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ABSTRACT

LINE SEGMENT BASED RANGE SCAN MATCHING WITHOUT POSE

INFORMATION FOR INDOOR ENVIRONMENTS

İskender Yakın

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Uluç Saranlı

July, 2008

A mobile robot exploring an unknown environment often needs to keep track of its pose

through its sensors. Range scan matching is a way of computing the pose difference of a

robot at two different locations on the navigation path by finding common features observed

in range sensor readings recorded at these locations. In this thesis, we introduce a new

algorithm which computes this pose difference by matching common line segments extracted

from two laser range scans taken from two different but unknown poses. In this algorithm,

matching is performed by exploiting invariant geometric relations among line segments. The

use of line segments instead of range points also reduces the computational complexity of de-

termining the pose difference between two distinct scans. Compared to other scan matching

algorithms, our method presents a powerful means for global scan matching, map building,

place recognition, loop closing and multirobot mapping, all in real-time.

Keywords: Scan Matching, feature extraction, mapping, localization, geometric relations,

laser scan processing.
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ÖZET

İÇ MEKANLAR İÇİN DOĞRU PARÇASI TABANLI MESAFE
TARAMALARININ EŞLENMESİ

İskender Yakın

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Uluç Saranlı

Temmuz, 2008

Bilinmeyen bir ortamda keşif yapan seyyar bir robot, almaçları vazıtasıyla konumunu

takip etmek durumunda kalabilir. Mesafe taramalarının eşlenmesi, robotun geçtiği seyir yolu

üzerindeki iki farklı mevkide kaydedilen mesafe almacı kayıtlarında ortak olan özniteliklerin

bulunmasıyla, bu mevkiler arasındaki konum farkının hesaplanmasıdır. Bu tezde, bilin-

meyen ve farklı konumlarda kaydedilmiş lazer mesafe taramalarından çıkartılan, ortak doğru

parçalarını eşleyerek konum farkını hesaplayan, doğru parçası tabanlı bir mesafe taraması

eşleme algoritması sunulmaktadır. Bu algoritmada eşleme işlemi, doğru parçaları arasındaki,

geometrik ilişkiler olarak adlandırdığımız, değişmez geometrik öznitelikler kullanılarak gerçek-

leştirilmektedir. Mesafe noktaları yerine bu noktalara oturtulan doğru parçalarının kul-

lanılması iki farklı tarama arasındaki konum farkını kestirmek için yapılan hesaplamaların

karmaşıklığını azaltmaktadır. Diğer mesafe taraması eşleme algoritmalarıyla kıyaslandığında,

bizim metodumuzun küresel tarama eşleme, harita oluşturma, yer tanıma, döngü kapatma

ve çoklu robot ile haritalama problemlerinin gerçek zamanlı çözümleri için etkili bir altyapı

sunduğu görülmektedir.

Keywords: Tarama eşleme, öznitelik çıkartma, haritalama, konumlanma, geometrik ilişkiler,

lazer taramsı işleme.
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Chapter 1

Introduction

An autonomous mobile robot is a system which perceives its environment in order to use

acquired information for solving a given task. For a mobile robot, autonomous navigation in

its environment is one of the most important of all tasks. Robot navigation means the ability

of a robot to determine its own pose (position and orientation) in its frame of reference and

then to plan a path toward some goal location. As a result, pose estimation is a fundamental

problem for autonomous navigation of most mobile robots.

In order to estimate pose, researchers and engineers have developed a variety of systems,

sensors, and techniques. These can be categorized into two groups: relative (dead reck-

oning) and absolute pose estimation (reference-based systems) [7]. The fundamental idea

behind relative pose estimation is the integration of incremental motion information over

time, inevitably leading to unbounded accumulation of errors, so that the reliability of pose

estimation decreases over distance [25]. Among absolute pose estimation techniques, Map

Based Positioning is the only one which does not require the installation of a positioning

aid such as magnetic compass, or the deployment of external references such as active bea-

cons. Map based pose estimation can be accomplished by the use of active (laser scanners,

ultrasonic or infrared sensor rings) or passive (stereo vision, binocular vision cameras) range

sensors that may already be installed on a mobile robot platform for environmental sensing

tasks such as obstacle detection and avoidance. By interpreting data acquired from these

sensors, natural landmarks (walls, corners, corridors, etc.) present in an indoor environment

can be identified and used as external positioning references.

Generally two methods, one from each pose estimation category, is combined due to the

lack of a single good method. Map based positioning techniques are mostly coupled with

odometry which is among most widely used relative pose estimation method. It provides

good short-term accuracy, is inexpensive, and allows very high sampling rates. When using

odometry as the basis for this combined system, the maintenance of accurate pose estimation

1



CHAPTER 1. INTRODUCTION 2

over time and distance depends on the accuracy, reliability and sampling speed of the range

sensor along with the robustness and running-time of the chosen map matching technique.

Robots frequently use active sensors for more reliable range sensing since passive sensors

suffer from image intensity variation due to illumination noise, insufficient feature infor-

mation on environment composed of plain surfaces, and correspondence problem between

multiple images. In many approaches to indoor robot applications, laser scanners have been

preferred for detailed sensing and object modeling, due to better range accuracy, denser

range data and very high sampling rates compared to other active range sensors.

Robustness of a map matching method employing a laser range scanner is dependent on

the robustness of the underlying range scan matching algorithm. A range scan (or simply

a scan) is a finite sequence of numbers, where each element is a number representing the

distance to the nearest obstacle in the direction associated with this element. The assignment

of angles to elements in this sequence is in a consecutive manner and evenly spaced. Scan

matching is the estimation of a robot’s pose by matching a pair or range scans. The first

scan, Sr, serves as the reference scan whereas the second scan, Sc, is called the current scan.

Sc is matched against Sr in order to find the pose of Sc relative to Sr. The result of the

match is a pose correction to the current robot pose. Furthermore, once Sc is aligned over

Sr, it is merged with the map.

The correctness of this scan alignment determines how precisely the pose difference is

estimated and also depends on the representation of range scans. Instead of points, repre-

senting a range scan with fitted line segments improves the precision of the alignment by

reducing the drift of points from ideal line segments. A line segment is a simple feature. Con-

sequently, maps based on line segments represent a middle ground between highly reduced

feature maps and massively redundant raw sensor-data maps. Clearly, line segment based

maps are most suited for indoor applications, or structured outdoor applications, where ob-

jects with straight surfaces comprise many of the environmental features. Relatively simple

representation of line segments also reduces the computational complexity of associated scan

matching algorithms.

This thesis introduces a new method for robust global range scan matching by using geo-

metric relations derived from line segments fitted to range scan data. The basic idea behind

our method is the observation that, if common line segments corresponding to static struc-

tures in the environment exist in both line segment sets extracted from two distinct range

scans recorded at different poses, then the relative geometry between those line segments

must remain the same in both observations. Naturally, there will be noise and dynamic ob-

stacles in each observation, which may result in false line segments. There may also be valid

line segments which are not common to both observations due to the different viewpoints

from which they were taken. The aim, therefore, is to find a one-to-one mapping of line seg-

ments common to both scans. This is done by selecting the largest subset of line segments

where geometric constraints between line segments are mutually satisfied. Our method is
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also capable of matching scans in real time without any pose information.

Even though odometric information is often available, one of the reasons for focusing

on pure scan matching methods is that we want to be able to use the same or a modified

version of our method for different tasks such as global scan matching, map building, place

recognition, loop closing and multirobot mapping. Another reason is that, sometimes it may

be desirable to interrupt one of these tasks and resume it at a later time without having to

reset the initial pose(s) of the robot(s). This provides a solution to the so-called kidnapped

robot problem [11].



Chapter 2

Overview of Scan Matching

Techniques

In a pure geometric sense, scan matching is the process of finding a rotation θ and a trans-

lation T maximizing the overlapping of two groups of two dimensional data sets. Following

this interpretation, scan matching approaches can be classified according to methods used to

find the maximum overlap between the two scans. These methods can be further classified

with respect to their use of odometry.

2.1 Scan Matching with Odometry

Scan matching methods relying on relationships between feature sets of current and refer-

ence scans (or map), require an accurate initial estimate for the displacement provided by

odometry, because as the displacement between scans increases, the accuracy of feature rela-

tionships decreases. This results in incorrect correspondences between features which means

an erroneous matching of scans.

2.1.1 Iterative Approaches

A well-known scan matching method is the iterative method presented in [8] for matching

range scans to an a priori map of line segments. This method depends on odometry for

estimating the initial alignment of the current scan. The current scan is matched to the

map iteratively by finding the correspondences between scan points and line segments in the

map. In each iteration, the translation and rotation that minimizes the total squared point

to line segment distances are computed based on these correspondences. These two steps are

4
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repeated until the procedure converges. This approach was extended in [12]. Instead of using

an a priori map, scan points in the current scan are matched to line segments extracted from

previous scans. The major limitation of these methods is that they can only be applied only

to polygonal environments.

The method proposed in [18] also matches the current and reference scans iteratively

by using a least squares method similar to [8]. This method iteratively minimizes an error

measure by first finding a correspondence between points in the reference scan and points in

the current scan, and then doing a least squares minimization of all point-to-point distances

to determine the best pose difference. An initial pose estimate is provided through odometry

to avoid erroneous alignments. The computation cost of IDC is high and the method does

not seem to be suited for polygonal environments. This method is extended in [6] by reducing

noise sensitivity of original IDC and by refining it to cope with dynamic environments.

2.1.2 Histogram Matching Approaches

The method proposed in [28] uses points to represent range scans. This method first creates a

histogram of angles between consecutive point pairs. Rotational difference between the scans

is computed by correlating angle histograms across two scans through a cross correlation

function. For computing translation, x and y coordinate histograms of points are compared.

