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ABSTRACT

QUALITATIVE TEST-COST SENSITIVE
CLASSIFICATION

Mümin Cebe

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Çiğdem Gündüz Demir

August, 2008

Decision making is a procedure for selecting the best action among several

alternatives. In many real-world problems, decision has to be taken under the

circumstances in which one has to pay to acquire information. In this thesis, we

propose a new framework for test-cost sensitive classification that considers the

misclassification cost together with the cost of feature extraction, which arises

from the effort of acquiring features. This proposed framework introduces two

new concepts to test-cost sensitive learning for better modeling the real-world

problems: qualitativeness and consistency.

First, this framework introduces the incorporation of qualitative costs into

the problem formulation. This incorporation becomes important for many real

world problems, from finance to medical diagnosis, since the relation between

the misclassification cost and the cost of feature extraction could be expressed

only roughly and typically in terms of ordinal relations for these problems. For

example, in cancer diagnosis, it could be expressed that the cost of misdiagnosis

is larger than the cost of a medical test. However, in the test-cost sensitive clas-

sification literature, the misclassification cost and the cost of feature extraction

are combined quantitatively to obtain a single loss/utility value, which requires

expressing the relation between these costs as a precise quantitative number.

Second, the proposed framework considers the consistency between the current

information and the information after feature extraction to decide which features

to extract. For example, it does not extract a new feature if it brings no new

information but just confirms the current one; in other words, if the new feature

is totally consistent with the current information. By doing so, the proposed

framework could significantly decrease the cost of feature extraction, and hence,

the overall cost without decreasing the classification accuracy. Such consistency
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behavior has not been considered in the previous test-cost sensitive literature.

We conduct our experiments on three medical data sets and the results demon-

strate that the proposed framework significantly decreases the feature extraction

cost without decreasing the classification accuracy.

Keywords: Cost-sensitive learning, qualitative decision theory, feature extraction

cost, feature selection, decision theory.



ÖZET

NİTEL MALİYETE DUYARLI SINIFLANDIRMA

Mümin Cebe

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Çiğdem Gündüz Demir

Ağustos, 2008

Karar verme bir çok seçeneğin arasından en iyiyi seçme işidir. Gerçek uygula-

malarda, karar vericinin en iyi karara varabilmesi için gerekli olan bilginin bir

maliyeti vardır. Bu tezde, karar verme aşamasında ortaya çıkan hatalı kararın

maliyeti ile en iyi kararı vermek için kullanılan bilginin maliyetini beraber ele

alan yeni bir öğrenme yöntemi önerilmiştir. Önerilen bu yeni yöntem, maliyete

duyarlı öğrenmeye nitelliği ve tutarlılığı iki yeni kavram olarak sunmuştur.

Bu çalışmayla ilk olarak, nitel maliyet kavramı makine öğrenmesi sürecine

dahil edilmiştir. Verilen kararın hatalı olmasından kaynaklanan maliyet ile

bu kararı verebilmek için kullanılacak bilginin maliyeti arasındaki ilişkinin bir

çok problemde nicel olarak tanımlanamamasından dolayı nitel maliyet kavramı

önemlidir. Örneğin kanser teşhisinde, yanlış teşhis yapmanın maliyetinin teşhis

için kullanılan testlerin maliyetinden daha büyük olduğu söylenebilir. Fakat,

bu iki kavram arasındaki ilişkinin nicel olarak tanımlanması zordur. Daha

önce maliyete duyarlı öğrenmeyle ilgili yapılan çalışmalar bu iki maliyetin bir-

biriyle olan ilişkisinin nicel olarak tanımlanmasını şart koşmuşlardır. Bu yüzden,

önerilen nitel maliyet ilişkisi kavramı bu konu hakkındaki çalışmalara yeni bir

boyut kazandırmıştır.

İkinci olarak ise, bu tezde yapılan çalışma yeni elde etmeyi beklediğimiz bilgi

ile şimdi sahip olduğumuz bilgi arasındaki tutarlığı göz önüne almıştır. Eğer yeni

elde edilecek bilgi şimdiki bilgimize yeni bir şey eklemiyor ya da bir başka deyişle

yeni elde edilecek bilgi şimdiki bilgimizle tutarlı ise önerilen yöntem yeni elde

edilecek bilgi için gerekli olan maliyetin karşılanmasını reddetmektedir. Böylece

önerdiğimiz yöntemle, karar verme aşamasında karar verme sürecini etkilemeyen

bilgi için maliyet yapılmamış olmaktadır. Bu kavram daha önceki çalışmalarda

hiç kullanılmamıştır.
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Üç farklı medikal veri kümesi üzerindeki deneylerimiz, önerdiğimiz yöntemin

teşhisteki doğruluk oranını etkilemeden, kullanılan medikal testlerin maliyetini

büyük ölçeklerde azaltmayı başardığını göstermiştir.

Anahtar sözcükler : Maliyete duyarlı öğrenme, karar teorisi, nitel karar teorisi,

öznitelik çıkarma maliyeti, öznitelik seçme, karar teorisi.
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Cinsdikici, for their motivation and helpful suggestions during my undergraduate

study, they are the first people to inspire me in studying artificial intelligence.

Thank you to my group members in EgeYZ: Hakan Ensari, Yusuf Aytar and Selen
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Chapter 1

Introduction

Decision making is a process that surrounds the world. Every living faces many

situations where they have to make decision among alternative choices, and their

benefit strictly depends on the outcomes of this decision. In general, at the

time of decision, the outcomes of the decision are uncertain. Thus, one should

try to maximize his/her expected benefit considering uncertain environments.

Computational models have proved their ability to make rational decisions for

the problems that have large amounts of uncertainty.

In literature, Neumann and Morgenstern [28] first represent, rational decision

making in uncertain environments. The decisions are performed according to

the expected utility concept. Expected utility is being used in decision making

and finds large application areas from finance to medicine. In this well-known

representation of rational decision making, all parameters that affect decision

making must be defined and combined quantitatively. However, some problems

may occur when a decision maker has a lack of adequate knowledge and/or the

decision maker is incapable of correctly estimating numerical values for his/her

preferences. One of such cases arises, when it is not possible to define numerical

values for outcomes, for example when expressions such as “I would prefer A

rather than B” are present. This expression makes such non-numerical prefer-

ences important while making decision. Such preference should be used to define

a qualitative utility/loss value. Another case arises when the decision maker

1



CHAPTER 1. INTRODUCTION 2

has the ability to define qualitative/non-numerical probabilities such as “A is

much more probable than B”. These expressions operationally translate quanti-

tative/numerical relations into the qualitative/non-numerical relations. The tra-

ditional decision theory fails where environment has qualitative/non-numerical

probabilities or utilities/loses. Because of the difficulty of defining probabilities

and/or utilities/loses quantitatively/numerically for many problems and because

of the necessity of handling these values for making the best decisions, the quali-

tative decision theory attracts our attention.

One of the application areas in which the necessity of using qualitative utili-

ties/losses arises is the test-cost sensitive classification. Test-cost sensitive clas-

sification considers the misclassification cost together with the cost of feature

extraction to minimize the overall cost of the decision process. Misclassification

cost is the cost that occurs when a decision maker decides incorrectly, whereas

feature extraction cost is the cost that arises from acquiring the feature. In the

test-cost sensitive literature, the misclassification cost and the cost of feature

extraction are numerically defined and combined to obtain a quantitative util-

ity/loss value. However, although the feature extraction cost could be typically

defined in terms of numbers (most of the time, the amount of money that one

should pay to obtain the value of a feature), the misclassification cost could not

easily be quantified in terms of numerical values for many applications. Gen-

erally, there is a preference relation between the misclassification cost and the

cost of feature extraction. Thus, one should balance this relation to take the

best decision. To understand the importance of expressing generic preferences

in test-cost sensitive learning, consider the following two examples: first, let us

consider a situation where a decision maker tries to decide whether a patient has

a cold or not. In this problem, the decision maker can ask some simple questions,

or can perform a blood test on the patient in order to learn whether symptoms of

cold exist or not. Although the decision maker knows that the blood test is more

reliable test than diagnostic questions, he/she generally avoids to perform such

tests, since these tests have some cost and the decision maker has a general belief

of the test cost generally being greater than the misclassification cost. For the

second example, consider the case of cancer diagnosis. The decision maker tends
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to perform a higher number of tests to make a decision, because this example

is a situation in which the decision maker has the belief of the misclassification

cost generally being greater than the test costs. Thus, for a given application, a

rational decision maker has to consider the relation between the misclassification

cost and the cost of feature extraction to make the best decision.

In this thesis, we define a new test-cost sensitive learning scheme in which

we use the qualitativeness concept, for the first time. To this end, we define

qualitative conditioned-loss function to consider the generic preferences of the

user about different types of costs and apply this representation for test-cost

sensitive learning. For the remainder of this chapter, we first review the related

work and then explain our contribution to test-cost sensitive learning.

1.1 Related Work

1.1.1 Qualitative Decision Theory

Qualitative decision theory studies the incorporation of qualitative knowledge to

decision making problems [24]. As opposed to the classical approach postulated

by von Neumann and Morgenstern [28], where probabilities and utilities should

be defined as exact numerical values, the qualitative decision theory enables to

define probabilities, and/or utilities/losses as qualitative values; i.e the qualita-

tive decision theory relaxes the strict requirement that both probabilities and

utilities/losses should be defined and combined quantitatively. The main issues

about the use and the need of qualitativeness in machine learning are discussed

in [4] and [24]. In literature, previous studies related to qualitativeness in machine

learning appear in two groups. One group of studies works on the construction

of qualitative probabilistic Bayesian networks [29, 31, 32, 33]. The other one

focuses on the decision making problem when the utility/loss values are defined

qualitatively and in an ordinal scale, reflecting the generic preference. We first re-

view studies about qualitative Bayesian networks then mention the studies about

qualitative decision making.
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Bayesian networks represent a set of variables and their probabilistic rela-

tionships to use for quantitative reasoning [26]. The first attempt to extend the

quantitative Bayesian network to qualitative one is done by [29, 30]. In these

studies, Wellmann has defined the relationships between variables in network as

positive(+), negative(-), null(0) or ambiguous(?). A positive (+) relation between

two variables implies that a high value of one of variables makes more likely that

the other variable also has a high value. A negative(-) relation between two vari-

ables implies that a high value of one variable makes more likely that the other

variable has a low value. A null(0) relation between two variables implies that

there is no correlation between these variables. The unknown or ambiguous (?)

relation is defined when positive and negative relations are combined. The dif-

ference between ambiguous(?) and null(0) signs is that the ambiguous sing(?)

implies that the real value of sign could be a positive(+), negative(-) or null(0),

whereas a null(0) sign implies no correlation between variables. The reasoning

in qualitative networks is accomplished by combining two or more variables us-

ing additive [29, 30] or multiplicative relations [27]. The difficulty arises when

combining positive and negative relations that leads a relation type of ambiguity

(?). The ambiguity causes uninformative signs during inference. In [31], Renooif

and von der Goag associate a relative strength to relations in order to avoid

the ambiguous signs, which appear in qualitative networks. Their combination

algorithm is similar to the previous combination algorithms defined in [29, 30],

except that they allow the the strong variable to dominate the relatively weaker

one for overcoming ambiguous signs. They also extend their previous work with

situational sign concept in [25]. The situational sign depends on the whole net-

work state; they determine the situational sign of the current ambiguous sign as

positive, negative or null according to the network state, and thus, they impede

ambiguous signs in qualitative networks.

