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ABSTRACT

CONGESTION WINDOW BASED ADAPTIVE BURST

ASSEMBLY FOR TCP TRAFFIC IN OPTICAL BURST

SWITCHING NETWORKS

Seçkin Özsaraç

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ezhan Karaşan

September 2008

Burst assembly is one of the key factors affecting the TCP performance in Optical

Burst Switching (OBS) networks. Timer based burst assembly algorithm gener-

ates bursts independent of the rate of TCP flows. When TCP congestion window

is small, the fixed-delay burst assembler waits unnecessarily long, which increases

the end-to-end delay and decreases the TCP goodput. On the other hand, when

TCP congestion window becomes larger, the fixed-delay burst assembler may

unnecessarily generate a large number of small-sized bursts, which increases the

overhead and decreases the correlation gain, resulting in a reduction in the TCP

goodput. Using simulations, we show that the usage of the congestion window

(cwnd) size of TCP flows in the burst assembly algorithm consistently improves

the TCP goodput (by up to 38.4%) compared with the fixed-delay timer based

assembly even when the timer based assembler uses the optimum assembly pe-

riod threshold value. One limitation of this proposed method is the assumption

that the exact value of the congestion window is available at the burst assem-

bler. We then extend the adaptive burstification algorithm such that the burst

assembler uses estimated values of the congestion window that are obtained via
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passive measurements at the ingress node. It is shown through simulations that

even when estimated values are used, TCP goodput can achieve values close to

the results obtained by using exact values of the congestion window.

Keywords: Optical Burst Switching, Adaptive Burst Assembly, TCP over OBS,

Congestion Window Estimation
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ÖZET

OPTİK ÇOĞUŞMA AĞLARINDAKİ TCP TRAFİKLERİ İÇİN

SIKIŞIKLIK PENCERESİ TABANLI UYARLAMALI

ÇOĞUŞMA OLUŞTURMA ALGORİTMASI

Seçkin Özsaraç

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ezhan Karaşan

Eylül 2008

Çoğuşma oluşturma, Optik Çoğuşma Anahtarlama (OBS) ağlarındaki TCP per-

formansını etkileyen önemli faktörlerden birisidir. Zamanlayıcı tabanlı çoğuşma

oluşturma algoritması, TCP akışlarının hızından bağımsız olarak çoğuşmaları

üretir. TCP’nin sıkışıklık penceresi küçükken, sabit-gecikmeli çoğuşma oluş-

turucu gereksiz yere uzun bekler ki; bu da uçtan uca gecikmeyi artırır ve

TCP’nin performansını düşürür. Öte yandan TCP’nin sıkışıklık penceresi

büyükken, sabit-gecikmeli çoğuşma oluşturucu gereksiz yere fazla sayıda küçük-

boyutlu çoğuşmalar üretir ki; bu da başlık yükünü artırır ve ilinti kazanımını

düşürüp TCP performansında azalmaya sebep olur. TCP akışlarının sıkışıklık

penceresi (cwnd) boyutunun çoğuşma oluşturma algoritmasında kullanılmasının,

sabit-gecikmeli zamanlayıcı tabanlı oluşturmaya göre hatta zamanlayıcı tabanlı

oluşturucu optimum oluşturma periyodu eşik değerini kullansa bile, TCP per-

formansını mütemadiyen artırdığını (%38.4’e kadar) simülasyonlar ile gösterdik.

Önerilen bu metodun bir kısıtlaması sıkışıklık penceresinin kesin değerinin

çoğuşma oluşturucusunda mevcut olduğu varsayımıdır. Bundan dolayı uyarlanır

oluşturum algoritmasını; çoğuşma oluşturucunun, sıkışıklık penceresinin ağ giriş
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düğümlerinde pasif ölçümler vasıtasıyla elde edilen kestirilmiş değerlerini kul-

landığı şekilde genişlettik. Simülasyonlar vasıtasıyla gösterilmiştir ki; TCP per-

fomansı, kestirilmiş değerler kullanılsa bile sıkışıklık penceresinin kesin değerleri

kullanılarak elde edilen sonuçlara yakın değerlere ulaşabilmektedir.

Anahtar Kelimeler: Optik Çoğuşma Anahtarlama, Uyarlanır Çoğuşma Oluştur-

ma, OBS Üzerinde TCP, Sıkışıklık Penceresi Kestirimi
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Chapter 1

INTRODUCTION

The bandwidth usage in the Internet is doubling every six to twelve months [1].

To cope with the exponentially growing traffic demand, fiber-optic transmission is

the most promising physical medium to meet the demand. Optical transmission

technology is able to transfer signals to longer distances with greater reliability

than the copper wiring technology. With the recent developments in the fiber

technology, 40 Gbits/s capacity is achieved for a single wavelength in a fiber.

Moreover by the usage of Wavelength Division Multiplexing (WDM), up to 160

wavelength channels in a single fiber can be supported by multiplexing operation.

As a result, several Tbits/s capacity is achievable over a single fiber [2].

Currently, WDM networks are used as the major backbone links for long dis-

tance carriers who use Synchronous Optical Network (SONET) as the standard

interface [3]. However, in the current deployment of wavelength division multi-

plexing (WDM) optical networks, optical-to-electrical-to-optical (OEO) conver-

sion is required at each step since WDM networks operate on point-to-point links.

On the other hand, the ultimate goal of optical networks is a network without

any OEO conversion, which is called an All Optical Network (AON).
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To realize AONs, several different architectures have been proposed. Among

these, Optical Circuit Switching (OCS) networks, which is also called Wave-

length Routed Networks (WRNs), is the first one that has been proposed. In

OCS networks, circuit connections, that are called lightpaths, are set between

the source and destination nodes. The lightpaths are established with the con-

nection setup request messages and the positive/negative replies (ACK/NACK)

according to the availability of the resources. Once a wavelength is reserved for

a connection, it is not available until the teardown message, which terminates

the lightpath between the source and destination nodes. As a result, the con-

nection establishment process requires a delay of at least a round trip time [4].

In WRNs all the user data travels entirely in optical domain. Only the control

packets are processed in the electrical domain. Thus OEO conversion process

is substantially reduced, where in the limiting regime of infinitely long duration

connections, OCS networks converge to AONs. However, OCS networks are not

able to support frequently changing user traffic because of its quasi-static nature

[5].

Another proposal to realize AONs is the Optical Packet Switching (OPS)

networks, which are conceptually ideal. In OPS networks, an optical packet

contains both the payload and the optical packet header. While the payload

remains in the optical domain throughout its journey in the OPS network, the

optical packet header is processed in the electrical domain. Therefore in each

node, the payload waits for the processing of the header to finish and this may

result in the generation of queues in the OPS network nodes. As a result, optical

buffers are needed to store the optical packets because of the store-and-forward

structure of the OPS networks. However, current unavailability of optical buffers

is the most significant bottleneck of OPS network technology [6, 7]. Although the

Fiber Delay Lines (FDL) may behave like optical buffers, they provide limited

and pre-determined delays.
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Recently, the Optical Burst Switching (OBS) networks have been proposed

[8]. In OBS networks, an ingress OBS node assembles the user data packets from

its clients and generates various size units, called bursts. Then a Burst Control

Packet (BCP), which include the header information is sent for each burst [7, 9].

Thus the ratio of the control packets to the user data packets is less than or equal

to one, whereas this ratio is equal to one for OPS networks. Moreover, BCPs are

sent on a dedicated control channel, which consists of one or several wavelengths

on a fiber. Therefore, the control plane and the data plane in OBS networks

are separated in the electrical and optical domain respectively to eliminate the

technological problems involved in the realization of OPS networks. Also with

the usage of appropriate reservation protocols, which is explained in Chapter 2,

the need for optical buffers are prevented in OBS networks. As a result, bursts

traverse the OBS network in a cut-through manner rather than the store-and-

forward structure of the OPS networks.