This method requires a good initial position estimate since the cross correlation function

tends to produce incorrect results in the presence of large displacements between scans. The

major drawback of this method is that the algorithm performs well only in environments

that consist of straight perpendicular walls. The other drawback is that it only allows for

minor changes in the environment.

The improvement in [22] deals with non-perpendicular walls, even though it still assumes

straight walls and shows poor performance in scattered environments. In [23], an extension

to the method is proposed. Instead of matching two complete scans, a projection filter [17]

is first applied two both scans. Based on an estimated offset between both scan poses, this

new method removes all points from one scan that result from surfaces that cannot be seen

from the recording position of the other scan and vice versa. Then, instead of only using

neighboring scan points, line segmentation is applied to determine the orientations of the

surfaces. The resulting lines are used to calculate the histograms. This method relies only

on odometry for initial position estimate and runs in real-time.
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2.1.3 Closest-Feature Matching Approaches

The closest feature matching approach presented in [31] matches two sets of line segments

corresponding to the current scan and a global map, respectively. In order to find corre-

sponding line segment pairs, line segments in the current scan are first updated with respect

to odometry. Subsequently, a matching check is performed for each current line segment

against lines in the global map, based on the directions and distance between center points

of line segments. Once matching line segments are found, rotational difference is computed by

averaging angular differences between matching line segments. The Weighted Least Squares

method is used to find the translational difference. A special center of gravity representation

is used to describe the uncertainty of line segments and variances on the center of gravity

are used as weighting factors. The method proposed in [27] refines the alignment of scans

by using the partial Hausdorff distance, computed on the original laser data and finds the

best alignment between the global map and the current scan. This method also requires an

initial estimate of the pose of the scans.

Similar to [31], the method proposed in [4] matches two sets of line segments correspond-

ing to the current scan and the global map by correlating closest line segments with respect

to their midpoints, assuming that the pose estimate of the current scan is close enough to

the real pose such that new line segments match up with their counterparts in the map.

The relative orientation of the two maps is determined by computing a histogram of angle

differences and then the translation is adjusted by overlapping the midpoints of line segments

using least square minimization. The method works for linear and static environments and

for very small displacements.

2.1.4 Probabilistic Approaches

The probabilistic line segment matching method presented in [9] depends on odometry for

initial alignment of current scan over reference scan assuming that range data is obtained in

small displacements and the odometry error is small. After the initial alignment step, the

total probability of pairing two segments is computed. Pairing probability is the product of

probabilities of three different characteristic factors: parallelism, parallel distance and over-

lapping length of line segments. This method produces a probability table from computed

pairing probabilities and selects line segment pairs with higher probabilities as correct line

segment matches.
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2.2 Scan Matching without Odometry

There are also several attempts to match scans in the absence of any pose information. All

scan matching methods which do not require an initial pose estimate rely on relative feature

relationships defined within the same feature sets of current and reference scans. Matching is

done by correlating two sets of relative feature relationships, which in turn enables correlating

features between current and reference feature sets.

2.2.1 Pattern Recognition Approaches

The method proposed in [10] uses a panorama laser range finder and identifies line segments

representing linear structures in the environment. A line segment map of the environment

is created by matching two sets of line segments without any additional data about the

poses of corresponding range scans. This is accomplished by pattern matching and pattern

recognition on line segment sets through a dynamic programming algorithm. In this context

the term pattern denotes the set of line segments. The matching of two patterns is done by

finding the optimal path through a matrix of grid points which is spanned by the similarity

measures between line segments sets as a cost function of Hesse normal representation pa-

rameters. The method operates in polygonal or rectilinear environments, but does not work

well in scattered environments. It also relies on small displacements of the robot.

2.2.2 Shape Matching Approaches

In [15], a comprehensive geometric model for robot mapping based on shape information is

presented. Polygonal lines, called polylines, serve as the basic representation of shape as a

structure of boundaries. Matching two shapes means matching two ordered sets of polylines

againts each other according to their similarity. The similarity measure utilized in this ap-

proach is based on a measure introduced in [16]. To compute the basic similarity measure

between two polygonal curves, the best possible correspondence of maximal left or right arcs

are established. Computing the actual matching of two structural shape representations ex-

tracted from scan and map is done by finding the best correspondence of polylines respecting

a cyclic order. This method is also capable of matching polylines in the absence of odometry

by means of the distinctive property of shape similarity.

2.2.3 Graph Theoretic Approaches

The data association algorithm presented in [5] operates purely through the matching of

relative constraints and feature types (points and line segments), having the effect of enabling
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batch data association without a priori knowledge of the relative pose between data sets.

This method is valid when features are observed as a batch observation such that they

have accurate relative geometric information. The mapping of common features between

two feature sets is transformed into the graph theoretic problem of finding the maximum

common subgraph (MCS) which, in turn, can be represented as a maximum clique problem.

Another graph theoretic approach presented in [14] matches current scan with one of the

reference scans by identifying the maximum matching subgraphs in the set of all reference

graphs. Graphs are constructed by anchor points, which are feature positions corresponding

to edges in the environment. This method defines three types of anchor points: jump, angle

and virtual edge anchor points. Anchor points are detected through angle histograms as

described in Section 2.1.2. Distances between anchor points form the edges of the corre-

sponding graph. In environments which do not provide a sufficient number of anchor points,

alignments cannot be determined.

2.2.4 Relative-Geometry Matching Approaches

The scan matching method proposed in [30] matches two scans without odometry by using

geometric features based on line segments, also called Complete Line Segment (CLS) rela-

tionships. The method singles out complete line segments that represent complete linear

structures in the environment and uses them to match between the local and global maps.

Line segments are sorted in a counterclockwise fashion in both maps in order to improve

search efficiency. Matching between the current range scan and the global map is based on

relative position relationships of line segments in both maps. Relative position relation of a

CLS to another CLS consists of three parts: relative position of center point to line segment,

relative orientation of line to line segment and relative length of line segment to line segment.

For each line segment in the local map, a consistent line segment in terms of its length in

the global map is selected as a candidate match and the likelihood of trial localization is

computed by testing whether other line segments in the local map has corresponding line

segments in global map based on this trial localization. Finally, the trial localization with

the maximum likelihood is singled out as the best matching between the current scan and

the environment map. The position of the current scan is computed based on the maximum

likelihood. The method has been shown to be fast and accurate. However, it cannot handle

partially visible line segments and causes a significant amount of data loss in environments

with occluded objects. This method cannot be extended to multirobot map building with

unknown poses of the robots, since it is based on a sorting order of line segments to improve

its search efficiency. Sorting order also eliminates the potential use of line segments in closed

line segments cluster such as linear columns present in the environment, since such clusters

change the sorting order of line segments in local map depending of the pose of the current

scan.
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Another geometric approach proposed in [3] only uses angles between line segment pairs

to match the current and reference scans. This method computes relative angles between

line segments within the same set corresponding to either the current and the reference scan.

A possible transformation is determined for the current scan for each equal relative angle

and the total length of overlapping line segments between line segment sets is computed in

order to evaluate the correctness of the transform. The method is extended in [1] to build a

global map of an environment. A further extension in [2] is capable of building global maps

with multiple robots without using any knowledge about relative poses of robots.

2.2.5 Geometric Hashing Approaches

The method presented in [26] extends the geometric hashing technique of [29], originally

developed for computer vision to match geometric features against a prior database. The

main idea is a signature representation of the local region around each point in the scan.

The search for the best alignment between two scans is performed with a voting system in

the Hough space containing all the signatures. Even though this method does not require

an initial pose estimate, it is implicitly based on the assumption of small pose difference

between two scans.



Chapter 3

Extraction of Geometrical

Primitives

As described in Section 2.2, pure scan matching can be used to find the difference between

two distinct robot poses as in Figure 3.1 without any other pose information. Matching of two

range scans recorded at different poses requires the identification of geometrical primitives

common to both scans. Once relative poses of common geometrical primitives are found, it

is easy to find the pose difference between the two scans.

Line segments and edges are among the most basic geometrical primitives that can be

extracted from a range scan. While finding common line segments is enough to determine

the rotational difference, common edges help compute the translational difference as well.

Figure 3.1: Two distinct robot poses on a 2D map. The reference pose stands for the
first location visited by the mobile robot. The current pose is the current location of the
robot. If the reference pose (x, y, θ)r is known, the current pose (x, y, θ)c can be computed
by updating (x, y, θ)r with the pose difference (x, y, θ). (x, y, θ) is also the absolute pose
difference between two poses assuming that (x, y, θ)r is (0, 0, 0).

10
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3.1 Sensing The Environment

Active range measurement is one of the most common sensory modalities available to mobile

robots. Laser range-scanner is a popular active range sensor which produces range scans

consisting of a set of points expressed in polar coordinates. In order to extract geometrical

primitives from such a range scan, it should first be transformed to points on the cartesian

(x, y) coordinate plane. The following sections describe all the steps starting from how a

laser range scanner sweeps the environment, to how to get the points in (x, y) coordinates.

3.1.1 Laser Range Scanners

A laser range-scanner is a sensor which uses a laser beam in order to determine the distance

to a reflective object. It operates on the time of flight principle by sending a laser pulse in a

narrow beam toward the object and measuring the time taken by the pulse to be reflected off

the target and returned back to the sender. In our experimental setup, we use a SICK LMS

221 range finder (shown in Figure 3.2(a)) mounted on a Pioneer 3AT mobile robot platform

at a height of approximatively 100 cm.

(a) (b)

Figure 3.2: (a) SICK LMS 221 2D Laser Range-Scanner. (b) A range scan is the raw output
of a laser range scanner consisting of a finite sequence of numbers representing the distance
to the nearest obstacle in a particular direction.

3.1.2 Range Scans

A range scan is the raw output of a laser range scanner. As described in chapter 1, it

is a finite sequence of numbers, where each number represents the distance to the nearest

obstacle in the associated direction. The assignment of angles α to elements in this sequence

is illustrated in Figure 3.2(b). Range values correspond to distances measured by a laser

beam sweeping a 180◦ angular area in the counterclockwise direction at 1◦ intervals. A set
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of points expressed in polar coordinates is the result of a complete laser sweep. The origin

of the coordinate frame is usually the range finder itself.

