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ABSTRACT 

 

MODELS AND ALGORITHMS FOR DETERMINISTIC AND ROBUST 

DISCRETE TIME/COST TRADE-OFF PROBLEMS 

Hazır, Öncü 

Ph.D., Department of Management 

Supervisor: Prof. Dr. Erdal Erel 

 

May 2008 

 

 

 
Projects are subject to various sources of uncertainties that often negatively 

impact activity durations and costs. Therefore, it is of crucial importance to develop 

effective approaches to generate robust project schedules that are less vulnerable to 

disruptions caused by uncontrollable factors. This dissertation concentrates on robust 

scheduling in project environments; specifically, we address the discrete time/cost 

trade-off problem (DTCTP).  

 
Firstly, Benders Decomposition based exact algorithms to solve the deadline 

and the budget versions of the deterministic DTCTP of realistic sizes are proposed. 

We have included several features to accelerate the convergence and solve large 

instances to optimality. Secondly, we incorporate uncertainty in activity costs. We 

formulate robust DTCTP using three alternative models. We develop exact and 

heuristic algorithms to solve the robust models in which uncertainty is modeled via 

interval costs. The main contribution is the incorporation of uncertainty into a 



 iv

practically relevant project scheduling problem and developing problem specific 

solution approaches. To the best of our knowledge, this research is the first 

application of robust optimization to DTCTP. 

 
 Finally, we introduce some surrogate measures that aim at providing an 

accurate estimate of the schedule robustness. The pertinence of proposed measures is 

assessed through computational experiments. Using the insight revealed by the 

computational study, we propose a two-stage robust scheduling algorithm. 

Furthermore, we provide evidence that the proposed approach can be extended to 

solve a scheduling problem with tardiness penalties and earliness rewards. 

 

Keywords: Project Scheduling, Time/Cost Trade-off, Robust Optimization, Benders 

Decomposition. 
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ÖZET 

 

DETERMİNİSTİK VE GÜRBÜZ KESİKLİ ZAMAN/MALİYET ÖDÜNLEŞİM 

PROBLEMLERİ İÇİN MODELLER VE ALGORİTMALAR 

Hazır, Öncü 

Doktora, İşletme Bölümü 

Tez Yöneticisi: Prof. Dr. Erdal Erel 

 

Mayıs 2008 

 

 Proje çizelgeleri, projenin ne zaman tamamlanacağını, hangi faaliyetlerin ne 

zaman yapılacağını ve kaynakların faaliyetlere nasıl atanacağını belirtir. Mevcut 

proje çizelgeleme yöntemlerinin büyük çoğunluğu proje çizelgelerinin öngörüldüğü 

şekilde uygulanabileceğini varsaymaktadır. Fakat pratikte projeler, kaynak 

kullanımındaki, faktör fiyatlarındaki, nakit akışlarındaki değişkenliklerden, nitelik 

problemleri sebebiyle işlerin tekrarlanması ve buna benzer diğer belirsizlik 

kaynaklarından etkilenmektedirler. Bu çalışmada proje çizelgeleme modellerinde 

belirsizlik göz önüne alınmış ve belirsizliğin proje amaçlarına ulaşılmasına etkisinin 

en aza indirgenmesi için gürbüz çizelgeleme yöntemlerinin geliştirilmesi 

hedeflenmiştir. Proje ortamı olarak gerçek proje uygulamalarını iyi yansıtan ve 

literatürde iyi bilinen kesikli zaman/maliyet ödünleşim problemi (KZMÖP) 

incelenmiştir.  

 
 İlk olarak, iki temel belirgin KZMÖP türü incelenmiştir: vade problemi ve 

bütçe problemi. Vade probleminde proje süresi belirlenen vadeyi geçmeyecek 
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şekilde proje bütçesi enazlanmaktadır. Bütçe probleminde ise proje bütçesi belirlenen 

miktarı geçmeyecek şekilde proje süresi enazlanmaktadır. Her iki tür için de büyük 

ölçekli proje çizelgeleme problemlerini kesin olarak çözebilmek için Benders 

ayrıştırması uygulanmış, probleme özgü hızlandırma mekanizmaları öne 

sürülmüştür.  

 
 Daha sonra maliyetlerdeki belirsizlik göz önüne alınmış ve aktivite 

maliyetlerinin belirli aralıklar dahilinde gerçekleştiği varsayılmıştır. Bu şartlar 

altında gürbüz KZMÖP için üç farklı model öne sürülmüş ve bu modellerin etkinliği 

karşılaştırılmıştır. Modellerin çözümü için kesin ve sezgisel yöntemler öne 

sürülmüştür.  

 
Son olarak belirsizlik ortamından kaynaklanan risklere karşı çizelgenin 

direncini, dayanıklılığını, nesnel olarak değerlendirebilmek için ölçü birimleri 

tasarlanmış ve proje risklerini göz önüne alan iki aşamalı gürbüz proje çizelgeleme 

yöntemi geliştirilmiştir. Ayrıca, önerilen yaklaşımın gecikme cezası ve erken bitirme 

kazancı olan bir karmaşık çizelgeleme problemine de dönüştürülebileceği 

gösterilmiştir.  

 

Anahtar Kelimeler: Proje Çizelgeme, Zaman/Maliyet Ödünleşimi, Gürbüz 

Eniyileme, Benders Ayrıştırması. 
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CHAPTER 1 

 
 
 

INTRODUCTION 
 

 

Projects are one of the most important components of today’s organizations. In 

almost any type and size of organization, it is common to organize tasks as projects.  

This may be perceived as one consequence of the contemporary management 

practices, which have transformed from a hierarchical nature to a more flat one. As 

the organizations have receded from a hierarchical and isolated nature, projects have 

become the medium for interdepartmental or even inter-organizational activities. 

Another factor that has affected the private enterprises has been the increasing 

competitive pressure. Competition, becoming fierce day by day, leads the enterprises 

to seek excellence in accomplishing the tasks. Hence, monitoring the performance of 

tasks regarding both the schedule and the cost has gained increasing importance for 

the realization of the organizational goals.  

 

Meredith and Mantel (2005) claim that organizing tasks as projects serve to 

focus responsibility and authority in order to achieve the organizational goals. In this 

way, organizations experience better control, coordination, communication, and 

customer relations. Due to these advantages, organizations are becoming more 

project-driven and project management is becoming crucial.  
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Project management primarily involves defining, planning, monitoring, and 

controlling functions. Scheduling, as a part of the planning function, is concerned 

with determining the start and finish times of activities and allocation of scarce 

resources to these activities. Since the amount of information is limited in practice, 

the quality of the scheduling lies in the way the uncertainties are handled.   

 

When the literature on project scheduling is examined, we observe that the 

majority of the work assumes knowledge of complete information and a 

deterministic environment. Differently, in this dissertation we concentrate on project 

scheduling under uncertainty. In particular, we study robust project scheduling which 

aims to generate schedules that are protected against project disruptions. We address 

two major issues: the former is how to generate robust project schedules and the 

latter is how to assess robustness of project schedules. In this introductory chapter, 

we introduce some basic definitions, terminology of project management and 

scheduling and give an outline of the dissertation. 

 
 
1.1. Definitions and Terminology 

A project is a collection of interrelated activities that must be completed within some 

time limits to achieve predefined objectives. Projects are temporary and unique; they 

have a finite duration and distinguishing characteristics. An activity is a work 

element of a project that consumes time and requires resources during project 

execution. There exist precedence relationships among project activities due to 

factors such as technological requirements, economic necessities or legislative 

requirements. Precedence relationships define the processing order of the activities. 
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Moreover, the activities may have resource relationships among each other; in other 

words, they may share the same resources.  

 

Each project has specific goals to be achieved. Goals define the outcomes to 

be realized. Objectives are operational definitions of the goals. The achievement of 

the objectives determines the performance of a project. Therefore, the objectives 

must be concrete and hence measurable. According to Meredith and Mantel (2005), 

project duration, project cost and specifications set by the customers are the three 

prime project objectives. Among these, the project duration refers to the time 

committed to complete the project. It is also called the project makespan and is the 

most common objective addressed in the scheduling literature.  In addition to the 

above mentioned project objectives, some others such as completing the project with 

maximum net present value of cash flows, or with maximum quality are also used in 

the literature. In addition to optimizing with respect to a single objective, several 

objectives could be simultaneously sought using multi criteria approaches. We refer 

the reader to Kolisch and Padman (2001) for a classification of the literature in terms 

of the objectives addressed. 

 

Project management is the management discipline that develops and applies 

various tools and methods to ensure that project objectives are achieved. Each project 

passes through conceptual design, definition, planning, monitoring and controlling, 

and termination phases during its life time. Each phase requires a different set of 

management techniques. Conceptual design identifies the needs for the projects and 

sets the basic principles that will serve as a reference in the definition phase. In this 

phase, the problem definition is fuzzy. However, feasibility and risk analysis are 
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performed to decide on whether to start the project or not. Once a project is 

conceptually designed, the objectives, scope and strategy of a project should be 

clearly defined. Furthermore, a budget, which represents a financial plan of the 

project, is allocated to the project at this stage. After the definition phase, the 

planning function creates a concrete plan to reach the predefined project objectives. 

In this phase the work content of the project is divided into work packages that 

comprise activities. For each activity time, resource and cost requirements are 

estimated. 

 

Project scheduling, which produces time plans, called project schedules, is an 

important part of the planning function. Project schedules define activity start and 

finish times, and also allocate resources to the activities. Monitoring function collects 

and prepares information that is required to evaluate project performance. 

Controlling function verifies that actual performance matches the planned 

performance and corrective actions are taken if needed. Accomplishment of the 

project goals is evaluated and a final report is prepared in the termination phase. 

Furthermore, the project organization is dissolved. In this dissertation, we focus on 

the planning function and specifically on project scheduling. 

 

Project schedules are prepared before the project execution and this pre-

execution plan is called the baseline or the predictive schedule. Generating a good 

baseline schedule is important, because this schedule is used to plan and coordinate 

many activities, such as procurement of materials, planning equipment and staff, etc. 

