PW2 0.6×15×20 272 162,420

PW3
8.3

0.6×26×34 828 475,782

PW4 0.6×29×38 1,042 597,462

We first list the solutions of PW1 and PW2 problems in Table 6.20. Be-

cause of the high contrast of the device, we use MS as an approximate inverse

(ASP) or as an inner preconditioner (ISP2) for S. Even both CTF and JMCFIE

solutions converge with ISP1, number of iterations and solution times are sig-

nificantly higher than those of ASP or ISP2. The CTF solution of PW2 do not

converge with No PC, and the JMCFIE solution requires around 600 iterations

with 4PBDP. The ineffectiveness of the 4PBDP on JMCFIE is related to a lack

of diagonal dominance for high contrasts [12]. Similar to the periodic-slabs prob-

lems, ILU(0) performs better then ILUTP for CTF and JMCFIE. On the other

hand, in terms of solution times, ILU(0) performs poorer than Schur complement

preconditioners for PW1, and does not fit in the 16GB memory for PW2 because

of the λ/20 mesh size and denser near-field matrices. We present the solutions

with ASP for CTF and with ISP2(5) for JMCFIE, which lead to smallest solution

times. Note that the solution times of PW1 and PW2 with CTF and JMCFIE

are close to each other, since the per iteration times with ASP are significantly

smaller than per iteration times with ISP2.

The solutions of the larger problems PW3 and PW4 have been performed us-

ing another server with 32 GB memory. We solved the problems with only Schur

complement preconditioners, because of the excessive memory requirement of

ILU(0) for these problems. The results are presented in Table 6.21. We note

that obtaining CTF solutions especially for PW4 is challenging. ISP1 do not

converge, and the memory requirement of FGMRES for ISP2 exceeds the avail-

able 32GB memory after 500th iteration. We are able to obtain CTF solutions

160

Table 6.20: Comparison of the preconditioners for the PW1 and PW2 problems.
No PC ILU(0) ASP

CTF iter time setup iter time setup iter time

PW1 695 43 5 141 10 12 58 4

PW2 † − MLE − − 110 217 104

4PBDP ILU(0) ISP2(5)

JMCFIE iter time setup iter time setup iter time

PW1 183 12 5 32 5 12 27 4

PW2 593 255 MLE − − 110 79 78

Notes: “iter” denotes number of iterations. “time” denotes total

solution time in hours. A dagger “†” denotes nonconvergence.

“MLE” denotes that memory limitation is exceeded.

Table 6.21: Comparison of the Schur complement preconditioners for PW3 and
PW4 problems.

S
−1

≈ MS

M11 MS ASP ISP2(3)

CTF setup setup iter time iter time

PW3 4.4 4.6 697 28 587 37

PW4 5.7 6.1 829 110 MLE −

S
−1

≈ M11 S
−1

≈ MS

M11 MS ISP1(5) ISP2(5)

JMCFIE setup setup iter time iter time

PW3 4 5 274 21 110 15

PW4 6 6 301 28 139 22

Notes: “iter” denotes number of iterations. “setup” and

“time” denotes setup and total solution times in hours.

“MLE” denotes that memory limitation is exceeded.

161

of PW4 only with ASP, which requires 829 GMRES iterations to converge. The

JMCFIE solution of the same problem, on the other hand, has been obtained in

merely 301 iterations with ISP1 and in 139 iterations with ISP2.

6.7.5 Accuracy of the Solutions of the Photonic Crystal

Waveguide

In Fig. 6.15, we present near-zone magnetic fields for a perforated waveguide

problem (PW3 in Table 6.19). The total magnetic field is calculated point-wise

inside and outside the structure in order to demonstrate the transmission of

electromagnetic waves from the left-hand side to the bottom. For this problem,

we observe that results obtained by using CTF and JMCFIE are significantly

different. This is due to the deteriorating accuracy of JMCFIE in the case of

complicated structures and relatively high contrasts.

x (cm)

y
(c

m
)

CTF

−20 −10 0 10

−5

0

5

10

15

20
0

2000

4000

6000

8000

10000

x (cm)

y
(c

m
)

JMCFIE

−20 −10 0 10

−5

0

5

10

15

20
0

2000

4000

6000

8000

10000

Figure 6.15: Near-zone magnetic fields for a perforated waveguide (PW3 in Ta-
ble 6.19) illuminated by a Hertzian dipole.

Finally, in order to show that the inconsistency between CTF and JMC-

FIE results is due to the inaccuracy of JMCFIE, we consider the solution of an

electromagnetics problem involving a 0.6 cm × 7 cm × 10 cm perforated PhC

waveguide. The problem is formulated with CTF and JMCFIE discretized by

using λ/20 and λ/40 triangles. Fig. 6.16 presents the magnetic field at 8.25 GHz.

162

We observe that results obtained by JMCFIE change drastically when the dis-

cretization is refined. Specifically, JMCFIE results become consistent with CTF

results for the dense discretization.

x (cm)

y
(c

m
)

CTF−λ/20

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

x (cm)

y
(c

m
)

JMCFIE−λ/20

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a) (b)

x (cm)

y
(c

m
)

CTF−λ/40

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

x (cm)

y
(c

m
)

JMCFIE−λ/40

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(c) (d)

Figure 6.16: Near-zone magnetic fields for a perforated PhC waveguide involv-
ing 7 × 10 holes illuminated by a Hertzian dipole. Solutions are obtained with
(a) CTF and λ/20 triangulation, (b) JMCFIE and λ/20 triangulation, (c) CTF
and λ/40 triangulation, and (d) JMCFIE and λ/40 triangulation.

