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ABSTRACT 

HANEIN-1, A NOVEL CONSERVED EUKARYOTIC PROTEIN 
UBIQUITOUSLY EXPRESSED IN HUMAN TISSUES 

 
Serap Erkek 

M.Sc. in Molecular Biology and Genetics 
Supervisor: Assist. Prof. Dr. Uygar H. Tazebay 

August 2008, 52 Pages 
 
 
 
HANEIN-1 was first identified in a study investigating 3’ transcriptional regulatory 
elements of the Na+/I- symporter gene. The protein is highly conserved among 
eukaryotes and bears no domain similarities with any known proteins. In databases, it 
is described as coiled coil containing-124 hypothetical protein and predicted to 
encode a 223 amino acid-protein. In this project, our aim was to characterize this 
highly conserved protein by using several bioinformatics and biochemical 
methodologies.  Sequence similarity search analysis showed that it had around 75% 
identity in mammals, 50% identity with insects and nematodes. Expressional analysis 
revealed that HANEIN-1 was expressed in all tissues ubiquitously with a remarkable 
expression status in skeletal muscle. Beside providing information about expression 
status of HANEIN-1, northern blotting showed that HANEIN-1 transcript size was 
approximately 1000 bp. Regarding protein level expression, western blotting 
revealed that HANEIN-1 encoded a 33 kDa protein  and protein stability was 
affected in a different way upon labeling with Flag epitope at N-ter and C-ter. Yeast 
double hybrid screening performed in our laboratory showed that HANEIN-1 
interacted with RASGEF1B, which was a guanine nucleotide exchange factor not 
fully characterized. Expressional analysis displayed that RASGEF1B expression 
profile inversely correlated with HANEIN-1. Finally, serine-scanning mutagenesis 
analysis showed that site-directed mutagenesis of serine at position 194 significantly 
affected the stability of the protein.  



 

 

iv

ÖZET 

HANEIN-1, TÜM İNSAN DOKULARINDA İFADESİ GÖRÜLEN 
KORUNMUŞ YENİ BİR ÖKARYOTİK PROTEİN 

 
Serap Erkek 

Moleküler Biyoloji ve Genetik Yüksek Lisans Derecesi 
Tez Yöneticisi: Yard. Doçent Dr. Uygar H. Tazebay 

Agustos 2008, 52 Sayfa 
 
 
 
HANEIN-1 Na+/I- simporter geninin 3’ regulasyon elementleri araştırılırken 
keşfedilen yeni bir gendir. Bu yeni protein bütün ökaryot canlılarda korunmakla 
birlikte, bilinen hiçbir proteinle ortak işlevsel bölgelere sahip değildir. 
Veritabanlarında kıvrım-kıvrım (coiled-coil) bölge içeren-124 hipotetik proteini 
olarak tanımlanmakta ve 223 amino asit içeren bir protein olduğu tahmin 
edilmektedir. Bu projededeki amaç HANEIN-1 proteinini çeşitli biyoinformatik ve 
biyokimyasal analiz yöntemleriyle karakterize etmekti. HANEIN-1 proteinin amino 
acid dizi benzerliği analizi, bu proteinin memelilerde %75, böcek ve nematodlarda 
ise % 50 oranında korunduğunu gösterdi. Gen ifade analiz yöntemleri ile HANEIN-1 
ifadesinin en fazla iskelet kasında olduğu tespit edildi. Bunun yanı sıra, northern blot 
analizi ile HANEIN-1 transcript büyüklüğü yaklaşık 1000 bp olarak belirlendi. 
Western blot tekniği ile protein düzeyinde yapılan çalışmalar, HANEIN-1 geninin 33 
kDa büyüklüğünde bir proteini kodladığını ve proteini N-son ucu ve C-son ucu Flag 
epitopu ile işaretlemenin protein stabilitesini farklı şekilde etkilediğini gösterdi. 
Laboratuvarımızda yapılan maya ikili-hibrid deneyleriyle, HANEIN-1 proteinin 
henüz tam olarak karakterize edilmemiş, bir guanin nükleotit değişim faktörü 
(Guanine Exchange Factor) olan RASGEF1B proteiniyle etkileştiği bulunmuştur. 
Gen ifade analizleri RASGEF1B ve HANEIN-1 ifade profilleri arasında ters bir 
bağlantı olduğunu göstermiştir. Son olarak, serin-tarayıcı mutasyon analizleriyle, 
194. konumdaki serin mutasyonunun protein stabilitesini önemli ölçüde değiştirdiği 
saptanmıştır. 
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1. INTRODUCTION 

 

Human Genome Project was completed in 2003 and there are >600 completely 

sequenced genomes of cellular organisms (Liolios et al., 2006). However, only 50-60 

% of genes have been annotated in most completely sequenced genomes. The 

remaining genes are either homologous of genes of unknown function, or genes 

which do not have any known homologs and named as “hypothetical” (Sivashankari 

et al., 2006).  Therefore, characterization of genes whose functions are unknown is 

important in order to understand an organism’s biology. In fact, ENCODE 

(ENCyclopedia Of DNA Elements) project which was started in September 2003 by 

National Human Genome Research Institute is one of the major projects which aims 

to characterize human genome sequence and it aims identification of both the 

function of gene products and non-coding functional elements. However, even with 

this project only 1 % of human genome was functionally analyzed up to now 

(ENCODE project consortium, 2007).  Therefore, it seems that understanding our 

genome is sophisticated and the development of novel experimental and 

computational tools will play a crucial role in characterization of genes.  

 

1. 1. Functional Analysis of Novel Gene Products 

 

Identification of the function of gene products may be performed by using 

experimental and bioinformatics methodologies. Currently, 20%, 7%, 10%, and 1% 

of annotated proteins in Homo sapiens, Mus musculus, Drosophila melanogoster and 

Caernohabditis elegans genomes, respectively, have been experimentally 

characterized.  Experimental methods’ being time-consuming and costly limits their 

usage and makes computational methods for prediction of gene function more 
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attractive (Lee et al., 2007). However, experimental characterization of gene 

products is more reliable since experiments provide direct evidences at the cellular 

level.  Bioinformatics tools may be utilized in order to have general insights about 

the possible functions of the gene product. And then computational data gives clues 

about how to plan functional analysis experiments.  

 

1.1.1. Bioinformatics Analysis 

 

One of the major computational strategies to identify gene function is based on 

sequence similarity. At this point, sequence database searching programs such as 

FASTA (Pearson et al., 1988) and PSI-BLAST (Altschul et al., 1997) are among 

most classical examples. In addition to these, there are certain methods based on 

comparative genomics. Here, it is assumed that proteins that function together either 

in a metabolic pathway or in structural complex are expected to evolve together 

(Sivashankari et al., 2006). Functional linkage is identified by “Phylogenetic 

Profiling”. In this technique, phylogenetic profile is a string with one bit and ‘n’ 

entries, where n is the number of genomes under consideration. If the nth genome 

contains a homolog for the protein then the nth entry is represented as unity in the 

phylogenetic profile. These profiles are clustered to determine which proteins have 

common profiles (Pellegrini et al., 1999). Also there are some methods based on 

clustering approaches, which assume that genes of the same cluster carry out similar 

functions and genome context methods which predict functional associations 

between proteins such as physical interactions, or co-membership in pathways 

(Sivashankari et al., 2006).  Regarding the genome context methods, one of the most 

important databases is STRING, which is a database of known and predicted protein-

protein interactions (von Mering et al., 2007).  

 

In order to carry out pattern and profile searches, there are also several tools 

such as PROSCAN (Combet et al., 2003), MotifScan (Pagni et al., 2004), and ELM 

(Puntervoll et al., 2003), which provides information about protein domain / families, 

protein motifs recognized by other proteins and some biochemical characteristics 
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from the input protein sequence. In addition to these, SMART (Schultz et al., 1998) 

is another valuable tool for identification of protein domains. 

 

In addition to these, it is possible to predict most of the post translational 

modifications of protein. For instance, NetPhos (Blom et al., 1999), NetNGlyc 

(Gupta et al., 2004), SUMOPlot (Xue et al., 2006) predict Ser/Thr/Tyr 

phosphorylation sites, N-glycosylation sites and Sumo attachment sites, respectively.  

 

Expression of novel genes can be investigated by microarray databases such 

as Oncomine database (Rhodes et al., 2004) and Genome Browser database at the 

University of California Santa Cruz (Kent et al., 2002). For instance, Oncomine 

research platform provides information about the expression status of a gene in 

cancerous and normal tissue as well as expression profile of the gene in cases with 

molecular alteration in a signaling pathway.  

 

1.1.2. Sub-cellular Localization Analysis 

 

Identification of sub-cellular localization of novel gene products could provide 

information about its function to some extent since function of a protein is often 

correlated with its localization. That means that if the cellular organelle or 

compartment where the protein localized is known, this information could help the 

researcher to establish a hypothesis about the function of the protein. 