Moreover, in practice due dates are usually set utilizing this schedule. 
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Project activities and their relationships among them are usually displayed by 

graphical tools called project network diagrams. Project network diagrams are 

schematic tools to display the relationships among the project activities. They are 

drawn from left to right to reflect the time sequence.  A network diagram typically 

consists of elements called arcs and nodes. Two alternative network representations 

are possible: activity-on-arc representation and activity-on-node representation. In an 

activity-on-node (AON) representation, nodes represent the activities and arcs define 

the precedence relationships among the nodes. In an activity-on-arc (AOA) 

representation, the nodes represent events such as the completion of activities, 

whereas the arcs correspond to the activities.  

 

An activity that must be completed before the beginning of another activity is 

called a predecessor. The activity that can start after the completion of another 

activity is called a successor. Gating activities are activities with no predecessors. 

The duration and the sequence of activities can be represented by a time scaled bar 

line called a Gantt chart that was proposed first by Henry Gantt in 1917. This chart 

still continues to be the most frequently used method to present schedules. 

 

The Critical Path Method (CPM) and The Program Evaluation and Review 

Technique (PERT) are network analysis methods, which are widely used in industry. 

Critical path is the longest path in project networks that determines the earliest 

completion time of the project. The activities on the critical path are called critical 

activities. CPM is used to define the time schedule and find the critical activities. It 

was introduced in the late 50’s in the United States. Du Pont Chemical Company was 
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the first user of CPM; they applied CPM for planning and maintenance of chemical 

plants. Kelley and Walker (1959) express the historical development of CPM. 

 

Earliest start (ES) and latest start (LS) of an activity define the earliest and 

the latest points in time related to the starting of the activity. Similarly, earliest finish 

(EF) and latest finish (LF) define the earliest and the latest finish times. Critical path 

is determined by performing forward and backward passes through the project 

network. The ES and the EF times for each activity are calculated in the forward 

pass, the LS and LF times are computed in the backward pass. 

 

In project management literature, two types of slacks are widely used; the 

total slack and free slack. Total slack (TS) is the amount of time by which the 

completion time of an activity can exceed its earliest completion time without 

delaying the project completion time. Free slack (FS) is the amount of time by which 

the completion time of an activity could be delayed without affecting the earliest start 

time of its immediate successors in the project. Total slack is computed as the 

difference between ES and LS for each activity, whereas free slack is the difference 

between EF of an activity and minimum ES of its immediate successors. Critical 

activities have zero TS. Therefore, any delay in these activities will lead to a delay in 

project completion.  

 

  PERT is another commonly used network analysis technique that estimates 

the project completion time and the starting time of each activity. PERT was 

developed for the POLARIS missile program of U.S. Navy in 1958 (see Kerzner 

2006). It is the first method incorporating uncertainty into activity durations and is 
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seen as a stochastic alternative of CPM. Due to the stochastic characteristic, expected 

completion times and probabilities of on-time completion are calculated in PERT. It 

assumes beta distribution for activity durations and requires three time estimates of 

activity durations: most likely, optimistic and pessimistic estimates. However, beta 

distribution assumption has been criticized as it may not always be a good 

approximation to the actual distribution (Maccrimmon and Ryavec, 1964). 

Furthermore, like CPM, PERT also assumes infinite resource availability. As real life 

projects have limited resource availability, this unrealistic assumption renders its 

usability since the activities compete for scarce resources in every project.  

 

Resources may be grouped as renewable, nonrenewable and doubly 

constrained. A renewable resource is available at a constant amount in every 

instance of the planning period. Machines, equipment and staff are the classical 

examples of renewable resources. Nonrenewable resources are consumable; the 

available quantities of these resources decrease with consumption. Money is a good 

example of nonrenewable resources. Doubly constrained resources are the resources 

that have limited availability in every period of the planning horizon and have 

constrained total availability. As project budgets control the consumption of money 

both in every period and also over the duration of the complete project, they are 

typical examples to doubly constrained resources. 

 

Resource Constrained Project Scheduling Problem (RCPSP) incorporates 

resource constraints with constant resource availability assumption. In this problem, 

the project completion time is minimized. Both precedence relationships among 

activities and constant resource availability constraints are considered. In resource 
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constrained project scheduling, the concept of critical chain is important. The critical 

chain is the sequence of both precedence and resource dependent activities which 

determines the minimum completion time of the project. Unlike the critical path, it 

considers the resource relationships as well. 

 

 RCPSP is shown to be NP-hard by Blazewicz et al. (1983). It has been 

extensively studied in the literature and many different versions of the basic problem 

have been addressed. Brucker et al. (1999), Herroelen et al. (1998) and Kolisch and 

Padman (2001) discuss the exact and approximate solution strategies and review the 

literature comprehensively. 

 

While RCPSP assumes a single execution possibility for an activity, in 

practice, project activities can be executed in various processing alternatives. Each 

alternative represents processing with a different technology or with a different 

resource assignment. In scheduling literature each execution alternative, which is 

characterized with a fixed duration and a fixed resource allocation, is called a mode 

of the activity. The extension of RCPSP to multi-mode setting is called the Multi-

Mode Resource Constrained Project Scheduling Problem (MRCPSP). This problem 

deals with assigning one of the possible modes to each activity so that project 

completion time is minimized while precedence and resource constraints are 

satisfied. MRCPSP models the use of renewable, nonrenewable and doubly 

constrained resources. A special case of MRCPSP that utilizes only one single 

nonrenewable resource (money) is called discrete time/cost trade-off problem 

(DTCTP). It is a well-known project scheduling problem with practical implications. 

We focus on this problem in this dissertation. 
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1.2. Problems Addressed 

Among the three versions of DTCTP, this dissertation addresses the deadline 

problem (DTCTP-D) and the budget problem (DTCTP-B). DTCTP-D assigns modes 

to each activity so that the total cost is minimized. On the contrary, given the budget, 

the budget problem minimizes the project duration. Both of these multi-mode 

scheduling problems have practical implications as they model the time/cost 

relationship in processing activities. In practice, project managers often allocate more 

resources to accelerate the activities and each resource allocation defines an 

execution mode in scheduling. In real life projects, usually multiple alternatives exist 

to execute an activity. 

 

 These problems are difficult to solve for large scale project networks; both of 

these DTCTP versions have been shown to be strongly NP-hard optimization 

problems for general activity networks by De et al. (1997). Firstly, we examine the 

deterministic deadline and budget problems and propose Benders Decomposition 

based solution algorithms. 

 

Moreover, in order to represent the real life project environments more 

realistically in project scheduling models, we relax the complete information and 

deterministic environment assumptions and incorporate uncertainty into the 

problems. We introduce robust DTCTP models. In these models, we address the 

uncertainty in the activity costs and in the durations. We develop algorithms to 

generate robust schedules, which are less sensitive to these uncertainty sources. 
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1.3. Dissertation Outline 

The organization of this dissertation is as follows. In Chapter 2, we discuss 

optimization and project scheduling under uncertainty in detail and the literature is 

reviewed comprehensively. In Chapter 3, the discrete time/cost trade-off problems 

are introduced; Benders Decomposition based solution algorithms for solving the 

deterministic deadline and budget problems are proposed. In chapter 4, we propose 

three robust optimization models for DTCTP. In these models, the uncertainty lies in 

activity costs and is represented via intervals. In order to solve the models, exact and 

heuristic algorithms are introduced. The schedules that have been generated with 

these models are compared on the basis of robustness. In Chapter 5, the uncertainty 

is assumed to lie in activity durations and some surrogate robustness measures are 

proposed.  We test these measures using simulation and a scheduling algorithm 

which uses the selected robustness measure is presented. Finally, in Chapter 6 we 

summarize the contributions of this dissertation to the literature and discuss future 

research areas. 
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CHAPTER 2 

 
 

MODELS AND APPROACHES FOR PROJECT SCHEDULING 

UNDER UNCERTAINTY: LITERATURE REVIEW 

 

 

 

In this chapter, we discuss the project scheduling models in detail and present a 

comprehensive review of the literature. First, we review optimization techniques to 

hedge against uncertainty, and then concentrate on project scheduling under 

uncertainty. 

 

 

2.1. Uncertainty and Optimization under Uncertainty 

Meredith and Mantel (2005) define uncertainty as “having only partial information 

about the situation or outcomes”. Uncertainty is an inevitable part of decision making 

and strategies to hedge against uncertainty should be developed. To manage 

uncertainties we consider optimization under uncertainty, which is the branch of 

optimization where there are uncertainties involved in the data. Consider the 

following mathematical programming problem: 

 
 Min {f (x): x ∈  X ⊂  Rn }             (2.1) 

 where X = { x ∈ Rn: gi(x) ≥ 0, 1i ,...,m= }           (2.2) 
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In (2.1) and (2.2), f: Rn→ R, and gi: Rn → R, 1i ,...,m=  define the objective 

function, and the constraints, respectively. Throughout the dissertation f and gi are 

used to denote functions. Traditionally, in optimization literature all the parameters 

are usually assumed to be deterministic. However, in optimization under uncertainty, 

this assumption is relaxed and uncertainty in the parameters is incorporated into the 

model. 

 
We formally state a mathematical programming model under uncertainty as 

follows: 

 
Min {f (x,u) : x ∈  X(u), u ∈  U }, where X(u) = { x ∈ Rn : gi(x, u) ≥ 0, 1i ,...,m= } (2.3) 

 
 
In the above function, u defines the uncertain parameter vector and U 

characterizes the set of uncertain data, i.e. u ∈  U.  Note that in (2.3) the feasible 

region is dependent on the uncertain parameter set and is represented with X(u). The 

difference between the models in (2.3) and in (2.1) is that parameter vector is not 

exactly known and incorporated into the model as uncertain. 

