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ABSTRACT 

GENERATING ROBUST AND STABLE MACHINE 

SCHEDULES FROM A PROACTIVE STANDPOINT 

 

Selçuk GÖREN 

Ph.D. in Industrial Engineering 

Supervisor: Prof. Dr. İhsan Sabuncuoğlu 

August, 2009 

 

 

In practice, scheduling systems are subject to considerable uncertainty in highly 

dynamic operating environments. The ability to cope with uncertainty in the 

scheduling process is becoming an increasingly important issue. In this thesis we take 

a proactive approach to generate robust and stable schedules for the environments 

with two sources of uncertainty: processing time variability and machine breakdowns. 

The information about the uncertainty is modeled using cumulative distribution 

functions and probability theory is utilized to derive inferences.  

We first focus on the single machine environment. We define two robustness 

(expected total flow time and expected total tardiness) and three stability (the sum of 

the squared and absolute differences of the job completion times and the sum of the 

variances of the realized completion times) measures. We identify special cases for 

which the measures can be optimized without much difficulty. We develop a 

dominance rule and two lower bounds for one of the robustness measures, which are 

employed in a branch-and-bound algorithm to solve the problem exactly.  We also 

propose a beam-search heuristic to solve large problems for all five measures. We 

provide extensive discussion of our numerical results. 

Next, we study the problem of optimizing both robustness and stability 

simultaneously. We generate the set of all Pareto optimal points via -constraint 

method. We formulate the sub-problems required by the method and establish their 

computational complexity status.  Two variants of the method that works with only a 

single type of sub-problem are also considered. A dominance rule and alternative 
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ways to enforce the rule to strengthen one of these versions are discussed. The 

performance of the proposed technique is evaluated with an experimental study. An 

approach to limit the total number of generated points while keeping their spread 

uniform is also proposed. 

Finally, we consider the problem of generating stable schedules in a job shop 

environment with processing time variability and random machine breakdowns. The 

stability measure under consideration is the sum of the variances of the realized 

completion times. We show that the problem is not in the class NP. Hence, a 

surrogate stability measure is developed to manage the problem. This version of the 

problem is proven to be NP-hard even without machine breakdowns. Two branch-

and-bound algorithms are developed for this case. A beam-search and a tabu-search 

based two heuristic algorithms are developed to handle realistic size problems with 

machine breakdowns. The results of extensive computational experiments are also 

provided. 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Single machine scheduling, job shop scheduling, robustness, stability, 

proactive scheduling, branch-and-bound, beam search, tabu search, -constraint 

method. 
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ÖZET 

PROAKTİF BİR BAKIŞ AÇISINDAN GÜRBÜZ VE 

KARARLI MAKİNE ÇİZELGELERİ OLUŞTURULMASI 

 

  Selçuk GÖREN 

Endüstri Mühendisliği, Doktora 

Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu 

Ağustos, 2009 

 

 

Endüstride kullanılan çizelgeleme sistemleri işletme ortamlarındaki şartlar gereği 

ciddi miktarda değişkenlik ve belirsizlik etkisi altında çalışmaktadırlar. Çizelgeleme 

sırasında karşılaşılabilecek çeşitli belirsizliklerle baş edebilme niteliği günümüz 

koşullarında giderek önem kazanmaktadır. Bu tez çalışmasında proaktif bir yaklaşımla 

iki çeşit belirsizlik etkisindeki (işlem süresi değişkenliği ve makine arızalanması) 

ortamlarda gürbüz ve kararlı çizelgeler üretilmesi problemleri ele alınmaktadır. 

Belirsizlik hakkındaki bilgi, olasılık dağılımları aracılığıyla modellenmekte ve olasılık 

kuramı kullanılarak sistem hakkında çeşitli çıkarımlara ulaşılmaktadır. 

İlk olarak tek makineli bir ortam ele alınmaktadır. İki gürbüzlük (beklenen 

toplam akış zamanı ve beklenen toplam gecikme) ve üç kararlılık (iş tamamlanma 

zamanları arasındaki farkların kareleri ve mutlak değerleri toplamı, iş tamamlanma 

zamanlarının toplam varyansı) ölçütü tanımlanmakta, bu ölçütlerin fazla zorlukla 

karşılaşmadan eniyilenebileceği özel durumlar tespit edilmektedir. Gürbüzlük 

ölçütlerinden biri için bir üstünlük kuralı, iki alt sınır ve problemi çözmek için bunları 

kullanan bir dal-sınır algoritması geliştirilmiştir. Her beş ölçüt için de büyük boyuttaki 

problemleri çözmek için kullanılabilecek bir demet taraması sezgiseli geliştirilmiş, 

kapsamlı sayısal deneylerle geliştirilen yöntemlerin performansları incelenmiştir. 

Çalışılan ikinci problem tek makine ortamında kararlık ve gürbüzlüğün 

eşzamanlı eniyilenmesidir,  Bütün Pareto optimum noktaları üreten bir -kısıt yöntemi 
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incelenmektir. Yöntemin gereksinim duyduğu alt problemler formüle edilmiş ve 

hesapsal karmaşıklıkları tespit edilmiştir. Yöntemin sadece tek bir cins alt probleme 

ihtiyaç duyan iki varyasyonu ele alınmış, bu varyasyonlardan birini güçlendirecek bir 

üstünlük kuralı ve bu kuralın değişik formülasyonları geliştirilmiştir. Önerilen 

tekniklerin performansları deneysel bir çalışmayla değerlendirilmiştir. Üretilen toplam 

nokta sayısını sınırlandırırken, noktaların dağılımını mümkün olduğunca eşit aralıklı 

tutacak bir yaklaşım da önerilmiştir. 

Son olarak, işlem süresi değişkenliği ve rassal makine arızalanmalarına maruz 

atölye tipi işliklerde kararlı çizelgelerin oluşturulması problemi ele alınmaktadır. 

Kullanılan kararlılık ölçütü, iş tamamlanma zamanlarının varyansları toplamıdır. Bu 

problem NP sınıfında olmadığından vekil bir kararlılık ölçütü kullanılmıştır. 

Problemin bu halinin, makine arızalanmaları göz ardı edilse bile, NP –zor olduğu 

gösterilmiş ve tam çözüm yöntemi olarak iki dal-sınır algoritması geliştirilmiştir. 

Makine arızalanmalarını göz önüne alan ve büyük boyutlu örnekleri çözebilen biri 

demet taraması ve diğeri tabu araması olmak üzere iki sezgisel yöntem geliştirilmiştir. 

Geliştirilen yöntemler kapsamlı hesapsal deneylerle test edilmiştir. 
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Chapter 1  
 

Introduction 
 

 

Scheduling is a decision-making process that is concerned with the allocation of 

limited resources (machines, material-handling equipment, operators, tools, fixtures, 

etc.) to competing tasks (operations of jobs) over time, with the goal of optimizing 

one or more objectives. The output of this decision process is time/machine/operation 

assignments. In the scheduling literature, the objective is generally to minimize 

functions such as makespan, tardiness, flow time, etc.  

In practice, scheduling systems operate in dynamic and uncertain environments 

in which random interruptions prevent the execution of a schedule exactly as it is 

developed. Examples of such disruptions are machine breakdowns, rush orders, order 

cancellations, due-date changes, etc. Variability in processing times and other 

stochastic events further increase the variability in the system, which in turn 

deteriorate the scheduling performance.  

Even though actual scheduling problems in real life are dynamic and stochastic, 

most of the existing literature addresses static and deterministic versions. But even 

these simplified problems (with deterministic and static assumptions) are NP-hard or 

analytically intractable.  

The uncertainties and dynamic nature of the real-world scheduling process can 

be seen as the major source of the gap between scheduling theory and practice. In the 

literature, several studies have been conducted to close this gap. In the early works, 

researchers employ a rolling horizon scheme to cope with the dynamic nature of 

scheduling environments, where the problem is successively solved using static 
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algorithms for different time windows (Nelson, Holloway, and Wong, 1977). The 

stochastic nature of scheduling has also been investigated in the literature. In these 

studies, uncertainty in job processing times, release times or due dates is modeled by 

probability distribution functions and formal probability theory is used to make 

inferences (Pinedo, 2002, Chapters 9-13). In the last two decades researchers have 

also proposed approaches including on-line scheduling, dynamic scheduling and real-

time scheduling. Recently, two approaches to coping with uncertainty in the 

scheduling process have gained significant research interest: reactive and proactive 

scheduling. The objective in reactive scheduling is to revise schedules as unexpected 

events (disruptions) occur. On the other hand, proactive scheduling takes future 

disruptions into account while generating schedules.  

The challenge of addressing the dynamic and stochastic nature of the scheduling 

process also affects the performance measure of choice. Although performance 

measures such as makespan, flow time, or tardiness have often been preferred in 

practice, in the recent literature two new measures are brought to the attention of 

practitioners: robustness and stability. These measures are particularly used in 

environments where uncertainty is a major issue.  

Uncertainty has two kinds of major negative impacts on initial schedules. First, 

it degrades schedule performance. This effect is the topic of robustness. A schedule 

whose performance does not deteriorate in the face of disruptions is called robust. In 

other words, the performance of a robust schedule is expected to be insensitive to 

disruptions. In general, the performance of the realized schedule is the main concern 

of practitioners rather than the planned or estimated performance of the initial 

schedule. Hence, optimizing the former may be more appropriate than optimizing the 

latter and robustness is a practical performance measure. Second, unforeseen 

disruptions cause variability. This effect is the topic of stability. A schedule whose 

realization does not deviate from the original schedule in the face of disruptions is 

called stable. A schedule serves as a master plan for other shop-floor activities in 

addition to production, such as determining delivery dates, release times, and planning 

requirements for secondary resources such as tools, fixtures, etc. Any deviation from 

the production schedule can disrupt these secondary activities and increase system 

nervousness. Thus, stability is also an important measure in practice. 
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Robustness and stability can be illustrated with the help of Figure 1.1. The top 

Gantt chart in the figure depicts a possible initial schedule for a job-shop environment 

with three jobs and three machines subject to random breakdowns. The bottom Gantt 

chart shows a possible realization of the initial schedule. The shaded area on the 

realized schedule of machine 2 between times 7 and 9 represents a breakdown. 

Assume that the performance measure of interest is the maximum completion time 

(Cmax).  From the robustness viewpoint, the scheduler should be concerned with the 

performance of the realized schedule (Cmax = 13 in the example) rather than the 

performance of the initial schedule (Cmax = 10 in the example). Hence, he/she 

optimizes a measure (robustness measure) that is defined on the realized schedule. 

Another way to look at this is to minimize the performance deviation between the 

initial and the realized schedules (Cmax = 13 – 10 = 3 in the example). Observe that 

the operation of job 1 on machine 2 completes later than planned. Similarly, while the 

operation of job 2 on that machine is planned to be processed between times 8 and 10, 

it is actually processed between times 11 and 13 because of the breakdown. From the 

stability viewpoint, such deviations from the initial schedule (i.e., the master plan) 

should be minimized. Hence, the scheduler optimizes a measure (stability measure) 

defined in terms of the deviations between the initial and the realized schedules. 

 

Figure 1.1. An Initial Schedule and its Realization for J3| |Cmax 
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The reactive and proactive scheduling approaches and these two new 

performance measures (robustness and stability) are discussed in more detail in 

(Sabuncuoglu and Goren, 2009). 

In this thesis, we study generating robust and stable schedules in the face of 

processing time variability and random machine breakdowns. To form the basis for 

the later parts, we start with a comprehensive review of the relevant literature in 

Chapter 2.  

We first consider the single machine environment in Chapter 3. In case of a 

breakdown, the machine is unavailable until it is repaired. The times for repair are 

also random and independent of each other and of the breakdown process. A job 

preempted due to a breakdown is processed for its remaining processing time (i.e., 

preempt-resume policy is assumed). No other preemptions are allowed. We take a 

proactive point of view and define several robustness and stability measures.  

Although there are some studies which measure robustness as a minimax regret 

(e.g., Daniels and Kouvelis, 1995), the majority of recent studies on robustness 

involve expected realized performance. The expected realized performance can be the 

robustness measure by itself (e.g., Wu et al., 1999) or can be a part of it (e.g., Leon et 

al., 1994). In this thesis, we use the expected realized performance measure as the 

robustness measure. We consider two performance measures: expected total flow time 

(RM1) and expected total tardiness (RM2).  

The most frequent way to measure the deviation between the initial and the 

realized schedules (stability) is to compare their job completion times (Wu et al. 1993, 

Mehta and Uzsoy, 1998). We use two stability measures based on this comparison: the 

sum of the squared differences (SM1) and the sum of the absolute differences (SM3). 

We also use the sum of the variances of the realized completion times as another 

stability measure (SM2).  

We also derive optimality conditions and propose a proactive branch-and-bound 

(B&B) algorithm, which uses a stochastic dominance rule, for minimizing the 

expected total tardiness (RM2).  We first consider a single machine environment 

because of its simplicity and the possible extendibility of its results to more realistic 

multi-machine environments. 
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In Chapter 4, we focus on optimizing robustness and stability simultaneously in 

a single machine environment with random processing times. There are two general 

approaches to multicriteria optimization. One is to combine the individual criteria into 

a single composite criterion. The other is to generate a set of solutions that contains an 

optimal solution for each reasonable composite criterion that one can think of (the set 

of Pareto optimal solutions). Evans (1984) identifies these approaches as a priori and 

a posteriori optimization, respectively. In Chapter 4, we consider a posteriori 

optimization of robustness and stability simultaneously. We generate the set of all 

Pareto optimal points via so called -constraint method. We formulate the sub-

problems required by the method and establish their computational complexity status.  

Two variants of the method that works with only a single type of sub-problem are also 

considered. A dominance rule and alternative ways to enforce the rule to strengthen 

one of the single sub-problem versions of the method are discussed. The performances 

of the methods and the dominance rules are evaluated in an experimental study. 

In Chapter 5, we consider the job shop environment. Unlike the previous studies 

in the literature and the preceding chapters, stability is taken to be the only (thus 

primary) objective function to be optimized. Operation processing times as well as 

machine up and down times are taken as random variables. We use the sum of the 

variances of the realized completion times as the stability measure (SM). We call the 

problem of minimizing SM in a job shop environment subject to random machine 

breakdowns and processing time variability as the problem . As shown in Chapter 5, 

 is not in the class NP. Hence, a surrogate stability measure (SSM) is developed to 

manage the problem. This version of the problem is called . The problem of 

minimizing SSM in a job shop environment subject to processing time variability only 

(i.e., no machine breakdowns) is called the problem . It is proven that  (and 

therefore ) is NP-hard. Two exact solution procedures (branch-and-bound 

algorithms) are developed for . Two heuristics (a beam-search and a tabu-search 

algorithm) are also developed to handle large instances of As will be shown, 

calculation of even the surrogate measure (SSM) is not possible for  due to random 

machine breakdowns. Thus, the beam-search and tabu-search algorithms are modified 

to handle breakdowns case.  The same modifications cannot be applied to the branch-

and-bound algorithms due to the following two reasons: first, they would lose the 

property of being exact solution procedures and they are computationally too 
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expensive to use as heuristics, and second, the proposed tabu-search algorithm already 

performs significantly well, even better than the branch-and-bound algorithms. 

Chapter 5 extends the stability scheduling literature in four ways: first, a new 

practical stability measure is defined; second, complexity status of the problems are 

determined; third, processing time variability and machine breakdowns are 

simultaneously considered in the problem settings; and finally, two exact solution 

procedures and heuristics are proposed to solve the problems. 

Finally we outline our contributions and discuss some future research directions 

in Chapter 6. 
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Chapter 2  
 

Literature Review 
 

 

Although this thesis is on schedule robustness and stability, the literature on 

scheduling with unreliable machines is relevant. We first review a few studies in 

Section 2.1. In Section 2.2 we review some studies in reactive scheduling literature to 

give the reader a flavor of this line of research. Subsequently, we review the studies in 

the literature that explicitly address robustness or stability of schedules in Section 2.3. 

Finally, we briefly discuss how this thesis contributes to the available literature in 

Section 2.4. 

 

2.1 Scheduling with Machine Availability 

Constraints 
 

Adiri et al. (1989) consider the problem of minimizing total flow time in a single 

machine environment subject to random breakdowns. In contrast with our study, only 

one machine breakdown occurs and a preempt-repeat policy is assumed. The authors 

show that if the distribution function of the time to breakdown is concave, then the 

shortest processing time first (SPT) rule stochastically minimizes the flow time. For 

the case of multiple breakdowns, it is proven that SPT minimizes the expected flow 

time when the times to breakdown are exponentially distributed. The authors show 

that the problem is NP-hard when the time for the single breakdown is known in 

advance and the processing times of the jobs are deterministic.  
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In a later study, Adiri et al. (1991) consider the single machine scheduling 

problem with deterministic processing times and due dates subject to a single random 

breakdown. The authors develop policies to minimize the number of tardy jobs 

stochastically, working under certain assumptions for both preempt-resume and 

preempt-repeat policies. 

Similar to our study in Chapter 3, Li and Glazebrook (1998) consider the single 

machine scheduling problem with random processing times and multiple machine 

breakdowns with a preempt-resume policy. The objective is to minimize a weighted 

sum of an increasing function of the completion times in expectation. The authors 

develop a dominance rule based on pairwise interchanges of adjacent jobs. The rule is 

also relaxed to allow uptimes to be distributed as a mixture of exponentials and 

according to a Gamma distribution. The dominance rule, however, cannot be applied 

to due-date related measures, which are not functions of completion times only. We 

develop a similar dominance rule based on pairwise interchanges of jobs (not 

necessarily adjacent) for the total tardiness measure in case of no machine 

breakdowns in Chapter 3. 

Li et al. (1998) consider the same problem under Erlang uptime distribution. All 

jobs are assumed to have a common exponentially distributed due date (compared 

with deterministic but different due dates in our study). The authors develop 

dominance rules based on pairwise interchanges of adjacent jobs in order to minimize 

the weighted number of tardy jobs, weighted flow times, and weighted sum of job 

delays. 

Leung and Pinedo (2004) study the preemptive parallel machine scheduling 

problem with random breakdowns and deterministic processing times and due dates. 

The authors develop conditions on the number of available machines m(t) that 

minimize total completion time, makespan, or maximum lateness. The authors also 

analyze cases with deadlines and precedence constraints. 

We refer interested readers to Pinedo (2002) to see a concise summary of 

stochastic scheduling results. Next, we review the studies in the literature that 

explicitly address robustness or stability of schedules.  
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2.2 Reactive Scheduling 
 

In reactive scheduling literature, several other authors develop schedules in the face of 

disruptions without considering disruption in the decision making phase. Here we 

review some of the recent studies to give the reader a flavor of this line of research. 

The interested reader is referred to Sabuncuoglu and Bayiz (2000), Vieira, Herrmann, 

and Lin (2003) and Aytug et. al. (2005) for a broader literature review. 

Church and Uzsoy (1992) analyze the performance of event-driven scheduling 

in a single machine environment with dynamic job arrivals. They classify the events 

that change the system state into two categories: 1) the events that require immediate 

response (exceptions) and 2) the events that can be ignored until the next rescheduling 

point. The schedule is revised periodically but scheduling is also triggered when an 

exception occurs. In their model, the exceptions are arrivals of jobs with tight due 

dates. For each job i arriving between times (k-1)T and T, they calculate the slack si = 

di – ri , where di is the due-date ri is the ready time of job i and T is the period length. If 

this value is smaller than a constant w (window length), the arrival of job i is 

considered as an exception and a scheduling decision is triggered. A schedule is also 

generated at the beginning of each period (at the times kT). The authors use EDD 

dispatching rule to generate schedules at each revision. The performance measure is 

maximum lateness. Their computational experiments indicated that benefits of extra 

scheduling diminish rapidly. They conclude a well-designed event-driven policy can 

achieve good system performances with less computational burden as compared to 

scheduling in response to every event that change the system state. 

Akturk and Gorgulu (1999) study on the rescheduling of operations in a 

modified flow shop environment in response to a machine breakdown. In a modified 

flow shop, jobs can enter the system at one of the several machines, can progress 

through the system by a limited number of paths and can exit the system on one of the 

several machines. Hence, it falls somewhere between a flow shop and a job shop. The 

authors assume that an initial schedule is available and it is followed until a single 

machine breakdown occurs. In response to the machine breakdown, they reschedule 

the operations to match up with the initial schedule at a point in the future. In the first 

stage, they determine a match-up point for each machine. Then the authors decompose 
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the rescheduling problem into three parts: 1) the scheduling of the down machine, 2) 

the scheduling of the machines in the upward direction of the down machine and 3) 

the scheduling of the machines in the downward direction of the down machine. If a 

resulting schedule is not feasible, then the match-up point is changed to enlarge the set 

of jobs that are rescheduled. Their experimental results indicate that the proposed 

algorithm is very effective in terms of schedule efficiency, computational times and 

schedule stability.  

In another study, Sabuncuoglu and Karabuk (1999) investigate the 

scheduling/rescheduling problem in an flexible manufacturing system (FMS) 

environment. The authors propose a filtered beam search. For several reactive 

scheduling policies in response to machine breakdowns and processing time 

variability, the authors compare off-line and on-line scheduling algorithms. Their 

computational experiments indicate that the proposed off-line algorithm performs 

better than on-line machine and several AGV scheduling rules, under all experimental 

conditions for the makespan, mean flow time and mean tardiness criteria. They also 

show that it is not always beneficial to reschedule the operations in response to every 

unexpected event. They conclude that the periodic response with an appropriate 

period length can be effective to cope with the interruptions. 

Sabuncuoglu and Bayiz (2000) study the reactive scheduling problem in a job 

shop environment. The authors measure the effect of shop floor configuration (system 

size and load allocation) on the performance of the scheduling methods (off-line and 

on-line). Their performance criteria are makespan and mean tardiness. In the first part 

of the study, they compare a beam search based heuristic to other well-known 

algorithms. In the second part, they study on different reactive policies such as partial 

scheduling versus full scheduling, etc. Their computational experiments indicated that 

beam search is quite promising for the job shop problem and partial offline scheduling 

can be a very practical tool in a highly dynamic and stochastic environment. 

In the next section we review the studies that explicitly address robustness and 

stability. 
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2.3 Schedule Robustness and Stability 
 

The studies on schedule robustness and stability can be divided into two parts - those 

that model uncertainty by probability density functions, and those that hedge against 

the worst contingency that may arise without considering any specific probability 

distribution. The latter is known as the robustness approach in the literature. In both 

approaches, the source of uncertainty is either the variability of task processing times 

or machine availability (the machines are subject to a breakdown/repair process).  

Leon et al.‟s 1994 study is an example of the first approach. They consider the 

job-shop scheduling problem with machine breakdowns. The objective is to construct 

a robust initial schedule. The robustness measure for a schedule is calculated as a 

convex combination of the expected makespan of the realized schedule and the 

expected deviation from the initial deterministic makespan.  In a job shop 

environment with multiple machine failures, however, calculating this measure 

analytically is intractable. They develop a surrogate measure and minimize that 

measure instead. The results indicate that the proposed algorithm outperforms the 

classical algorithms that focus on minimizing makespan only. 

Wu et al. (1999) propose a graph-theoretic decomposition for the job shop 

scheduling problem to achieve schedule robustness. Expected average weighted 

tardiness is used as the robustness measure. The authors use a graph representation of 

this problem, in which conjunctive arcs represent precedence constraints and 

disjunctive arcs join operations competing for the same resource. They propose a 

branch-and-bound algorithm that processes disjunctive arcs and changes some of them 

into conjunctive arcs. This effectively fixes some of the scheduling decisions. The 

remaining scheduling decisions are made dynamically by applying the apparent 

tardiness cost (ATC) heuristic (Vepsalainen and Morton, 1987). Their computational 

experiments indicate that this scheme displays better robustness performance under a 

wide range of disturbance levels (various levels of processing time variability) 

compared to traditional off-line and on-line methods. 

There are also studies that model uncertainty with probability density functions 

with the aim of generating stable schedules. For example, Wu et al. (1993) study the 
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single machine rescheduling problem under machine disruptions. They reschedule the 

jobs in response to each machine failure so that a minimum makespan is obtained with 

high schedule stability (the measure they use is similar to SM3 in Chapter 3). Since 

the problem is NP-hard even without stability considerations, they use a pairwise 

swapping heuristic and a genetic algorithm to generate a list of non-dominated 

schedules. Their computational results show that the stability of the schedules could 

be improved significantly with little sacrifice in makespan.  

Mehta and Uzsoy (1998, 1999) generate initial stable schedules under random 

machine breakdowns. Their objective is to generate an initial schedule with minimal 

deviation (i.e., SM3) while keeping shop floor performance degradation at an 

acceptable level. The specific problem they study in the first paper is the single 

machine scheduling problem where jobs have unequal ready times and random 

machine breakdowns are present. In the second paper, they study the job shop 

scheduling problem with random machine breakdowns. In both studies, they use 

maximum lateness as the shop floor performance measure. Unlike Wu et al. (1993), 

they consider the minimization of the deviation between the initial and the realized 

schedule while generating an initial schedule, not when rescheduling after a 

breakdown. The authors offer a two-stage approach. In the first stage, a job sequence 

that will minimize the maximum lateness is determined. In the second stage, they 

insert idle times into the sequence. Their computational results indicate that stability 

can be easily improved while slightly increasing maximum lateness. 

O‟Donovan et al. (1999) combine the reactive and the proactive approaches and 

examine the scheduling/rescheduling policy using stability and efficiency measures in 

a single machine environment. Schedule efficiency is measured by total tardiness 

(RM2 in Chapter 3). Stability is measured by absolute completion time deviations 

from the initial schedule (SM3 in Chapter 3). The system under study has non-zero job 

ready times and random machine breakdowns. This study is similar to the one by 

Mehta and Uzsoy (1999) except that total tardiness is used instead of maximum 

lateness. They consider pure ATC and ATC with inserted idle times for initial 

schedule generation. Rescheduling alternatives are ATC, a modified ATC (which 

calculates the slack of a job based on its predicted completion time, taking inserted 

idle times into account) and right-shift scheduling. Their results indicate that ATC 



 

 

CHAPTER 2. LITERATURE REVIEW 13 

 

 

 

with inserted idle times for an initial schedule and the modified ATC for rescheduling 

are the best for stability.  