The other group of studies works on the qualitative decision making problem.

Studies in this group could mainly be grouped into two. One group focuses on

building symbolic models for decision making [2, 5, 6]. They allow representation

of probabilities and preferences of being in the form of human like expressions such

as “if we are going out tonight, I would prefer to go to a restaurant for dinner”.
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This class of studies has the common main idea that compares actions on the most

plausible states of the world. For instance in [2], the preferences are modeled as

I(β|α), which means that if the α is the case, the most preferred action is β.

A desired decision is given according to the most preferred action conditioned

by the most plausible state. The other class of studies mainly depends on the

ordering of probabilities and preferences [1, 3, 37, 38]. These approaches use the

ordered scale of probabilities and preferences to come with a decision by applying

maximin and minimax criteria on the ordinal scale. In practice, the use of ordinal

scales translates the quantitative probabilities and preferences (utility/loses) into

the qualitative ones.

1.1.2 Cost-Sensitive Learning

There are many studies related to cost-sensitive learning that investigate different

types of cost [13]. In literature, the most commonly investigated cost type

is 0/1 cost. The classifiers sensitive to 0/1 cost aim at minimizing number of

errors during classification. However, these classifier are not adequate for the

problems in which some classification errors are more important than the others.

To overcome this deficiency, different costs are defined for different types of errors;

this types of cost is called as misclassification cost [9, 10, 12]. One common

way for making classifier to be sensitive to different misclassification costs is

to rebalance the proportion of class samples in training set according to the

ratio of misclassification cost values [10]. As another way, MetaCost has been

proposed [9]. MetaCost, first, learns the associated class probabilities for each

instance in the training set by using any of the classification algorithms. After

the probabilities have been learned, MetaCost relabels each sample according to

the associated probabilities and misclassification cost. Then, it learns another

model for the new modified training set.

Another type of cost is the cost of computation. The computational cost

includes both static complexity, which arises from the size of a computer program

[7], and dynamic complexity, which is incurred during training and testing a

classifier [8]. The computational cost is important in training when the data size
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is large and/or the data dimension is high and in testing, especially for real-world

applications, when the response time is critical (e.g., in the case of handwritten-

character recognition in a personal digital assistant).

The other cost type is the cost of feature extraction, which occurs during

acquiring features. This type of cost is important in especially real-world ap-

plications. In literature, only a few studies have investigated for the cost of

feature extraction. A large group of these studies focus on constructing deci-

sion trees in a most accurately but, at the same time, a least costly manner

[14, 15, 16, 17, 18, 19]. In [14, 15, 16], the test costs is consideredduring clas-

sification. In these studies, the splitting criteria of these decision trees, which

selects attributes greedily, combine the information gain and test costs to build

cost-sensitive decision trees. In [17], Turney also builds decision trees using crite-

rion described in [14, 15]. However, Turney employs a genetic search by modifying

the test costs empirically (assigns random test costs and use these costs in decision

trees) to build a population of decision trees. The population is then evaluated

according to a utility function that uses the real test costs (not random ones)

and misclassification costs. The method in [17] is an influential method that sets

the fundamentals of cost sensitive learning by considering both misclassification

costs and test costs. Davis and Yang, in [18, 19], change the splitting criterion

described in [14, 15] by defining a utility function that additionally considers

considers misclassification cost together with test costs.

Another group of studies uses a sequential selection procedure based on the

utility that a feature will introduce [11, 19, 20, 21]. The utility of a feature

is computed by considering the information gain and cost of extracting feature.

The information gain of the feature is obtained by taking difference between

the current information and the information to be obtained after extracting the

feature. These studies have to estimate information gain for the feature to be

extracted. Estimation is done by either estimate the value of the feature [11, 19,

20] or estimating the posterior probabilities when the feature is used [21].

The other group of studies uses a Markov decision process model and selects

features according to an optimal policy that is learned on this model with the goal



CHAPTER 1. INTRODUCTION 7

of minimizing the expected total cost [22, 23]. While a state is defined for each

possible combination of features in [22], the states are tied to mixture components

of particular features and only partially observable in [23]. However, in this

method, the learning process may take higher computational costs comparing

the most of other aforementioned cost-sensitive learning algorithms.

1.2 Contribution of This Thesis

In this thesis, we introduce a novel test-cost sensitive learning approach that

considers the misclassification cost together with the cost of feature extraction.

In this approach, we introduce two new concepts to test-cost sensitive learning:

qualitativeness and consistency. By introducing these concepts, we address two

important issues, which are commonly the cases in real-world, as opposed to the

previous studies. As the first issue, for the definition of a utility/loss function, the

previous studies have combined the misclassification cost and the cost of feature

extraction quantitatively. To do so, the misclassification cost is expressed as a

precise quantitative value that is selected by considering cost of feature extraction

(please note that most of the time, the feature extraction cost is easily expressed

as a quantitative values; e.g., in medical diagnosis, this cost is commonly the

amount that one should pay for corresponding medical test) and its importance

over the misclassification cost. However, in real-world applications, most of the

time, decision makers cannot express such importance in terms of precise quanti-

tative values. Instead, they only express it roughly (typically in terms of ordinal

relations); for instance, in cancer diagnosis, it could be expressed that the cost of

a medical test is smaller than that of misdiagnosis. As the second issue, all of the

previous studies have selected features based on the current information and the

estimated information obtained after feature extraction. None of them considers

the consistency between this information. On the other hand, in real-world ap-

plications, the consistency is commonly important. For example, in the case of

medical diagnosis, a doctor may not order an expensive test for a patient, if the

doctor is confident enough that the test confirms the current decision about this

patient. Instead, the doctor would like to order a test for which he/she thinks
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that it could change his/her decision. By doing so, the cost of extra tests, and

hence, the overall cost could significantly be decreased without decreasing the

diagnosis accuracy.

In order to successfully address these aforementioned issues, we propose to

use a Bayesian decision theoretical framework in which 1.) the misclassification

cost and the cost of feature extraction are combined qualitatively and 2.) the

loss function is conditioned with the decisions taken using current and estimated

information as well as the consistency among them. By combining misclassifica-

tion and feature extraction costs qualitatively, the proposed algorithm eliminates

the major requirement that the user should determine exact quantitative con-

stants to combine the misclassification and feature extraction costs. By using

consistency between current and estimated information, the proposed algorithm

tends to extract features that are expected to change the current decision (i.e.,

yield inconsistent decisions) and to stop the extraction if all possible features are

expected to confirm the current decision (i.e., yield consistent decisions). This

leads to less costly but equally accurate decisions.



Chapter 2

Background

This chapter formally defines the test-cost sensitive learning and qualitative de-

cision theory. Test-cost sensitive learning is an approach to learning the machine

learning problems with the objective of minimizing the expected cost of the learn-

ing process where both features and classification errors have costs. Qualitative

decision theory is the extension of classical decision theory which enables quali-

tative probability and/or utility/loss function definition during decision process.

2.1 Cost-Sensitive Learning

Test-cost sensitive learning is based on supervised learning. An instance in su-

pervised learning is represented as < xi, ci >, where xi represents an input vector

of features of the instance and ci represents the class of instance xi. The aim

of supervised learning is to learn a mapping function h(x) from xi to ci for all

training samples as illustrated in Figure 2.1.

This mapping function h(x) is selected to minimize the expected risk, which

is written in terms of loss function λ and the probabilities of state of nature ci as

given in Equation 2.1.

9
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Figure 2.1: Mapping function: From all training samples to all corresponding
output labels.

R(λ(αi|x)) =
N∑

j=1

P (cj|x) λ(αi|cj) (2.1)

In this equation, c1, ..., cN is the set of N states of nature,α1, ..., αK is the set

of K possible actions and λ(αi|cj) is the loss value incurred when the action αi

is selected when the state of nature is cj. The best action α∗ is selected in a

way that minimizes the expected risk R(λ(αi|x)). If the loss function λ(αi|cj)

has a value of 1 for incorrect mapping and has value of 0 for correct mapping,

Equation 2.1 focuses on to minimize the number of errors ignoring the feature

extraction costs. However, in cost sensitive learning, the objective is not only

finding best mapping function from inputs to classes, but also minimizing the

total cost of the learning process. Cost-sensitive learning allows us to minimize

the feature extraction costs via minimizing the expected risk. Here, we will define

basic notation and terms in cost sensitive learning and show these notations and

concepts on a simple problem.

The loss function used in cost sensitive learning generally defined as n by m

cost matrix. The actions and outcomes determine the size of the cost matrix.

As an example, let us present a cost matrix of a problem that a doctor try to

minimize the expected risk during cold diagnosis. Table 2.1 shows the cost matrix
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of this problem.

Predicted Classes Correct Classes
Cold No Cold

Cold -100 200
No Cold 1000 0

Table 2.1: Complex Cost Matrix

The table illustrates that if a patient has a cold and the doctor misdiagnoses

him/her, cost of such decision is 1000 penalty points because of further risk to the

patient health. If the doctor diagnoses him/her correctly the given reward for this

decision is -100 point. If the patient has not got a cold and doctor misdiagnoses

him/her, the penalty in this case is 200 point because of dissatisfaction of patient.

But it is not as high as before because there is no risk for the health status of

patient (of course we ignore the side effects of the treatment). In the case where

the patient has no cold and the doctor decides correctly, there is no penalty or

reward for the decision.

This example shows the effect of the cost matrix/loss function during decision

making. In addition to loss function, there are two more parameters that have

to be considered. One of these is h(x) function and the other one is feature costs.

We will expand the above example by adding probabilities and feature costs to

the problem. For simplicity, we redefine our cost matrix in Table 2.2, where there

are the same cost for misdiagnosis and no reward for correct decision.

Predicted Classes Correct Classes
Cold No Cold

Cold 0 200
No Cold 200 0

Table 2.2: Simple Cost Matrix

Also, we define a sequential process that selects the actions (action of feature

selection or classification) according to costs of all actions (feature costs and

misclassification costs) to use in our example. This sequential process is a common
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General Health Control (GHC) Blood Test (BT) CT Scan
$1.00 $50.00 $80.00

Table 2.3: Test Costs

way to make decision process cost-sensitive and steps of such sequential algorithm

illustrated in Figure 2.2.

[1] Repeat until all features are extracted or classify action be taken
[2] Compute cost of all actions (including extracting

of each feature and classify action)
[3] Select action that has minimum cost
[4] If selected action is classify finish sequential process
[5] If that action is extract featurek, extract that feature

and compute a new mapping function h(x) using extracted feature
[6] End of loop

Figure 2.2: The sequential cost-sensitive classification algorithm

Suppose that we try to solve cost-sensitive classification problem for diagnos-

ing cold by using the algorithm in Figure 2.2 and simple cost matrix in Table 2.2.

In this example problem, we have three patients and three different tests: general

health control (GHC) (by asking questions), a blood test (BT) and a CT scan.

We also have an h(x) function which gives probabilities for prediction of cold or

no-cold. Table 2.3 shows the test costs and the Table 2.4 shows the reliability of

the prediction according to test results of patients.

