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ABSTRACT

ROUTING IN DELAY TOLERANT NETWORKS WITH
PERIODIC CONNECTIONS

Cem Mergenci

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. İbrahim Körpeoğlu

August, 2010

In delay tolerant networks (DTNs), the network may not be fully connected

at any instance of time, but connections occurring between nodes at different

times make the network connected through the entire time continuum. In such a

case, traditional routing methods fail to operate as there are no contemporaneous

end-to-end paths between sources and destinations. This study examines the

routing in DTNs where connections arise in a periodic nature. Various levels

of periodicity are analyzed to meet requirements of different network models.

We propose various routing algorithms for periodic connections. Our proposed

methods can find routes that can guarantee earliest delivery and minimum hop

count. We evaluate our routing schemes via extensive simulation experiments

and also compare them to some other popular routing approaches proposed for

delay tolerant networks. Our evaluations show the feasibility and effectivenes of

our schemes as alternative routing methods for delay tolerant networks.

Keywords: Delay Tolerant Networks, Routing.
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ÖZET

GECİKME DİRENÇLİ AĞLARDA SÜRELİ
BAĞLANTILAR İÇİN YÖNLENDİRME

Cem Mergenci

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. İbrahim Körpeoğlu

Ağustos, 2010

Gecikme dirençli ağlarda, ağ her ne kadar anlık olarak bağlı bulunmasa da

düğümler arasında zaman içinde oluşan bağlantılar, ağı tüm zaman aralığında

bağlı hale getirir. Böyle bir durumda, geleneksel yönlendirme yöntemleri kaynak

ve hedef arasında hali hazırda uçtan uca bir yol bulunmadığı için başarılı olamaz.

Bu çalışma, süreli bağlantılardan oluşan gecikme dirençli ağlarda yönlendirmeyi

incelemektedir. Farklı ağ yapılarının gereksinimlerini karşılamak için farklı

süreli bağlantı türleri çözümlenerek, süreli bağlantılar için çeşitli yönlendirme

yöntemleri önerilmekte, önerilen yöntemler en erken ve en kısa yoldan tes-

limi garantilemektedir. Yönlendirme yöntemleri, ayrıntılı benzetim ve deneyler

ile değerlendirilip gözde yönlendirme yöntemleriyle de karşılaştırılmaktadır.

Değerlendirmeler, önerilen yöntemlerin gecikme dirençli ağlarda uygulanabilir ve

etkin bir seçenek olduğunu göstermektedir.

Anahtar sözcükler : Gecikme Dirençli Ağlar, Yönlendirme.
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Chapter 1

Introduction

Delay tolerant networks (DTNs) [4] are networks where an end-to-end path be-

tween a source and destination is not guaranteed to exist at any time instant.

Connections between nodes at different times provide an end-to-end path in fu-

ture, therefore, making the network connected throughout the entire time contin-

uum. This condition causes DTNs to suffer from large delays; long disconnection

times and partitioning in the network are also typical problems, which make

communication a challenging task in a DTN.

Not all of the applications are suitable for DTNs. Applications requiring a

flow of data, such as multimedia streaming, or a connection to be present, such as

secure shell (SSH) or instant messaging (IM), are not good candidates for a high-

delay disconnected environment. On the other hand, delay tolerant applications

can tolerate large delays and still work as expected. Email is a good example to

delay tolerant applications, DNS and Web can also be considered in this category.

Although conventional file transfers require a flow of data, different forms like

BitTorrent have a delay tolerant nature and can operate in a DTN environment

easily.

Apart from the existing applications, very different application types have

emerged with the DTN concept. Contextual applications using locally available

data are popular in DTNs. Suppose a social networking application running on

1



CHAPTER 1. INTRODUCTION 2

people’s mobile handsets. Researchers from different locations around the world

meet in a conference, providing a convenient way for all people with similar in-

terests to come together. Our application collects profile of the attendees and

presents a list of people who are working in our research field. Applications for

polling, invitation and announcement disseminations can work in a similar man-

ner. Vehicular ad-hoc networks (VANETs), military ad-hoc networks, wireless

sensor networks (WSNs), satellite and free-space communication are other fields

to which delay tolerant networking concepts can be applied.

The main problem with the DTNs is the fact that existing networking proto-

cols that are in use today, such as ubiquitous TCP/IP stack, assume the avail-

ability of an end-to-end path and acceptable round-trip times in communication.

These assumptions make them unsuitable to operate in a DTN environment.

Even mobile ad-hoc network (MANET) routing protocols like AODV and OLSR

are not designed to work for a delay tolerant situation. As a result, different set

of networking protocols are devised for DTNs to meet various requirements.

In this study, we examine routing issues in a DTN. We are particularly in-

terested in routing in a DTN with periodic connections. We begin our work

with an analysis of a simple connection model, in which contacts occur at a

given time in future without any periodicity. We propose an algorithm based

on Dijkstra’s shortest path algorithm with customizations to meet requirements

of the simple connection model. This algorithm guarantees the earliest deliv-

ery (ED), therefore, optimal in terms of time. Then we extend the connection

model to incorporate periodic connections, which is our main area of focus. In

this new model, contacts occur first on a given time and repeats at certain in-

tervals. We revise our routing algorithm to compute future contact times from

the new connection model by taking periodicity into account. This connection

model assumes contact durations to be insignificant such that a connection be-

comes available and unavailable instantly though allowing enough time for packet

exchanges. This assumption is not very realistic, because connection times are

comparable to disconnection times in real scenarios. We introduce a connection

model with separate connection and disconnection states taking different times

and also occurring periodically in an alternating fashion. We provide the most
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general version of the ED routing algorithm using this connection model. It

computes future contact times accordingly and exploits connection periods.

ED routing is optimal in time, but not in hop count. The greedy approach

taken by the algorithm (similar to the greedy approach taken by the Dijkstras

shortest path algorithm) produces routes that are suboptimal in hop count. We

address this problem with min-hop earliest delivery routing (MHED), which finds

paths that guarantee the earliest delivery and are minimal in hop count. There

are two flavors of MHED, one based on a Dijkstra-like approach and one based

on BFS (breadth first search). Running time analysis reveals that BFS-based

MHED runs asymptotically faster than Dijkstra-based MHED.

We perform experiments to compare our algorithm to epidemic routing, which

is a popular routing algorithm optimal in time. Results show that ED and MHED

routing achieve the same delivery time as epidemic routing by making very few

number of transmissions. We compare ED and MHED in terms of average path

length and routing tree stability. As expected, simulation results prove MHED

finding shorter routes than ED under different scenarios. A side effect of the

MHED algorithm is the fact that its routing tree is less susceptible than that

of ED, to changes in the connections between nodes. Routing tree of MHED

changes less frequently at each time interval.