For the robustness approach, we refer the reader to Kouvelis and Yu (1996), 

who apply this method to various problems such as linear programming, assignment 

problem, shortest path problem, etc. as well as scheduling.  An example of such an 

approach in the machine scheduling context is the study of Daniels and Kouvelis 

(1995). They generate initial robust schedules to hedge against processing time 

variability in a single machine environment. The authors propose a scenario-based 

representation and analysis of uncertainty rather than using stochastic models. They 

use a policy that finds the schedule whose performance degradation in its worst-case 

scenario is the least among all feasible schedules (i.e., minimax regret strategy in 

decision theory). The authors study a single machine problem where the performance 

measure is total flow time, and the source of uncertainty is processing time variability. 

The authors prove that a properly selected finite set of scenarios is enough to 

determine the worst-case absolute deviation of a given sequence and construct a 

procedure that calculates the worst-case evaluation in polynomial time. They develop 

a branch-and-bound algorithm and two O(n log n) surrogate relaxation heuristics that 

utilize this procedure to generate robust schedules. The authors compare their 

solutions to the SEPT (shortest expected processing time) solution, which is used in 

practice to generate an optimal sequence of jobs. They observe that SEPT performs 

poorly in terms of robustness. 

Such a minimax regret approach to robustness may be more appropriate than the 

more frequently used expected performance measure approach if the distributions that 

capture the uncertainty are unknown or imprecise. Additionally, in many cases a 

stochastic approach that models the uncertainty with probability density functions 

assumes distributional independence to improve analytical tractability. If such an 

assumption is invalid (i.e., strong correlations exist among the probability 

distributions), a minimax regret approach may be more suitable to employ. Finally, if 

the scheduling decisions are evaluated ex post (as if all the relevant information had 

been known in advance of scheduling), a decision maker may be inclined to reduce 

the difference between the realized performance and the optimal performance that 

could have been achieved (i.e., minimize regret), rather than the average performance 

(Daniels and Kouvelis, 1995).  
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Sotskov et al. (1997) introduce another viewpoint for stability. They handle the 

uncertainty in a job shop environment by an a posteriori analysis, in which an optimal 

schedule has already been constructed and the challenge is to determine the maximum 

variation in the processing time of the operations such that the optimal schedule at 

hand still remains optimal. Such a maximum variation is called the stability radius of 

the schedule. This notion of stability, obtained by sensitivity analysis, can be 

considered as a measure of solution robustness as per of Herroelen and Leus (2005). 

Although this type of post-optimality analysis may provide some valuable insights 

about the impacts of uncertainty, it is also associated with some problems. If the 

stability radius of the optimal schedule is large enough to accommodate all possible 

changes in the processing times, the optimal schedule at hand can safely be used, but 

if it is not that large, the question of what course of action to take remains to be 

answered. Hence, in this thesis, we take a proactive stance and incorporate uncertainty 

into the scheduling processes. We concentrate on optimizing the quality robustness 

rather than the solution robustness. 

 

2.4 Discussion 
 

In this thesis we optimize explicitly defined robustness and stability measures in a 

proactive fashion. In general, calculating actual robustness and stability measures 

analytically is very difficult. For that reason, in the previous studies researchers 

employ surrogate measures to indirectly calculate the robustness or stability of a 

schedule. The surrogate measures used in the existing studies, however, are not 

sophisticated enough to incorporate the known information about the uncertainty 

adequately, as also stated in Mehta and Uzsoy (1998). In this thesis, we use the 

probability theory to derive inferences about minimizing robustness or stability 

measures and try to fill this gap.  

Specifically, in Chapter 3, we solve the problem for a number of special cases in 

the single machine environment.  For intractable cases, instead of employing surrogate 

measures, we use a beam-search (BS) algorithm developed in this chapter that 

employs simulation to calculate robustness or stability measures. Thus, we use the 
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available information about the uncertainty better than does the indirect approach of 

employing surrogate measures. Moreover, in the previous studies, makespan or 

maximum lateness is used as the performance measure for the sake of simplicity. In 

Chapter 3, however, we consider flow time and tardiness criteria, as they are used 

more often in practice. 

Even though scheduling with more than one objective has been studied since 

1980s, optimizing robustness and stability simultaneously in a proactive way is not 

thoroughly considered in the literature. The previous studies either preferred including 

stability into the picture later in the reactive phase after an initial schedule is at hand 

(e.g., Wu et al., 1993) or stability alone is optimized by inserting additional idle time 

into the schedules with the hope that the primary objective does not worsen a lot (e.g., 

Mehta and Uzsoy, 1998, 1999). In Chapter 4, we consider both measures at the same 

time proactively. 

Generally speaking, the stability literature is rather thin and the only source of 

the uncertainty that is considered is the presence of machine breakdowns. In Chapter 

5, a new and practical stability measure is considered in a job shop scheduling 

environment subject to random machine breakdowns and processing time variability. 

Exact solution procedures and heuristics are provided.  

We can now conclude the review of the existing literature and continue with our 

contributions in the rest of the thesis. 
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Chapter 3  
 

Single Machine Environment 
 

 

3.1 Introduction 
 

In this chapter, we take a proactive scheduling approach to study the single machine 

scheduling problem with two sources of uncertainty: processing time variability and 

machine breakdowns. The reason for starting with a single machine environment is 

that it is a special case of all other environments. The results that can be obtained in 

this simple environment can provide insights and can form a basis for more 

complicated multi-machine environments.  

We define several robustness and stability measures in this chapter. As reviewed 

in Chapter 2, two kinds of robustness measures have been used in the literature: based 

on regret and based on realized performance. In this chapter, we use the expected 

realized performance measure as the robustness measure. We consider two 

performance measures: expected total flow time (RM1) and expected total tardiness 

(RM2).  

The most frequent approach to measure the deviation between the initial and the 

realized schedules (stability) is to compare their job completion times (Wu et al. 1993, 

Mehta and Uzsoy, 1998). We use two stability measures based on this comparison: the 

sum of the squared differences (SM1) and the sum of the absolute differences (SM3). 

We also use the sum of the variances of the realized completion times as another 

stability measure (SM2). The rationale behind this and how it corresponds to the 

difference between the initial and the realized schedules are explained in Section 
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3.5.1. Note that all these stability measures can be trivially minimized by inserting 

large blocks of idle times between jobs in the initial schedule. In this chapter, 

however, we confine ourselves to the class of non-delay schedules as inserting 

idleness deteriorates robustness performance. 

We also derive optimality conditions and propose a proactive branch-and-bound 

(B&B) algorithm, which uses a stochastic dominance rule, for minimizing the 

expected total tardiness (RM2).  We consider a single machine environment because 

of its simplicity and the possible extendibility of its results to more realistic multi-

machine environments. 

The rest of this chapter is organized as follows. In Section 3.2 and 3.3, we 

approach the proactive scheduling problem in a single machine environment using 

probability theory. The robustness and stability measures are discussed in Sections 3.4 

and 3.5, respectively. In Section 3.6, we present a branch-and-bound algorithm that 

utilizes insights gained in the previous analysis to minimize the expected total 

tardiness in a single machine environment with variable processing times. We present 

a bream search algorithm that can handle other performance measures and machine 

breakdowns in Section 3.7. Section 3.8 is dedicated to the assessment of the 

performance of the proposed algorithms with computational experiments. Finally, we 

make concluding remarks and discuss future research directions in Section 3.9. 

 

3.2 Notation 
 

We consider the single machine scheduling problem with random processing times 

and machine breakdowns. The uptimes have independent and identical general 

distribution G1(t). Similarly, the down times (i.e., the times that the machine is not in 

operation due to breakdown) are independent and identically distributed according to 

a general distribution G2(t). The processing times of the jobs are all random variables 

with known general distribution functions that may differ from job to job. Let Hj(t) be 

the processing time distribution of job j. Let the random variable Cj denote the 

completion time of job j in the realized schedule. Let Xj denote the processing time of 

job j. We assume that all n jobs are released at time t = 0. Let U1, U2 … be the 
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sequence of uptimes and D1, D2… be the sequence of downtimes. That is, the machine 

is operational from time 0 until U1, when the first breakdown occurs. The machine 

then takes time D1 to be repaired and is again available for processing from time U1 + 

D1 until time U1 + D1 + U2, and so on. We denote this stochastic single machine 

scheduling problem as 1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), D ~ G2(t);  |  where 1 |  | 

 denotes the deterministic version. Here,  is the set of scheduling attributes, such as 

release dates, presence of sequence dependent setup times, preemptions, precedence 

constraints, etc. and  is the objective function. If breakdowns were not present, the 

notation would be 1 | Xj ~ Hj(t);  |  . 

Define }|0sup{)(
0 


k

i i tUktN , where U0 := 0. That is, N(t) is the number 

of machine breakdowns that occur up to total busy time t. Note that N(t) is increasing 

in t. Here, we consider the case where the machine can be down more than once 

during the processing of a job and the job is processed for its remaining processing 

time after each breakdown (i.e., the work done on a job is not lost). 

Yj denotes the time that job j occupies the machine, including the processing 

time of the job and all the repair times during which the job stays on the machine. Let 

Rjk denote the k
th

 repair time during the processing of job j. Since Rjk‟s are i.i.d., let 





0

2 )(][ ttdGREr jk and 



0

2

2 )()(][ tdGrtRVarv jk . Let Bj denote the number 

of machine failures during the processing of job j. Then, we have  


jB

k jkjj RXY
1

. 

We first begin by a definition and several propositions, which will be used in the 

treatment of the robustness and stability measures in Sections 3.4 and 3.5, 

respectively. 

 

3.3 Preliminaries 
 

Definition 3.1 (Ross, 1983). A random variable V is said to be stochastically larger 

than a random variable W, written V ≥st W, if P{V > a} ≥ P{W > a} for all a.  
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Proposition 3.1. Let V1,…,Vn be independent and W1, …, Wn be independent. If Vi ≥st 

Wi for all i, then for any increasing f, f(V1,…,Vn) ≥st f(W1,…,Wn). 

 

Proposition 3.2. If V ≥st W then max{V, 0} ≥st max{W, 0}. 

 

We refer the reader to Example 8.2(a) and Question 8.1 in Ross (1983) for the 

proofs of these two propositions. Both proofs involve the coupling method, which is 

explained in Ross‟s Chapter 8.  

 

Proposition 3.3. If up times are exponentially distributed with the rate , then 
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Proposition 3.4. If up times are exponentially distributed with the rate then 
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Since we have 
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the last two terms in (3.1) cancel out and we have 

][)1(][)][(][ 222
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3.4 Robustness 
 

As mentioned in the literature review, most frequently used approaches for measuring 

robustness involve expected realized performance in one way or another. Similar to 

the previous studies in the literature, in this chapter the robustness of schedules is 

assessed in terms of expected performance measures. We consider two performance 

measures: expected total flow time (RM1) and expected total tardiness (RM2). We 

begin with the flow time case. 

 

3.4.1 Total Flow Time 

 

Recall that RM1 is the expected realized total flow-time. That is, ][1
1





n

j

jCERM . 

Minimizing expected total weighted flow time in a single machine environment 

subject to random machine breakdowns is known to be NP-hard (Adiri et al., 1989). 

Even though the status of the unweighted case is unknown, it can be said that the 
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problem is analytically intractable, for it is difficult even to calculate the objective 

function value of a given solution. We present an optimality condition that holds in a 

special case here. 

 

Theorem 3.1. If Xj ≤st Xj+1  for j = 1,…,n – 1, the job sequence {1,…,n} i.e., SSPT 

(stochastically smallest processing time) order is an optimal solution to 

1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), D ~ G2(t) | RM1  problem. 

 

Proof. Consider an optimal sequence S. Assume that there exists a pair of adjacent 

jobs i and j such that Xj ≤st Xi and job j succeeds job i in S. Because if such a pair does 

not exist, either S is already the sequence {1,…,n} or it can be put into that form by 

simply swapping the labels of the jobs whose processing times have the same 

distribution. Therefore, without loss of generality we assume that there exists such a 

pair. Now consider a sequence S′, obtained from S by swapping the positions of jobs i 

and j. We compare RM1(S) and RM1(S′). We may ignore the jobs other than i and j in 

this comparison, since nothing changes for them. Let their contribution to the 

objective function be c. Let T denote the sum of the processing times of the jobs that 

precede i in S. We have 
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Since Xj ≤st Xi and N(t) is increasing, N(T + Xj) ≤st N(T + Xi) by Proposition 3.1. By 

coupling we also have 
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k k DD , and therefore RM1(S) – RM1(S′) 

≥ 0. This means that S′ is also an optimal solution. If we continue interchanging 

positions of adjacent jobs in this manner until no pair of adjacent jobs i and j such that 

Xj ≤st Xi and job j succeeds job i exists, we obtain a series of optimal solutions. The 

last solution we obtain is either already the sequence {1,…,n} or it can be put into that 
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form by simply swapping the labels of the jobs whose processing times have the same 

distribution.  □ 

 

Corollary 3.1. SEPT (Shortest Expected Processing Time) order gives an optimal 

solution for 1 | Xj ~ exponential(j); brkdwn: U ~ G1(t), D ~ G2(t) | RM1. 

 

Corollary 3.2. SEPT (shortest expected processing time) order gives an optimal 

solution for 1 | Xj ~ Hj(t) | RM1. 

 

Corollary 3.1 and 3.2 are known results in the literature. See Pinedo (2002, 

Chapter 10). Theorem 3.1 can also be deducted from the dominance rule developed by 

Li and Glazebrook (1998). 

 

3.4.2 Total Tardiness 

 

RM2 is the expected realized total tardiness. That is, ]),0max([2
1





n

j

jj dCERM , 

where dj is the due date of job j. 

 

Theorem 3.2. 1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), D ~ G2(t) | RM2 is NP-hard. 

 

Proof. We reduce  j jT||1  to 1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), D ~ G2(t) | RM2. 

Begin with a  j jT||1  instance. Take all repair times as zero. Do not change 

processing times, i.e, Hj(t) and G2(t) are degenerate distributions. Take G1(t) as any 

arbitrary distribution. Due dates also do not change. An optimal solution to this newly 

constructed 1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), D ~ G2(t) | RM2 instance is also an 

optimal solution to the original  j jT||1  instance.  j jT||1  is known to be NP-hard 

(Du and Leung, 1990) and the result follows.  □ 
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Theorem 3.3 (Dominance Rule). Consider 1 | Xj ~ Hj(t) | RM2 problem. For any two 

jobs i and j if Xi ≤st Xj and di ≤ dj, then there exists an optimal sequence in which job i 

precedes job j. 

 

Proof. The proof is by an interchange argument. Let S be an optimal sequence in 

which job j precedes job i. Consider swapping job i and job j but do not touch the 

other jobs. Let S′ be the newly obtained sequence. We compare RM2(S) with RM2(S′). 

Nothing changes for the jobs that precede job j or that succeed job i in S. Consider a 

job that succeeds job j but precedes job i in S, say job k. Let BSk be the index set of 

jobs that precedes k and succeeds j in S. Let )(SCk  denote the realized completion 

time of job k in S, and )(SCk
  denote the same in S′. Finally let T1 be the time that job 

j starts its processing and T2 be the time that job i finishes its processing in S. We have 

k

BSm

mjk XXXTSC
k

 


1)( and k

BSm

mik XXXTSC
k

 


1)( . 

Since Xi ≤st Xj, we have )()( SCSC kstk   by Proposition 3.1 and 

}0,)(max{}0,)(max{ kkstkk dSCdSC  by Proposition 3.2. 

This leads }]0,)([max{}]0,)([max{ kkstkk dSCEdSCE  . Hence swapping cannot 

increase the expected tardiness of a job in between. Now let us consider jobs i and j 

themselves. Let Tj be the increase in job j's tardiness because of the interchange and 

similarly Ti be the decrease in the tardiness of job i. We have 
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Just for now ignore the cases where di ≥ T2 or dj ≥ T2. Then we have 

},max{ 12 jjj dXTTT   and },max{ 12 jii dXTTT  . Since Xi ≤st Xj and 

di ≤ dj, by coupling we have },max{},max{ 11 jjstji dXTdXT  . Therefore,  

0}],[max{}],[max{][][ 11  iijjji dXTEdXTETETE  and the interchange 

cannot degrade the objective function. Now let us examine the cases we have ignored. 

If dj ≥ T2 then Tj = 0 and the interchange cannot lead to a worse solution, because the 

expected tardiness of job j does not increase and that of job j may possibly decrease. 

In the other case we have ignored, di ≥ T2, and since di ≤ dj we must also have dj ≥ T2. 

In that case, Ti = Tj = 0 and the interchange affects nothing. We conclude that S′ is 

also an optimal sequence and this concludes the proof.  □ 

 

Corollary 3.3. Consider 1 | Xj ~ exponential(j) | RM2 problem. If due dates are 

agreeable, i.e., if the earliest due date first (EDD) and SEPT sequences are the same, 

the EDD sequence is optimal. 

 

Corollary 3.4. SEPT order gives an optimal solution for 1 | Xj ~ exponential(j); dj = 

d | RM2. 

 

Note that if the processing times are exponentially distributed, Theorem 3.3 can 

be extended to include arbitrary machine breakdowns. As a result, Corollaries 3.3 and 

3.4 are also still valid in the presence of machine breakdowns. For the proofs of the 

last two corollaries and the inclusion of the breakdown process, we refer the reader to 

Pinedo (2002), Section 10.4. 

 

3.5 Stability 
 

Recall that a stable schedule is one that should not deviate much from the initial 

schedule. The deviation is generally measured in terms of the differences between the 

job completion times in the initial and realized schedules. Hence, a typical stability 

measure is a non-decreasing function of the deviation of job completion times. We use 
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three stability measures: 1) the expected sum of squares of job completion time 

differences between the initial and realized schedules (SM1) 2) the sum of the 

variances of the realized completion times (SM2) 3) the expected absolute job 

completion time differences between the initial and realized schedules (SM3). SM3 

was already available in the literature. SM1 and SM2, however, are proposed for the 

first time in this thesis. 

 

3.5.1 Stability Measure 1 (SM1) and Stability Measure 2 

(SM2) 

 

Recall that SM1 is the expected sum of squares of job completion time differences 

between the initial and realized schedules. That is, ])([1
1

2



n

i

i

d

i CCESM , where 

d

iC is the deterministic completion time of job i without taking machine breakdowns 

or processing time variability into account. 

A scheduler who is aware of the fact that initial schedules will inevitably deviate 

due to random disruptions can prepare his/her secondary plans according to expected 

completion times rather than deterministic completion times. In this case, a reasonable 

stability measure can be 





n

i

i

n

i

ii CVarCCEESM
11

2 ][])][([2 . 

 

Theorem 3.4 (SVPT (Smallest Variance of Processing Time first) Optimality). If 

Var[Xj] ≤ Var[Xj+1] for j = 1,…,n-1, the job sequence {1,…,n} is an optimal solution 

to 1 | Xj ~ Hj(t) | SM1(SM2) problem. In other words, the SVPT rule gives an optimal 

solution. 

 

Proof. The proof is by contradiction. Let S be an optimal sequence but assume that 

there exists a pair of adjacent jobs i and j such that Var[Xi] > Var[Xj] and job j 

succeeds job i in S. Now consider a sequence S′, obtained from S by swapping the 

positions of jobs i and j. We compare SM1(S) and SM1(S′). We may ignore the jobs 
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other than i and j in this comparison, since nothing changes for them. Let their 

contribution to the objective function be c. Let T denote the sum of the processing 

times of the jobs that precede i in S. We have 

cXXTVarXTVar

cXXTEXXTEXTEXTESSM

jii

jijiii





][][

]])[[(]])[[()(1 22

 

and 

cXXTVarXTVar

cXXTEXXTEXTEXTESSM

jij

jijijj





][][

]])[[(]])[[()(1 22

 

Hence, ][][)(1)(1 ji XVarXVarSSMSSM  . Since Var[Xi] > Var[Xj], SM1(S) > 

SM1(S′). That is, there is a strict improvement in the objective function after the 

interchange. This contradicts the fact that S is an optimal solution.  □ 

 

The result for SM2 is actually a corollary to the above proof since the measures 

are equivalent in the case of no breakdowns.  

 

Corollary 3.5. SEPT solves 1 | Xj ~ exponential(j) | SM1(SM2) optimally. 

 

Theorem 3.5 (SEPT Optimality). If ][][ ji XEXE   implies

),(],[][ jiXVarXVar ji   then 

1 | Xj ~ Hj(t); brkdwn: U ~ exponential(), D ~ G2(t) | SM1(SM2) is solved optimally 

by the SEPT rule. 

 

Proof. The proof is again by contradiction. Let S be an optimal sequence but assume 

that there exists a pair of adjacent jobs i and j such that E[Xi] > E[Xj] and job j 

succeeds job i in S. Now consider a sequence S′, obtained from S by swapping the 

positions of jobs i and j. We compare SM1(S) and SM1(S′). We may ignore the jobs 

other than i and j in this comparison, since nothing changes for them. Let their 

contribution to the objective function be c. Let BSi denote the index set of jobs that 

precedes job i in S. Let Ak = Yk – E[Xk] for each job index k. We have 
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The last line is obtained by using the fact that Ak‟s are independent, since Xk‟s and Yk‟s 

are independent. Note that ][][][][ iiii XrEXEYEAE  and 

222222

22

22222

22

22

22

22

])[)(44(][)1(][)(

])[)(1(2])[(

])[()1(][)1(][)(

][][2])[(])[(][

][][2])[(][

]][2])[([

]])[[(][

iii

ii

iii

iiiii

iiii

iiii

iii

XErrXVarrXErv

XErXE

XErXVarrXErv

XEYEXEYEYVar

XEYEXEYE

XEYXEYE

XEYEAE





















 

 

Then we have 

][])[][(2

)])[(])[)((42(

])[][)(1(])[][)(][()(1)(1

2222

222










iBSm

mji

ji

iiji

AEXEXEr

XEXErr

XVarXVarrXEXErRVarSSMSSM







 



 

 

CHAPTER 3. SINGLE MACHINE ENVIRONMENT  29 

 

 

 

Since ][][ ji XEXE   and ][][ ji XVarXVar   this difference is strictly positive, 

which contradicts with the optimality of S.  

The proof can be done with the same interchange argument for SM2. For SM2 

measure we have, 

])[][)(1(

])[][)(][(

][][)(2)(2
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Since E[Xi] > E[Xj] and Var[Xi] ≥ Var[Xj] this difference is strictly positive, which 

contradicts with the optimality of S.  □ 

 

Corollary 3.6. SEPT solves  

1 | Xj ~ exponential(j); brkdwn: U ~ exponential(), D ~ G2(t) | SM1(SM2) optimally. 

 

1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), D ~ G2(t) | SM1(SM2) is analytically intractable in 

the general case. 

 

3.5.2 Stability Measure 3 (SM3) 

 

SM3 is the expected absolute job completion time differences between the initial and 

realized schedules. 

]||[3 i

d

i CCESM   

This kind of measuring of the deviation between two schedules is first proposed 

by Wu et al. (1993).  
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Theorem 3.6 (SPT Optimality).  SPT solves 

 1 | pj, brkdwn: U ~ exponential(), D ~ G2(t) | SM3 optimally where pj denotes the 

deterministic processing time of job j. 

 

Proof. The proof is again by contradiction. Let S be an optimal sequence but assume 

that there exists a pair of adjacent jobs i and j such that pi > pj and job j succeeds job i 

in S. Now consider a sequence S′, obtained from S by swapping the positions of jobs i 

and j. We compare SM2(S) and SM2(S′). We may ignore the jobs other than i and j in 

this comparison, since nothing changes for them. Let their contribution to the 

objective function be c. Let BSi denote the index set of jobs that precedes job i in S. 

We have 
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Since pi > pj the improvement in objective function is strictly positive, which 

contradicts with the optimality of S.  □ 
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1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), D ~ G2(t) | SM3 is analytically intractable in 

the general case.  

Theorems 3.1-3.6 and their corollaries can be summed up with a single principle 

for the single machine scheduling of jobs with processing time uncertainty:  other 

things being equal, “shorter” (i.e., with a stochastically smaller processing time) and 

“safer” (i.e., with a smaller variance of processing time) jobs are to be scheduled first 

to optimize robustness and stability, respectively. Although this principle may 

commonly be used in everyday life, our results on the validity of the mentioned 

principle seem to be of interest for managerial purposes. 

The results are summarized in Tables 3.1 and 3.2. 

 

3.6 A Branch-and-Bound Algorithm for 

1 | Xj ~ Hj(t) | RM2 

 

In this section, we focus on the 1 | Xj ~ Hj(t) | RM2 problem because of two reasons. 

First, the total tardiness performance measure is popular and frequently used in 

practice. 

 

Table 3.1. Analytically Tractable Cases; Robustness 

Problem Algorithm Theorem/ 

Corollary 

1 | Xj ~ Hj(t); brkdwn: U ~ G1(t), 

D ~ G2(t) | RM1 

SSPT Theorem 3.1 

1 | Xj ~ exponential(j); brkdwn:

U ~ G1(t), D ~ G2(t) | RM1. 

SEPT Corollary 3.1 

1 | Xj ~ Hj(t) | RM1. SEPT Corollary 3.2 

1 | Xj ~ Hj(t) | RM2 Dominance Rule Theorem 3.3 

1 | Xj ~ exponential(j) | RM2 EDD if EDD and SEPT 

sequences are the same 

Corollary 3.3 

1 | Xj ~ exponential(j); dj = 

d | RM2. 