 
The first issue in optimization under uncertainty is how the uncertain data, 

defined by set U, are represented; they might be modeled as being either discrete or 

continuous. Scenario generation is a widely used approach to model the discrete 

case. Scenarios refer to the realization of the uncertain variables such as activity 

durations or costs. However, the scenario-based methods face the following 

difficulties: disruption scenarios cannot be defined easily or identified beforehand, 

and there may be too many scenarios to consider. Continuous data might be assumed 

to lie in some pre-specified intervals (interval uncertainty) or ellipsoidal sets or 

various convex sets. In this dissertation, interval uncertainty will be used for the 
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continuous models. For both discrete and continuous cases, one common approach to 

represent unknown data is using random variables. This approach will be further 

investigated in Section 2.1.1. 

 
Stochastic programming, robust optimization, sensitivity analysis, parametric 

programming and fuzzy programming are the fundamental optimization paradigms 

under uncertainty. In the next section, we concentrate on stochastic programming and 

robust optimization, which are the most commonly applied paradigms in the 

literature, and then briefly mention the other paradigms. 

 
 

2.1.1. Stochastic Programming 

Stochastic programming is a powerful modeling framework that uses probabilistic 

models to describe the uncertain data in terms of probability distributions. Typically, 

the average performance of the system is examined and expectation over the 

assumed probability distribution is taken. In this case, (2.3) could be reformulated as: 

 
 Min {Eu[f (x, u)] : x ∈  X(u)},       (2.4) 
 
 

In the above formulation, u refers to a random vector and Eu[] refers to the 

expectation over all the possible values of the random vector u.  

 
The fundamental idea behind stochastic programming is the notion of 

recourse, which is the ability to take corrective action following a random event. 

Two-stage stochastic recourse programming is the most frequently used model in 

stochastic programming. The decision variables are partitioned into two sets: the first 

set consists of variables that are set prior to the realization of the uncertain event. The 

second set includes the recourse variables that represent the response to the first-



 14

stage decision and to realized uncertainty. The sum of the first-stage decision cost 

and the expected cost of optimal second-stage recourse decisions are minimized. The 

following model, which is based on Birge and Louveaux (1997), expresses the basic 

two-stage linear programming. 

 
 Min

n11x R∈
{c1x1 + Eu [Q(x1, u)] : A1x1 = b1, x1 ≥ 0},   (2.5) 

 Q(x1, u) = 
22

Min
n

x R∈
{c2(u) x2 : A2x2 = b2(u) - D(u) x1, x2  ≥ 0}.   (2.6) 

 

In (2.5) and (2.6), c1,c2 are the objective vectors of sizes n1 x 1 and n2 x 1; A1, 

A2 are the m1 x n1  and m2 x n2 constraint matrices and b1, b2 are the vectors of right-

hand side of the constraints with sizes m1 x 1 and m2 x 1. Second stage parameters, 

c2(u), b2(u) and D(u), are dependent on random vector u  and they become known 

when u is realized. Uncertainty is modeled by the use of the random vector, u and 

note that uncertain data is a function of the random vector u. The vectors x1 and x2 

define first and second stage decision variables, respectively. When the first stage 

decisions are taken, uncertainty is present in the system; however in the second stage 

actual values of unknown vector u, becomes known and corrective actions are taken 

by the use of the second stage decision variables. Two-stage programming can 

naturally be extended to multiple stages. 

 
An application of two-stage stochastic recourse programming is production 

planning under uncertain demand. This could be modeled as a linear program (LP) as 

follows. The first-stage variables specify production levels that are determined in the 

presence of uncertain demand. Once the demand is known, the second-stage 

variables take recourse in deciding how to do deal with excess or shortage quantities. 
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Total expected costs comprising shortage penalties and excess costs are minimized. 

For other applications of stochastic programming, we refer the readers to Birge and 

Louveaux (1997). 

 
Mulvey et al. (1995) capture the notion of risk in stochastic programming; 

they propose to integrate a variability measure, typically the variance, on the second-

stage costs in the objective function. They describe the uncertainty with scenarios 

and assume that the probability distributions could be accurately identified. In their 

scenario based approach, a solution is allowed to violate the constraints; however 

these violations are penalized.  

An alternative stochastic approach is chance constrained programming 

proposed by Charnes and Cooper (1959). It includes constraints which do not always 

need to be satisfied; they could be satisfied with some given probabilities. The 

probabilistic or chance constraints have the following generic form: 

 
P(gi(x, u) ≥ 0) ≥  pi  i = 1,…,m; x ∈  X(u)   (2.7) 

 
In this formulation, P(.) refers to a probability distribution associated with 

uncertain vector u, and pi is a threshold probability level for constraint i, which is 

defined by gi(.). 

 
Stochastic programming is a proper technique when accurate probabilistic 

description of the randomness is available; however, in many real-life applications 

the decision-maker either does not have or cannot access this information. In these 

cases, robust optimization is more appropriate. Furthermore, data requirements of 

stochastic programming are generally high and it is often computationally 

demanding. 
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2.1.2. Robust Optimization 

Robust optimization is a modeling approach to generate a plan that is insensitive to 

data uncertainty. Generally, the worst-case performance of the system is optimized 

and plans that perform well under worst-case scenarios are sought. Since it is worst-

case oriented, it is a conservative methodology. 

 
The most widely studied robust optimization models are minmax and 

minmax regret models. Kouvelis and Yu (1997) discuss these models 

comprehensively and apply them to a wide range of combinatorial optimization 

problems. The minmax models minimize the maximum cost across all scenarios. A 

general formulation of these modes is: 

 

{ }{ }M in M ax ( , ) : ( )
u U

f x u x X u
∈

∈      (2.8) 

 
 
This modeling approach is extremely pessimistic and might therefore result in 

poor solutions under many scenarios. They are most suitable for circumstances in 

which the system is expected to perform well even in the worst-case.  

 
The regret of a solution in a given scenario is the difference between the cost 

of the solution and the cost of the optimal solution for that scenario. Note that 

scenarios define the realization of uncertain vector u. Models that seek to minimize 

the maximum regret across all scenarios are called minmax regret models. The regret 

for the vector x under realization u is:  

 
 r(x,u) = { }( , ) Min ( , ) : ( )f x u f x u x X u− ∈       (2.9) 
 
  
Using (2.9), the minmax regret model could be formulated as: 
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 { }{ }Min Ma x ( , ) : ( )
u U

r x u x X u
∈

∈      (2.10) 

 
 
Minmax regret models have been employed to model the robust versions of 

some well-known combinatorial optimization problems in the literature (for shortest 

path problem see Karaşan et al. (2001), Montemanni and Gambardella (2004); 

Yaman et al. (2001) and Montemanni and Gambardella (2005) for minimum 

spanning tree etc.). Ben-Tal and Nemirovski (1999, 2000) follow a worst-case 

oriented approach and reformulate (2.3) as follows:  

 
Min {z: f (x,u)  ≤  z , x ∈  X(u), ∀ u ∈  U }    (2.11) 
 
 
They call the model “robust counterpart” of an optimization under uncertainty 

model. Note that (2.11) is conservative since x is feasible only if all the constraints 

for all possible values of u∈U are satisfied. They use interval or ellipsoid uncertainty 

sets to model U in their models. We elucidate their approach by using the following 

LP: 

 
Max { cx : ij j i

j
a x b≤∑ , 1,...,i m= }      (2.12) 

 
Ben-Tal and Nemirovski (2000) assume a row-wise uncertainty and each 

coefficient aij, ij M∀ ∈  are uncertain and bounded with the interval 

,ij ijij ij
a d a d⎡ ⎤− +⎣ ⎦ , which is centered at the nominal value, ija , and is usually 

approximated with the mean. Mi refers to the set of coefficients that are subject to 

parameter uncertainty in row i. The parameter ijd  is the half length of the interval 

and defines the precision level of the estimate.  They propose the following robust 

counterpart of LP expressed in (2.12):  
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Max  cx   

subject to 

2 2
ij ij ij

i i

j ij i ij i
j j M j M

a x d y d w b
∈ ∈

+ +Ψ ≤∑ ∑ ∑   1,...,i m=   (2.13) 

-yij  ≤  xj - wij ≤ yij    1,...,i m= , ij M∀ ∈    (2.14) 

yij ≥ 0  1,...,i m= , ij M∀ ∈    (2.15) 

 
 In the above formulation, the parameter iΨ  sets a safety level. Ben-Tal and 

Nemirovski (2000) show that probability of violating any constraint in the 

optimization model (2.12) is bounded by exp(- 2 / 2iΨ ). Some new set of variables, 

y and w, are required for modeling the row uncertainty. The above formulation can 

be solved using conic quadratic programming and due to computational complexity, 

it is not appropriate for discrete optimization problems. 

 
 In this approach, all variables represent decisions that must be made before 

the realization of uncertain parameters. On the contrary, Ben-Tal and Nemirovski 

(2004) propose the Adjustable Robust Counterpart (ARC) in which some of the 

variables should be determined before the realization of the uncertain parameters 

(non-adjustable variables), while the other variables could be decided after the 

realization (adjustable variables).  

 
As an alternative to the work by Ben-Tal and Nemirovski (2004), Bertsimas 

and Sim (2003, 2004) recommend a restricted uncertainty approach in which only a 

subset of coefficients are driven to their upper bounds. They propose the following 

robust counterpart of (2.12): 
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Max cx  

subject to 

( , )ij j i i i
j

a x g x bΓ+ ≤∑  1,...,i m=       (2.16) 

( , )i ig x Γ = Max ( ) : , , \
ij it ii

i
j i i t i i i i i i i

j O

d y d y O M O t M OΓ Γ Γ
∈

⎧ ⎫⎪ ⎪+ − ⊂ = ∈⎢ ⎥ ⎢ ⎥⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪⎩ ⎭
∑  

-yj  ≤  xj  ≤  yj   j∀       (2.17) 

yj ≥  0 j∀       (2.18) 

 
In the above model, for each row i = 1, … , m, the set Oi, which is a subset of 

Mi  with cardinality iΓ⎢ ⎥⎣ ⎦ , is identified so that the total deviation occurs at maximum 

level. In this model, Γi adjusts the robustness level and it could be fractional. One of 

the coefficients, which has an index of ti for row i, deviates with an amount of  

( ) .
it ii i dΓ Γ− ⎢ ⎥⎣ ⎦  

 
 Their approach has the advantage of applicability to discrete optimization 

problems. Besides, the robust problem maintains the structure of the deterministic 

problem, i.e. if the deterministic model is an LP, then the robust model is also an LP. 