6.8 Conclusions

In the context of surface integral-equation methods for dielectric problems, si-

multaneous discretization of the surface currents and integral equations leads

to matrix equations with 2 × 2 partitions. These partitions show some resem-

blance to the matrices that are obtained in PEC problems. Based on our prior

163

experience with the preconditioning of PEC problems, we have developed ro-

bust Schur complement preconditioners for dielectric problems using the 2 × 2

partitioned structure of matrices. Inspired by its success in PEC problems [44],

the SAI preconditioner is applied to the (1,1) partition. For the Schur comple-

ment, we discuss several approximation strategies and show that obtaining an

approximation via sparse matrix-matrix multiplications yields the best results.

Using those approximate inverses, we propose both approximate (direct) and

iterative versions of Schur complement preconditioners. The direct approach re-

quires no inner solves, hence the linear systems can be solved with non-optimal

solvers or regular GMRES, which requires half of the GMRES memory. For it-

erative Schur complement preconditioners, we compute solutions of the systems

involving the (1,1) partition and the Schur complement by SAI-preconditioned

iterative solvers. It has been shown that [120] for Schur complement precon-

ditioners, similar approximation levels should be targeted for the solutions of

these two systems since it would be wasteful to solve one system significantly

more accurate than the other one. With the iterative preconditioning scheme,

the requirement in [120] can be better satisfied. Hence, it has been possible to

obtain effective preconditioners for accelerated iterative solutions of all dielectric

problems considered here, even those problems are formulated with the accurate

but difficult-to-solve first-kind integral equation CTF. Moreover, we have shown

that for a low dielectric constant (e.g., ǫr ≤ 4), the same approximate inverse of

the (1,1) partition can be used as an effective preconditioner for both the (1,1)

partition and the Schur complement, reducing the setup and memory cost of the

preconditioner. As a result, sphere and periodic-slab problems have been solved

faster than with ASP, with the memory cost reduced by one half.

To the best of our knowledge, the following conclusions drawn from the nu-

merical experiments are novel and have the potential to change the common

164

wisdom regarding the solutions of surface integral equations for dielectric prob-

lems:

• The no-restart GMRES solver is much more robust and efficient for pre-

conditioned and unpreconditioned matrix systems than other non-optimal

solvers.

• When high accuracy is a concern, CTF solutions can be obtained without

difficulty by using the Schur complement preconditioners. The lack of di-

agonal dominance in CTF prevents the success of block-diagonal-type (i.e.,

4PBDP [114]) or ILU(0) preconditioners. Although they are known as the

most general and effective preconditioners for non-symmetric and indefi-

nite systems [2], ILUT and ILUTP also have discouraging performances on

CTF.

• Normal formulations and JMCFIE are second-kind integral equations that

are expected to yield well-conditioned linear systems. Particularly for large

problem sizes, however, effective preconditioning becomes indispensable for

these formulations when the problem involves a high dielectric constant.

• Furthermore, the photonic crystal problem shows that the complexity of

the geometry and the high dielectric constant may render linear systems

obtained from normal formulations unsolvable even with effective precondi-

tioners. Linear systems obtained from JMCFIE can be solved with simple

preconditioners, but they require many iterations. When ASP or ISP is

used, on the other hand, even accurate CTF solutions can be attained with

modest iteration counts.

165

Chapter 7

Conclusions and Future Work

Nothing will be more central to computational science in the

next century than the art of transforming a problem that appears

intractable into another whose solution can be approximated rapidly.

For Krylov subspace matrix iterations, this is preconditioning.

L. N. Trefethen and D. Bau, III, Numerical Linear Algebra. SIAM

Publications, 1997.

In this dissertation, we have explained our efforts in designing effective pre-

conditioners to provide the robustness of direct methods to CEM problems that

employ MLFMA. The importance of preconditioning on surface-integral-equation

methods is two folds:

• First-kind integral equations, such as EFIE and CTF, results in the most

accurate results for PEC and dielectric problems, respectively. The conver-

gence of resulting matrices, however, can only be guaranteed through ef-

fective preconditioners. It has been shown that for second-kind and better-

conditioned formulations, such as CFIE and JMCFIE, one should use basis

functions that are higher order than RWG is or use much denser meshes

to achieve a similar accuracy [12, 18].

166

• Even though CFIE and JMCFIE yield better-conditioned linear systems for

PEC and dielectric problems, there are many effects that cause an increase

in iteration counts. In that cases, solution times can be significantly lowered

using preconditioners.

We summarize our conclusions related to PEC problems in Fig. 7.1. If a

sequential solution is targeted, ILU-class preconditioners resulted in close to op-

timal results. Note that tested implementations of ILU-class preconditioners can

be found in many solver packages, such as PETSc [74] and ILUPACK [78]. We

remind that the condest value, which presents valuable information about the

stability of the ILU factors, can be computed before the iterations begin. De-

pending on this value, ILUT or ILUTP can be used safely for EFIE matrices.

For CFIE, however, we suggest the use of ILU(0) since it has a lower memory

and setup cost.

When the size of the problem grows and solutions cannot be obtained using

a single processor, there is a need for parallel preconditioners. We have shown

that SAI and INF preconditioners can be safely used up to millions of unknowns.

However, for larger problems, we suggest to use the AMLFMA preconditioner,

which is a more effective approach that uses a dense matrix for preconditioning.

For dielectric problems, which give rise to partitioned matrices, general-

purpose algebraic preconditioners are known to be ineffective. This is also valid

for CEM problems, particularly for those formulated with CTF. Even though

ILU(0) seems to work with JMCFIE, it has a very high memory requirement.