3.1.3 Transforming Range Data to Points on the Plane

A 2D laser range finder sweeps the environment in the counterclockwise direction. Each

sweep is called a range scan and consists of a list of n range values {r0, r1, r2, ..., rn}. Every

range value ri corresponds to the distance to an obstacle hit by the laser beam shot at

an angle i.α where α is the constant angle between two laser shots as in Figure 3.2(b).

Thus, a range scan describes a 2D planar slice of a 3D environment. In order to get a good

computational and visual representation, each range value ri is transformed to a point pi on

the (x, y) coordinate plane as in Figure 3.3 where we define

pi = ri.

[
cos(i.α)

sin(i.α)

]
.

Figure 3.3: A point pi is composed of x and y components computed according to the
associated angle α.i.

At the end of this phase, we get a list of points P = {p0, p1, p2, ..., pn}, corresponding to

range values (as shown in Figure 3.4(a) for Sc). Figure 3.4(b) shows the points transformed

from Sr. Note that the laser range finder is at the center of the (x, y) plane and oriented

towards the positive y axis as illustrated in Figure 3.3.

3.2 Extraction of Line Segments

The distribution of points obtained from a range scan reflect the structure of the environment

in which the corresponding range scan was recorded. If the environment is structured (with
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Figure 3.4: (a) Points transformed from Sc and (b) points transformed from Sr.

walls, doors, etc.) and points are dense enough to support assumptions about the geometry

of the structure, then the range scan can be represented by higher level primitives such as

line segments.

Indoor and structured outdoor environments are usually rich in linear structures. Scanned

by a 2D range finder, these linear structures can be extracted by detecting sets of consecutive,

collinear points. Fitting a line to each of these point sets yields a set of line segments in the

range scan. In order to detect points corresponding to line segments, we use the Split and

Merge algorithm given in [19], also shown below in Algorithm 1. This is the most popular

line extraction algorithm, first introduced in 1974 in the context of computer vision [20].

This algorithm detects line segments in a range scan by first finding their endpoints. Points

that are farthest from the line currently being fitted are assumed to be endpoints. Once a set

of points that belong to a line is identified, the least-squares method is used for determining

the associated line. After all line segments are extracted, collinear line segments are merged.

Algorithm 1 shows the main steps of the algorithm.

Algorithm 1 Split-and-Merge

1: Initial: set A consists of n points. Put A in a list L.
2: Fit a line to the next unprocessed set Ai in L.
3: Detect point pj with maximum distance dpj to the line
4: If dpj is less than a threshold t, go to 2
5: Otherwise, split Ai at pj into Ai1 and Ai2, replace Ai in L by Ai1 and Ai2, go to 2
6: When all line segments have been cheched, merge collinear line segments.

Figure 3.5(a) and Figure 3.5(b) show line segments extracted from Sc and Sr respectively.
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Sym. Description
Sx Scan x, where x ∈ {r, c} denotes the scan type.
ri ith range value in a scan
P Point list extracted from a single scan
pi Point transformed from ri

L Line segment list extracted from a single scan
lk kth line segment in a scan

i(k,m) Intersection of line segments lk and lm
Gx Geometrical relation set of scan x
gx A geometrical relation in Gx

Table 3.1: Notational definitions. r and c denote reference and current scans respectively.
i ∈ [0, n] denotes range value index in a scan. k is the extraction number of a line segment
in the counterclockwise direction.

After fitting to the range scan data, every line segment li (colected in a line segment list

L) within a single range scan, is identified by its extraction number i, its start point si and

end point ei as illustrated in Figures 3.5(a) and 3.5(b).

We identify si and ei of li to be either edge points or interior points based on their

structural relation to the range scan. An edge point of a line segment stands for a visible

corner in the environment formed by the intersection of two linear structures one of which

is represented by that line segment. If both start and end points of a line segment are edge

points, then this line segment is a complete line segment with length � corresponding to a

complete linear structure shown in Figure 3.6. In contrast, an interior point is any point of

a line segment which does not represent an actual edge. The start and end points of a line

segment can be interior points if the corresponding linear structure in the environment was

only partially seen by the sensor as a result of occlusion caused by closer objects. If, at least,

one of the start and end points of a line segment is an interior point, then the length of the

whole linear structure represented by that line segment cannot be determined.

3.3 Extraction of Edges

In the context of line segment based representation, an edge is an endpoint of a 2D linear

structure corresponding to a corner of a 3D flat object such as a wall. Edges are among the

geometrical primitives used in our method. An edge extracted from line segments can be an

Angle Edge, a Jump Edge or a Virtual Edge as shown in Figure 3.7. While angle edges and

jump edges correspond to real structures such as corners of objects, a virtual edge stands for

a virtual corner as the intersection of line segments corresponding to the linear structures in

the environment.

• An Angle Edge appears in a scan when both enclosing planar object surfaces are
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(a) (b)

Figure 3.5: Line segments extracted from (a) Sc (b) and Sr. A line segment li is uniquely
identified by its extraction number, its start point si and end point ei. Line segments are
numbered according to the order of extraction in the counterclockwise direction.

Figure 3.6: Start or end point of a line segment is either an edge point or an interior point.

visible. It is the intersection i(k,k+1) of two consecutive line segments lk and lk+1 such

that the end point of lk and the start point of lk+1 are consecutive points pj and pj+1

respectively, and i(k,k+1) lies between two laser beams corresponding to points pj and

pj+1.

• A Jump Edge represents a corner in a linear structure that causes an occlusion in the

visible sensor range and as a result, creates a jump in distance between two consecutive

raw range values. It can be detected by looking at the points, pk−1 just before the

start point pk, and pm+1 just after the end point pm of a line segment li. If either

pk−1 or pm+1 is further from the origin than their projections p′k−1 or p′m+1 on li, then

pk or pm are jump edges of li. Detection of jump edges help find line segments that

have interior points as start or end points. If pk−1 is the end point of li−1 or pm+1 is

the start point of li+1, then these points are interior points as a result of the occlusion
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caused by li

• A Virtual Edge is the intersection i(k,m) of two line segments lk and lm which do not

otherwise create an angle edge with each other.

Figure 3.7: i(3,4) is an angle edge formed by the intersection of two consecutive line segments
l3 and l4 such that the end point of l3 and the start point of l4 are consecutive points pj and
pj+1 respectively, and i(3,4) is within the area A between two laser beams which hit points pj

and pj+1. The jump edge pi+1 can be detected by looking at the point pi just before itself.
pi is further from the origin than its projection p′i which is the intersection of l3 and the laser
beam which hit pi, so pi+1 is the jump edge of l3. Virtual edges i(1,3), i(2,3) and i(2,4) are
the intersection of line segment pairs (l1, l3), (l2, l3) and (l2, l4) which are not consecutive.



Chapter 4

Extraction and Comparison of

Geometrical Relations

We define a geometrical relation as either a property of a geometrical primitive or the rela-

tive geometry among several primitives extracted from a single scan. Defining geometrical

relations based on relative geometry provides independence from pose, forming the basis for

scan matching without explicit pose information. Examples of pose independent geometrical

relations are length of a line segment, angle between two line segments, parallel line segments

and distance between two edges. Assuming that the geometry of the environment at least

partially stays the same, a sufficient number of geometrical relations are expected to remain

invariant in both scans.

Extraction of geometrical relations forms two sets Gc and Gr, corresponding to Sc and

Sr, respectively. If similar geometrical relations exist in Gr and Gc, geometrical primitives in

Sc can be matched with geometrical primitives in Sc as will be explained in Chapter 5. Two

geometrical relations match if their parameters are compatible and corresponding primitives

are consistent.

4.1 Consistency of Geometrical Primitives

One of the preconditions for two geometrical relations to match is the consistency of their

associated geometrical primitives. If a primitive of a geometrical relation in Gc is not consis-

tent with its corresponding primitive belonging to a relation in Gr, then the two associated

relations are determined to be not similar.

17
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4.1.1 Consistency of Line Segments

Consistency of two line segments can be checked by comparing the type of their start and

end points according to the following criteria.

• If one line segment is shorter than the other and start and end points of the shorter

line segment are edge points, it is evident that these line segments cannot match.

• If at least one end point of the shorter line segment is an interior point, then these line

segments can match.

• If all start and end points of both line segments are edge points, then these line segments

may match provided their lengths are sufficiently close to each other. Otherwise, they

cannot match.

Two line segments lk in Sc and lm in Sr are consistent if the criteria given above are

satisfied. lk and lm can match only if they are consistent with each other. Consider the

example, in Figure 4.1. It is evident that l2 in Sc is not consistent with l2, l4, l7, and l8 in Sr

according to the first criterion, because it is a complete line segment (start and end points

are edge points) and is shorter than l2, l4, l7, and l8 in Sr. However, it is consistent with l1

and l6 in Sr according to the second criterion, because start points of l1 and l6 are interior

points. Since l2 in Sc and l3, l5 in Sr are complete line segments and their lengths are equal,

l2 in Sc is also consistent with l3 and l5 according to the last criterion.

Figure 4.1: Line segment l2 on the left is in Sc and other eight line segments are in Sr. l2 in
Sc is consistent only with l1, l3, l5, and l6 according to the line segment consistency criteria.
l2 in Sc can only match with these line segments in Sr.

4.1.2 Consistency of Edges

Consistency of an edge i(k,m) formed by lk and lm in Sc with an edge i(u,v) formed by lu and

lv in Sr can be determined by checking the consistency of,
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• The edge types. An angle edge can be compared with an angle or a jump edge and a

virtual edge can be compared only with an edge of the same type,

• The angles β(k,m), β(u,v) between line segment pairs (lk, lm) and (lu, lv),

• Line segment pairs (lk, lu) and (lm, lv).