Their approach has been applied to define the robust versions of some well-known 

combinatorial optimization problems such as the shortest path problem and the 

knapsack problem; however applicability of Bertsimas and Sim’s approach in project 

scheduling has not been shown, yet. 

 
On the whole, the major advantage of robust optimization over stochastic 

programming is that the system performance remains under control even in the 

worst-case conditions. Furthermore, no assumptions regarding the underlying 

probability distribution of the uncertain data are required. It is most appropriate if 

there exist “hard constraints”, which must be always satisfied no matter what the 
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realization of the data is (see Ben-Tal and Nemirovski, 1999), or if the solution is 

sensitive to small data perturbations (see Ben-Tal and Nemirovski, 2000). 

Furthermore, robust optimization should be preferred to model circumstances in 

which the system should perform well even in the worst cases, such as deciding on 

the location of fire stations. On the other hand, as worst-case conditions are 

emphasized in robust optimization, in some cases the expected performance of the 

generated solutions might be worse when compared to the solutions generated using 

stochastic programming.  

 
When accurate distributional information is available, stochastic 

programming has the advantage of incorporating this available distributional 

information; however stochastic programming models are usually computationally 

more demanding. In this dissertation, we assume that project managers do not have 

accurate information about the distribution of random activity durations or costs. 

Therefore, we employ robust optimization methodology to formulate robust project 

scheduling models.   

 
2.1.3. Other Techniques 

Sensitivity analysis, parameter programming and fuzzy programming are the 

alternative paradigms to address optimization problems under uncertainty. In this 

section, we discuss them briefly. 

 
In sensitivity analysis, the dependence of model output on input parameters is 

investigated; generally the effect of small perturbations on the optimal solution is 

analyzed. Sensitivity analysis is distinctively different from stochastic programming 

and robust optimization since it is reactive in nature; it does not address uncertainty 

in the modeling phase.  
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Parametric programming solves a set of mathematical models over the 

parameter vector. It is proactive since uncertainty is integrated into the model as a 

function of the parameter vector. Sensitivity analysis and parametric programming 

are usually studied together in the literature. The major difference is that: sensitivity 

analysis models the discrete changes in problem parameters, whereas parametric 

programming addresses continuous changes. We refer the readers to Gall and 

Greenberg (1997) for   a detailed examination of sensitivity analysis and parametric 

programming. 

 
Fuzzy programming has attracted attention of the researchers as an alternative 

paradigm to address optimization problems under uncertainty since the pioneering 

work of Bellman and Zadeh (1970). Instead of using random variables, uncertain 

parameters are modeled as fuzzy numbers and the constraints are defined with the 

use of fuzzy sets and membership functions. Membership functions might allow 

some constraint violations and measure the degree of satisfaction of the constraints. 

For details of the theory and applications of fuzzy programming, we refer the readers 

to Zimmerman (2001). 

 
In the next section, models and algorithms to hedge against uncertainty for 

project scheduling problems will be discussed, and applications of the above 

mentioned techniques in project scheduling will be reviewed. 

 
 

2.2. Project Scheduling under Uncertainty 

Deterministic project scheduling assumes that the baseline schedule can be executed 

as planned. However, during the project execution, both the activity durations and 

resources are subject to uncertainties. Machine failures, inaccurate time estimates, 
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quality problems and arrival of urgent jobs are common situations that prevent the 

baseline schedule from being executed as planned. Therefore, how to manage 

projects in the presence of uncertainty is a crucial question in project management. 

According to De Meyer et al. (2002), there exist four types of uncertainty in projects 

and each type requires a different managerial approach. This uncertainty 

classification is given below. 

1. Variation: Variation refers to the random deviation in production systems. 

This type of uncertainty is the most common type in production systems. Machine 

breakdowns, quality problems and flu epidemics are classical examples.  Robust 

scheduling techniques such as inserting buffers between the activities are used to 

decrease the effect of variation on project performance. 

2. Foreseen Uncertainty: Foreseen uncertainty refers to the cases where possible 

sources of uncertainty are identifiable. To give an example, possible side effects in a 

drug development project may be predicted before project execution.  To model 

foreseen uncertainty, decision tree based techniques are generally used. 

3. Unforeseen Uncertainty: Unlike the foreseen uncertainty, sources of 

uncertainty are not known. To give an example, the famous drug “Viagra” was 

developed to prevent heart attacks. However, it is widely used for other problems. In 

drug development phase, nobody could have predicted this application area and high 

sale figures. Scenario planning is commonly used to model unforeseen uncertainty. 

4. Chaos: This is the hardest case to manage since project structure may change 

radically. Crisis management techniques are applied in chaotic situations. Learning 

and experience become more important than planning. Natural disasters such as 

earthquake and hurricanes are the typical examples of chaotic situations.  

 



 23

In this dissertation, we focus on uncertainties of the variation type. De Meyer 

et al. (2002) emphasize the importance of planning and accounting for variation 

during planning in projects at which variation dominates. 

 
 During project execution, validity of the baseline schedule becomes 

questionable due to structural changes caused by disruptions. The baseline schedule 

is prepared under the assumption that activity durations are deterministic and 

resource availability is constant. The realized activity durations and resource 

availability may differ from the planned values. As a result, actual project 

performance may vary significantly from the expected performance.  

 
To minimize the effect of unexpected events on project performance, five 

fundamental scheduling approaches have been discussed in the literature: stochastic 

scheduling, fuzzy scheduling, sensitivity analysis, reactive scheduling, and robust 

(proactive) scheduling (Herroelen and Leus, 2005).  This classification is depicted in 

Figure 1. Details of each approach will be given in the following subsections. 

 

 

Figure 1. Taxonomy Based on Herroelen and Leus (2005) 
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2.2.1. Reactive Scheduling 

Modifying or re-optimizing a schedule in the face of disruptions is called reactive 

scheduling. If a baseline schedule is prepared before execution, this approach is 

known as predictive-reactive scheduling, on the other hand, the schedule could 

dynamically be constructed, and this is called dynamic scheduling.  

 
When and how to reschedule are the major questions in reactive scheduling. 

For timing, two approaches exist: In event driven scheduling, rescheduling is 

performed when an unexpected event is observed; whereas in the periodic policy, 

rescheduling is performed at the beginning of each period. Corrective action in the 

case of disruptions may be taken as either full or partial rescheduling.  All the 

available tasks are rescheduled in full scheduling, whereas in partial scheduling only 

a part of the current schedule is updated. For further discussion of these approaches 

and a comprehensive review of applications in machine scheduling the readers are 

referred to Sabuncuoğlu and Bayız (2000). Even though there are a large number of 

reactive machine scheduling applications in literature, the reactive scheduling 

applications in project management are scarce.  

 

Simulation is the most commonly used approach in reactive project 

scheduling literature. In simulation studies, effects of problem characteristics on 

performance are tested and impact of rescheduling on performance is analyzed. Full 

rescheduling is compared with simple repair mechanisms, such as right shifting. 

Yang (1996) performs a simulation experiment to explore the advantages of 

rescheduling on makespan minimization.  He uses a simulated annealing (SA) based 

heuristic to generate schedules and shows that SA-based heuristic performs much 

better than simple dispatching rules. He also demonstrates that the frequency of 
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rescheduling affects the project completion time and that the effect of rescheduling 

depends on project structure. 

 

 Herroelen and Leus (2001) use simulation to show the weaknesses and 

strengths of critical chain management. They also demonstrate that rescheduling has 

positive effects on project makespan. They test the effect of scheduling mechanism 

on makespan. To schedule and reschedule, branch-and-bound and latest finishing 

time heuristic are used. Performance difference between these two methods is 

significant; therefore they suggest using the branch-and-bound method. 

 

Van de Vonder et al. (2007b) offer four different predictive-reactive resource-

constrained project scheduling procedures. Through simulation, they evaluate these 

procedures under the combined objective of maximizing the schedule stability and 

the timely project completion probability. In another study, Van de Vonder et al. 

(2007a) propose heuristics for repairing resource-constrained project baseline 

schedules. The effect of multiple activity duration disruptions during project 

execution on stability is minimized. They also apply to simulation to compare the 

performances of the heuristics. 

 

Zhu et al. (2005) follow a mathematical programming approach to model 

uncertainty. They formulate an integer linear program for recovering the project 

disruptions. They model various disruption alternatives including the disruptions in 

activity durations, in the network structure, and in resource availabilities are 

considered. Various recovery options are modeled. In addition to rescheduling, their 

model allows altering activity modes and increasing resource availabilities. However, 

these alternatives are costly. They optimize a composite objective function, which is 
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a function of project makespan and stability. The model is solved with a hybrid 

mixed-inter programming/constraint programming procedure after relaxing some of 

the constraints. Their model is flexible, as different recovery options are considered; 

however, it is computationally demanding to solve. 

 
 

2.2.2. Robust Scheduling 

In proactive or robust scheduling, variability is incorporated into the models, and 

schedules that are less vulnerable to disruptions are sought. Herroelen and Leus 

(2005) divide schedule robustness into two groups: solution robustness (stability) and 

quality robustness. We use this classification in this dissertation. The solution 

robustness is defined as the insensitivity of the activity start times with respect to 

variations in the input data. On the other hand, quality robustness is defined as 

insensitivity of schedule performance such as project makespan with respect to 

disruptions. Quality robust scheduling aims to construct schedules in such a way that 

the value of the performance measure is affected as little as possible by disruptions. 

The total slack concept is closely related to quality robustness, whereas free slack to 

the stability of a schedule. 