The burst assembly algorithm running on the ingress nodes have a great

impact on the sizes and the inter-arrival time statistics of the bursts. Hence,

due to the variance in the transmission duration of the bursts, OBS networks

lie between the OCS and OPS networks. For instance when the optical burst

contains only one user data packet, the behavior of OBS converges to the OPS

networks. When the optical burst contains infinitely many user data packets,

OBS converges to the OCS networks. Therefore, OBS networks combine the

advantages of both circuit and packet switching networks. As a consequence,

with respect to the existing optical technology, OBS paradigm is the best choice

among the other switching paradigms; namely WDM optical networks, OCS and

OPS networks. The above discussions about OCS, OPS and OBS networks are

summarized in Table 1.1.

Our focus in this thesis is mainly on the burst assembly algorithms especially

with TCP traffic flows. This is because the burst assembly algorithm is an
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Table 1.1: Comparison of the optical switching paradigms
Optical Bandwidth Optical Adaptivity Processing Connection

Switching Utilization Buffer to Bursty Overhead Setup

Paradigm Requirement Traffic Latency

OCS Low No No Low High

OPS High Yes Yes High Low

OBS High No Yes Low Low

important factor on the performance of OBS networks. The key parameters

in the burst assembly algorithm are the maximum burst size, minimum burst

size and the pre-set assembly timer threshold value [10]. In the literature, there

are variants of the burst assembly algorithms, which can be classified into four

categories: timer based, burst length based, mixed timer/burst length based and

adaptive burst assembly algorithms. The burst assembly algorithms are explained

in detail in Chapter 2.

When TCP flows over OBS networks are considered, the TCP performance

is significantly affected by the burst assembly algorithm. To be specific, the

burst assembly mechanism introduces a delay penalty in TCP throughput since

the round-trip times of the TCP flows are increased. This is simply because the

incoming packets to the ingress node wait in the burstifier queue until the optical

burst is generated before traversing the OBS network. On the other hand, the

enlargement of the transmission units from single packets to bursts increase the

TCP performance, which is so-called correlation gain [9, 11, 12, 13, 14].

In this thesis, we propose a new adaptive burst assembly algorithm for TCP

traffic in OBS networks, which is called congestion window (cwnd) based burst

assembly algorithm (CWBA). In this algorithm, cwnd size of the TCP flow is

taken into account in determining when to form the burst, where the assembled

burst sizes are directly proportional to the cwnd size of TCP. In addition, CWBA

does not have any pre-set variables unlike the other adaptive burst assembly

algorithms in the literature. Therefore, CWBA has the capability to work on
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any network topology without the need of any adjustment for optimality. Besides,

the delay penalty introduced by the burst assembly process is minimized since

the delay penalty in CWBA is only equal to cwnd packets’ transmission time

without any extra delay, which is not the case in the other assembly algorithms.

The minimization of the delay penalty by CWBA algorithm is verified through

simulations performed in nOBS [15], which is an ns2 [16] based simulation tool for

OBS networks. Gurel et al. [17] has shown that the timer based burst assembler

performs as well as mixed timer/burst length based burst assembler and better

than burst length based assembler as far as TCP goodput is concerned. Thus,

in our simulations we used the timer based burst assembly algorithm as the

reference point. In the end, results show that the usage of CWBA algorithm

is always beneficial and CWBA’s goodput performance is better than the timer

based assembler by up to 38.4%. Moreover, in [18] it is shown that the flavor

of TCP have an impact on the throughput in OBS networks. Especially, TCP

SACK has the highest throughput among TCP Reno, New-Reno and SACK

when the timer based assembler is used. It is also shown that the performance

of CWBA is the same for TCP Reno, New-Reno and SACK algorithms.

In addition to our first proposal, we also propose a hybrid version of the

CWBA algorithm and the timer based burst assembly algorithm, which is the

mixed cwnd/timer based burst assembly (MCWBA) algorithm. The crucial prop-

erty of MCWBA algorithm is that it puts an upper bound on the delay introduced

by the burst assembly process. The performances of the two burst assembly al-

gorithms are investigated again with the simulations that are performed in two

different network topologies. MCWBA algorithm performs as well as CWBA

algorithm. In the first simulation topology, MCWBA performs 2.54% better

than CWBA in terms of TCP goodput on the average. In the second simulation

topology MCWBA performs 0.49% worse than CWBA again in terms of total

TCP goodput achieved by several TCP flows.
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Both CWBA and MCWBA algorithms require the availability of the value

of cwnd at the burst assembler. However, this information is not available in

the data packets of the TCP versions considered in this thesis. Therefore, the

implementation of our proposals depend on a minor modification that should

be done in the TCP header. There are three unused bits in the TCP header

and one of them may be used to inform the burst assembler that a packet is

the last packet of the sender’s window or not for a direct implementation of the

CWBA and MCWBA. A second solution would be to estimate the cwnd values

at the burst assembler. However, this solution may degrade the performance of

the proposed algorithms since cwnd estimation would make some unavoidable

errors.

Another issue to be mentioned about CWBA and MCWBA is the scalability

of the algorithms. Both algorithms work on the devices that are capable of per-

flow aggregation, which means each TCP traffic flow has its own input buffer at

the burst assembler. Due to this configuration, CWBA and MCWBA algorithms

are not scalable to the OBS networks with input traffic from hundreds of different

TCP flows. The number of flows that the proposed assemblers may handle

is limited by the number of available input queues. Especially, CWBA and

MCWBA performs much better than the existing burst assemblers in the cases

where small number of large size TCP flows inject a high amount of traffic into

an OBS network.

The rest of the thesis is organized as follows. Chapter 2 focuses on OBS and

the burst assembly algorithms. TCP’s congestion control mechanism and the

proposed algorithms are presented in Chapter 3. The network models used in

the simulations and also the simulation results are given in Chapter 4. Finally,

Chapter 5 concludes the thesis.
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Chapter 2

OPTICAL BURST

SWITCHING

In OBS networks, there are three types of nodes: ingress, egress and core.

Ingress/egress nodes are responsible to control the input/output traffic to/from

the OBS network. Core nodes manage the traffic between the ingress and egress

nodes. Depending on its function, an OBS node may behave as one, two or

three of the node types at the same time. The ingress node aggregates the in-

coming packets from one of its links (can be electrical, optical or wireless link)

into optical bursts. The ingress node also sends the bursts together with the

corresponding BCPs into the OBS network. Since only one BCP is generated for

several user data packets, the control plane overhead is reduced. BCPs are sent

in advance to their bursts and also out of band over a dedicated control channel,

which consists of one or several wavelengths on a fiber.

First issue to be mentioned is the dedicated control channel. A fiber can

support hundreds of wavelengths. In OBS networks most of these wavelengths

are used by the data bursts. The rest of the wavelengths are allocated for the

7



Figure 2.1: Optical burst and control packet

burst control packets. As a result, control and data plane of the OBS networks

work independent from each other.

Second issue is the offset time. Offset time is the difference between the

sending instant of a BCP and the sending instant of the corresponding burst.

The pre-determined offset time basically creates the optical network platform

without the need of any optical buffers. To be specific, when a burst is created

by the burst assembly mechanism, firstly BCP is generated and sent to the

network. BCP packet traverses the optical nodes that the burst will traverse.

BCP informs the optical nodes about the coming optical burst. Then depending

on the reservation protocol, some of the available bandwidth is reserved for the

incoming burst. This scheme is given in Figure 2.1 [3].

The offset time, Toff , is a function of the route that is followed by the burst

in the OBS network. Let the average processing time per node of the BCP in

the OBS core nodes be ∆. For a source destination pair, let the number of hops

that will be traversed by the burst be N . Then the offset time, Toff , is set to

N∆. By doing so, it is guaranteed that the reservation process is completed at

each node before the arrival of the burst. This is because, the time difference

between the arrival of BCP and the burst decreases at each hop due to the per

hop processing delay. The new offset time is called the residual offset time. For

the example given in Figure 2.2 [4], which uses JET that will be explained in

the next section, Toff is equal to 4∆ at the ingress node. At the first core node,

the residual offset time becomes 3∆, and so on. At the egress node, the residual

8



Figure 2.2: Timing diagram of a BCP and the corresponding burst

offset time is equal to zero, which means optical burst arrives at the egress node

at the instance of the end of the processing of the BCP. Clearly, adding a guard

band in the offset time increases the robustness of the mechanism to timing jitter.