One of the key points in Table 2.4 is the estimation of test results. A decision

algorithm should decide on which test should be performed next without per-

forming the test. Thus, h(x) function should also estimate the result of the test

by considering already performed tests. For example, after performing GHC,

h(x) function estimates the reliability level of BT and CT without performing

these tests. For example, reliability of GHC results for patient 1 is P (GHC) =

0.51, after performing GHC, the estimated reliability of P (BT |GHC) is equal

to 0.76. Keeping in mind that, the BT results are not known in advance, so it
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Patient1 Patient2 Patient3
P (GHC) 0.51(Cold) 0.55(No-cold) 0.60(Cold)
P (BT |GHC) 0.76(No-cold) 0.80(No-cold) 0.80(Cold)
P (CT |GHC) 0.90(No-cold) 0.85(No-cold) 0.85(Cold)
P (BT |GHC + CT ) 0.80(No-cold) 0.85(No-cold) 0.90(Cold)
P (CT |GHC + BT ) 0.95(No-cold) 0.90(No-cold) 0.92(Cold)
P (CT + GHC) 0.90(No-cold) 0.85(No-cold) 0.95(Cold)
P (BT + GHC) 0.78(No-cold) 0.80(No-cold) 0.90(Cold)
P (BT + CT + GHC) 0.98(Cold) 0.90(No-cold) 0.98(No-cold)

Table 2.4: The values of the h(x) function

should be estimated using the current GHC result.

The Figures 2.3, 2.4 and 2.5 show the steps of cost-sensitive classification

algorithm given in Figure 2.2, by using cost matrixes in Tables 2.2, 2.3 and the

result of h(x) function in Table 2.4.

Figure 2.3 illustrates the simple decision steps for patient 1 (P1). In this figure,

the concrete squares represent the risks of diagnosis using already performed tests

and dashed squares represent the risks of diagnosis using already performed tests

and estimation of following test. For the P1, GHC results are obtained (starting

with cheapest feature). The probability value of h(x) function is 0.51, so the

expected risk for this patient in this step is P (GHC) ∗ 0+ (1−P (GHC)) ∗ 200+

cost(GHC) = 0.51 ∗ 0 + 0.49 ∗ 200 + 1 = 99, according (2.1). After this step,

there are three possible actions, first one is diagnosing as cold by just using GHC

results. The expected risk of this option is 99. Second one is the performing

additional BT test on the P1. The h(x) estimates P (BH + GHC|GHC) by not

actually performing test. The expected risk after extraction BT in next step is

calculated as 98. The third and the last one is computing the estimated risk of

P (CT +GHC|GHC), and that is calculated as 100. By considering expected risk

of all three actions, the sequential algorithm in Figure 2.2 selects the action that

has the minimum risk. Thus, the following action is actually performing BT test

on the P1. In the following step, we have two actions such that diagnosing using

already performed BT + GHC results and making another additional test to the
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Figure 2.3: Decision steps for patient 1.

Figure 2.4: Decision steps for patient 2.
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Figure 2.5: Decision steps for patient 3.

P1. After computing the expected risk according to equation 2.1, the action that

has the minimum risk is making the additional CT test. After performing the

CT test, the algorithm diagnoses the patient as no-cold.

One of the interesting properties of cost-sensitive learning is the highest re-

liable action does not have to be the best action for cost sensitive classification.

In this problem, P (CT |GHC) = 0.9 and P (BT |GHC) = 0.76, the expected risk

by including test cost associated for BT and CT are R(P (CT +GHC|GHC)) =

0.76 ∗ 0 + 0.24 ∗ 200 + 50 = 98 and R(P (CT + GHC|GHC)) = 0.9 ∗ 0 + 0.10 ∗

200 + 80 = 100. Although, the most reliable action is performing CT test, BT

test becomes minimum risk action after considering associated test costs.

2.1.1 Extensions of Cost-Sensitive Learning

In addition to examined cost-sensitive algorithms in 1.1.2, there are additional

behaviors that should be considered in cost-sensitive learning. We show some

possible examples belows.

• Conditioned Feature Cost

Turney, in [7], introduced the conditioned test costs. According the per-

formed action, the test costs may vary. This does not fit the assumption
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that the test costs are constant prior to learning. The volatility of feature

costs should be considered in cost-sensitive algorithms. One case for condi-

tioned test costs occurs when the test have a common cost. For example,

collecting blood for different tests is a common cost. If one of these test

is performed, the following tests with the same common cost will not have

the collecting blood cost. One cost-sensitive algorithm should consider this

kind of cost volatility during both learning and execution case. Test costs

also vary according to current state of the problem. A test cost may have

different values depending on the patient age or patient health status. A

test may be much more expensive for a patient who has critical medical

condition.

• Delayed Test Results

Most of cost-sensitive algorithms in cost-sensitive learning ignore the delay

in test results. For example, in medical diagnosis, a test may require a

time limit. The cost-sensitive algorithms should consider time limits and

should decide on which test is performed. A doctor may order a blood test

to measure patient uric acid level in her/his blood, which usually takes one

hour and after considering this test the doctor can also order additional

tests. According to this scenario the patient must wait another one hour

to obtain the other test result. This case is impractical in real life. Thus,

the cost-sensitive algorithms should also consider tests that are whether

immediate or delayed.

2.2 Qualitative Decision Theory

The fundamentals of decision theory was founded by von Neumann and Morgen-

stern’s utility theory [28]. This utility theory models the actions by a probability

distribution over the consequences. Using that model, preference over actions are

ranked by a function called as expected utility. A decision problem in this model

has three parameters as follows:
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1. Ω = (ω1, ..., ωn)

2. X = (x1, ..., x2)

3. A : Ω → x

Ω contains final set of the possible state of natures. X represents the conse-

quences of actions. A represents the set of actions that each action is a mapping

function from each state of nature, ω ∈ Ω, to possible consequences x ∈ X.

The decision maker ranks the actions according to quantitative utility function

U(α) ∈ R. Uncertainty comes from the possibility of being in any of the state

in Ω. Thus, we can see the action α as a vector that maps possible states to

different consequences of an action.

Then, according to probability distribution of π on Ω, the decision maker

makes an orders the actions in A, based on expected utility function:

EU(α) =
∑

ω∈Ω

π(ω)U(α(ω)) (2.2)

The preference order of an action α1 to action α2 determined by the relation

between EU(α1) and EU(α2). However this classic model assumes that utilities

and probabilities should be in the form of numerical values. This restriction

make rational decision making impossible in a case where parameters can not be

described in quantitative manner. Here the need for qualitative decision theory

arises.

Studies in qualitative decision theory, focus on adapting a utility function to

qualitative probabilities and qualitative outcomes. These studies showed that

there exists a utility function, if following axioms hold:

1. Orderability: Among all possible outcomes or probabilities there has to be

either a preference or a indifference relation.

2. Reflexibility: Any preference on P is at least as preferred as itself.
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3. Transitivity: If P is more preferred than Q and Q is more preferred than

Y , then P is more preferred than Y

Thus, to define a utility function in qualitative problems, the probabilities

and outcomes should be modified to fit these axioms. Following two sections

describe studies for fitting qualitative probability and outcomes to these axioms,

respectively.

2.2.1 Qualitative Probabilities

The probability distribution π on Ω is a mapping from Ω to unit interval [0,1].

This scale can be thought in two different ways. One is quantitative where the

values in the unit interval have real values and the other one is qualitative where

values in the unit interval just represent an ordering between different states of

nature. In first case, multiplication and summation operation can be applied

like in equation 2.2. However in the second case, instead of applying multipli-

cation and summation operation the max or min operations are applicable. The

properties of qualitative probability distribution of π is as follows:

1. π(ωi)= 1 if only if ωi is normal/expected

2. π(ωi)= 0 if only if ωi is impossible

3. ∀i ∈ π(ωi) = γi where γi ∈ [0,1]

The qualitative probability is making a complete mapping of each π(ωi) where

∀ωi ∈ Ω, π(ωi) ∈ [0, 1]. To see the preference relation over qualitative π, let

assume that we have a subset ∆ ⊂ Ω and the probability measure of this subset

defined as follows:

β = max
ωi∈∆

(π(ωi))
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For any ωi /∈ ∆ is at least plausible/normal as the subset ∆ if only if π(ωi) =

γi ≥ β. The plausibility/preference is determined by max operator over Ω.

2.2.2 Qualitative Consequences

People tend to express their decisions over consequences in terms of generic pref-

erences. This tendency leads to researchers to formulate decision theory that

can handle such a human-derived expression style. In literature, they showed

preference relation over possible two outcomes P and Q as follows:

1. P � Q represents the case where P more preferred than Q

2. P � Q represents the case where P less preferred than Q

3. P ∼ Q represents the case where P and Q has equal preference

This type of preference expressions is common in human reasoning. The

decision maker is not able to quantify his/her preference easily over possible

outcomes. However, generally, he/she easily define a preference order for them.

To see a generic preference definition for a problem, let us consider an example

borrowed from [2].

Example: Consider yourself in a trip, your options include carrying an umbrella

u, not carrying an umbrella ¬u, being dry d and being wet ¬d. And you

prefer not carrying an umbrella to carrying an umbrella ¬u � u, being dry

to being wet d � ¬d and being dry to carrying an umbrella d � u.

In this example, the decision maker defines a general preference order among

all possible outcomes. The difficulty of describing relations among options quan-

titatively for this problem is obvious. Thus, classical approaches are not able to

bring a model for rational decision making. However, by describing the preference

in qualitative order scale, previous studies showed that a qualitative model can

be defined for decision making [4, 24].
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Although described generic preference is the common way used in qualitative

decision theory, Lehmann, in [37], came with a smart method by redefining qual-

itative preference ordering. He expands the qualitative preference order beyond

the usual order. In his work, he postulated that to define a qualitative preference

order between two qualitative outcomes P and Q, P and Q should carry following

properties:

1. P and Q /∈ R (they are qualitative numbers)

2. r ∈ R (r is a standard number)

3. P ≻ Q iff there is a positive r such that (P − Q)/P ≥ r

Described qualitative preference ordering used in [37] allows decision makers

to use quantitative probabilities with qualitative preference orders. The clearest

advantage of preference order proposed by Lehmann is that preference order is

presented in forms of numbers (of course they are qualitative numbers), and not

in forms of matrices as in usual order. These qualitative numbers could be used

in an utility function as normal numbers, but they are not real numbers, they

just represent preference order.

2.2.3 Qualitative Utilities

After accomplishing previous treatments on qualitative probabilities and conse-

quences. The qualitative decision theory shows that there exists a utility function

U such that:

1. P � Q if only if U(P ) ≥ U(Q)

2. P ∼ Q if only if U(P ) = U(Q)

This utility function definition for qualitative probabilities and conse-

quences/outcomes makes von Neumann and Morgenstern’s utillity concept is
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avaliable for decision making problems where probabilities and/or outcomes is

not in forms of numerical values.



Chapter 3

Methodology

3.1 Methodology

In our approach, we define the loss function qualitatively and condition it with

the current and estimated decisions as well as their consistency. Using our loss

function λ(αi|Cj), we define the conditional risk of taking action αi for instance

x is as follows:

R(αi|x) =
N∑

j=1

P (Cj|x) λ(αi|Cj) (3.1)

In this equation {C1, C2, ..., CN} is the set of N possible states of nature and

λ(αi|Cj) is the loss incurred for taking action αi when the actual state of nature

is Cj. In our approach, we consider Cj as the class that an instance can belong

to and αi as one of the following actions:

(a) extractk: extract feature Fk,

(b) classify: stop the extraction and classify the instance using the current

information, and

22
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extractk classify reject

Case 1: Cactual = Ccurr = Cestk
costk −REWARD PENALTY

Case 2: Cactual 6= Ccurr 6= Cestk
costk + PENALTY PENALTY −REWARD

Case 3: Ccurr = Cestk
6= Cactual costk + PENALTY PENALTY −REWARD

Case 4: Cactual = Ccurr 6= Cestk
costk + PENALTY −REWARD PENALTY

Case 5: Cactual = Cestk
6= Ccurr costk − REWARD PENALTY PENALTY

Table 3.1: Definition of the conditioned loss function for feature extraction, clas-
sification, and reject actions.