SEPT Corollary 3.4 
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Table 3.2. Analytically Tractable Cases; Stability 

Problem Algorithm Theorem/ 

Corollary 

1 | Xj ~ Hj(t) | SM1(SM2) SVPT Theorem 3.4 

1 | Xj ~ exponential(j) | SM1(SM2) SEPT Corollary 3.5 

1 | Xj ~ Hj(t); brkdwn: U ~ exponen

tial(), D ~ G2(t) | SM1(SM2) 
SVPT if ][][ ji XEXE   

implies 

),(],[][ jiXVarXVar ji   

Theorem 3.5 

1 | Xj ~ exponential(j); brkdwn: U 

~ exponential(), D ~ G2(t) | SM1(

SM2) 

SEPT Corollary3. 6 

1 | pj,brkdwn: U ~ exponential(), 

D ~ G2(t) | SM3 

SPT Theorem 3.6 

 

Second, we have a dominance rule (Theorem 3.3) that can be effectively used in a 

branch-and-bound algorithm to keep the size of the search tree manageable. 

The algorithm developed in this section is for the problems where the processing 

time distributions of any two jobs are stochastically comparable. Typical examples are 

normal distribution with a common coefficient of variation (cv), Gamma distribution 

with the same scale parameter, and Poisson distribution. For all these distributions, 

ordering in the expected value corresponds to ordering in the stochastic sense. 

Moreover, the job completion times in any sequence also have the same type of 

distributions as the processing time distributions, i.e., they belong to the same family. 

We should be very careful when processing time distributions are normal with a 

common coefficient of variation because stochastic comparability is only valid for the 

nonnegative part of the distributions. Thus, the probability of having negative 

processing times should be negligibly small (cv < 1/3) for a satisfactory performance 

of the algorithm. 

In the proposed B&B algorithm, we develop the schedules progressively in the 

forward direction. At level k of the branch-and-bound tree, jobs in the first k positions 

are specified. We use the dominance rule in Theorem 3.3 during the branching 

process. The initial upper bound is taken as the minimum expected total tardiness 

value of the SPT, EDD and ATC solutions. The upper bound of each node is taken as 
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the expected total tardiness of the EDD completion of that node. If the global upper 

bound is greater than the upper bound of a node, it is updated. There are two lower 

bounds considered: a loose one and a tight one. These are explained in the next two 

theorems. If the lower bound of a node is greater than the global upper bound, it is 

pruned. We use a most-promising-node-first exploration strategy, that is, the node 

with the lowest upper bound value is branched first. 

 

Theorem 3.7 (Lower Bound 1). Consider the problem 1 | Xj ~ Hj(t) | RM2. Arrange 

the due dates in non-decreasing order and assign them to the jobs arranged in a 

stochastic non-decreasing order of processing times (assuming all jobs can be 

ordered stochastically). The optimal expected total tardiness value of this new 

problem P1 is a lower bound on the optimal objective value of the original problem 

1 | Xj ~ Hj(t) | RM2. 

 

Proof. The proof is by an interchange argument. The optimal solution to P1 is an 

EDD sequence by Theorem 3.3. We now show that its objective function value is a 

lower bound on the optimal objective function value of the original problem. We 

begin by an optimal solution S
*
 of the original problem and convert it to an optimal 

solution of P1. The procedure is as follows: 

Step 1 Consider every adjacent job pair. If a job with a greater due date 

precedes a job with a smaller due date, swap their due dates but not their positions; 

just assign the due date of the former job to the latter job and vice versa. Continue in 

this fashion until all due dates are in non-decreasing order. Each swap of the due dates 

results in a possible decrease in the expected total tardiness of the schedule but never 

an increase. 

Step 2 Take the resultant schedule of Step 1 as the input and process it in the 

same way as in Step 1. The only difference is, instead of due-dates, compare and 

exchange the processing times of the adjacent job pairs if necessary. 

The resulting schedule is optimal for P1 and its objective function value is a lower 

bound on that of the original problem. The deterministic version of this lower bound is 

developed by Chu (1992).  □ 
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Della Croce, Tadei, Baracco, and Grosso (1998) propose another lower bound for the 

deterministic problem. Here, we extend this lower bound to the stochastic problem as 

follows: 

 

Theorem 3.8 (Lower Bound 2). Consider the 1 | Xj ~ Hj(t) | RM2 problem. Relabel 

the jobs according to the non-decreasing stochastic order of their processing times 

(assuming all jobs can be ordered stochastically). That is, the job with the 

stochastically smallest processing time is job 1, and with the stochastically largest 

processing time is job n. Split the job set J into two subsets J1 = {1,…,l} and J2 = 

{l+1,…,n}, where  2nl  . For each subset, separately arrange the due dates in 

non-decreasing order and assign them to the jobs arranged in a stochastic non-

decreasing order of processing times. The optimal expected total tardiness value of 

this new problem P2 is a lower bound on that of the original problem 1 | Xj ~ Hj(t) | 

RM2. 

 

The proof of the theorem basically involves the same interchange argument as in 

the proof of Theorem 3.7.  The only difference is that we apply Steps 1 and 2 

separately to the jobs in subsets J1 and J2. That is, at each pass of Step 1 or Step 2, we 

examine successive jobs (not necessarily adjacent) that belong to the same subset. At 

the end, we obtain a feasible schedule to P2, whose expected total tardiness is no 

greater than the optimal objective value of the original problem. The expected total 

tardiness value of an optimal solution to P2 is possibly even less, so it is a lower 

bound for the original problem. The optimal solution to P2 can be found in 

polynomial time. For two solution procedures, each with O(n
2
) time complexity, the 

reader can refer to Della Croce et al. (1998). 

 

3.7 A Beam-Search Algorithm for Other Intractable 

Problems 
 

The proposed branch-and-bound algorithm relies on Theorem 3.3 as a dominance rule 

and Theorems 3.7 and 3.8 as lower bounds. These theorems are valid under the 
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assumption that for any two jobs, their processing times are stochastically comparable. 

Also, machine breakdowns are not considered. In this section, we develop a beam-

search algorithm that can be used with any processing time distribution and any 

objective function (RM1, RM2, SM1, SM2, or SM3) and that can also handle a general 

machine breakdown/repair process. 

Beam search is an approximate branch-and-bound method which operates on a 

search tree. BS has been used to solve combinatorial optimization problems for the 

last two decades. There are several successful applications to job-shop scheduling and 

flexible manufacturing systems (FMS) scheduling problems with static and 

deterministic assumptions (Sabuncuoglu and Karabuk (1998) and Sabuncuoglu and 

Bayiz (1999)). Generally speaking, BS is similar to a breadth-first search as it 

progresses level by level without backtracking. However, unlike breadth first, only the 

best  (beam width) promising nodes are kept for further branching at any level. The 

potential promise of each node is determined by a global evaluation function, which 

typically estimates the minimum total cost of the best solution obtained from the 

partial schedule represented by the node.  

In a BS implementation, the beams may progress independently (i.e., at all 

levels other than level 1, each of  promising nodes has a different ancestor), but in 

our implementation, we use dependent beams (i.e., at each level, all the descendants 

are evaluated and the best  of them are chosen without paying attention to their 

ancestors). Figure 3.1 illustrates a hypothetical example with  = 2. Specifically, we 

first complete the partial schedule that the node represents according to the objective 

function in use. If the objective function is RM1, the schedule is completed according 

to the SEPT rule. Similarly, ATC is used for RM2, and SVPT is used for SM1, SM2, 

or SM3. We then simulate the resulting schedule 10 times. The average of these 

objective function values is taken as the global evaluation function value. The 

simulations are done with the help of a simple discrete-event simulation model coded 

in C++ language. First, the processing times of the jobs are generated according to 

their respective probability distributions. After that, the machine uptimes and 

downtimes are generated and inserted into their proper positions in the schedule. 

Finally, the realized job completion times are obtained and used for the performance 

measure calculations. 
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Figure 3.1. Beam-Search Example with β  = 2 

 

3.8 Computational Experiments 
 

The performance of the proposed algorithms is measured on a non-dedicated Linux 

box with dual AMD Opteron 2.6GHz CPUs and 2GBs of physical memory. The codes 

are written in C++ language. The data generation scheme, initially proposed by Fisher 

(1976), is explained in the next section. 

 

3.8.1  Test Problems and Beam-Search Parameters 

 

The problem instances of varying degrees of difficulty are generated by means of two 

factors: tardiness factor (TF) and range of due dates (DR). For each problem, first the 

processing time means are generated from a uniform distribution with parameters (1, 

100). Then the due dates are generated from a uniform distribution, which depends on 
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the sum of the processing time mean (P), and on R and T.  The due date distribution is 

uniform over [P(1 – TF – DR / 2), P(1 – TF + DR / 2)]. The values of TF and DR are 

selected from {0.2, 0.4, 0.6, 0.8} and {0.2, 0.4, 0.6, 0.8, 1.0}, respectively. This yields 

20 combinations of TF, DR for each problem size. The number of jobs n is selected 

from the set {10, 20, 30, 40, 50, 75, 100}. 10 different instances are solved for each 

setting of n, TF, DR, which gives 200 instances for each choice of n. For the B&B 

algorithm, we solve problems up to the size of 10 (n = 10). For the beam-search 

algorithm, we solve all problem sizes for each objective function (RM1, RM2, SM1, 

SM2, and SM3).  Table 3.3 summarizes the experimental settings. 

We call each combination of n, TF, and DR a problem class. We also assign 

each problem class a code name: probxyz. Here x, y, z are the levels of n, TF, and DR 

factors, respectively. For example, prob231 is the problem class in which n = 20, TF = 

0.6, and DR = 0.2. 

The beam width is taken as 4. Recall that the proposed BS algorithm employs 

simulation as the global evaluation function. During simulation runs, we use Gamma 

distribution as a busy-time distribution with a shape parameter of 0.7, and a scale 

parameter to be specified. We use Gamma distribution with a shape parameter of 1.4 

for the down-time distribution, as recommended by Law and Kelton (2000). The scale 

parameter of the busy-time distribution is arranged so that the mean is 300. Similarly, 

the scale parameter of the down-time distribution is arranged so that the mean is 50. 

 

Table 3.3. Experimental Environment 

Processing time mean (E[Xj]) U[1, 100] 

Number of jobs (n) 10, 20, 30, 40, 50, 75, 100 

Due dates (dj) 

U[P(1 - TF - DR / 2), P(1 - TF + DR / 2], 

where P is the sum of processing time 

means 

TF in {0.2, 0.4, 0.6, 0.8} 

DR in {0.2, 0.4, 0.6, 0.8, 1.0} 
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3.8.2 Evaluation of the Algorithms for 1 | Xj ~ Hj(t) | RM2 

 

Recall that the branch-and-bound algorithm is developed for the 1 | Xj ~ Hj(t) | RM2 

problem (i.e., there are no machine breakdowns) and the processing time distributions 

of any two jobs can be stochastically compared. We take the processing time 

distribution of each job as the Gamma distribution, with a scale parameter of 2. The 

shape parameters are arranged such that the mean processing times equal the 

previously generated values (see Section 3.8.1). Only 200 10-job problems are solved 

because of the computational time limitations. Each problem instance is solved two 

times, once using Lower Bound 1 (loose) and once using Lower Bound 2 (tight). 

Table 3.4 presents the results. In Table 3.4, better CPU time is marked with an asterix 

(*) for each problem class. Figures 3.2 and 3.3 are prepared to observe the effects of 

TF and DR clearly. 

We observe two things: 1) Generally, as TF and RD increase, the problems get 

easier and require less computational time to solve (i.e., the problems with loose due 

dates are harder to solve), and 2) the extra computational time required for calculating 

a tight lower bound pays off for hard problem classes, but this is not worth the effort 

for easy problem classes.  

 

Table 3.4. Results for Branch and Bound 

Problem 
CPU Time 

Objective Problem 
CPU Time 

Objective 
LOOSE TIGHT LOOSE TIGHT 

prob111 1962.23 1833.26* 75.64 prob131 292.81* 432.88 487.65 

prob112 778.20* 1255.01 36.72 prob132 205.67* 276.43 593.44 

prob113 318.40* 507.28 27.16 prob133 133.51* 171.97 596.93 

prob114 557.84* 671.69 34.41 prob134 346.47* 417.92 487.82 

prob115 479.59* 670.11 23.18 prob135 646.03 575.50* 707.64 

prob121 849.89 816.65* 305.25 prob141 65.91* 144.03 1129.50 

prob122 800.41* 1055.06 210.04 prob142 68.32* 148.94 1351.72 

prob123 956.70 695.33* 199.16 prob143 91.42* 192.63 1410.66 

prob124 323.33* 472.76 124.38 prob144 141.06* 196.17 1140.40 

prob125 645.20 593.21* 124.64 prob145 78.82* 93.82 1297.68 
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Figure 3.2. Effect of TF Level on CPU Seconds 

 

 

 

Figure 3.3. Effect of DR Level on CPU Seconds 
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Tables 3.5 and 3.6 present the average number of pruned nodes due to the 

dominance rule for loose and tight lower bounds, respectively. We can observe that 

the dominance rule works quite effectively.  

For example, on average, 7.1 nodes are pruned due to the dominance rule among 

10 nodes in level 1. Among (10-7.1) x 9 = 26.1 nodes in level 2, the dominance rule 

prunes 15.1 and 13.7 for the algorithms with loose and tight lower bounds, 

respectively.  

We also observe that the dominance rule prunes fewer nodes in each level for 

the algorithm with the tight lower bound, but this is expected because for this case, 

more nodes are pruned due to their upper and lower bound comparisons. 

 

Table 3.5. Performance of Dominance Rule, Loose Lower Bound 

 

 Nodes Pruned – Loose 

Problem Level 1 Level 2  Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 
prob111 7.5 11.3 29.9 78.8 196.5 462.2 800.4 758.9 0.1 
prob112 7.1 8.7 25.1 67.0 160.2 296.5 317.4 195.6 0.0 
prob113 7.6 12.1 21.7 44.9 89.2 135.8 141.9 70.2 0.2 
prob114 7.0 12.5 29.0 69.8 157.8 200.1 183.6 65.9 0.0 
prob115 6.3 13.9 38.0 93.0 183.4 242.0 147.9 38.3 0.0 
prob121 7.2 17.3 38.9 95.4 202.5 330.3 386.7 167.7 0.1 
prob122 6.9 18.2 47.0 109.5 226.1 414.9 380.5 196.8 0.1 
prob123 7.1 17.3 43.7 103.8 231.4 420.0 447.8 154.8 0.1 
prob124 7.3 16.3 36.2 66.3 115.9 150.0 103.0 51.0 0.0 
prob125 6.8 16.7 40.8 95.4 201.6 309.0 233.8 59.4 0.0 
prob131 7.0 16.7 40.8 95.5 176.8 199.6 59.7 4.2 0.0 
prob132 7.6 15.8 29.6 59.8 93.6 100.0 50.9 11.4 0.0 
prob133 8.0 13.7 21.5 40.9 61.1 45.8 15.9 2.5 0.0 
prob134 7.0 16.9 38.4 92.1 182.5 222.3 115.5 30.7 0.0 
prob135 6.6 19.4 46.7 98.6 156.2 161.4 137.3 27.3 0.3 
prob141 6.6 18.7 37.6 50.3 46.5 19.4 8.1 5.4 0.7 
prob142 7.1 14.5 26.0 28.4 21.6 10.5 5.9 3.5 0.0 
prob143 7.5 11.5 17.4 26.7 29.1 19.0 6.5 3.9 0.0 
prob144 6.7 17.9 35.1 59.2 61.2 41.1 21.7 5.5 0.5 
prob145 7.5 13.3 20.6 32.4 41.5 43.5 22.8 3.3 0.0 

Average 7.1 15.1 33.2 70.8 131.7 191.2 179.4 92.8 0.1 



 

 

CHAPTER 3. SINGLE MACHINE ENVIRONMENT  41 

 

 

 

Table 3.6. Performance of Dominance Rule, Tight Lower Bound 

  Nodes Pruned – Tight 

Problem Level 1 Level 2  Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 
prob111 7.5 10.0 17.9 49.3 131.9 310.0 340.6 192.6 0.0 
prob112 7.1 8.7 20.6 52.1 126.6 234.5 277.9 126.2 0.0 
prob113 7.6 10.9 20.5 38.9 63.2 110.3 87.4 12.8 0.2 
prob114 7.0 12.5 20.4 43.0 87.3 126.4 125.4 19.8 0.0 
prob115 6.3 12.0 32.5 64.8 106.6 73.4 43.1 0.0 0.0 
prob121 7.2 16.0 33.6 74.0 133.2 135.9 76.9 16.0 0.1 
prob122 6.9 17.2 41.4 84.9 159.0 179.2 140.5 47.9 0.1 
prob123 7.1 13.9 32.4 63.5 102.6 79.0 57.8 3.0 0.1 
prob124 7.3 13.0 24.3 41.1 56.3 75.9 32.5 19.8 0.0 
prob125 6.8 13.2 30.9 61.6 91.3 92.7 41.6 11.6 0.0 
prob131 7.0 15.5 36.6 78.6 120.5 62.9 20.0 3.3 0.0 
prob132 7.6 15.8 28.4 44.5 61.5 38.7 14.7 5.2 0.0 
prob133 8.0 13.0 17.2 24.8 26.5 16.4 8.7 2.4 0.0 
prob134 7.0 16.9 30.0 55.8 80.8 54.9 34.5 7.9 0.0 
prob135 6.6 17.2 32.0 48.5 61.0 54.9 21.1 3.4 0.3 
prob141 6.6 18.0 34.7 42.0 36.7 17.7 8.1 5.4 0.7 
prob142 7.1 13.1 21.3 19.4 15.9 7.9 5.9 3.5 0.0 
prob143 7.5 10.0 15.8 21.3 22.9 14.4 5.1 3.9 0.0 
prob144 6.7 16.6 27.6 38.3 27.4 13.6 12.4 5.3 0.5 
prob145 7.5 11.2 15.9 18.2 20.3 12.9 10.3 1.6 0.0 

Average 7.1 13.7 26.7 48.2 76.6 85.6 68.2 24.6 0.1 

 

The same 200 problems are also solved by the proposed BS algorithm for 

comparison. The solutions obtained from the BS are evaluated by the exact objective 

function, which is also used in the branch-and-bound algorithm (i.e., the reported 

results are not simulation values). Table 3.7 summarizes the results. Optimal objective 

function values and minimum CPU times obtained from the branch-and-bound 

algorithm are also included in Table 3.7. The results indicate that the beam-search 

algorithm finds the optimal solution for 51 of the 200 problem instances. The 

deviation from the optimal values is under 2% for most of the problem classes. 

 A paired t-test with  = 0.05 indicates that the differences in objective function 

are statistically significant for only the problem classes prob122 and prob132. 
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Table 3.7. Branch and Bound vs. Beam Search 

Problem 
BS 

CPU Time 
B&B 

CPU Time 
BS 

Objective 
Optimal  

Objective 
Deviation from  
the optimal (%) 

prob111 2.74 1833.26 77.50 75.64 2.46 
prob112 2.93 778.20 37.18 36.72 1.26 
prob113 2.55 318.40 30.42 27.16 12.01 
prob114 2.65 557.84 34.88 34.42 1.34 
prob115 2.71 479.59 23.47 23.18 1.26 
prob121 2.86 816.65 307.22 305.25 0.65 
prob122 2.68 800.41 212.92 210.04 1.37 
prob123 2.80 695.33 207.62 199.16 4.25 
prob124 2.80 323.33 128.84 124.38 3.58 
prob125 2.61 593.21 125.41 124.64 0.62 
prob131 2.22 292.81 489.71 487.65 0.42 
prob132 2.93 205.67 599.64 593.44 1.04 
prob133 3.20 133.51 601.64 596.93 0.79 
prob134 2.63 346.47 492.31 487.82 0.92 
prob135 2.71 575.50 709.03 707.64 0.20 
prob141 2.57 65.91 1130.89 1129.50 0.12 
prob142 2.99 68.32 1355.79 1351.72 0.30 
prob143 3.01 91.42 1415.11 1410.66 0.32 
prob144 2.78 141.06 1142.29 1140.40 0.17 
prob145 2.94 78.82 1297.71 1297.68 0.00 

 

We can conclude that the proposed beam search performs quite satisfactorily for 

the 1 | Xj ~ Hj(t) | RM2 problem and, if computational time is an issue, it can be safely 

used to generate schedules instead of the exact algorithm. 

We also compare the performances of the beam-search algorithm and the ATC 

dispatching rule. Table 3.8 presents a summary of the results. The objective function 

values reported in this table are the averages of the simulated total tardiness values of 

the schedules generated by the algorithms.  

We observe that the beam-search algorithm performs better and all the 

differences are found to be significant by a paired t-test with  = 0.05. 
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Table 3.8. Beam Search vs. ATC for RM2 No Breakdown; Summary 

BEAM SEARCH ATC 

Objective 

Deviation 

(%) # of Jobs CPU Time Objective 

10 1.22 527.01 547.48 3.88 

20 10.31 1760.17 1804.69 2.53 

30 34.47 3579.49 3652.44 2.04 

40 83.63 6145.22 6253.40 1.76 

50 164.13 9393.70 9562.67 1.80 

75 556.58 20723.12 21088.92 1.77 

100 1323.28 35926.39 36466.31 1.50 

 

 

3.8.3 Evaluation of Proposed BS Algorithm for Other 

Intractable Problems with Machine Breakdowns 

 

The performance of the proposed BS algorithm is evaluated by solving numerous 

problem instances for each objective function. Since RM1, SM1, SM2, and SM3 are 

not due-date related performance measures, 10 instances from probx11 (x = 1, …, 7) 

classes are used during the experiments, giving rise to 70 problem instances for each 

objective function. In other words, tardiness factor (TF) and range of due dates (DR) 

do not vary among test problems because they are irrelevant.  For RM2, 10 instances 

from probxyz (x = 1, …, 7, y = 1, …, 4, z = 1, …, 5) classes are used, yielding a total 

of 1400 problem instances. 

All problems include machine breakdown/repair. Since these problems are 

analytically intractable we do not know their optimal solutions. Thus, we compare the 

performance of the proposed BS algorithm to a priority dispatching rule for each 

objective function. The dispatching rule that is used depends on the objective 

function. For example, if the objective function is RM1, SEPT is used. Similarly, 

SVPT is used for the stability measures (SM1, SM2, or SM3). Note that SEPT is 

optimal for RM1 and SVPT is optimal for SM1, SM2, or SM3 under special conditions 

(see Theorem 3.1 and Theorems 3.4-3.8). However, we expect these dispatching rules 

to also perform well under more general conditions (even if the stated optimality 

conditions in Theorems 3.1 and 3.4-3.8 do not hold). 
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For RM2, three dispatching rules and three versions of the beam-search 

algorithm are considered. The first dispatching rule is ATC: at every time point t the 

machine becomes free, a priority index is calculated for each unscheduled job j, and 

the job with the highest priority is scheduled next. Note that the priority indices are 

calculated only at the deterministic completion times of the jobs. Additionally, two 

proactive versions of ATC, namely ProATC1 and ProATC2, are developed to 

incorporate the machine breakdown and repair information.  In ProATC1, a job‟s 

processing time is inflated by the expected repair duration during the processing of 

that job. Specifically, the processing time for job j is taken as  

)
][

][
1]([][

][

][
][

UE

DE
XEDE

UE

XE
XEp j

j

jj  . 

 

The priorities of the jobs are calculated using these new processing time values. 

In ProATC2, the time points where the priority indices are calculated are adjusted to 

include machine breakdowns. We anticipate a constant downtime period (E[D]) after 

every constant busy time period (E[U]). That is, time (t) is advanced by E[D] every 

time the machine stays up for E[U]. The beam-search algorithms under consideration 

are classical BS, simulation-based BS, and proactive BS. In classical BS, the global 

evaluation function is the regular total tardiness measure. At each level of the search 

tree, partial schedules in the nodes are completed by the ATC rule, and  nodes with 

the smallest total tardiness values are retained while the others are pruned 

permanently. Note that classical BS does not consider breakdowns or processing time 

variability. Simulation-based BS is like classical BS, except that it employs simulation 

as global evaluation function, therefore processing time variability and machine 

breakdowns are considered. In proactive BS, similar to simulation-based BS, the 

global evaluation function is based on simulation. The only difference is that in 

simulation-based BS, the partial schedules in the nodes are completed by the ATC 

rule before global evaluation, whereas in proactive BS they are completed by 

ProATC2. 

To observe the effect of using simulation instead of surrogate measures, the 

same problem instances are also solved with a variant of the proposed BS algorithm 

(called BS-M1) for each objective function. The most frequently used surrogate 

measure in the literature is the average slack method developed by Leon et al. (1994). 
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This measure is developed for a job shop environment with the makespan measure. 

The measure depends on job slacks, which is defined as the amount of time that a 

job‟s processing can be delayed without increasing the makespan of the schedule. 

Since in this study we operate in a single machine environment with all jobs present at 

time t = 0, slacks for all jobs are zero and a slack-based measure cannot be applied. 

There are other surrogate measures that require inserting idle times, as in Mehta and 

Uzsoy (1998). Since our solution space is the class of non-delay schedules, these types 

of surrogate measures are not quite applicable. BS-M1 uses Method 1 surrogate 

measure in Goren and Sabuncuoglu (2008) to globally evaluate the nodes instead of 

simulation. Method 1 assumes that the machine fails after every constant busy time 

period of length λL + (1 − λ)U, where λ is a real number between zero and one, and L 

and U are the 25th and 975th 1000-tiles of the busy-time distribution G1(t). It is also 

assumed that all repair activities last for a time period of length r, the expectation of 

the repair time distribution G2(t). Method 1 is developed for an environment where the 

job processing times are deterministic. To use it as a global evaluator, we further 

assume that the job processing times are deterministic and their values are equal to the 

expectations of the respective processing time distributions. To globally evaluate a 

node, the partial schedule at that node is first completed according to the SPT rule. 

Next, constant uptimes and downtimes are inserted and a new schedule that represents 

an approximate realization is obtained. Job completion times in this new schedule are 

used to calculate the performance measure of the node instead of simulation. The 

computational tests in Goren and Sabuncuoglu‟s correlation study (2008) indicate λ = 

0.6 performs well. Since the same up- and down-time distributions are used in this 

study, the same λ value is also used.  