Although it is beyond the scope of this thesis, it should be noted that by the

proper adjustment of the offset times, quality of service classes can be provided

at the ingress nodes.

By the help of the structure explained above OBS networks can handle bursty

traffic, and the OBS concept becomes realizable. However, OBS networks suf-

fer from high loss probabilities due to their bufferless nature. When two or

more bursts use the same optical link, the concept of burst contention arises.

To resolve the contention among the bursts, three solutions are proposed. First

contention resolution mechanism is performed in the space domain that is called

deflection routing. In this mechanism, different routes are used for the same

source-destination pair. Second mechanism is performed in the frequency do-

main, where contentions are resolved with the wavelength converters. Thus,

when there are bursts that use the same link, each burst is assigned to a unique

wavelength. The final mechanism is performed in the time domain. The fiber

9



delay lines (FDLs), which can provide a limited and pre-set delay for the optical

data, are used to delay the bursts when there is a contention. Even if all the

three contention resolution mechanisms are used in an OBS network, burst losses

may occur since the resources are limited in each case.

2.1 Burst Reservation

The reservation protocols for the OBS networks determine the sharing of the

available bandwidth between the users and also the duration of the bandwidth

assigned to a user. The reservation protocols proposed for OBS networks are Tell-

And-Wait (TAW), Tell-And-Go (TAG), Just-In-Time (JIT) and Just-Enough-

Time (JET). In TAW protocol, a BCP flows from the source node toward the

destination node. If the reservation is successful, an acknowledgment is sent back

to the source node. Conversely, a negative acknowledgment is sent to the source

node if the reservation fails. The two-way reservation scheme used in TAW do

not utilize the available bandwidth efficiently, especially on the links with large

propagation delays.

In TAG protocol, data packets and control packets are tightly coupled in time

since they both traverse the network simultaneously without an offset time. At

the core nodes, the data packets are delayed until the processing of the control

packets is finished and the resulting switchings are done. As a result of this

structure, optical buffers are needed when TAG protocol is used.

JIT is an open ended reservation protocol. In JIT, there are two types of

control packets, namely setup packet and release packet. When a core node

receives a setup packet, the desired bandwidth is reserved. This reservation

holds until the arrival of the relase packet to the core node.
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JET is a close ended one-way reservation protocol. In JET, the burst control

packets contain the offset time and the burst length informations. Thus upon

the processing of the control packet, the desired bandwidth is reserved from the

arrival time of the burst until its departure time. An example of the JET protocol

is given in Figure 2.2. Since close-ended reservation achieves the best resource

utilization of all, JET based reservation scheme is used throughout this thesis.

2.2 Burst Scheduling

At the core nodes when there is an arrival of a BCP, the scheduling algorithm

determines the assignment of the wavelengths to the incoming bursts. The well-

known scheduling algorithms in the literature are Horizon and Latest Available

Unused Channel with Void Filling (LAUC-VF).

The Horizon algorithm is also referred as Latest Available Unused Channel

(LAUC). Horizon of a wavelength is defined as the latest time that the wavelength

will be in use. When there is a BCP arrival, LAUC algorithm chooses the

wavelength with the minimum horizon that is smaller than the starting time of

the burst. The only information about the incoming burst that LAUC needs is

the arrival time. When JET reservation protocol is used, the residual offset times

of the bursts may be different. Due to these differences and also due to the usage

of the FDLs, there may be gaps between the scheduled bursts that are called

voids. Minimum horizon approach tries to minimize the voids. However horizon

algorithm does not utilize the available bandwidth efficiently because the voids

are minimized but they are not used even if the voids are usable by an incoming

burst.

The advantage of LAUC-VF algorithm over LAUC is that it also makes use

of the generated voids between the scheduled bursts. Therefore in addition to the

arrival time of the burst, the duration of the burst is also needed by the void filling
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Figure 2.3: Burst scheduling of different algorithms

algorithm. The void filling can be done based on different metrics. Some of the

variants in the literature are LAUC-VF with Min-SV (Starting Void), Min-EV

(Ending Void) and Best Fit. In LAUC-VF with Min-SV, the algorithm chooses

the wavelength among the available ones for which the gap between the end of the

scheduled burst and the start of the unscheduled burst is minimum. In LAUC-

VF with Min-EV, the available wavelength that has the minimum gap between

the end of the unscheduled burst and the start of the scheduled burst is chosen.

LAUC-VF with Best Fit tries to minimize the starting and the ending voids that

will be introduced after the scheduling of the unscheduled burst [3, 8, 19].

Figure 2.3 depicts the wavelengths that are chosen by different scheduling

mechanisms for the arrival of a burst [9]. Ci is the ith wavelength on the out-

put link for 1 ≤ i ≤ 5. ts is the starting time and te is the ending time of the

unscheduled burst. ti is the ending time of the first scheduled burst on the ith

wavelength, whereas t′i is the starting and t′′i is the ending time of the second
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scheduled burst on the ith wavelength on the output link. If the Horizon al-

gorithm is used, C3 is chosen since it has the minimum horizon among all the

wavelengths. If LAUC-VF with Min-SV is used, C1 is chosen because t1 − ts is

the minimum among ti − ts for 1 ≤ i ≤ 5. Similarly with Min-EV, C4 is chosen

since te − t′
4

is the minimum among te − t′i for 1 ≤ i ≤ 5. When LAUC-VF

with Best Fit is used, C5 is chosen because t5 − ts + te − t′
5

is the minimum of

ti − ts + te − t′i for 1 ≤ i ≤ 5. Finally, C2 is not chosen in any case due to the fact

that the unscheduled burst is in conflict with the already scheduled burst on the

2nd wavelength of the output link.

In the void filling scheduling algorithms the utilization of the resources are

better than the horizon algorithms. Moreover, the burst loss probability with

the void filling algorithms is less than the one in horizon algorithms. As a result,

LAUC-VF with Min-SV scheduling algorithm is used throughout this thesis.

2.3 Burst Assembly

Burst assembly is basically the generation of the optical bursts that will flow in

the OBS network. At the ingress nodes, the incoming packets are sorted based

on their destinations and priority classes. The arriving packets are put into the

appropriate electronic queues of the ingress node. Based on the design of the

OBS network, there may be several input queues. For instance, there may be one

queue for each of the egress nodes. Moreover, there may be one queue for each

priority class of the input traffic. In this case, if k denotes the number of egress

nodes and n denotes the number of priority classes, the ingress node contains

k × n input queues as shown in Figure 2.4.

The instant that the bursts are generated is determined based on the metric

that the burst assembly algorithm uses. Thus, the interarrival times and also the

lengths of the bursts are designated according to the burst assembly criterion.
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Figure 2.4: OBS ingress node architecture

In another words, the burst assembly mechanism shapes the input traffic based

on its decision rule. The burst assembly algorithms proposed in the literature

can be classified into four categories based on the metrics they use.

2.3.1 Timer Based Burst Assembly

The well-known timer based assembler starts a timer when a data packet arrives

to the ingress node. When the timer hits the pre-set assembly period threshold

(timeout) value, all the packets contained in the burstifier queue are aggregated

into a burst. First BCP and then after the offset time, the burst is sent to the

egress node [20]. Obviously, in the timer based algorithm the interarrival times

of the bursts are fixed and the lengths of the bursts are randomly changing. This

is because the burst sizes are directly related to the input traffic rate. When the

input traffic rate is low, relatively small sized burst are generated. On the other

hand when the traffic rate is high, large bursts are generated in the burstifier.
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Packet Arrival Event

if (Corresponding burstification queue timer is not running)

Start the corresponding timer with the pre-defined timeout value;

end if

Assemble the packet to the corresponding burstification queue;

Update the burst length information;

Timeout Event

Send BCP on a control channel;

Schedule data burst to be sent on a data channel after offset time;

Stop the corresponding burstification queue timer;

When the traffic flowing through the OBS network is generated by TCP,

timer-based assembly algorithm is not the optimum algorithm. If the congestion

window cwnd of TCP is small, timer-based algorithm gives rise to an extra end-

to-end delay in the TCP flow. This is because the number of packets coming in

the timeout interval of timer-based algorithm is too few and the TCP packets in

the burstifier queue waits unnecessarily long. On the other hand, if the cwnd size

is large, the timeout interval of timer-based algorithm expires before all packets

in the current congestion window arrives to the burstifier queue. This results in

the generation of more than one bursts for the current window of TCP, which

increases the overhead in the network and decreases the correlation gain since

small sized bursts are generated.