 

There are several strategies to find out a protein’s localization in cell. One of 

the most-widely used methodologies is tagging proteins with GFP (Tsien et al., 

1998) by using fluorescence microscopy. As an alternative to GFP labeling, a protein 

can be labeled with specific epitopes such as FLAG and fluorescent microscopy 

analysis may be performed by monoclonal antibodies developed for epitopes and 

then following detection by secondary antibodies attached to fluorophores. A second 

useful strategy to identify sub-cellular localization is fractionation of cells. In this 

technique, cells are fractionated in a sucrose gradient by ultracentrifugation and 
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protein constituents of cellular compartments are identified by 2D gel electrophoresis 

and mass spectrometry (Mueller et al., 2006). 

 

1.1.3. Biochemical Analysis 

1.1.3.1. Protein Purification 

 

Purification of new gene products may be important in terms of using the purified 

protein in further biochemical analysis, identification of 3D structure of the protein 

and production of monoclonal antibodies specific to novel protein. For this purpose, 

protein affinity tags are used since they have high affinity and selectivity for binding 

to specific resins to facilitate purification, and fusing the protein of interest to 

glutathione S-transferase (GST) tag is one of the most popular strategies (Nilsson et 

al., 1997).  

 

1.1.3.2. Post-translational Modifications 

 

Phosphorylation is a post-translational modification which might have a particularly 

important role in cellular signaling and enzyme activity. Therefore, determination of 

phosphorylation status of an unknown protein can provide important clues about its 

function. Phosphorylated proteins can be identified by methods based on 2D gel 

electrophoresis (anti-phospho-amino acid antibodies or phosphatase treatment) 

(Mueller et al., 2006). Besides, phosphorylation sites may be determined via phospo-

specific cleavage analysis followed by mass spectrometry (Knight et al., 2003). 

 

It is known that nearly half of all known proteins are glycosylated (Apweiler 

et al., 1999) and attachment of oligosaccharides to proteins regulate a variety of 

processes from protein folding to cellular communication. Concerning the 

glycosylation pathway, nucleotide-sugar donors prepared from monosaccharides 

enter the endoplasmic reticulum or Golgi lumen through the action of specific 

antiport transporters and they are attached to proteins by glycosyltransferases. This 

process is a typical O-linked (serine- or threonine-attached) glycoprotein 
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biosynthesis.  For N-linked (asparagines-attached) glycoproteins, a core 

oligosaccharide is assembled in the cytosol, then transported to ER and attached to 

proteins by glycosyltransferases (Yarema et al., 2001). Glycosylation status of the 

proteins may be studied by western blotting (Tazebay et al., 2000), mass 

spectrometry (Dell et al., 2001), NMR (Manzi et al., 2000) and liquid 

chromatography for glycan sequencing (Blixt et al., 2004).  

 

Proteolytic cleavage is one of non-reversible post-translational modifications 

and it plays an essential role in sub-cellular localization and activity of the protein. 

For instance, insulin is initially synthesized as a precursor and mature hormone is 

produced after a series of proteolytic cleavages (Duckworth et al., 1979).  Another 

important example may be the p53 protein whose level is controlled by its 

degradation, which is mediated by Mdm2 targeted ubiquitination of p53 (Haupt et 

al., 1997 and Kubbutat et al., 1997). Proteolytic cleavage of the proteins may be 

identified via isotope-coded affinity tag (ICAT) labeling and 2D gel electrophoresis 

followed by MS/MS (Gevaert et al., 2003). Also performing a western blot analysis 

could be useful particularly if antibodies recognizing termini epitopes are available 

(see below). 

 

1.1.4. Immunological Analysis 

 

In order to analyze the proteins immunologically, first an antibody which specifically 

recognizes an epitope of the protein is raised. Antibodies generated after 

immunization in the laboratory are a mixture of different specificities and affinities, 

so they are polyclonal. At this point monoclonal antibody production may be 

important with respect to immunological characterization of the protein since it 

increases specificity. In this technique, spleen cells from an immunized mouse are 

fused to cells of a mouse myeloma and hybridomas are produced. Since each 

hybridoma is a clone derived from fusion with a single B cell, all the antibody 

molecules it produces are identical so they are monoclonal (Köhler et al., 1992).  

Produced antibody may be used to identify tissue expression pattern via western 
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blotting, immuno-histochemistry and several other techniques. Furthermore, it may 

be determined whether the protein is secreted by using the specific antibody in an 

ELISA assay.  

 

The Atlas of Protein Expression project and the Swedish Human Protein 

Atlas (Uhlen et al., 2005) try to annotate human proteome by using antibody based 

proteomics and in these projects, it is aimed to establish a database which provides 

information about human proteins’ expression in normal tissue types and several 

types of cancer.  

 

1.1.5 Protein-Protein Interaction Analysis 

 

Identification of interacting partners of novel gene products may provide direct 

information about the cellular pathway in which protein of interest is involved and 

cellular localization. There are several tools for analysis of protein-protein 

interaction. One of the most widely used techniques is yeast two-hybrid system 

(Fields et al., 1989). This technique is based on the principle of activation of a 

reporter gene by a transcription activator. Protein of interest is fused to DNA-binding 

domain of transcription activator and introduced into the yeast. Transcription 

activating domain of the activator is attached to proteins from a certain cDNA library 

and these constructs are individually introduced into yeast cells containing the 

protein of interest. If protein interacts with a protein of cDNA library, transcriptional 

activation and DNA-binding domains are united and a reporter gene is transcribed. 

Once the interaction data is obtained, interaction partner may be confirmed via 

carrying out a co-immunoprecipitation or fluorescence resonance energy transfer 

(FRET). Regarding co-immunoprecipitation, an antibody/protein complex is pelleted 

using sepharose beads. If there are any interacting proteins with target protein in the 

complex, interacting partner is also pelleted and it can be identified by carrying out a 

western blot. In FRET, proteins expected to be interacting are labeled with different 

fluorochromes such that if proteins interact, energy absorbed by first fluorochrome 

will be transferred to second fluorochrome and second fluorochrome will emit light 
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(Miyawaki et al., 2000). 

 

1.1.6. Loss of function Analysis 

1.1.6.1. Down-regulation of a gene product by siRNA Strategy 

 

RNA interference refers to the post-transcriptional silencing of gene expression due 

to the introduction of homologous double stranded RNA (Fire et al., 1998). 

Nowadays, it is the most widely used technique to silence gene expression and 

analyze gene function. Use of siRNA as a means of gene silencing depends on 

several factors such as the degree to which a gene can be silenced, the length of time 

for which the gene remains silenced, the degree of recovery of gene function, and the 

effects of silencing process on general cell functions (Zhang et al., 2004). The most 

effective siRNAs are 21nt dsRNA with 2nt 3’ overhangs (Elbashir et al., 2001) and 

another important point is the sequence specificity of siRNA since even single base 

pair mismatches between siRNA and its target mRNA reduce silencing to a great 

extent (Brummelkamp et al., 2002). siRNAs can be generated via several strategies. 

Chemical syntheses, in vitro transcription, digestion of long dsRNA by an RNase III 

family enzyme, siRNA expression vectors, gene silencing by PCR product are the 

most powerful methodologies (Zhang et al., 2004).  

 

1.1.6.2. Knocking-out a gene in mice 

 

Gene function analysis via targeting the gene in mouse embryonic stem cells 

(Thomas et al., 1987) has been a powerful tool for many years. In this technique, a 

special vector containing flanking homologous sequences with the targeted locus and 

an antibiotics resistance gene is constructed and transfected to embryonic stem cells. 

Homologously recombined stem cells are then injected to a blastocyst and following 

implantation and selective mating give rise to animals with the desired genetic 

alteration. However, analysis of gene function by this procedure may be difficult 

since complete absence of the gene may be embryonically lethal.  At this point, using 

a conditionally knock-out mice model might be more useful. In this strategy, target 
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gene is flanked by loxP sites, which are required for homologous recombination, and 

vector construct is transfected to embryonic stem cells as in the complete targeting 

protocol. Then, mice are crossed with mice expressing Cre recombinase in a tissue 

specific manner, ligand specific manner, or both. Cre mediates excision of the 

targeted gene in the desired tissue (Gu et al., 1994), and in response to the ligand, for 

example, tamoxifen- inducible Cre recombinase (Danielian et al., 1998). By this 

conditional knock-out strategy, the function of a gene can be analyzed at the 

organism level, and it can precisely be established. 

 

1.2. Identification and General Characteristics of HANEIN-1  

 

HANEIN-1 was firstly identified in an unrelated study in which 3’ transcriptional 

regulatory regions of Na+/I- Symporter (NIS) gene were being analyzed. In that study 

10 conserved putative regulatory regions were identified via using a software tool 

called VISTA (Bary et al., 2003 and Couronne et al., 2003). Investigation of one 

these putative regions revealed that this region was not a 3’ regulatory element of 

NIS but it was a region controlling expression of HANEIN-1 (Hani Alotaibi and 

Uygar Tazebay, personal communication).  HANEIN-1 is described as hypothetical 

protein coiled coil domain in the Genome Browser database at the University of 

California Santa Cruz (Kent et al., 2002).  