In order for an edge i(k,m) in Sc to be consistent with another edge i(u,v) in Sr, all

criteria given above must be satisfied. If edges i(k,m) and i(u,v) are consistent, then lk and

lm can match with lu and lv respectively as a result of the preservation of extraction order.

Otherwise, lk cannot match with lu and and lm cannot match with lv. As an example, look

at Figure 4.2(a) including an edge i(1,2) formed by (l1, l2) in Sc and Figure 4.2(b) including

edges i(2,3), i(6,−), and i(7,8) formed by (l2, l3), l6, and (l7, l8) in Sr. All edges except the jump

edge i(6,−) are angle edges and are consistent according to edge type condition. Comparison

of angles reduces the number of consistent edges to one. Only i(2,3) is consistent with i(1,2)

according to the first two conditions. Even if i(6,−) is formed by a single line segment,

the laser beam passing through e6 during the scan process ensures that if there exists a line

segment starting at i(6,−), it does not create an angle with l6 less than β(6,−) which is greater

than β(1,2). Finally, consistency of line segments concludes that i(1,2) in Sc is consistent only

with i(2,3) in Figure 4.2(b).

(a) (b)

Figure 4.2: (a) Edge i(1,2) formed by (l1, l2) in Sc (b) and edges i(2,3), i(6,−), and i(7,8) formed
by (l2, l3), l6, and (l7, l8) in Sr.
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4.1.3 Consistency Tables

Consistency information of line segments and edges are stored in consistency tables which

are then used in the line segment matching phase. Using consistency tables helps efficiently

identify geometrical relations which do not match due to inconsistencies between geometrical

primitives from which they were extracted. A consistency table is simply a matrix of binary

numbers representing the existence of pairwise consistency between line segments. A cell of

a consistency table stores the consistency information between two line segments and it is

indexed by the extraction numbers of these line segments. A cell is represented as,

Tx×c(k, m) ∈ {0, 1} where 1 ≤ k ≤ |Lx| ,
1 ≤ m ≤ |Lc| ,
x ∈ {r, c}.

In this representation, Tx×c is a |Lx| × |Lc| matrix; Lx and Lc are line segment sets

extracted from Sx and Sc, respectively. k and m are the extraction numbers of line segments

lk in Lx and lm in Lc. A cell Tx×c(k, m) of table the Tx×c is indexed by these numbers and

it can be either 0 or 1 showing the existence or lack of consistency between lk and lm. As

an example, the consistency table Tr×c of line segment set Lr against Lc extracted from Sr

and Sc is illustrated in Table 4.1. In the table, headers of the rows and columns are labeled

with line segments in Lr and Lc respectively.

Lc

l1 l2 l3 l4 l5 l6 l7 l8

Lr

l1 0 0 0 1 0 0 0 1
l2 1 0 0 0 0 0 0 1
l3 0 1 0 0 0 0 0 0
l4 1 0 0 0 0 0 1 1
l5 0 0 0 0 1 1 0 0
l6 0 1 1 1 1 1 1 1
l7 0 0 0 1 0 0 1 1
l8 1 0 1 0 0 0 1 1

Table 4.1: Consistency table Tr×c of line segment set Lr against Lc. A cell can be either
0 or 1. 1 shows that line segments forming the indices of the cell are consistent. 0 implies
inconsistency between line segments.

For the line segment matching phase, the consistency table Tc×c is also created in addition

to Tr×c, since the numbers of matching geometrical relations within Gc are also required in

order to determine the uniqueness of a geometrical relation as explained in Chapter 5. Table

T c
c is given in Table 4.2. Note that Tc×c is necessarily symmetric.



CHAPTER 4. EXTRACTION AND COMPARISON OF GEOMETRICAL RELATIONS21

Lc

l1 l2 l3 l4 l5 l6 l7 l8

Lc

l1 1 0 0 1 0 0 0 1
l2 0 1 0 0 0 0 0 0
l3 0 0 1 1 0 0 0 1
l4 1 0 1 1 0 0 1 1
l5 0 0 0 0 1 1 0 0
l6 0 0 0 0 1 1 0 0
l7 0 0 0 1 0 0 1 1
l8 1 0 1 1 0 0 1 1

Table 4.2: Consistency table Tc×c of line segment set Lc against itself.

4.2 Line Segment Length

Line segment length is the most basic geometrical relation used in our method. Each geo-

metrical relation of type line segment length is represented as a labeled quadruple,

L(k, ‖lk‖, type(sk), type(ek)) where 1 ≤ k ≤ |L| ,
‖lk‖ ≥ 0,

type : P → {interior point, edge point}.

In this representation, k is the extraction number of the line segment lk. ‖lk‖ is the

length and type(sk), type(ek) are the types of start and end points of lk. |L| is the number

of line segments and P is the list of points in the same scan.

Geometrical relations L(k, ‖lk‖, type(sk), type(ek)) and L(m, ‖lm‖, type(sm), type(em)) of

Sc and Sr, respectively, are compared according to the line segment consistency criteria

explained in Section 4.1. Following these criteria, Algorithm 2 is used to check whether a

geometrical relation of type line segment length can be matched with another one, in O(1).

Algorithm 2 finds the shorter line segment, checks the line segment consistency criteria

and returns the result of the comparison. In the algorithm ls stands for the shorter line

segment.

4.3 Angle Between Two Line Segments

Another important geometrical relation used in our method is the relative angle between two

line segments within a single range scan. Relative angles are widely used features by many

scan matching methods. However, almost all methods narrow the relative angle window to

the interval [0, 180) by just computing the angle according to slopes of the line segments.
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Algorithm 2 CompareLengths(L(k, ‖lk‖, type(sk), type(ek)), L(m, ‖lm‖, type(sm), type(em))

1: isCompatible = N.A.
2: ls = null
3: if ‖lk‖ < ‖lm‖ then
4: ls = lk
5: else if ‖lk‖ > ‖lm‖ then
6: ls = lm
7: else
8: ls = null
9: end if

10: if ls �= null then
11: if type(ss) and type(es) are of type edge point then
12: isCompatible = false
13: else
14: isCompatible = true
15: end if
16: else
17: isCompatible = true
18: end if
19: return isCompatible

This type of angle computation reduces the uniqueness of the relation since both convex and

concave corners are mapped into the same angle range.

In our method we adopt a different way of computing the relative angle between two

line segments. Since laser range finder always scans the environment in the counterclockwise

direction, the start point of a line segment is always scanned before its end point. This

enables us to use one of the line segment as the reference line segment. By aligning the

reference line segment lk on the positive side of the x axis such that the end point ek of

the line segment coincides with the origin of the (x, y) coordinate system, we can increase

the range of relative angles to [0, 360). After placing the reference line segment, the current

line segment lm is placed on the coordinate system such that its end point em is at the

origin as well. Computing the angle starting from the reference line segment to the current

line segment in the counterclockwise direction gives us the relative angle between two line

segments in the interval [0, 360).

As an example, consider the situation in Figure 4.3. Consider l2 as the reference line

segment and l1, l3, l4, and l7 as line segments whose relative angles with respect to l2 are

to be computed. In this scenario, computing relative angles with respect to the coordinate

axis of the laser range finder with the following formula,

θ = arctan

(
mu − mv

1 + mumv

)

where mu and mv are the slopes of the line segments lu and lv, gives us 90◦, 90◦, 0◦,

and 0◦ for l1, l3, l4, and l7 respectively. The angle between two line segments can be in
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Figure 4.3: Line segments extracted from Sr. l2 is the reference line segment in order to
compute relative angles of l1, l3, l4, and l7 with respect to itself.

the angular interval [0, 180) with respect to this formula. However, if relative angles are

computed as explained above, we get 270◦, 90◦, 0◦, 180◦ for the same line segments as in

Figure 4.4, extending the interval to [0,360).

We define the geometrical relation defined above as a labeled triple,

A(k, m, β(k,m)) where 1 ≤ k < m ≤ |L| ,
0◦ ≤ β(k,m) < 360◦.

In this representation, β(k,m) is the relative angle between lk and lm, computed with

respect to the reference line segment lk. |L| is the number of line segments in the same scan.

Comparison between relations A(k, m, β(k,m)) and A(u, v, β(u,v)) is done by looking at

the relative angle between the line segments and their consistency. If the relative angle

β(k,m) between lk and lm, computed with respect to the reference line segment lk is different

than the relative angle β(u,v) between lu and lv, computed with respect to the reference line

segment lu, then these geometrical relations do not match, which means lk cannot match

with lu and lm cannot match with lv. If the relative angles are equal, then the consistency

of line segments pairs (lk, lu) and (lm, lv) is checked as explained in section 4.1.1. If the

line segments are consistent, then we say that A(k, m, β(k,m)) and A(u, v, β(u,v)) can match,
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Figure 4.4: Illustration of the computation of the relative angles between l2 and l1, l3, l4,
l7. Line segments are translated and rotated such that their end points are at the origin
and l2 lies on positive x axis of the coordinate frame. As a result, relative angles between l2
and other line segments are 0◦, 90◦, 180◦, 270◦ for l4, l3, l7, and l1 respectively. These are
actually angle differences in the counterclockwise direction between reference and other line
segments.

implying line segment pairs (lk, lu) and (lm, lv) can match. Otherwise, these line segment

pairs cannot match.

4.4 Parallel Line Distance

Parallel line distance is another geometrical relation occasionally used by some of the existing

scan matching methods. Most of the time, only the vertical distance between two parallel

line segments is considered, as illustrated in Figure 4.5(b). However, parallel lines bear more

pose invariant information other than just vertical distance. For instance, lines perpendicular

to parallel line segments and passing through start and end points of these line segments help

determine whether these line segments are overlapping or not as illustrated in Figures 4.5(a)

and 4.5(c). Overlapping parallel line segments are marked as Overlap. By looking at the

type of start and end points, parallel line segment pairs can also be marked as May Overlap,

and No Overlap if they are not overlapping. If two line segments cannot overlap, horizontal

distance, another pose invariant property of two parallel lines is introduced. In case of an

overlap, the overlap length can also be used as a property.