To observe the impact of different repair time distributions on the performance 

of the proposed BS algorithm, the experiments are also conducted with an exponential 

repair time distribution (with the same mean) instead of Gamma. 

During our tests, we take the processing time distributions as exponential except 

for RM1. We use normal distribution for RM1 because the SEPT schedule would be 

already optimal if the processing times were exponentially distributed (see Theorem 

3.1). For RM1, variances of the processing times are generated as uniformly 

distributed over [1, 100]. If a negative processing time value is generated during the 

simulations, it is simply ignored and generated again. 



 

 

CHAPTER 3. SINGLE MACHINE ENVIRONMENT  46 

 

 

 

The simulations (both as a global evaluator in the BS algorithms and as an 

estimator of the resulting objective function value for all algorithms) during the 

experiments performed in this section are replicated 100 times instead of 10.  

A summary of the results is given in Tables 3.9 and 3.10; the best objective 

function values are marked with an asterix (*) whereas the worst ones are marked 

with a „+‟ sign. 

As can be seen in Tables 3.9 and 3.10, for the RM1 performance measure the 

proposed BS and BS-M1 are competitive. For the case with Gamma repair time 

distribution, the proposed BS generally performs better, whereas BS-M1 performs the 

best for the case with exponential repair time distribution. 

For all three stability measures, the proposed BS algorithm is significantly better 

than the corresponding dispatching rule or BS-M1. We observe that BS-M1 gets better 

with increasing problem sizes. Regardless of the repair time distribution, dispatching 

rules perform better than BS-M1 for small problems while BS-M1 performs better for 

larger problems. 

We also observe that the differences between the performances of the alternative 

algorithms for RM1 are relatively small compared to the other measures. The reason 

for such a good performance of SEPT for RM1 is that the optimality conditions stated 

in Theorem 3.1 are mostly satisfied for RM1 (except for stochastic comparability), 

whereas these conditions are not satisfied due to machine breakdown/repair for other 

measures and their respective theorems. This indicates that relaxing the stochastic 

comparability constraint is not as serious as relaxing the constraints on the machine 

breakdown/repair process. The summary of the results for RM2 is given in Tables 

3.11-3.14. 

We make three main observations. First, the proactive approach does not always 

improve the performance of dispatching rules (in particular, ATC in our case) if it is 

not appropriately used. This is attested to by the better performance of traditional 

ATC over ProATC1. Our further investigation of this result indicates that how total 

repair time is distributed is important for the proactive use of dispatching rules.  
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Table 3.9. Comparison of Algorithms, Non-Due-Date Related, Gamma Repair 

Times 

Objective 

Function 
# of 

Jobs 

Beam Search 
Surrogate 
(BS-M1) 

Dispatching Rule 
(SEPT/SVPT) 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

RM1 

10 0.09 2,092.52 0.00 2,091.84
* 0.00 2,103.06

+ 

20 0.77 9,116.38
* 0.02 9,123.58 0.00 9,154.53

+ 

30 2.52 18,244.30 0.08 18,237.20
* 0.00 18,430.70

+ 

40 6.11 32,474.30
* 0.20 32,487.80 0.00 33,240.40

+ 

50 11.65 48,973.80
* 0.36 48,992.00 0.00 50,259.40

+ 

75 39.23 110,345.00
* 1.36 110,373.00 0.00 114,193.00

+ 

100 93.35 191,219.00 3.13 190,989.00
* 0.00 199,043.00

+ 

SM1 

10 0.07 126,503.00
* 0.00 276,603.00

+ 0.00 134,952.00 

20 0.57 643,599.00
* 0.02 966,289.00

+ 0.00 697,516.00 

30 1.83 1,265,710.00
* 0.07 1,411,240.00

+ 0.00 1,360,740.00 

40 4.41 2,505,680.00
* 0.19 2,961,280.00 0.00 3,158,530.00

+ 

50 8.45 3,413,200.00
* 0.34 4,090,790.00 0.00 4,684,200.00

+ 

75 28.43 8,049,690.00
* 1.24 8,890,310.00 0.00 10,053,000.00

+ 

100 67.30 15,844,300.00
* 2.80 16,313,500.00 0.00 22,206,400.00

+ 

SM2 

10 0.07 122,703.00
* 0.00 270,075.00

+ 0.00 131,267.00 

20 0.58 608,366.00
* 0.02 915,720.00

+ 0.00 648,840.00 

30 1.84 1,099,120.00
* 0.08 1,224,390.00 0.00 1,249,160.00

+ 

40 4.43 2,180,560.00
* 0.18 2,545,270.00 0.00 2,668,970.00

+ 

50 8.50 2,860,190.00
* 0.34 3,382,500.00 0.00 3,692,810.00

+ 

75 28.60 6,112,700.00
* 1.26 6,776,440.00 0.00 7,311,420.00

+ 

100 67.71 11,019,900.00
* 2.81 11,458,700.00 0.00 15,095,700.00

+ 

SM3 

10 0.07 678.40
* 0.00 1,101.34

+ 0.00 716.07 

20 0.58 2,280.15
* 0.02 3,049.16

+ 0.00 2,400.81 

30 1.83 3,904.92
* 0.08 4,372.56

+ 0.00 4,216.34 

40 4.42 6,150.28
* 0.19 7,224.14

+ 0.00 7,043.67 

50 8.49 8,226.24
* 0.34 9,508.64

+ 0.00 9,757.92 

75 28.43 15,374.30
* 1.25 16,827.40 0.00 17,881.30

+ 

100 67.29 25,692.50
* 2.88 26,264.00 0.00 31,096.80

+ 
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Table 3.10. Comparison of Algorithms, Non-Due-Date Related, Exponential 

Repair Times 

Objective 

Function 
# of 

Jobs 

Beam Search 
Surrogate 
(BS-M1) 

Dispatching Rule 
(SEPT/SVPT) 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

RM1 

10 0.08 2,137.29 0.00 2,135.48
* 0.00 2,154.75

+ 

20 0.63 9,336.27 0.02 9,327.52
* 0.00 9,483.38

+ 

30 2.07 18,852.60 0.08 18,839.60
* 0.00 19,219.10

+ 

40 4.99 33,646.20 0.20 33,644.30
* 0.00 34,648.70

+ 

50 9.50 50,851.00 0.36 50,780.70
* 0.00 52,419.30

+ 

75 31.98 114,672.00 1.36 114,605.00
* 0.00 120,134.00

+ 

100 75.94 198,884.00 3.11 198,684.00
* 0.00 209,671.00

+ 

SM1 

10 0.06 150,470.00
* 0.00 305,607.00

+ 0.00 154,277.00 

20 0.45 732,659.00
* 0.02 1,073,150.00

+ 0.00 906,319.00 

30 1.44 1,512,100.00
* 0.07 1,768,840.00

+ 0.00 1,765,760.00 

40 3.45 3,249,080.00
* 0.19 3,832,140.00 0.00 4,009,570.00

+ 

50 6.62 4,509,910.00
* 0.35 5,313,940.00 0.00 5,975,470.00

+ 

75 22.16 11,135,500.00
* 1.24 12,238,900.00 0.00 13,105,900.00

+ 

100 52.29 23,435,700.00
* 2.81 24,137,100.00 0.00 32,252,900.00

+ 

SM2 

10 0.06 142,760.00
* 0.00 293,771.00

+ 0.00 146,447.00 

20 0.45 664,283.00
* 0.02 981,248.00

+ 0.00 778,273.00 

30 1.45 1,208,060.00
* 0.08 1,407,020.00 0.00 1,448,110.00

+ 

40 3.48 2,570,080.00
* 0.20 3,008,500.00

+ 0.00 2,902,690.00 

50 6.68 3,349,290.00
* 0.36 3,961,910.00 0.00 4,487,440.00

+ 

75 22.42 7,109,220.00
* 1.26 7,870,520.00 0.00 8,597,210.00

+ 

100 52.95 13,175,600.00
* 2.80 13,673,700.00 0.00 18,327,800.00

+ 

SM3 

10 0.05 733.99
* 0.00 1,151.43

+ 0.00 749.51 

20 0.45 2,397.88
* 0.02 3,188.48

+ 0.00 2,689.12 

30 1.45 4,163.81
* 0.07 4,825.66

+ 0.00 4,718.05 

40 3.47 6,914.60
* 0.19 8,127.66

+ 0.00 7,617.44 

50 6.63 9,464.42
* 0.35 10,693.70 0.00 11,161.50

+ 

75 22.22 17,830.90
* 1.23 19,591.90 0.00 21,767.20

+ 

100 52.40 30,896.10
* 2.75 31,797.70 0.00 37,760.50

+ 
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Table 3.11. Dispatching Rules, RM2, Gamma Repair Times 

# of 

Jobs 

Dispatching Rule 

ATC ProATC1 ProATC2 

Objective Objective Objective 

10 857.31 1,140.26 856.35 

20 2,872.70 3,672.90 2,846.45 

30 5,875.01 7,833.76 5,819.89 

40 10,354.70 12,943.80 10,252.10 

50 15,776.20 20,532.40 15,617.40 

75 34,562.20 43,043.50 33,684.00 

100 62,468.50 75,501.60 61,303.20 

 

Table 3.12. Comparison of Algorithms, RM2, Gamma Repair Times 

# of 

Jobs 

Beam Search 

Surrogate BS-M1 
Classical BS 

Simulation-based 

BS 
Proactive BS 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

10 0.00 975.64 0.07 787.01 0.07 788.55 0.00 965.75 

20 0.04 2,960.23 0.57 2,682.17 0.56 2,671.04 0.04 2,866.22 

30 0.15 6,327.45 1.89 5,668.54 1.89 5,615.59 0.16 6,034.95 

40 0.44 10,063.00 4.59 9,143.85 4.58 9,031.98 0.45 9,593.11 

50 0.96 15,991.60 9.05 14,482.00 9.05 14,196.40 0.98 15,037.50 

75 4.42 32,418.20 31.57 29,676.70 31.54 29,182.60 4.49 30,441.40 

100 13.12 56,672.20 77.23 52,260.20 77.14 50,702.90 13.29 52,790.50 

 

 

Table 3.13. Dispatching Rules, RM2, Exponential Repair Times 

Dispatching Rule 

ATC ProATC1 ProATC2 

Objective Objective Objective 

904.49 1,204.02 902.99 

3,115.63 3,906.07 3,129.30 

6,382.19 8,546.33 6,389.85 

11,301.30 14,081.70 11,248.30 

17,412.10 22,562.80 17,160.90 

37,634.10 47,567.30 37,413.10 

69,155.10 84,180.40 67,956.20 
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Table 3.14. Comparison of Algorithms, RM2, Exponential Repair Times 

Beam Search 
Surrogate BS-M1 

Classical BS 
Simulation-

based BS 
Proactive BS 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

CPU 

Time 
Objective 

0.00 1,033.22 0.05 848.80 0.05 852.23 0.00 1,021.84 

0.04 3,163.42 0.46 2,858.13 0.45 2,843.37 0.04 3,056.68 

0.15 6,933.54 1.52 6,192.29 1.52 6,126.35 0.15 6,597.78 

0.44 11,152.00 3.68 10,092.00 3.68 9,917.35 0.44 10,572.50 

0.97 17,693.20 7.27 15,994.40 7.26 15,589.20 0.99 16,530.50 

4.43 36,327.90 25.49 33,075.00 25.48 32,261.40 4.55 33,712.50 

13.13 63,984.20 62.77 58,651.80 62.76 56,361.90 13.52 58,573.90 

 

Recall that ProATC1 inserts the repair times for all jobs in proportion to their 

processing times. ProATC2, however, inserts the repair times by estimating the 

locations of the machine breakdowns in the sequence. Our results indicate that the 

latter method (ProATC2) performs significantly better than the former approach 

(ProATC1) and classical ATC. 

Our second main observation is that classical ATC is better than the classical 

BS for 10-, 20-, 30-, and 40-job problems. Beam search yields better performance 

than ATC only for large problems. On the other hand, however, simulation-based BS 

is better than all ATC versions for all problem sizes. This indicates that using 

simulation as a global evaluation function improves the proposed BS significantly. 

Nevertheless, we should also note that using simulation as a global evaluation 

function increases the CPU times exponentially with increasing problem sizes. 

In the final observation, we note that the advantage of using the proactive 

approach becomes more significant for large problem sizes. For example, simulation-

based BS yields better results for 10-job problems whereas proactive BS is better for 

20 or more job problems. Also, ProATC2 displays progressively better performance 

than ATC when the problem size increases. Similarly, we observe that BS-M1 gets 

better with increasing problem sizes. 

In summary, we can conclude that the proposed beam-search algorithm is quite 

promising for generating robust or stable schedules. It can also handle 
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computationally intractable cases such as problems with a general machine 

breakdown/repair process. 

 

3.9 Concluding Remarks  
 

In this chapter, we study proactive scheduling in a single machine environment with 

random processing times and random machine breakdowns. We use an expected 

performance measure as the robustness criterion. We also consider three stability 

measures. Formal probability theory is used to analyze these measures and some 

optimality conditions are developed. In this study, we develop an exact algorithm for 

single machine scheduling problems with processing time uncertainties. We also 

develop a beam-search algorithm as a heuristic to handle cases with machine 

breakdown/repair. 

Minimizing expected total weighted flow time in a single machine environment 

subject to random machine breakdowns is known to be NP-hard. Even though the 

status of the unweighted case (minimizing RM1) is unknown, it can be said that the 

problem is analytically intractable, for it is difficult even to calculate the objective 

function value of a given solution. For the special case where job processing times are 

stochastically orderable, Theorem 3.1 gives the optimal solution. 

As for RM2, Theorem 3.3 gives a dominance rule for the case where no 

breakdowns are present and job processing times are stochastically orderable.  

Consideration of breakdowns or relaxing the stochastically orderable assumption 

quickly renders the problem analytically intractable, for it is known that the problem 

is NP-hard, as stated in Theorem 3.2.  

SM1 and SM2 are closely related, thus we summarize them together. Sequencing 

the jobs according to a non-decreasing order of job processing time variances (SVPT) 

is optimal if no machine breakdowns are present (Theorem 3.4).  If machine 

breakdowns are included, the SVPT rule is still optimal when the uptimes are 

exponential and the SVPT sequence coincides with the SEPT sequence (Theorem 

3.5). Relaxing either of these assumptions, i.e., exponential uptimes or coincidence of 
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SEPT and SVPT, the problem becomes analytically intractable. Just as in the case of 

minimizing RM1, even the objective function of a given feasible solution cannot be 

calculated analytically. 

If the processing times are not random variables and the machine uptimes are 

exponentially distributed, SPT is optimal for minimizing SM3 (Theorem 3.6). 

Relaxation of either of these assumptions again renders the problem analytically 

intractable. 

To sum up, in this chapter, we model uncertainty regarding job processing times 

and machine reliability with known probability distributions. We define several 

robustness and stability measures. This chapter contributes to the existing proactive 

scheduling literature in two ways: first, we identify the analytically tractable cases and 

we develop an exact algorithm to solve the common problem of minimizing the 

expected total tardiness using the insights gained while studying these cases. Second, 

for intractable cases, rather than taking an indirect approach by employing surrogate 

measures, we estimate the actual measures directly using simulation. The use of 

simulation in the existing studies may have been avoided because of its anticipated 

high computational burden. Our computational results, however, indicate that a beam-

search algorithm that employs simulation as a global evaluation function is quite 

promising and requires reasonable computational times. 

We can identify several further research directions. First, the proposed beam-

search algorithm can be extended to more general multi-machine environments. 

Additionally, the job population in this chapter is fixed and all jobs are available at 

time 0. Inclusion of non-zero ready times and dynamic job arrivals will make the 

approach more applicable to real-life problems.   

Second, robustness can be measured from a different point of view. For 

example, the notion of a -robust schedule is used for the total flow time measure in 

the literature. A -robust schedule maximizes the probability of achieving a system 

performance less than or equal to a given level T (Daniels and Carillo, 1997). The 

same concept can be used when the performance measure is total tardiness. Along the 

same lines, new, easy-to-calculate robustness or stability measures can be developed. 

The insight gained from this study suggests that it is hard to find an exact method 

even when we slightly relax the optimality conditions in the theorems developed in 
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Sections 3.4 and 3.5 of this chapter. In fact, there are other approaches in the literature 

that are used when dealing with uncertainty, including scenario planning and 

modeling with fuzzy numbers. We believe that such approaches could help alleviate 

the problems encountered in an analytical approach, such as the one taken in this 

study.  

Finally, both robustness and stability are important performance measures for 

the practitioners. A bicriteria algorithm that can handle both measures is of practical 

importance. The relationship and the tradeoff between robustness and stability can 

also be analyzed. This is the topic of next chapter.  
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Chapter 4  
 

Bicriteria Approach for the Single 

Machine Environment 
 

 

4.1 Introduction 
 

In the previous chapter, we have focused on schedule robustness and stability 

separately. In practice, however, scheduling quality is a multidimensional issue 

(Kempf, Uzsoy, Smith and Gary, 2000). A decision maker who wants to protect the 

generated schedule from the negative impacts of uncertainty, for instance, may want 

to judge the schedule on the basis of both robustness and stability. If only one of them 

is taken into account, the resulting schedule may be unbalanced. If robustness is the 

only criterion that is considered, then the resulting schedule may be prone to 

substantial changes, and therefore to create system nervousness. On the other hand, if 

the main goal is to optimize stability, then the schedule performance is likely to be 

poor. These two extremes can be thought of as travelling by motorbike or by lorry, 

respectively.  In order to reach an acceptable compromise, like travelling by 

automobile, the decision maker has to consider both criteria. Considering robustness 

and stability simultaneously is the topic of this chapter.  

Consideration of multiple criteria in the scheduling studies dates back to 1980s. 

Since then, a significant volume of literature has emerged. Especially the natural 

bicriteria model of earliness-tardiness scheduling has been subject to considerable 

research interest. We refer the interested reader to T‟kindt and Billaut (2002) and 

Hoogeveen (2005) for an elaborate discussion and review of multicriteria scheduling. 
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There are two general approaches to multicriteria optimization. One is to 

combine the individual criteria into a single composite criterion. The other is to 

generate a set of solutions that contains an optimal solution for each reasonable 

composite criterion that one can think of (the set of Pareto optimal solutions). Evans 

(1984) identifies these approaches as a priori and a posteriori optimization, 

respectively. In this chapter, we consider a posteriori optimization of robustness and 

stability simultaneously in a single machine environment with processing time 

variability. We generate the set of all Pareto optimal points via so called -constraint 

method. We formulate the sub-problems required by the method and establish their 

computational complexity status.  A variant of the method that works with only a 

single type of sub-problem is also considered. A dominance rule and alternative ways 

to enforce the rule to strengthen the single sub-problem variant of the method are 

discussed. The performances of the method and the dominance rule are evaluated in 

an experimental study. 

The rest of this chapter is organized as follows: In Section 4.2, we introduce the 

specific problem that we study in this chapter. Section 4.3 presents the famous 

constraint method. The computational experiments are explained in Section 4.4. We 

discuss an approach to reduce the number of generated Pareto optimal points in 

Section 4.5. We conclude the chapter with a discussion and possible extension in 

Section 4.6. 

  

4.2 Problem Definition and Notation 
 

In this chapter, we consider the single machine scheduling problem with random 

processing times. Let J = {1, 2, …, n} be the index set of n jobs to be processed on the 

machine. We assume that all n jobs are released at time t = 0. The processing times of 

the jobs are assumed to be independent random variables with known general 

cumulative distribution functions that may differ from job to job. Let Xj denote the 

processing time of job j. We assume  
Zjj aXE ][  and  

Zjj bXVar ][  

for j = 1, 2, …, n. In other words, we have finite, nonnegative integer mean and 

variance values for all jobs. Given a schedule  , let Cj() denote the completion time 
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of job j in  after processing times materializes. Note that Cj()  is a random variable. 

The robustness and stability measures we use are  ][)(
1 


n

i jCER  and

  


n

i jCVarS
1

][)(  , respectively. Note that the value of neither objective function 

can be made better by inserting idle time into a schedule. Hence, we confine the 

feasible region to the class of non-delay schedules without loss of generality and a 

schedule is fully identified by the sequence of its jobs (i.e., by a permutation of J). 

Our objective is to minimize f(R(), S()) for all possible composite objective 

functions f, where f:R
2
→R is non-decreasing in both arguments. This assumption on f 

is very natural and reflects the fact that we want to minimize both measures. It 

additionally has the very convenient effect that under this assumption there exists a 

Pareto optimal or non-dominated schedule by which an optimum is attained. 

 

Definition 4.1: A schedule   is said to be dominated by a schedule  (denoted by

  ) if R() ≤ R() and S() ≤ S(), where at least one of the inequalities is strict. 

 

Note that dominance is a transitive relation. 

 

Definition 4.2. A schedule  is Pareto optimal (or non-dominated) if there does not 

exist a schedule  such that   . 

 

A special category of dominated schedules is formed by the weak Pareto 

optimal schedules, which are defined as follows: 

 

Definition 4.3. A feasible schedule  is weak Pareto optimal if it is not Pareto optimal 

but there does not exist a feasible schedule  such that R() < R() and S() < S(). 
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Theorem 4.1. Every non-Pareto schedule is dominated by a Pareto optimal schedule. 

 

Theorem 4.2. If f:R
2
→R is non-decreasing in both arguments, then there exists a 

Pareto optimal schedule that is in  .)(),(minarg 


SRf  

 

Proofs of Theorem 4.1 and 4.2 are omitted (see e.g., T‟kindt and Billaut, 2002). 

Next, we show that if f is linear, an optimum is attained by an extreme point.  

 

Definition 4.4. The cartesian coordinate plot of the points 

  Paretoisthatsuch),(),(|),( 2   SyRxyx R   is called the R-S 

plot. 

 

Definition 4.5. Lower envelop of the convex hull of Pareto points in the R-S plot is 

called the efficient frontier. 

 

Definition 4.6. Vertices of the efficient frontier are called extreme points. 

 

Theorem 4.3. If the composite objective function f is linear, there exists an extreme 

point that minimizes f. 

 

Proof. By Theorem 4.1, it is sufficient to check Pareto points for an optimal solution. 

Let X be the convex hull of Pareto points. Then an optimal point in the R-S plot can 

be found by solving the following linear programming problem:

    X yxyxyxf
yx

,|,min
,

 . Fundamental theorem of the linear programming 

combined with the fact that the steepest descend direction  Tf   ,  points 

towards the origin (assuming  ≥ 0,  ≥ 0) establishes the desired result. □ 
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One needs to search only in the set of Pareto optimal schedules to minimize any 

reasonable composite objective function f by Theorem 4.2. Hence, finding the set of 

Pareto optimal points is a viable idea when dealing with a bicriteria problem where 

the decision maker wants to minimize both criteria simultaneously, like the one we 

consider in this chapter. Theorem 4.3 suggests that minimizing a single linear 

objective function repetitively with various weights may yield only the extreme 

points. This is can be illustrated with the following example. Consider the jobs whose 

processing times have the mean and variances values given in Table 4.1. Figure 4.1 

depicts the robustness and stability values of all 120 feasible schedules. The Pareto 

optimal points are marked with a different color in Figure 4.1. By minimizing a linear 

composite function .R() + S(), one can obtain only the Pareto points that are 

marked with squares in the figure; the points denoted by triangles are missed.  

 In the next section, we present an approach called the -constraint method 

(Chankong and Haimes, 1983) that can be used to generate all Pareto points. 

 

4.3 –Constraint Method 
 

The following theorem presents the key observation for the -constraint method. 

 

Theorem 4.4. Let     


 RSy |min*

 
and     ** |min ySRx  


. The point 

(x
*
, y

*
) is Pareto optimal. 

 

Table 4.1. Numerical Example 

 

Processing Time 

Job Mean Variance 

1 49 91 

2 54 58 

3 86 24 

4 87 1 

5 32 61 
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Figure 4.1. Numerical Example 

 

For the proof of Theorem 4.4 with any two criteria (which may be different than 

R() and S()), see T‟kindt and Billaut (2002). 

Let R
LB

 =   


Rmin , S
LB

 =   


Smin , R
UB

 =   


R
S )(minarg

min


, and 

S
UB 

=   


S
R )(minarg

min


. 

Theorem 4.4 can be used to generate the set of Pareto optima as in the following 

algorithm. 

 

ALGORITHM -CONSTRAINT1: 

Step 1.  

k ← 1. 

Begin with the first Pareto optimal point (x0, y0) where x0 = R
UB

 and y0 = S
LB

. 
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Step 2.  

Obtain the next Pareto optimal point (xk, yk) where yk = 

  1)(|min 1  kxRS   and xk =   kySR )(|min  . 

Step 3. 

If (xk, yk) = (R
LB

, S
UB

) STOP. 

Else k ← k + 1. 

Goto Step 2. 

 

Note that in Step 2, had we not integer mean and variance values, the correct 

problem to solve for finding the y value that corresponds to the next Pareto point 

would be yk =   1)(|min  kxRS  . 

The following 0-1 integer programming formulations can be used to solve the 

two minimization problems in Step 2. 

Let 





otherwise,0

schedule in the position in  is  job if,1 ij
z ji

 

 

Problem P1: Problem P2: 
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P1 is a binary IP formulation for   1)(|min 1  kxRS   and P2 is the same 

for   kySR )(|min  . Consider the objective functions in these formulations. For 

any position i in the schedule, only one of the terms of the inner summation is positive 
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(zji = 1) and the rest are all zero (zji = 0). The positive term corresponds to a job j 

whose contribution to the objective function value is (n - i + 1) times variance (bj) or 

mean (aj) of the processing time of that job. Note that this contribution is equivalent to 

the variance or mean of the completion time of that job. Summation of this over all 

positions (i) yields the stability and the robustness measures, respectively. As for 

constraints, the first two sets are assignment constraints and establish a one-to-one 

relation between jobs and positions. The third set of constraints (which is a singleton) 

places an upper bound on the secondary (i.e., the one that is not being minimized) 

measure. 