 

The most important reason why we are interested in characterization of 

HANEIN-1 is that it is conserved in all eukaryotes from Saccharomyces pombe to 

Homo sapiens. It has 75% identity in mammals, 50% identity with insects and 

nematodes and 30-40% identity with plants and ascomycetes. Since it is conserved 

we think that it carries out a major function in the cell.  

 

HANEIN-1 has no domain similarities with any known proteins. It contains 4 

coding exons and it is predicted to encode a 223 amino acid protein in human.  
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1.3. Aim  

 

In this study, the aim was the functional characterization of HANEIN-1. By 

bioinformatics analysis we first aimed to identify the conservation pattern of the 

protein among eukaryotic species, possible functional sites and to find some clues in 

order to plan experimental strategies. Experimentally, we mainly concentrated on the 

biochemical characterization of the protein. Expression of HANEIN-1 was 

investigated both at the transcript and at the protein level. In addition to these, sub-

cellular localization analysis and mutagenesis analysis of some functional sites were 

performed in order to characterize the function of HANEIN-1.  
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2. MATERIALS AND METHODS 

2.1. Bioinformatics Tools 

 

Genomic DNA sequence, mRNA sequence of the genes and amino acid sequence of 

the proteins were identified by using Genome Browser database at the University of 

California Santa Cruz (Kent et al., 2002). In order to analyze the conservation pattern 

of the novel gene among eukaryotic species ClustalW2 multiple alignment program 

(Larkin et al., 2007) was utilized and sequence similarity searches were carried out 

via FASTA (Pearson et al., 1988). Pattern and profile searches of the protein were 

investigated via ELM (Puntervoll et al., 2003), SMART (Schultz et al., 1998) and 

PROSCAN (Combet et al., 2003). Post-translational modifications were predicted by 

using NetPhos (Blom et al., 1999) and SUMOPlot (Xue et al., 2006) programs. 

 

2.2. Cell Culture 

2.2.1. Cell Lines 

 

In this study, Hep3B (Human Negroid hepatocyte carcinoma), HepG2 (Human 

Caucasian hepatocyte carcinoma) liver carcinoma cell lines and MCF-7 (Caucasian 

female breast adenocarcinoma) breast cancer cell line were used for expression 

analysis. 

 

2.2.2. Growth Media 

 

Cell lines were grown in high glucose Dulbecco’s modified Eagle’s medium (Gibco) 

with the addition of 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 

1% L-glutamine (Biochrom) at 37˚C in a 5% CO2 incubator.  
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2.2.3. Transfection 

 

Transfection was performed by using FuGene-6 reagent (Roche). Optimized 

transfection reagent (µl) /plasmid DNA (µg) was 3:1. Firstly, transfection reagent 

was diluted in serum and antibiotics free medium. After 10 minutes of incubation, 

plasmid DNA was added and FuGene-plasmid DNA mixture was incubated for 30 

minutes. During this time interval, medium of the cells which were cultivated at 6-

well plates at 90-95% confluency was changed. Finally, FuGene-DNA complex was 

transfected to cells in a drop-wise manner.  

 

Transfection efficiencies of plasmids were tested by RT-PCR analysis of neomycin 

resistance gene found in the transfected plasmids. Neomycin primers are Forward: 

ACAAGATGGATTGCACGCAG  and Reverse: TTCGCCCAATAGCAGCCAGT 

 

2.3. Cloning 

2.3.1. Site-Directed Mutagenesis 

 

PCR-based mutagenesis was carried out in order to convert 4 possible serine 

phosphorylation sites of HANEIN-1 to alanine by designing mutagenesis primers. 

Sequence of the mutagenesis primers are presented in Table 2.1.  PCRs were set up 

in 50 µl reaction volume with 5 µl of MgCl2 containing reaction buffer, 1 µl of 

10mM dNTP, 1.25 µl’s of (10 pmol/ µl) sense and antisense primers, 1 µl of Pfu 

polymerase (Fermentas) and 2.5 µl of (20 ng/ µl) plasmid DNA in which HANEIN-1 

was cloned (p3XFlag-Locus). Reaction conditions were as follows: 30 s initial 

denaturation at 95˚C, 18 cycles of 30 s denaturation at 95˚C, 1 min primer annealing 

at 55˚C and 7 min extension at 68˚C, and final extension was disabled. After the PCR 

reaction, 1 µl of DpnI was added to each PCR tube with minimum 1 hour incubation 

at 37˚C in order to degrade methylated DNA strand. Then 5 µl of mutated product 

was transformed to competent E. coli as described in Molecular Cloning (Maniatis et 

al., 1989). Single-colonies were picked up from the transformed bacteria and plasmid 

isolation was carried out with Fermentas GeneJet MiniPrep Plasmid Kit. Finally, 
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mutagenized products were confirmed by sequencing. 

 

 

Table 2.1. Site-directed mutagenesis primers 

Primer Sequence 
S92A Sense AGGCGCCGCGGGTGGCCACGGCCAGCAAGGTCACCCGGGCCCA 

S92A Anti-sense TGGGCCCGGGTGACCTTGCTGGCCGTGGCCACCCGCGGCGCCT 

S122A Sense ACACAGCCGAGAAAGCCAAGGCCCATCTGGAGGTGCCGCTGGA 

S122A Anti-sense TCCAGCGGCACCTCCAGATGGGCCTTGGCTTTCTCGGCTGTGT 

S194A Sense AGAACCCCAACATGCGGCTGGCGCAGCTGAAACAGCTGCTCAA 

S194A Anti-sense TTGAGCAGCTGTTTCAGCTGCGCCAGCCGCATGTTGGGGTTCT 

S207A Sense TCAAGAAGGAGTGGCTCCGCGCGCCTGACAACCCCATGAACCA 

S207A Anti-sense TGGTTCATGGGGTTGTCAGGCGCGCGGAGCCACTCCTTCTTGA 

 

 

2.3.2. Gene Cloning 

 

Two isoforms of RASGEF1B and RASGEF1A were cloned via using p3XFLAG-

CMV14 expression vector. Firstly, gene products (inserts) were amplified via 

specific cloning primers in PCR; for RASGEF1B 1st isoform PCR conditions were as 

follows: 5 min initial denaturation at 95˚C, 35 cycles of 30 s denaturation at 95˚C, 20 

sec primer annealing at 58˚C and 1.5 min extension at 72˚C, and a 5 min final 

extension at 72˚C,  for RASGEF1B 2nd isoform: 5 min initial denaturation at 95˚C, 35 

cycles of 30 s denaturation at 95˚C, 20 sec primer annealing at 58˚C and 35 sec 

extension at 72˚C, and a 5 min final extension at 72˚C and for RASGEF1A: 5 min 

initial denaturation at 95˚C, 35 cycles of 30 s denaturation at 95˚C, 20 sec primer 

annealing at 60.7˚C and 1.5 min extension at 72˚C, and a 5 min final extension at 

72˚C .  PCR products and vector were digested with NotI and XbaI (Fermentas) 

restriction enzymes and digested products were ligated with T4 DNA Ligase 

(Fermentas) and transformed to competent E. coli. Single colonies from transformed 

bacteria were picked up and tested for positive cloning via both PCR and restriction 

enzyme digestion. Cloning primers are presented in Table 2.2.  
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Table 2.2. Cloning primers 

Gene Primer Sequence 

Forward 
AAGCTTGCGGCGGCATGGAACAAAAACTCATCTCAGAAGA

GGATCTGATGCCTCAGACTCCTCCCTTTTCAG 
RASGEF1B 

1st isoform Reverse GGATCCTCTAGAAACTCTGCCTAAGAGGCTCGACCTT 

Forward 
AAGCTTGCGGCGGCATGGAACAAAAACTCATCTCAGAAGA

GGATCTGATGCCTCAGACTCCTCCCTTTTCAG 
RASGEF1B 

2nd isoform Reverse GGATCCTCTAGATATCCCTTTGAAGTGGGATGGTATA 

Forward 
AAGCTTGCGGCCGCATGGAACAAAAACTCATCTCAGAAGA

GGATCTGATGCCCCAGACGTCCGTTGTCTTCT RASGEF1A 
Reverse GGATCCTCTAGAGGCTCTGTTCAGAAGGGTGGTCCTG 

 

 

2.4. RNA Isolation 

 

RNA from mouse tissue samples and hepatocellular carcinoma cell lines were 

isolated via using Macherey-Nagel Nucleospin RNA isolation kit. For RNA isolation 

from cell lines, isolation was carried out as described in manufacturer’s protocol via 

first lysing cell pellets. In order to isolate RNA from tissue samples, firstly tissue 

samples were ground by using pestle and mortar in liquid N2, and tissue powder was 

homogenized via a teflon-glass homogenizer, then tissue powder was lysed and kit 

protocol was followed. RNA concentrations were determined by using nanodrop 

spectrophotometer.  