(c) reject: stop the extraction and reject the classification of the instance.

In this section, we first define our loss function by conditioning it with the

current and estimated decisions together with their consistency and derive the

equations for conditional risks using this loss function definition (in Section 3.2).

Then, we incorporate the qualitativeness into this conditioned-loss function defi-

nition and explain how to qualitatively compare the conditional risks for each pair

of actions (in Section 3.3). Finally, we provide the details of our test-cost sensitive

algorithm that uses this qualitative loss function definition (in Section 3.4).

3.2 Consistency-based loss functions

We define our loss function for the extractk, classify, and reject actions in

Table 3.1. In this table, Cactual is the actual class that an instance belongs to;

Ccurr is the class estimated by the current classifier (which uses only the features

that have been extracted thus far); Cestk
is the class estimated by the classifier

that uses the extracted features plus feature Fk (the one to be extracted next).

The actual class Cactual and the Cestk
should be estimated using the current

information since it is not possible to know these values in advance; we explain

the details of this estimation in Section 3.4.

In our loss function definition, for the extractk action (Table 3.1), the ex-

traction cost (costk) that should be paid for acquiring feature Fk is always

included. Additionally, the extraction of Fk is penalized with a qualitative

amount of PENALTY if this extraction does not yield correct classification (i.e.,
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Cestk
6= Cactual). On the contrary, the extraction is rewarded with a qualita-

tive amount of REWARD (by adding −REWARD to the loss function), if it yields

correct classification by changing our current decision (i.e., Cestk
= Cactual but

Ccurr 6= Cactual). If it just confirms the current decision which has already been

correct (i.e., Cestk
= Cactual and Ccurr = Cactual), the extraction is not rewarded

since it brings an additional cost without providing any new information. Thus,

we force our algorithm not to extract additional features when they are expected

to confirm the correct current decision. This leads to less costly but equally

accurate results. Note that in this loss function definition, as well as in those

defined for the classify and reject actions, PENALTY and REWARD are defined

as positive qualitative values. The next section provides the details of the use of

these qualitative values in making our decisions.

For the classify action (Table 3.1), the classification is rewarded with REWARD

if the current decision is correct (i.e., Ccurr = Cactual) and penalized with PENALTY

otherwise (i.e., Ccurr 6= Cactual). Thus, in the case of current decision being

correct, we force our algorithm to classify the instance without extracting any

additional features.

For the reject action (Table 3.1), the rejection of both classification and

feature extraction is rewarded with REWARD, if both the current and estimated de-

cisions yield misclassification (i.e., Ccurr 6= Cactual and Cestk
6= Cactual for every

Cestk
in C). The rejection is penalized with PENALTY if either the current decision

or any of the estimated decisions after feature extraction yields the correct classi-

fication (i.e., Ccurr = Cactual or Cestk
= Cactual for at least one Cestk

∈ C). Thus,

we force our algorithm to stop and reject the classification only when the cor-

rect classification is not possible, since there could be a cost associated with the

reject action (e.g., the dissatisfaction of a patient about his/her doctor). There-

fore, our algorithm takes this action only it believes that no correct classification

is possible.

Using these definitions, we derive the conditional risks for the extractk ac-

tion. For a particular instance x, we express the conditional risk of each action

using the definition of loss function above and take the action with the minimum
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risk. With C = {Ccurr, Cest1
, Cest2

, ..., CestM
} being the set of the current class

and the classes estimated after extracting each feature, the conditional risk of ex-

tracting feature Fk (extractk action) is defined as follows. Here, P (Ccurr = j|x)

is the probability of the current class being equal to j and P (Cestk
= j|x) is the

probability of class estimated after extracting feature Fk being equal to j.

R ( extractk|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.2)




P (Ccurr = j|x) P (Cestk
= j|x) costk +

P (Ccurr 6= j|x) P (Cestk
6= j|x) P (Ccurr = Cestk

|x) [costk + PENALTY] +

P (Ccurr 6= j|x) P (Cestk
6= j|x) P (Ccurr 6= Cestk

|x) [costk + PENALTY] +

P (Ccurr = j|x) P (Cestk
6= j|x) [costk + PENALTY] +

P (Ccurr 6= j|x) P (Cestk
= j|x) [costk − REWARD]




R ( extractk|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.3)




P (Ccurr = j|x) P (Cestk
= j|x) costk +

P (Ccurr 6= j|x) P (Cestk
6= j|x) [costk + PENALTY] +

P (Ccurr = j|x) P (Cestk
6= j|x) [costk + PENALTY] +

P (Ccurr 6= j|x) P (Cestk
= j|x) [costk − REWARD]




R ( extractk|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.4)




P (Ccurr = j|x) P (Cestk
= j|x) costk +

[1 − P (Ccurr = j|x)] [1 − P (Cestk
= j|x)] [costk + PENALTY] +

P (Ccurr = j|x) [1 − P (Cestk
= j|x)] [costk + PENALTY] +

[1 − P (Ccurr = j|x)] P (Cestk
= j|x) [costk − REWARD]




R ( extractk|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.5)




costk +

[1 − P (Cestk
= j|x)] PENALTY +

P (Cestk
= j|x) [1 − P (Ccurr = j)|x] [−REWARD]
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Equation 3.5 implies that the extraction of feature Fk requires paying for its

cost (costk). Furthermore, it implies that the extractk action is penalized with

PENALTY if the class estimated after feature extraction is incorrect and is rewarded

with REWARD if this estimated class is correct but it is different than the currently

estimated class.

For a particular instance x, the conditional risk of the classify action is

given in Equation 3.8.

R ( classify|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.6)




P (Ccurr = j|x) P (Cestk
= j|x) (−REWARD) +

P (Ccurr 6= j|x) P (Cestk
6= j|x) P (Ccurr = Cestk

|x) PENALTY +

P (Ccurr 6= j|x) P (Cestk
6= j|x) P (Ccurr 6= Cestk

|x) PENALTY +

P (Ccurr = j|x) P (Cestk
6= j|x) (−REWARD) +

P (Ccurr 6= j|x) P (Cestk
= j|x) PENALTY




R ( classify|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.7)




P (Ccurr = j|x) (−REWARD +)

P (Ccurr 6= j|x) P (Cestk
6= j|x) PENALTY +

P (Ccurr 6= j|x) P (Cestk
= j|x) PENALTY




R ( classify|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.8)

[
P (Ccurr = j|x) [−REWARD] + [1 − P (Ccurr = j|x)] PENALTY

]

Equation 3.8 implies that classifying the instance with the current classifier

(classify action) is rewarded with REWARD if this is a correct classification and

is penalized with PENALTY otherwise.

Similarly, for a particular instance x, we derive the conditional risk of the

reject action in Equation 3.9.
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R ( reject|x, C) =
N∑

j=1

P (Cactual = j|x) × (3.9)




[
[1 − P (Ccurr = j|x)]

M∏
m=1

[1 − P (Cestm
= j|x)]

]
[−REWARD] +

[
1 − [1 − P (Ccurr = j|x)]

M∏
m=1

[1 − P (Cestm
= j|x)]

]
PENALTY +




This equation implies that rejecting the classification is only rewarded with

REWARD if neither the estimated classes nor the current class is correct; otherwise,

it is penalized with PENALTY.

With this loss function formalization, we introduce the consistency concept to

test-cost sensitive learning. Here, we define the REWARD and PENALTY values quali-

tatively, which causes the conditional risks being also defined qualitatively. Thus,

there is no need to know the exact values of these parameters in the computation

of the conditional risks associated with each of our actions. In the following sec-

tion, we explain how these qualitative values and consistency are used in decision

making.

3.3 Qualitative decision making for test-cost

sensitive classification

Qualitative-reasoning concerns with the development of methods that allow to

design systems without precise quantitative information. It primarily uses the

ordinal relations between quantities, especially at particular locations (“landmark

values”). The numerical value of a landmark may or may not be known, but

the ordinal relations with this landmark, reflecting the generic preferences, are

known [40].

In our test-cost sensitive classification, our landmark values are the extrac-

tion cost for each feature Fk (costk) and the values of PENALTY and REWARD. For
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qualitative decision making, in order to take an action with the minimum condi-

tional risk, we should qualitatively compare the conditional risks in which these

landmark values are used. To this end, we should specify the ordering among

these landmarks. In this thesis, we specify such an ordering focusing on a med-

ical diagnosis problem. Please note that depending on the application, one can

change these assumptions and specify a new ordering for the comparison of the

conditional risks. In this ordering we make the following assumptions:

1. We assume that the cost of acquiring a feature (the price of a medical test)

is expressed quantitatively and is exactly known. Thus, costs for different

features are quantitatively compared among themselves.

2. PENALTY and REWARD are defined as positive numbers, but their precise

values are not known. Here, PENALTY is considered as the amount that we

pay in the case of misdiagnosis and REWARD is considered as the amount

that we earn in the case of correct diagnosis. In our system, we assume

that the amount that we pay for misdiagnosis is always greater than the

amount that we earn for correct diagnosis (PENALTY > REWARD). Therefore,

we force our system to have a higher tendency in preventing misdiagnosis

compared to resulting in correct diagnosis.

3. The extraction costs (the prices of medical tests) are always smaller than

any partial amounts of PENALTY and REWARD. Thus, here we assume that

all tests are affordable to prevent misdiagnosis and lead to the correct one.

In our decision making, we compare the conditional risks for each pair of

actions and select the action for which the conditional risk is qualitatively min-

imum. In the following subsections, by using the aforementioned assumptions,

we explain how to make qualitative comparisons for the extractk-vs-extractm,

extractk-vs-classify, extractk-vs-reject, and classify-vs-reject actions.

In these subsections, we also explain how to select what action to take as a result

of these comparisons.



CHAPTER 3. METHODOLOGY 29

3.3.1 extractk-vs-extractm

We compute the net conditional risk for comparing the conditional risks of the

extractk and extractm actions, which are defined for extracting features Fl and

Fn, respectively.

NetRisk = R(extractk|x,Ccurr, ) − R(extractm|x,Ccurr, ) (3.10)

Using Equation 3.5 in Equation 3.10, the net conditional risk is expressed as

NetRisk = (3.11)

(costk − costm) +

N∑

j=1

P (Cactual = j|x) [P (Cestm
= j|x) − P (Cestk

= j|x)] PENALTY +

N∑

j=1

P (Cactual = j|x) [P (Cestm
= j|x) − P (Cestk

= j|x)] ×

[1 − P (Ccurr = j|x)] REWARD (3.12)

With

NetCost = (costk − costm),

X =
N∑

j=1

P (Cactual = j|x) [P (Cestm
= j|x) − P (Cestk

= j|x)],

and

Y =
N∑

j=1

P (Cactual = j|x) [P (Cestm
= j|x) − P (Cestk

= j|x)] [1 − P (Ccurr = j|x)],

we rewrite this equation as

NetRisk = NetCost + XPENALTY + Y REWARD (3.13)

Negative values of NetRisk imply that the conditional risk of extractk is
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smaller than that of extractm. Therefore, we take the extractk action for

negative NetRisks and the extractm action for nonnegative ones.