The unconstrained versions (i.e., without the third set of constraints) of P1 and 

P2 that are needed in Step 1 and Step 3 can be solved in O(n log n) time by the 

Shortest Expected Processing Time (SEPT) first and Shortest Variance of Processing 

Time (SVPT) first rules, respectively. The constrained versions in Step 2 are 0-1 

assignment problems with single side constraints, which are known to be NP-hard 

(Mazzola and Neebe, 1986). 

Problems P1 and P2 can be solved using the following forward dynamic 

programming formulations. Let J be a subset of the n jobs and assume that the jobs in 

J are processed first.  

 

 

Problem P1: 

Let  

 
   















otherwise,

if,
,

rCECVar
rJV Jj
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Initial Conditions: 

  
   

nj
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otherwise,
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Recursive Relation: 

         jj
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1||1||,min,  



 

 

CHAPTER 4. BICRITERIA APPROACH 62 

 

 

Optimal Value Function: 

  1,,,1 1 kxnV   

 

Problem P2: 

 

Let  

 
   















otherwise,

if,
,

sCVarCE
sJV Jj

j
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Initial Conditions: 

  
   

nj
sbCVaraCE
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jjjj
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if,
, 








  

Recursive Relation: 

         jj
Jj

aJnbJnsjJVsJV 


1||1||,min,  

Optimal Value Function: 

  kynV ,,,1  

The idea behind these formulations is relatively straightforward. An optimal 

sequence for a subset of the jobs is determined at each iteration, assuming this subset 

is scheduled first. This is done for every subset of a constant cardinality c. The 

contribution of the c scheduled jobs to the objective is calculated for each subset. 

Recursive relation is used to expand the considered subsets by one job to obtain the 

subsets of cardinality c + 1.  Each job in the expanded subset is considered to be the 

last. When using the recursive relation, the actual sequence of the c jobs in the smaller 

subset is not required; only the contribution to the objective has to be known. After 

determining   .,,,1 nV  , an optimal sequence can be obtained with a simple 

backtrack. Since there are a total of 2
n
 subsets of {1, …, n}, the time complexity for 

the above dynamic programming formulations are O((xk-1 - 1).2
n
) and O(yk.2n) for P1 

and P2, respectively.  Although these values can be an improvement over the brute 
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force method of total enumeration (O(n!)), the amount of required space to store the 

computed V(J, .) values is too prohibitive to solve large problems. 

 

Theorem 4.5. Let x0, y0 be a Pareto point. Let   1)(|minarg 00  xRS  . Then 

(x1, y1) = (R(0 ), S(0 )) is either a Pareto point or a weak Pareto point. 

 

Theorem 4.5, which we present without proof (see T‟kindt and Billaut, 2002), 

makes it possible to solve only Problem P1 instances to generate all Pareto points as 

demonstrated in the following algorithm listing. 

 

ALGORITHM -CONSTRAINT2: 

Step 1.  

k ← 1. 

Begin with the first Pareto optimal point (x0, y0) where x0 = R
UB

 and y0 = S
LB

. 

Step 2.  

Obtain the next Pareto candidate (xk, yk) = (R(k), S(k)) where 

  1)(|min 1  kk xRS  . 

If ( yk = yk-1 ), previously obtained candidate (xk-1, yk-1) is not Pareto optimal. 

Eliminate it. 

Step 3. 

If (xk, yk) = (R
LB

, S
UB

) STOP. 

Else k ← k + 1. 

Goto Step 2. 

 

Recall that -CONSTRAINT1 solves a Problem P1 instance and a Problem P2 

instance to obtain the next Pareto optimal point. On the other hand, 

-CONSTRAINT2 solves only a single instance of Problem P1 to obtain the next 

point. This point is either a Pareto or a weak Pareto optimal point by Theorem 4.5. 

The drawback of the latter is that newly generated points are not guaranteed to be 

Pareto optimal. Eventually the whole set of Pareto optimal points is generated  by 
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removing the weak Pareto optimal points, but the number of iterations required may 

be more than the former algorithm. 

Some of the weak Pareto optimal points may be avoided with the help of the 

dominance rule that is established in the following theorem. 

 

Theorem 4.6. Consider a job pair (u, v). If au ≤ av and bu ≤ bv,with at least one of the 

inequalities is strict, job u precedes job v in any Pareto optimal schedule. 

 

Proof. Assume  is a Pareto optimal schedule in which job v precedes job u. Say jobs 

v and u occupy p
th

 and r
th

 (p < r) positionsrespectively, in . Obtain a new schedule 

 by swapping the positions of jobs u and v. In other words, in , jobs v and u 

occupy r
th

 and p
th

 positionsrespectively, and the positions of other jobs are not 

changed. The contributions of jobs other than u and v to robustness and stability 

measures are the same in both schedules. We have  

R() - R()=(n - p + 1)av + (n - r + 1)au - (n - r + 1)av - (n - p + 1)au  

= (r - p)(av - au) ≥ 0. 

Similarly,  

S() - S()=(n - p + 1)bv + (n - r + 1)bu - (n - r + 1)bv - (n - p + 1)bu  

= (r - p)(bv - bu) ≥ 0. 

 

In other words, we have R() ≤ R() and S() ≤ S(). Moreover, since at least one 

of (av - au) and (bv - bu) is strictly positive, at least one of R() ≤ R() and S() ≤ 

S() is strict. In other words, is dominated by  which contradicts with the 

assumption that  is Pareto optimal.  □ 

All job pairs that satisfy the condition stated in the hypothesis of Theorem 4.6 

can be identified in O(n
2
) time. For each such (u, v) pair, Table 4.2 presents three  
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Table 4.2. Enforcing “u precedes v” 

Constraint Set 
Number of 

Additional Rows 

Total Number of 

Nonzeros 
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different constraint sets that can be appended to the previously given formulation of 

Problem P1 to enforce the dominance rule. 

The first summation in the first constraint set acts as an indicator of whether or 

not job u is placed in the first i positions. The second summation is the same for job v. 

In other words, the first constraint set ensures that if job u is not among the first i jobs 

of the schedule, then neither is job v. Similarly, the second constraint set ensures that 

if job v is the job that is in position i, then job u is should be among the first i - 1 jobs 

of the schedule. The first summation in the third constraint set (in fact it is only a 

single constraint) is the position in which job v is scheduled. The second summation is 

the same for job u. Hence, the third constraint set ensures that the difference between 

the positions in which jobs v and u are scheduled is at least 1, with job v having the 

later position. 

  

4.4 Computational Experiments 
 

The quality of the proposed -constraint method (the second variation) and the 

performance of the alternative formulations of the dominance rule are assessed on 

several input problems. We conjecture that the total number of Pareto optimal points 

is pseudo polynomial and depends on the processing time mean and variance values. 

To investigate the validity of this conjecture, a computation test bed is prepared to 

include two levels of processing time means. The means are sampled from the discrete 
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uniform distributions U(0, 50) and U(0, 100). It is expected that more Pareto optimal 

points will be observed in the latter level. The effect of correlation between processing 

time means and variances is also examined. If there is a positive correlation, the two 

criteria that are considered, namely robustness and stability, are expected to be less 

conflicting whereas if there is a negative correlation, minimizing one would probably 

worsen the other criterion. Hence, in the case of a positive correlation, the number of 

Pareto optimal points is expected to be less. Three levels of correlation are considered 

in our computational experiments: negative, none and positive. To induce a negative 

correlation between processing time means and variances, first, the generated value of 

the mean is checked: if it is less than the expectation () of its respective distribution, 

the variance is sampled from the discrete uniform distribution U(); otherwise it is 

sampled from  discrete U(). Similarly, to induce a positive correlation, if the 

generated value of the mean is less than , the variance is sampled from discrete 

U(), otherwise it is sampled from discrete U(). For the uncorrelated case, the 

variance is sampled from discrete U(), without inspecting on the actual value of 

the mean. Finally, three levels of problem size is considered: 10-, 30- and 50-job 

problems. To sum up, the experimental design consists of 18 problem classes (3 levels 

of size x 3 levels of correlation x 2 levels of mean range). For each problem class, 10 

instances are generated, resulting in a total of 180 problem instances.  

The -constraint method is coded in the C++ language and run on a Linux box 

running CentOS on a dual core AMD Opteron 252 – 2.6GHz system with 2GBs of 

physical RAM. The constrained version of Problem P1 is repeatedly solved utilizing 

ILOG CPLEX 8.1 callable library.  

 

4.4.1 Different Formulations for the Dominance Rule 

 

All three versions of constraint sets presented in Table 4.2 along with using no 

dominance rule are compared on 10-job problems. The number of weak Pareto 

optimal points are generated is given in Table 4.3. Table 4.4 presents the CPU seconds 

used by the algorithm. The numbers in Tables 4.3 and 4.4 are the averages for the 10 

instances of the corresponding problem classes. 
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Table 4.3. Number of Weak Pareto Optimal Points with Different 

Dominance Rule Formulations 

 

No Dominance Rule Constraint Set 1 

 
Correlation Level Correlation Level 

UB on Mean N O P N O P 

50 7.8 3.2 0.3 7.1 3.8 0.5 

100 10.2 2.5 1.3 7.4 2.6 1.3 

 

Constrain Set 2 Constraint Set 3 

 
Correlation Level Correlation Level 

UB on Mean N O P N O P 

50 7.7 3.4 0.3 6.8 3.4 0.4 

100 7.0 2.9 1.7 7.0 2.1 1.3 

 

Table 4.4. CPU seconds with Different Dominance Rule Formulations 

 

No Dominance Rule Constraint Set 1 

 
Correlation Level Correlation Level 

UB on Mean N O P N O P 

50 0.983 0.221 0.044 1.888 0.783 0.260 

100 1.774 0.345 0.121 3.049 1.016 0.483 

 

Constrain Set 2 Constraint Set 3 

 
Correlation Level Correlation Level 

UB on Mean N O P N O P 

50 1.738 0.622 0.180 1.144 0.330 0.085 

100 2.946 0.855 0.392 2.034 0.483 0.196 

 

On examining Tables 4.3 and 4.4 we observe that as the number of rows and 

nonzero coefficients appended to the problem decrease, the required CPU seconds 

also decrease as expected. In terms of CPU seconds, formulation 3 performs the best. 

Note that adding constraints to enforce the dominance rule may lead into an increase 

in the number of weak Pareto optimal points visited. This somewhat counterintuitive 

observation can be explained as follows. Let set S consist of the schedules with the 

same particular value of the stability measure, say yk. If yk happens to be the optimal 

objective function value for the problem P1 at the k
th

 iteration of the -constraint 

method, let S be the set of alternative optima for P1 at that iteration. Consider the 
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subset S of S that consists of the schedules whose value of the robustness measure is 

less than xk-1. All schedules in S, except for one, are weak Pareto optimal. Consider 

the subset S of the set S which consists of the schedules that comply with the 

dominance rules that is stated in Theorem 4.6. We know that S contains the Pareto 

optimal point that we are after, but it is not guaranteed that it will be selected among 

the alternative optima. The dominance constraints only ensure that the selected 

schedule will be in S instead of the larger set S. It is, however, perfectly possible for 

CPLEX, on solving a model with some dominance constraints, to pick a schedule  in 

S with a greater R() value compared with the solution of a model without any 

dominance constraints. Note that dominance rule performs better in the case of a 

negative correlation, under which minimizing stability would probably worsen 

robustness and create room for the dominance rule to rectify the robustness value. On 

the other hand, in the case of a positive correlation, the act of minimizing the stability 

measure would probably also inherently minimize the robustness measure and the 

“unnecessary interference” of the dominance constraints would do more harm than 

good.  

Although constraint set 3 performs the best in terms of both, the number of 

weak Pareto points and CPU seconds, we exclude the dominance constraints from the 

rest of our experimentation since generating weak Pareto points and eliminating them 

is less costly than avoiding them through the dominance rule in terms of CPU 

seconds. 

 

4.4.2 Effect of the Problem Size, Correlation and Mean 

Range 

 

The rest of the experimentation is carried out without any type of dominance 

constraints. Tables 4.5 - 4.8 give the number of Pareto/weak Pareto optimal points 

when the processing time means are sampled from U(0, 50) and U(0, 100). Tables 4.9 

and 4.10 present the CPU seconds. The numbers in the tables are the averages of 10 

problem instances in the corresponding problem class. Figure 4.2 displays the data 

from Tables 4.5 - 4.8 in a more visual fashion. 
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Table 4.5. Number of Pareto Optimal 

Points for Xi ~ U(0, 50) 

 
Correlation Level 

# of Jobs N O P 

10 171.4 57.9 18.7 

30 4588.4 2047 507.4 

50 13398.7 6145.6 1417.6 
 

Table 4.6. Number of Weak Pareto 

Optimal Points for Xi ~ U(0, 50) 

 
Correlation Level 

# of Jobs N O P 

10 7.8 3.2 0.3 

30 496.2 320.8 53.2 

50 1277.9 887.9 144.6 
 

 

 

Table 4.7. Number of Pareto Optimal 

Points for Xi ~ U(0, 100) 

 
Correlation Level 

# of Jobs N O P 

10 215.3 73.9 32.1 

30 7882.2 2918.8 980.7 

50 25217.4 11402.8 3083.7 
 

Table 4.8. Number of Weak Pareto 

Optimal Points for Xi ~ U(0, 100) 

 
Correlation Level 

# of Jobs N O P 

10 10.2 2.5 1.3 

30 1201.8 454.9 138.1 

50 3695.9 2022.8 489.4 
 

 

 

Table 4.9. CPU Seconds for Xi~ U(0, 50) 

 
Correlation Level 

# of Jobs N O P 

10 0.98 0.22 0.04 

30 203.22 83.53 13.63 

50 2128.12 853.86 126.34 
 

Table 4.10. CPU Seconds for Xi ~ U(0, 

100) 

 
Correlation Level 

# of Jobs N O P 

10 1.77 0.35 0.12 

30 501.60 148.53 33.20 

50 4870.44 1838.50 382.24 
 

 

On examining the tables and the figure we observe that number of Pareto 

optimal points increase with 1) increasing levels of problem size, 2) decreasing levels 

of correlation (from positive to nil, then to negative) between the means and the 

variances of processing times and 3) increasing levels of processing time mean range. 

All three observations are intuitive and were expected before the computational 

experiments.  
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a. Number of Pareto Points for Xi ~ U(0, 

50) 

 

b. Number of Pareto Points for Xi ~ U(0, 

100) 

 

c. Number of Weak Pareto Points for Xi ~ 

U(0, 50) 

 

d. Number of Weak Pareto Points for 

Xi ~ U(0, 100) 

 

Figure 4.2. Number of Pareto and Weak Pareto Points 

 

These results also provide evidence to the conjecture that the number of Pareto 

points depend on the processing time mean and variance values and may be pseudo 

polynomial in number of jobs, bounded from above with min{R
UB

 - R
LB

 + 1, S
UB

 - 

S
LB

 + 1}. 

For all problem classes, the weak Pareto points constitute a small percentage of 

the whole set of candidate points and their number is far away from being close to the 

number of Pareto points. This justifies the use of -CONSTRAINT2 variant instead of 

-CONSTRAINT1, which solves twice as many problems to generate a single point. 
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-CONSTRAINT1 would be beneficial if the number of the weak Pareto points were 

more than the number of Pareto points. 

Another possible way to avoid weak Pareto points is shown by the following 

theorem. 

 

Theorem 4.7. Let x0, y0 be a Pareto point. Let 

    1)(|minarg 00  xRRS 
  

where  = 1 / (R
UB

 – R
LB

 + 1). Then 

(x1, y1) = (R(0 ), S(0 )) is a Pareto point. 

 

Theorem 4.7 enables us to use the following -constraint version where only a 

single problem is solved and the generated points are guaranteed to be Pareto optimal. 

 

ALGORITHM -CONSTRAINT3: 

Step 1.  

k ← 1. 

Begin with the first Pareto optimal point (x0, y0) where x0 = R
UB

 and y0 = S
LB

. 

Step 2.  

Obtain the next Pareto optimal point (xk, yk) where xk = R(ʹ), yk = S(ʹ), 

    1)(|minarg' 1  kxRRS 


,  = 1 / (R
UB

 – R
LB

 + 1). 

Step 3. 

If (xk, yk) = (R
LB

, S
UB

) STOP. 

Else k ← k + 1. 

Goto Step 2. 

 

See Özlen and Azizoğlu (2009) for a discussion of Theorem 4.7 and algorithm 

-CONSTRAINT3 in the context of bi-objective integer programming problems. 
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4.5 –Grid Search 
 

As explained in the previous section, our computational experiments indicate that the 

total number of Pareto points increases as the number of jobs increases. Additionally, 

an increase in mean and variance ranges also causes a rapid increase in total number 

of points, which gives evidence to support our conjecture about the number of Pareto 

points being pseudo polynomial in number of jobs. We note that although a single 

iteration of the -CONSTRAINT2 algorithm takes very little computational time, 

increasing problem sizes cause a rapid increase in total number of Pareto points and 

hence in total number of iterations required to generate the whole Pareto set. This 

suggests that being able to define the characteristics and shape of the trade-off curve 

using fewer Pareto points is of the essence. After all, overwhelming the decision 

maker with 25,000 Pareto optimal alternatives is not a practical approach. In order to 

generate a representative subset of the set of Pareto points, we propose an approach 

which we call the -grid method. In this method, we use an indifference (or 

significance) parameter . 

 

Definition 4.7. Let  =(r,s) ≥ 0 be the given indifference parameters. Let 1 and 2 

be two feasible schedules. If |R(1) - R(2)| < r (|S(1) - S(2)|<s), the schedules are 

called r robustness indifferent (s stability indifferent). If R(1) ≤ R(2) - r and 

S(1) ≤ S(2) - s, 1 is said to -dominate 2. 
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Definition 4.8. Let  =(r,s) be the given indifference parameters. A schedule  is 

said to be -Pareto optimal if there does not exists a feasible schedule  such that -

dominates .  

 

If given two schedules 1 and 2 are -robustness (-stability) indifferent, the 

two solutions are regarded to have the same robustness (stability) performance for all 

practical purposes. To the contrary, if the absolute difference between the values of 

their robustness (stability) measures is greater than or equal to rs, these solutions 

are significantly different. For small enough  (e.g., < 1 for integer means or 

variances of processing time), all feasible solutions are significantly different from 

one another. In this case each -Pareto optimal solution corresponds to a Pareto 

optimal point. On the other hand, if is large enough (e.g., infinity), all solutions 

become indifferent and the whole Pareto set can be represented by a single -Pareto 

point. In between two extremes, different values lead to a different number of -

Pareto points and -grid search aims to find enough number of Pareto points that 

adequately represents the whole Pareto set. The following algorithm can be used to 

determine a set of Pareto optimal points. 

 

ALGORITHM -GRID: 

Step 1.  

k ← 1. 

Begin with the first Pareto optimal point (x0, y0) where x0 = R
UB

 and y0 = S
LB

. 

Step 2.  

Obtain the next Pareto candidate (xk, yk) = (R(k), S(k)) where  

      1|min 1  kk xGRS  ,   r

r

xx
xxG 









 
 0

0 . 

Step 3. 

If (xk, yk) = (R
LB

, S
UB

) STOP. 

Else k ← k + 1. 

Goto Step 2. 
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Indifference in the above sense can be geometrically viewed as dividing the R-S 

plane into rectangles of size r by s (called grids) and treat the solutions that lie 

within the boundaries of the same grid as one and the same. With this approach, the 

decision maker is not overwhelmed by thousands of Pareto points. He/she can set the 

desired granularity level by selecting a particular value for and the resulting set of 

-Pareto points can be seen as alternative optimal schedules or can be used to make 

inferences about the trade-off between robustness and stability.  Note that selecting 

small enough a  value leads a set of -Pareto points that is equivalent to the set of all 

Pareto points. Thus, -constrained method can be seen as a special case of -grid 

search.  

Note that ALGORITHM -GRID can generate weak Pareto optimal points.  

Note also that we do not eliminate the first one of two successive schedules with the 

same stability value. In other words, the resulting set from ALGORITHM -GRID 

can also contain -weak Pareto points (i.e., not all points have to be  Pareto optimal). 

We keep the mentioned weak Pareto solutions to keep a uniform spread of generated 

points. Furthermore, if a dominating Pareto point is within the same grid, the retained 

weak Pareto point and the dominating point are -indifferent so their performances are 

practically the same. Else, if a dominating Pareto point is not within the same grid (but 

in a grid with lower robustness limits) the forthcoming iterations of the algorithm will 

either find that Pareto point or a -indifferent weak Pareto point. For we keep weak 

Pareto points deliberately, we say that ALGORITHM -GRID generates near-Pareto 

optimal points. 

Selection of the  value is important in -grid approach. Smaller  

valuesprovide a better granularity. The number of generated points, however, could 

be large. If is chosen too large, on the other hand, the number of generated points 

may be small but the grids could be too large to be of any practical value. In other 

words, two schedules whose performances are significantly different in practice can 

be -indifferent for large values. Unfortunately, there is no optimal way to 

determine which value to use. 

It is reasonable for the decision maker to determine an upper bound on the total 

number of generated points. If he/she decides to generate at most N points, the 

corresponding indifference  grid size will be r = (R
UB

–R
LB

) / N by s = (S
UB

–S
LB

) / N. 
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In this chapter, we select to generate at most 1000 near-Pareto points, hence the 

grids are of r = (R
UB

–R
LB

) / 1000 by s = (S
UB

–S
LB

) / 1000.  

The generated number of points and required CPU seconds are presented in 

Tables 4.11, 4.12 and 4.13, 4.14, respectively. 

 

Table 4.11. Number of Points for 

Xi ~ U(0, 50) 

 
Correlation Level 

# of Jobs N O P 

10 168.6 59.4 18.3 

30 987.2 871 509.8 

50 1001.5 968 844 
 

Table 4.12. Number of Points for 

Xi ~ U(0, 100) 

 
Correlation Level 

# of Jobs N O P 

10 212.5 75.3 32.9 

30 997.1 913.6 730.2 

50 1015.9 982.9 931.6 
 

 

 

Table 4.13. CPU Seconds for 

Xi ~ U(0, 50) 

 
Correlation Level 

# of Jobs N O P 

10 0.913 0.205 0.04 

30 36.575 27.328 12.34 

50 134.938 104.652 65.109 
 

Table 4.14. CPU Seconds for Xi ~ 

U(0, 100) 

 
Correlation Level 

# of Jobs N O P 

10 1.589 0.328 0.117 

30 48.871 33.355 20.396 

50 157.703 116.463 90.978 
 

 

In contrast with the exponential increase in the number of Pareto points and the 

required CPU seconds as the problem size increases, -grid search results demonstrate 

modest increase in both, the number of points and the required computational burden. 
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4.6 Discussion 
 

In this chapter, we study proactive scheduling in a single machine environment with 

random processing times. We use total expected flowtime and total variance of job 

completion times as the robustness and stability measures, respectively. A bicriteria 

approach to minimize both measures simultaneously is discussed. The proposed 

-constraint method, which generates the set of all Pareto optimal points, is more 

thorough than the common approach of combining both objective functions into a 

linear composite objective function. It is frequently used in multi criteria decision 

making studies in different fields, including machine scheduling. Two different 

versions of the -constraint method is investigated: the first one solves two instances 

of NP-hard problems to obtain a Pareto optimal point whereas the second one solves 

only one such problem but the obtained point may be weak Pareto optimal. A 

dominance rule and three ways to formulate this rule are developed to get rid of some 

of weak Pareto points in the second variant. 

Our computational experiments indicate that incorporating the dominance rule 

to the problem formulation at each iteration may in fact lower the number of weak 

Pareto points, especially in the presence of a negative correlation between the 

processing time mean and variance values. Our experiments, however, demonstrate 

that generating weak Pareto points and eliminating them is cheaper in terms of 

computational time than avoiding them. The computational results also show that the 

presence of a negative correlation between processing time means and variances 

increase the total number of Pareto optimal points. Total number of Pareto points also 

increase as the number of jobs increase. Additionally, an increase in mean and 

variance ranges also causes a rapid increase in total number of points, which gives 

evidence to our suspect that the number of Pareto points may be pseudo polynomial in 

number of jobs. We also note that although a single iteration of the algorithm takes 

very little computational time, increasing problem sizes cause a rapid increase in total 

number of Pareto points and hence in total number of iterations required to generate 

the whole set. This suggests that being able to define the characteristics and shape of 

the trade-off curve using fewer Pareto points is of the essence. To that end, we 

propose the -grid search approach which generates a fixed number (set by the 

decision maker) of near-Pareto points. 
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We identify several further research directions. First, the proposed approaches 

can be extended to other robustness and stability measures. Although multi criteria 

scheduling is not a new topic, most of the research effort is focused on 

earliness/tardiness problems or minimizing two regular performance measures at the 

same time. We believe that using the available toolbox of multi criteria techniques 

may help decision makers a great deal when coping with uncertainty. Second, the 

analysis can be extended to the more general shop floor environments such as shops 

with parallel machines, flow shops or job shops. Finally, algorithms that discover the 

characteristics of the trade off curve more cleverly may be developed. The brute force 

approach of generating the whole set of Pareto points may be impractical in terms of 

computational time requirements. Evolutionary meta heuristics are successfully being 

used in multicriteria decision making literature for this purpose. 
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Chapter 5  
 

Job Shop Environment 
 

 

5.1 Introduction  
 

This chapter can be seen as an extension to the study in Chapter 3. There, we have 

studied the problem in the single machine environment. In this chapter, we focus on 

generating stable schedules in a job shop environment with random processing times 

and machine breakdowns.  