The rest of the thesis is organized as follows: Chapter 2 gives a general back-

ground information about DTNs, explains challenges for such networks and looks

at applications. It also presents related work in DTN routing literature, com-

pares and contrasts existing works to our study. Chapter 3 defines the problem

and proposes different solutions for different cases. Chapter 4 explains experi-

ments and evaluates the results. Chapter 5 concludes the thesis and gives future

research ideas on the topic.



Chapter 2

Background and Related Work

2.1 Delay Tolerant Network Architecture

Roots of delay tolerant networking lies in the work of Interplanetary Internet

(IPN). On March 2003, in the first draft of the RFC 4828, the term delay tolerant

network was coined to extend properties of IPN to different types of networks [5].

These types of networks suffer from disruptions in connections and partitions in

the network.

DTN architecture is evolved to work on top of a very diverse range of commu-

nication types. It utilizes network layer services like TCP/IP, MANET routing,

WSN infrastructure and uses link layer technologies like Ethernet, serial connec-

tion, Wi-Fi and Bluetooth. Furthermore, it benefits from the mobility of hosts,

whether they are people, vehicles or data ferries.

A generic naming and addressing scheme is proposed to enable interoperabil-

ity in such a heterogenous environment. Hosts are identified with URI of different

schemes for each type of underlying technology. A node may have multiple iden-

tifiers depending on its connection opportunities. Data packets are encapsulated

in generic bundles, which carry the necessary information for a packet to reach its

destination through different communication types. Error detection is left up to

4
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higher layers; however, it may not be necessary when using error-free transmission

mediums.

2.2 Challenges for DTNs

One of the most significant challenges in DTNs is routing. Routing algorithms

are expected to have high delivery ratio, low latency and require less number of

transmissions. The details of some routing strategies are discussed in the next

section.

Although each challenge has many other challenges on its own, [4] identifies

the following main categories of challenges for DTNs:

• High Latency and Low Data Rate: Dealing with different transmission medi-

ums over a path, DTNs experience high latency, therefore, low data rate.

Reverse path characteristics may be different from the delivery path, result-

ing in an asymmetric connection. DTN protocols should avoid unnecessary

packet exchanges to avoid drawbacks of high latencies.

• Disconnection: DTNs are distinguished from other types of networks by

their long disconnection periods, which are more common than connec-

tions. One of the most important causes of disconnections is the mobility

in wireless networks. Disconnections due to unavailability of a transmis-

sion link are rather rare. Disconnections are best handled at network layer

by routing protocols, which should try to send packets through the best

available medium at the best time.

• Long Queueing Times: As a result of disconnections, intermediate nodes on

a path need to buffer messages for long durations. This requires a routing

decision to be made at each time a connection is established, because that

connection might be a good candidate for any of the buffered messages.

• Interoperability: As discussed earlier interoperability is an important issue,

because a DTN is composed of heterogeneous transmission mediums, not
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only in the physical layer, but also in the network layer. A good protocol

design should make minimal assumptions regarding the types of communi-

cation channels throughout the path, in order to utilize as much connection

as possible.

• Security: An end-to-end security mechanism is not appropriate for a DTN

as it requires many message exchanges before actual data exchange can take

place. Security concern remains as a major challenge in DTNs.

• Low Duty Cycle Operation: Wireless mobile nodes are restricted by their

batteries or by the availability of a link to the rest of the network. Even if

a packet arrives closer to a destination, it may fail to reach the destination

due to these constraints. Protocols should schedule nodes duty cycles ahead

of time to avoid these conditions.

• Limited Resources: Nodes that are participating in the network generally

have limited memory and processing resources. DTN protocols should re-

quire minimal resource usage in intermediate nodes.

2.3 Related Work

This section provides an overview of routing studies in DTN literature, compares

and contrasts these studies to our work.

In [6], authors formulate a DTN routing problem given the connectivity pat-

terns of nodes, then present a comprehensive framework for evaluating and classi-

fying different routing algorithms. They define four types of knowledge in DTNs:

contacts summary, contacts information, queuing and traffic demand. Contacts

summary is the aggregate statistics of contacts. Contacts information is the exact

state of the contacts at any given time between any pair of nodes. Queueing infor-

mation is the instantaneous buffer occupancy amount at any node at any time.

Traffic demand is the information regarding the traffic in the network at any

time. They also classify routing algorithms into three classes: zero knowledge,

complete knowledge and partial knowledge. Zero knowledge routing algorithms
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use no knowledge about the network. Complete knowledge routing uses all of the

knowledge types presented above. Partial knowledge routing uses one or more of

the information types about the network. The study presents routing algorithms

based on Dijkstra’s shortest path algorithm for partial knowledge models and

formulates a linear programming for complete knowledge routing.

[14] applies epidemic algorithm concept [3] to partially-connected ad hoc net-

works. Nodes buffer messages they received even if they do not know a route to

destination. When two nodes come into contact they exchange summary vectors

which is an index of the messages they buffered. By examining its neighbors

summary vector a node determines the messages it does not have and requests

them. In this way, a message is delivered to every contacting node and finally

delivered to its destination.

Similar to epidemic routing, PROPHET [8] introduces probabilistic routing

decisions. Every node maintains a delivery predictability for each node it en-

counters. Nodes that are frequently met have higher delivery predictability and

it decreases as each node does not encounter each other for a while. Delivery

predictability is also transitive meaning that a node may have a higher deliv-

ery predictability to another node through a third node which encounters both

of them frequently. Epidemic forwarding of packets occur only when delivery

predictability of a neighbor is higher than the node itself for a destination.

As opposed to epidemic flooding, single-copy routing schemes are presented

in [12]. These strategies depend on the fact that every local progress will lead a

packet to its destination. In the most basic strategy, direct transmission, source

node forwards the packet only if it encounters the destination. Randomized

routing algorithm forwards the copy to a neighbor with probability p > 0. In

utility-based routing, nodes compute a utility value for each destination depend-

ing on their location and last encounter time. Nodes forward a packet only if a

neighbor has a higher utility value to destination.

Another single-copy technique is suggested in [1]. Using only the average

inter-contact time estimates between nodes, a two-hop relay strategy is extended

to a recursive multi-hop relay strategy. The routing algorithm aims to minimize
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delivery time in case of independent exponential pairwise inter-contacts. It is also

loop-free, making it suitable to be used in DTNs.

Spray and wait routing [13] aims to compromise between epidemic routing and

single-copy routing by limiting the number of copies a packet can have. It re-

duces the number of transmissions with respect to epidemic routing and achieves

a better delivery ratio than single-copy schemes. Spraying phase consists of dis-

tributing L number of copies of a packet to the network. Every node transfers

bn/2c copies of its n copies to a neighbor and reserves remaining dn/2e for future

encounters. Wait phase begins when a node has only a single copy. The node

forwards the copy to a neighbor only if it is the destination.