In Equation 3.13, we simply neglect NetCost since the feature extraction

cost is always less than any partial amounts of PENALTY and REWARD (the third

assumption). As PENALTY and REWARD are defined as positive values, the sign of

NetRisk depends on the signs of X and Y which are computed using posterior

probabilities1. Therefore, we can have four different cases:

• Case 1 (X ≥ 0 and Y ≥ 0): It implies that the values of XPENALTY and

Y REWARD are greater than or equal to zero, and consequently, the value

of NetRisk is nonnegative. Therefore, we take the extractm action. If

both X = 0 and Y = 0, we take the extractk action for which the cost

(costk) is minimum; note that here we know the ordering among the feature

extraction costs (the first assumption).

• Case 2 (X < 0 and Y < 0): It implies that the values of XPENALTY

and Y REWARD are less than zero, and consequently, the value of NetRisk is

negative. Therefore, we take the extractk action.

• Case 3 (X ≥ 0 and Y < 0): The sign of NetRisk depends on the mag-

nitudes of X and Y . If |X| ≥ |Y | then |XPENALTY| > |Y REWARD|, since

PENALTY is greater than REWARD (the second assumption). Thus, the value

of NetRisk is nonnegative and the extractm action is taken.

If |X| < |Y |, we then qualitatively compare |XPENALTY| and |Y REWARD|.

For that, we use the following definition, which is given in [37].

Definition 1 Let A and B be positive. A is qualitatively larger than B if

and only if there is a strictly positive real number r such that (A−B)/A ≥ r.

With r being a strictly positive real number, |Y REWARD| is qualitatively

1Once again, note that P (Cactual = j|x) and P (Cestk
= j|x) are not known in advance and

they should be estimated using the current information beforehand. We provide the details of
this estimation in Section 3.4.
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larger than |XPENALTY| if and only if

|Y REWARD| ≻ |X PENALTY| ⇔
|Y REWARD| − |X PENALTY|

|Y REWARD|
≥ r

|Y REWARD| ≻ |X PENALTY| ⇔ 1 −
|X PENALTY|

|Y REWARD|
≥ r

|Y REWARD| ≻ |X PENALTY| ⇔
|X| PENALTY

|Y | REWARD
≤ 1 − r

Selecting r in between 0 and 1, 1 − r gives another strictly positive real

number p, which is also in between 0 and 1.

|Y REWARD| ≻ |X PENALTY| ⇔
|X|

|Y |
≤ p

REWARD

PENALTY

We define another strictly positive real number SMALL = p × (REWARD/PENALTY).
2. This number is also in between 0 and 1 since REWARD is less than PENALTY

which implies REWARD/PENALTY < 1.

|Y REWARD| ≻ |XPENALTY| ⇔
|X|

|Y |
≤ SMALL (3.14)

Therefore, if |X| < |Y |, we check whether or not Equation 3.14 holds. If

|X/Y | ≤ SMALL then |Y REWARD| is qualitatively larger than |XPENALTY|,

and hence, the value of NetRisk is negative and the extractk action is

taken. Otherwise (if |X/Y | > SMALL), the value of NetRisk is nonnegative

and the extractm action is taken. Obviously, the value of the SMALL af-

fects our decision. Here, its derivation could be considered as determining

a parameter. However, in this work, we propose to determine its value au-

tomatically from the training data rather than having the user select this

value. Thus, its derivation does not require the user to express his/her

belief in terms of quantitative numbers. In Section 3.4, we explain how to

automatically determine its value in detail.

• Case 4 (X < 0 and Y ≥ 0): Similar to Case 3, the sign of NetRisk

depends on the magnitudes of X and Y . Similarly, if |X| ≥ |Y | then

|XPENALTY| > |Y REWARD|, since PENALTY is greater than REWARD (the second

2Considering our second assumption (PENALTY ≻ REWARD), we assume that only a small
portion of PENALTY could be smaller than REWARD, so we call this real number as SMALL
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assumption). Thus, the value of NetRisk is negative and the extractk

action is taken.

If |X| < |Y |, we qualitatively compare |XPENALTY| and |Y REWARD| us-

ing Equation 3.14 (and Definition 1). Likewise, if |X/Y | ≤ SMALL then

|Y REWARD| is qualitatively larger than |XPENALTY|, and hence, the value of

NetRisk is nonnegative and the extractm action is taken. Otherwise (if

|X/Y | > SMALL), the value of NetRisk is negative and the extractk action

is taken.

In Figure 3.1, we provide the summary of these four different cases and the

rules to determine what action to take.

Case 1: X ≥ 0, Y ≥ 0 extractm

Case 2: X < 0, Y < 0 extractk

Case 3: X ≥ 0, Y < 0 if X ≥ |Y | extractm

else if X
|Y |

≤ SMALL extractk

else extractm

Case 4: X < 0, Y ≥ 0 if |X| ≥ Y extractk

else if |X|
Y

≤ SMALL extractm

else extractk

Figure 3.1: For extractk-vs-extractm comparison, the cases and the rules to
determine what action to take.

3.3.2 extractk-vs-classify

Similar to the extractk-vs-extractm comparison, we compute the net condi-

tional risk for the comparison of the conditional risks of the extractk and

classify actions.

NetRisk = R(extractk|x,Ccurr, ) − R(classify|x,Ccurr, ) (3.15)
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Using Equations 3.5 and 3.8 in Equation 3.15, the net conditional risk is expressed

as

NetRisk = (3.16)

costk +

N∑

j=1

P (Cactual = j|x) [P (Ccurr = j|x) − P (Cestk
= j|x)] PENALTY +

N∑

j=1

P (Cactual = j|x) ×

[P (Ccurr = j|x) − P (Cestk
= j|x) [1 − P (Ccurr = j|x)]] REWARD

With

X =
N∑

j=1

P (Cactual = j|x) [P (Ccurr = j|x) − P (Cestk
= j|x)],

and

Y =
N∑

j=1

P (Cactual = j|x) [P (Ccurr = j|x) − P (Cestk
= j|x) [1 − P (Ccurr = j|x)]],

we rewrite this equation as

NetRisk = costk + XPENALTY + Y REWARD (3.17)

Here we take the extractk action if NetRisk is negative and the classify

action otherwise. Similar to the extractk-vs-extractm comparison, we neglect

the costk term in Equation 3.17 and have four different cases depending on the

signs of X and Y . For each of these cases, we derive the comparison rules in

a similar way that we do in the case of the extractk-vs-extractm comparison.

These four cases and the associated rules are given in Figure 3.2.
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Case 1: X ≥ 0, Y ≥ 0 classify

Case 2: X < 0, Y < 0 extractk

Case 3: X ≥ 0, Y < 0 if X ≥ |Y | classify

else if X
|Y |

≤ SMALL extractk

else classify

Case 4: X < 0, Y ≥ 0 if |X| ≥ Y extractk

else if |X|
Y

≤ SMALL classify

else extractk

Figure 3.2: For extractk-vs-classify comparison, the cases and the rules to
determine what action to take.

3.3.3 extractk-vs-reject

Likewise, we compute the net conditional risk for comparing the conditional risks

of the extractk and reject actions.

NetRisk = R(extractk|x,Ccurr, ) − R(reject|x,Ccurr, ) (3.18)

Using Equations 3.5 and 3.9 in Equation 3.18, the net conditional risk is expressed

as

NetRisk = (3.19)

costk +

N∑

j=1

P (Cactual = j|x) ×




[1 − P (Ccurr = j|x)]
∏

Cestm
∈C

[1 − P (Cestm
= j|x)] −

P (Cestk
= j|x)


 PENALTY +

N∑

j=1

P (Cactual = j|x) ×




[1 − P (Ccurr = j|x)]
∏

Cestm
∈C

[1 − P (Cestm
= j|x)] −

P (Cestk
= j|x)[1 − P (Ccurr = j|x)]


 REWARD
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With

X =
N∑

j=1

P (Cactual = j|x)




[1 − P (Ccurr = j|x)]
∏

Cestm
∈C

[1 − P (Cestm
= j|x)] −

P (Cestk
= j|x)


,

and

Y =
N∑

j=1

P (Cactual = j|x)




[1 − P (Ccurr = j|x)]
∏

Cestm
∈C

[1 − P (Cestm
= j|x)] −

P (Cestk
= j|x)[1 − P (Ccurr = j|x)]


,

we rewrite this equation as

NetRisk = costk + XPENALTY + Y REWARD (3.20)

Here we take the extractk action if NetRisk is negative and the reject

action otherwise. Similarly, we neglect the costk term in Equation 3.20 and have

four different cases depending on the signs of X and Y . For each of these cases,

we derive the comparison rules in a similar way that we do in the case of the

extractk-vs-extractm comparison. These four cases and the associated rules

are given in Figure 3.3.

Case 1: X ≥ 0, Y ≥ 0 reject

Case 2: X < 0, Y < 0 extractk

Case 3: X ≥ 0, Y < 0 if X ≥ |Y | reject

else if X
|Y |

≤ SMALL extractk

else reject

Case 4: X < 0, Y ≥ 0 if |X| ≥ Y extractk

else if |X|
Y

≤ SMALL reject

else extractk

Figure 3.3: For extractk-vs-reject comparison, the cases and the rules to de-
termine what action to take.
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3.3.4 classify-vs-reject

For the comparison of the conditional risks of the classify and reject actions,

we similarly compute the net conditional risk as follows:

NetRisk = R(reject|x,Ccurr, ) − R(classify|x,Ccurr, C) (3.21)

Using Equations 3.8 and 3.9 in Equation 3.21, the net conditional risk is expressed

as

NetRisk = (3.22)

N∑

j=1

P (Cactual = j|x) ×




P (Ccurr = j|x) −

[1 − P (Ccurr = j|x)]
∏

Cestm
∈C

[1 − P (Cestm
= j|x)]


 PENALTY +

N∑

j=1

P (Cactual = j|x) ×




P (Ccurr = j|x) −

[1 − P (Ccurr = j|x)]
∏

Cestm
∈C

[1 − P (Cestm
= j|x)]


 REWARD

With

X =
N∑

j=1

P (Cactual = j|x)




P (Ccurr = j|x) −

[1 − P (Ccurr = j|x)]
∏

Cestm
∈C

[1 − P (Cestm
= j|x)]


,

we rewrite this equation as

NetRisk = XPENALTY + XREWARD (3.23)

We take the reject action if NetRisk is negative and the classify action

otherwise. Here, we have the same multiplier for the PENALTY and REWARD values.

As both PENALTY and REWARD are positive, we can have two different cases de-

pending on the sign of the multiplier X. If X ≥ 0, NetRisk is nonnegative, and
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consequently, the classify action is taken. Otherwise (if X < 0), NetRisk is

negative, and hence, the reject action is taken. These cases and the associated

rules are given in Figure 3.4.

Case 1: X ≥ 0 classify

Case 2: X < 0 reject

Figure 3.4: For classify-vs-reject comparison, the cases and the rules to de-
termine what action to take.