Unlike the previous studies in the literature, in this chapter, stability is the 

primary objective function to optimize. The operation processing times are taken as 

random variables as well as machine up and down times. The stability measure used 

in this chapter is the sum of the variances of the realized completion times (SM). The 

problem of minimizing SM in a job shop environment subject to random machine 

breakdowns and processing time variability is called Problem . In Section 5.4, we 

prove that  is not in the class NP. Hence, a surrogate stability measure (SSM) is 

developed and this version of the problem is called . The problem of minimizing 

SSM in a job shop environment subject to processing time variability only (i.e., no 

machine breakdowns) is called the problem . In Section 5.4, we prove that  (and 

therefore ) is NP-hard. Two exact solution procedures (branch-and-bound 

algorithms) are developed for the problem . Two heuristics (a beam-search and a 

tabu-search algorithm) are also developed to handle large instances of As shown 

later, calculation of even the surrogate measure (SSM) is not possible for  in the 

presence of random machine breakdowns. Thus, the proposed beam-search and tabu-

search algorithms are modified in Section 5.8.2 to handle breakdowns.  The same 
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modifications cannot be applied to the branch-and-bound algorithms due to the 

following two reasons: first, they would lose the property of being exact solution 

procedures and they are too computationally expensive to use as heuristics, and 

second, the proposed tabu-search algorithm already performs significantly well, even 

better than the branch-and-bound algorithms, as shown in Section 5.8.1.2. These 

problem versions and related solution methods are summarized in Table 5.1. 

 
Table 5.1. Problem Versions 

Problem Computational 

Complexity 

Proposed Solution Methods  

 unknown; not in NP - 

 NP-hard 

2 branch-and-bound 

algorithms 

beam-search 

tabu-search 

 NP-hard 
beam-search 

tabu-search 

 

This chapter extends the stability scheduling literature in four ways: first, a new 

practical stability measure is defined; second, complexity status of the problems are 

determined; third, processing time variability and machine breakdowns are 

simultaneously considered in the problem settings; and finally, two exact solution 

procedures and heuristics are proposed to solve the problems. 

The rest of this chapter is organized as follows. In Section 5.2, we define the 

problem and introduce the preliminary notation. In Section 5.3, we review the 

disjunctive graph model for the job shop scheduling problem. We present the stability 

measure used and the status of the problem in Section 5.4. In Section 5.5, we propose 

two branch-and-bound algorithms to optimally solve the problem with no 

breakdowns. Section 5.6 presents a beam-search algorithm which can handle 

breakdowns and large problems. In Section 5.7, a tabu-search algorithm is developed 

to further improve the solution quality. Section 5.8 is dedicated to the computational 

experiments and the presentation of the results. Finally, we make concluding remarks 

and discuss future research directions in Section 5.9. 



 

 

CHAPTER 5. JOB SHOP ENVIRONMENT 80 

 

 

5.2 Notation and Problem Definition 
 

Consider the job shop scheduling problem with n jobs and m machines. Each job 

consists of at most m operations. Each of the operations associated with a job must be 

carried out in sequence and each operation is associated with a machine. The 

operation associated with job j and machine i is called operation (i, j).  The processing 

time of operation (i, j) is denoted by a random variable Xij with a general cumulative 

distribution function Hij(t). Let aij = E[Xij] and bij = Var[Xij], where E and V are the 

expectation and variance operators, respectively. The machines are subject to random 

breakdowns. The up times for machine i have independent and identical general 

distribution Gi1(t). Similarly, the “down” times (i.e., the times that the machine is not 

in operation due to breakdown) are independent and identically distributed according 

to a general distribution Gi2(t). Let Ui1, Ui2 … be the sequence of up times and Di1, 

Di2… be the sequence of down times for machine i. That is, the machine is operational 

from time 0 until Ui1, when the first breakdown occurs. The machine then takes time 

Di1 to be repaired and is again available for processing from time Ui1 + Di1 until time 

Ui1 + Di1 + Ui2, and so on. Let Cj denote the time that job j completes its last 

operation. We assume that all n jobs are ready at time t = 0. We denote this stochastic 

job shop scheduling problem as Jm | Xij ~ Hij(t); brkdwn: Ui ~ Gi1(t), Di ~ Gi2(t);  |  

where Jm |  |  denotes the deterministic counterpart. Here,  denotes the scheduling 

attributes such as release dates, setup times, preemptions, precedence constraints, etc. 

and  is the objective function. If breakdowns are not present, the notation is 

Jm | Xij ~ Hij(t);  |  . This is a generalization of the single machine setting considered 

in Chapter 3. 

 

5.3 Disjunctive Graph Model 
 

The Jm || Cmax problem can be represented with a disjunctive graph G = (N, A, E) as 

shown by (Balas, 1969). With minor changes, this representation can also be used for 

the problems where completion time of each job should be calculated individually, 

rather than just the maximum (Pinedo, 2000). The set of nodes N contains one source 
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node U, one element for each operation (i, j), and n sink nodes. Source node U 

denotes the start of the schedule and sink node Vj represents the completion of job j. 

The set of conjunctive arcs A = {(i, j) → (k, j)} contains the arcs that connect the 

nodes representing each pair of consecutive operations (i, j) and (k, j) of job j. Each 

arc (i, j) → (k, j) has a length | (i, j) → (k, j) | = Xij and represents the constraint that 

operation (k, j) may be started no less than Xij time units after operation (i, j) has been 

started. Note that Xij is a random variable. The node that represents the final operation 

of job j, say (h, j), has an arc of length Xhj incident to Vj. The source node U has n 

outgoing arcs, each one incident to the first operation of job j, j = 1, …, n, with lengths 

equal to 0. Let Ni denote the set of nodes corresponding to the operations processed on 

machine i. The set of disjunctive arcs E = {(i, j) ↔ (i, k)} has, for every pair of nodes 

(i, j) and (i, k) in Ni, two arcs going in opposite directions. The arc (i, j) → (i, k) has 

length | (i, j) → (i, k) | = Xij and the arc (i, k) → (i, j) has length | (i, k) → (i, j) | = Xik. 

Each pair of disjunctive arcs represents the fact that two operations cannot be 

processed simultaneously on the same machine. Orienting a disjunctive arc pair in one 

direction or the other corresponds to a decision as to which operation comes before 

the other. For instance, fixing arc (i, j) → (i, k) implies that operation (i, k) is 

processed after operation (i, j). Figure 5.1 presents a 4-machine 3-job example. 

 

 

 

Figure 5.1. Disjunctive Graph Representation 

 

 



 

 

CHAPTER 5. JOB SHOP ENVIRONMENT 82 

 

 

Let (E) denote a selection of disjunctive arcs from E. Any solution for the job 

shop problem is equivalent to some (E), having exactly one arc from every 

disjunctive pair (i, j) ↔ (i, k), such that the resulting graph G(N, A, (E)) is acyclic. 

Conversely, any selection (E) satisfying the above properties corresponds to a 

feasible schedule. Let L(O, O′) denote the length of the critical (longest) path from 

node O to node O′ in the graph G(N, A, (B)). If there is no path, then L(O, O′) is not 

defined. 

The completion time Cj of job j is equal to L(U, Vj). Recall that arc lengths are 

random variables; hence any path from U to Vj can be a critical path with some 

positive probability. Therefore, Cj is also a random variable. 

 

5.4 Stability Measure (SM) 
 

In the literature, schedule stability is generally measured in terms of the deviations in 

job completion times. Recall that job completion times are random variables. One can 

use their means as point estimators. In other words, it is reasonable to measure 

schedule stability in terms of deviations from expected completion times. A stable 

schedule in this sense is a schedule in which the difference between the realized 

completion times and the planned (i.e., mean) completion times are minimal. 

Specifically, the stability measure that is used in this chapter is 
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Assume that a feasible job shop schedule and its disjunctive graph 

representation are given. To compute the objective function value of the feasible 

solution, one needs to calculate the variance of the completion time of each job. In the 

disjunctive graph representation, the completion time of job j is the length of the 

longest path from the source U to the sink Vj. The arc lengths (Xij‟s), however, are 

random variables. Hence, any path from U to Vj may be a longest path with some 

positive probability. Therefore, in order to analytically calculate the objective function 
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value, it is needed to enumerate all paths from U to Vj, to evaluate their probability of 

being a critical path, and finally to calculate the variance conditionally. Since there are 

an exponential number of paths and the calculation of the mentioned probabilities are 

challenging, the computation of the objective function cannot be achieved in 

polynomial time, which means that the problem is not in the class NP. To alleviate 

this difficulty, the following surrogate measure is used instead of the real objective 

function. 

 

Surrogate Stability Measure (SSM).  Variance of completion time of job j is 

estimated as the sum of variances of the arc lengths (bij’s) that lie on the critical 

(longest) path from U to Vj, where critical paths are calculated in terms of the 

expectations of the arc lengths (aij’s). 

 

Theorem 5.1.  Jm | Xij ~ Hij(t) | SSM is NP-hard . 

 

Proof. Consider the instance of Jm | Xij ~ Hij(t) | SSM where variances of operation 

processing times are a constant multiple of their expectations. Any longest path in 

terms of expectations (called longest expectation path from now on) is also longest in 

terms of variances. Hence, the objective function can be computed as the sum of the 

variances of arcs that lie on longest variance paths. This makes the stochastic instance 

equivalent to a deterministic  jm CJ || instance, where the processing times are 

taken as processing time variances of the Jm | Xij ~ Hij(t) | SSM instance.  jm CJ || is 

already known to be NP-hard (Garey, Johnson and Sethi, 1976). This completes the 

proof.  □ 

 

5.5 Branch-and-Bound (B&B) Algorithms 
 

Note that it is possible to trivially minimize the objective function value by adding 

large blocks of idle times after the operations that lie on shortest variance paths (to 

make these paths coincide with the longest expectation paths). Such an action would, 
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however, deteriorate the performance of the schedule in terms of other common 

measures such as tardiness, makespan, flow time, etc. In this chapter, we confine 

ourselves to the schedules without unnecessary idle times. 

We propose two branch-and-bound algorithms to solve the problem Jm | Xij ~ 

Hij(t) | SSM. Both algorithms use the same bounding scheme but differ on branching 

mechanism. The first branch-and-bound algorithm implicitly evaluates all schedules 

that are active whereas the second algorithm focuses on non-delay schedules.  

 

Definition 5.1. A schedule is semi-active if on any machine no operation can be 

processed earlier without changing the processing order of operations on that 

machine. 

 

Definition 5.2. A schedule is active if on any machine no operation can be processed 

earlier without delaying another operation even with changing the processing order 

of operations on that machine. 

 

Definition 5.3. A schedule is non-delay if no machine is kept idle when there is an 

operation is waiting for processing. 

 

Note that a non-delay schedule has to be active and similarly an active schedule 

has to be semi-active at the same time. The reverses, however, are not necessarily 

true. 

An off-line schedule cannot be identified as active or non-delay without 

knowing the processing times in advance. Hence, in this chapter, the schedules are 

said to be active or non-delay with respect to mean processing times.  

A node in both branch-and-bound trees consists of a partial schedule and its 

disjunctive graph representation. The graph in the root node includes only conjunctive 
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arcs (precedence constraints imposed by job routings). Operations are scheduled one 

at a time. Nodes that are deeper in the branching tree include more precedence 

constraints imposed by the disjunctive arcs whose orientations are decided. The partial 

schedule constituted by these precedence constraints develops into a complete feasible 

schedule at leaf nodes. 

Before we present the branching schemes, more notation and terminology is 

needed. Operations are scheduled one at a time. An operation is schedulable if all the 

preceding operations within its job are already scheduled. Since there are n.m 

operations, the branch-and-bound trees have n.m levels. At level t, let 

𝑃𝑡  be the partial schedule of scheduled operations; 

𝑆𝑡  be the set of schedulable operations; 

𝜎𝑘  be the earliest mean time that the operation k in 𝑆𝑡  could be started; 

𝜙𝑘  be the earliest mean time that the operation k in 𝑆𝑡  could be finished. 

 

The first branch-and-bound algorithm (active B&B) uses the following 

branching scheme due to Giffler and Thompson (1960). This scheme is modified 

slightly to generate non-delay schedules (Non-delay B&B). Specifically, a child node 

for operation j is created only if it is the earliest operation that is schedulable.  

 

Active Branching Scheme: 

𝑡 ← 0; 

𝑃0 ← 𝒏𝒖𝒍𝒍; 

𝑆0  (the set of all operations with no predecessors); 

while (t < n.m)                            // there are operations to be scheduled 

     𝜙∗ ← min𝑘∈𝑆𝑡  𝜙𝑘 ; 

    M
*
  (the machine on which 𝜙∗ occurs - in case of ties, choose arbitrarily); 

    𝑂𝑡 ←  𝑗 ∈ 𝑆𝑡 ,  𝜎𝑗 < 𝜙∗, 𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛 𝑀∗}; 

    foreach operation j in Ot 

        Create a child node n;       // in which j is the next scheduled operation 

        within n 
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               𝑃𝑡+1 ← 𝑃𝑡 +  𝑗  ; 

               St+1 ← 𝑆𝑡 ∖  𝑗 ∪ {𝑘|𝑘 𝑖𝑠 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑗 𝑖𝑛 𝑖𝑡𝑠 𝑗𝑜𝑏}; 

             𝑡 ← 𝑡 + 1; 

 

Non-delay Branching Scheme: 

𝑡 ← 0; 

𝑃0 ← 𝒏𝒖𝒍𝒍; 

𝑆0  (the set of all operations with no predecessors); 

while (t < n.m)                            // there are operations to be scheduled 

     𝜎∗ ← min𝑘∈𝑆𝑡  𝜎𝑘 ; 

    M
*
  (the machine on which 𝜎∗ occurs - in case of ties, choose arbitrarily); 

    𝑂𝑡 ←  𝑗 ∈ 𝑆𝑡 ,  𝜎𝑗 = 𝜎∗, 𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛 𝑀∗}; 

    foreach operation j in Ot 

        Create a child node n;       // in which j is the next scheduled operation 

        within n 

               𝑃𝑡+1 ← 𝑃𝑡 +  𝑗  ; 

               St+1 ← 𝑆𝑡 ∖  𝑗 ∪ {𝑘|𝑘 𝑖𝑠 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑗 𝑖𝑛 𝑖𝑡𝑠 𝑗𝑜𝑏}; 

              𝑡 ← 𝑡 + 1; 

 

Although the lower bound itself depends on the objective function and the 

implemented branching scheme, one property inherently holds in any branch-and-

bound algorithm: the lower bound of a child node is greater than or equal to the lower 

bound of its parent node. Lower bounds that are used in the job shop scheduling 

literature generally based on the objective function value of the partial schedule or 

partial graph at a node. For Jm | Xij ~ Hij(t) | SSM, conventional lower bounds used in 

the literature do not have the aforementioned property. Inserting a new arc or 

operation into a parent node‟s partial graph to create its children may result in longer 

critical paths in the children, but these new critical paths may have lower total 

variance values. In other words, the objective function value of a partial schedule is 

not a lower bound for SSM, unlike for regular performance measures.   

To calculate a lower bound of a node, we first examine the disjunctive arcs in 

the clique that belongs to the machine on which the inserted operation is processed. 

The arcs that identify the sequence of the scheduled operations on the machine are 

kept and the remaining (redundant) disjunctive arcs are permanently excluded from 
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the graph in the branching node, since these arcs cannot lie on a longest path.  Figure 

5.2 gives an example with 5 operations. In the figure, the clique corresponding 

machine i is examined. Since the order of operations on that machine is (1-2-3-4-5), 

the arcs that identify this order is kept (solid arcs), and the redundant ones (dashed 

arcs) are excluded. We then temporarily insert all the disjunctive arcs (i, j) ↔ (i, k) 

that are not yet oriented, in both ways (i.e. both (i, j) → (i, k) and (i, k) → (i, j) are 

inserted). Using Dijkstra‟s algorithm, the shortest variance paths from U to Vj for all j, 

are identified in the augmented graph. The sum of the path variances from U to Vj for 

all j is a lower bound to SSM.  

The performance of a branch-and-bound algorithm depends on the branching 

order.  In our implementation, we use hybrid search strategy: a best-first search (the 

node with the best lower bound value is branched first) is used as long as the memory 

used to store unexplored nodes of the branch-and-bound tree is below a threshold 

value, T1. 

The search strategy is switched to a depth-first search (the most recent node is 

branched first) until the memory requirement becomes less than another threshold 

value, T2, where T2 < T1. After this point in time, best-first search is back in use and  

 

 

Figure 5.2. Examining of Disjunctive Arcs on a Machine Clique 
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exploration of nodes continues in that fashion until an optimal solution is found or the 

time limit is up. 

Note that if the objective function is a regular performance measure, it can be 

easily proven that an active schedule that is optimal exists. As mentioned earlier, SSM 

can be improved by making jobs complete later. In other words, SSM is not a regular 

performance measure and a better feasible solution may exist in the class of semi-

active schedules. The following small numerical example illustrates this. Consider a 

job shop with two jobs and three machines. Job 1 first receives its processing on 

machine 1 and then on machine 2 while job 2 has to be processed first on machine 3 

and then on machine 2. Two feasible schedules are given in Figure 5.3. In the figure, 

operations of job 2 are depicted in gray. The numbers in the center of rectangles that 

denote operations are means and variances of the processing times, respectively. 

Recall that SSM value of a schedule is the sum of variance of the processing times of 

the operations that lie on the longest path from source to the sinks in the disjunctive 

graph representation.  

 

M/C 1 1 (5) 

    M/C 2 

 

1 (1) 

 

2 (1) 

M/C 3 3 (1) 

   

a. An Active Schedule  

 

M/C 1 1 (5) 

     M/C 2 

   
2 (1) 1 (1) 

M/C 3 3 (1) 

    

b. A Semi-Active Schedule 

Figure 5.3. Numerical Example 



 

 

CHAPTER 5. JOB SHOP ENVIRONMENT 89 

 

 

It is not difficult to see that the SSM value of the active schedule given in Figure 5.3.a 

is (5 + 1) + (1 + 1) = 8.  The objective function value of the semi-active schedule 

given in Figure 5.3.b is (1 + 1 + 1) + (1 + 1) = 5. As it can also clearly be seen from 

this example, contrary to the regular performance measures, an optimal SSM value is 

not necessarily attained by an active schedule. 

Unfortunately, our pilot computational tests indicate that a branch-and-bound 

algorithm that implicitly enumerates all semi-active schedules requires too much 

computation time to be of practical value. Therefore, the search space is restricted to 

the classes of active and non-delay schedules.  

 

5.6 A Beam-Search (BS) Algorithm  
 

The proposed branch-and-bound algorithm becomes increasingly expensive in terms 

of computational time as the problem size gets larger. In this section, we develop a 

beam-search algorithm that can be used to solve large problems. 

As mentioned in Section 3.7, beam search is an approximate branch-and-bound 

method which operates on a search tree. Similar to the previous case, we again use 

dependent beams (i.e., at each level, all the descendants are evaluated and the best  

of them are chosen without paying attention to their ancestors). Operations are 

scheduled one at time in a constructive manner, like in a branch-and-bound algorithm. 

Specifically, we first generate all the children of all the nodes in the current level 

using the active branching scheme explained in Section 5.5. Each child is then 

temporarily completed using four different dispatching rules to globally evaluate its 

performance.   

The dispatching rules are SVPT (Smallest Variance of Processing Time first), 

SCV (Smallest Coefficient of Variation first), SEPT (Shortest Expected Processing 

Time first), and LEPT (Longest Expected Processing Time first). The objective 

function value (SSM) under each completion scheme is calculated, and the global 

evaluation function value of the child is taken as the maximum of them. The best (i.e., 

with smallest global evaluation function values)  children are kept and the next 
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iteration begins. The rationale behind this minimax type of global evaluation is to be 

able to identify the partial schedules of first few operations that yield good SSM 

values, no matter how the rest of the schedule is completed. A minimax global 

evaluation function is conjectured to help avoid inferior starting partial schedules that 

one can get stuck into because of the inherent myopic nature of the heuristic. Our pilot 

computational experiments also indicate that the minimax type explained above 

outperforms a minimin global evaluation function. 

 

 

 

5.7 A Tabu-Search (TS) Algorithm 
 

To further increase the quality of the solutions that are obtained by the beam-search 

heuristic, we propose a tabu-search (TS) algorithm.  

We start with five seed schedules and generate their neighborhood. At each 

iteration of TS, we evaluate the objective function value of the generated schedules 

and adopt the best schedule (if not tabu) as a new seed to the neighborhood generator. 

The generator creates new schedules, which in turn are evaluated again. The search 

continues in this fashion until the stopping criterion is met. The neighborhood 

generator reverses the orientation of a disjunctive arc on a longest expectation path to 

obtain a neighbor. Note that the neighbors generated with this move cannot be 

infeasible (otherwise the reversed arc would not be part of a longest expectation path). 

The reversed arc is added to the tabu list to prevent immediate backtracking. If the 

best neighbor performs better than the current best solution so far, it is taken as a new 

seed, even if the move needed to generate it is tabu (aspiration criterion). 

The initial seeds are generated using SVPT (Smallest Variance of Processing 

Time first), SCV (Smallest Coefficient of Variation first), SEPT (Shortest Expected 

Processing Time first), LEPT (Longest Expected Processing Time first) dispatching 

rules and the beam-search algorithm explained in the previous section.  
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5.8 Computational Experiments 
 

To assess the quality of the proposed algorithms (active B&B, non-delay B&B, beam-

search, and tabu-search), several input problems are solved using each. Since the 

objective function under study is the total variance on the longest expectation path, 

long arcs with small variances are likely to be included in critical paths of an optimal 

solution. It is expected to take longer time to solve the problem optimally if fewer 

such arcs exist. In other words, the difficulty of the problem instances is conjectured 

to be dependent on the ratio of expectations and variances of the arcs. To investigate 

the validity of this conjecture, a computational test bed is prepared to include three 

levels of coefficient of variations for the processing times of the operations. The 

processing time means () are sampled from a discrete uniform distribution with 

parameters 40 and 60. The coefficient of variations are sampled from U[0, 0.4], U[0.8, 

1.2] and U[1.8, 2.2], and called levels CV1, CV2 and CV3, respectively.  

The effects of machine routings are also examined. All jobs have operations on 

all machines. Three levels of routing are considered. On one extreme, all jobs are 

taken to visit the machines in the same (flow shop) order (fixed routing). On the other 

extreme all routings are randomly generated (random routing). Between these two 

extremes, a semi-random routing is also considered, where half of the operations of 

every job are processed in the same machine order.   

In this chapter, a problem instance is called to be of size n x m, if the number of 

jobs is n and the number of machines is m. In our experiments, four levels of problem 

size are considered: 5 x 5, 5 x 10, 10 x 5, and 10 x 10. 

To sum up, the computational environment consists of 36 problem classes (4 

levels of size x 3 levels of coefficient of variation x 3 levels of machine routing). 10 

instances of each problem class are generated, resulting in a test bed of 360 instances.  

All algorithms are coded in the C++ language and run on a Linux box running 

Debian Etch on a Pentium 4 2.4GHz CPU with 512MBs of physical memory. The 

threshold values T1 and T2 for branch-and-bound algorithms are set to 80% and 90% 

of available physical memory, respectively.  
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5.8.1 Cases with No Breakdown 

 

5.8.1.1 Branch-and-Bound Algorithms 

 

A preliminary experimentation indicated that a branching scheme that generates all 

semi-active schedules is computationally impractical even for 5 x 5 problems. In our 

computational experiments we consider two branch-and-bound algorithms (active 

B&B and non-delay B&B), both of which use operation insertion scheme. Note that 

the search space of active B&B is a superset of that of non-delay B&B. The reason 

why non-delay B&B is included is to be able to examine the trade-off between 

computational time spent and solution quality obtained when search space is reduced 

in size. A maximum of two hours of computational time (7200 CPU seconds) is 

allowed for each instance. The results are given in Tables 5.2 and 5.3. 

In Tables 5.2 and 5.3, levels of machine routing are shown in columns and the 

rows list the levels of coefficient of variation. The four numbers in each cell report the 

lower bound, the upper bound, the percentage relative gap and the solution time for 

the corresponding problem class. The numbers are the averages of the SSM values for 

10 instances in that class. 

On examining Tables 5.2 and 5.3, we observe that the impact of an increase in 

the number of jobs is more than the impact of an increase in the number of machines 

on the solution time.  

For 5-job problems, less computational time is needed to solve the instances 

with random machine routings than the instances with fixed or semi-random routings. 

Similar results are also reported in the literature for regular performance measures 

(Singer and Pinedo, 1998).  