 

The most popular approach of project management aiming for quality 

robustness is critical chain project management (CCPM) that has been introduced by 

Goldratt (1997) who applied of the theory of constraints (TOC) to project 

management. TOC is a management philosophy introduced by Goldratt and Cox 

(1984). It emphasizes identifying and controlling system constraints so as to improve 

the performance of the overall system. Basic properties of CCPM can be summarized 

as follows: 
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1. Multi-tasking, or performing multiple tasks in the same time frame, is 

discouraged in order to minimize total flow time. 

2. CCPM tries to eliminate due-date focused behavior. Defining and 

communicating project milestones, which are particularly important project 

events, are eliminated.  

3. CCPM controls buffer usages to monitor project performance. Buffers are 

protection mechanisms against uncertainty in the duration of activities.  

4. Safety factors are eliminated from individual activities and aggregated at 

the end as a project buffer. Aggressive time estimates are used and in this 

way, staff is forced to increase productivity. 

 
 CCPM is also called Critical Chain Scheduling and Buffer Management. 

Buffer Management aims to plan and control the buffers. It is an emerging field in 

project management. CCPM defines three types of buffers:  

1. Project buffer: This type of buffer is added to the end of the critical chain 

to prevent possible project delays. 

2. Feeding buffer: This buffer is added to the end of the paths merging into 

the critical chain, thus it prevents any possible delay on feeding paths to 

affect the start time of critical tasks. 

3. Resource buffer: This buffer works as a warning mechanism to assure that 

the resources are ready when they are demanded by critical activities. 

 
In the CCPM literature two buffer sizing methods are common: the 50% rule 

and the Root Square Error Method (RSEM). In the 50% rule, half of the total 

duration of the chain is calculated with safe estimates and taken as the buffer size. 

The 50% rule is also known as the “cut and paste method” in the literature. On the 
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other hand, the RSEM uses two estimates for each task on the feeding chain: the safe 

estimate and the average estimate. The difference is assumed to be equal to twice the 

standard deviation of the activity duration. Assuming the independence of task 

durations in the chain, standard deviation of the sum of activity times is calculated. 

Twice the standard deviation is used as the buffer size. 

 
In these two methods, buffer size does not depend on project characteristics 

related to resource availability and network structure. Tukel et al. (2006) propose two 

heuristics that take into account the number of precedence relationships and resource 

tightness in buffer sizing. Their heuristics create smaller buffers than both of the two 

well known methods. However, for large projects with high uncertainty levels, their 

method results in lower probability of meeting the planned completion times. 

Therefore, their method may not be accepted as a better method than the other two 

methods.  

 
Some of the limitations of the CCPM will also be mentioned. The use of 

aggressive time estimates creates pressure on staff to increase productivity, which 

may lead to quality problems. Moreover, CCPM does not give attention to resource 

constrained scheduling; simple heuristic rules are used to determine the critical chain 

in CCPM software packages. It also does not provide algorithms to solve the 

resource conflicts that may occur after inserting the buffers into the project baseline. 

However, Herroelen and Leus (2001) demonstrate that the choice of scheduling and 

rescheduling algorithms may significantly affect the final makespan.  

 
CCPM focuses on minimizing the makespan and as a second objective it 

minimizes work in process inventory. During execution, all the activities other than 

gating activities, that is activities which do not have predecessors, are started as early 
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as possible. Late start rule is only applied to gating tasks. However, scheduling non-

gating tasks as early as possible may not be the cost-minimizing strategy. Right 

shifting some of the non-gating tasks may have positive effects on costs without 

affecting the robustness. A comprehensive critical examination of the CCPM is given 

by Raz et al. (2003).  

 
Herroelen and Leus (2003) propose some mathematical programming models 

to construct stable project schedules. They develop an LP model and some 

benchmark heuristics. Their LP model allows a single activity disruption, which is 

duration increase in one activity, during the schedule execution.  Leus (2003) extends 

the model and considers multiple disruption possibilities. Leus and Herroelen (2004) 

adapt the stability model to the resource constrained networks using resource flow 

networks. These networks model the number resource units transferred among the 

activities as a resource flow. In their model, only a single resource type is considered 

and branch-and-bound method is used to solve the problem. 

 
Van de Vonder et al. (2005, 2006) analyze the trade-off between the quality 

robustness and solution robustness. They use a scheduling mechanism that is adapted 

from the float factor model of Tavares (1998). The factor float model shifts activity 

start times from the earliest start times with the same proportion of the slack values 

for all the activities. Van de Vonder et al. (2005) relax the resource constraints and 

concentrate on stability. However their model results in quality robustness as well in 

the cases where the dummy ending activity has a high weight. Van de Vonder et al. 

(2006) extend the activity dependent float factor model to the resource constrained 

environment. In these studies, the quality robustness is measured by the probability 

that the project will end by the project due date. Lambrechts et al. (2008a) and Van 
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de Vonder et al. (2008) propose heuristics for solution robust scheduling and 

compared the performances of proposed heuristics using simulation. Al Fawzan and 

Haouari (2005) develop a bi-objective model for the RCPSP and optimize the 

solution robustness and makespan. They use a tabu search algorithm for generating 

the set of efficient solutions. 

 
Proactive-reactive scheduling protects against disruptions by combining a 

proactive scheduling procedure and a reactive improvement procedure. It may be 

applied to a project network as follows: The baseline schedule is created by the 

maximization of a robustness measure so that it involves sufficient safety time to 

absorb the effects of the disruptions. Although, this baseline schedule will be less 

sensitive to the disruptions, all possible disruptions may not be anticipated. For this 

reason, it is better to incorporate reactive scheduling as the second protection 

mechanism to prevent large performance deviations due to disruptions. We refer the 

readers to Lambrechts et al. (2008b) for a nice application of this approach. 

 
 
 

2.2.3. Stochastic Project Scheduling 

In stochastic project scheduling, the activity durations are modeled as random 

variables and probability distributions are used. Stochastic resource-constrained 

project scheduling problem (SRCPSP) is the stochastic extension of RCPSP. 

Stochastic dynamic programming is used to solve the problem. No baseline schedule 

is created. Scheduling policies (or scheduling strategies) dynamically make 

scheduling decisions at decision points corresponding to the start time of activities. 

Stork (2001) proposes exact algorithms, while Golenko-Ginzburg and Gonik (1997, 

1998), Tsai and Gemmill (1998) and Ballestin (2008) propose heuristic algorithms 
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for solving the stochastic RCPSP. Fernandez et al. (1998) stress that the previous 

simulation based approaches unrealistically ignores non-anticipativity as they 

assumed perfect information for activity durations. They model the problem as a 

multi-stage decision process. On the other hand, Zhu et al. (2008) define a new 

problem with uncertain activity durations and use a cost- based objective function. 

They model the problem using two-stage stochastic programming. The first stage 

fixes the activity times based on known probabilistic information. The second phase 

generates the schedule by minimizing the total penalty of deviating from the planned 

times. In this paper, the authors make an analogy between the project scheduling 

problem under uncertainty and the traditional newsvendor problem. In project 

scheduling, the cost of early and late completions is balanced, and a similar trade-off 

exists between the excess and shortage costs in the traditional newsvendor problem. 

 
  Gutjahr et al. (2000) formulate a stochastic multi-mode project scheduling 

problem by allowing crashing of the modes with some additional costs and modeling 

activity durations as random variables. They minimize the total expected cost that 

includes expected tardiness penalty and crashing cost.  

 
 

2.2.4. Fuzzy Project Scheduling 

 Instead of probability distributions, fuzzy project scheduling uses fuzzy membership 

functions to model activity durations. The advocates of the fuzzy activity duration 

approach claim that probability distributions for the activity durations are usually 

unknown due to reasons such as lack of accurate historical data. They also believe 

that activity durations estimated by human experts are potentially inaccurate.  Hapke 

and Slowinski (1994, 1996) generate a set of schedules applying twelve dispatching 

rules and select the schedule with the least fuzzy makespan. Wang (2002, 2004) 
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concentrated on product development projects. They use fuzzy set theory to generate 

robust schedules. 

 
Applications of sensitivity analysis to scheduling problems are very limited in 

the literature. For a good discussion and relevant examples, the readers are referred 

to Hall and Posner (2004). We summarize the literature review on project scheduling 

under uncertainty in Table 1. As illustrated in the table, fuzzy scheduling has rarely 

been addressed, whereas stochastic scheduling has widely been studied between mid 

90’s and 2000, and then reactive and robust scheduling has started to be addressed in 

the literature.  In the last years, reactive and robust scheduling have increasing 

popularity among the researchers.  

 
In the next chapter, we formulate the discrete time/cost trade-off problems, 

explain its versions in detail and develop solution algorithms to solve the problems 

exactly. 



 

     
Table 1. Summary of Literature on Project Scheduling under Uncertainty 

  
Robust Scheduling Author(s) 

 
Reactive 

Scheduling Stability Quality Robustness 
Stochastic 
Scheduling 

Fuzzy 
Scheduling 

Hapke and Slowinski  (1994, 1996) x
Yang (1996) x
Golenko-Ginzburg and Gonik  (1997,1998) x
Fernandez et al. (1998) x
Tsai and Gemmil (1998) x
Valls et al. (1998) x
Gutjahr et al. (2000) x
Stork (2001) x
Herroelen and Leus (2001) x
Wang (2002, 2004) x
Herroelen and Leus (2003) x
Leus and Herroelen (2004) x
Al-Fawzan  and Haouari  (2005) x
Zhu  et al. (2005) x
Van de Vonder et al. (2005, 2006) x x
Tukel et al. (2006) x
Van de Vonder et al. (2007a) x
Van de Vonder et al. (2007b) x x
Ballestin (2008) x
Chtourou and Haouari. (2008). x
Cohen et al. (2008) x
Lambrechts et al. (2008a) x x
Lambrechts et al. (2008b) x
Van de Vonder et al. (2008) x
Yamashita et al. (2008) x
Zhu  et al. (2008)    x  
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CHAPTER 3 

 

MODELS AND EXACT APPROACHES FOR THE 

DETERMINISTIC DISCRETE TIME/COST TRADE-OFF 

PROBLEMS 

 

 

In project management, it is often possible to reduce the duration of some of the 

activities and therefore expedite the project duration with additional costs. This 

time/cost trade-off has been widely studied in the literature since the critical path 

method (CPM) was developed in 1950s. The majority of these studies address the 

linear, continuous time/cost relationships (Icmeli et al., 1993). In this dissertation, we 

consider the discrete version of the problem, or the discrete time/cost trade-off 

problem (DTCTP).  