[11] discusses routing in networks with predictable mobility. Nodes follow a

certain deterministic trajectory that is defined as a function of time. Given any

time instant, network graph can be constructed from the location of nodes. A

space-time graph is the combination of different network graphs at different time

instants as a single large graph. There are two kinds of links in the space-time

graph. Temporal links connect the different versions of the same node at different

time instants. Spatial links connect different nodes at different time instants. By

defining a distance function over these links, routing is performed to minimize

the delivery time.

In the study presented in [9], the authors focus on scalability issues in routing

for DTNs. Under the same mobility model defined in [11], they propose DTN

Hierarchical Routing (DHR), which applies hierarchical routing to multiple levels

of a multi-level clustered network. Number of levels used in the routing algorithm

makes the algorithm scalable and is bounded by aggregate connection informa-

tion of the network. They also use compression methods to summarize contact

information. In another study [10], same authors examine optimality issue for

probabilistic forwarding protocols. Authors define a 1-hop delivery probability

metric and extend it to K-hop. The forwarding rule defined using the metric is

formulated inside an optimal stopping rule problem to find optimal routes.

Practical concerns about DTN routing is examined in [7]. Presented protocol

depends on an estimate of how long a message waits on a host until transmission
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to the next hop. The estimate is calculated from contact history, therefore does

not use global contact information. Forwarding is performed when a neighbor

is estimated to be closer to destination. Network topology is distributed using

epidemic flooding of link-state packets. Routing table is recomputed every time

a connection is established. Less frequently encountered contacts are utilized in

this way.

According to the classification in [6] our study uses only contact information.

We do not utilize queueing or traffic demand for routing decisions; therefore, our

approach is a partial knowledge routing method. As suggested in the study, we

use routing algorithms based on Dijkstra’s algorithm. Using contact information

eliminates the need for probabilistic routing decisions.

We propose a single copy routing scheme, as opposed to multi-copy schemes

like epidemic routing or spray-and-wait. On the other hand, our algorithms are

similar to epidemic routing in terms of delivery time; both are optimal strategies

guaranteeing the earliest delivery.

Rather than using a mobility model, we use connection models as an ab-

straction from mobility. We focus on how connections are established without

considering the reason behind whether it is mobility, availability or interference.

Therefore, our study is different from [11] and [9].

To the best of our knowledge, we are the first to address minimum hop and ear-

liest delivery objectives together in a routing algorithm in the context of DTNs.



Chapter 3

Routing for Periodic Connections

3.1 Problem Statement

In our delay tolerant network model we assume connection opportunities arise

periodically between any two nodes. This assumption is realistic due to the fact

that interactions between entities are periodic in nature. We meet our colleagues

every morning, friends from other departments during lunch time and our family

in the evening. Students, similarly, come across each other during breaks. Vehi-

cles in public transportation arrive at stations periodically; sensors periodically

transmit data to base stations; and so on.

We identify three cases of connection models of increasing complexity. In the

first model, contacts occur only once in the future. The second model introduces

periodic connections with negligible connection durations. Finally, third model

considers both connection and disconnection durations separately for periodic

connections.

We represent the network as an undirected connected graph, where there is

an edge between two nodes if there is a possibility of connection in-between, and

apply shortest path routing with some modifications to meet our requirements.

10
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3.2 Dijkstra’s Shortest Path Algorithm

We first present Dijkstra’s shortest path algorithm as presented in [2]. For net-

work models with different properties we only define a custom relax method that

relaxes edges according to its own requirements. Hence, in most of our algorithms

presented in this chapter, the main Dijkstras shortest path algorithm is left un-

modified except trivial argument modifications for different network models.

Algorithm 1 shows the initialization procedure for vertices in the graph. Dis-

tance t to every vertex v from source s is defined to be ∞ and parent of each

vertex is initially null. By definition, distance to source is 0.

Algorithm 1 Initialization of vertex properties.

Initialize-Single-Source(G, s)
1: for all v ∈ V [G] do
2: t[v]←∞
3: π[v]← nil
4: end for
5: t[s]← 0

Algorithm 2 relaxes a given edge (u, v) with weight w, if necessary. When

a shorter path to v from u is found, its distance is updated accordingly and its

parent is set to be u.

Algorithm 2 Original vertex relaxing mechanism in Dijkstra.

Relax(u, v, w)
1: if t[v] > t[u] + w(u, v) then
2: t[v]← t[u] + w(u, v)
3: π[v]← u
4: end if

Algorithm 3 is the Dijkstra’s single source shortest path algorithm. Vertices

are initialized and inserted into a min-heap. Since the source has the minimum

distance 0, where all other vertices have ∞, it is first extracted from the heap.

Then we relax its neighbors using edge weights. At each iteration, the minimum

distance vertex is extracted; therefore all vertices are assigned their shortest pos-

sible distance to the source.
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It should be noted that, in the algorithms presented, any assignment to t[u]

value for any node u is actually a Decrease-Key(Q, u, t[u]) operation on the

min-heap Q.

Algorithm 3 Dijkstra’s algorithm.

Dijkstra(G,w, s)
1: Initialize-Single-Source(G, s)
2: Q← V [G]
3: while Q 6= ∅ do
4: u← Extract-Min(Q)
5: for all v ∈ Adj[u] do
6: Relax(u, v, w)
7: end for
8: end while

3.3 Scheduled Connections

We begin with a simple connection model in which connections occur only once

according to a predetermined schedule. We can calculate perfect shortest routes

given source, destination, packet generation/arrival time and connection estab-

lishment time between nodes. We further simplify the model by neglecting con-

tact durations. An established connection is assumed to be lost as soon as all the

necessary packets have been exchanged between two nodes.

We now let edge weights, w(u, v), represent the contact times between nodes

in a mobile wireless network environment. Figure 3.1 shows an example network.

The link between Nodes 0 and 1 will be available at t = 2, the link between Nodes

0 and 2 will be available at t = 5, and so on.

In such a scenario, the shortest path is redefined to be the shortest path in

time with non-decreasing edge weights; since, a decreasing edge weight from one

link to another would mean a missed contact opportunity. This implies that

if a non-decreasing weight path does not exist for a vertex, that vertex is not

reachable from source.
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0

1

2

3

2

5

3

1

4

Figure 3.1: Example Network 1.

Figure 3.2 shows the routing tree of Node 0 at t = 0. Node 1 is reachable

at t = 2. Although Node 2 is directly reachable at t = 5, there exist a shorter

path where packets destined to Node 2 can be delivered at t = 3 over Node 1.

The link between Nodes 1 and 3, available only at t = 1, cannot be utilized since

packets arrive at Node 1 at t = 2, earliest. Therefore, shortest path to Node 3 is

over Node 2.