 

2.5. cDNA synthesis and RT-PCR 

 

cDNA synthesis was performed with approximately 1 µg of RNA via using 

RevertAid First Strand cDNA Synthesis kit (Fermentas).  Synthesized cDNAs were 

amplified via semi-quantitative RT-PCR.  PCRs were set up in 25 µl reaction volume 

with 2.5 µl of 10X Taq Polymerase  reaction buffer, 1.5 µl of 25mM MgCl2 , 0.5 µl 

of 10mM dNTP, 1µl’s of (10 pmol/ µl) forward and reverse primers, 0.2µl of Taq  

polymerase (Fermentas) and required volume of cDNA. PCR conditions for 
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HANEIN-1 were as follows: 5 min initial denaturation at 95˚C, 35 cycles of 30 sec 

denaturation at 95˚C, 30 sec primer annealing at 60˚C and 30 sec extension at 72˚C, 

and a 5 min final extension at 72˚C, for RASGEF1B: 5 min initial denaturation at 

95˚C, 35 cycles of 30 sec denaturation at 95˚C, 30 sec primer annealing at 58˚C and 

30 sec extension at 72˚C, and a 5 min final extension at 72˚C and for GAPDH: 5 min 

initial denaturation at 95˚C, 21 cycles of 30 sec denaturation at 95˚C, 30 sec primer 

annealing at 60˚C and 30 sec extension at 72˚C, and a 5 min final extension at 72˚C. 

RT-PCR primers are presented in Table 2.3. PCR products were visualized via 

agarose gel electrophoresis.  

 

 

Table 2.3. RT-PCR primers and expected product sizes 

Gene Primer Sequence 
Product 

Size 
HALNG-F GAATTCAAGCTTATGCCCAAGAAGTTCCAG 

HALNG-R GGATCCTCTAGAGCTCACTTGGGGGCATTG 
1060 bp 

Loc-Seq F TGGCCACGTCCAGCAAGGTC 
HANEIN-1 

Loc-Seq R TCCGCCACGCTGAGCACTGCA 
210 bp 

RASGEF1B RT-F GAGCACCAGAGACTAAGTGA 
RASGEF1B 

RASGEF1B RT-R CCCTTTGTATAGACTGTGGC 
325 bp 

GAPDH F GGCTGAGAACGGGAAGCTTGTCAT 
GAPDH 

GAPDH R CAGCCTTCTCCATGGTGGTGAAGA 
150 bp 

 

 

2.6. Protein Isolation 

 

Proteins from cell lines were isolated for western blotting analysis. Cell pellets were 

lysed in 50 µl lysis buffer consisting of 50 mM Tris Base, 250 mM NaCl, 1X 

proteinase inhibitor cocktail and 0.1% NP40. Protein concentrations were determined 

via using Bradford assay.  
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2.7. Western Blotting 

 

10 µg of proteins were denaturated in 1X gel loading buffer consisting of 50 mM 

Tris-Cl (pH 6.8), 100 mM dithiothreitol, 2% SDS, 0.1% bromophenol blue, 10% 

glycerol and 5% ß-mercaptoethanol by boiling for 5 minutes. Denaturated proteins 

were run in 10% SDS-polyacrylamide gel in Tris-glycine electrophoresis buffer (25 

mM Tris, 250 mM glycine (pH 8.3) and 0.1% SDS). Then, proteins were transferred 

to PVDF membrane (Millipore) and for 1 hour blocked with Blotto consisting of 1X 

TBS (Tris-buffered saline), 0.5% Tween 20 and 5% milk powder. Primary antibodies 

were prepared in Blotto with required dilutions (Table 2.4.). Membranes were 

incubated in primary antibodies for 1 hour and washed 3 x 10 min with 1X TBS-T. 

Then membranes were incubated in HRP-conjugated secondary antibodies (1:5000, 

Sigma) for another 1 hour and washed 3 x 10 min with 1X TBS-T. Proteins on the 

membrane were detected via Super Signal West Dura (Pierce) and exposed to X-ray 

films (AGFA) for 1min.  

 

For the immunoblotting analysis in which blockage of the primary antibody is 

required, approximately 10-5 molar (M) antibody specific peptide was used in order 

to block antigen/antibody binding.  

 
 
Table 2.4. List of primary antibodies used in western blot analysis. Type of the 
antibody, organism in which antibody produced and working concentrations are 
presented. 
 

Primary antibody Description Concentration in blotto 

N-ter specific Rabbit, polyclonal 2 µg/ml 

Anti-Flag (Sigma) Mouse, monoclonal 1 µg/ml 

Anti-Calnexin  Rabbit, polyclonal 0.1 µg/ml 

Anti-RARα (Santa Cruz) Rabbit, polyclonal 1 µg/ml 
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2.8. Northern Blotting 

 

Northern blotting was performed on FirstChoice Northern Human Blot1 membrane 

(each lane containing 2 µg poly (A) RNA) (Ambion). 

 

2.8.1. Probe Synthesis 

 

DNA templates for probe preparation were formed via restriction enzyme digestion 

from PCR product cloned plasmids for HANEIN-1 and RASGEF1B or directly from 

PCR products for GAPDH and β-actin. PCR products for GAPDH and β-actin 

formed via primers which were kindly provided by Ayşe Elif Erson and Mehmet 

Öztürk’s group, respectively. Then, DNA templates were labeled by north2south 

biotin random prime labeling kit (Pierce). Probes were synthesized as described in 

manufacturer’s protocol. Probes and their sizes are presented in Table 2.5. 

 
 
 
Table 2.5.  Northern blotting probes. Starting DNA material, used restriction 
enzymes for probe synthesis and synthesized probe sizes are indicated.  
 

Gene Starting material Restriction Enzyme Probe Size 

HANEIN-1 p3XFlagHANEIN-1 Apa I and Xba I 381 bp 

RASGEF1B p3XFlagRASGEF1B Bgl II and BamHI 284 bp 

GAPDH GAPDH PCR product - 408 bp 

β-actin β-actin PCR product - 539 bp 

 

 

2.8.2. Nucleic Acid Hybridization and Detection 

 

In order to hybridize the nucleic acids and perform the detection by synthesized 

probes, north2south chemiluminescent hybridization and detection kit (Pierce) was 

utilized. Kit’s protocol was exactly followed and resulting blots were exposed to film 

for approximately 1 min.  
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3. RESULTS 

3.1. Identification of HANEIN-1 

 

HANEIN-1 was firstly identified in a study investigating 3’ cis-acting transcriptional 

control elements of the Na+/I- Symporter (NIS). In that study, a 90 kb genomic DNA 

fragment including and flanking the NIS gene were being analyzed in order to 

identify at least 50% conserved putative regulatory elements of NIS in human, mouse 

and rat via using VISTA tool (Bary et al., 2003 and Couronne et al., 2003). 10 

conserved regions were identified by this analysis and 10th region was not a NIS gene 

transcriptional regulatory element but a region controlling the expression of 

HANEIN-1 (Alotaibi et al., unpublished data). 

 

3.2. Bioinformatics Analysis of HANEIN-1 

 

HANEIN-1 is described as coiled-coiled domain containing 124 (CCDC-124) in 

Genome Browser database at the University of California Santa Cruz (Kent et al., 

2002). It consists of 4 coding exons and it is predicted to encode a 223 amino acid 

protein.  

 

Biochemical features of HANEIN-1 protein were analyzed via using 

ProtParam tool (Gasteiger et al., 2005). Molecular weight and isoelectric point of the 

protein were calculated as 25835.2 Da and 9.54, respectively. Besides, this analysis 

showed that protein consisted of 43 negatively charged, 51 positively charged 

residues, in other words, 42% of the protein consisted of charged residues.  

 

HANEIN-1 protein sequence of several species was aligned via using 
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ClustalW2 multiple alignment program (Larkin et al., 2007). This analysis revealed a 

remarkable alignment among the sequences analyzed especially through residues 

between 25-80 and 160-210 (Figure 3.1).  

 

Sequence similarity search was performed via FASTA (Pearson et al., 1988) 

by referencing Homo sapiens HANEIN-1 protein sequence. This analysis revealed 

that identity and similarity of Homo sapiens HANEIN-1 protein sequence with other 

species are high among the eukaryotes. This analysis is presented in Table 3.1. 

 
 
Table 3.1. Sequence similarity search of Homo sapien’s HANEIN-1 protein. % 
identities, % similarities and proteins’ amino acid length are indicated. 
 

Alignment Amino acid Length % Identity % Similarity 

Homo sapiens 223 100 100 

Pongo pygmaeus 223 99.1 99.6 

Canis familiaris 223 95.5 98.7 

Mus musculus 217 88.8 95.5 

Xenopus laevis 217 72.8 91.0 

Danio rerio 216 70.0 89.1 

Caenorhabditis elegans 223 50.4 72.6 

Drosophila melanogester 213 43.8 73.7 

Oryza sativa 238 38.9 65.0 

Aspergillus nidulans 222 35.1 58.2 
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Figure 3.1. ClustalW2 multiple alignment of HANEIN-1 in selected species. Species 
name, amino acid positions and alignment for each amino acid are shown. 
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Domains and possible functional sites of HANEIN-1 were investigated via 

using some of Expasy Proteomics Tools such as SMART (Schultz et al., 1998), ELM 

(Puntervoll et al., 2003) and PROSCAN (Combet et al., 2003). 