Consider the current scan Sc illustrated in Figure 4.6. In this scan, l1 is parallel to l3, l5,

l7, and l8. l1 does not overlap with l3 and l5 with the same horizontal and different vertical

distances. It overlaps with l7 at least ‖l1‖, and it may overlap with l8 since both l1 and l8

are incomplete line segments as a result of their start points to be interior points.

In addition, relative angle between parallel line segments helps to distinguish similar

parallel line segment pairs in terms of parameters such as vertical distance and overlap type.

The relative angle between parallel line segments is computed as explained in Section 4.3 and
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(a) (b)

(c)

Figure 4.5: By looking at the type of start and end points, parallelism between two line
segments can be marked as (a) Overlap, (b) May Overlap, or (c) No Overlap. If two parallel
line segments cannot overlap, the horizontal distance between these line segments can be
used as another pose invariant property.

can be either 0◦ or 180◦. For instance, as illustrated in Figure 4.7(c), line segment pairs (l1, l4)

and (l2, l3) are similar in terms of both vertical distance and overlapping type. However, the

relative angle between line segments l1 and l4 is 0◦ as illustrated in Figure 4.7(a), and the

relative angle between l2 and l3 is 180◦ as shown in Figure 4.7(b) where l1 and l2 are reference

line segments. The reason for the relative angles to be different is that, the line segment

pair (l2, l3) represents a corridor while (l1, l4) does not. As a result, incorporating relative

angle information between line segments into the definition of a geometrical relation of type

parallel line segments, contributes to an increase in the distinguishability of geometrical

relations.

A geometrical relation of type parallel line distance is denoted by a labeled sextuple,

P (k, m, β(k,m), o(k,m), d
h
(k,m), d

v
(k,m)) where 1 ≤ k < m ≤ |L| ,

0◦ ≤ β(k,m) < 360◦,

o(k,m) ∈ {overlap, may overlap, no overlap},
dh
(k,m), d

v
(k,m) ≥ 0.

In this representation, β(k,m) is the relative angle, o(k,m) is the overlapping property,

dh
(k,m) and dv

(k,m) are the horizontal and vertical distances between line segments lk and

lm. If lk and lm are overlapping, then dh
(k,m) stands for the overlap length. In case of

the overlapping property of the line segments to be May Overlap dh
(k,m) is undefined for

the relation. Two geometrical relations of this type P (k, m, β(k,m), o(k,m), d
h
(k,m), d

v
(k,m)) and

P (u, v, β(u,v), o(u,v), d
h
(u,v), d

v
(u,v)) match if all parameters are equal (or within the bounding
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Figure 4.6: The current scan Sc illustrating the relationship between l1 and l3, l5, l7, l8 in
terms of parallelism.

error window). If geometrical relations match, then we can say that line segment pairs (lk, lu)

and (lm, lv) can match.

4.5 Edge Distance

Distance between two edges is also an effective geometrical relation for determining whether

line segments forming these edges can match. In order to increase the matching perfor-

mance of this geometrical relation, we also consider additional angular relations between

line segments forming the edges and the virtual distance-line as shown in Figure 4.8.

Edge distance is a geometrical relation which provides the highest level of data in terms

of the environmental structure. A geometrical relation of this type is represented as a labeled

septuple,
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(a) (b)

(c)

Figure 4.7: Parallel line segment pairs (l1, l4) and (l2, l3) are similar in terms of vertical
distance and overlapping type. However, (a) the relative angle between l1 and l4 is 0◦ and
(b) the relative angle between l2 and l3 is 180◦.

E(k, m, de
(k,m), θ1, θ2, θ3, θ4) where 1 ≤ k < m ≤ |E| ,

0◦ ≤ θ1, θ2, θ3, θ4 < 360◦,

de
(k,m) ≥ 0.

In this representation, k and m are the extraction numbers of the edges. de
(k,m) is the

distance between the edges. θ1, θ1, θ3, and θ4 are the relative angles between line seg-

ments forming the edges and the distance line. These relative angles are extracted in the

counterclockwise direction. |E| stands for the number of edges in the same scan.

A geometrical relation of this type E(k, m, de
(k,m), θ1, θ2, θ3, θ4) match with another rela-

tion E(u, v, de
(u,v), θ1, θ2, θ3, θ4) if de

(k,m) is equal to de
(u,v) and angles are consistent with each
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Figure 4.8: Edge distances and relative angles.

other. If an edge is a jump edge then one of the angles cannot be computed. In this case an

upper bound for this angle is estimated as is done for l6 in Figure 4.2(b).



Chapter 5

Line Segment Matching

After extracting geometrical relations, the next step in the scan matching process is to find

line segments common to both scans. In this chapter, we introduce a novel method to

solve this problem by defining a distinguishability measure. Once common line segments are

determined, it is easy to compute the pose difference of the current scan Sc over the reference

scan Sr by considering the pose differences between common line segments.

5.1 Distinguishability

Intuitively, we define distinguishability as the repetition frequency of a specific geometrical

relation gc both in Gc and Gr. If the total number of appearances of gc in both geometrical

relation sets is low, that is, if the distinguishability of gc is high, then the possibility of

correct matches between corresponding line segments of these geometrical relations is high.

Formally, we define the distinguishability of a geometrical relation gc in geometrical relation

sets Gc and Gr as a score,

score =
1

Count(gc, Gc, Tc×c).Count(gc, Gr, Tr×c)
where Count : (gc, Gx, Tx×c) → N,

x ∈ {r, c}.

In this formula, the function Count yields the number of geometrical relations in a geo-

metrical relation set Gx, matching with a specific geometric relation gc. As the number of

repetition of a specific geometrical relation gc decreases in Gc or Gr, the score computed by

the formula increases. This implies higher distinguishability for gc and higher possibility for

correct line segment matches. The details of the function Count are given in Algorithm 3.

29
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Algorithm 3 Count(gc, Gx, Tx×c)

1: count = 0
2: for all gx ∈ Gx do
3: isConsistent = true
4: for all li ∈ gx corresponding to lj ∈ gc do
5: if Tx×c(i, j) �= 1 then
6: isConsistent = false
7: end if
8: end for
9: if isConsistent and geometrical parameters of gx and gc are consistent then

10: count = count + 1
11: end if
12: end for
13: return count

For every geometrical relation gx ∈ Gx, Algorithm 3 first checks the consistency of line

segments in gx against the ones in gc by using the consistency table Tx×c introduced in

Section 4.1.3. If all line segments are consistent, then the consistency of all geometrical

parameters in gx and gc are checked. If these are also found to be consistent, then gx is

determined to match to gc, and the number of matching geometrical relations is incremented

by one.

5.2 Matching Table

At the core of our line segment matching method is the idea of accumulating distinguishabil-

ity scores in a matching table. This helps identify line segments common to two line segment

sets Lr and Lc. A matching table is simply a |Lr|× |Lc| matrix of lists, storing identification

numbers of some scores computed with respect to the distinguishability of geometrical rela-

tions in Gc against Gc and Gr. Every entry in a list is an identification number of a score

computed for a specific geometrical relation gc. Scores are stored in an array indexed by

their identification numbers. The reason for this is to maintain a dynamic matching table

with respect to the validity of scores.

Initially, all lists of a matching table point to valid scores by means of score identification

numbers as illustrated in Figure 5.1(a). As the decisions about the correctness of line segment

matches are given, some scores become invalid. For instance, assume that line segment pair

(li, lj) where li ∈ Lr and lj ∈ Lc are determined to be an incorrect match. Then, it is evident

that all score identification numbers stored in the list of (li, lj) point to incorrect scores in

the score array. Since most of our geometrical relations consist of two or more line segments,

and since the same score is assigned to the line segments of a geometrical relation, the same

score identification numbers corresponding to the invalid scores are in the lists of some other

line segment pairs as well, as illustrated in Figure 5.1(b). As a result, this property helps

maintain a dynamic matching table with respect to the validity of scores.
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(a) (b)

(c)

Figure 5.1: (a) All scores corresponding to score identification numbers in the given lists
of (li, lj) and (lk, lm) where {li, lk} ∈ Lr and {lj, lm} ∈ Lc are initially valid. (b) In case
that li is determined not to match with lj, all scores corresponding to identification numbers
in the list of (li, lj) are marked as invalid. Identification number 4 is in both lists and it
automatically becomes invalid in the list of (lk, lm). (c) Merged score for the pair (li, lj)
becomes 0.00 because all scores corresponding to identification numbers in their list are
invalidated. Merged score for (lk, lk) goes down to 0.16 from 0.41 as a result of discarding
invalid scores.

The structure of a matching table is similar to a consistency table introduced in Chap-

ter 4.1.3, except that it holds list of scores instead of flags indicating the consistency of every

line segment pair. For a given pair of geometrical relation sets Gc and Gr , Algorithm 4 is

used to build the matching table for line segment sets Lc and Lr.

Lc

l1 l2 l3 l4 l5 l6 l7 l8

Lr

l1 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.03
l2 5.61 0.00 0.00 0.00 0.00 0.00 0.00 0.14
l3 0.00 9.75 0.00 0.00 0.00 0.00 0.00 0.00
l4 1.28 0.00 0.00 0.00 0.00 0.00 0.25 0.14
l5 0.00 0.00 0.00 0.00 1.92 7.50 0.00 0.00
l6 0.00 1.58 1.17 1.68 0.58 1.50 2.25 0.20
l7 0.00 0.00 0.00 0.07 0.00 0.00 6.25 1.31
l8 0.11 0.00 0.17 0.00 0.00 0.00 0.92 1.87

Table 5.1: Merged matching table of line segment sets Lc and Lr.