0

1

2

3

2

5

3

1

4t = 0

Figure 3.2: Routing tree of Node 0 at t = 0 in Example Network 1.

Shortest distance t[u] to a vertex u from the source is also redefined to be the

time a packet generated at t = 0 is delivered. In the Example Network 1, shortest

distances to Nodes 1, 2 and 3 from Node 0 are 2, 3 and 4, respectively.

The refined version of Algorithm 2 to work under these conditions is given

in Algorithm 4. The condition in the if statement checks whether the edge is in

non-decreasing order in the path. Edge weights are not accumulated as in the

original version, since they are absolute contact times.
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Algorithm 4 Vertex relaxing for scheduled connections.

Relax(u, v, w)
1: if w(u, v) ≥ t[u] and t[v] > w(u, v) then
2: t[v]← w(u, v)
3: π[v]← u
4: end if

3.3.1 Routing at t > 0

So far we have discussed how to compute a routing tree at t = 0. Algorithm 5

is a simple modification to Initialize-Single-Source(G, s) procedure given in

Algorithm 1 to enable shortest route computation at an arbitrary time t.

Algorithm 5 Initialization of Dijkstra’s algorithm with time t

Initialize-Single-Source(G, s, t)
1: for all v ∈ V [G] do
2: t[v]←∞
3: π[v]← nil
4: end for
5: t[s]← t

The initial distance to source is set to given t. The source node remains the

first node to be extracted from the min-heap, since t is smaller than the initial

distances of all other nodes, ∞. Relax method in Algorithm 4 considers only

edges that have contact times in now or future; therefore, non-decreasing edge

weight path property is still maintained.

The signature of the main routing procedure Dijkstra should be updated

to accept the time t at which the routing tree will be computed as Dijk-

stra(G,w, s, t).

Figure 3.3 shows routing tree for Node 0 at t = 3. Only Node 2 is reachable

at t = 5, as others’ contact opportunities are lost either at t = 3 or t = 5.
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Figure 3.3: Routing tree of Node 0 at t = 3 in Example Network 1.

3.4 Scheduled Periodic Connections

In this section, we extend our network model to utilize periodic connections which

occur according to an exact schedule defined earlier. We first examine the case

where contact durations are insignificant and then consider periodic connections

with significant contact times.

3.4.1 Insignificant Contact Durations

We assign each edge (u, v) a period T (u, v) after which connection is reestablished.

In this model, no vertex is unreachable, because a connection will be available

after at most T (u, v) time. As stated earlier, we assume the graph representing

the possible connections among nodes is a connected graph.

Figure 3.4 shows an example network with periodic connections. Each link is

tagged with pair (w, T ) where w represents initial wait time of a link after which

connections begin to occur with period T . For example, the link between Nodes

0 and 1 becomes available at t = 2 and then becomes up again at every 3 units of

time, t = {5, 8, 11, 14, . . .}. The following function gives the kth connection time

for a link (u, v):

f(k, u, v) = w + k · T (u, v)

Routing tree for Node 0 at t = 0 is identical to the one depicted on Figure

3.2, because exact schedules on scheduled connections case corresponds to initial
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Figure 3.4: Example Network 2 with initial wait times and connection periods.

wait times in periodic connections case. However, routing tree at t = 3, shown in

Figure 3.5, is different than that on Figure 3.3. Time signatures on edges denote

when a link becomes available after one of its nodes receive a packet from Node

0. All of the nodes are reachable in this case, as periodic connections are utilized.

0
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3

5

5

8

8

7t = 3

Figure 3.5: Routing tree for Node 0 at t = 3 in Example Network 2.

Algorithm 6 extends the Relax(u, v, w) given in Algorithm 4 with another

input for connection periods. An initial statement calculates the first connection

time after t = t[u] using T (u, v). The first condition in the if statement of

Algorithm 4 is no longer needed since we assure the weights to be non-decreasing

with the initial calculation.

Throughout the execution of the algorithm, whenever w(u, v) is assigned, it

is assigned the next connection time of the corresponding link.
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Algorithm 6 Vertex relaxing for insignificant contact durations.

Relax(u, v, w, T )
1: if w(u, v) < t[u] then

2: w(u, v)← w(u, v) + T (u, v) ·
⌈

t[u]−w(u,v)
T (u,v)

⌉
3: end if
4: if t[v] > w(u, v) then
5: t[v]← w(u, v)
6: π[v]← u
7: end if

3.4.2 Significant Contact Durations

So far we have assumed connections remain available for a very small amount

of time, which is negligible. This assumption is not very realistic as connection

times are comparable to disconnection times. To alleviate this problem, we define

TON(u, v) and TOFF (u, v) to be connection and disconnection durations between

nodes u and v respectively. In this case the original period definition becomes

T (u, v) = TON(u, v)+TOFF (u, v). Connection and disconnection phases alternate

after initial wait time.

Figure 3.6 shows a network with significant contact durations. Links are

labeled with w, (TON , TOFF ) values. A link first goes up at the end of its initial

wait time, w. The connection lasts for TON time after which a disconnection

occurs for TOFF time. ON and OFF states follow each other after that point. For

instance, the link between Nodes 0 and 1 becomes available at t = 2, disconnection

occurs at t = 4 and next connection period begins at t = 5. The following two

functions give the beginning of the kth connection and disconnection periods,

respectively, for a link (u, v):

fON(k, u, v) = w + k · T (u, v)

fOFF (k, u, v) = w + TON(u, v) + k · T (u, v)

The routing tree for Node 0 at t = 3 is illustrated in Figure 3.7. The current

time is the t. For each link in the figure, the next time interval just after or

including the current time during which the link is on is given as the link label.
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4,(1,2)

Figure 3.6: Example Network 3 with initial wait times, connection and disconnection
periods.

When a node u receives a packet at t[u], it can forward it to node v at t[v] = t[u]

if they are connected at that time (i.e., the link is up at that time). Otherwise,

the node u should wait until the beginning of the next connection to forward

the packet, as in the previous cases. In this example shown in Figure 3.7, every

destination gets the packet at t = 3 as all of the links are on at that time.

0

1

2

3

[2,4)

[5,6)

[3,5)

[1,5)

[4,5)
t = 3

Figure 3.7: Routing tree for Node 0 at t = 3 in Example Network 3.

Algorithm 7 defines the relax method for significant contact durations model.

One of the drawbacks of it is the fact that it brings a restriction on the initial

wait times of links. An initial wait time of a link should satisfy the inequality:

w(u, v) ≤ TOFF (u, v). Otherwise, the algorithm fails to predict the beginning

time of the first ON period after the initial wait time. This problem is addressed

in Algorithm 8 by keeping the beginning time of the last ON period in w(u, v)

and calculating ON durations accordingly.
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Algorithm 7 Vertex relaxing for significant contact durations.