2.3.2 Burst Length Based Burst Assembly

When there is a packet arrival at the ingress node, the user packet is queued in the

related burstifier queue. If the queue has user data at least as much as the pre-

defined minimum burst size, the burst is generated [21]. In the length based burst

assembly algorithm, the burst lengths are almost constant but the interarrival

times of the bursts randomly change. When the input traffic rate is high, the
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length based assembler works efficiently. However if the input traffic rate is low,

e. g. when TCP congestion window is small, the length based assembler waits

too long that the utilization of the OBS network is very low.

Packet Arrival Event

Assemble the packet to the corresponding burstification queue;

Update the burst length information;

if (Assembled data length ≥ pre-defined minimum burst length)

Send BCP on a control channel;

Schedule data burst to be sent on a data channel after offset time;

Reset the burst length;

end if

2.3.3 Mixed Timer/Burst Length Based Burst Assembly

In the mixed assembler, the burst generation event is triggered by the timeout

event of the assembly timer for low input traffic rates. Alternatively, it is trig-

gered by the exceeding of the minimum burst length threshold for high input

traffic rates [22]. Since this algorithm is a hybrid of the two former algorithms;

the interarrivals times of the bursts and also the burst lengths are both randomly

changing.
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Packet Arrival Event

if (Corresponding burstification queue timer is not running)

Start the corresponding timer with the pre-defined timeout value;

end if

Assemble the packet to the corresponding burstification queue;

Update the burst length information;

if (Assembled data length ≥ pre-defined minimum burst length)

Send BCP on a control channel;

Schedule data burst to be sent on a data channel after offset time;

Reset the burst length;

Stop the corresponding burstification queue timer;

end if

Timeout Event

Send BCP on a control channel;

Schedule data burst to be sent on a data channel after offset time;

Reset the burst length;

Stop the corresponding burstification queue timer;

2.3.4 Adaptive Burst Assembly

The burst assembly algorithms defined so far are static algorithms that do not

adjust themselves according to the input traffic. The adaptive burst assembly

algorithms form the bursts with the triggering of their criterion event, where

the criterion parameter is updated with the incoming traffic’s properties. For

instance, the criterion may be the assembly timeout period and it may be updated

according to average burst length, average delay, path loss or any application

specific criterion. Thus, in this thesis we focus especially on adaptive burst

assembly algorithms since they outperform the static assembly algorithms.
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A literature overview about the adaptive burst assembly algorithms is given

below. In [11], the burst assembly periods are updated according to the average

burst length. The average burst lengths are calculated in a similar fashion to

TCP’s round trip time calculation. Then, using the most recently calculated av-

erage burst length, the new assembly period is computed within a finite interval

designated by pre-set variables. [23] and [24] propose the same burst assembly

algorithm, where the burst sizes are adaptively increased/decreased if the bursti-

fication queue has more/less packets than the pre-set maximum/minimum queue

size. In [25], the burst assembly period is selected among three pre-set values

according to the congestion window size of TCP. [26] uses the learning automata

in the burst assembly. With the help of active measurements in pre-defined dis-

crete time intervals, the probabilities of choosing one value from the assembly

periods vector are adjusted. The dynamic threshold assembly algorithm in [27]

is based on the average delay of the packets comprising a burst, where a running

average delay estimator value is compared with the pre-defined average assembly

delay. Improved version of this algorithm is proposed in [28], where four dynamic

assembly algorithms are proposed. Among these algorithms, the best algorithm

uses traffic prediction to maximize the average length of the bursts produced

for a given average burstification delay using a pre-defined lower bound on the

length of the bursts. A dynamic algorithm that adapts the burst sizes by chang-

ing the assembly periods using the observations of the link losses is proposed

in [29]. Similarly, instead of link losses, path losses that are found via active

measurements in the network, are used in the assembly algorithm of [30].

Zhou et. al [31] proposed an algorithm that improves the performance of TCP

over OBS networks by limiting the ratio of the number of ACK packets to the

TCP segments in an optical burst to a fixed value. In [32], the state of the TCP

is estimated according to the incoming traffic. Accordingly, the assembly period

is updated for the next assembly with the limitation of a maximum pre-defined

variable. However, the state estimation is only for a simple implementation
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of TCP without fast recovery state. Moreover, the authors of [32] performed

simulations on a simple network. As a result, the performance of the algorithm

is shown to be beneficial for only some of the cases studied in the paper.

All of the adaptive algorithms proposed so far have some pre-defined pa-

rameter. Therefore, these algorithms need parameter adjustments based on the

topology that they are running. To exterminate the adjustment requirements

for different network topologies, we propose a new adaptive assembly algorithm

that use TCP’s congestion window as the main criterion. Thus our assembly

algorithm do not use any pre-set parameters unlike the other burst assembly al-

gorithms in the literature since TCP’s congestion window is already an adaptive

parameter.

We present our algorithm in the next chapter after a brief TCP summary that

is followed by performance analysis of TCP traffic over OBS networks. Then

a variant of CWBA algorithm is also given. At the end congestion window

estimation techniques that we used in the proposed algorithms are presented.
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Chapter 3

CONGESTION WINDOW

BASED BURST ASSEMBLY

FOR TCP OVER OBS

NETWORKS

Most of today’s Internet traffic is carried using Transmission Control Protocol

(TCP). As a result, TCP traffic flowing through OBS networks has taken great

interest in the literature. In this chapter, we first discuss the performance of TCP

over OBS networks. We then introduce two variants of an adaptive burstification

algorithm for TCP traffic in OBS networks, namely congestion window based

burst assembly algorithm. Congestion window estimation technique that we

used in our simulations concludes the chapter.
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3.1 TCP Overview

TCP is a connection-oriented service provided by the Internet. TCP uses a

congestion control algorithm, which adaptively regulates the sending rate of the

TCP source. TCP uses end-to-end congestion control mechanism, which do not

use any network-assisted congestion control. TCP uses the congestion window

(cwnd) to impose a constraint on the rate at which a TCP sender can send

traffic to the network. To be specific, the amount of unacknowledged data at a

TCP sender cannot exceed the minimum of the cwnd and the advertised receive

window (awnd) of the TCP destination. awnd is used to prevent the overflow of

the TCP receiver buffer. Assuming no overflow of the buffers, the TCP sender’s

traffic sending rate is roughly equal to cwnd packets in Round Trip Times (RTT)

seconds [33].

Once the TCP connection is established between the peers, the factors that

determine the instantaneous transmission rate of the TCP sender are cwnd size

and the end-to-end delay. The increase of cwnd value depends on the reception

of cumulative ACK packets. The decrease of cwnd is triggered via the loss of the

packets and/or the excessive delays on the path of the packet. The end-to-end

delay is affected by a lot of factors such as queuing delay, transmission delay,

propagation delay and processing delay. In OBS networks, the burst assembly

process is also an important factor since it increases the end-to-end delay between

the source-destination pair.

TCP continuously computes sample RTT for the segments that have been

transmitted only once. Then based on the sample RTTs, the estimated RTTs

are calculated, which is an exponentially weighted moving average. Moreover, the

deviation between the estimated and the sample RTTs are found. Hence using

the deviation and also the estimated RTT, timeout is calculated, which is called

the Retransmission Timeout (RTO) interval. Upon the transmission of a packet
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if no acknowledgment is received during the RTO interval, TCP assumes that

the packet is lost and retransmits the packet. This event is called an RTO event.