For every geometrical relation gc in Gc, Algorithm 4 finds geometrical relations in Gr

matching with gc. In order for two geometrical relations to match, all line segments and

geometrical parameters of these geometrical relations must be consistent. If two geometrical

relations gc and gr match, then the distinguishability score for these geometrical relations
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Algorithm 4 ComputeScores(Gc, Gr)

1: matchingTable = |Lr| × |Lc| matrix of lists of scoreIDs
2: scores = list of |Gc| entries of type (score, isScoreV alid)
3: scoreID = 0
4: for all gc ∈ Gc do
5: score = 1/Count(gc, Gc).Count(gc, Gr)
6: for all gr ∈ Gr do
7: isConsistent = true
8: for all li ∈ gr corresponding to lj ∈ gc do
9: if Tx×c(i, j) �= 1 then

10: isConsistent = false
11: end if
12: end for
13: if isConsistent and geometrical parameters of gx and gc are consistent then
14: scoreID = scoreID + 1
15: isScoreV alid = true
16: scores(scoreID) = (score, isScoreV alid)
17: for all li ∈ gr corresponding to lj ∈ gc do
18: add scoreID to the list at matchingTable (i, j)
19: end for
20: end if
21: end for
22: end for
23: return (matchingTable, scores)

is appended to the lists of all corresponding line segments pairs in gc and gr, accumulating

in the matching table. Note that the same score computed for a gc is added to the lists of

all corresponding line segments of gc and every gr matching with gc. Even if we use merged

scores in order to determine the correct matches, scores are appended to lists separately

instead of a single merged score, since some of the scores in a list may become invalid. These

misleading scores are eliminated as some line segment pairs are determined to not match in

the line segment matching phase. As a result, the dynamic structure of a matching table

necessitates the distinguishability scores to be stored separately in lists. In order to determine

a correct match, a merged matching table is created corresponding to the current state of

the matching table. A merged matching table is a |Lr| × |Lc| matrix where a cell indexed

by (i, j) includes the sum of all valid scores stored in the list of the matching table indexed

by the same indices (i, j) as illustrated in Figure 5.1(c). For example, the merged matching

table transformed from the matching table created by Algorithm 4 for Lc in Figure 5.2(a)

and Lr in Figure 5.2(b) is given in Table 5.1. Note that the merged scores for line segment

pairs which really match are higher than the ones which should not be matched. In order to

eliminate the scores of incorrect matches, that is, the invalid scores, Algorithm 5 is run on

the matching table.
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5.3 Line Segment Matching Algorithm

Higher scores in the merged matching table imply higher possibility for two line segments

to correspond to each other. Using this information, the problem of matching line segments

reduces to the problem of determining scores high enough for a correct match. In order to

determine the correct matches, the most convenient way is to iterate over the highest merged

scores. If the merged score in a cell indexed by (i, j) is high enough, this means that li in

Lr and lj in Lc are matching line segments. In order to find matching line segment pairs,

Algorithm 5 is run on the matching table along with the list of scores computed for each gc

in Gc. Note that, Algorithm 5 should determine that, l1, l2, l6, and l7 in Lc, illustrated in

Figure 5.2(a), match with l2, l3, l5, and l7 in Lr, illustrated in Figure 5.2(b) respectively.

(a) (b)

Figure 5.2: (a) l1, l2, l6, and l7 in Lc correspond to (b) l2, l3, l5, and l7 in Lr.

Algorithm 5 first finds the maximum of accumulated scores, maximumScore, in the

table along with the indices (k, m) of this score by means of Algorithm 6. The maximum of

accumulated scores indicates two line segments, li in Lr and lj in Lc, which involve in the

most distinguishable geometrical relations. Considering this line segment pair as a correct

match, we know that the rotational difference between all other matching line segment pairs

should be approximately the same with the rotational difference between li and lj . Our

algorithm uses this fact as a precondition for other correct matches. Once a pair of line

segments is determined to be a correct match, it becomes evident that all the scores in the

same row or column of the correct match are invalid. Assuming that the pose difference

between two scans is not too big as in the case of Sc in Figure 5.2(a) and Sr in Figure 5.2(b),

pairs of line segments indexed with the indices between row indices in [0, k] and column

indices in [m, |Lc|] also cannot be correct matches, because the matching line segments are

always detected in the same order. Remember that the index of a line segment is equal
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Algorithm 5 FindMatchingLineSegments(matchingTable, scores, threshold)

1: matchingPairs = list of entries of type (lk, lm) where lk ∈ Lr, lm ∈ Lc

2: (k, m, maximumScore) = FindMaximumScore(matchingTable, scores, matchingPairs)
3: bestMatchAngle = β(k,m) where lk ∈ Lr, lm ∈ Lc

4: currentAngle = bestMatchAngle
5: while maximumScore > threshold do
6: if bestMatchAngle ≈ currentAngle then
7: add new entry (lk, lm) to matchingPairs
8: MarkInvalidScores(scores, k, m, matchingTable)
9: else

10: for all scoreID ∈ matchingTable(k, m) do
11: (score, isScoreV alid) = scores(scoreID)
12: scores(scoreID) = (score, false)
13: end for
14: end if
15: (k, m, maximumScore) = FindMaximumScore(matchingTable, scores, matchingPairs)
16: currentAngle = β(k,m) where lk ∈ Lr, lm ∈ Lc

17: end while
18: return matchingPairs

to its extraction number. The same is true for the indices between the row indices in

[k, |Lr|] and column indices in [0, m]. The algorithm continues to find other correct matches

until the maximum score stays over a predetermined value, threshold. For every match

which is determined to be correct, the algorithm eliminates invalid scores with the function

MarkInvalidScores given in Algorithm 7. At the end of Algorithm 5, the merged matching

table becomes as illustrated in Table 5.2.

Lc

l1 l2 l3 l4 l5 l6 l7 l8

Lr

l1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l2 4.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l3 0.00 8.08 0.00 0.00 0.00 0.00 0.00 0.00
l4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l5 0.00 0.00 0.00 0.00 0.00 7.12 0.00 0.00
l6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l7 0.00 0.00 0.00 0.00 0.00 0.00 5.33 0.00
l8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2: Merged matching table after running Algorithm 5 on the table. Table explicitly
shows that l1, l2, l6, and l7 in Lc match with l2, l3, l5, and l7 in Lr respectively.

5.4 Finding The Next Best Match

The next best match is a pair of line segments (lk, lm) where lk ∈ Lr and lm ∈ Lc are

given by the cell with the next highest merged score indexed by (k, m) in the corresponding

matching table. In order to find the next best match, Algorithm 6 is run on the matching



CHAPTER 5. LINE SEGMENT MATCHING 35

table.

Algorithm 6 FindMaximumScore(matchingTable, scores, matchingPairs)

1: maximumScore = 0
2: rowIndex = 0
3: columnIndex = 0
4: for i : 1 → |Lr| do
5: for j : 1 → |Lc| do
6: currentScore = 0
7: for all scoreID ∈ matchingTable(i, j) do
8: (score, isScoreV alid) = scores(scoreID)
9: if isScoreV alid then

10: currentScore = currentScore + score
11: end if
12: end for
13: if currentScore > maximumScore then
14: isNewMaximum = true
15: for all (lk, lm) ∈ matchingPairs do
16: if i == k and j == m then
17: isNewMaximum = false
18: end if
19: end for
20: if isNewMaximum then
21: maximumScore = currentScore
22: rowIndex = i
23: columnIndex = j
24: end if
25: end if
26: end for
27: end for
28: return (rowIndex, columnIndex, maximumMergedScore)

Algorithm 6 finds the maximum merged score in the matching table. If the current

merged score is higher than the previous merged score the algorithm checks whether this

merged score is used before to determine a correct match, by searching the matching line

segment pairs found in the previous iterations. If the current merged score imply a new

match, it is considered as the current maximum score. At the end of the algorithm the

maximum merged score which imply a new match is returned along with its indices in the

matching table.

5.5 Eliminating Incorrect Matches

Once li in Lr and lj in Lc are determined to be matching line segments, some incorrect

matches can be automatically determined assuming that a line segment in Lc can only

match with a single line segment in Lr. Following this assumption, given that li in Lr and

lj in Lc match, matches that can be determined to be incorrect are,
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(lk, lm) where k = i ⇔ m �= j, (1)

k �= i ⇔ m = j, (2)

1 ≤ k ≤ |Lr| ,
1 ≤ m ≤ |Lc| ,
lk ∈ Lr, lm ∈ Lc.

Here inequalities at lines (1) and (2) represent incorrect matches with the same row or

column indices (i, j) respectively, relying on the assumption that a line segment in Lc can

only match with a single line segment in Lr. If li in Lr and lj in Lc is determined to match,

then Algorithm 7 is used to eliminate the incorrect matches.

Algorithm 7 MarkInvalidScores(scores, k, m, matchingTable)

1: for i : 1 → row size of matchingTable do
2: if i �= k then
3: for all scoreID ∈ matchingTable(i, m) do
4: (score, isScoreV alid) = scores(scoreID)
5: scores(scoreID) = (score, false)
6: end for
7: end if
8: end for
9: for j : 1 → column size of matchingTable do

10: if j �= m then
11: for all scoreID ∈ matchingTable(k, j) do
12: (score, isScoreV alid) = scores(scoreID)
13: scores(scoreID) = (score, false)
14: end for
15: end if
16: end for

Algorithm 7 marks all the scores, associated to scoreID’s in the lists corresponding to

incorrect matches, as invalid. This automatically eliminates the same invalid scores in other

lists, since Algorithm 6 merge only valid scores in a list.