For 10-job problems, two hours of CPU time is not enough to arrive at 

optimality but it can be said that the solution quality for the flow shop problems is 

better in terms of average relative gap. 
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Table 5.2. Summary of Results for Active B&B 

  ACTIVE B&B 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

Lower Bound 2065.8 2184.5 1916.4 4206 1443 4593.6 

Objective 2065.8 2184.5 1916.4 4591.8 4842.8 4593.6 

Gap (%) 0.00% 0.00% 0.00% 9.17% 235.61% 0.00% 

Time (s) 10.48 40.209 7.094 5565.676 7200.035 80.846 

CV2 

Lower Bound 84674 85335.6 79497.1 127484.5 35888.7 123518.6 

Objective 84674 85335.6 79497.1 135586.1 135232.6 123518.6 

Gap (%) 0.00% 0.00% 0.00% 6.35% 276.81% 0.00% 

Time (s) 23.923 47.57 8.689 7200.01 7200 86.523 

CV3 

Lower Bound 343356.6 352073.7 322804.2 519907.5 146625 514031.8 

Objective 343356.6 352073.7 322804.2 560549.1 547626.8 514031.8 

Gap (%) 0.00% 0.00% 0.00% 7.82% 273.49% 0.00% 

Time (s) 26.034 47.26 9.047 7200 7200 89.464 

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

Lower Bound 4918.9 2244.8 1929.5 8005.3 2485.1 2386.7 

Objective 14107.4 13805 11360.1 21208.5 20025.5 18295.7 

Gap (%) 186.80% 514.98% 488.76% 164.93% 705.82% 666.57% 

Time (s) 7200 7200 7200 7200 7200 7200 

CV2 

Lower Bound 127298 60332.8 55358.7 246798 64594.6 74798.3 

Objective 315417.9 292443.5 237489.8 423422.4 420699 429426.9 

Gap (%) 147.78% 384.72% 329.00% 71.57% 551.29% 474.11% 

Time (s) 7200 7200 7200 7200 7200 7200 

CV3 

Lower Bound 527654.8 257412.5 221284.4 968543.3 260279 317755.1 

Objective 1261260 1183611 986705.5 1696313 1665424 1714593 

Gap (%) 139.03% 359.81% 345.90% 75.14% 539.86% 439.60% 

Time (s) 7200 7200 7200 7200 7200 7200 
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Table 5.3. Summary of Results for Non-Delay B&B 

  NON-DELAY B&B 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

Lower Bound 2827.7 3132.5 3006.5 5683.4 5673.2 6207.2 

Objective 2827.7 3132.5 3006.5 5683.4 5673.2 6207.2 

Gap (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Time (s) 0.216 0.219 0.08 1.161 0.251 0.028 

CV2 

Lower Bound 84713 87370.3 82053.8 136793.9 133433.1 130697.3 

Objective 84713 87370.3 82053.8 136793.9 133433.1 130697.3 

Gap (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Time (s) 0.229 0.214 0.066 1.366 0.245 0.028 

CV3 

Lower Bound 343527.4 355611 323515.5 561562.3 548518.4 522670.5 

Objective 343527.4 355611 323515.5 561562.3 548518.4 522670.5 

Gap (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Time (s) 0.258 0.217 0.076 1.417 0.234 0.028 

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

Lower Bound 4284.2 2197.3 2531.3 5459.4 2326 3025.5 

Objective 6745.5 10568.4 9174.6 15899.2 16869.5 14676 

Gap (%) 57.45% 380.97% 262.45% 191.23% 625.26% 385.08% 

Time (s) 7200 7200 7200 7200 7200 7200 

CV2 

Lower Bound 120199.8 56474.4 75299.8 230397.6 75028 95304.6 

Objective 213633.3 268408 203149.3 383282.1 390996 374896.9 

Gap (%) 77.73% 375.27% 169.79% 66.36% 421.13% 293.37% 

Time (s) 7200 7200 7200 7200 7200 7200 

CV3 

Lower Bound 501824.2 229035.9 306655.5 943383.9 293856 383167.8 

Objective 946032.2 1062296 854715.1 1563216 1545744 1506333 

Gap (%) 88.52% 363.81% 178.72% 65.70% 426.02% 293.13% 

Time (s) 7200 7200 7200 7200 7200 7200 

 

 

Observe that the lower bound values for flow shop problems are significantly 

higher than those for the problems with random machine routing for 10-job problems. 
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We note that for small problems, as coefficient of variation increases the 

computational time needed to solve the problems also increase. The relative gap 

generally decreases with increasing coefficient of variation levels. This effect is more 

visible for active B&B. This observation could be explained by the intuition that as 

coefficient of variation increases, total variances on shortest variance paths get larger, 

the lower bounds increase, and the relative gaps decrease as a result.  

It can be seen that non-delay B&B runs remarkably faster than active B&B as 

expected. The performance of active B&B is better for small problems in terms of the 

optimal objective function value. As for large problems, where two hours of CPU time 

is not enough to reach optimality, the performance of non-delay B&B improves and it 

even outperforms active B&B for the majority of the problem classes, both in terms of 

relative gap and the upper bound value. This is intuitive because non-delay B&B 

algorithm is able to search a larger portion of its search space, compared to the active 

B&B. 

 

5.8.1.2 Heuristics 

 

Beam-Search Algorithm: 

The proposed beam-search algorithm is compared with four dispatching rules to 

assess its quality. The dispatching rules are SVPT, LEPT, SCV, and SEPT. After our 

pilot experiments, we decide to use a beam width of size 25 for all instances. The 

results are summarized in Table 5.4. The numbers in the cells in Table 5.4 are the 

averages of the SSM of the instances in the corresponding problem class. 

On examining Table 5.4, we observe that the proposed beam-search algorithm is 

significantly better than all dispatching rules for all problem classes. In general, SVPT 

and SEPT dispatching rules are competitive and are better than LEPT and SCV rules. 
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Table 5.4. Summary of Results for Beam-Search and Dispatching Rules 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 4440,8 4395,4 3601,9 8335,5 8510,4 7125,8 

LEPT 5798,0 5166,9 5016,1 9679,4 9477,2 8827,9 

SCV 6017,0 6820,3 5268,8 10180,6 10001,0 8932,9 

SEPT 4489,0 4593,9 4475,6 8330,3 9266,0 6594,9 

BS 3139,8 2975,5 2539,5 5836,5 6010,5 5147,7 

CV2 

SVPT 103920,6 105589,8 94439,2 154800,7 158671,1 140297,1 

LEPT 108198,7 107682,5 105236,3 172221,7 174342,7 150482,9 

SCV 118375,6 112229,9 103566,6 179323,9 168771,3 151181,2 

SEPT 96730,0 103316,1 97368,2 152693,4 174122,9 128901,8 

BS 88121,9 89708,0 85893,9 142634,8 139268,8 125568,0 

CV3 

SVPT 408332,0 421912,3 390256,7 637576,9 632323,4 578252,3 

LEPT 442377,5 435167,3 407903,6 694006,2 699064,5 585851,1 

SCV 455519,2 455505,2 386366,3 690865,6 678466,0 592451,7 

SEPT 384797,1 409327,9 388134,5 607582,4 694116,4 522566,1 

BS 352591,9 369848,7 345498,6 579267,0 569585,4 519805,0 

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 15018,0 16185,1 14046,5 23553,3 25638,0 19636,8 

LEPT 17588,5 17899,4 17455,8 27100,6 24017,4 29017,7 

SCV 21777,7 21216,4 18586,3 29428,4 27721,2 26415,3 

SEPT 18658,3 17274,0 15520,2 25227,8 24710,2 22231,9 

BS 10849,2 11568,5 8754,6 17503,9 15884,9 14657,7 

CV2 

SVPT 316362,0 294050,8 256432,7 502808,1 455758,6 440502,4 

LEPT 305645,4 308165,5 295302,5 504190,1 474628,2 466878,8 

SCV 346579,8 334703,2 276054,1 509182,3 497287,5 478893,7 

SEPT 334363,2 307731,2 270848,8 464088,4 453322,7 421477,6 

BS 252815,9 258006,8 223324,4 407599,1 400426,5 374031,0 

CV3 

SVPT 1279427,0 1232813,0 1099976,0 1888674,0 1834710,0 1800465,0 

LEPT 1230091,0 1237944,0 1177658,0 1964916,0 1881757,0 1857110,0 

SCV 1330593,0 1296854,0 1146025,0 1971870,0 1949900,0 1919373,0 

SEPT 1334445,0 1244550,0 1100796,0 1821795,0 1793120,0 1681552,0 

BS 1030773,4 1065955,0 950926,3 1616278,0 1615757,0 1540526,0 
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Tabu-Search Algorithm: 

Recall that the initial seeds for the TS algorithm are generated using the SVPT, 

SCV, SEPT and LEPT dispatching rules and the beam-search algorithm. After some 

pilot experimentation, it is decided to allow a maximum of 10000 (40000) iterations 

and to use a tabu list of length 10 (40) for problems with 5 (10) jobs. The results are 

summarized in Table 5.5. 

 Levels of machine routing are shown in columns and the rows list the levels of 

coefficient of variation and five initial solutions (SVPT, LEPT, SCV, SEPT and BS). 

The numbers in each cell report the average SSM value of the corresponding problem 

class and initial solution. The values in the parentheses are the number of times in 

which the corresponding initial solution yields the best SSM value.   We observe that 

the average objective function values are close to each other and all initial solutions 

are competitive. In increasing the quality of the tabu-search algorithm, each initial 

solution method has its own contribution and none of them is dominant to another. 

 Note that tabu-search algorithm is not restricted to the classes of active 

schedules. Although all five initial schedules are active, the act of reversing 

disjunctive arcs on critical paths (i.e., the neighborhood function) does not necessarily 

generate another active schedule. Thus, tabu-search algorithm can potentially result in 

schedules with objective function values better than all active schedules, which is the 

set that contains the optimal solutions of the proposed branch-and-bound algorithms. 

To assess the quality of the tabu-search algorithm, we compare it to the proposed 

branch-and-bound algorithms. The summary results are given in Table 5.6. In Table 

5.6, levels of machine routing are shown in columns and the rows list the levels of 

coefficient of variation, the three alternative algorithms (active B&B, non-delay B&B, 

and TS) and the best known upper bound.  The numbers in cells are the averages of 

the SSM values of the corresponding problem class. The percentages are the average 

relative gaps of the corresponding algorithm‟s upper bound with respect to the best 

known objective function. The values in the parentheses are the number of times in 

which the corresponding algorithm yields the best known SSM value.  
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Table 5.5. Summary of Results for Tabu-Search 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 1915 (5) 2152,4 (5) 1895,1 (8) 4999,8 (2) 4353,7 (3) 4574,4 (5) 

LEPT 1959,7 (5) 2182 (6) 1954,8 (5) 5161,7 (1) 4373,8 (4) 4537,5 (5) 

SCV 2144 (1) 2186,4 (5) 1943,1 (6) 4949,3 (3) 4342,1 (4) 4659,3 (3) 

SEPT 2286,8 (2) 2192,4 (6) 1886,2 (9) 4696,8 (5) 4387,2 (5) 4588,6 (4) 

BS 2020,8 (5) 2189,8 (8) 1953,1 (5) 4937 (3) 4333,5 (3) 4522,6 (3) 

CV2 

SVPT 85646 (9) 85750,1 (9) 79753,2 (8) 139726,6 (2) 135464,1 (2) 124140 (9) 

LEPT 89761,8 (5) 86263,5 (7) 79750,1 (9) 146513,2 (0) 136075,2 (4) 124573,3 (8) 

SCV 87956,7 (4) 87439,8 (6) 79978,8 (6) 142704,4 (3) 133673 (3) 124263,4 (8) 

SEPT 86478,4 (7) 85750,1 (9) 79936,1 (7) 138179,1 (5) 131716,4 (5) 123796,8 (9) 

BS 86587,4 (6) 85942,9 (8) 79473,5 (8) 139843 (1) 132365,7 (4) 123895,1 (9) 

CV3 

SVPT 349859,4 (4) 354836,2 (7) 322251,8 (10) 572940,4 (3) 545018 (5) 516041,7 (7) 

LEPT 353616,6 (2) 355024,5 (8) 322251,8 (10) 579668,1 (1) 559331,9 (4) 516169 (7) 

SCV 358474,6 (1) 354790,9 (5) 322251,8 (10) 579731,1 (2) 554955,9 (3) 514233 (9) 

SEPT 351438,6 (3) 355163,7 (7) 322251,8 (10) 570057,8 (5) 545233,2 (7) 515554,9 (6) 

BS 347262,4 (4) 352974,7 (8) 322251,8 (10) 571673,2 (4) 544987,6 (5) 515991,4 (7) 

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 8471,7 (0) 6994 (0) 5693,5 (3) 13282,1 (1) 10846,2 (0) 9838,2 (3) 

LEPT 8175,1 (1) 6663,8 (5) 5777,5 (1) 13549,6 (0) 10684,7 (2) 10112,3 (2) 

SCV 8080,4 (1) 6825,8 (1) 5785,1 (1) 13461,3 (2) 10669,4 (3) 10161,9 (2) 

SEPT 7808,4 (1) 6639 (2) 5695,4 (3) 13434,3 (2) 10529,6 (3) 10119,4 (2) 

BS 7562 (7) 6740,3 (2) 5710,2 (2) 12491,7 (5) 10912,2 (2) 9968,4 (1) 

CV2 

SVPT 236651,5 (1) 218717 (3) 196915,5 (2) 391789 (2) 358601 (2) 329806,6 (5) 

LEPT 235783,7 (3) 221306 (0) 198279,4 (3) 393408,2 (1) 360005,8 (5) 336647,7 (1) 

SCV 235938 (2) 218526 (4) 197267,1 (2) 393218,4 (1) 362060 (2) 335277,5 (0) 

SEPT 235033,4 (2) 221985,1 (0) 195499,5 (2) 390106,1 (4) 363667,1 (1) 334723,3 (2) 

BS 237069 (2) 218597,8 (3) 198397,1 (1) 387384,3 (2) 360030,2 (0) 333950,6 (2) 

CV3 

SVPT 986662,3 (1) 931396,5 (3) 855423,1 (3) 1586115 (2) 1486689 (4) 1359234 (2) 

LEPT 983795,3 (2) 928087,9 (3) 856621,7 (1) 1596043 (0) 1481072 (3) 1363112 (2) 

SCV 988433,8 (1) 931782 (1) 855823,6 (2) 1591653 (1) 1493451 (2) 1372479 (0) 

SEPT 988388,3 (3) 931472,7 (1) 849961,5 (3) 1579024 (3) 1495516 (0) 1358426 (6) 

BS 983944,4 (3) 931350,9 (2) 857460,4 (1) 1568253 (4) 1479521 (1) 1382277 (0) 
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Table 5.6. Comparison of Tabu Search and Branch-and-Bound Algorithms 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

Active 2066 15,81% (1) 2185 3,83% (6) 1916 1,75% (7) 4592 6,16% (4) 4843 17,76% (0) 4594 5,06% (2) 

Non-delay 2828 58,52% (0) 3133 48,88% (0) 3007 59,63% (1) 5683 31,40% (1) 5673 37,95% (1) 6207 41,97% (0) 

TS 1784 0,00% (10) 2104 0,00% (10) 1883 0,00% (10) 4426 2,33% (7) 4113 0,00% (10) 4387 0,35% (9) 

Best 1784   2104    1883     4325     4113     4372     

CV2 

Active 84674 0,00% (10) 85336 0,00% (10) 79497 0,22% (9) 135586 0,00% (10) 135233 4,16% (1) 123519 0,00% (10) 

Non-delay 84713 0,05% (9) 87370 2,38% (3) 82054 3,44% (2) 136794 0,89% (7) 133433 2,77% (5) 130697 5,81% (0) 

TS 85604 1,10% (7) 85505 0,20% (8) 79324 0,00% (10) 136568 0,72% (6) 130608 0,59% (7) 123773 0,21% (7) 

Best 84674     85336     79324     135586     129837     123519     

CV3 

Active 343357 0,00% (10) 352074 0,00% (10) 322804 0,17% (9) 560549 0,00% (10) 547627 1,14% (2) 514032 0,00% (10) 

Non-delay 343527 0,05% (9) 355611 1,00% (5) 323516 0,39% (7) 561562 0,18% (8) 548518 1,30% (2) 522671 1,68% (2) 

TS 344819 0,43% (7) 352203 0,04% (9) 322252 0,00% (10) 565004 0,79% (5) 541856 0,07% (8) 514032 0,00% (10) 

Best 343357     352074     322252     560549     541464     514032     
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Table 5.6. Comparison of Tabu Search and Branch-and-Bound Algorithms Cont‟d 

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

Active 14107 116,21% (0) 13805 118,53% (0) 11360 107,92% (0) 21209 75,19% (0) 20026 104,02% (0) 18296 94,04% (0) 

Non-delay 6746 3,38% (7) 10568 67,30% (0) 9175 67,92% (0) 15899 31,34% (0) 16870 71,87% (0) 14676 55,65% (0) 

TS 7159 9,72% (3) 6317 0,00% (10) 5464 0,00% (10) 12106 0,00% (10) 9815 0,00% (10) 9429 0,00% (10) 

Best 6525   6317    5464     12106     9815     9429     

CV2 

Active 315418 47,64% (0) 292444 36,56% (0) 237490 22,96% (0) 423422 12,70% (0) 420699 19,81% (0) 429427 31,60% (0) 

Non-delay 213633 0,00% (10) 268408 25,33% (0) 203149 5,18% (0) 383282 2,02% (3) 390996 11,35% (0) 374897 14,89% (0) 

TS 231703 8,46% (0) 214154 0,00% (10) 193148 0,00% (10) 380023 1,15% (7) 351126 0,00% (10) 326308 0,00% (10) 

Best 213633     214154     193148     375708     351126     326308     

CV3 

Active 1261260 33,44% (0) 1183611 29,13% (0) 986706 17,54% (0) 1696313 10,07% (0) 1665424 14,43% (0) 1714593 27,65% (0) 

Non-delay 946032 0,09% (9) 1062296 15,90% (0) 854715 1,82% (0) 1563216 1,43% (3) 1545744 6,20% (0) 1506333 12,15% (0) 

TS 967171 2,33% (1) 916594 0,00% (10) 839477 0,00% (10) 1556121 0,97% (7) 1455469 0,00% (10) 1343188 0,00% (10) 

Best 945171     916594     839477     1541133     1455469     1343188     
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On examining Table 5.6, we observe that the proposed tabu-search algorithm 

performs quite well and in general yields better solutions than active optimal 

schedules. Especially for large problems, it is impractical to solve problems to 

optimality and the proposed tabu-search algorithm generates the most promising 

schedules. We conclude that the proposed tabu-search algorithm can be used to 

generate stable schedules. 

 

5.8.2 Breakdown and Repair Cases 

 

In this section we include a breakdown / repair process. All machines are subject to 

random breakdowns. We assess the performance of the proposed heuristics (beam-

search and tabu-search) both under mild and heavy breakdowns. We use Gamma 

distribution as a busy-time distribution with a shape parameter of 0.7, and a scale 

parameter that is arranged so that the mean busy-time is 400 for mild breakdowns and 

200 for heavy breakdowns, respectively. We use Gamma distribution with a shape 

parameter of 1.4 for the down-time distribution, as recommended by Law and Kelton 

(2000). The scale parameter of the down-time distribution is arranged to have a mean 

repair duration of 50. 

Recall that the surrogate measure SSM estimates stability as the sum of arc 

variances on the longest expectation paths. However, in the presence of a 

breakdown/repair process, it is difficult to calculate SSM analytically because one 

does not know which operations will be interrupted in advance. We use the common 

approach of inflating the processing times of the operations appropriately to account 

for the effects of breakdowns (e.g., Mehta and Uzsoy, 1998).  Specifically, we pre-

process the problem instance and modify the means and the variances of operation 

durations as follows: 

𝜇𝑖𝑗 = 𝑎𝑖𝑗 ×  1 +
𝐸 𝐷𝑖 

𝐸 𝑈𝑖 
  

𝜎𝑖𝑗
2 = 𝑏𝑖𝑗 +  

𝑎𝑖𝑗

𝐸 𝑈𝑖 
× 𝑉 𝐷𝑖    
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where Di and Ui are the independent and identically distributed random variables 

denoting down and up times for machine i, respectively and E[.] and V[.] are the 

expectation and the variance operators. The mean and the variance of the processing 

time of operation ij is taken as 𝜇𝑖𝑗  and 𝜎𝑖𝑗
2 . All the algorithms (beam-search, tabu-

search and dispatching rules) work as if no breakdowns occur, except that input mean 

and variance values are inflated. Since the SSM values used by these algorithms now 

become estimates, we compare the performance of the mentioned algorithms by 

simulating the generated schedules to approximate total completion time variances 

(SM itself). Generated schedules are simulated 100 times. During the simulations, first 

the processing times of operation ij is sampled from a Gamma distribution with mean 

aij and variance bij. Then breakdown times and repair durations are inserted into the 

schedule. Finally, job completion times are recorded and their variances are 

calculated. Sum of completion time variances are taken as the performance measure 

(SM). 

 

5.8.2.1 Results of Heuristics 

 

Beam-Search Algorithm: 

The proposed beam-search algorithm is compared with four dispatching rules to 

assess its quality under random machine breakdowns. The dispatching rules are 

SVPT, LEPT, SCV, and SEPT as in the no-breakdown case.  

The results are summarized in Tables 5.7 and 5.8. The numbers in the cells in 

these tables are the averages of the simulated SM values of the instances in the 

corresponding problem class. 

On examining Tables 5.7 and 5.8, we observe that the proposed beam-search 

algorithm is better than all dispatching rules. In general, SVPT and SEPT dispatching 

rules are competitive and are better than LEPT and SCV rules even though the 

differences are not as significant as in the no-breakdown case. 
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Table 5.7. Simulation of Results for Beam-Search and Dispatching Rules under Mild 

Breakdowns 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 23933.9 17029.2 17102.0 29361.3 18060.5 16188.5 

LEPT 24028.5 17707.8 17863.0 28443.9 21598.4 19759.9 

SCV 23494.0 19655.5 17239.0 32967.7 21624.4 18096.5 

SEPT 22468.2 15127.7 18177.3 25613.4 20791.3 16506.4 

BS 18839.6 15542.3 15801.2 24773.1 17293.7 15861.3 

CV2 

SVPT 143466.3 135662.9 126200.5 200843.9 193694.4 163981.0 

LEPT 151246.0 146733.9 139251.1 216107.3 203890.7 169288.4 

SCV 167098.5 143091.2 137980.2 225649.7 199210.4 170734.9 

SEPT 129745.2 128522.8 132998.0 190624.0 200066.2 153153.4 

BS 123109.8 124030.4 119934.0 190713.4 170786.7 157559.9 

CV3 

SVPT 669553.7 669898.8 658316.9 971082.6 1024172.0 865921.6 

LEPT 759310.6 695262.6 703386.9 1074895.1 1123339.4 932571.4 

SCV 750824.7 766183.9 647982.6 1077075.2 1079013.7 931304.8 

SEPT 635106.0 643761.1 667179.6 909692.6 1089610.9 831062.7 

BS 593311.5 617157.0 598999.1 902078.2 915595.6 843118.9 

        

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 94293.9 85114.0 63250.0 109065.0 84996.2 67537.6 

LEPT 84507.5 74087.2 74214.4 106911.1 79781.8 80681.4 

SCV 108525.8 85199.5 63560.0 116191.3 86241.1 73006.8 

SEPT 104113.6 74665.5 60487.5 106884.6 82828.4 70879.3 

BS 73429.4 82522.6 63833.9 86469.5 66513.9 68738.4 

CV2 

SVPT 398941.7 376591.7 339533.6 596479.8 523274.6 548588.9 

LEPT 391673.0 385181.4 381700.6 611405.1 498636.5 574515.5 

SCV 458122.9 417916.2 354950.9 598590.2 568547.4 600349.0 

SEPT 437702.8 376545.7 348099.8 534023.9 528291.7 533655.2 

BS 344188.2 332350.4 321656.1 495112.8 479477.0 470180.1 

CV3 

SVPT 2159780.0 1978826.0 1932302.0 2831443.0 2750347.0 2645370.0 

LEPT 2159196.0 2099690.0 1975625.0 3021299.0 2670930.0 2818513.0 

SCV 2358755.0 2268781.0 2030677.0 2800855.0 2890743.0 2905333.0 

SEPT 2290540.0 2045607.0 1912175.0 2691100.0 2683293.0 2619190.0 

BS 1998864.0 1921427.0 1818861.0 2524301.0 2511141.0 2524559.0 
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Table 5.8. Simulation of Results for Beam-Search and Dispatching Rules under 

Heavy Breakdowns 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 49590.5 40756.1 43224.2 56835.8 46156.9 36480.1 

LEPT 49431.1 46282.0 42373.0 53361.5 47773.7 41961.3 

SCV 48051.4 49327.3 41958.3 68181.6 47993.0 39952.9 

SEPT 44475.2 36627.5 43065.5 47942.6 43885.0 36964.1 

BS 40958.6 35678.9 40448.9 55160.4 35444.7 41133.1 

CV2 

SVPT 194598.6 185528.3 167359.1 240919.4 257803.5 219398.8 

LEPT 213622.7 208174.2 188262.0 236156.1 270014.2 238981.3 

SCV 221359.8 207598.5 181114.6 287899.5 262595.3 236364.2 

SEPT 179142.7 177982.9 172994.6 241135.8 281012.4 217251.3 

BS 175508.9 176617.3 164756.3 226526.9 222416.3 213198.2 

CV3 

SVPT 845594.6 877882.2 788388.7 1229015.8 1169418.1 1214716.2 

LEPT 871107.7 998969.6 800856.6 1328387.0 1243003.1 1268941.0 

SCV 917430.4 1002427.0 817510.7 1354237.2 1256490.4 1224225.7 

SEPT 813134.8 856398.7 830315.5 1173682.8 1302198.3 1187152.2 

BS 776816.3 886781.1 719401.6 1174791.6 1077531.7 1169419.0 

        

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 231464.9 191170.7 170512.4 271900.2 261005.2 238510.6 

LEPT 189207.2 177440.9 192610.6 281369.9 228686.0 236687.3 

SCV 252928.2 195163.5 164529.8 308634.5 269339.1 247341.9 

SEPT 248603.1 182564.5 171980.6 274506.4 259419.7 219687.6 

BS 160780.7 194858.6 169572.3 223305.5 238576.5 226393.6 

CV2 

SVPT 609751.6 523893.6 488495.8 853268.2 810490.3 787013.1 

LEPT 597109.3 552993.7 568058.1 895818.8 818009.6 813152.7 

SCV 719258.8 564390.0 565223.2 868114.2 881592.0 869948.9 

SEPT 668045.9 513344.7 486194.1 774942.9 886272.1 783096.9 

BS 512605.0 475232.1 461917.4 715352.2 743952.2 765704.2 

CV3 

SVPT 2613689.0 2563227.0 2645420.0 3820419.0 3796737.0 4078698.0 

LEPT 2826474.0 2665467.0 2728483.0 3858700.0 3886304.0 4137995.0 

SCV 2904115.0 2840645.0 2583241.0 3968915.0 4192741.0 4186344.0 

SEPT 2775035.0 2537331.0 2536759.0 3760281.0 3799653.0 3916455.0 

BS 2414115.0 2387027.0 2370191.0 3463775.0 3657930.0 3560951.0 

 



 

 

CHAPTER 5. JOB SHOP ENVIRONMENT 105 

 

 

For all four dispatching rules and beam-search algorithm, the objective function 

used by the algorithms (SSM value with the inflated processing times) and the 

simulation results are compared in a correlation study. For all algorithms, the 

correlation coefficients between SSM values and SM values are found to be larger than 

0.97, which justifies the use of SSM as a surrogate measure for SM. 

 

Tabu-Search Algorithm: 

The performance of the tabu-search algorithm is assessed via simulation. The results 

are summarized in Tables 5.9 and 5.10.  Levels of machine routing are shown in 

columns and the rows list the levels of coefficient of variation and five initial 

solutions (SVPT, LEPT, SCV, SEPT and BS). The numbers in each cell report the 

average simulated SM values of the corresponding problem class and initial solution. 