We have shown that it is possible to obtain stronger preconditioners with reduced

memory requirement using Schur complement preconditioners that exploit par-

titioned structure of the near-field matrix. Using these preconditioners, we have

been able to solve a perforated photonic crystal problem for both CTF and JM-

CFIE formulations. However, the comparisons of the near-field patterns of the

167

IS GEOMETRY

CLOSED OR OPEN?

EFIE CFIE

PARALLEL OR

SEQUENTIAL?

PARALLEL OR

SEQUENTIAL?

CONDEST

HIGH?

ILUTP ILUT

ILU(0)

Unk > 10,000,000?

Iterative
Near-field

Preconditioner

Sparse
Approximate

Inverse

AMLFMA
PRECONDITIONER

OPEN CLOSED

SEQUENTIAL

PARALLEL PARALLEL

SEQUENTIAL

NOYES

Figure 7.1: Decision chart for the selection of preconditioners for PEC problems.

device revealed that the accuracy of JMCFIE is much worse than that of CTF,

and the results obtained with the JMCFIE can be severely misleading [67].

Iterative solvers and preconditioning are diverse areas that experience daily

improvements in scientific computing. Hence, there is a bunch of future work

that deserves attention. We list some of those that we can foresee:

Adaptive preconditioning for integral-equation problems: The GMRES

solver produces valuable information during the iterations, and previous re-

searchers used this information in multi-right-hand-side solutions [140, 141].

In AMLFMA preconditioner that makes use of an inner-outer solution

scheme, this information can be extracted in the first inner solution. Then,

it is possible to improve existing SAI preconditioner and improve conver-

gence of subsequent inner solutions. In this way, the total cost of inner

iterations can be substantially alleviated.

168

Schur complement preconditioners for cavity resonances: Physical cav-

ity resonances originate very small eigenvalues, which in turn increase the

iteration counts tremendously at resonant frequencies. When the coeffi-

cient matrix is reordered so that the cavity interactions form a block of

the matrix, our preliminary results show that those small eigenvalues are

associated with the cavity block, which has a much smaller size compared

to the whole matrix size. Using the advantage of Schur complement pre-

conditioning, it is possible to construct a very powerful local preconditioner

for this cavity block with modest computational requirements. This exam-

ple shows the benefit of using physical information from the problem for

preconditioning.

Hierarchical matrices: Another topic of interest is the emerging hierarchical-

matrix techniques [142]. These methods have two important advantages:

First, they allow some matrix operations that cannot be performed with

MLFMA, such as matrix-matrix addition and multiplication, almost in

linear complexity. This property can be used to approximate the inverse

of dense matrices with data-sparse matrices, which can be used as a fast

solver or a very effective preconditioner. The second advantage of hierar-

chical matrices is that those methods are kernel free; hence, they can be

used to develop fast solvers for layered or non-homogenous media. These

methods can also be used for broadband MLFMA, for which the near-field

matrix becomes even sparser than the regular MLFMA. The adaption of

hierarchical matrices to CEM problems is an open area.

Symmetric CG-like solvers for EFIE: It is possible to use a slightly modi-

fied form of the CG method for symmetric-complex matrices, such as those

obtained from EFIE. Even though there is a risk for breakdown in this case

[143, 144], this topic deserves future research since the memory cost of GM-

RES can be circumvented. We note that a symmetric preconditioner should

be used with the CG solver. Hence, symmetrization procedures, such as

169

the ones described in [84] should be applied during the construction of the

preconditioner.

170

Bibliography

[1] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra. Philadelphia,

USA: SIAM, 1997.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA,

USA: SIAM, second ed., 2003.

[3] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Numer-

ical Linear Algebra for High Performance Computers. Philadelphia, PA,

USA: SIAM, 1998.

[4] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems,

vol. 13 of Cambridge Monographs on Applied and Computational Mathe-

matics. Cambridge, UK: Cambridge University Press, 2003.

[5] Ö. S. Ergül, Accurate and efficient solutions of electromagnetic problems

with the multilevel fast multipole algorithm. PhD thesis, Bilkent University,

Ankara, Turkey, 2009.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

algorithms. The MIT press, 2001.

[7] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering

by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. AP-

30, pp. 409–418, 1982.

171

[8] S. M. Rao and D. R. Wilton, “E-field, H-field, and combined-field solution

for arbitrarily shaped three-dimensional dielectric bodies,” Electromag.,

vol. 10, pp. 407–421, 1990.

[9] X. Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of

combined-field integral equation using multilevel fast multipole algorithm

for scattering by homogeneous bodies,” IEEE Trans. Antennas Propagat.,

vol. 46, no. 11, pp. 1718–1726, 1998.

[10] P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation

formulations for solving electromagnetic scattering problems with iterative

methods,” Radio Science, vol. 40, RS6002, doi:10.1029/2004RS003169,,

no. 6, 2005.

[11] K. Chen, Matrix Preconditioning Techniques and Applications, 2nd ed.,

vol. 19 of Cambridge Monographs on Applied and Computational Mathe-

matics. Cambridge, UK: Cambridge University Press, 2005.

[12] P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Analysis of surface inte-

gral equations in electromagnetic scattering and radiation problems,” Eng.

Anal. Boundary Elem., vol. 32, no. 3, pp. 196–209, 2008.

[13] L. Gürel and Ö. Ergül, “Comparisons of FMM implementations employing

different formulations and iterative solvers,” in IEEE Antennas Propagat.

Society Int. Symp., vol. 1, pp. 19–22, June 2003.

[14] L. Gürel and Ö. Ergül, “Singularity of the magnetic-field integral equation

and its extraction,” IEEE Antennas Wirel. Propag. Lett., vol. 4, 2005.