3.4 Qualitative test-cost sensitive classification

algorithm

For a given instance x, our algorithm dynamically selects a subset of features for

its classification. At a given time, it qualitatively compares the conditional risks of

possible actions, and subsequently, takes the action with the minimum conditional

risk using the rules given in Figures 3.1–3.4. For that, first, the extractk action

with the minimum conditional risk is selected by comparing the conditional risks

of extract actions for every non-extracted feature Fi (using Figure 3.1). Then,

the conditional risks of the classify and reject actions are compared (using

Figure 3.4) and the one with smaller risk is selected. Finally, if the classify

action is selected, the conditional risk of the selected extractk action is compared

with that of the classify action (using Figure 3.2). Otherwise, the conditional

risk of the selected extractk action is compared with that of the reject action

(using Figure 3.3). Our algorithm sequentially conducts these comparisons as

well as the selection of the actions until either the classify or the reject action

is taken. The schematic representation of this algorithm is given in Figure 3.5.

To qualitatively compare the conditional risks of the actions using Figures 3.1–

3.4, the values of X, Y , and SMALL should be computed. For computing X and Y ,

we use posterior probabilities as given in Equations 3.13, 3.17, 3.20, and 3.23. In
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Figure 3.5: The schematic representation of our test-cost sensitive classification
algorithm.
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these equations, posterior probabilities P (Ccurr = j|x) are computed by the cur-

rent classifier using the current information (i.e., using the previously extracted

features). However, posteriors P (Cestk
= j|x) and P (Cactual = j|x) could not ex-

actly be known prior to extracting feature Fk, and hence, they should be estimated

using the current information (i.e., using the previously extracted features).

In the estimation of P (Cestk
= j|x), we take the following steps. For each

unextracted feature Fk, we train a classifier on training samples D = {xt}
T
t=1

. In

this classifier, the inputs are the features of the training samples including the ones

that have already been extracted plus feature Fk and the outputs are the class

labels of these training samples. Then, for each training sample xt, we generate

the posterior probabilities P (Cestk
= j|xt) using this classifier. Finally, we train

an estimator to learn these generated posteriors from only the features that have

already been extracted (but not feature Fk) on the training samples. These

estimators are then used to estimate P (Cestk
= j|x) for a given test instance x,

without using feature Fk. In this work, we use a Parzen window estimator whose

kernel function ρ(u) defines a unit hypercube

ρ(u) =

{
1 if |ui| ≤ 1/2 for all feature dimensions i = 1, 2, ..., d

0 otherwise
(3.24)

Using this kernel function, the posterior P (Cestk
= j|x) is estimated as

̂P (Cestk
= j|x) =

T∑
t=1

ρ
(

x−xt

h

)
· P (Cestk

= j|xt)

T∑
t=1

ρ
(

x−xt

h

) (3.25)

where h is the length of an edge of the hypercube and selected using a leave-one

out maximum likelihood estimation.

In the computation of P (Cactual = j|x) for the extractk action, we make

use of both the posteriors computed by the current classifier and those esti-

mated by the Parzen window estimators. To do so, for each class j, we multiply

the corresponding posteriors (P (Ccurr = j|x) and P (Cestk
= j|x)), and then

normalize them such that
∑N

j=1
P (Cactual = j|x) = 1. For the classify and

reject actions, we use only the posteriors computed by the current classifier
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(P (Ccurr = j|x)) since these actions stop further feature extractions and no more

features are used to classify the given instance x.

Next, we automatically determine the value of SMALL using the training sam-

ples. For that, on the training samples, we first determine the distinct cases

where the ambiguity arises (e.g., when |X| < |Y | in Case 3 of the extractk-

vs-classify comparison). For such cases, we record the |X|/ |Y | ratios and

continue the algorithm by taking the SMALL value as zero. Note that in the learn-

ing phase of SMALL, we quantitatively compare |XPENALTY| and |Y REWARD| rather

than comparing them qualitatively using Definition 1. Here we suppose that such

ambiguous cases arise due to the possibility of two different beliefs (e.g., when

|X| < |Y | in Case 3 of the extractk-vs-classify comparison, one belief says

to take the extractk action whereas the other one says to take the classify

action). Thus, we assume that these cases, and hence their |X|/ |Y | ratios, are

drawn from a mixture density of two Gaussian components, each representing a

different belief. Therefore, on the recorded |X|/ |Y | ratios, we estimate these two

Gaussian components as well as the priors of the beliefs using an expectation-

maximization algorithm. Then we determine the SMALL value as the point, where

the posterior of the first belief always yields smaller values compared to that

of the second belief. For an exemplary data set, the histogram of the |X|/ |Y |

ratios of ambiguous cases and the two Gaussian components estimated on these

ratios are shown in Figure 3.6(a). The posteriors which are obtained using the

estimated Gaussians and the priors, are shown in Figure 3.6(b); in this figure,

the derivation of the SMALL value is also illustrated.

This derivation process of SMALL value is an important issue in our framework

for deciding the correct action for ambiguous cases. If the SMALL value is selected

to be 1, then no further features are extracted for the ambiguous cases. On the

other hand, if the SMALL value is selected to be 0, features are always extracted.

Fortunately, in our proposed framework, we determine the SMALL value automat-

ically from the samples of the training set. Thus, no external optimization is

necessary for the SMALL value derivation.
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Figure 3.6: Derivation of the SMALL value: (a) the histogram of the distinct
|X|/ |Y | ratios of ambiguous cases and the two Gaussian components estimated
on these ratios and (b) posteriors obtained using the estimated Gaussians and
prior probabilities.



Chapter 4

Experiments

This chapter describes our experimental study on medical datasets for test-cost

sensitive learning. The goal of our experiments is to investigate the benefit of the

following two issues:

• Consistency Behavior : We investigate whether or not the proposed con-

sistency behavior provides aforementioned benefits for reducing the cost

during learning

• Qualitative Representation: We also investigate whether or not the qual-

itative representation is actually robust and efficient in test-cost sensitive

learning

To investigate the benefits of these two issues, we conduct our experiments

on three real medical datasets which are taken from the UCI repository [41]. We

also compare our results with those of the previous studies to investigate the

robustness and effectiveness of qualitativeness and consistency concepts.

In this chapter, first, we give a summary of the datasets and explain how

we make our evaluations. Then, we report the results of our algorithm using

two different types of classifiers and illustrate the derivation of the SMALL value

42
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for each dataset. Finally, we compare our algorithm with different well-known

algorithms.

4.1 Experimental Setup

We conduct our experiments on three medical datasets taken from (UCI) repos-

itory [41]. We choose these datasets for two reasons. First, they are all real

medical diagnosis datasets. Second, feature extraction costs have been provided

for all of them. Before describing the these dataset in detail, we describe some

common properties of them. All of these data sets consist of features extracted by

asking questions (question-based-features) to a patient as well as those extracted

from medical tests (medical-test-based-features). A nominal cost of $1 is assigned

to the former features and the cost of the corresponding medical test is assigned

to the latter ones. Some of the medical tests are in the same group and according

to their groups, they share a common cost. For such medical tests, the cost is

decreased by an amount of the common cost after conducting the first test of

its corresponding group. For instance, suppose that two tests are in the same

medical test group. Their costs are $5 and $7 and they have a common cost of

$2. This common cost is deducted from amount of these test cost, when one of

them is extracted. Thus, if both of these tests are conducted, the total cost will

be $10 ($5 + $7 - $2). At the UCI repository, for each dataset, the costs for

medical tests and the common costs are given; we also provide their summary

below (4.1 - 4.3).

4.1.1 Bupa Liver Disorder Dataset

First dataset that we use in our experiments is the Bupa liver disorder dataset.

This dataset includes features to diagnose whether or not a patient has a liver

disorder. There are 345 instances, each of which has 5 features and one of two

classes (healthy liver or sick). All of the features are medical-test-based-features

with the costs of {$7.27, $7.27, $7.27, $7.27, $9.86}. All features in Bupa dataset
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Table 4.1: Description of the features and their extraction cost for the Bupa Liver
Disorder dataset.

Description Cost Group
1 Alkaline phosphotase $7.27 A
2 Mean corpuscular volume $7.27 A
3 Alamine aminotransferase $7.27 A
4 Aspartate aminotransferase $7.27 A
5 Gamma-glutamyl transpeptidase $9.86 A

belong to the same group that has a common cost of $2.10. The description of

features and their costs are summarized in Table 4.1.

For the Bupa Liver Disorder, there is a single dataset (no separate training

and test sets) in the UCI repository. As the size of this dataset is relatively

small, we divide dataset into 3 random folds and perform 3-fold cross validation

to evaluate the performance our system.

4.1.2 Heart Disease Dataset

This dataset includes features to diagnose whether or not a patient has a heart

disease. This dataset has a total of 303 instances. In our experiments, we elim-

inate six of them that have missing values and use the remaining 297 instances.
1 This dataset includes two classes (sick and healthy). It has 13 features and

four of these features are question-based-features with $1 nominal cost and the

remaining nine of them are medical-test-based-features with the costs of {$7.27,

$5.20, $102.90, $102.90, $87.30, $87.30, $87.30, $15.50, $100.90}. In this dataset,

there are three feature groups. The group A has a common cost of $2.10. The

group B has a common cost of $101.90. And the last group C has a common

cost of $86.30. The description of the features and their costs are summarized in

1Our algorithm handles missing values depending on the type of a classifier used in our
framework. For instance, if the classifier is a decision tree, our framework can handle the
missing values. Note that, if such missing values exist, we do not consider the corresponding
features in our feature selection algorithm. However, in this thesis, to compare our work with
the others we exclude the missing values
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Table 4.2: Description of the features and their extraction cost for the Heart
Disease dataset.

Description Cost Group
1 Serum cholesterol $7.27 A
2 Fasting blood sugar $5.20 A
3 Resting electrocardiograph $102.90 B
4 Maximum heart rate achieved $102.90 B
5 Exercise induced angina $87.30 C
6 ST depression induced by $87.30 C

exercise relative to rest
7 Slope of peak exercise ST $87.30 C
8 Number of major vessels $15.50 –

coloured by fluoroscopy
9 3 = normal; 6 = fixed defect $100.90 –

7 = reversible defect
10 Resting blood pressure $1 –
11 Chest pain type $1 –
12 Patients gender $1 –
13 Age in years $1 –

Table 4.2.

Similarly, for the Heart Disease, there is a single dataset (no separate training

and test sets) in the UCI repository. As the size of this dataset is relatively small,

we divide the dataset into 3 random folds and perform 3-fold cross validation to

evaluate the performance our system.

4.1.3 Thyroid Disease Dataset

The last dataset that we use in our experiments is the Thyroid Dataset. This

dataset includes features to diagnose whether a patient has hypothyroid, hyper-

thyroid or healthy.

It has three classes and 21 features. The first 16 features are question-

based-features with $1 nominal cost. The next four features are ob-

tained from the blood tests and the assigned costs of these blood tests are
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Table 4.3: Description of the features and their extraction cost for the Thyroid
Disease dataset.

Description Cost Group

1 Age in years $1 –
2 Gender $1 –
3 Patient on thyroxine $1 –
4 Maybe on thyroxine $1 –
5 On antithyroid medication $1 –
6 Patient reports malaise $1 –
7 Patient pregnant $1 –
8 History of thyroid surgery $1 –
9 Patient on I131 treatment $1 –
10 Maybe hypothyroid $1 –
11 Maybe hyperthyroid $1 –
12 Patient on lithium $1 –
13 Patient has goiter $1 –
14 Patient has tumor $1 –
15 Patient hypopituitary $1 –
16 Psychological symptoms $1 –
17 TSH value $22.78 A
18 T3 value $11.41 A
19 TT4 value $14.51 A
20 T4U value $11.41 A
21 FT1 – calculated from Uses features 19 and 20

TT4 and T4U

{$22.78, $11.41, $14.51, $11.41}. These features belong to the same group and

have a common cost of $2.10. In addition, there is another feature which is cal-

culated from the nineteenth and twentieth features. We use this last feature in

classification only if both nineteenth and twentieth features are already extracted.