 
Three versions of the DTCTP have been studied in the literature: the deadline 

problem (DTCTP-D), the budget problem (DTCTP-B) and the efficiency problem, 

(DTCTP-E).  In DTCTP-D, given a set of time/cost pairs (mode) and a project 

deadline, each activity is assigned to one of the possible modes in such a way that the 

total cost is minimized. Conversely, the budget problem minimizes the project 

duration while meeting a given budget. On the other hand, DTCTP-E is the problem 

of constructing efficient time/cost solutions over the set of feasible project durations. 

This study concentrates on the deadline and the budget problems.  
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Despite its importance in practice, the research in the discrete version of the 

problem, DTCTP, is rather new due to its inherent computational complexity; it has 

been shown to be strongly NP-hard for general activity networks by De et al. (1997). 

In their comprehensive review paper, De et al. (1995) discuss the exact and 

approximate solution strategies.  The readers are referred to the studies of Robinson 

(1975), Hindelang and Muth (1979), Harvey and Patterson (1979), and 

Demeulemeester et al. (1996,1998) for exact algorithms and to Skutella (1998), 

Akkan et al. (2005), and Vanhoucke and Debels (2008) for approximate algorithms 

to solve DTCTP. 

 
In the next subsection, we formally define an extension of the DTCTP and 

present the model formulation. Moreover some special cases of the model are 

examined. Firstly, we investigate a special case that is suitable to model Build-

Operate-Transfer (BOT) projects. Detailed information about the characteristics of 

this type of projects is given. Furthermore, we examine the two well-known special 

cases, the deadline and the budget problems, in Sections 3.2 and 3.3 respectively. In 

these sections, we propose Benders Decomposition based solution algorithms and 

give some computational results. Finally, some concluding remarks are presented in 

Section 4. 

 
 

3.1. A Practical Extension and Application Area 

In this section, we propose an extension of DTCTP that incorporates the notion of 

opportunity cost into the model. The model is suitable for Build-Operate-Transfer 

(BOT) projects in which consideration of opportunity costs is crucial. The BOT 

model describes the situation in which a public service or an infrastructure 

investment is made and operated for a specific period of time by a private enterprise 
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and then transferred to a public institution. The operating period is sufficiently long, 

typically 10 to 20 years, so that the investment is paid off and the private enterprise 

realizes a tangible profit. 

 
The BOT model has several advantages for the public sector as it functions as 

an alternative financing mechanism in undertaking large investment projects. 

Secondly, it promotes foreign investment inflow. In some cases, technology transfer 

accompanies foreign investment, implying that some benefits that cannot be 

expressed in monetary terms can be achieved. Finally, it can be assumed that the 

private enterprises as profit maximizers operate the system in the most productive 

way and use the required up-to-date technology. From the private sector’s 

perspective, the BOT model tends to reduce demand and credit risks because the 

government is generally the sole customer. This means that the risks associated with 

insufficient demand and ability to pay is minimal. Due to the mutual benefits 

explained above, the BOT contracts are becoming popular and widely accepted in 

both developed and developing countries. One of the application areas of this model 

is private toll roads. First, the private enterprise constructs the roads, and operates 

them for a period of time and then transfers the right to operate these roads to the 

public. In this case, the enterprise can elongate the operating period via completing 

construction earlier and hence increases the profit. For a detailed analysis of BOT 

contracts and further application areas, the reader is referred to Walker and Smith 

(1995). 

 
As the BOT projects favor early completions, incorporating opportunity costs 

into the model is essential. Scheduling with due dates is extensively studied in 

machine scheduling literature, whereas the research addressing project environments 
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is limited. The existing scheduling studies incur a penalty cost both in cases when the 

project finishes earlier and later than the due date. Furthermore the existing time/cost 

trade-off problems are restrictive models in the sense that either they place a limit on 

the spending or enforce a deadline for the project completion. Though these models 

address the time/cost trade-off, they do not perform a cost/benefit analysis. To give 

an example, the DTCTP-B aims to exploit the given budget such that the project is 

completed as early as possible. However, there may be cases in which cost of 

expedition may significantly surpass the benefits gained from early completions. In 

contrast, in BOT projects, a small surpass in the given budget could save days which 

in turn drastically increases profitability. 

 
The extended version we propose uses monetary units as a common basis to 

measure the performance of the project. It performs a cost benefit analysis. That is, if 

the burden of the unit increase in parameters is less than the yield, the increase is 

allowed. Indeed, in real life applications, the budget is an estimate of cash flows and 

whenever it is profitable to do so, it is elaborated in time via allocating extra funds 

created through various financial alternatives, such as loans, bonds, or stocks. 

Furthermore, the extended version considers due dates and penalty costs of tardiness 

instead of the deadlines, hence allowing tardiness.  

 
We call the model “generalized discrete time/cost trade-off problem” 

(GDTCTP) since it encompasses both DTCTP-D and DTCTP-B. When the 

opportunity cost and interest paid for budget overruns are zero and the tardiness 

penalty is very large, the model reduces to the DTCTP-D. It also reduces to the 

DTCTP-B when the budget coefficient and tardiness penalty is zero and the interest 
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paid for budget overruns are very large. In the next section, GDTCTP is formally 

defined and the model formulation is presented. 

 
A Generalized Model: 

A project with n activities is represented by an activity-on-node graph, i.e. G (N, A); 

where N is the set of nodes, and A N N⊂ ×  is the set of immediate precedence 

constraints on the activities. Two dummy activities corresponding to the project start 

and end, activity 0 and activity n+1, are included in the network; i.e. N = 

{0,1,2……,n+1}. A set of time/cost pairs (modes) is given for each activity and an 

activity j is performed in one of the possible modes, i.e. jm M∈ { },......, jjm m= . 

Activity j performed in mode m, is characterized by a processing time pjm and cost 

cjm and without loss of generality, it can be assumed that, for each ,  'j N m m∈ <  

implies 'jm jmp p>  and 'jm jmc c< . Given a project due date, δ, and budget, B0, an 

execution mode is to be selected for each activity in such a way that the total cost 

function including opportunity costs and penalty costs are minimized. In the cost 

function, α, φ  and ζ denote the opportunity cost per unit time, the interest paid for 

budget overruns and the tardiness penalty per unit time, respectively. β is a weighting 

factor for the budget.  

 
 A mixed integer-programming model of the problem could be stated as 

follows: 

 
Min { }1 00, -nC B Max B Bα β φ+ + + + { }10, + −nMax Cζ δ    (3.1) 

subject to 

1,  
j

jm
m M

x j N
∈

= ∀ ∈∑         (3.2)      
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0
∈

− − ≥∑
j

j i jm jm
m M

C C p x    ( ),i j A∀ ∈       (3.3)  

0
∈ ∈

− ≥∑ ∑
j

jm jm
j N m M

B c x        (3.4) 

0jC  ≥   j N∀ ∈       (3.5) 

 B ≥ 0          (3.6) 

{ }0,1jmx ∈    ∀ ∈ jm M ,∀ ∈j N      (3.7) 

 

The non-negative continuous decision variable Cj denotes the completion 

time of activity j. The binary decision variable xjm assigns modes to the activities and 

takes the value 1 if mode m is chosen for activity j. Otherwise it is 0 (3.7). While 

minimizing the total cost including opportunity costs (3.1), a unique mode should be 

assigned to each activity (3.2); precedence constraints should not be violated (3.3). A 

continuous variable B is used to denote the total cost spent to complete the activities 

(3.4). 

 
Note that when α = 0, φ  = 0, ζ = M (where M is a “very big” number), the 

problem reduces to DTCTP-D, and when β = 0, φ  = M, ζ = 0 the model reduces to 

DTCTP-B.  Furthermore, we also address the special case where β = 1, and propose 

to use this special case to model Build-Operate-Transfer (BOT) projects. This case 

encourages early completions because the model incorporates the opportunity cost. 

Integrating additional variables T and W into the model, we convert the problem into 

a linear form and formulate the BOT Model as follows: 

 
Min 1  WnC Bα φ+ + + + Tζ        (3.8) 

subject to 

1,  
j

jm
m M

x j N
∈

= ∀ ∈∑         (3.9)      

0
∈

− − ≥∑
j

j i jm jm
m M

C C p x     ( ),i j A∀ ∈      (3.10)  
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1 δ+− ≥ −nT C          (3.11) 

0− ≥ −W B B          (3.12) 

0
∈ ∈

− ≥∑ ∑
j

jm jm
j N m M

B c x        (3.13) 

W ≥ 0, T ≥ 0, B ≥ 0; 0jC ≥             j N∀ ∈      (3.14) 

{ }0,1jmx ∈     jm M∀ ∈ , j N∀ ∈    (3.15) 

 

In the next section, the DTCTP-D is formally defined and solved exactly for 

large project instances. 