[15] Ö. Ergül and L. Gürel, “The use of curl-conforming basis functions for

the magnetic-field integral equation,” IEEE Trans. Antennas Propagat.,

vol. 54, pp. 1917–1926, July 2006.

172

[16] Ö. Ergül and L. Gürel, “Improved testing of the magnetic-field integral

equation,” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 615–617,

Oct. 2005.

[17] Ö. Ergül and L. Gürel, “Discretization error due to the identity operator

in surface integral equations,” Comput. Phys. Comm., vol. 180, no. 10,

pp. 1746–1752, 2009.

[18] Ö. Ergül and L. Gürel, “Improving the accuracy of the magnetic-field in-

tegral equation with the linear-linear basis functions,” Radio Sci., vol. 41,

RS4004, doi:10.1029/2005RS003307, July 2006.

[19] D. R. Wilton and J. E. Wheeler III, “Comparison of convergence rates of

the conjugate gradient method applied to various integral equation formu-

lations,” Prog. Electromagn. Res. (PIER), vol. 5, pp. 131–158, 1991.

[20] Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient

parallelization of the multilevel fast multipole algorithm,” IEEE Trans.

Antennas Propagat., vol. 57, no. 6, 2009.

[21] D. A. Dunavant, “High degree efficient symmetrical gaussian quadrature

rules for the triangle,” Int. J. Numer. Methods Eng., vol. 21, no. 6, 1985.

[22] R. D. Graglia, “On the numerical integration of the linear shape functions

times the 3-d green’s function or its gradient on a plane triangle,” IEEE

Trans. Antennas Propagat., vol. 41, no. 10, pp. 1448–1455, 1993.

[23] R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals

with the use of vector triangle basis functions,” Microwave Opt. Technol.

Lett., vol. 14, no. 1, 1997.

[24] P. Ylä-Oijala and M. Taskinen, “Calculation of cfie impedance matrix ele-

ments with rwg and n̂×rwg functions,” IEEE Trans. Antennas Propagat.,

vol. 51, no. 8, pp. 1837–1846, 2003.

173

[25] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”

J. Comput. Phys., vol. 73, no. 2, pp. 325–348, 1987.

[26] W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, eds., Fast and Effi-

cient Algorithms in Computational Electromagnetics. Norwood, MA, USA:

Artech House, Inc., 2001.

[27] V. Rokhlin, “Rapid solution of integral equations of scattering theory in

two dimensions,” J. Comput. Phys., vol. 86, no. 2, pp. 414–439, 1990.

[28] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method

for the wave equation: A pedestrian prescription,” IEEE Antennas Propag.

Mag., vol. 35, no. 3, pp. 7–12, 1993.

[29] S. Koc, J. Song, and W. C. Chew, “Error analysis for the numerical evalua-

tion of the diagonal forms of the scalar spherical addition theorem,” SIAM

J. Numer. Anal., pp. 906–921, 1999.

[30] M. L. Hastriter, S. Ohnuki, and W. C. Chew, “Error control of the trans-

lation operator in 3D MLFMA,” Microwave Opt. Technol. Lett., vol. 37,

no. 3, pp. 184–188, 2003.

[31] Ö. Ergül and L. Gürel, “Enhancing the accuracy of the interpolations and

anterpolations in MLFMA,” IEEE Trans. Antennas Propagat. Lett., vol. 5,

pp. 467–470, 2006.

[32] Ö. Ergül and L. Gürel, “Optimal interpolation of translation operator in

multilevel fast multipole algorithm,” IEEE Trans. Antennas Propagat.,

vol. 54, pp. 3822–3826, December 2006.

[33] A. Brandt, “Multilevel computations of integral transforms and particle

interactions with oscillatory kernels,” Comput. Phys. Comm., vol. 65, no. 1-

3, pp. 24–38, 1991.

174

[34] I. C. F. Ipsen, “A note on preconditioning nonsymmetric matrices,” SIAM

J. Sci. Comput., vol. 23, no. 3, pp. 1050–1051, 2002.

[35] G. H. Golub and C. F. van Loan, Matrix Computations. Johns Hopkins

University Press, 1996.

[36] R. W. Freund, G. H. Golub, and N. sM. Nachtigal, “Iterative solution of

linear systems,” Acta Numerica, vol. 1, pp. 57–100, 2008.

[37] L. N. Trefethen, “Computation of pseudospectra,” Acta Numerica, vol. 8,

no. 1, pp. 247–295, 1999.

[38] M. Benzi, “Preconditioning techniques for large linear systems: A survey,”

J. Comput. Phys., vol. 182, no. 2, pp. 418–477, 2002.

[39] I. C. F. Ipsen and C. D. Meyer, “The idea behind Krylov methods,” Am.

Math. Mon., vol. 105, no. 10, pp. 889–899, 1998.

[40] T. Malas and L. Gürel, “Incomplete LU preconditioning with the multi-

level fast multipole algorithm for electromagnetic scattering,” SIAM J. Sci.

Comput., vol. 29, no. 4, pp. 1476–1494, 2007.

[41] T. Malas and L. Gürel, “Incomplete LU preconditioning strategies for

MLFMA,” in 2006 IEEE AP-S International Symposium and USNC/URSI

National Radio Science Meeting and AMEREM Meeting, (Albuquerque,

New Mexico, USA), July 2006.

[42] T. Malas and L. Gürel, “Incomplete LU preconditioning for the electric-

field integral equation,” in 1st European Conference on Antennas and Prop-

agation (EuCAP), (Nice, France), Nov. 2006.