Another event that TCP assumes the loss of a packet is the fast retransmission

event. When the TCP sender receives three duplicate ACK packets for the same

segment, TCP takes this as an indication of the fast retransmission event. Thus,

the relevant segment is retransmitted before the segment’s timer expires.

After the connection establishment or after an RTO event, TCP is in Slow

Start (SS) phase and the value of cwnd is set to one Maximum Segment Size

(MSS). In SS state, TCP sender increases its cwnd value by one MSS for each

acknowledged segment until a segment is lost or cwnd>ssthresh, where ssthresh

is the Slow Start Threshold. In other words, cwnd is doubled every RTT, which

is an exponentially growing rate. When cwnd>ssthresh, TCP switches its state

to Congestion Avoidance (CA) phase. In CA phase, TCP sender increases its

cwnd value by 1/cwnd for each acknowledged segment. This means cwnd value

is increased by one MSS every RTT. Therefore, in CA state cwnd value linearly

grows.

When an RTO event occurs, TCP enters the SS phase, sets the ssthresh value

to the half of cwnd value and cwnd to one MSS. However when three duplicate

ACKs are received, which is Triple Duplicate ACK (TDA) event, the reaction

of TCP depends on the TCP flavor used. In TCP Tahoe, the reaction to RTO

events and TDA events are exactly the same. In the newer implementations of

TCP that are considered in this thesis, an additional mechanism exists, which

is the fast recovery mechanism. In TCP Reno, after a TDA event, ssthresh is

set to half of cwnd value, cwnd value is set to max(cwnd/2, 1) and TCP enters

to CA phase. TCP NewReno differs from TCP Reno in the case of multiple

losses within a window. When multiple packets of a window are lost, TCP Reno

halves its cwnd value for each TDA event and eventually an RTO event occurs.

However, TCP NewReno retransmits one packet for each ACK that indicates
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the next lost packet. Therefore, TCP NewReno does not face with an RTO

event when multiple packets of a window are lost. TCP SACK uses the same

mechanisms with TCP Reno to adapt the cwnd value. In addition, TCP SACK

uses the option field of the TCP header to indicate the portion of the correctly

received sender’s window at the receiver by selective acknowledgments. Thus,

TCP SACK may retransmit multiple segments at once if necessary.

3.2 Performance of TCP in OBS Networks

Yu et. al [18] has given the performance analysis of TCP traffic over OBS net-

works for different TCP flavors. The first performance metric of TCP over OBS

is Loss Penalty (LP). LP is the reduction in the TCP throughput due to the burst

losses. Intuitively, TCP throughput decreases as the burst loss rate increases.

Let B be the TCP throughput in segments per second, Wm the maximum TCP

window size in segments, b the number of ACKed rounds before the sending win-

dow is increased, p the burst loss rate in the OBS network and S the number of

segments from a TCP flow contained in a burst. LP is given by

LP Ratio
4
=

B(without loss)

B(with a burst loss rate p)
≈ Wm

√

2bp

3S
(3.1)

for a small loss rate p.

Second metric is the Delay Penalty (DP), which is mainly the delay in time

caused by the burst assembly delay. This is because the packets arriving at the

ingress nodes face an extra delay until the generation of the burst. Therefore,

the TCP Round Trip Time (RTT) is increased by the burst assembly and there

is a reduction in the throughput. As the burst assembly time increases, TCP

throughput decreases. If RTT denotes the round trip time of the TCP flow

in seconds and RTTo the round trip time of the TCP flow without the burst
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assembly, the Delay Penalty due to burstification is defined as

DP Ratio
4

=
B(without burst assembly)

B(with burst assembly)
≈ RTT

RTTo

(3.2)

Since TCP guarantees the delivery of the user data; after a burst loss, TCP

retransmits the lost segments. In OBS networks, segment losses occur conse-

quently. Therefore, fast recovery mechanism of TCP plays an important role on

TCP performance. Since TCP SACK may retransmit multiple lost segments in

one round, there is no difference between the packet losses and burst losses for

TCP SACK. For this reason, TCP SACK does not have any TCP throughput

reduction due to the retransmissions. However, TCP Reno and NewReno may

have some TCP throughput reduction due to the retransmissions, which is called

Retransmission Penalty (RP). In other words, RP is the prolonged retransmis-

sion period that is caused by multiple retransmission rounds, during which fewer

new packets can be sent. For TCP NewReno with a small loss rate p and a large

S value, RP is given by

RP Ratio
4

=
B(one retransmission)

B(S retransmissions)
≈ 1 +

√

3Sp

2b
(3.3)

For TCP Reno when log
√

2S
bp

> S, RP is given by

RP Ratio
4

=
B(one retransmission)

B(S retransmissions)
≈

√
3(1 +

√

Sp

2b
) (3.4)

for a small loss rate p. In the second case for TCP Reno, i. e., log
√

2S
bp

< S, RP

is given by

RP Ratio ≈
√

3[1 + (
RTO

RTT
+ log

√

2S

bp
) ×

√

p

2bS
] (3.5)

for a small p, where RTO denotes the TCP retransmission timeout value in

seconds. It is noted that when log
√

2S
bp

> S, RP Ratio for TCP NewReno is

always less than the one for TCP Reno, which in turn shows that TCP NewReno

exhibits a higher throughput than TCP Reno. Similarly when log
√

2S
bp

< S and

the ratio in (3.3) is less than the ratio in (3.5), TCP NewReno again exhibits a
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higher throughput than TCP Reno over OBS networks. In the latter case, i. e.,

log
√

2S
bp

< S and (1 +
√

3Sp

2b
) >

√
3[1 + (RTO

RTT
+ log

√

2S
bp

) ×
√

p

2bS
], TCP Reno

has a better throughput than TCP NewReno.

The final metric for TCP performance is Delayed First Loss (DFL) Gain.

Because of the burst assembly process, there is a delay in time before a TCP

sender receives an indication of a lost segment. This extra delay gives the TCP

sender the chance of increasing its congestion window size to a higher value than

the case without burst assembly. As a result, a higher throughput is achieved,

which is the DFL Gain. DFL Gain is given by

DFL Gain
4

=
B(first loss is delayed)

B(first loss is not delayed)
≈

√
S (3.6)

for a fixed small burst loss rate p.

Correlation Gain (CG) is another popular TCP performance metric used in

the literature, which is the combination of the DFL Gain and RP. To sum up,

Loss Penalty, Delay Penalty, Retransmission Penalty and Delayed First Loss

Gain determine the performance of TCP traffic flowing through OBS networks.

If Tb denotes the burst assembly time, the optimum burst assembly time, i. e.,

T opt
b is defined as:

T opt
b = arg max

Tb

{DFL Gain

RP × DP
} (3.7)

for a given burst loss rate p [18].

3.3 cwnd Based Burst Assembly (CWBA)

To overcome the deficiencies of the timer-based assembly algorithm for TCP

traffic, we propose cwnd based burst assembly algorithm (CWBA). In this as-

sembler, a burst is generated whenever all the packets of a TCP flow’s window

reaches the ingress node. For instance, if cwnd of a TCP flow is equal to 4 pack-

ets, optical burst is generated at the instance of the arrival of the last (fourth)
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packet of the TCP flow’s window to the burstification queue. In this manner,

the burst lengths are variable and equal to the length of cwnd packets plus the

burst header. Moreover, the delay penalty introduced by the assembly process

is smaller than the timer-based burst assembly process. This is due to the fact

that in CWBA, cwnd value increases faster than timer-based assembly for TCP

traffic, especially in slow start (SS) phase. As a result, after a loss event cwnd

of the TCP flow increases much faster than timer-based assembler.