 
 

3.2. The Deadline Problem 

 
3.2.1. Problem Definition and Model Formulation 

In DTCTP-D, given a project deadline of δ time units, a set of execution modes is to 

be selected for each activity so that the total operational cost is minimized. A mixed 

integer-programming model of the deadline problem, DTCTP-D, could be stated as 

follows: 

 
Min  

∈ ∈
∑ ∑

j

jm jm
j N m M

c x          (3.16) 

subject to 

1,  
j

jm
m M

x j N
∈

= ∀ ∈∑         (3.17)     

0
∈

− − ≥∑
j

j i jm jm
m M

C C p x ,   ( ),i j A∀ ∈       (3.18) 

1nC δ+ ≤          (3.19) 

0,jC ≥    j N∀ ∈      (3.20) 

{ }0,1jmx ∈    jm M∀ ∈ , j N∀ ∈     (3.21) 
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While minimizing the total cost (3.16), a unique mode should be assigned to 

each activity (3.17), precedence constraints should not be violated (3.18), and the 

deadline should be met (3.19). Given the NP-hard nature of the problem, it is 

difficult to solve large-size problems exactly. We propose an exact algorithm based 

on Benders Decomposition to solve the large scale real-life problems. In the 

following section, we present the formal description the solution algorithm. 

 
 

3.2.2. Overview of Benders Decomposition  

Benders (1962) introduces this decomposition algorithm to solve specially structured 

large-scale linear and mixed integer programs. The basic idea behind this method is 

to decompose the problem into two simpler problems: the first part, called the master 

problem (MP), solves a relaxed version of the problem and generates trial values for 

the integer variables and a lower bound for a minimization objective. The second 

problem, called the subproblem (SP), is the original problem with the values of the 

integer variables temporarily fixed by the MP. The dual of the SP inserts cuts into the 

master problem and obtains an upper bound for a minimization objective.  We use 

the following general formulation to illustrate the decomposition approach: 

 
 Min  c1x1 + c2x2         (3.22) 

 subject to 

 A1 x1 + A2 x2 ≥ b       (3.23)  

 x2 ∈  X2 , x1 ≥ 0,        (3.24) 

 
 The variables are partitioned into two groups such that x2∈X2 refers to the 

complicating variables. To give an example, in a mixed integer program, x1 and x2 
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could be defined as the continuous and integer variables, respectively. In that case, 

X2 defines the feasible set of discrete variables. Note that (3.22-3.24) is equivalent to: 

 

2 
Min

x
{c2 x2 + Min{ c1 x1: A1 x1 ≥ b - A2 x2}: x2 ∈  X2}   (3.25) 

  
Note that when x2 is fixed, the inner formulation becomes a LP. Taking the 

dual of the LP with dual vector w, (3.25) becomes: 

 

2 
Min

x
{c2 x2 + 

 0
Max

w≥
{ w(b - A2x2): wA1  ≤ c1 }: x2 ∈  X2}  (3.26) 

  
The inner formulation, called dual SP, could be either bounded or unbounded. 

If bounded, the solution is one of the extreme points wk, k = 1...K. Otherwise extreme 

rays vr, r =1,...,R are generated. As a result, (3.26) could be reformulated as: 

  
  Min  c2 x2 + z         (3.27) 

 subject to 

 z ≥  wk(b - A2x2)    k = 1,...,K.                (3.28) 

 vr(b - A2x2) ≤  0    r = 1,...,R.            (3.29) 

 x2 ∈  X2 , z  ≥ 0                     (3.30) 

 
The above reformulation is called Benders MP, and (3.28) and (3.29) are 

called feasibility and optimality cuts, respectively. A relaxation approach is required 

in order not to enumerate all the extreme points and rays, and the cuts are generated 

when needed. The MP and the SP are solved iteratively until the lower bound 

converges to the upper bound. 

 
 Benders Decomposition has been used to solve many combinatorial 

optimization problems; specifically, successful applications of this methodology on 

network design are numerous (Costa, 2005). However, only a few applications for 
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project scheduling problems are reported in the literature and these are discussed 

below:  

 
Maniezzo and Mingozzi (1999) use a heuristic algorithm based on Benders 

decomposition to solve the Multi-Mode Resource Constrained Project Scheduling 

Problem (MRCPSP) approximately. In the MRCPSP, each activity is assigned to one 

of the possible modes and the starting time of each activity is determined so that 

project completion time is minimized while precedence and resource constraints are 

satisfied. The DTCTP-B is a special case of MRCPSP in which only a single 

nonrenewable resource (money) is in use, whereas the general MRCPSP allows the 

use of both renewable and nonrenewable resources. Maniezzo and Mingozzi (1999) 

propose a mathematical formulation to the MRCPSP, relax some of the constraints 

and solve the relaxed version with a heuristic procedure based on Benders 

Decomposition. In their model, the MP corresponds to the assignment of one mode 

to each activity, while the SP is a single mode RCPSP. They solve both the MP and 

SP approximately. 

 
Erengüç et al. (1993) use Benders Decomposition to solve the time/cost 

trade-off problem with discounted cash flows, which is indeed a combination of the 

DTCTP and the payment-scheduling problem. Kuyumcu and Garcia-Diaz (1994) 

solve the project compression problem with concave or convex piecewise linear cost-

duration functions. All project scheduling applications mentioned above are tested 

with small to medium size problem instances.  

 
Our research in this section differs from these studies regarding both the 

problems addressed and the solution approach. We incorporate mechanisms into the 

Benders algorithm to accelerate the solution process thus we solve problems of 
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realistic sizes. In the following subsections, we present the details of the Benders 

Decomposition algorithm for the DTCTP-D. 

 

3.2.3. Benders Reformulation of the Deadline Problem 

As activity durations are nonnegative and C0 refers to a reference project start time, 

we can relax the non-negativity constraints on Cj and reformulate the DTCTP-D as 

follows: 

 
Min  

∈ ∈
∑ ∑

j

jm jm
j N m M

c x          (3.31) 

subject to 

1,  
j

jm
m M

x j N
∈

= ∀ ∈∑         (3.32)     

0
∈

− − ≥∑
j

j i jm jm
m M

C C p x ,  ( ),i j A∀ ∈       (3.33) 

1 0nC C δ+ − ≤          (3.34) 

 u.r.sjC   j N∀ ∈        (3.35) 

{ }0,1jmx ∈ , jm M∀ ∈ , j N∀ ∈       (3.36) 

 
Given a vector 0x X∈ = { {0,1}jmx ∈ jm M , j N∀ ∈ ∀ ∈ : 1 

j

jm
m M

x j N
∈

= ∀ ∈∑ }, 

consider the following polyhedron:  

 
P(x) = {C 2nR +∈ : 0

j

j i jm jm
m M

C C p x
∈

− − ≥∑ ( ),i j A∀ ∈ , 1 0nC C δ+ − ≤ }.  

 
 Note that any vector x is feasible for the DTCTP-D, if and only if 0x X∈  

and ( )P x ≠ ∅ . Therefore, the set of feasible solutions to the DTCTP-D could be 

formulated as:  

 
XD = { 0x X∈ : ( )P x ≠ ∅ }       (3.37)  
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 The following lemma provides an alternative path formulation of XD: 

 
Lemma 3.1: The set of feasible solutions of the DTCTP-D could be reformulated as: 

XD = 0{ : ,   1 }
ij

j

s
jm jm

( i , j ) A m M
x X p w x s ,...,Sδ

∈ ∈

∈ ≤ =∑ ∑ , where S refers to the total number 

of paths between node 0 to n+1 in G (N, A) and
ij

sw  is the incidence vector of the path 

s, ( , ) ,   1,..., .i j A s S∀ ∈ =  

 
Proof:  Given any vector, 0 ,x X∈  define the following linear feasibility seeking 

problem, namely, Q( x ): 

 
Min 

( , )
ij

i j A

γ
∈
∑                                                   (3.38) 

subject to 

 
j

ij j i jm jm
m M

C C p xγ
∈

+ − ≥ ∑     ( ),i j A∀ ∈     (3.39) 

1 0nC C δ+− + ≥ −         (3.40) 

0ijγ ≥           (3.41) 

 

In this formulation, γij are the auxiliary variables that are used for feasibility 

checking and γ*ij are the optimal values. Note that ( ) ,P x ≠ ∅  if and only if γ*ij = 0 

( ),i j A∀ ∈ .  Let wij and v be the dual variables associated with the constraint sets 

(3.39) and (3.40), respectively. Deriving the dual of the Q( x ) using these variables, 

we obtain the dual sub-problem SP( x ), given below. In this formulation, Su(i) and 

Pr(i) define the set of immediate successors and predecessors of activity i, 

respectively.  
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Max 
( , )

  - v
j

jm jm ij
i j A m M

p x w δ
∈ ∈
∑ ∑       (3.42) 

subject to 

0jk kj
k Su( j ) k Pr( j )

w w
∈ ∈

− =∑ ∑                    1,...,j n=    (3.43) 

0
0

0k
k Su( )

w v
∈

− =∑         (3.44) 

1
1

0kn
k Pr( n )

w v+
∈ +

− =∑         (3.45) 

0 1  ijw≤ ≤           ( , )i j A∀ ∈    (3.46) 

v ≥  0          (3.47)  

 
 We know that if ( )P x ≠ ∅ , then the optimal solution to the primal problem, 

Q( x ), has zero objective function at optimality. Hence by strong duality, the dual 

problem, SP( x ) has also zero objective function at optimality.  

  

If any vector {(w*, v*) : v* ≠ 0} is optimal to SP( x ), 1 (w*, v*) 
v*

 is feasible  

and has zero objective function as well. Hence, we can set v = 1, and SP( x ) 

becomes equivalent to the following network flow problem, of which the feasible 

region will be denoted with W. 

 
Max 

( , )
  

j

jm jm ij
i j A m M

p x w
∈ ∈
∑ ∑        (3.48) 

subject to 

0jk kj
k Su( j ) k Pr( j )

w w
∈ ∈

− =∑ ∑                    1,...,j n=    (3.49) 

0
(0)

1k
k Su

w
∈

=∑          (3.50) 

1
1

1kn
k Pr( n )

w +
∈ +

=∑         (3.51) 

0 1  ijw≤ ≤           ( , )i j A∀ ∈    (3.52) 
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To denote shortly,  

 
SP( x ) ≡ Max 

( , )
{    :  ( , )  }

j

jm jm ij ij
i j A m M

p x w w W i j A
∈ ∈

∈ ∀ ∈∑ ∑      (3.53) 

 
Due to the total unimodularity of the constraint matrix, if there is an optimal 

solution to SP( x ), then there is an optimal solution with {0,1} dual variables, and 

this solution has the form :  

 
1   if  (i,j) belongs to path s
0  o/wij

sw ⎧
= ⎨
⎩

       (3.54) 

 
As SP( x ) has also zero objective function at optimality if ( )P x ≠ ∅  and using (3.54),  

Max 
( , )

   : s = 1,...,S 0
ij

j

s
jm jm

i j A m M
p x w δ

∈ ∈

⎧ ⎫⎪ ⎪− =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑     (3.55) 

 
Combining (3.37) and (3.55), we get  

 
XD= 0

( , )
{ : ,    1,..., }

ij

j

s
jm jm

i j A m M
x X p w x s Sδ

∈ ∈

∈ ≤ =∑ ∑        

          Q.E.D. 