[43] T. Malas and L. Gürel, “Effective preconditioning techniques for iterative

solutions of integral-equation methods,” in IV. International Workshop on

Electromagnetic Wave Scattering, (Gebze, Turkey), Sept. 2006.

175

[44] T. Malas and L. Gürel, “Accelerating the multilevel fast multipole algo-

rithm with the sparse-approximate-inverse (SAI) preconditioning,” SIAM

J. Sci. Comput., vol. 31, no. 3, pp. 1968–1984, 2009.

[45] T. Malas and L. Gürel, “Effective parallelization of the sparse-approximate-

inverse preconditioner for the solution of large-scale integral-equation prob-

lems,” in IEEE International Symposium on Antennas and Propagation,

(Charleston, South Carolina, USA), June 2009.

[46] T. Malas and L. Gürel, “A parallel sparse approximate inverse precondi-

tioner for the multilevel fast multipole algorithm,” in URSI-Turkey 2006

Scientific Symposium, (Ankara, Turkey), Sept. 2006.

[47] L. Gürel, Ö. Ergül, and T. Malas, “Parallel MLFMA solution of large

integral-equation problems,” in URSI-Turkey 2006 Scientific Symposium,

(Ankara, Turkey), Sept. 2006.

[48] T. Malas, Ö. Ergül, and L. Gürel, “Sequential and parallel preconditioners

for large-scale integral-equation problems,” in 2007 Computational Electro-

magnetics Workshop (CEM’07), (İzmir, Turkey), pp. 35–43, August 2007.

[49] Ö. Ergül, T. Malas, Ç. Yavuz, A. Ünal, and L. Gürel, “Computational

analysis of complicated metamaterial structures using MLFMA and nested

preconditioners,” in European Conference on Antennas and Propagation

(EuCAP), (Edinburgh, UK), Nov. 2007.

[50] Ö. Ergül, A. Ünal, T. Malas, and L. Gürel, “Integral-equation-based

approach for the accurate analysis of metamaterials,” in NanoTR-III

Nanoscience and Nanotechnology Conference, (Ankara, Turkey), June

2007.

[51] L. Gürel, Ö. Ergül, A. Ünal, and T. Malas, “Fast and accurate analysis

of large metamaterial structures using the multilevel fast multipole algo-

rithm,” Prog. Electromagn. Res., PIER 95, pp. 179–198, 2009.

176

[52] T. Malas and L. Gürel, “Solution of large EFIE problems via precondi-

tioned multilevel fast multipole algorithm,” in 2nd European Conference

on Antennas and Propagation (EuCAP), (Edinburgh, UK), Nov. 2007.

[53] Ö. Ergül, T. Malas, A. Ünal, and L. Gürel, “Solutions of large integral-

equation problems with preconditioned MLFMA,” in 37th European Mi-

crowave Conference (EuMC), (Munich, Germany), Oct. 2007.

[54] T. Malas, Ö. Ergül, and L. Gürel, “Parallel preconditioners for solutions

of dense linear systems with tens of millions of unknowns,” in 22nd In-

ternational Symposium on Computer and Information Sciences (ISCIS07),

(Ankara, Turkey), Nov. 2007.

[55] L. Gürel, T. Malas, and Ö. Ergül, “Efficient preconditioning strategies

for the multilevel fast multipole algorithm,” in PIERS 2007 Progress in

Electromagnetics Research Symposium, (Beijing, China), pp. 1620–1624,

March 2007.

[56] T. Malas and L. Gürel, “Iterative near-field (INF) preconditioner for the

multilevel fast multipole algorithm,” SIAM J. Sci. Comput., vol. submit-

ted,, Feb. 2009.

[57] T. Malas, Ö. Ergül, and L. Gürel, “Approximate MLFMA as an efficient

preconditioner,” in 2007 IEEE International Symposium on Antennas and

Propagation, (Honolulu, Hawai, USA), June 2007.

[58] T. Malas, Ö. Ergül, and L. Gürel, “Iterative solutions of large-scale elec-

tromagnetics problems using an inner-outer scheme with ordinary and ap-

proximate multilevel fast multipole algorithms,” J. Comput. Phys., Feb.

2009, submitted.

177

[59] T. Malas, Ö. Ergül, and L. Gürel, “Variable preconditioning with nested

iterations employing MLFMA,” in 2006 IEEE AP-S International Sym-

posium and USNC/URSI National Radio Science Meeting and AMEREM

Meeting, (Albuquerque, New Mexico, USA), July 2006.

[60] T. Malas, Ö. Ergül, and L. Gürel, “Effective preconditioners for large

integral-equation problems,” in 2nd European Conference on Antennas and

Propagation (EuCAP), (Edinburgh, UK), Nov. 2007.

[61] T. Malas and L. Gürel, “Preconditioning large integral-equation problems

involving complex targets,” in 2008 IEEE International Symposium on An-

tennas and Propagation and the 2008 USNC/URSI National Radio Science

Meeting, (San Diego, California, USA), July 2008.

[62] T. Malas and L. Gürel, “Iterative block near-field preconditioners for sur-

face integral-equation formulations of dielectric problems,” in Vth Inter-

national Workshop on Electromagnetic Wave Scattering (EWS), (Antalya,

Turkey), Oct. 2008.

[63] L. Gürel, Ö. Ergül, and T. Malas, “Solutions of extremely large electro-

magnetics problems involving tens of millions of unknowns using parallel

MLFMA and preconditioners,” in XXIX General Assembly of the Interna-

tional Union of Radio Science, (Chicago, Illinois, USA), Aug. 2008.

[64] T. Malas and L. Gürel, “Schur complement preconditioners for surface

integral-equation formulations of dielectric problems solved with the mul-

tilevel fast multipole algorithm,” SIAM J. Sci. Comput., submitted, Jan.