5.6 Determining The Pose Difference

Line segments common to two line segment sets Lc and Lr explicitly shows the rotational

difference between the scans Sc and Sr. After rotating Sc onto Sr, the translational difference

between Sc and Sr can be computed with respect to common edges of the common line

segments.
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5.6.1 Computing The Rotational Difference

It is evident that every matching line segment pair (lk, lm) where lk ∈ Lc and lm ∈ Lr is

expected to have approximately the same rotational difference. In order to compute the

rotational difference between Sc and Sr as precisely as possible, an effective way is to assign

weights to the rotational differences between matching line segment pairs. The weights are

determined according to the precision of the differences. The precision of the rotational

difference between any (lk, lm) depends on their lengths because of two reasons. First, as the

length of a line segments lk and lm fitted to range values increases, they converge to ideal lk

and lm because of the fact that range values have a fixed amount of measurement error and

the effect of error decreases as the length of line segments increases. Second, assuming that

lk has a fixed length, as the length of lm increases, the precision of the rotational difference

between itself and lk increases because of the same fact. As a result, the precision of the

rotational difference increases as ‖lk‖, ‖lk‖ and the ratio given below increases.

Length Ratio(li, lj) =
‖li‖
‖lj‖ where ‖li‖ < ‖lj‖,

li ∈ Lc ⇔ lj ∈ Lr,

lj ∈ Lc ⇔ li ∈ Lr.

Combining all properties which increase the precision of the rotational difference yields

the formula,

Precision Value(li, lj) = ‖li‖.‖lj‖. Length Ratio(li, lj)

= ‖li‖.‖lj‖. ‖li‖‖lj‖
= ‖li‖2.

Using the precision values as weights, Algorithm 8 computes the rotational difference

between Sc and Sr.

Algorithm 8 ComputeRotationalDifference(matchingPairs)

1: rotationalDifference = 0
2: total = 0
3: for i = 1 : |matchingPairs| do
4: (lk, lm) = matchingPairs(i)
5: total = total+ Precision Value(li, lj).β(lk, lm)
6: end for
7: rotationalDifference = total/ |matchingPairs|
8: return rotationalDifference

Algorithm 8 accumulates the rotational difference of every matching line segment pair

multiplied by their weights and at the end it divides the accumulated value by the number

of matching line segment pairs in order to find the rotational difference between Sc and Sr.
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5.6.2 Computing The Translational Difference

After rotating Sc over Sr, the translational difference between these scans can be computed

by a weighted average of the translational difference between matching edges. Since the

matching line segments are known, matching edges can be found as given in Algorithm 9.

Precision values introduced in Section 5.6.1 are used to assign weights to the translational

differences between common edges.

Algorithm 9 ComputeTranslationalDifference(matchingPairs)

1: translationalDifference = 0
2: total = 0
3: count = 0
4: for i = 1 : |matchingPairs| do
5: (lk, lm) = matchingPairs(i)
6: for j = 1 : |matchingPairs| do
7: (lu, lv) = matchingPairs(j)
8: if i �= j and i(k,u) �= null and i(m,v) �= null then
9: precisionV alue(k,u) = Precision Value(lk, lu)

10: precisionV alue(m,v) = Precision Value(lm, lv)
11: if precisionV alue(k,u) < precisionV alue(m,v) then
12: total = total + precisionV alue(k,u).(i(k,u) − i(m,v))
13: else
14: total = total + precisionV alue(m,v).(i(k,u) − i(m,v))
15: end if
16: count = count + 1
17: end if
18: end for
19: end for
20: translationalDifference = total/count
21: return translationalDifference

Algorithm 8 accumulates the translational differences between matching edges multiplied

by the minimum of the precision values of the corresponding line segments forming the edges

as their weights. Then it computes the translational difference between Sc and Sr by dividing

the accumulated value with the number of matching edges. Translating Sc over Sr with the

computed translational difference results in the merged local map given in Figure 5.3.

5.7 Algorithm Extensions

If the pose difference between Sc and Sr is small it can be assumed that the matching line

segments are always detected in the same extraction order. This means that if li in Lc

is matching with lj in Lr, li+1 in Lc can only match with a line segment lk in Lr where

k > j. This assumption also helps detect some additional incorrect matches. Following this

assumption, given that li in Lr and lj in Lc match, matches that can be determined to be

incorrect are,
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Figure 5.3: The current range scan is aligned over the reference scan resulting in a merged
local map. The pose difference between the scans is (106cm, 247cm, 51◦) as (x, y, θ).

(lk, lm) where k < i ⇔ m > j, (1)

k > i ⇔ m < j, (2)

1 ≤ k ≤ |Lr| ,
1 ≤ m ≤ |Lc| ,
lk ∈ Lr, lm ∈ Lc.

Here inequalities at lines (1) and (2) represent the assumption that the matching line

segments are always detected in the same extraction order. If li in Lr and lj in Lc is

determined to match, then Algorithm 10 is used to eliminate the incorrect matches. Note

that the algorithm is called twice as,

MarkInvalidScores(scores, i, j, matchingTable, 0, i, j, |Lc|),
MarkInvalidScores(scores, i, j, matchingTable, i, |Lr| , 0, j)

instead of a single call,

MarkInvalidScores(scores, i, j, matchingTable).
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Invoking Algorithm 10 with the given parameters eliminates all incorrect matches de-

tected following the decision that li in Lr and lj in Lc match, including the ones detected

by the assumption explained in Section 5.5.

Algorithm 10 MarkInvalidScores(scores, k, m, matchingTable, rStart, rEnd, cStart, cEnd)

1: for i : rStart → rEnd do
2: for j : cStart → cEnd do
3: if i �= k or j �= m then
4: for all scoreID ∈ matchingTable(i, j) do
5: (score, isScoreV alid) = scores(scoreID)
6: scores(scoreID) = (score, false)
7: end for
8: end if
9: end for

10: end for

5.8 Scan Merging and Map Construction

Aligning geometrical primitives extracted from the current scan Sc over the ones extracted

from the reference scan Sr results in a new geometrical primitive set with duplicate line

segments and edges. Merging common geometrical primitives after each scan alignment

step produces a local map of the environment. Algorithm 11 shows how a local map of the

environment can be created by merging geometrical primitives extracted from Sc to the ones

in the current local map.

Algorithm 11 takes the current local map, matching line segment pairs of Lc and Lr,

and Lc as arguments in order to integrate Lc into the current local map, map. If map is

empty all line segments in Lc is added to map by assigning each of them a unique mapID.

Otherwise, common line segments in Lc and Lr listed in matchingPairs are merged into

map by means of mapIDs assigned to the line segments in Lr in the previous iteration of

the map construction process.

It is possible that there exists line segments in Lc which have no matches in matchingPairs,

but have matches in map. For this case, such matches are detected by considering the over-

lapping property, o(i, k) and the vertical distance property, dv
i,k of parallel line segments

introduced in Section 4.4. It is evident that if a line segment in Lc and one or more line

segments in map match, they have to be parallel, overlapping, and has a vertical distance

close to zero, since Lc is aligned over Lr which was integrated into map in the previous

invocation of Algorithm 11. Once these line segments are detected, they are merged into a

single line segment in map. If a line segment in Lc has no match in matchingPairs or map,

then it is added to map with a unique mapID.
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Algorithm 11 UpdateMap(map, matchingPairs, Lc)

1: currentMapID = number of line segments in map
2: if currentMapID == 0 then
3: for all li ∈ Lc do
4: currentMapID = currentMapID + 1
5: set mapID of li to currentMapID
6: add li to map
7: end for
8: else
9: for all (li, lj) ∈ matchingPairs where li ∈ Lr and lj ∈ Lc do

10: for all lk ∈ map do
11: if mapID of li is equal to mapID of lk then
12: mergedLineSegment = Merge(lj, lk)
13: remove lk from map
14: add mergedLineSegment to map
15: end if
16: end for
17: end for
18: for all li ∈ Lc where li has no match in matchingPairs do
19: mapLineSegments = null
20: for all lk ∈ map do
21: if o(i, k) yields overlap and dv

i,k ≈ 0 then
22: add lk to mapLineSegments
23: end if
24: end for
25: if |mapLineSegments| > 0 then
26: mergedLineSegment = MergeAll(li, mapLineSegments)
27: remove lk from map
28: add mergedLineSegment to map
29: end if
30: end for
31: for all li ∈ Lc where li has no match in map do
32: currentMapID = currentMapID + 1
33: set mapID of li to currentMapID
34: end for
35: end if
36: return map



Chapter 6

Experimental Results

In the alignment phase of the scan matching process, Sc is aligned over Sr with respect to the

pose difference computed by the scan matching algorithm. Pose error between the aligned

current scan S′
c and Sr is the most important indicator of the accuracy of scan matching.

The accuracy of pose information of scans recorded from pose sensors like odometry, GPS,

or DGPS affects the accuracy of the estimated pose error. Even if it is easy to get perfect

pose information in simulations, it is not possible to get good pose information for real scan

records. In this thesis, we propose two pose independent estimation methods for pose error,

called Error Area and Error Area Percentage in order to compute the pose error between S′
c

and Sr.

6.1 Experimental Setup

We use the simulation environment of a Pioneer-3AT robot [24] in Figurea, called Mo-

bileSim which is a software for simulating mobile robots and their environments, for de-

bugging and experimentation. MobileSim is based on the Stage library, created by the

Player/Stage/Gazebo project [21]. As illustrated in Figureb, the robot in our simulation

environment has a laser range scanner, SICK LMS200 with ±2.5cm range and 0.1◦ angular

error which are the same with the error parameters of a real SICK LMS200.

6.2 Pose Error

In order to investigate the pose computation accuracy of our algorithm, we created a simu-

lated data set consisting of 3069 scans with perfect pose information recorded on the green

(gray in b/w) path illustrated in Figure 6.2(a). The red (black in b/w) path in the figure is

42
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(a) (b)

Figure 6.1: (a) Pioneer-3AT research robot and (b) its simulation environment in Stage.

the estimated path and blue line segments represent the 14m× 7m map created by our scan

matching algorithm without any pose information. Figure 6.2(b) illustrates a zoomed region

of the same map in order to show the displacement between the real and the estimated path.