 

SMART confidently predicts that protein has DUF1014 domain between 1-

216 amino acids with an E value of 1.10e-118 and Pfam analysis of Sanger Institute 

shows that DUF1014 domain is a member of clan HMG-box (CL0114) and HMG-

box family is described as a clan including DNA-binding HMG-box proteins as well 

as the YABBY-like transcription factors.  

 

ELM search for identification of functional sites in HANEIN-1 resulted in 

many ELM descriptions, from cleavage sites to motifs recognized by signaling 

domains. Some results of this analysis are presented in Table 3.2. 

 

 

Table 3.2. ELM search for identification of functional sites in HANEIN-1.  

ELM description Position Matched Sequence Pattern 

Furin (PACE) cleavage site  16-20 RARRA R.[RK]R. 

Nuclear receptor box motif 195-201 QLKQLLK LXXLL 

Motif recognized by those SH3 

domains with a non-canonical 

class I recognition specificity 

205-211 LRSPDNP …[PV]..P 

PKA phosphorylation site 191-197 MRLSQLK .R.([ST])… 

Site phosphorylated by the 

Polo-like-kinase 

100-106 

138-144 
IEDTLRR 

EEGSVEA 

.[DE].[ST] 

[ILFWVMA].. 

Motif recognized for 

modification by SUMO-1 

184-187 

200-203 

LKQE 

LKKE 
[VILMAFP]K.E

 

 

PROSCAN search resulted in several phosphorylation site descriptions and 

results of this analysis are presented in Table 3.3. 
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Table 3.3. PROSCAN search results for HANEIN-1.  

PROSITE description Position Matched Sequence Pattern 

cAMP- and cGMP-

dependent protein kinase 

phosphorylation site 

67-70 KKET [RK](2)-x-[ST] 

Protein kinase C 

phosphorylation site 

70-72 

92-94 

103-105 

TQR 

SSK 

TLR 

[ST]-x-[RK] 

Casein kinase II 

phosphorylation site 

122-125 

146-149 

155-158 

174-177 

SHLE 

TIED 

SVAE 

TAFE 

[ST]-x(2)-[DE] 

 

 

 

Bioinformatics cellular location and function analysis of HANEIN-1 was 

performed via Gene Ontology Annotation (GOA) database. It was predicted that with 

83.87% probability HANEIN-1 localized in the nucleus and with 61.55% probability 

in the myosin complex. In addition to cellular location, it was predicted to be 

involved in DNA-dependent regulation of transcription with 79.21% probability and 

in cellular transport with 37.47 % probability in the context of its biological function.  

 

Phosphorylation sites were predicted via NetPhos (Blom et al., 1999) and 

sumoylation sites were predicted via SUMOplot prediction tool (Xue et al., 2006). 

NetPhos predicted 5 serine, 7 threonine and 1 tyrosine phosphorylation sites and this 

analysis is presented graphically in Figure 3.2 and predictions are tabulated in Table 

3.5. Among these predicted phosphorylation sites serine residue at position 92 and 

threonine at position 103 are presented as being phosphorylated in UNiProtKB/Swiss 

Prot entry database based on the experimental evidence provided by the study 

"Global proteomic profiling of phosphopeptides using electron transfer dissociation 

tandem mass spectrometry" (Molina et al. , 2007) 
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Figure 3.2. Graphical representation of phosphorylation sites of HANEIN-1 
 

 

 

SUMOPlot prediction tool predicted 3 lysine sumoylation motifs with high 

probability and 4 lysine sumoylation motifs with low probability. Results of this 

analysis are presented in Table 3.4. 

 

 

Table 3.4. SUMOPlot analysis for HANEIN-1 protein. 

Position Group Score 

201 QLKQL LKKE WLRSP 0.91 

185 AQLPR LKQE NPNMR 0.91 

82 EEDSK LKGG KAPRV 0.73 

40 LEDAY WKDD DKHVM 0.64 

85 LEDAY WKDD DKHVM 0.57 

67 LDQLE RKKE TQRLL 0.44 

53 MRKEQ RKEE KEKRR 0.44 
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Table 3.5. Phosphorylation predictions of HANEIN-1 
 

Serine Predictions 

Position Context Score Prediction 

12 ENTKSAAAR 0.014 - 

79 EEEDSKLKG 0.102 - 

92 RVATSSKVT 0.995 Phosphorylation 

93 VATSSKVTR 0.065 - 

122 EKAKSHLEV 0.985 Phosphorylation 

141 LEEGSVEAR 0.264 - 

155 IAVLSVAEE 0.640 Phosphorylation 

194 NMRLSQLKQ 0.893 Phosphorylation 

207 EWLRSPDNP 0.851 Phosphorylation 

Threonine Predictions 

Position Context Score Prediction 

10 QGENTKSAA 0.717 Phosphorylation 

70 RKKETQRLL 0.780 Phosphorylation 

91 PRVATSSKV 0.957 Phosphorylation 

96 SSKVTRAQI 0.014 - 

103 QIEDTLRRD 0.964 Phosphorylation 

116 EAPDTAEKA 0.785 Phosphorylation 

146 VEARTIEDA 0.709 Phosphorylation 

174 VEARTIEDA 0.871 Phosphorylation 

Tyrosine Predictions 

Position Context Score Prediction 

38 LEDAYWKDD 0.820 Phosphorylation 
 
 

 

 

Gene expression analysis of HANEIN-1 was carried out via Oncomine 

Research Platform (Rhodes et al., 2004). Normal tissue expression analysis revealed 
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a remarkable expression in skeletal muscle (Figure 3.3). In addition to these, it was 

identified that EGFR amplification positive glioma expressed HANEIN-1 at a higher 

level as compared to EGFR amplification negative glioma (Figure 3.4A). 

Expressional analysis of T cell acute lymphoblastic leukemia cell line also showed 

that HANEIN-1 expression was lower in cases with mutant PTEN than cases with 

wild type PTEN (Figure 3.4B). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3. Oncomine expression profile of HANEIN-1 in normal tissues. Bars 
represent expression status for adipose, adrenal gland, bone marrow, bronchus, 
cervix, colon cecum, coronary artery, dorsal root ganglia, endometrium, esophagus, 
heart atrium, heart ventricle, kidney cortex, kidney medulla, liver, lung, lymph 
nodes, mammary gland, myometrium, nipple cross-section, nodose nucleus, oral 
mucosa, ovary, pharyngeal mucosa, pituitary gland, prostate gland, salivary gland, 
saphenous vein, spleen, stomach, testes, thyroid gland, tongue, tonsil, trachea, 
trigeminal ganglia, urethra, vagina, vulva and skeletal muscle, respectively. Asterisks 
show the minimum and maximum values obtained for each tissue.  
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A)                                                                     B) 

 
 

Figure 3.4. Oncomine expressional analysis of HANEIN-1 in cases with molecular 
alteration. A) Gliomas with EGFR amplification negative (class 1) and positive 
(class 2) status. T-test: -5.451, P-value: 1.9E-5. B) T cell acute lymphoblastic 
leukemia cell line with PTEN wild type (class 1) and mutant (class 2) status. T-test: 
5.547, P-value: 3.2E-5 
 
 
 

3.3. Expressional Analysis of HANEIN-1 

 

3.3.1. Cell Line Expression Analysis by RT-PCR 

 

Expression of HANEIN-1 was studied in several breast carcinoma cell lines. Breast 

carcinoma cell lines’ cDNA and their GAPDH expression profiles were kindly 

provided by Nilgün Taşdemir. RT-PCR analysis showed that HANEIN-1 was 

expressed in all breast carcinoma cell lines studied and there was not significant 

expression variation among different cell lines (Figure 3.5). 
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Figure 3.5. HANEIN-1 expression in breast carcinoma cell lines. cDNA from 
different breast carcinoma cell lines were amplified with specific primers (see 
Materials and Methods) and resulting PCR products were analyzed via agarose gel 
electrophoresis.  
 

 

 

3.3.2. Mouse Tissue Expression Analysis by RT-PCR 

Mouse tissue expression analysis was performed with female mouse tissues which 

were kindly provided by Dr. Hani Alotaibi. Reverse transcription of mouse RNAs 

revealed that HANEIN-1 was expressed in all mouse tissues and it showed a high 

level expression pattern especially in thyroid, liver, stomach and lactating mammary 

gland (LMG) (Figure 3.6).  

 

 

 

 

 

 

 

 

Figure 3.6.  Expressional analysis of HANEIN-1 in mouse tissues. Tissue samples 
were ground in liquid N2 and homogenized via teflon-glass homogenizer. RNA 
isolated from homogenized tissue powder was reverse transcribed and cDNA was 
amplified with specific primers for HANEIN-1. Resulting PCR products were 
analyzed by agarose gel electrophoresis. GAPDH was used as a loading control.  
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3.3.3. Human Tissue Expression Analysis by Northern Blotting 

 

HANEIN-1 expression in human tissues was analyzed via northern blotting, which 

was carried out on a human tissue RNA transferred membrane (Human Blot 1, 

Ambion) and biotin labeled probes. In Figure 3.7 probes and their specific targets are 

presented.  