Relax(u, v, w, TON , TOFF )
1: if w(u, v) ≤ t[u] then

2: w(u, v)← w(u, v) + T (u, v) ·
(⌊

t[u]−w(u,v)
T (u,v)

⌋
+ 1

)
3: end if
4: if t[v] > t[u] and t[u] < w(u, v)− TOFF (u, v) then
5: t[v]← t[u]
6: π[v]← u
7: else if t[v] > w(u, v) then
8: t[v]← w(u, v)
9: π[v]← u

10: end if

3.5 Min-hop Earliest Delivery (MHED) Rout-

ing

So far, we have discussed routing to achieve earliest delivery, routes that are

shortest in time. In this section, we are going to define shortcomings of earliest

delivery routing and introduce min-hop earliest delivery (MHED) routing.

Suppose we have the following network in Figure 3.8 with scheduled connec-

tions.

0 1

2

3
3

1 2

4

Figure 3.8: Example Network 4.

Earliest delivery algorithm run in Node 0 would find the route to Node 3 as

[0, 2, 1, 3] with t = 4 being the delivery time. However, there exists a shorter

route if we consider hop-count as a secondary metric. The route [0, 1, 3] is also

shortest in delivery time (t = 4); moreover, it is shorter than the former path in

terms of hop count; n = 3 vs n = 2.
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Algorithm 8 Vertex relaxing with arbitrary initial wait times.

Relax(u, v, w, TON , TOFF )
1: if w(u, v) + T (u, v) ≤ t[u] then

2: w(u, v)← w(u, v) + T (u, v) ·
⌊

t[u]−w(u,v)
T (u,v)

⌋
3: end if
4: if w(u, v) ≤ t[u] then
5: if t[v] > t[u] and t[u] < w(u, v) + TON(u, v) then
6: t[v]← t[u]
7: π[v]← u
8: else if t[v] > w(u, v) + T (u, v) then
9: t[v]← w(u, v) + T (u, v)

10: π[v]← u
11: end if
12: else if t[v] > w(u, v) then
13: t[v]← w(u, v)
14: π[v]← u
15: end if

The previous algorithms fail to detect such a route because they make greedy

choices based only on delivery time. The route to Node 1 from Node 0 is over

Node 2 as it reaches Node 1 in earliest time. Once we set Node 2 as the parent

of Node 1, all routes descending from Node 1 in the routing tree pass over Node

2 independent of their time. However, we can choose any other route to Node 1,

satisfying non-decreasing edge weight path property, to route packets destined to

nodes that are children of Node 1 in the original routing tree. In this case, path

[0, 1] with t = 3 satisfies non-decreasing edge weight path property for path [1,

3] with t = 4; therefore, we can choose path [0, 1, 3] to route packets from Node

0 to Node 3. Since we are trying to find min-hop routes, paths we choose should

be shorter in terms of hop count.

3.5.1 Routing Tree

In routing tree concept, every node has a parent node through which it receives

its packets. In min-hop earliest delivery routing, routing tree concept is different:

every edge through which packets are routed has a parent edge. This causes a

node to appear in different branches of the routing tree; on the other hand, an
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edge can appear only in a single branch.

Figure 3.9 shows the routing tree of min-hop earliest delivery routing for

Example Network 4. There are two branches in the routing tree as shown in

Figure 3.9a. Node 1 appears in top branch as an intermediate node in route

to Node 3 and as a terminal node in bottom branch. Figure 3.9b presents an

alternative view showing routing tree inside the network graph.

0

1

2

33

1
2

4

1

(a) Routing tree

0 1

2

3
3

1 2

4

(b) Alternative view

Figure 3.9: Min-hop Earliest Delivery Routing Tree for Example Network 4.

3.5.2 Solution

3.5.2.1 Data Structures

The solution to MHED routing comes from the observation that we should utilize

paths that are shorter than the earliest delivery path in hop count. Among those

paths having the same hop count, we should still choose the path providing the

earliest delivery; so that, resulting path is the shortest. We are not interested

in paths that are longer than the earliest delivery path in hop count, because

earliest delivery path is already shorter.

Another important observation is the fact that any-number-of-hop paths to a

vertex may become the shortest path for a neighbor vertex. This observation is

illustrated in Figure 3.10.

Assuming Node 0 is the source, shortest path to Node 4 is [0, 1, 2, 4] with

h = 3 and t = 3. ED algorithm would route all of the packets to Nodes 5 and
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6 through this path to Node 4; however, there are shorter alternatives. Shortest

path to Node 5 is [0, 3, 4, 5] (h = 3, t = 5) and to Node 6 is [0, 4, 6] (h = 2,

t = 7). Shortest paths to both Nodes 5 and 6 is still through Node 4, but uses

different paths with different number of hops until Node 4. In this example, all

possible number-of-hop paths (1-hop, 2-hop, 3-hop) to Node 4, are utilized as a

shortest path to some node.

0

1

3

2
1

3 4

2

4

3

6

5

6

5

7

Figure 3.10: Example Network 5.

As a result, our solution should keep track of n-hop earliest delivery routes to

all nodes where n ≤ hop count of the earliest delivery path. Initialization of data

structures of MHED algorithm is given in Algorithm 9.

Algorithm 9 Initialization procedure for MHED algorithm.

Initialize-MHED(G, s, t)
1: for all v ∈ V [G] do
2: hop[v]← 0
3: for n = 0 to |V | − 1 do
4: t[v][n]←∞
5: π[v][n]← nil
6: end for
7: end for
8: t[s][0]← t

hop[v] is the hop count of the earliest delivery path to a vertex. t[v][n] and

π[v][n] respectively hold the earliest delivery time of and parent vertex for an

n-hop path to vertex v. Therefore, t[v][hop[v]] and π[v][hop[v]] correspond to

t[v] and π[v], respectively in earlier initialization procedure, Initialize-Single-

Source(G, s, t) defined in Algorithm 5. Lastly, earliest delivery time of source

node at 0 hops is set to t.
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Size of t[v] and π[v] is |V |−1, since shortest paths are simple paths and length

of a simple path can be at most |V |−1. Although these structures allocate |V |−1

space, at most |Adj[v]| of them, one for each neighbor, will be used for a vertex

v.

3.5.2.2 Main Algorithm

In the main algorithm, we should traverse the graph and fill the data structures at

the nodes with correct values and, therefore, obtain the routing tree. The objec-

tive is to find the n-hop earliest delivery paths to each vertex. We already know

that previous algorithms based on Dijkstra’s algorithm achieve the earliest deliv-

ery. Now we also keep track of hop counts together with earliest delivery times.