Packet Arrival Event

Assemble the packet to the corresponding burstification queue;

Update the burst length information;

if (Number of packets in the assembled data ≥ cwnd size (packets))

Send BCP on a control channel;

Schedule data burst to be sent on a data channel after offset time;

Reset the burst length;

end if

Another benefit of the CWBA algorithm is that its performance is indepen-

dent of the TCP flavor. In timer-based burst assembly with TCP Reno, NewReno

or SACK, when a burst is lost, with a probability greater than zero the loss event

triggers the TCP to enter the fast recovery state. Thus the flavor of TCP plays a

role in the performance of TCP traffic in OBS network. In other words, the dif-

ferences between these three TCP implementations come from the fast recovery

mechanisms of TCP and their interactions with the burst assembly mechanism

in OBS networks. TCP SACK has the best performance in OBS networks with

timer-based burst assembly. TCP NewReno performs better than TCP Reno if

the burst sizes are relatively small and vice versa [18].

In the CWBA algorithm, when a burst is lost, the whole window of TCP flow

is lost. Thus with probability one, TCP retransmission timeout event occurs and

TCP never enters the fast recovery state. As a result, the flavor of TCP does
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not have an impact on the performance of TCP traffic in OBS networks with

CWBA.

CWBA algorithm requires that the last packet of each TCP sender’s window

is known to the burst assembler. To implement this algorithm, one can use one

of the unused bits in the TCP header. This bit is set to inform the ingress node

that the last packet of the current cwnd is sent. Whenever the burst assembler

receives a TCP packet with the corresponding bit set, a burst is generated.

Otherwise, the assembler waits for the reception of the incoming packets from

the TCP sender’s window. In this manner, TCP header must be accessed by

CWBA, which means CWBA needs high access speed to packet headers including

transport layer packets.

In addition, for each TCP flow injecting traffic into OBS network, a new

session of the CWBA algorithm is needed. This is because each flow’s traffic are

aggregated into their own assembly queue waiting for the generation instant of

the burst. Therefore, CWBA algorithm runs on per-flow aggregation schemes.

Thus CWBA may handle several TCP flows limited by the number of assembly

queues at ingress node. For instance, CWBA algorithm may not be implemented

at the ingress nodes that have hundreds of HTTP traffic from different flows. On

the other hand, CWBA becomes the proper choice where an ingress node carries

TCP traffic from a few flows with large cwnd values. Grid applications, FTP

servers with high upload and/or download traffic in the order of hundreds of

Mbits/s are the potential applications where CWBA increases TCP goodput

significantly.
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3.4 Mixed cwnd/Timer Based Burst Assembly

(MCWBA)

In CWBA, the burst sizes are variable. In fact, the burst sizes are directly

related to cwnd size of the TCP sender. Although CWBA algorithm significantly

improves the goodput compared with the timer based burst assembly, the burst

loss probability increases as the burst size gets larger. In our case, when the cwnd

value of the TCP sender is a large value, the corresponding burst sizes become

very large, which face high burst drop probabilities.

Furthermore, the burst size gets larger as cwnd gets higher, which in turn

increases the round-trip time for the TCP flow. With CWBA, the variance in

the round-trip time of the TCP sender is larger than the case with the timer based

algorithm. This condition has a negative impact on the TCP performance. A

maximum assembly period threshold can be used by the burst assembler. As

a result, we propose to use a combination of timer based assembly and CWBA

algorithms, which is called mixed cwnd/timer based burst assembly (MCWBA)

algorithm.

In the MCWBA algorithm, the bursts are generated whenever the assembly

period expires or all packets in the congestion window are buffered in the ingress

node, whichever is earlier.
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Packet Arrival Event

if (Corresponding burstification queue timer is not running)

Start the corresponding timer with the pre-defined timeout value;

end if

Assemble the packet to the corresponding burstification queue;

Update the burst length information;

if (Number of packets in the assembled data ≥ cwnd size (packets))

Send BCP on a control channel;

Schedule data burst to be sent on a data channel after offset time;

Reset the burst length;

Stop the corresponding burstification queue timer;

end if

Timeout Event

Send BCP on a control channel;

Schedule data burst to be sent on a data channel after offset time;

Reset the burst length;

Stop the corresponding burstification queue timer;

3.5 cwnd Estimation

Both CWBA and MCWBA algorithms use the cwnd size of the TCP sender.

For this reason, the knowledge of the congestion window at the ingress nodes

become indispensable for the algorithms that are proposed in this thesis. If the

proposals are to be used without any modification in TCP, the estimate of cwnd

should be calculated and used at the ingress nodes of the OBS networks. To

achieve this goal, congestion window estimation techniques in the literature are

investigated [34]-[42]. Basically there are two approaches to estimate cwnd. In

the first approach, firstly an RTT estimate (RTTest) is found at the estimation

point. Then the number of packets that come during the RTTest gives the cwnd
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estimate (cwndest). There are several techniques to calculate RTTest value. To

find a proper RTTest value, some extra time is required but the extra time delays

the time instant that cwndest is available and therefore the first approach is not

suitable for our purposes. In the second approach, the state of TCP is replicated

at the estimation point. To replicate the state, sequence numbers and ACK

sequence numbers are needed. Thus in the second approach, TCP header must

be accessible by the algorithm that will estimate the cwnd values. However, it

should be noted that the second approach cannot be implemented if secure TCP

connections are used, e. g., SSL.

Among these cwnd estimation techniques, [40, 41, 42] is chosen since the

algorithm is clearly explained and the error rates are relatively small. In this

estimator, a replica of the state of the TCP sender’s state is constructed in the

measurement point in the form of a finite state machine. In this manner, cwndest

is found. Moreover, at the measurement point the TCP flavor is found among

TCP Tahoe, Reno and NewReno. The estimate is found from the Receiver-to-

Sender ACK packets. In this technique, underestimation and also overestimation

of cwnd is possible like all the other cwnd estimation algorithms. In the appli-

cation of the algorithm, the authors see 5-15% error in the cwnd estimates. In

addition with the help of cwnd estimate, it is found that which ACK packet

triggers the new packet to be sent. Thus, RTT estimates are also calculated. For

the RTTest value, the estimation error never exceeds 25%.

In CWBA, the algorithm presented below is used for the cwnd estimation of

TCP Reno. It is possible to implement the cwnd estimation algorithms for the

other implementations of TCP, as well. However, current implementation of the

estimator is not suitable to work online in a burst assembler. This is because

whenever there is a packet loss between the packet sender and the measurement

point, cwndest may be under/overestimated as a consequence of where the packet

is lost. Therefore to see the performance of the proposed algorithms with cwndest,

30



we assume a network topology with no TCP packet loss between TCP sender

and measurement and also no ACK packet loss between measurement point and

TCP sender. Thus we are able to run the cwnd estimator as an online estimator.
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Initialize cwnd, ssthresh, state, awnd, dupACKnum

ACK Packet Arrival Event

if (Default state)

if (New packet)

if (cwnd < ssthresh)

cwnd++

else

cwnd+=1/cwnd

end if

else if (Duplicate ACK)

dupACKnum++

if (dupACKnum ≥ 3)

ssthresh=max(min(awnd,cwnd)/2,2)

cwnd=cwnd/2 + 3

state=FastRecovery

end if

end if

else if (FastRecovery state)

if (New packet)

cwnd=ssthresh

dupACKnum=0

state=Default

else if (Duplicate ACK)

dupACKnum++

cwnd++

end if

end if
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TCP Packet Arrival Event

if (Default state)

if (RTO packet)

ssthresh=max(min(awnd,cwnd)/2,2)

cwnd=1

end if

else if (FastRecovery state)

if (RTO packet)

ssthresh=max(min(awnd,cwnd)/2,2)

cwnd=1

dupACKnum=0

state=Default

end if

end if

The algorithms presented so far namely CWBA, MCWBA and CWBA with

cwndest are compared with each other and also with the timer based burst as-

sembler via the simulations performed in nOBS in the following chapter. The

simulation results are explained thoroughly and also the superiority of the pro-

posed algorithms are shown in the upcoming chapter.
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Chapter 4

SIMULATION RESULTS

In order to see the effects of burst assembly on TCP performance, we first use a

simple OBS network topology shown in Fig. 4.1. OBS switches use only a single

Figure 4.1: Simple OBS network topology

wavelength for data bursts and there are no fiber delay lines. The maximum

number of packets that can be aggregated into a burst is set to 10000. Each

ingress node of the OBS network has one burstification queue with a queue

length of 100000 packets (per-flow aggregation). The FTP server employs an
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infinite FTP flow, which sends TCP segments through OBS network to the FTP

client. The MSS of TCP source is set to 1040 bytes and the receive windows are

set to 10000 MSS. ACK packets triggered by TCP flow do not experience any

drop or assembly delay and packet size of ACKs are 40 bytes.