 

 

 

 
Figure 3.7.  Northern blotting probes for HANEIN-1, GAPDH and β-actin. mRNA 
size, 5’UTR, 3’UTR and probe size & location are indicated for each gene.  
 

 

 

Detection with specific probes revealed that HANEIN-1 was ubiquitously 

expressed in human tissues (Figure 3.8). Highest expression level was observed in 

skeletal muscle. In addition to these, HANEIN-1 transcript size was determined as 

approximately 1000 bp. In Genome Browser database at the University of California 

Santa Cruz (Kent et al., 2002), HANEIN-1 transcript is predicted to be 1061 bp, 

consisting of 5 exons (4 coding and 1 non-coding). Our results show that HANEIN-1 

HANEIN-1 mRNA 

GAPDH mRNA 

β-actin mRNA 

1         107 802            1061

1                      265 1 147         1347

1         73 1200                                                1793

401                       782

384                              792

694                                                  1233

381 bp probe

408 bp probe

539 bp probe

5’UTR 3’UTR

5’UTR 3’UTR

5’UTR 3’UTR 
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is ubiquitously expressed as full transcript. Besides, northern blot analysis carried out 

by Dr. Uygar Tazebay on a different membrane revealed that HANEIN-1 was 

expressed as two isoforms in placenta, one 1061 bp form and an additional 950 bp 

form (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Human tissue expression analysis of HANEIN-1 by northern blotting. 
Probes were labeled via biotin and hybridized to Human Blot 1 membrane (see 
Materials and Methods). Detected blots were exposed to X-ray films. β-actin and 
GAPDH were used as internal controls.   
 

 

 

3.4. Immunological Analysis 

3.4.1. Identification of HANEIN-1 Protein via Western Blotting 

 

HANEIN-1 cDNA was previously cloned into pcDNA3 expression vector by Dr. 

Hani Alotaibi. Hep3B liver carcinoma cell line was transfected with HANEIN-1 

expressing plasmid and an immunoblotting experiment was performed with the 

proteins extracted from Hep3B cell line. In order to detect HANEIN-1, an antibody 

previously generated against N-terminal 24 amino acid of the protein was utilized. 

This analysis showed that HANEIN-1 encoded approximately a 33 kDa protein since 
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intensity of this 33 kDa band increased in transfected cell line (Figure 3.9).  In 

addition to a 33 kDa protein band, several upper and lower bands were also detected 

with N-ter specific antibody. Therefore, in order to identify whether these bands are 

specific to HANEIN-1, immunoblotting analysis was repeated with N-ter specific 

antibody blocked with its specific peptide (described in Materials and Methods). It 

was identified that all the bands present in the immunoblot carried out with N-ter 

specific antibody were lost upon blocking the antibody with its specific peptide. 

Based on these results, it may be concluded that antibody recognized all the bands 

with its Fab region, i.e, all the bands may be specific to HANEIN-1 or there can be 

other proteins with the same epitope that can be recognized by the used antibody.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. HANEIN-1 encodes a 33 kDa protein. Proteins isolated from none 
transfected and HANEIN-1 transfected Hep3B cell line were denatured via SDS-
PAGE and then transferred to membranes for immunoblotting analysis. Membranes 
were incubated with N-ter specific antibody and peptide-blocked N-ter specific 
antibody to analyze protein expression. On the left marker sizes were presented (in 
kDa) and calnexin was used as a loading control.       displays the 33 kDa HANEIN-1 
band.  
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3.4.2. Immunoblotting Analysis of HANEIN-1 Labeled with Flag epitope 
 

Flag epitope fused HANEIN-1 protein was analyzed via western blotting by using 

plasmids p3XFlag-Locus and pLocus-3XFlag, which were kindly provided by Dr. 

Hani Alotaibi. In these plasmids, HANEIN-1 was fused with Flag epitope at N-

terminus and at C-terminus. Immunoblotting analysis carried out with anti-Flag 

antibody in Flag epitope labeled HANEIN-1 transfected cell lines displayed that 

labeling of the protein with Flag epitope resulted in a different fragmentation pattern 

of the protein depending on the position of the Flag tag (Figure 3.10). Another 

important result of this analysis was that HANEIN-1 protein expression pattern was 

different for different cell lines, each cell line exhibiting a different intensity for the 

same band.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Flag epitope labeled HANEIN-1 was analyzed by western blotting. 
MCF-7, Hep3B and HepG2 cell lines were transfected with plasmids expressing Flag 
fused HANEIN-1. NT denotes N-ter Flag labeling and CT denotes C-ter Flag 
labeling. Proteins isolated from transfected cell lines were first denatured via SDS-
PAGE, then protein transferred membranes were analyzed by immunoblotting with 
N-ter specific antibody and anti-flag antibody. Calnexin was used as a loading 
control.         displays the Flag tagged HANEIN-1 band, approximately 36 kDa. 
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3.4.3. Subcellular Localization Analysis via Western Blotting 
 

In order to identify HANEIN-1 protein level expression in nuclear and cytoplasmic 

parts of the cell, nuclear extract, cytoplasmic extract and total extract obtained from 

MCF-7 cell line, which were kindly provided by Dr. Hani Alotaibi, were used. 

Immunoblotting performed with N-ter specific antibody showed that HANEIN-1 

might be present in both nuclear extract and cytoplasmic extract (Figure 3.11). In 

order to be sure about the contents of nuclear and cytoplasmic compartments, 

membrane was also detected with anti-RAR-α antibody and anti-calnexin antibody. 

Here, it is expected that retinoic acid receptor-α (RAR-α) localizes in the nucleus and 

calnexin localizes in the endoplasmic reticulum (ER). Detection with anti-RAR-α 

antibody gave results as expected, RAR- α was present in nuclear extract and total 

extract. However, detection with anti-calnexin revealed that calnexin was present in 

all the compartments analyzed. Based on these results, we thought that calnexin 

might not be a good marker in order to discriminate nuclear extract since calnexin is 

an ER protein and nuclear membrane is continuous with ER or another explanation 

may be that nuclear extract might be somehow contaminated with cytoplasmic 

extract. Therefore use of a clear cytoplasmic marker would be essential in the future 

studies.  
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Figure 3.11. Sub-cellular localization analysis of HANEIN-1 via western blotting. 
Total extract (TE), cytoplasmic extract (CE) and nuclear extract (NE) proteins from 
MCF-7 cell line were denatured by SDS-PAGE and transferred to PVDF membrane. 
Membranes were incubated with N-ter specific antibody (for HANEIN-1), anti-
RARα  antibody and anti-calnexin antibody, respectively. Equal loading was not 
taken into consideration for this experiment.  
 

 

 

3.5. Interaction Partners of HANEIN-1 

 

Yeast double hybrid screening performed in Dr. Uygar Tazebay’s lab displayed that 

HANEIN-1 interacted with RASGEF1B. RASGEF1B is described as a guanine 

nucleotide exchange factor for Ras-like small GTPases. However, it is not known 

whether this protein has a similar function with the Son of sevenless (SOS), best 

characterized example of guanine exchange factors catalyzing the exchange of GDP 

to GTP and activating Ras (Bonfini et al., 1992) or other known GEFs since GEF 

domain of RASGEF proteins display characteristic differences when compared to the 

GEF domains SOS and related Ras activating proteins (Epting et al., 2006).  
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3.5.1. Bioinformatics Analysis of RASGEF1B 

 

According to Genome Browser database at the University of California Santa Cruz, 

RASGEF1B has two splice isoforms. First isoform (long form) encodes a 473 amino 

acid protein and second isoform (short form) encodes a 210 amino acid protein. 

SMART analysis of this protein showed that first isoform contained both RASGEFN 

and RASGEF domain, on the other hand, second isoform contained only RASGEFN 

domain (Figure 3.12). RASGEFN domain is described as alpha helical and playing a 

purely structural role according to recent crystal structure of Sos (Boriack-Sjodin et 

al., 1998). RASGEF domain is described as the molecular switch mediating the loss 

of bound GDP and uptake of GTP in SMART.  

 

 

 

A)                                                                                          B)  

      
 
 
    
     
          
 
Figure 3.12. Analysis of RASGEF1B domains via SMART. A) First isoform has 
RASGEFN domain through 33-161 residues, RASGEF domain through 201-454 
residues. B) Second isoform contains RASGEFN domain through 33-157 residues.         
 

 

 

 RASGEF1B is also a conserved protein like its interacting partner, HANEIN-

1. Sequence similarity search via FASTA (Pearson et al., 1988) reveals that there are 

putative uncharacterized proteins having RASGEFN and RASGEF domain even in 

simple eukaryotes. For instance, human RASGEF1B protein sequence has 40 % and 

25 % identities with proteins from C. elegans (Uniprot ID: Q21758) and Aspergillus 

nidulans (Uniprot ID: Q5B8H1), respectively.         
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Expressional analysis of RASGEF1B (first isoform) in Oncomine (Rhodes et 

al., 2004) showed that RASGEF1B expression inversely correlated with expression 

of HANEIN-1 (Figure 3.13), this observation was extremely remarkable for skeletal 

muscle since HANEIN-1 is highly expressed in skeletal muscle (Figure 3.3); on the 

other hand RASGEF1B is expressed at very low levels in skeletal muscle.  