We modify min-heap structure to keep hop-vertices, a two-tuple (n, u), where n is

the hop count and u is the vertex. Comparison between two hop-vertices is done

in the order of hop and delivery time to vertex at n hops. Following function is

the formal definition of min function used by min-heap.

min((n, u), (m, v)) =



(n, u) if n < m

(n, u) if n = m and t[u][n] ≤ t[v][m]

(m, v) if n = m and t[u][n] > t[v][m]

(m, v) if n > m

min function implies that all n-hop hop-vertices will be extracted from the

heap before an (n+1)-hop hop-vertex is extracted.

Algorithm 10 presents MHED algorithm. The fundamental difference from

earliest delivery algorithm in Algorithm 3 is the structure of the heap. Since we

do not know which hop-vertices will be used, we initialize an empty min-heap

and add them in the relax procedure.

The relax function in Algorithm 11, takes hop count, n, after which edge

(u, v) is reached. The first condition in if statement checks whether this edge

satisfies non-decreasing edge weight path property after n-hop path to vertex u.
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Algorithm 10 MHED algorithm based on Dijkstra’s algorithm.

MHED(G,w, s, t)
1: Initialize-MHED(G, s, t)
2: Q←Make-Heap()
3: while Q 6= ∅ do
4: (n, u)← Extract-Min(Q)
5: for all v ∈ Adj[u] do
6: Relax(u, v, w, n)
7: end for
8: end while

The second condition checks whether this edge constitutes a shorter path than up

to n-hop paths to vertex v. Because of the way hop-vertices are extracted from

the min-heap, hop[v] is never greater than n+ 1 and converges to path length of

earliest delivery path throughout the execution. If both of these conditions hold,

it means edge (u, v) forms an (n+1)-hop path to v. If hop[v] < n+ 1, we need to

insert a new hop-vertex to the heap, otherwise the hop-vertex is already in the

heap and we need to perform a Decrease-Key operation. Decrease-Key,

which was omitted in previous versions, is explicitly written for clarity.

Algorithm 11 Vertex relaxing for MHED.

Relax(u, v, w, n)
1: if w(u, v) ≥ t[u][n] and t[v][hop[v]] > w(u, v) then . hop[v] ≤ n+ 1
2: t[v][n+ 1]← w(u, v)
3: π[v][n+ 1]← u
4: if hop[v] < n+ 1 then
5: hop[v]← n+ 1
6: Insert(Q, (n+ 1, v))
7: else . hop[v] = n+ 1
8: Decrease-Key(Q, (hop[v], v))
9: end if

10: end if

Note that inserted hop-vertices can have a hop count of n + 1. Given the

property that all n-hop hop-vertices are extracted before (n+1)-hop ones, it can

be concluded that only n-hop and (n+1)-hop hop-vertices can occur in the heap

at the same time. Therefore, the hop difference between minimum and maximum

hop hop-vertex is at most 1.
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This property is the same as the property of a BFS queue in operation; there-

fore, we can substitute min-heap with a FIFO queue. Algorithm 12 presents

MHED algorithm based on BFS. The only difference from the Dijkstra based

version is the use of queue operations instead of min-heap operations.

Algorithm 12 MHED algorithm based on BFS.

MHED(G,w, s, t)
1: Initialize-MHED(G, s, t)
2: Q←Make-Queue()
3: while Q 6= ∅ do
4: (h, u)← Dequeue(Q)
5: for all v ∈ Adj[u] do
6: Relax(u, v, w, h)
7: end for
8: end while

Vertex relaxing requires some modifications. Since we are not using a min-

heap, we can omit Decrease-Key operation and use Enqueue instead of In-

sert. Vertex relaxing for BFS based MHED is given in 13.

Algorithm 13 Vertex relaxing for BFS based MHED.

Relax(u, v, w, n)
1: if w(u, v) ≥ t[u][n] and t[v][hop[v]] > w(u, v) then . hop[v] ≤ n+ 1
2: t[v][n+ 1]← w(u, v)
3: π[v][n+ 1]← u
4: if hop[v] < n+ 1 then
5: hop[v]← n+ 1
6: Enqueue(Q, (n+ 1, v))
7: end if
8: end if

For the sake of simplicity, we omit insignificant contact durations connection

model and give relax procedure of MHED for significant contact durations. The

main difference from the previous versions is the use of a temporary variable w

instead of actual w(u, v). The reason is the fact that a vertex is enqueued multiple

times for each hop, therefore, its edges are traversed multiple times. If we were

to assign connection times to w(u, v), values might not be correct for another

time we go over the edges. By using the temporary w, the next contact time is
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calculated from the initial w(u, v) every time, regardless of how many times a

vertex is dequeued.

A boolean flag relax is set when a shorter path to v is found. If relax is true,

we check whether an enqueue operation is necessary for the vertex.

Algorithm 14 Vertex relaxing of MHED with significant contact durations.

Relax(u, v, w, TON , TOFF )
1: w ← w(u, v)
2: relax← false
3: if w + TON(u, v) ≤ hopt[u][n] then

4: w ← w + T (u, v) ·
⌊

hopt[u][n]−w
T (u,v)

⌋
5: end if
6: if w ≤ hopt[u][n] then
7: if t[v][hop[v]] > hopt[u][n] and hopt[u][n] < w + TON(u, v) then
8: t[v][n+ 1]← hopt[u][n]
9: π[v][n+ 1]← u

10: relax← true
11: else if t[v][hop[v]] > w + T (u, v) then
12: t[v][n+ 1]← w + T (u, v)
13: π[v][n+ 1]← u
14: relax← true
15: end if
16: else if t[v] > w then
17: t[v][n+ 1]← w
18: π[v][n+ 1]← u
19: relax← true
20: end if
21: if relax and hop[v] < n+ 1 then
22: hop[v]← n+ 1
23: Enqueue(Q, (n+ 1, v))
24: end if

Because of the difference in routing tree structure in MHED routing, we

provide Print-Path procedure in Algorithm 15. It prints the n-hop path

from source s to vertex v by recursively printing path to parent of v at n − 1

hops. In order to get the min-hop earliest delivery route to a vertex v, Print-

Path(G, s, v, hop[v]) should be called.
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Algorithm 15 Route printing for MHED.

Print-Path(G, s, v, n)
1: if s = v then
2: print s
3: else if π[v][n] = nil then
4: print “no path from” s “to” v “at” n “hops exists.”
5: else
6: Print-Path(G, s, π[v][n], n− 1)
7: print v
8: end if

3.5.3 Running Time Analysis of MHED

We begin running time analysis of MHED by inspecting the number of iterations

of the while loop in line 3. The while loop runs until there are no hop-vertices left

in the queue; therefore, the iteration count is equal to the number of enqueue and

dequeue operations. As discussed earlier, there can be at most |Adj[v]| number

of n-hop paths to a vertex v, if every neighbor provides a path with different

number of hops from the source. Sum of |Adj[v]| for all vertices v gives the

number of edges, |E|. As a result, there are |E| number of hop-vertices, enqueue

and dequeue operations.