Figures show that our scan matching algorithm is successful enough even for creating maps

in the absence of pose information.

The experiments also show that the algorithm is fast enough for real-time pose estimation

and map building, since each pair of scans is matched at 3.48ms on average which is far less

that the recording time of a scan with a SICK Laser Range Scanner which is 24ms.

Figure 6.3(a) illustrates the rotational error between Sc and Sr with respect to the real

rotational difference. The error is computed by the formula,

Rotational Error (Sc, Sr) = |(θ′c − θ′r) − (θc − θr)|
where 0◦ ≤ θ′c, θ

′
r, θc, θr < 360◦.

In the formula, θ′c and θ′r are the estimated, and θc and θr are the real rotational values of

Sc and Sr respectively.

Figure 6.3(c) illustrates the global rotational error of Sc which is the rotational difference

between the real and the estimated pose of Sc. The error is computed by the formula,

Global Rotational Error (Sc) = |θ′c − θc|
where 0◦ ≤ θ′c, θc < 360◦.

In the formula, θ′c is the estimated, and θc is the real rotational value of Sc.

Figure 6.3(b) illustrates the translational error between Sc and Sr with respect to the

real translational difference. The error is computed by the formula,

Translational Error (Sc, Sr) =
√

((x′
c − x′

r) − (xc − xr))
2 + ((y′

c − y′
r) − (yc − yr))

2.
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Figure 6.2: (a) Map created from 3069 scans. Distance traveled: 43.19m. Average processing
time: 3.48 ms for matching two scans. (b) Green path stands for the real path traversed by
the robot. Red path is determined by scan matching.

In the formula, x′
c, x

′
r, y

′
c, and y′

r are the estimated, and xc, xr , yc, and yr are real coordinates

of Sc and Sr respectively.

Figure 6.3(c) illustrates the global translational error of Sc which is the translational

difference between the real and the estimated pose of Sc. The error is computed by the

formula,

Global Translational Error (Sc) =
√

(x′
c − xc)

2 + (y′
c − yc)

2.

In the formula, (x′
c, y

′
c) is the estimated, and (xc, yc) is the real coordinate of Sc.

Since our scan matching algorithm does not require pose information, it is possible to

match scans with very large pose differences. Repeating the experiment above just with 23

scans results in an estimated path and map illustrated in Figure 6.4(a). Note that some line

segments are missing in the constructed map since the range sensor did not get a chance to

observe them as a result of the large displacement between consecutive scans.

The results of the experiment are illustrated in Figures 6.5(a), 6.5(b), 6.5(c), 6.5(d).
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Figure 6.3: (a) Rotational and (b) translational error between consecutive scan pairs
(Si, Si+1) where 0 ≤ i < 3069 and (c) global rotational and (d) translational error of each
scan Si where 0 < i ≤ 3069.

6.3 Error Area and Error Area Percentage

Literature on scan matching does not provide any techniques to understand the accuracy of a

match if pose information associated with scans does not exist. We suggest the computation

of error area and error area percentage as effective techniques to estimate the correctness

of matching two scans. Error Area is the sum of areas between every matching pair of line

segments li and lk extracted from Sc and Sr respectively, with respect to the current robot

pose, as illustrated in Figure 6.6. Computing error area indicates the accuracy of matching

Sc to Sr in terms of both translation and rotation.

When we consider the local map created by matching Sc and Sr as a traversability

map consisting of two states {Traversable, Not traversable}, the error area indicates the
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Figure 6.4: (a) Map created from 23 scans. Some line segments are missing in the map
because they could not be sensed due to high pose difference between scans. (b) Green path
stands for the real path traversed by the robot. Red path is determined by scan matching.

misclassified area. For example, in Figure 6.6, error area is the sum of areas A1, A2, A3,

and A4 as a result of misclassifying A1 and A3 as Not traversable which were classified

as Traversable, and misclassifying A2 and A4 as Traversable which were classified as Not

traversable by Sr. The area which is classified the same for both Sc and Sr is called the

Common Area.

Another indicator of the accuracy of scan matching is the percentage of error area. Error

Area Percentage is the percentage of the error area to the total area of matching line segments

which is the sum of the error area and the common area. For the case in Figure 6.6,

Error Area Percentage =
Error Area

Error Area + Common Area
× 100

where Error Area = A1 + A2 + A3 + A4.
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Figure 6.5: (a) Rotational and (b) translational error between consecutive scan pairs
(Si, Si+1) where 0 ≤ i < 23 and (c) global rotational and (d) translational error of each
scan Si where 0 < i ≤ 23.

6.3.1 The Relationship between Pose Error and Error Area

In order to compute the real pose error between S′
c and Sr, the true pose difference between

these scans should be known. Even if it is possible to get the real pose difference in simula-

tions, for real scan records, real pose difference can only be approximated. In case that Sc

and Sr are recorded without any pose information, it is not possible to get an idea about

the pose error between S′
c and Sr.

In the absence of absolute pose information, error area is an effective indicator of the

pose error between S′
c and Sr, since error area is proportional to pose error for acceptable

rotational and transitional errors between S′
c and Sr. In order to illustrate the relationship

between error area and pose error, we match the scan in Figure 6.7 with its exact copy, since
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Figure 6.6: The sum of A1, A2, A3, and A4 is the error area between two scans. S′
c misclas-

sifies A1 and A3 as Not traversable which were classified as Traversable, and misclassifies A2

and A4 as Traversable which were classified as Not traversable by Sr.

Figure 6.7: Scan used for investigating rotational and translational error on error area.

such a match does not cause a pose error. Injecting incremental rotational and translational

error into the alignment phase of Sc over Sr results in an increase in error area as illustrated

in Figures 6.8(a) and 6.8(b). It is evident that, after the alignment phase all matching line

segments pairs of S′
c and Sr should be parallel. Our algorithm checks parallelism within an

error window of 5◦ for rotation and 10cm for translation which are small portions of error

ranges given in the figures. As a result, error area can be used in order to estimate the

magnitude of the pose error between S′
c and Sr if the pose information of Sc and Sr does

not exist.

6.3.2 The Relationship between Translational Difference and Error

Area

Scan matching without pose information has the capacity to match scans with large pose

differences. In order to see whether translational difference between Sc and Sr affects er-

ror area between S′
c and Sr, an experiment was conducted in the simulation environment

illustrated in Figure 6.9. In this experiment, the robot moves directly to the intersection of
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Figure 6.8: (a) The effect of rotational (b) translational error on error area.

walls at a constant velocity, traveling 18.65m and recording 1480 scans. There is only trans-

lational differences between scans because rotational movements at a constant translational

difference does not affect the results as long as the same linear structures in the environment

are sensed by the sensor. In order to see the effect of real translational difference on error

area, scans are recorded along with perfect pose information. However, this information was

not used to align Sc over Sr, that is, pose error between matched scans was not eliminated.

Figure 6.9: Experimental simulation environment for investigating the relationship between
translational difference and error area.

We conducted two different experiments on the recorded data. In the first experiment,

we matched S0 to every other scan Si where 0 < i ≤ 1480. Figure 6.10(a) illustrates the

relationship between error area and real translational difference between Sc and Sr. As can

be noticed in the figure, translational difference between scans has no effect on error area.

In the second experiment, we matched all scan pairs (Si, Sj) where 0 ≤ i < j ≤ 1480 and

compute an average error area for each match within the same translational difference range

which is 1cm for this experiment. As illustrated in Figure 6.10(b), translational difference

between scans has no effect on error area again. However, the upper bound and the mean

is larger than the ones in Figure 6.10(a) implying that range values in S0 is more accurate

than the average.

Error area percentages for 3069 and 23 scans are illustrated in Figure 6.11(a) and 6.11(b).
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Figure 6.10: (a) Error area and (b) average error area with respect to the translational
difference between two scans.

Note that errors given in the figures are similar.
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Figure 6.11: (a) Error area percentage for 3069 and (b) 23 scans.

6.4 Matching Real Scans

Figure 6.12(b) illustrates the map of a home taken from Radish repository [13]. Raw sensor

readings at are given in Figure 6.12(a).

Error area percentage is illustrated in Figure 6.13(a). When the robot makes a rotational
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Figure 6.12: (a) Real LADAR data taken from Radish repository. (b) Map created by our
algorithm. Translational error is (7.84cm,−0.66cm) at (x, y) axis and rotational error is
2.12◦.

movement while the LADAR is in the range-scanning phase, linear structures are sensed

distorted as illustrated in Figure 6.13(b) resulting in higher error area percentage values

which means higher pose errors.
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Figure 6.13: (a) Error area percentage for real LADAR data. (b) Linear structures in the
environment are sensed distorted because of the rotational movement of the robot in the
counterclockwise direction.



Chapter 7

Conclusion and Future Work

In this thesis, we presented a new scan matching method based on matching line segments

of two scans recorded at two different locations without any pose information. Two line seg-

ment sets corresponding to current and reference scan are matched by comparing geometric

relationships derived from line segments within the same line segment sets. By applying a

scoring algorithm, these geometrical relationships are scored in a matching table and line

segments are matched according to these scores. Our method is able to match scans with

very large displacements.

We can extend our scan matching algorithm to perform global scan matching, map build-

ing, place recognition, loop closing and multirobot mapping very easily because it does not

rely on an initial pose estimate and because it employs simple geometrical relationships be-

tween line segments in order to find pose difference between scans. We do not require an a

priori map for pose difference computation. We can match a scan directly to another scan.

Therefore our method can be used for exploration and map building in unknown indoor

environments.

All scan matching methods which use line segment based representation of scans do not

have any extendibility in terms of using geometrical primitives other than line segments.

Contrary to these methods, our method has the potential of using different types of geomet-

rical primitives. For instance, geometrical primitives such as circles and arcs can easily be

integrated into our method as long as simple geometrical relations can be defined such as

circle center to line segment distance.
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