2010.

[65] T. Malas and L. Gürel, “Iterative Schur complement preconditioners for

the simulation of dielectric problems in computational electromagnetics,”

SIAM J. Sci. Comput., submitted, Feb. 2010.

178

[66] T. Malas and L. Gürel, “An effective preconditioner based on the Schur

complement reduction for integral-equation formulations of dielectric prob-

lems,” in IEEE International Symposium on Antennas and Propagation,

(Charleston, South Carolina, USA), June 2009.

[67] Ö. Ergül, T. Malas, S. Kılınç, S. Sarıtaş, and L. Gürel, “Analysis of

photonic-crystal problems with mlfma and approximate Schur precondi-

tioners,” in 2009 Computational Electromagnetics International Workshop

(CEM’09), (İzmir, Turkey), July 2009.

[68] T. Malas and L. Gürel, “Increasing robustness and efficiency of surface-

integral-equation solutions of dielectric problems with approximate Schur

preconditioners,” in 2009 Computational Electromagnetics International

Workshop (CEM’09), (İzmir, Turkey), July 2009.

[69] “Intel MKL Web page.” http://software.intel.com/en-us/intel-mkl/.

[70] “Intel MPI Web page.” http://software.intel.com/en-us/intel-mpi-

library/.

[71] “OPEN MPI Web page.” http://www.open-mpi.org/.

[72] “MVAPICH Web page.” http://mvapich.cse.ohio-state.edu/.

[73] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “PETSc users

manual,” Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Lab-

oratory, 2004.

[74] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knep-

ley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page.”

http://www.mcs.anl.gov/petsc.

[75] G. Meurant, Computer Solution of Large Linear Systems, vol. 28 of Studies

In Mathematics and Its Applications. North Holland, Amsterdam: North-

Holland, 1999.

179

[76] E. Chow and Y. Saad, “Experimental study of ILU preconditioners for

indefinite matrices,” J. Comput. Appl. Math., vol. 86, no. 2, pp. 387–414,

1997.

[77] M. A. Heroux and J. M. Willenbring, “Trilinos users guide,” Tech. Rep.

SAND2003-2952, Sandia National Laboratories, 2003.

[78] M. Bollhöfer and Y. Saad, “ILUPACK - preconditioning software package,”

2004. Available online at http://www.math.tu-berlin.de/ilupack/.

[79] B. Carpentieri, I. S. Duff, and L. Giraud, “Experiments with sparse precon-

ditioning of dense problems from electromagnetic applications.,” Technical

Report TR/PA/00/04, CERFACS, Toulouse, France, 1999.

[80] K. Sertel and J. L. Volakis, “Incomplete LU preconditioner for FMM im-

plementation,” Microw. Opt. Tech. Lett., vol. 28, pp. 265–267, 2000.

[81] J. Lee, J. Zhang, and C.-C. Lu, “Incomplete LU preconditioning for large

scale dense complex linear systems from electromagnetic wave scattering

problems,” J. Comput. Phys., vol. 185, no. 1, pp. 158–175, 2003.

[82] B. Carpentieri, I. S. Duff, and L. Giraud, “Robust preconditioning of dense

problems from electromagnetics,” in Int. J. Comput. Numer. Anal. Appl.

(L. Vulkov, J. Waśniewski, and P. Yalamov, eds.), pp. 170–178, Springer,

2000.

[83] B. Carpentieri, I. S. Duff, and L. Giraud, “Sparse pattern selection strate-

gies for robust frobenius-norm minimization preconditioners in electromag-

netism,” Numer. Linear Algebra Appl., vol. 7, no. 7-8, pp. 667–685, 2000.

[84] B. Carpentieri, I. S. Duff, L. Giraud, and M. M. m. Made, “Sparse symmet-

ric preconditioners for dense linear systems in electromagnetism.,” Tech.

Rep. TR/PA/01/35, CERFACS, Toulouse, France, 2001.

180

[85] J. Lee, J. Zhang, and C.-C. Lu, “Sparse inverse preconditioning of mul-

tilevel fast multipole algorithm for hybrid integral equations in electro-

magnetics,” IEEE Trans. Antennas Propagat., vol. 52, no. 9, pp. 158–175,

2004.

[86] G. Alléon, M. Benzi, and L. Giraud, “Sparse approximate inverse precondi-

tioning for dense linear systems arising in computational electromagnetics,”

Numer. Algorithms, vol. 16, pp. 1–15, 1997.

[87] M. Benzi, D. B. Szyld, and A. van Duin, “Orderings for incomplete factor-

ization preconditioning of nonsymmetric problems,” SIAM J. Sci. Com-

put., vol. 20, no. 5, pp. 1652–1670, 1999.

[88] M. Bollhöfer, “A robust and efficient ILU that incorporates the growth

of the inverse triangular factors,” SIAM J. Sci. Comput., vol. 25, no. 1,

pp. 86–103, 2003.

[89] Y. Saad, “ILUT: a dual threshold incomplete LU factorization,” Numer.

Linear Algebra Appl., vol. 1, no. 4, pp. 387–402, 1994.

[90] B. Carpentieri, Sparse preconditioners for dense complex linear systems

in electromagnetic applications. Ph.D. dissertation, INPT, April 2002.

TH/PA/02/48.

[91] L. Gürel, H. Bag̃cı, J.-C. Castelli, A. Cheraly, and F. Tardivel, “Validation

through comparison: Measurement and calculation of the bistatic radar

cross section of a stealth target,” Radio Science, vol. 38, no. 3, pp. 1046–

1058, 2003.