The description of the features as well as their extraction costs are summarized

in Table 4.3.

For the Thyroid Disease dataset, there are two separate training and test sets

in the UCI repository. Thus, we use the test set to evaluate the performance

of our system. Note that, the training and test sets consist of 3772 and 3428

instances, respectively; the size of this dataset is very high compared to the other

two datasets.
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4.2 Results

In our experiments, our algorithm starts with the cheapest feature and sequen-

tially selects a subset of the other features until the classify or the reject

action is taken. If there are more than one feature with the same minimum

cost, we select the starting feature based on the distinctive power of these cheap-

est features; for that we select the one that has the smallest ratio between its

within-class and between-class scatter values. In the estimation of the posterior

probabilities for non-extracted features, we use Parzen windows. According to

the selected window size using a leave one-out likelihood estimation, we compute

the posterior probabilities for each non-extracted feature.

Both classifiers and estimators are trained on the training set. In Parzen win-

dow estimation, for some of the test samples, there are no training samples falling

in its window. For such cases, the estimators do not provide any information, and

thus, we do not penalize any feature extraction and consider only the posteriors

obtained by the current classifier to compute the conditional risks.

In this section, we first use decision trees as the classifiers and show the re-

sults obtained by our proposed framework. Then, we use hidden Markov Models

(HMMs) as the classifiers and show the obtained results. Finally, we compare

our results with other studies in section 4.3. For both of the classifiers, we inves-

tigate the benefits of the consistency concept. To this end, we also conduct our

experiments without considering the consistency; we always reward the feature

extraction (with an amount of REWARD) if it yields correct classification, re-

gardless of whether or not this classification would be consistent with our current

decision. For these classifiers, we also show the derivation process of the SMALL

value for the three datasets. At the end of the this chapter, we compare our

results with those of the previous studies to understand the benefits of the use of

qualitativeness and consistency concepts.
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4.2.1 Decision Tree

In this section, we give the results of our framework when the classifier is a

decision tree. The results of our framework are presented in Sections 4.2.1.1,

4.2.1.2 and 4.2.1.3, for the Bupa, Heart, and Thyroid datasets, respectively.

4.2.1.1 Results of the BUPA dataset

We report the test results of our proposed algorithm for each fold of the Bupa

dataset in Table 4.4. In this table, we provide the accuracy, the percentage of

the reduction in the overall feature extraction cost, and the number of samples

for which the reject action is taken. We also provide the results obtained by

a baseline classifier, which uses all of the available features in its decision tree

construction. The results in Table 4.4 show that our algorithm yields significant

cost reductions for each fold. Also they show that the results of our algorithm

are better than those of the baseline classifier for fold1 and fold3.

In Table 4.5, we give the results when the consistency is not considered. Com-

paring the results considering consistency and without considering consistency

(Tables 4.4 and 4.5), we observe that the consistency provides more amount of

cost reduction. This is because of our algorithm avoiding to pay for tests that

are not going to change the current decision.

4.2.1.2 Results of the Heart dataset

For the Heart dataset, we report the test results of our framework for each fold

in Table 4.6. This table demonstrates that the proposed algorithm significantly

decreases cost expenditure without decreasing the accuracy. Furthermore, similar

to the case of the Bupa dataset, the accuracy for fold2 and fol3 increases. This is

attributed to the effect of curse of dimensionality, since these datasets include a

less amount of samples and the baseline classifier uses all of the features whereas

the proposed algorithm uses only a subset of them. In Table 4.7, we report the
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Table 4.4: For the Bupa dataset, the results obtained by our qualitative test-cost
sensitive algorithm and those obtained by the baseline classifier, which uses all
of the features in its decision tree construction.

Decision Tree Our algorithm
Baseline

Cost red. Number of
Accuracy Accuracy percentage reject cases

Fold1 57.50 59.17 70.34 -
Fold2 55.08 53.39 65.86 -
Fold3 57.63 64.41 69.81 -
Avg. 56.74 58.99 68.67 -
Std. 1.43 5.51 2.45 -

Table 4.5: For the Bupa dataset, the results are obtained by our qualitative test-
cost sensitive algorithm when the consistency is not considered.Here, decision tree
classifiers are used

Consistency-off
Cost red. Number of

Accuracy percentage reject cases
Fold1 55.83 23.14 -
Fold2 55.08 7.61 -
Fold3 63.79 22.74 2
Avg. 57.66 17.08 2
Std. 3.83 8.86 -

results obtained when the consistency is not considered. Similar to the Bupa

dataset, without considering consistency the cost reduction percentages severely

decreases.

4.2.1.3 Results of the Thyroid Dataset

In Table 4.8, we report the test results obtained by our algorithm for the Thyroid

dataset. The results when the consistency is not considered are given in Table 4.9.

Similarly, these results demonstrate that the proposed algorithm leads to a close

accuracy to the baseline classifier and reduces the cost expenditure greatly. When
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Table 4.6: For the Heart dataset, the results obtained by our qualitative test-cost
sensitive algorithm and those obtained by the baseline classifier, which uses all
of the features in its decision tree construction.

Decision Tree Our algorithm
Baseline

Cost red. Number of
Accuracy Accuracy percentage reject cases

Fold1 78.79 77.78 62.15 -
Fold2 73.74 81.82 69.96 -
Fold3 73.74 74.75 70.21 -
Avg. 75.42 78.11 67.44 -
Std. 2.92 3.55 4.58 -

Table 4.7: For the Heart dataset, the results are obtained by our qualitative test-
cost sensitive algorithm when the consistency is not considered. Here, decision
tree classifiers are used

Consistency-off
Cost red. Number of

Accuracy percentage reject cases
Fold1 76.77 0.34 -
Fold2 73.74 0̃ -
Fold3 73.74 0.09 -
Avg. 74.75 0.14 -
Std 1.75 0.18 -
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Table 4.8: For the Thyroid dataset, the results obtained by our qualitative test-
cost sensitive algorithm and those obtained by the baseline classifier, which uses
all of the features in its decision tree construction.

Decision Tree Our algorithm
Baseline

Cost red. Number of
Accuracy Accuracy percentage reject cases

Test Set 98.57 98.08 53.01 1

Table 4.9: For the Thyroid dataset, the results are obtained by our qualitative
test-cost sensitive algorithm when the consistency is not considered. Here, deci-
sion tree classifiers are used

Consistency-off
Cost red. Number of

Accuracy percentage reject cases

Thyroid 98.19 5.89 3

consistency is not considered, the cost reduction severely decreases although the

accuracy is still near to that of the baseline classifier. Please note that, we

automatically derive the SMALL value. Thus, we do not expect the best possible

results. However, the results given in Table 4.8 show that our algorithm selects

the SMALL value in a good range, and hence, its accuracy is close to that of baseline

classifier while its cost reduction is high (more than 50 percent).

4.2.1.4 Derivation of the SMALL Value

In this section, we illustrate how to derive the SMALL value for a dataset on the

plots given in Figures 4.1, 4.2, and 4.3 for the Bupa, Heart and Thyroid datasets,

respectively. For that, on the histogram of the ratios we estimate two Gaussian

distributions (the likelihoods) and their priors. Then we combine them into the

posterior probabilities as shown these Figures. The point where the posteriors
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are equal to each other is determined as the SMALL value.

In our experiments, the derived SMALL values for the Bupa dataset are 0.335,

0.325, and 0.215 for fold1, fold2 and fold3, respectively (Figure 4.1). The SMALL

values for the Heart dataset are 0.212, 0.265 and 0.277 for fold1, fold2, and fold3,

respectively (Figure 4.2). The SMALL for the Thyroid dataset is 0.06 (Figure 4.3).
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Figure 4.1: Derivation of the SMALL value: (a),(c), and (e) are the histograms of
the distinct |X|/|Y | ratios of ambiguous cases and two Gaussian components esti-
mated on these ratios for the Bupa (fold1, fold2, and fold3, respectively). (b),(d)
and (e) are posteriors obtained using estimated Gaussians and prior probabilities
for the Bupa (fold1, fold2, and fold3, respectively). Here, decision tree classifiers
are used.
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Figure 4.2: Derivation of the SMALL value: (a),(c), and (e) are the histograms of
the distinct |X|/|Y | ratios of ambiguous cases and two Gaussian components esti-
mated on these ratios for the Heart (fold1, fold2 and fold3, respectively). (b),(d),
and (e) are posteriors obtained using estimated Gaussians and prior probabilities
for the Heart (fold1, fold2, and fold3, respectively). Here, decision tree classifiers
are used.
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Figure 4.3: Derivation of the SMALL value: (a) is the histogram of the distinct
|X|/|Y | ratios of ambiguous cases and two Gaussian components estimated on
these ratios for the Thyroid. (b) is posteriors obtained using estimated Gaussians
and prior probabilities for the Thyroid. Here, decision tree classifiers are used.

4.2.2 Hidden Markov Model

In this section, we provide the results of our framework when a Hidden Markov

Model classifier is used. The results of our framework are presented in sections

4.2.2.1, 4.2.2.2, and 4.2.2.3 for the Bupa, Heart, and Thyroid datasets, respec-

tively.

4.2.2.1 Results of the BUPA dataset

In Table 4.10, we present the results of our algorithm when a HMM classifier is

used. Similarly, we obtain high percentages of cost reduction with no decrease

in the diagnosis accuracy. This demonstrates that our algorithm is independent

from the classifier type and any of the classifier could be used in the system.

For this dataset, the accuracies and cost reductions are very similar to those in

the case of the use of decision trees. In Table 4.11, we also report our results

when consistency is not considered. Similarly, this table shows that without

consistency, the cost expenditure is high.
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Table 4.10: For the Bupa dataset, the results obtained by our qualitative test-cost
sensitive algorithm and those obtained by the baseline classifier, which uses all
of the features in its HMM.

HMM Our algorithm
Baseline

Cost red. Number of
Accuracy Accuracy percentage reject cases

Fold1 57.50 56.67 68.86 -
Fold2 56.78 59.32 64.14 -
Fold3 61.02 61.86 67.01 -
Avg. 58.43 59.28 66.67 -
Std. 2.60 2.27 2.38 -

Table 4.11: For the Bupa dataset, the results are obtained by our qualitative
test-cost sensitive algorithm when the consistency is not considered. Here, HMM
classifiers are used

Consistency-off
Cost red. Number of

Accuracy percentage reject cases
Fold1 55.83 6.21 -
Fold2 56.78 7.75 -
Fold3 59.32 13.99 -
Avg. 57.32 9.32 -
Std. 1.84 4.12 -
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Table 4.12: For the Heart dataset, the results obtained by our qualitative test-
cost sensitive algorithm and those obtained by the baseline classifier, which uses
all of the features in its HMM.