The for loop in line 5 executes |E| times, each execution iterates through

|Adj[u]| number of edges. A total of |V | executions of the loop results in |E|
iterations; therefore, the iteration count in |E| executions is |E|

2

|V | . Relax method

runs in constant time, since every statement including the enqueue operation on

FIFO queue takes constant time.

The initialization procedure takes O(V 2) time, therefore the running time of

the BFS based MHED algorithm is O(V 2 + E2

V
), which is always between O(V 2)

and O(V 3) for an arbitrary network.

The Dijkstra based MHED algorithm uses insert and extract-min operations

on a min heap instead of enqueue and dequeue operations on a FIFO queue.

There are also decrease-key operations inside the relax method.
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Using a binary heap, insert takes O(E), extract-min takes O(ElgE) and

decrease-key takes O(E2lgE
V

) time, making the running time of the overall al-

gorithm O(E2lgE
V

). By using a Fibonacci heap, extract-min operations take

O(ElgE) amortized time and running time of decrease-key operations decrease

to O(E2

V
) amortized time. Taking the initialization procedure into account, the

running time of the MHED algorithm based on Dijkstra using Fibonacci heap is

O(V 2 + E2

V
+ ElgE), which is equal to O(V 2 + ElgE) for sparse networks.

We conclude that BFS based approach runs asymptotically faster than Dijk-

stra based approach.



Chapter 4

Experiments and Evaluation

In this chapter, we present experiment results of proposed DTN routing algo-

rithms and evaluate the findings. For this purpose, we first define the simulation

environment, properties and parameters of the simulations, then discuss the re-

sults and their implications.

4.1 Simulation Properties

We performed simulations to find statistical properties of our routing algorithms

for different parameter values. Transmission count, average and maximum path

length to destination and routing tree stability statistics are measured. Imple-

mentation is done on Java platform using custom graph and routing code. Simu-

lations are run on a Linux machine with a quad-core AMD 64-bit processor and

4 GB memory, though minimum requirements for the implementation are much

lower.

A simulation is performed as follows: First, a random graph is generated with

a given node count, network density and a connection model. Then, measures

are taken over a time interval of 100 units separately for each node as the source.

Similarly, every other node becomes the destination when a destination node is

29
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needed. Results at each step are averaged. The overall procedure is repeated

30 times to ensure enough randomness and to get statistically enough number of

samples.

We produce random graphs given vertex count and graph density. Since DTNs

are connected graphs, we must ensure our random graph to be connected. To

achieve this, we keep two sets of vertices: connected and disconnected. Until the

graph becomes connected, we choose one random node from the set of connected

vertices, one from the set of disconnected and connect them. When all of the

vertices are connected, we get a connected graph with |V | − 1 number of edges.

Then, we add edges by randomly choosing two vertices, until the density con-

straint is satisfied. Note that the produced graph cannot have a lower density

than the density of a connected graph with given vertex count and minimum

number of edges, |V |−1
|V |2 . The properties of a graph produced with this method is

random enough for our purposes.

For some of the experiments, we considered two scenarios with different con-

nection models. Scenario 1 simulates a DTN inside a campus. Nodes represent

college students, attending 50 minute-long lectures and having 10 minute breaks.

We assume that connections occur mainly during break times; though we take

into account slightly shorter and longer connections and disconnections. There-

fore, TON ranges between 5 and 20 minutes and TOFF ranges between 15 and

60 minutes. The key property of this scenario is the fact that connections take

shorter time than disconnections.

The second scenario is a more homogenous environment, where connection and

disconnection periods are the same. Scenario 2 simulates connection properties of

a public transportation network. Nodes represent both vehicles (bus, subway etc.)

and passengers. Connections occur either in stations or during travel between

people and vehicles. We assume waiting time for a vehicle and travel time are

similar; therefore, TON and TOFF values have a range of 10 to 30 minutes.

For both scenarios we use an initial wait time between minimum and max-

imum of the connection or disconnection times. For Scenario 1, it is 5 to 60

minutes; for Scenario 2, it is 10 to 30 minutes. For practical purposes, we scale
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down the time and let one time unit of simulation represent 5 and 10 minutes

of real time respectively in Scenarios 1 and 2. Actual values for each connec-

tion are drawn from a uniform distribution between determined intervals. Unless

otherwise stated, Scenario 1 is used in the experiments.

In the experiment results, ED refers to the earliest delivery algorithm based on

Dijkstra’s algorithm in Algorithm 3 using vertex relaxing procedure in Algorithm

8, MHED refers to min-hop earliest delivery algorithm based on BFS, presented

in Algorithm 12 using vertex relaxing procedure in Algorithm 14.

4.2 Results and Evaluation

This section presents evaluation of experiment results.

4.2.1 Transmission Count

Epidemic routing is one of the earliest and most popular routing algorithms for

DTNs. Source node forwards its packet to every node it encounters and those

nodes forward the packet to their encountered nodes in turn, delivering the packet

to destination at some time in future. This scheme is aptly called epidemic

flooding. Although ED and MHED algorithms are single copy routing strategies

utilizing contact information, they are comparable to epidemic routing in terms

of delivery time. All three methods guarantee earliest delivery.

Figure 4.1 shows average transmission count to deliver a single packet to a

destination for epidemic, ED and MHED routing in a network with a density of

0.2. For epidemic routing, the network does not have the knowledge of packet

reaching its destination; therefore, nodes continue to transmit the packet to other

nodes until every node in the network has a copy. To have a better comparison, we

count only the number of transmissions until the packet reaches the destination.

Transmission count of epidemic routing increases linearly with the number of

nodes in the network. It delivers the packet to 90% of the network with a node
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count of as low as 50. For higher node counts, delivery ratio increases to 98% on

the average. ED and MHED routing, on the other hand, achieves earliest delivery

with very low transmission counts, MHED performing slightly better than ED.
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Figure 4.1: Average transmission counts to deliver a single packet to a destination in
a network with density = 0.2.

We can conclude that ED and MHED successfully uses contact information to

deliver packets with much lower number of transmissions compared to epidemic

routing.

4.2.2 Path Length

In this experiment, we measure average and maximum path lengths (hop counts)

to a destination in a 100 node network for Scenarios 1 and 2. We expect to find

MHED using shorter paths than ED, as one its the objectives is to minimize hop

count to destination.