[92] B. Carpentieri, I. S. Duff, L. Giraud, and G. Sylvand, “Combining fast mul-

tipole techniques and an approximate inverse preconditioner for large elec-

tromagnetism calculations,” SIAM J. Sci. Comput., vol. 27, no. 3, pp. 774–

792, 2005.

181

[93] M. Benzi and M. Tuma, “A comparative study of sparse approximate in-

verse preconditioners,” Appl. Numer. Math., vol. 30, no. 2–3, pp. 305–340,

1999.

[94] L. Y. Kolotilina and A. Y. Yeremin, “Factorized sparse approximate inverse

preconditioning I. Theory,” SIAM J. Matrix Anal. Appl, vol. 14, no. 9,

pp. 45–58, 1993.

[95] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner

for nonsymmetric linear systems,” SIAM J. Sci. Comput., vol. 19, no. 3,

pp. 968–994, 1998.

[96] E. Chow and Y. Saad, “Approximate inverse preconditioners via sparse-

sparse iterations,” SIAM J. Sci. Comput., vol. 19, no. 3, pp. 995–1023,

1998.

[97] M. J. Grote and T. Huckle, “Parallel preconditioning with sparse approxi-

mate inverses,” SIAM J. Sci. Comput., vol. 18, no. 3, pp. 838–853, 1997.

[98] E. Chow, “Parallel implementation and practical use of sparse approxi-

mate inverse preconditioners with a priori sparsity patterns,” Int. J. High

Perform. Comput. Appl., vol. 15, no. 1, pp. 56–74, 2001.

[99] L. Gürel and Ö. Ergül, “Fast and accurate solutions of integral-equation

formulations discretised with tens of millions of unknowns,” Electronics

Lett., vol. 43, pp. 499–500, 2007.

[100] A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with

a planar left-handed transmission-line lens,” Phys. Rev. Lett., vol. 92,

pp. 117403–1–117403–4, Mar. 2004.

[101] K. Aydın, I. Bulu, and E. Özbay, “Subwavelength resolution with

a negative-index metamaterial superlens,” Appl. Phys. Lett., vol. 90,

pp. 254102–1–254102–3, June 2007.

182

[102] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F.

Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave

frequencies,” Science, vol. 314, pp. 977–980, Nov. 2006.

[103] Z. Weng, N. Wang, Y. Jiao, and F. Zhang, “A directive patch antenna with

metamaterial structure,” Microwave Opt. Technol. Lett., vol. 49, pp. 456–

459, Feb. 2007.

[104] M. Gokkavas, K. Güven, I. Bulu, K. Aydın, R. S. Penciu, M. Kafe-

saki, C. M. Soukoulis, and E. Özbay, “Experimental demonstration of a

left-handed metamaterial operating at 100 ghz,” Phys. Rev. B., vol. 73,

pp. 193103–1–193103–4, May 2006.

[105] K. Abe and S.-L. Zhang, “A variable preconditioning using the SOR

method for GCR-like methods,” Int. J. Numer. Anal. Model., vol. 2, no. 2,

pp. 147–161, 2005.

[106] Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast mul-

tipole algorithm for the solution of large-scale scattering problems,” IEEE

Trans. Antennas Propagat., vol. 56, pp. 2335–2345, Aug. 2008.

[107] A. Bouras and V. Frayssé, “Inexact matrix-vector products in Krylov meth-

ods for solving linear systems: A relaxation strategy,” SIAM J. Matrix

Anal. Appl., vol. 26, no. 3, pp. 660–678, 2005.

[108] V. Simoncini and D. B. Szyld, “Flexible inner-outer krylov subspace meth-

ods,” SIAM J. Numer. Anal., vol. 40, no. 6, pp. 2219–2239, 2002.

[109] J. van den Eshof, G. L. G. Sleijpen, and M. B. van Gijzen, “Relaxation

strategies for nested Krylov methods,” J. Comput. Appl. Math., vol. 177,

no. 2, pp. 347–365, 2005.

[110] H. van der Vorst and C. Vuik, “GMRESR: a family of nested GMRES

methods,” Numer. Linear Algebra Appl., vol. 1, no. 4, pp. 369 – 386, 1994.

183

[111] A. P. Pavacic, D. L. del Ŕıo, J. R. Mosig, and G. V. Eleftheriades, “Three-

dimensional ray-tracing to model internal reflections in off-axis lens anten-

nas,” IEEE Trans. Antennas Propagat., vol. 54, pp. 604–612, 2006.

[112] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:

Molding the Flow of Light. Princeton University Press, 2008.

[113] T. W. Lloyd, J. M. Song, and M. Yang, “Numerical study of surface inte-

gral formulations for low-contrast objects,” IEEE Antennas Wirel. Propag.

Lett., vol. 4, pp. 482–485, 2005.

[114] Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for

the fast and accurate solution of scattering problems involving dielectric

objects with multilevel fast multipole algorithm,” IEEE Trans. Antennas

Propagat., vol. 57, pp. 176–187, Jan. 2009.

[115] P. Ylä-Oijala and M. Taskinen, “Well-conditioned muller formulation for

electromagnetic scattering by dielectric objects,” IEEE Trans. Antennas

Propagat., vol. 53, no. 10, pp. 3316–3323, 2005.

[116] P. Ylä-Oijala and M. Taskinen, “Application of combined field integral

equation for electromagnetic scattering by composite metallic and dielectric

objects,” IEEE Trans. Antennas Propagat., vol. 53, no. 3, pp. 1168–1173,

2005.

[117] C. Müller, Foundations of the Mathematical Theory of Electromagnetic

Waves. Springer Verlag, 1969.