Real-time communication server injects exponentially distributed traffic into

the network, which is carried in UDP segments. On the average 1% of the time,

real-time communication server sends UDP packets with a rate of 500 Mbps into

the network. Therefore, the only reason for burst losses in the OBS network is

due to the contention between the TCP carrying bursts and UDP carrying bursts.

Furthermore, the OBS ingress node connected to the real-time communication

server uses timer based burst assembly algorithm with an assembly period of

4 msec. Optical links have 1 Gbps bandwidth and 1 msec propagation delay.

Electrical links have 500 Mbps bandwidth and 1 msec propagation delay. Optical

burst switches have 5 µsec switching time and 200 µsec per-hop processing delay.

We also use a second OBS network topology, which is the mesh network shown

in Fig. 4.2. In this topology, all the variables are the same as in the first topology

except that the access links of the ingress (N9-N11) and egress (N12-N14) nodes

have 0.1 msec propagation delay whereas the optical links between the OBS core

nodes have 2.5 msec propagation delays. Each FTP server Si employs an infinite

FTP flow to FTP client Di for 1 ≤ i ≤ 9. In this network, burst losses occur

because of the contention between nine optical burst flows.

We use nOBS, which is an ns2 based OBS network simulation tool [15]. JET

reservation protocol is used in conjunction with Latest Available Unused Chan-

nel with Void Filling (LAUC-VF) as the scheduling algorithm. We performed

simulations for the network models in Fig. 4.1 and Fig. 4.2 with timer based

burst assembly algorithm for different assembly periods, CWBA and MCWBA

algorithms. When timer based or MCWBA algorithm is used, all the ingress

nodes use the same assembly timeout. Also to see the impact of the flavor of
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Figure 4.2: Mesh OBS network topology

TCP on TCP performance, TCP Reno, TCP NewReno and TCP SACK are

used. In the first part of the simulations, we assume that the exact value of the

TCP congestion window is known by the burst assembler. We later relax this

requirement by using a cwnd estimation algorithm at the assembler that utilizes

passive measurements.

4.1 CWBA with Simple Topology

As mentioned before, CWBA algorithm is independent of the flavor of TCP and

therefore it performs exactly the same for TCP Reno, NewReno and SACK.

The TCP goodputs achieved by the timer based and CWBA algorithms for

the simple OBS network topology are compared in Fig. 4.3. As the assembly

timeout of the timer-based assembly algorithm increases, TCP goodput first

increases due to the correlation gain and then decreases due to excessive assembly

delay. This behavior is observed for all three TCP versions tested. On the other
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Figure 4.3: Performances of timer based and CWBA algorithms for the simple
OBS network topology

hand, CWBA algorithm achieves about 28% improvement in TCP goodput when

compared with the case of using the timer-based burst assembly together with the

optimum value of the timeout and TCP SACK. The performance improvement

percentages of CWBA algorithm with respect to timer based algorithm with

optimum assembly periods are given in Table 4.1.

Table 4.1: Goodput improvement of CWBA algorithm for the simple OBS net-
work topology

Reference Algorithm Goodput Improvement

Timer Based Burst Assembly with TCP Reno 36.01%

Timer Based Burst Assembly with TCP NewReno 38.4%

Timer Based Burst Assembly with TCP SACK 28.09%

Samples of congestion window evolutions are given in Fig. 4.4 and Fig. 4.5 for

CWBA and timer based burst assembly algorithms, respectively. The values of

cwnd for the timer based assembly shown in Fig. 4.5 are obtained using TCP Reno

and the optimum assembly delay of 8 msec. TCP’s cwnd increases approximately

50% faster with CWBA compared with the timer based assembly in the slow start
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Figure 4.4: Congestion window evolution of CWBA algorithm
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Figure 4.5: Congestion window evolution of timer based assembly algorithm
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phase. In addition to this, the timer based assembly algorithm experiences TCP’s

fast retransmission and fast recovery states, whereas with CWBA only timeout

loss events occur. It is also observed that in congestion avoidance phase both

algorithms have similar slopes.

The implementation of CWBA algorithm requires some modifications at the

TCP layer since some fields in the TCP headers of incoming packets needs to

be marked accordingly. In order to remove this limitation, we propose to use

an estimate of the cwnd value at the burst assembler. To this end, we use the

cwnd estimation algorithm of Jaiswal et. al [40, 41, 42], which creates a replica

of the state of the TCP sender’s state at the measurement point using passive

measurements that is given in Section 3.5. Although this algorithm is not an

online algorithm, it is suitable for our case since no loss model on the links are

used in the simulations.

As far as OBS networks are considered, the closest node to the TCP sender is

chosen to execute this algorithm, which is the ingress node corresponding to the

TCP sender node. The simulations are repeated with using the cwnd estimation

algorithm at the burst assembler instead of making the exact value of the cwnd

available at the assembler. The simulations show that there is a 1.02% reduction

on goodput when CWBA uses the estimated cwnd value compared with CWBA

which uses the exact cwnd value. This degradation is due to the errors in the

cwnd estimation.

4.2 CWBA with Mesh Topology

In addition to the simple OBS network topology, we also performed simulations

with a mesh OBS network topology. The reported results are obtained by repeat-

ing each simulation three times. In this topology there are 9 TCP flows destined

to the TCP clients. The routes used by TCP flows are shown in Fig. 4.2. In order
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Figure 4.6: TCP performance of timer based and CWBA algorithms in the mesh
OBS network topology

to eliminate the possibility of synchronization between TCP flows when timer

based assembly is used, the assembly period is added with a zero-mean normally

distributed random variable with a standard deviation of 10% of the correspond-

ing average assembly period. The average of the total goodput achieved by these

TCP flows for both assembly algorithms are given in Fig. 4.6. In this scenario,

Table 4.2: Performance gain of CWBA to timer based assembly algorithm with
the optimum assembly period in the mesh OBS network topology for each TCP
flow

Perf. Gain APopt Contribution

Flow 1 12.02% 26 msec 21.05%

Flow 2 17.87% 18 msec 6.98%

Flow 3 21.62% 36 msec 10.99%

Flow 4 11.43% 20 msec 5.48%

Flow 5 34.3% 32 msec 13.77%

Flow 6 13.23% 10 msec 7.91%

Flow 7 15.63% 16 msec 6.62%

Flow 8 6.67% 50 msec 9.68%

Flow 9 19.22% 30 msec 17.52%

CWBA algorithm performs 22.36% better than the timer based algorithm on

the average. The performance gain for each TCP flow, which is given by the

improvement of TCP goodput with CWBA algorithm compared with the timer
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based algorithm that uses the optimum assembly period (APopt) are given in

Table 4.2. APopt values for timer based algorithm and also the contribution of

each flow on the total goodput for CWBA algorithm are also reported.

The burst loss probabilities and the average burst lengths for the same sce-

nario are given in Fig. 4.7 and Fig. 4.8, respectively. The shapes of the curves

for TCP goodput and burst loss probabilities show a great resemblance. For the

timer based assembler, as the assembly period increases average burst length in-

creases as well. Similarly, the burst loss probability increases with the increasing

assembly period as the offered traffic to the network increases. However, as the

assembly period increases further, the loss probability decreases as the offered

load from TCP flows decreases due to increasing assembly delay and there is less

contention between bursts. As a conclusion, the simulation results show that the

performance gain of CWBA algorithm is not because of the enhancement of the

burst loss probability but it is mainly due to the improvement in the assembly

delay.
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Figure 4.7: Burst loss probabilities for timer based and CWBA algorithms in the
mesh OBS network topology
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Figure 4.8: Average burst lengths for timer based and CWBA algorithms in the
mesh OBS network topology

4.3 MCWBA with Simple Topology

MCWBA simulations are performed using the topology in Fig. 4.1. Each simu-

lation is repeated five times with different random variable sets. At the end, the

averages of these runs for CWBA and MCWBA algorithms are given in Fig. 4.9.