Figure 4.2 presents average path length results. For each scenario, MHED
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finds shorter paths than ED as expected. For Scenario 1, maximum difference

between both algorithms appear on 0.2 density with MHED routes being 43%

shorter. The difference decreases to 29% in a complete network. This is due

to the fact that paths by ED are already shorter on higher density networks;

therefore, it is harder for MHED to further shorten the paths. Similarly, MHED

paths are shorter than ED paths in Scenario 2. The 44% difference at network

density 0.1 decreases to 11% in a complete network.

Comparing different scenarios, the average difference between ED and MHED

routes is greater in Scenario 1 than Scenario 2. As every other parameter is

the same for two scenarios in this experiment, the explanation is in connection

profiles. Disconnection times in Scenario 1 are greater than the ones in Scenario 2,

on the average. Higher disconnection times make next connection opportunities

later, therefore giving MHED a greater time interval to find routes in shorter

hops.

Another difference between the scenarios is the path length regardless of the

algorithm. Paths in Scenario 2 are shorter than the ones in Scenario 1. The

explanation is very similar to the previous one. Due to longer disconnection times

in Scenario 1, routing algorithms search for shorter paths in time by increasing

hop count. Since disconnection times are already shorter for Scenario 2, there is

more possibility to find earlier delivery paths without increasing the number of

hops.

Figure 4.3 gives the comparison of maximum path lengths. The difference

between MHED and ED maximum paths are higher than the difference between

average paths, 55% versus 37% for Scenario 1 and 54% versus 28% for Scenario

2 on the average. Previously, we discussed it is hard to find a shorter path than

an already short path. These results show that it is easier to find shorter paths

for longer paths.

An interesting observation is the increase in path lengths for ED routing from

a density of 0.0 to 0.1 in Scenario 1. It seems that links that are added after the

network becomes connected provide earlier delivery paths through more hops for

this particular case.
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Figure 4.2: Average path lengths to a destination in a 100 node network.

4.2.3 Routing Tree Stability

We define routing tree stability as the tendency of the paths to destinations to

remain the same at successive time intervals. We are interested in routing tree

stability of the ED and MHED algorithms.

Figure 4.4 shows that MHED routes are more stable than ED routes. We

identify two reasons: First, MHED routes are shorter in hop count, therefore,

are less likely to change from time to time than a path with more hops. Second,

MHED routes prefer paths with later delivery times at the beginning of a path,

because it does not make greedy decisions on delivery time. When the first

connection of a path is at t1, it is likely to utilize the connection for t < t1.

Routing tree stability decreases sharply from 20 to 70 nodes, then remains

relatively the same. In a 20-node network with density 0.2, each node has about

2 connections on the average. This reduces the number of alternate paths for a

destination, therefore increasing the routing tree stability. An average neighbor



CHAPTER 4. EXPERIMENTS AND EVALUATION 35

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

M
ax

im
um

 p
at

h 
le

ng
th

 to
 d

es
tin

at
io

n

Network density

ED Sc 1
ED Sc 2

MHED Sc 1
MHED Sc 2

Figure 4.3: Maximum path lengths to a destination in a 100 node network.

count of 7 provides enough alternative paths so that higher number of neighbor

counts does not affect routing tree stability. This view is supported by Figure 4.5

showing routing tree stability for a density of 0.5. Stability does not alter much

for networks with higher than 30 nodes, which has an average neighbor count of

7.5.

Although routing tree stability is a metric distinguishing ED and MHED, it

does not provide any practical benefits; because, route to a destination changes

at every time interval on the average. Routing tree stability of a 30-node network

with 0.5 density is about 25%, meaning that 25% of all routes remain the same at

next time interval. However, since each time a different set of 25% of the routes

remain the same, average stability time for a single path is 1 time unit.



CHAPTER 4. EXPERIMENTS AND EVALUATION 36

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20  40  60  80  100  120

P
e

rc
e

n
t 

o
f 

ro
u

te
s
 t

h
a

t 
re

m
a

in
 t

h
e

 s
a

m
e

 a
t 

o
n

e
 t

im
e

 i
n

te
rv

a
l

Number of nodes

MHED

ED

Figure 4.4: Routing tree stability for network density 0.2.
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Figure 4.5: Routing tree stability for network density 0.5.



Chapter 5

Conclusion and Future Work

In this thesis, we examined DTN routing problem. We distinguished three DTN

connection models of increasing complexity. In the first model, scheduled connec-

tions, only the first future contact times between nodes are known. The second

model improves upon scheduled connections by introducing periodic connections.

In a scheduled periodic connection model, contacts initially take place at a future

time, then repeats at certain intervals. Third model, moreover, distinguishes be-

tween connection and disconnection times. In this more realistic case, a contact

becomes available at a certain time for a duration of TON after which a disconnec-

tion period follows for TOFF time. These connection and disconnection periods

alternately occur for a link.

We proposed two routing algorithms, earliest delivery (ED) and min-hop ear-

liest delivery (MHED). These are single-copy routing strategies utilizing contact

information defined by the connection model. ED routing is based on Dijkstra’s

algorithm with some modifications to accommodate the DTN’s needs. We pro-

vided three versions of ED, one for each of the connection models. Upon observing

shortcomings of ED routing, we introduced MHED routing achieving earliest de-

livery as ED, but also minimizing the hop-count to destinations. To best of our

knowledge these two objectives have never been addressed simultaneously in a

DTN routing algorithm. MHED has two versions: one based on Dijkstras ap-

proach, and one based on BFS. Running time analysis shows that BFS based

37
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MHED has a worst case running time of O(E2

V
) and is better than Dijkstra based

MHED.

We also presented simulation experiment results comparing both of our algo-

rithms to one of the most popular routing approach in DTNs, epidemic routing.

Being a multi-copy routing scheme, epidemic routing makes plenty of transmis-

sions, where ED and MHED achieves the same delivery time with only a few

transmissions by using contact information. Other simulation experiment results

show statistical properties of ED and MHED. Under two different scenarios with

different connection properties, we observed that MHED finds routes that are

shorter than ED routes, on the average for both scenarios. We also analyzed

maximum path lengths and found that MHED performs better in finding shorter

alternatives to longer routes. In another experiment, we examined how a routing

tree is susceptible to change in both algorithms. On the average, routing tree of

MHED changes less than the routing tree of ED at one time interval, because

of the fact that MHED routes are shorter and it prefers routes that have later

departure times from the source. On the other hand, we found that routing ta-

ble stability is not very useful in practice, since individual routes to destinations

change almost at every time interval.

We are considering to extend this study by applying the proposed routing

algorithms to non-scheduled periodic connections, in which connections and dis-

connections are not deterministic, but random. We are planning to estimate

future contact times by observing past connection patterns. Another future work

idea is the application of presented connection models and routing algorithms

to different mobility models. In this work, we abstract from the mobility and

focus on connections. We are interested in mobility models conforming to our

connection models. An alternative strategy is to extend the connection models

so that they better abstract the properties of various mobility models.
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