[118] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point

problems,” Acta Numer., vol. 14, pp. 1–137, 2005.

[119] E. Chow and Y. Saad, “Approximate inverse techniques for block-

partitioned matrices,” SIAM J. Sci. Comput., vol. 18, no. 6, pp. 1657–1675,

1997.

184

[120] C. Siefert and E. de Sturler, “Preconditioners for generalized saddle-point

problems,” SIAM J. Numer. Anal., vol. 44, no. 3, pp. 1275–1296, 2006.

[121] M. Benzi and G. H. Golub, “A preconditioner for generalized saddle point

problems,” SIAM Journal on Matrix Analysis and Applications, vol. 26,

no. 1, pp. 20–41, 2005.

[122] J. Zhang, “On preconditioning Schur complement and Schur complement

preconditioning,” Electron. Trans. Numer. Anal., vol. 10, pp. 115–130,

2000.

[123] J. M. Ford, K. Chen, and D. Evans, “On a recursive Schur preconditioner

for iterative solution of a class of dense matrix problems,” Int. J. Comput.

Math., vol. 80, no. 1, pp. 105–122, 2003.

[124] M. A. Olshanskii and Y. V. Vassilevski, “Pressure Schur complement

preconditioners for the discrete oseen problem,” SIAM J. Sci. Comput.,

vol. 29, no. 6, pp. 2686–2704, 2007.

[125] E. de Sturler and J. Liesen, “Block-diagonal and constraint preconditioners

for nonsymmetric indefinite linear systems. part i: Theory,” SIAM J. Sci.

Comput., vol. 26, no. 5, p. 1598, 2005.

[126] Z.-Z. Bai, “Structured preconditioners for nonsingular matrices of block

two-by-two structures,” Math. Comp., vol. 75, no. 254, p. 791, 2006.

[127] G. Schmidlin, U. Fischer, Z. Andjeliĉ, and C. Schwab, “Preconditioning

of the second-kind boundary integral equations for 3d eddy current prob-

lems,” Int. J. Numer. Methods Eng., vol. 51, no. 9, 2001.

[128] W. Bomhof and H. A. van der Vorst, “A parallel linear system solver for

circuit simulation problems,” Numer. Linear Algebra Appl., vol. 7, no. 7-8,

pp. 649–665, 2000.

185

[129] A. J. Poggio and E. K. Miller, “Integral equation solutions of three-

dimensional scattering problems,” in Computer Techniques for Electromag-

netics (R. Mittra, ed.), Oxford: Pergamon Press, 1973, Chap. 4.

[130] G. C. Hsiao and R. E. Kleinman, “Mathematical foundations for error es-

timation in numerical solutions of integral equations in electromagnetics,”

IEEE Trans. Antennas Propagat., vol. 45, no. 3, pp. 316–328, 1997.

[131] T.-K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielec-

tric bodies of revolution,” Radio Science, vol. 12, no. 5, pp. 709–718, 1977.

[132] Y. Chang and R. F. Harrington, “A surface formulation for characteristic

modes of material bodies,” IEEE Trans. Antennas Propagat., vol. 25, no. 6,

pp. 789–795, 1977.

[133] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast

Iterative Solvers: With Applications in Incompressible Fluid Dynamics.

Oxford University Press, USA, 2005.

[134] L. Little, Y. Saad, and L. Smoch, “Block LU preconditioners for symmetric

and nonsymmetric saddle point problems,” SIAM J. Sci. Comput., vol. 25,

no. 2, pp. 729–748, 2003.

[135] W. W. Hager, “Updating the inverse of a matrix,” SIAM review, pp. 221–

239, 1989.

[136] S. S. Haykin, Kalman Filtering and Neural Networks. New York, NY, USA:

John Wiley & Sons, Inc., 2001.

[137] V. Simoncini and D. B. Szyld, “The effect of non-optimal bases on the con-

vergence of krylov subspace methods,” Numerische Mathematik, vol. 100,

no. 4, pp. 711–733, 2005.

186

[138] S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided

modes in photonic crystal slabs,” Physical Review B, vol. 60, no. 8,

pp. 5751–5758, 1999.

[139] P. Loschialpo, D. W. Forester, and J. Schelleng, “Anomalous transmission

through near unit index contrast dielectric photonic crystals,” J. Appl.

Phys., vol. 86, no. 10, pp. 5342–5347, 1999.

[140] I. S. Duff, L. Giraud, J. Langou, and E. Martin, “Using spectral low rank

preconditioners for large electromagnetic calculations,” Internat. J. Numer.

Methods Engrg., vol. 62, no. 3, pp. 416–434, 2005.

[141] P.-L. Rui, R.-S. Chen, D.-X. Wang, and E. K.-N. Yung, “Spectral two-

step preconditioning of multilevel fast multipole algorithm for the fast

monostatic RCS calculation,” IEEE Trans. Antennas Propagat., vol. 55,

pp. 2268–2275, Aug. 2007.

[142] L. Banjai and W. Hackbusch, “Hierarchical matrix techniques for low-

and high-frequency Helmholtz problems,” IMA J. Numer. Anal., vol. 28,

pp. 46–79, 2008.

[143] V. E. Howle and S. A. Vavasis, “An iterative method for solving complex-

symmetric systems arising in electrical power modeling,” SIAM J. Matrix

Anal. Appl, vol. 26, no. 4, pp. 1150–1178, 2005.

[144] R. Natarajan, “An iterative scheme for dense, complex-symmetric, linear

systems in acoustics boundary-element computations,” SIAM J. Sci. Com-

put., vol. 19, pp. 1450–1470, 1998.

187