In this case, mixed burst assembly algorithm enhances the goodput by 2.54%

with respect to CWBA.

TCP goodputs corresponding to two different TCP flows are shown in

Fig. 4.10 and Fig. 4.11, corresponding to an optimistic and a pessimistic case,

respectively. In the optimistic case, the usage of timer in CWBA is almost al-

ways beneficial. On the other hand, in the pessimistic case the usage of timer in

CWBA algorithm does not provide any advantage.

After a certain value of the assembly period value, MCWBA and CWBA

behaves exactly the same. This is explained as follows: let the transmission time
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Figure 4.9: TCP performance of CWBA and MCWBA algorithms (average of 5
simulations) in the simple OBS network topology
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Figure 4.10: TCP performance of CWBA and MCWBA algorithms (optimistic
case) in the simple OBS network topology
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Figure 4.11: TCP performance of CWBA and MCWBA algorithms (pessimistic
case) in the simple OBS network topology

of the largest burst be Ttrans, switching time of OBS switches be Tsw and the

per-hop processing delay be Thprc. In this manner, when the assembly period is

larger than Ttrans +Tsw +Thprc = Tmax, MCWBA algorithm converges to CWBA

algorithm. In our simulations with the simple topology, Tmax can be calculated

as

Ttrans =
min(max(cwnd), max(rec.window))(PacketSize)

AccessLinkBandwidth

Ttrans =
(10000packets)(1040 bytes

packet
)(8 bits

byte
)

500Mbps

Ttrans = 166.4 msec

resulting in

Tmax = 166.4 msec + 5 µsec + 200 µsec = 166.605 msec

As a result, when the assembly period exceeds 166.605 msec, MCWBA gen-

erates exactly the same goodput as CWBA. We conclude that with a proper

choice of the assembly period, MCWBA algorithm performs much better than
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the existing assembly algorithms and it is also more robust than CWBA algo-

rithm in the sense that it has an upper bound on the delay introduced by the

burst assembly process.

4.4 MCWBA with Mesh Topology

MCWBA and CWBA algorithms are also compared using the mesh topology

given in Fig. 4.2. The total goodput achieved by the TCP flows for both assembly

algorithms can be seen in Fig. 4.12. Although, MCWBA algorithm guarantees

a maximum assembly delay for the TCP flows, the total goodput achieved by

nine TCP flows is 0.49% worse with MCWBA algorithm compared with CWBA

algorithm. However, MCWBA performs better than CWBA for some of the

TCP flows. As an example, the goodput for the fourth TCP flow is shown

in Fig. 4.13. The performance improvement of MCWBA obtained using the

optimum values of the timer value (APopt) with respect to CWBA and the TCP

goodput contribution of each flow to total TCP goodput of all flows are reported

in Table 4.3.
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Figure 4.12: TCP performance of CWBA and MCWBA algorithms for the mesh
OBS network topology
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Figure 4.13: TCP performance of CWBA and MCWBA algorithms for the 4th

TCP flow for the mesh OBS network topology

Table 4.3: Performance gain of MCWBA compared with CWBA for each TCP
flow in the mesh OBS network topology

Perf. Gain APopt Contribution

Flow 1 1.6% 100 msec 21.51%

Flow 2 -4.03% 75 msec 6.72%

Flow 3 1.47% 75 msec 11.24%

Flow 4 7.91% 28 msec 6.3%

Flow 5 -0.52% 100 msec 13.68%

Flow 6 3.66% 28 msec 8.63%

Flow 7 0.41% 43 msec 6.83%

Flow 8 2.52% 100 msec 9.98%

Flow 9 0.24% 100 msec 17.64%
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The burst loss probabilities of the fourth TCP flow and average loss prob-

ability of all flows for the mesh topology are depicted in Fig. 4.14. The loss

probability for the fourth flow is higher than the average loss probability. This

shows that since the loss probability of the fourth flow is higher, its congestion

window takes smaller values on the average than the other flows. Therefore, for

the fourth flow small assembly periods yields a better performance. Thus for the

fourth TCP flow with MCWBA algorithm, smaller bursts, which face a relatively

low burst loss rate, are generated than the case with CWBA algorithm. As a

consequence, MCWBA performs better than CWBA for the fourth flow. As a

future work, the effect of the usage of different assembly algorithms for different

TCP flows may be investigated.
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Figure 4.14: Burst loss probabilities for CWBA and MCWBA algorithms in the
mesh OBS network topology

In addition to the burst loss probabilities, the average burst lengths of all

TCP flows for the mesh topology is shown in Fig. 4.15. For MCWBA algorithm,

as the assembly period increases, the average burst length increases and eventu-

ally converges to the average burst length of CWBA algorithm. This explains
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Figure 4.15: Average burst lengths for CWBA and MCWBA algorithms in the
mesh OBS network topology

why the burst loss probability of the mixed algorithm converges to the loss prob-

ability of CWBA algorithm as the assembly period increases. This also shows

that in MCWBA algorithm, the average burst length never exceeds the average

burst length of CWBA algorithm. Therefore, after the loss events, the cwnd part

of the mixed algorithm prevents the average cwnd values of the flows to decrease

too much, which is not the case in the timer based algorithm. As a result, as the

assembly period increases the burst loss probability of MCWBA algorithm con-

verges to the loss probability of CWBA algorithm in a monotonically increasing

fashion.
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Chapter 5

CONCLUSIONS

Optical burst switching is one of the most promising candidates to be deployed

in the optical networks in the near future. An important element that affects the

performance of the OBS networks is the burst assembly algorithm. In this thesis,

we proposed two new adaptive optical burst assembly algorithms for TCP traffic

in OBS networks: cwnd based burst assembly (CWBA) and mixed cwnd/timer

based burst assembly (MCWBA) algorithms. Both algorithms significantly im-

prove the TCP goodput with respect to the timer based burst assembly algo-

rithms. The performance gain achieved by CWBA with respect to timer based

burst assembler goes up to approximately 40%. MCWBA algorithm performs

better than CWBA algorithm on the average about 2%. However, the robust-

ness and the performance improvement of MCWBA comes with the increased

complexity.

Both of the proposed assembly algorithms need the knowledge of cwnd size

of the TCP sender, which can be implemented by using one of the unused bits

in the TCP header. Alternatively by using cwnd estimation techniques, the

algorithms can be implemented at the cost of increased complexity and a slight

performance degradation, but without the requirement of any modification in
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the TCP header. However, in two of the cases TCP header is investigated by

CWBA or MCWBA. This results in the necessity of high access speeds to the

transport layer packets. Moreover, CWBA and MCWBA are designed to work

on the burst assemblers with per-flow aggregation. As a result both algorithms

are favorable in the situations with a few number of TCP flows with a large

amount of traffic.

The adaptive burst assembly algorithms in the literature have different perfor-

mance metrics than TCP goodput. Therefore, a comparison between the adap-

tive assemblers in the literature and CWBA/MCWBA have not been made. As a

future work, the adaptive assemblers in the literature may be implemented and a

thorough performance comparison may be done. In addition, mixed cwnd/burst

length based burst assembly algorithm may be defined and investigated in terms

of TCP goodput performance using the same simulation topologies given in this

thesis. Combinations of CWBA and other assembly algorithms may also be in-

vestigated. Finally, cwnd estimation techniques may be expanded to work for

different flavors of TCP other than TCP Reno. The estimation algorithm should

also be improved in such a way that it is an online algorithm and it works with

any kind of link losses in the network.
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