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.13. Oncomine expression profile of RASGEF1B in normal tissues. Bars 
represent expression status for adipose, adrenal gland, bone marrow, bronchus, 
cervix, colon cecum, coronary artery, dorsal root ganglia, endometrium, esophagus, 
heart atrium, heart ventricle, kidney cortex, kidney medulla, liver, lung, lymph 
nodes, mammary gland, myometrium, nipple cross-section, nodose nucleus, oral 
mucosa, ovary, pharyngeal mucosa, pituitary gland, prostate gland, salivary gland, 
saphenous vein, spleen, stomach, testes, thyroid gland, tongue, tonsil, trachea, 
trigeminal ganglia, urethra, vagina, vulva and skeletal muscle, respectively. Asterisks 
show the minimum and maximum values obtained for each tissue.  
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3.5.2. Expressional Analysis of RASGEF1B 

 

RASGEF1B (first isoform) expressional analysis was performed in mouse tissues, 

which were used for HANEIN-1 expression also. This analysis showed that 

RASGEF1B was expressed ubiquitously expressed in mouse tissues. Another 

important finding was that in the tissues where HANEIN-1 expression was high (also 

presented in Figure 3.6) RASGEF1B expression was low (Figure 3.14), which was a 

quite similar observation obtained with Oncomine RASGEF1B expression analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Expressional analysis of RASGEF1B in mouse tissues. Tissue samples 
were ground in liquid N2 and homogenized via teflon-glass homogenizer. RNA 
isolated from homogenized tissue powder was reverse transcribed and cDNA was 
amplified with specific primers for RASGEF1B. Resulting PCR products were 
analyzed by agarose gel electrophoresis. GAPDH was used as a loading control.  
 
 
 
 

In addition to RT-PCR analysis of RASGEF1B expression in mouse tissues, 

RASGEF1B expression was also analyzed by northern blotting (same membrane used 

for HANEIN-1 expression). However, RASGEF1B expression could not be observed 

with RASGEF1B specific probe on the membrane.  

 

 

 

Gapdh

Hanein-1

RasGEF1B

Thy
roi

d

Hear
t

Brai
n

Sple
en

LMG
Kidn

ey

Stom
ach

Lun
g

Live
r



 

 

36

3.5.3. Cloning of RASGEF1B and Validation of Interaction via 

Immunoprecipiation 

 

After obtaining interaction data in yeast double hybrid screening, we decided to 

validate this interaction by immunoprecipitation. In order to carry out this analysis,  

RASGEF1B two isoforms and its very close homolog RASGEF1A were cloned into 

p3XFLAG-CMV14 expression vector. RASGEF1B and RASGEF1A gene products 

were amplified with suitable primers so that resulting products have Not I site and 

Myc epitope at the 5’, and Xba I site at the 3’. Since p3XFLAG-CMV14 plasmid 

contains Flag epitope just after the Xba I site (Figure 3.15), cloned genes also contain 

a Flag epitope at the C-terminus (Figure 3.16). The idea behind this cloning strategy 

is that RASGEF1B interacting proteins can be immunoprecipitated via using Flag 

epitope and immunoprecipitates can be detected via anti-myc antibody.  

 

Yeast double hybrid screening interaction data was validated by Elif Yaman 

in MCF- and Huh-7 cell lines via using prepared vectors.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15.  Schematic representation of p3XFLAG-CMV14 expression vector 
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Figure 3.16. Schematic representation of cloned products. Gene Coding DNA 
Sequence refers to RASGEF1B 1st and 2nd isoform and RASGEF1A. Cloned gene 
products contain Myc epitope at N-ter and Flag epitope at C-ter.  
 

 

3.6. Post-translational Modification Analysis of HANEIN-1 

 

Bioinformatics analysis revealed that HANEIN-1 had several highly expected serine, 

threonine and tyrosine phosphorylation sites. Serine scanning mutagenesis was 

performed for four serine sites with high probability of phosphorylation at positions 

92, 122, 194 and 207 (Table 3.5). Serine sites were site-directed mutagenized via 

converting serines to alanines with PCR-based experimental strategy (see Materials 

and Methods).  Then, site-directed mutagenized plasmids were transfected to Hep3B 

cell line. Outcomes of this experiment were analyzed by carrying out a western blot 

in order to identify the effect of each serine mutagenesis on the stability of the 

protein. 

 

 Western blot analysis carried out with anti-Flag antibody showed that site-

directed mutagenesis of the serine site at position 194 resulted in a significant 

decrease in exogenous HANEIN-1 protein level compared to wild type, in other 

words, it affected the stability of the protein to a great extent (Figure 3.17). Site-

directed mutagenesis of other serine sites also led to a slight decrease in exogenous 

HANEIN-1 level but these are not as significant as the one at position 194.  

 

 In order to exclude the possibility that results of western blot analysis are 

because of different transfection efficiencies of plasmids, neomycin resistance gene 

(present in the site-directed mutagenized plasmids (p3XFlag-Locus)) expression, 

which is expected to be equal for all transfected plasmids, was analyzed by RT-PCR. 

This analysis revealed that transfection efficiencies were approximately same for 

each case (Figure 3.17). 

 Myc  Gene Coding DNA Sequence  FlagN-ter C-ter 
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Figure 3.17. Western blot analysis of serine scanning mutagenesis. Serines at 
position 92, 122, 194 and 207 were site-directed mutagenized and site-directed 
mutagenized plasmids were transfected to Hep3B liver carcinoma cell line. Proteins 
isolated from transfected cell lines were analyzed by western blotting with anti-flag 
antibody. Calnexin was used as an internal control. Neomycin RT-PCR analysis was 
carried out in order to test transfection efficiencies.  
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4. DISCUSSION 

 

 

4.1. Expressional Analysis 

 

Expressional studies carried out in breast carcinoma cell lines, mouse and human 

tissues showed that HANEIN-1 was ubiquitously expressed. Northern blot analysis 

revealed that ubiquitously expressed HANEIN-1 transcript size was 1061 bp (Figure 

3.8). In addition to these, there was an approximately 950 bp form in placenta. At 

this point, this additional transcript may be formed via alternative splicing or 

alternative transcription start sites. HANEIN-1 contains 1 non-coding and 4 coding 

exons. First exon (non-coding) and fourth exon are relatively short (100 bp) (Figure 

4.1). It may be possible that fourth exon is not included in the additional transcript or 

there may be an additional transcriptional start site in the intron just after the first 

non-coding exon. Actually, it seems that intronic region between first and second 

exon may contain a TATA-box like region (Dr. Uygar Tazebay and Dr. Hani 

Alotaibi, personal communication).  

 

 

 

 

 
Figure 4.1. Exon and intron structure of HANEIN-1. Coding-exons are shown as red 
boxes and non-coding (5’ UTR or 3’ UTR) exons are shown as blue boxes. Box sizes 
are proportional to exon sizes and a representative scale is shown at the top of the 
first exon. Introns are presented as a line and a putative TATA-box region in the first 
intron is shown as a light blue box.   

TATA5’ 3’
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Besides providing information about the expression status of HANEIN-1 in 

human tissues, northern blotting revealed that both GAPDH and β-actin were not 

good choices as internal controls. We had different GAPDH and β-actin 

expressionprofiles for each tissue although we had equal (2 µg) polyA mRNA on the 

membrane. In fact, choice of the housekeeping gene for normalizing expression data 

depends on many factors such as total RNA used and type of the tissues analyzed so 

it is not expected that selected house-keeping gene is expressed in a similar pattern in 

every tissue (Herrera et al., 2005).  

 

Both northern blot analysis and Oncomine expression analysis resulted in a 

remarkable expression of HANEIN-1 in skeletal muscle. Identification of biological 

significance of this finding requires more experimental data. However, the first idea 

that comes to mind is the probability of its involvement in muscle movement, Ca++ 

signaling or glucose utilization since skeletal muscle is in question. At this point, it 

may be argued that heart is another tissue which has muscle movement, but 

HANEIN-1 expression in heart is not as remarkable as in skeletal muscle. Since heart 

muscle does not depend on motor neurons to be stimulated, HANEIN-1 may be also 

involved in transmittance of neural impulse to skeletal muscle fiber. 

 

4.2. Immunological Analysis 

 

HANEIN-1 protein size was determined as 33 kDa by performing a western blot with 

an antibody specific to N-ter of this novel protein. Beside this 33 kDa band, detection 

with N-ter specific antibody reveals several upper bands also (Figure 3.9). 