The values in the parentheses are the number of times in which the corresponding 

initial solution yields the best SSM value.   We observe that the average objective 

function values are close to each other and all initial solutions are competitive. In 

increasing the quality of the tabu-search algorithm, each initial solution method has its 

own contribution and none of them is superior, as in the case with no breakdowns. 

 Tables 5.11 and 5.12 present the percentage improvement in the simulated SM 

values (rather than estimated SSM values, which are actually used by the algorithms) 

for each seed schedule. We note that tabu-search improves the seed schedules‟ 

performance about 11% in average and generally, the improvement for the flow shop 

problems is more significant than the improvement for the job shop instances.  

This can be explained with the intuition that flow shop problems are more 

challenging than job shop problems (Singer and Pinedo, 1998). This fact can also be 

observed by comparing Tables 5.2 and 5.4. Especially when the coefficient of 

variation is low, deviations from optimality are more for flow shop problems as 

compared to job shop instances. Thus, tabu-search has more room for improvement 

for flow shop problems. 
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Table 5.9. Summary of Results for Tabu-Search under Mild Breakdowns 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 18421.39 (2) 14104.54 (7) 16243.631 (9) 23388.68 (4) 17015.732 (6) 15694.892 (6) 

LEPT 19421.57 (1) 15107.595 (4) 15980.561 (9) 23368.33 (2) 17812.333 (4) 16003.64 (5) 

SCV 19259.24 (4) 14354.925 (7) 16117.461 (8) 25138.53 (3) 17155.472 (3) 16474.112 (3) 

SEPT 19167.82 (4) 14045.96 (5) 15985.991 (8) 24752.9 (6) 17362.462 (6) 16711.88 (4) 

BS 17017.81 (1) 14287.829 (2) 15335.73 (1) 21859.86 (1) 17104.05 (0) 16443.39 (3) 

CV2 

SVPT 124270.7 (8) 119370.95 (7) 116422.86 (7) 184754.9 (2) 172621.1 (5) 157585.5 (7) 

LEPT 126820.5 (4) 118864.21 (2) 119438.15 (8) 201923.4 (2) 177921 (0) 157960.4 (7) 

SCV 129975.84 (5) 121541.38 (5) 117492.39 (7) 182985.1 (1) 177356.6 (2) 159998.3 (5) 

SEPT 125270.44 (8) 115480.48 (5) 116247.28 (8) 177870.8 (6) 164881.8 (3) 155708.1 (8) 

BS 120049.24 (5) 118875.93 (1) 116686.34 (8) 186165 (2) 169859.3 (4) 155708.1 (8) 

CV3 

SVPT 583335.7 (4) 606244.7 (7) 625739 (10) 871723.7 (2) 917955.2 (4) 825981.1 (7) 

LEPT 593459.4 (3) 621314.2 (6) 623686 (9) 910863.9 (1) 921765.5 (3) 835110.8 (7) 

SCV 619173.3 (0) 598701.7 (3) 625739 (10) 858135.9 (1) 948781.4 (3) 834215.7 (9) 

SEPT 595746.9 (4) 615792.2 (5) 624718 (9) 879600.1 (4) 928925.3 (5) 828945.5 (5) 

BS 593008.9 (4) 615463.6 (5) 625739 (10) 881972.2 (4) 919884.8 (3) 839346.6 (7) 

        

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 71106.21 (0) 63706.49 (0) 60105.01 (3) 86981.93 (1) 74011.3 (1) 66505.96 (2) 

LEPT 74239.34 (0) 65780.22 (1) 62697.36 (3) 89921.98 (1) 76916.48 (0) 69642.53 (2) 

SCV 72863.97 (1) 62182.45 (1) 57753.83 (0) 90250.93 (1) 77872.35 (2) 62273.44 (2) 

SEPT 72763.02 (1) 64951.79 (5) 61698.25 (2) 86597.19 (2) 78570.49 (6) 68988.91 (1) 

BS 68964.98 (8) 77622.61 (3) 64762.46 (2) 84920.31 (5) 63771.12 (1) 66003.36 (3) 

CV2 

SVPT 339990.8 (1) 316072.2 (2) 297020.9 (4) 500485.6 (2) 459197.6 (2) 472234.1 (2) 

LEPT 338506.1 (3) 322336.2 (2) 300505 (1) 495987.5 (2) 470119.3 (2) 440614.2 (4) 

SCV 325949 (1) 327757.6 (2) 322400.2 (2) 520262.3 (0) 468299.5 (2) 466828.2 (1) 

SEPT 324299.7 (2) 334940.9 (1) 302884.2 (1) 508169.1 (2) 466975.7 (3) 469477 (2) 

BS 320091.4 (3) 300068.7 (3) 317837.1 (2) 499843.9 (4) 447772.9 (1) 445341.9 (1) 

CV3 

SVPT 1839148 (2) 1782005 (4) 1788830 (2) 2568082 (1) 2521363 (1) 2442241 (4) 

LEPT 1902661 (3) 1813959 (2) 1738125 (0) 2618369 (1) 2463562 (7) 2507039 (1) 

SCV 1852832 (2) 1640542 (1) 1779277 (1) 2608712 (0) 2637421 (0) 2384138 (2) 

SEPT 1837727 (3) 1754564 (0) 1693574 (6) 2500894 (3) 2457247 (2) 2405625 (1) 

BS 1901984 (0) 1711237 (3) 1791261 (1) 2528729 (5) 2553765 (0) 2430622 (2) 
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Table 5.10. Summary of Results for Tabu-Search under Heavy Breakdowns 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 37172.12 (4) 35007.29 (5) 38804.88 (8) 41150.84 (2) 37759.09 (4) 36382.52 (9) 

LEPT 37745.25 (0) 34097.97 (7) 38584.87 (9) 41069.43 (2) 37208.6 (3) 35366.85 (4) 

SCV 38024.05 (0) 35212.19 (3) 39083 (9) 43603.95 (2) 37626.62 (5) 36601.69 (4) 

SEPT 38024.21 (4) 33690.82 (4) 38404.36 (7) 40339.39 (2) 37926.82 (5) 36332.5 (6) 

BS 40145.73 (3) 36038.36 (0) 36390.87 (0) 52745.22 (2) 35841.9 (0) 40750.86 (0) 

CV2 

SVPT 165399.8 (5) 167083.7 (8) 158256.4 (8) 218664.7 (3) 202837.5 (7) 214556.4 (4) 

LEPT 178567.1 (1) 172292 (4) 161081.2 (6) 236503.6 (1) 216719 (1) 216420 (8) 

SCV 186597.3 (2) 175444.7 (2) 158236.6 (8) 224976.9 (0) 207517.6 (1) 217047.6 (6) 

SEPT 168519.3 (3) 168113.1 (3) 158679.5 (9) 222833.2 (5) 216643.1 (1) 212820.8 (9) 

BS 166468 (6) 174460.4 (0) 158614.5 (10) 219065 (2) 205308.5 (6) 212239.1 (8) 

CV3 

SVPT 756235.5 (4) 839599.2 (8) 729715.1 (10) 1113801.5 (2) 1040002.1 (4) 1197203.3 (7) 

LEPT 816598.9 (3) 838235.9 (4) 729663.8 (9) 1115376.5 (3) 1057882.7 (1) 1179832.2 (7) 

SCV 786169.8 (2) 832394.3 (4) 729715.1 (10) 1115448.4 (1) 1093406.6 (2) 1203427.2 (9) 

SEPT 782479.7 (5) 835020.5 (6) 724717.2 (9) 1172400.6 (4) 1034097.1 (5) 1184534.3 (6) 

BS 759420.6 (5) 825894.3 (6) 729715.1 (10) 1159365.8 (4) 1041889.9 (2) 1187727.2 (8) 

        

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 176737.9 (2) 155071.8 (2) 159891 (2) 231159.6 (2) 223841 (3) 207440 (1) 

LEPT 179932.2 (1) 156177.8 (1) 160312.2 (1) 227555.9 (1) 219157.8 (1) 211550.1 (2) 

SCV 182872.9 (2) 150265.8 (2) 155253.9 (3) 226534.8 (1) 216535.3 (0) 213443.1 (3) 

SEPT 183151 (2) 158229.7 (2) 161745.5 (2) 235154.1 (1) 225512.5 (3) 207610.1 (1) 

BS 159492.1 (3) 170974.2 (3) 163396.9 (2) 220747.2 (5) 222016.7 (3) 228728.3 (3) 

CV2 

SVPT 492476.9 (2) 439158.7 (1) 444269.4 (0) 711430.5 (2) 728781.2 (3) 725152.5 (1) 

LEPT 528641.8 (1) 428578.7 (3) 435769.3 (2) 731943.8 (2) 732758.5 (3) 696551 (4) 

SCV 502380.6 (3) 442861.9 (1) 437244.2 (4) 747750.2 (3) 753587 (2) 706391.6 (1) 

SEPT 498055.6 (3) 457876.7 (1) 435839.3 (2) 716117.7 (1) 707410.3 (2) 720040.6 (4) 

BS 512011.8 (1) 440436.9 (4) 422045.9 (2) 708301.8 (2) 718792.1 (0) 717035.8 (0) 

CV3 

SVPT 2204739 (1) 2067934 (3) 2289127 (4) 3651564 (0) 3548712 (0) 3502906 (0) 

LEPT 2211235 (1) 2075375 (3) 2316841 (2) 3470736 (1) 3521674 (1) 3519446 (3) 

SCV 2260545 (1) 2053241 (2) 2340920 (1) 3426505 (1) 3468209 (1) 3564149 (5) 

SEPT 2214541 (4) 2138645 (2) 2287382 (3) 3528729 (3) 3360450 (7) 3629918 (1) 

BS 2216375 (3) 2089639 (0) 2392343 (0) 3497881 (5) 3393413 (1) 3431226 (1) 
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Table 5.11. Contribution of Tabu-Search under Mild Breakdowns 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 23.03% 17.17% 5.02% 20.34% 5.78% 3.05% 

LEPT 19.17% 14.68% 10.54% 17.84% 17.53% 19.01% 

SCV 18.02% 26.97% 6.51% 23.75% 20.67% 8.97% 

SEPT 14.69% 7.15% 12.06% 3.36% 16.49% -1.24% 

BS 9.67% 8.07% 2.95% 11.76% 1.10% -3.67% 

CV2 

SVPT 13.38% 12.01% 7.75% 8.01% 10.88% 3.90% 

LEPT 16.15% 18.99% 14.23% 6.56% 12.74% 6.69% 

SCV 22.22% 15.06% 14.85% 18.91% 10.97% 6.29% 

SEPT 3.45% 10.15% 12.59% 6.69% 17.59% -1.67% 

BS 2.49% 4.16% 2.71% 2.38% 0.54% 1.18% 

CV3 

SVPT 12.88% 9.50% 4.95% 10.23% 10.37% 4.61% 

LEPT 21.84% 10.64% 11.33% 15.26% 17.94% 10.45% 

SCV 17.53% 21.86% 3.43% 20.33% 12.07% 10.43% 

SEPT 6.20% 4.34% 6.36% 3.31% 14.75% 0.25% 

BS 0.05% 0.27% -4.46% 2.23% -0.47% 0.45% 

        

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 24.59% 25.15% 4.97% 20.25% 12.92% 1.53% 

LEPT 12.15% 11.21% 15.52% 15.89% 3.59% 13.68% 

SCV 32.86% 27.02% 9.13% 22.33% 9.70% 14.70% 

SEPT 30.11% 13.01% -2.00% 18.98% 5.14% 2.67% 

BS 6.08% 5.94% -1.45% 1.79% 4.12% 3.98% 

CV2 

SVPT 14.78% 16.07% 12.52% 16.09% 12.25% 13.92% 

LEPT 13.57% 16.32% 21.27% 18.88% 5.72% 23.31% 

SCV 28.85% 21.57% 9.17% 13.09% 17.63% 22.24% 

SEPT 25.91% 11.05% 12.99% 4.84% 11.61% 12.03% 

BS 7.00% 9.71% 1.19% -0.96% 6.61% 5.28% 

CV3 

SVPT 14.85% 9.95% 7.42% 9.30% 8.33% 7.68% 

LEPT 11.88% 13.61% 12.02% 13.34% 7.76% 11.05% 

SCV 21.45% 27.69% 12.38% 6.86% 8.76% 17.94% 

SEPT 19.77% 14.23% 11.43% 7.07% 8.42% 8.15% 

BS 4.85% 10.94% 1.52% -0.18% -1.70% 3.72% 
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Table 5.12. Contribution of Tabu-Search under Heavy Breakdowns 

  5x5 5x10 

  fixed semi random fixed semi random 

CV1 

SVPT 25.04% 14.11% 10.22% 27.60% 18.19% 0.27% 

LEPT 23.64% 26.33% 8.94% 23.04% 22.11% 15.72% 

SCV 20.87% 28.62% 6.85% 36.05% 21.60% 8.39% 

SEPT 14.50% 8.02% 10.82% 15.86% 13.58% 1.71% 

BS 1.98% -1.01% 10.03% 4.38% -1.12% 0.93% 

CV2 

SVPT 15.00% 9.94% 5.44% 9.24% 21.32% 2.21% 

LEPT 16.41% 17.24% 14.44% -0.15% 19.74% 9.44% 

SCV 15.70% 15.49% 12.63% 21.86% 20.97% 8.17% 

SEPT 5.93% 5.55% 8.27% 7.59% 22.91% 2.04% 

BS 5.15% 1.22% 3.73% 3.29% 7.69% 0.45% 

CV3 

SVPT 10.57% 4.36% 7.44% 9.37% 11.07% 1.44% 

LEPT 6.26% 16.09% 8.89% 16.04% 14.89% 7.02% 

SCV 14.31% 16.96% 10.74% 17.63% 12.98% 1.70% 

SEPT 3.77% 2.50% 12.72% 0.11% 20.59% 0.22% 

BS 2.24% 6.87% -1.43% 1.31% 3.31% -1.57% 

        

        

  10x5 10x10 

  fixed semi random fixed semi random 

CV1 

SVPT 23.64% 18.88% 6.23% 14.98% 14.24% 13.03% 

LEPT 4.90% 11.98% 16.77% 19.13% 4.17% 10.62% 

SCV 27.70% 23.01% 5.64% 26.60% 19.60% 13.71% 

SEPT 26.33% 13.33% 5.95% 14.34% 13.07% 5.50% 

BS 0.80% 12.26% 3.64% 1.15% 6.94% -1.03% 

CV2 

SVPT 19.23% 16.17% 9.05% 16.62% 10.08% 7.86% 

LEPT 11.47% 22.50% 23.29% 18.29% 10.42% 14.34% 

SCV 30.15% 21.53% 22.64% 13.86% 14.52% 18.80% 

SEPT 25.45% 10.81% 10.36% 7.59% 20.18% 8.05% 

BS 0.12% 7.32% 8.63% 0.99% 3.38% 6.36% 

CV3 

SVPT 15.65% 19.32% 13.47% 4.42% 6.53% 14.12% 

LEPT 21.77% 22.14% 15.09% 10.05% 9.38% 14.95% 

SCV 22.16% 27.72% 9.38% 13.67% 17.28% 14.86% 

SEPT 20.20% 15.71% 9.83% 6.16% 11.56% 7.32% 

BS 8.19% 12.46% -0.93% -0.98% 7.23% 3.64% 
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5.9 Concluding Remarks  
 

In this chapter, we study proactive scheduling in a job shop environment with random 

processing times and random machine breakdowns. We use total variance of the job 

completion times as the stability criterion. A surrogate stability measure is employed 

to generate stable schedules since calculating the stability measure analytically is 

impractical. The computational experiments indicate that there is a high positive 

correlation (> 0.97) between the defined stability measure and its surrogate. In this 

study, it is shown that minimizing even the surrogate stability measure is NP-hard. 

We develop two branch-and-bound algorithms that optimize the surrogate stability 

measure in the class of active and non-delay schedules. We also develop two 

heuristics (a beam-search and a tabu-search algorithm) to handle large problems with 

machine breakdown/repair. 

For exact algorithms, our computational experiments show that the impact of an 

increase in the number of jobs is more than the impact of an increase in the number of 

machines on the solution time. We observe that less computational time is needed to 

solve the instances with random machine routings than the instances with fixed or 

semi-random routings. It is also observed that as coefficient of variation increases the 

computational time also increase.  We note that for large problems, it is practical to 

search the set of non-delay schedules rather than the larger set of active schedules to 

generate stable schedules. 

Our computational experiments show that the proposed beam-search algorithm 

outperforms several dispatching rules (SVPT, LEPT, SCV and SEPT). When they are 

taken as seed schedules in the tabu-search algorithm, however, they yield schedules 

with close performances and they all are competitive. Hence, starting from multiple 

seeds is beneficial. We also note that tabu-search can potentially result in schedules 

with objective function values better than all active schedules in the case of no 

breakdowns, which includes the optimal solutions of the proposed branch-and-bound 

algorithms. We conclude that the proposed tabu-search algorithm is quite promising 

for generating stable schedules for large problems with random machine breakdowns. 
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We identify several further research directions. First, the proposed algorithms 

can be specialized to flow shop environments. Our computational experiments provide 

evidence to suspect that machine routings affect the solution quality. Algorithms that 

are customized for a flow shop environment may perform better than the general job 

shop algorithms developed in this chapter. Additionally, the job population in this 

study is fixed and all jobs are available at time zero. Including non-zero ready times 

and dynamic job arrivals will make the approach more applicable to real-life 

problems.   

Second, both robustness and stability are important performance measures for 

the practitioners. Similar algorithms to generate robust job shop schedules can be 

developed. Moreover, a bicriterion algorithm that can handle both measures is of 

practical importance in the job shop environment. The relationship and the tradeoff 

between robustness and stability can also be analyzed like in Chapter 4.  

Finally, different stability measures and better surrogates can also be developed. 

Even though our computational results indicate that there is a high positive correlation 

between the proposed stability measure and its surrogate, the possibility to employ 

simulation in order to estimate the stability performance of the schedules (contrasted 

to employing a surrogate measure) may be beneficial. 

 



 

112 

 

 

Chapter 6  
 

Conclusion  
 

 

In this thesis we study the machine scheduling in the face of random disruptions. We 

consider two sources of uncertainty: machine breakdowns and processing time 

variability. The information about these sources is modeled using cumulative 

distribution functions and formal probability theory is utilized to make inferences 

about the specific problems that are considered. We then draw advantage of these 

inferences to develop exact solution procedures where applicable. Several heuristics 

are also developed to improve the ability to handle the problems and to make real life 

applications possible. 

In Chapter 3, we model uncertainty regarding job processing times and machine 

reliability with known probability distributions. We define several robustness and 

stability measures. This chapter contributes to the existing proactive scheduling 

literature in two ways. First, we identify the analytically tractable cases and we 

develop an exact algorithm to solve the common problem of minimizing the expected 

total tardiness using the insights gained while studying these cases. Second, for 

intractable cases, rather than taking an indirect approach by employing surrogate 

measures, we estimate the actual measures directly using simulation. The use of 

simulation in the existing studies may have been avoided because of its anticipated 

high computational burden. Our computational results, however, indicate that a beam-

search algorithm that employs simulation as a global evaluation function is quite 

promising and requires reasonable computational times. 

We can identify several further research directions. First, the proposed beam-

search algorithm can be extended to more general multi-machine environments. 
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Additionally, the job population in this study is fixed and all jobs are available at time 

0. Inclusion of non-zero ready times and dynamic job arrivals will make the approach 

more applicable to real-life problems.   

Second, robustness can be measured from different points of view. For example, 

-robustness can be studied. A -robust schedule maximizes the probability of 

achieving a system performance less than or equal to a given threshold level T 

(Daniels and Carillo, 1997). The robustness in that sense for the due-date related 

performance measures can be investigated. Along the same lines, new, easy-to-

calculate robustness or stability measures can be developed. There are other 

approaches in the literature that are used when dealing with uncertainty, including 

scenario planning and modeling with fuzzy numbers. We believe that such approaches 

could help alleviate the problems encountered in an analytical approach, such as the 

one taken in Chapter 3.  

In Chapter 4, we study proactive scheduling in a single machine environment 

with random processing times. We use total expected flowtime and total variance of 

job completion times as the robustness and stability measures, respectively. A 

bicriteria approach to minimize both measures simultaneously is discussed. The 

proposed -constraint method, which generates the set of all Pareto optimal points, is 

more thorough than the common approach of combining both objective functions into 

a linear composite objective function. It is frequently used in multi criteria decision 

making studies in different fields, including machine scheduling. Three different 

versions of the -constraint method are investigated: the first one solves two instances 

of NP-hard problems to obtain a Pareto optimal point whereas the second and the 

third ones solve only one such problem. The obtained point may be weak Pareto 

optimal in the second version. A dominance rule and three ways to formulate this rule 

are developed to get rid of some of weak Pareto points in this version. 

Our computational experiments indicate that incorporating the dominance rule 

to the problem formulation at each iteration may in fact lower the number of weak 

Pareto points, especially in the presence of a negative correlation between the 

processing time mean and variance values. Our experiments, however, demonstrate 

that generating weak Pareto points and eliminating them is cheaper in terms of 

computational time than avoiding them. The computational results also show that the 
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presence of a negative correlation between processing time means and variances 

increase the total number of Pareto optimal points. Total number of Pareto points also 

increase as the number of jobs increase. Additionally, an increase in mean and 

variance ranges also causes a rapid increase in total number of points, which gives 

evidence to our suspect that the number of Pareto points may be pseudo polynomial in 

number of jobs. We also note that although a single iteration of the algorithm takes 

very little computational time, increasing problem sizes cause a rapid increase in total 

number of Pareto points and hence in total number of iterations required to generate 

the whole set. This suggests that being able to define the characteristics and shape of 

the trade-off curve using fewer Pareto points is of the essence. To that end, we 

propose the -grid search approach which generates a fixed number (set by the 

decision maker) of near-Pareto points. 

Even though scheduling with more than one objective has been studied since 

1980s, optimizing robustness and stability simultaneously in a proactive way is not 

thoroughly considered in the literature. The previous studies either preferred to 

include stability into the picture later in the reactive phase after an initial schedule is at 

hand or stability alone is optimized by inserting additional idle time into the schedules 

with the hope that the primary objective does not worsen a lot. The contribution of 

this chapter to the literature is that it provides a reliable method to consider both 

robustness and stability together, which is helpful to generate balanced schedules, 

especially if uncertainty is an inseparable part of the shop floor environment. 

We can emphasize several areas to perform further research. First, the proposed 

approaches can be extended to other robustness and stability measures. Although 

multi criteria scheduling is not a new topic, most of the research effort is focused on 

earliness/tardiness problems or minimizing two regular performance measures at the 

same time. We believe that using the available toolbox of multi criteria techniques 

may help decision makers a great deal when coping with uncertainty. Second, the 

analysis can be extended to the more general shop floor environments such as shops 

with parallel machines, flow shops or job shops. Finally, algorithms that discover the 

characteristics of the trade off curve more cleverly may be developed. The brute force 

approach of generating the whole set of Pareto points may be impractical in terms of 

computational time requirements. Evolutionary meta heuristics are successfully being 

used in multicriteria decision making literature for this purpose. 
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Finally, we study proactive scheduling in a job shop environment with random 

processing times and random machine breakdowns in Chapter 5. We use total 

variance of the job completion times as the stability criterion. A surrogate stability 

measure is employed to generate stable schedules since calculating the stability 

measure analytically is impractical. The computational experiments indicate a high 

positive correlation (> 0.97) between the defined stability measure and its surrogate. 

In this study, it is shown that minimizing even the surrogate stability measure is NP-

hard. We develop two branch-and-bound algorithms that optimize the surrogate 

stability measure in the class of active and non-delay schedules. We also develop two 

heuristics (a beam-search and a tabu-search algorithm) to handle large problems with 

machine breakdown/repair. 

For exact algorithms, our computational experiments show that the impact of an 

increase in the number of jobs is more than the impact of an increase in the number of 

machines on the solution time. We observe that less computational time is needed to 

solve the instances with random machine routings than the instances with fixed or 

semi-random routings. It is also observed that as coefficient of variation increases the 

computational time also increase.  We note that for large problems, it is practical to 

search the set of non-delay schedules rather than the larger set of active schedules to 

generate stable schedules. 

Our computational experiments show that the proposed beam-search algorithm 

outperforms several dispatching rules (SVPT, LEPT, SCV and SEPT). When they are 

taken as seed schedules in the tabu-search algorithm, however, they yield schedules 

with close performances and they all are competitive. Hence, starting from multiple 

seeds is beneficial. We also note that tabu-search can potentially result in schedules 

with objective function values better than all active schedules in the case of no 

breakdowns, which includes the optimal solutions of the proposed branch-and-bound 

algorithms. We conclude that the proposed tabu-search algorithm is quite promising 

for generating stable schedules for large problems with random machine breakdowns. 

We again can point out several further research directions. First, the proposed 

algorithms can be specialized to flow shop environments. Our computational 

experiments provide evidence to suspect that machine routings affect the solution 

quality. Algorithms that are customized for a flow shop environment may perform 



 

 

CHAPTER 6. CONCLUSION 116 

 

 

 

better than the general job shop algorithms developed in this paper. Additionally, the 

job population in this study is fixed and all jobs are available at time zero. Including 

non-zero ready times and dynamic job arrivals will make the approach more 

applicable to real-life problems.   

Second, both robustness and stability are important performance measures for 

the practitioners. Similar algorithms to generate robust job shop schedules can be 

developed. Moreover, a bicriterion algorithm that can handle both measures is of 

practical importance. The relationship and the tradeoff between robustness and 

stability can also be analyzed.  

Finally, different stability measures and better surrogates can also be developed. 

Even though our computational results indicate that there is a high positive correlation 

between the proposed stability measure and its surrogate, the possibility to employ 

simulation in order to estimate the stability performance of the schedules (contrasted 

to employing a surrogate measure) may be beneficial. 
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