HMM Our algorithm
Baseline

Cost red. Number of
Accuracy Accuracy percentage reject cases

Fold1 84.85 86.87 43.11 -
Fold2 85.86 82.83 51.78 -
Fold3 77.78 76.77 52.14 -
Fold2 82.83 82.15 49.01 -
Fold3 4.40 5.08 5.11 -

4.2.2.2 Results of the Heart dataset

In Table 4.12, we report the results of the Heart dataset, when the classifier used

is an HMM. In this table, the results show that the accuracy of the baseline

classifier is much higher than that of the decision tree. Thus, we obtain higher

values compared to the case of decision trees. Our results are again close to the

accuracy of the baseline classifier. This shows that the accuracy of the proposed

algorithm depends on the accuracy of the baseline classifier. Furthermore it also

shows that the use of more accurate baseline classifiers improves the performance

of our algorithm. Similar to the previous case, our algorithm still yields high

percentages of cost reduction. These values are lower than those reported in

Table 4.12 since the algorithm believes that with an HMM classifier, it could

reach higher accuracy values when more number of features are used. Similar to

the decision tree case, without considering the consistency, we obtain lower cost

reductions (Table 4.13).

4.2.2.3 Results of the Thyroid dataset

In Table 4.14, we report the test results for the thyroid dataset when a HMM

classifier is used. In this table, the proposed algorithm leads to significant amount
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Table 4.13: For the Heart dataset, the results are obtained by our qualitative
test-cost sensitive algorithm when the consistency is not considered. Here, HMM
classifiers are used

Consistency-off
Cost red. Number of

Accuracy percentage reject cases
Fold1 84.85 0.75 -
Fold2 85.86 2.95 -
Fold3 76.77 0.40 -
Avg. 82.49 1.37 -
Std. 4.98 1.38 -

Table 4.14: For the Thyroid dataset, the results obtained by our qualitative test-
cost sensitive algorithm and those obtained by the baseline classifier, which uses
all of the features in its decision tree construction.

HMM Our algorithm
Baseline

Cost red. Number of
Accuracy Accuracy percentage reject cases

Test Set 95.62 96.03 46.58 26

of cost reduction without decreasing accuracy. Similarly without the consistency

behavior, there is almost no cost reduction (Table 4.15). For the thyroid dataset,

there are more rejection cases when the HMM classifier is used. When we analyze

the rejection cases, we see that nearly half of them are the samples that are

misclassified by the baseline classifier. The rejection action is selected to prevent

misclassification as there is no way to classify these samples correctly even all

of the features are used. Here note that in the computation of the accuracy, we

consider the reject cases as incorrect classifications (i.e., the accuracy is computed

by dividing the number of correct classifications by the size of the dataset).
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Table 4.15: For the Thyroid dataset, the results are obtained by our qualitative
test-cost sensitive algorithm when the consistency is not considered. Here, HMM
classifiers are used

Consistency-off
Cost red. Number of

Accuracy percentage reject cases

Thyroid 94.78 0.34 44

4.2.2.4 Derivation of the SMALL

Similar to case of the decision trees, we illustrate how to select the value of SMALL

for three datasets in Figures in Figures 4.3, 4.4, and 4.5 for the Bupa, Heart and

Thyroid datasets, respectively. Similarly, this derivation is done automatically

on the training sets and the test samples are not used in this process at all.

In our experiments, the derived SMALL values for the Bupa dataset are 0.320,

0.183, and 0.174 for fold1, fold2, and fold3, respectively (Figure 4.4). The SMALL

values for the Heart are 0.040, 0.051 and 0.040 for fold1, fold2 and fold3, respec-

tively (Figure 4.5). The SMALL for the Thyroid is 0.134 (Figure 4.6).
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Figure 4.4: Derivation of the SMALL value: (a),(c) and (e) are the histograms
of the distinct |X|/|Y | ratios of ambiguous cases and two Gaussian components
estimated on these ratios for the Bupa ((fold1, fold2, and fold3, respectively)).
(b),(d), and (e) are posteriors obtained using estimated Gaussians and prior prob-
abilities for the Bupa (fold1, fold2, and fold3, respectively). Here, HMM classifiers
are used.
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Figure 4.5: Derivation of the SMALL value: (a),(c) and (e) are the histograms of
the distinct |X|/|Y | ratios of ambiguous cases and two Gaussian components esti-
mated on these ratios for the Heart (fold1, fold2, and fold3, respectively). (b),(d),
and (e) are posteriors obtained using estimated Gaussians and prior probabilities
for the Heart (fold1, fold2, and fold3, respectively). Here, HMM classifiers are
used.
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Figure 4.6: Derivation of the SMALL value: (a) is the histogram of the distinct
|X|/|Y | ratios of ambiguous cases and two Gaussian components estimated on
these ratios for the Thyroid. (b) is posteriors obtained using estimated Gaussians
and prior probabilities for the Thyroid. Here, HMM classifiers are used.

4.3 Comparisons

In this section, we compare our results with those of two previous studies. First

of these studies uses decision trees and the other one uses hidden Markov models

for test-cost sensitive learning. In test-cost sensitive learning, several approaches

have been proposed to modify existing decision tree algorithms. One of the most

influential one is ICET [7] and we compare our results with the results of ICET

in Section 4.3.1. The other study in [23], incorporates feature extraction cost into

hidden Markov models (HMM); they use a partially observable Markov decision

process (POMDP) to select the subset of features. The comparison of the results

of our algorithm and algorithm proposed in [23] is given Section 4.3.2.

4.3.1 Comparison by ICET

ICET is a hybrid of a genetic algorithm and a cost-sensitive decision tree growing

algorithm. In this algorithm, ICET first employs a genetic search by modifying

the test costs empirically (attaining random costs) to build different decision
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Table 4.16: The results obtained by our qualitative test-cost sensitive algorithm
when a decision tree classifier is used and the results of the ICET algorithm; the
results of ICET are the best reported ones.

Baseline Our algorithm ICET
Cost red. Cost red.

Accuracy Accuracy percentage Accuracy percentage
Bupa 56.74 59.59 68.67 54.5 25.5
Heart 75.42 78.11 67.44 74.1 33.8
Thyroid 98.57 98.07 53.01 99.1 22.5

trees. Then, ICET selects the best one among decision trees according to a utility

function that uses both the feature extraction costs and the misclassification costs.

To fairly compare the performance of ICET and our algorithm, we obtain our

results by using decision tree classifiers in our framework and obtain ICET results

from [7] with the best reported accuracy and cost-reduction. Note that in [7], the

best value of the misclassification is externally selected by trying different values.

However in our algorithm, there is no need to externally optimize the parameters,

the value of SMALL is automatically determined. Here we should note that,

although both of these algorithms use decision trees, our algorithm do not build

a test-cost sensitive decision tree. The test-cost sensitivity of our method is

obtained during the selection of features. Table 4.16 shows the comparison result

against ICET. Our algorithm leads to more amount of cost reduction compared to

the algorithm ICET. This indicates the importance of the consistency behavior.

Moreover, it leads to more accurate results for the Bupa and Heart data sets.

However, it is less accurate for the Thyroid data set, but it is still close to the

accuracy of baseline classifier.

4.3.2 Comparison by POMDP

In this section, we also compare our results with those of the study in [23].

In [23], they use a partially observable Markov decision process (POMDP) to

solve cost-sensitive classification problem. Their POMDP model sequentially

determines the action (classify or extract) at each step according to a utility
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function that considers both feature extraction cost and misclassification cost.

Once the classify action is selected, their POMDP model reduces to classical

HMM model for classification. In order to have a fair comparison, we use the

same HMM classifier as the classifier of our model. The feature selection policy

of [23] has two free model parameters (namely, the cost of correct classification and

the cost of misclassification). In Table 4.17, we report the results obtained when

these two model parameters are optimized on the training samples (i.e., when the

best combination of the parameters, which yields the best accuracies and cost

reductions are selected). On the other hand, the feature selection policy of our

algorithm does not require any free model parameters to be externally optimized;

there is no need for the user to determine the value of SMALL beforehand since

it is automatically determined on the training samples, reflecting two different

beliefs of the user.

The results in Table 4.17 show that our algorithm leads to more accurate

results, which are closer to those of the baseline classifier than the results of

study in [23]. Moreover, it leads to higher amount of cost reduction for the Bupa

and Heart data sets, indicating the importance of the consistency behavior. It

yields less amount of cost reduction for the Thyroid dataset. However, it obtains

higher accuracy, which results in extracting more features. For this data set, our

algorithm tries to improve the accuracy at the cost of extracting more and more

features as the cost of misclassification (and the benefit of correct classification) is

assumed to be always greater than the extraction cost of any features (our third

assumption).
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Table 4.17: The results obtained by our qualitative test-cost sensitive algorithm
when an HMM classifier is used and the results of the algorithm developed by Ji
and Carin [23]
.

Baseline Our algorithm Algorithm in [23]
Cost red. Cost red.

Accuracy Accuracy percentage Accuracy percentage
Bupa 58.43 59.28 66.67 58.71 23.47
Heart 82.83 82.15 49.01 80.81 47.89
Thyroid 95.68 95.62 46.58 94.81 52.90



Chapter 5

Conclusions

5.1 Discussions

In this section, we discuss whether or not the consistency behavior provides more

amount of cost reduction during experiments. Next, we investigate the benefit

and necessity of using qualitative information in test-cost sensitive learning. Fi-

nally, we mention about the benefits of the automatic derivation of the SMALL

value.

The results given in Tables 4.10-4.15 in Chapter 4 show that without having

the consistency behavior, the algorithm tends to extract almost all of the features.

This is most probably because of the assumption of misclassification cost being

greater than the extraction cost of any feature (the third assumption). On the

other hand, with consistency, our algorithm can stop extracting the features if

it ensures that the future decisions are consistent with the current one. This

prevents extracting features that bring about no new information.

In Chapter 1, we emphasize the necessity of using qualitative information in

decision making in a situation where quantization of probabilities and/or utilities

can not be accomplished. In addition to this necessity, we observe the benefit of

enabling qualitative information to test-cost sensitive learning in Figures 3.1-3.4.

66
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These figures show the obtained analysis capability of qualitative information in

test-cost sensitive learning. In these figures, we qualitatively group the different

cases; thus we determine the cases that need further investigation and the cases

that can be decided easily. With further investigation, we bring the SMALL value

into play for the cases where ambiguity arises; therefore, we do not need to wonder

about for the other cases. These benefits provide us to cluster the steps of decision

making into comprehensive meaningful classes. By doing so, we capture intrinsic

points of the problem.

With the help of automatic derivation of the SMALL value, there is no need

to determine the relational importance of misclassification cost to the feature

extraction cost. Instead, we automatically derive it from the training data. Fur-

thermore, the derivation of the SMALL value could adaptively be modified when a

new test instance arises. After deciding on this instance, the corresponding ratios

may be included in the SMALL value calculation process. This provides improve-

ment the knowledge about the importance relation between the misclassification

cost and the feature extraction cost during the test.

5.2 Conclusions

In this thesis, we introduce a new Bayesian decision theoretical framework for

test-cost sensitive classification. In this framework, we use a new loss function

definition in which the misclassification cost and the cost of feature extraction

are qualitatively combined and the loss function is conditioned with the current

information and the information expected after feature extraction as well as the

consistency among them. Working with three medical diagnosis problems, our

experiments demonstrate that 1.) our proposed approach significantly decreases

the overall feature extraction cost without decreasing the diagnosis accuracy, and

2.) it overcomes the problem for the user to express his/her prior belief (the

relation between the misclassification cost and the cost of feature extraction) as

an exact quantitative number.
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One of the future research directions is to investigate the incorporation of

the qualitative decision theory into other machine learning problems. Another

one is the consideration of different misclassification cost for different actions.

This modifies the system to handle complex loss functions where different loses

associated with misclassifications. Another possibility is to also include the other

types of cost (e.g., the computational cost) into the problem formulation.
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