Furthermore, all the bands become lost after the blockage of the antibody with its 

specific antibody. If all these bands belonged to HANEIN-1, one of the most 

challenging questions would be why intensity of upper bands did not change after 

transfection. At this point, upper bands might be the regulated forms of HANEIN-1 

so that protein dosage does not change even if cells are transfected with vectors 

expressing HANEIN-1. SUMOPlot analysis of HANEIN-1 resulted in several 

possible sumoylation sites (Table 3.4). In this context, upper size bands might be 
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sumoylated forms of HANEIN-1 and this hypothesis can be investigated via carrying 

out immunoprecipitation experiments with anti-sumo antibody. In addition to these, 

HANEIN-1 can be present in the cell as dimers and this question can be addressed 

via carrying out a native PAGE.   

 

Immunoblotting analysis performed with Flag fused HANEIN-1 showed that 

addition of a Flag tag affected the stability of the protein. Furthermore, depending on 

the position of the Flag tag fragmentation pattern of the protein changed (Figure 

3.10). Based on these observations a model of proteolytic cleavage can be put 

forward such that when Flag epitope is at N-terminus, Flag fusion protein 

(approximately 36 kDa) is cleaved to 20 kDa (detected with anti-Flag) and 16 kDa 

(not detected with anti-Flag) fragments (Figure 4.1A), on the other hand when Flag 

epitope is at the C-terminus, a 2 kDa fragment is cleaved from the protein and the 

remaining 34 kDa protein can be detected with anti-Flag (Figure 4.1B). Upon 

inspecting Figure 3.9, it can be realized that there are additional cleavage fragments 

other than the ones included in this model. However, the ones in this model are only 

the major fragments which can be detected at higher intensities and at all the cell 

lines studied. Another important question may be the reason why 20 kDa fragment 

obtained when Flag epitope is at N-ter can not be observed with N-terminus specific 

antibody. At this point, it can be argued that this observation may be related to film 

exposure time. 

 

 

 

 

 

 

 

 

 

 



 

 

42

A) 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

Figure 4.2. Model for proteolytic cleavage pattern of HANEIN-1. A) Flag tag is at N-
terminus. B) Flag tag is at C-terminus.  
 

 

4.3. Subcellular Localization Analysis 

 

In this study, subcellular localization analysis of HANEIN-1 was carried out via 

immunoblotting. Nuclear, cytoplasmic and total extract proteins were detected with 

N-ter specific antibody. Results showed that HANEIN-1 definitely localize in 

cytoplasm. However, we are not quite sure about nuclear localization since we have 

problems in discrimination of cytoplasmic and nuclear compartments. 

 

Bioinformatics analysis reveals that this protein likely to localize in nucleus 

with 84% probability. Besides, SMART predicts that HANEIN-1 has DUF1014 

domain which is a member of clan HMG-box and HMG-box family contains various 

DNA binding proteins including transcription factors and subunits of chromatin-
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remodeling complexes (Stros et al., 2007). On the other hand, immunofluorescence 

microscopy analysis performed in our laboratory shows that HANEIN-1 mostly 

localizes in the cytoplasm. According to microscopy analysis, nuclear localization of 

HANEIN-1 in the nucleus is very rare, 2 % (Dr. Hani Alotaibi, personal 

communication. Also confocal microscopy analysis reveals that HANEIN-1 mostly 

localizes in the perinuclear region (Elif Yaman, personal communication). 

 

Although bioinformatics analysis predicts HANEIN-1 as a nuclear protein, 

our experimental analysis remarkably shows that HANEIN-1 localizes in the 

cytoplasm. However, localization of a protein in the cytoplasm does not necessarily 

mean that cellular function of the protein is in the cytoplasm. For instance, β-catenin 

localize in the cytoplasm without Wnt signal, on the other hand after the cell receives 

the signal, it translocates to nucleus and forms a complex with LEF-1 transcription 

factor (Huber et al., 1996).  

 

4.4. Interacting Partners of HANEIN-1 

 

It was identified that HANEIN-1 interacted with RASGEF1B by yeast two-hybrid 

screening. Besides, immunoprecipitation experiments performed in our laboratory 

confirmed this interaction. Although it has a RASGEF domain, mediating the 

exchange of GDP to GTP, there is not much known about RASGEF1B and it is not 

known whether it carries out a similar function with Sos. There are only a few 

studies on RASGEF1B.  In one study, RASGEF1B embryonic expression in 

zebrafish was investigated and it was shown that RASGEF1B expression varied 

depending on the developmental stage and zygotic expression was regulated by 

Nodal and FGF signals (Epting et al., 2006). In another study, it was shown that 

E2F1 upregulated RASGEF1B expression and this RASGEF1B upregulation 

resulted in Ras activation (Korotayev et al., 2008). However, although this paper 

provides direct evidence concerning RASGEF1B upregulation by E2F1, direct 

evidence which shows that Ras activation is in fact carried out by RASGEF1B is not 

presented. Finally, there is a paper investigating its quite close homolog RASGEF1A 
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enhanced expression in intrahepatic cholangiocarcinoma and displaying that it 

activates K-RAS, H-RAS, and N-RAS in vitro (Ura et al., 2006).  

 

 In several databases, RASGEF1B is also named with a synonym- GPI 

gamma-4. GPI gamma-4 was first identified in a study investigating transcripts 

abundant in macrophages exposed to Trypanosome cruzi parasites in mouse (Ferreira 

et al., 2002). It was a novel single-copy gene conserved in mouse and human 

genomes, encoding a protein with homology to guanine exchange factors and bearing 

a Ras-GEFN and Ras-GEF domain. Expression of GPI gamma-4 was also confirmed 

in mouse and human tissues. It was identified that expression of GPI gamma-4 gene 

was enhanced during activation of lymphoid and myeloid cells. Furthermore, it was 

claimed that induction of GPI gamma-4 most probably occurs through NF-κB since 

promoter region of GPI gamma-4 contained 3 NF-κB binding sites. On the whole, 

this study may be important in terms of providing some hints about function of 

HANEIN-1 since our protein interacts with RASGEF1B.  

 

 

Mouse tissue expression analysis revealed that RASGEF1B was expressed 

ubiquitously like HANEIN-1. On the other hand, there was an inverse correlation 

between expression profiles of HANEIN-1 and RASGEF1B, which was also observed 

by Oncomine analysis. There may be multiple explanations for the observed 

transcriptional level expression. However, regarding the cellular functions of 

RASGEF1B and HANEIN-1, it may be argued that these two proteins interact 

because one functions to inhibit the functioning of the other based on this inverse 

gene expression profiles of HANEIN-1 and RASGEF1B.  

 

4.5. Post-translational Modification Analysis 

 

Serine residues of HANEIN-1 with high probability of phosphorylation were site-

directed mutagenized and possible involvement of these modifications in the 

exogenous protein stability was investigated by performing a western blot. This 
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analysis showed that site-directed mutagenesis of the serine residue at position 194 

resulted in a significant decrease in exogenous HANEIN-1 protein level. At this 

point, it should be noted that site-directed mutagenized plasmids have Flag epitope 

before HANEIN-1 ORF therefore, exogenous HANEIN-1 was detected with anti-

flag antibody at N-terminus. On the other hand, we can not exclude the possibility of 

obtaining different exogenous HANEIN-1 protein stability profile upon carrying out 

the same site-directed mutagenesis on HANEIN-1 having the Flag epitope at the C-

terminus. 

 

 Among the site-directed mutagenized serine residues, serine at position 92 

has been shown to be phosphorylated by mass spectrometry (Molina et al., 2007). In 

this context, our results show that site-directed mutagenesis of serine at position 92 

does not seem to affect the protein stability at a significant level although it is 

phosphorylated.  

 

4.6. Conclusions and Future Perspectives 

In conclusion, HANEIN-1 is a highly conserved protein, it is ubiquitously expressed 

and most probably subject to post-translational modifications.  Although a certain 

conclusion about its function can not be achieved, its interaction with RASGEF1B 

point out to a possible involvement in Ras pathway.  

One of the major goals of our future studies is to knock-down HANEIN-1 by 

a siRNA strategy and to analyze effects of this disruption via observing cellular 

morphology, lethality, etc. and investigating possible interference with RASGEF1B 

interaction and Ras pathway. 

Another important point would be to identify whether RASGEF1B activates 

Ras. This can be easily identified by designing an in vitro Ras dissociation assay 

(Hall et al., 2001). Once we identify that RASGEF1B activates Ras, we may perform 

experiments investigating whether HANEIN-1 functions downstream or upstream of 

Ras. At this point, siRNA knock-down strategy may be very effective. For instance, 
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if HANEIN-1 functions upstream of Ras, knock-down of HANEIN-1 may affect the 

activation of Ras at a certain degree after the Ras activating signal (for example 

EGF) is received.  On the other hand, if HANEIN-1 functions downstream of Ras, 

down-regulation of HANEIN-1 may affect the activation of Ras effectors and this 

can in turn be reflected by expression profiles of genes activated by Ras.  

Finally, one of the long term goals is to conditionally knock-out HANEIN-1 

in mouse. With this study, we aim to characterize HANEIN-1 function at the 

organism level and to analyze the effect of HANEIN-1 function loss in a tissue 

specific manner.  
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