 
As an immediate result of Lemma 3.1, the following corollary could be 

stated: 

 
Corollary 3.1: DTCTP-D could be formulated as follows: 

 
Min 

j

jm jm
j N m M

c x
∈ ∈
∑ ∑  

 
subject to 
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{ }

               1

1                                  

0 1                                  

i j

j

j

s
jm jm

( i , j ) E m M

jm
m M

jm j

p w x s , . . . , S

x j N

x , m M , j N

δ
∈ ∈

∈

≤ =

= ∀ ∈

∈ ∀ ∈ ∀ ∈

∑ ∑

∑   (3.56) 

 
Enumerating all the paths is burdensome, so we use a relaxation approach and 

generate the constraints as needed. In the subsequent sections, we discuss the details 

of the proposed Benders Decomposition algorithm to solve the problem exactly in an 

efficient manner. Next, we provide the solution algorithm. 

 
The Algorithm: 

 
Introduce an additional index t to the notation to denote the values at iteration t. 

 
1. Start with an initial solution, 1 0x X∈ ; set t = 1. 

2. Solve the SP ( tx ) : Max {
( , )

 
j

t
jm ij ij

i j A m M
p x w

∈ ∈
∑ ∑ : w∈ W} 

If SP ( tx ) is unbounded (primal infeasible) then 

Get an extreme ray ( tw )  

Xt = X t-1∩ { 0

( , )
:

ij

j

t
jm jm

i j A m M
x X p w x δ

∈ ∈

∈ ≤∑ ∑ } 

Else 

If (t > 1) 

 Stop and report tx as the optimal solution. 

 End if 

3.  Solve the relaxed master problem, MPt: zt = Min {
j

jm jm
j N m M

c x
∈ ∈
∑ ∑ : x ∈  X t}. 

4. Set LB = zt, t = t +1, tx = xt-1. 

5. Return to Step 2 
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Note that solving SP( x ) is equivalent to determining the length of the critical 

path (Cn+1) with respect to the given mode assignments and comparing it with the 

deadline. For example if Cn+1 ≤ δ, the problem is feasible, otherwise it is infeasible. 

In order to demonstrate the steps of the algorithm, we solve an illustrative example 

and report in Appendix A. Benders Decomposition is known to exhibit slow 

convergence. Therefore, we include several features to accelerate the convergence 

and solve large instances to optimality. 

 
 

3.2.4. Algorithmic Enhancements 

The computational efficiency of Benders Algorithm depends on three issues: (i) the 

number of iterations; (ii) the time needed to solve the SP at each iteration; (iii) the 

time needed to solve the MP at each iteration. 

 
In order to decrease the number of iterations, we add multiple cuts at each 

iteration. Instead of finding the critical path and adding a single feasibility cut at each 

iteration, we determine the longest K paths and insert K cuts. To find these paths, we 

use a modification of the well-known Yen’s (1971) K-shortest loopless paths (KSP) 

algorithm. KSP lists K shortest paths between a given source-destination pair in the 

directed graph without revisiting the same node (loopless paths). Note that since 

PERT networks are acyclic, critical path problems may be solved as shortest path 

problems with cost parameters equal to the negative of the activity durations. K is in 

fact a parameter, which affects the computational efficiency. It is observed that as K 

increases, the number of iterations required attaining global convergence decreases, 

whereas the time and the computer effort demanded for solving each MP at each 

iteration increases. In order to decide on the level of parameter K, we performed 30 
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pretests involving problems with different sizes. As a result, we decided on the 

following strategy: K is fixed to 2 in the first 10 iterations, later K is increased at 

each iteration until K = 15.  This strategy prevents generating large number of 

constraints which are nonbinding at optimality. 

 
In order to solve SP1, we use the modified label-correcting algorithm of 

Ahuja et al. (1993). This algorithm is shown to be efficient and to run in O(|A|) time, 

when finding the shortest path from the source to destination for acyclic networks 

(Ahuja et al. (1993)). The major difficulty in this decomposition lies in the solution 

of the MP, which may become a very large 0–1 programming problem. To solve the 

MP efficiently, we propose the following enhancements: 

1) We use preprocessing to eliminate some of the mode combinations so that 

the number of decision variables in the MP is decreased. We apply the 

preprocessing techniques of Akkan et al. (2005) to eliminate long and short modes. 

2) As McDaniel and Devine (1977) suggested, we solve the LP relaxations 

first and generate cuts from the fractional solutions. Then, integrality constraints are 

added and the algorithm is restarted.  

3) Not all of the master problems are solved to optimality, i.e. feasibility cuts 

are generated from heuristic solutions. However, the last MP should be solved to 

optimality. 

4) In order to solve the MP iterations efficiently, we develop a customized 

branch-and-cut algorithm that groups the variables as special ordered sets (SOS) 

and that incorporates an effective neighborhood search strategy. 

 
In the following proposition, we demonstrate that there is no need to solve all 

the MP iterations exactly. 
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Proposition 3.1: It is not necessary to solve all the MP iterations of the 

DTCTP-D to optimality except in the last iteration. 

 
Proof: At each MP iteration, new feasibility cuts are inserted. As the 

feasibility cuts correspond to a subset of the path set, each MP solves a relaxation of 

the DTCTP-D. This statement holds even though the MP iterations are solved 

approximately as every feasible solution generates a path in the network. For any IP, 

if an optimal solution of the relaxed problem is feasible for the original IP, then it is 

also optimal for the original IP (Wolsey, 1998, Proposition 2.3). Therefore, if the last 

MP iteration is solved exactly and leads to a feasible solution for the DTCTP-D, the 

solution is optimal for the DTCTP-D as well. 

         Q.E.D. 

 
Using the previous proposition, the algorithm is modified as follows: 

We solve the MP iterations approximately at a relative optimality tolerance 

level of ε = 2 % until feasibility is satisfied. In the test runs, we tried ε = 1, 2, 3, 4, 5 

%. The algorithm run fastest with ε = 2 %. This means that at each iteration branch-

and-bound algorithm is truncated and the up-to-now best feasible solution, the 

incumbent solution, is used. The incumbent solution of each MP is guaranteed to be 

within 2 % of the optimal value. In the following sections, we report the quality and 

the computational effort requirements of this solution as the heuristic solution. We 

demonstrate that this solution could be used as a reliable approximate solution and it 

is much faster to reach this solution. In this case, however, the cost of the relaxed MP 

does not necessarily provide a lower bound on the cost of the optimal solution. Using 

the resulting feasible solution as the initial solution, we restart the algorithm. From 

this point on, we solve the MP iterations to optimality so that they provide a lower 
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bound on the cost of the optimal solution. In the following section, we describe the 

customized branch-and-cut algorithm to solve the MP exactly. 

 

3.2.5.  A Branch-and-Cut Procedure  

The branch-and-cut method combines the branch-and-bound method and the cutting 

plane algorithm. A cutting plane is a valid inequality (an inequality that is satisfied 

by all feasible solutions) that violates some feasible points of the LP relaxation. A 

cutting plane, which cuts off a given LP solution, can strengthen the LP relaxation. 

The relaxed feasible region becomes smaller, but the IP feasible region does not 

change. In a cutting plane algorithm, the LP relaxation of the new formulation is 

solved with the inserted cuts and the cuts are generated when required. In a branch-

and-cut algorithm, violated cuts are added at the nodes of the branch-and-bound tree. 

If no violated cuts are found or the effectiveness of the cutting planes in improving 

the LP bound decreases, the node is branched further. 

 
In a classical branch-and-bound algorithm, for each node the LP relaxation is 

solved, and a fractional variable (if there is one) on which to branch is chosen. In this 

dissertation, we branch on sets of variables instead of branching on individual 

variables. A set of variables, in which at most one variable in the set is allowed to be 

nonzero, forms a “Special Ordered Set of Type 1” (SOS1). In the DTCTP, the 

constraint set (3.17) represents an SOS1. Branching strategies have large impacts on 

the size of the branch-and-bound tree and the computation time. Branching on SOS1 

instead of a single variable has some advantages. For example the tree is more 

balanced, and if the variables in the SOS1 are ordered, fractional LP solutions may be 

used to determine the variables to be set to one in the optimal solution. Linderoth and 

Savelsbergh (1999) explain these advantages and give an illustrative example.  
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We assign an order to the variables among SOS1 by using the activity 

durations as weights. The variables are divided into two sets: the first subset includes 

the variables that have weights greater than the average weight, as calculated by 

using the solution of the relaxed problem. The second subset consists of variables 

that have weights less than the average value. Two branches are created by setting 

the variables in each subset to zero. 

 
In our algorithm, the MP includes knapsack constraints, or the sums of binary 

variables with nonnegative coefficients less than or equal to a nonnegative right-hand 

side. Previous computational studies show that cover cuts are effective for problems 

with knapsack constraints (Atamturk and Savelsbergh, 1999). Cutting planes derived 

from knapsack constraints may be strengthened by using SOS1. These strengthened 

constraints are called Generalized Upper Bound Constraints (GUBs). Gu et al. (1998) 

examines this type of constraints in depth. Combining the knapsack and GUB 

constraints usually result in stronger cutting planes (GUBs). 

 
 We develop the branching tree using CPLEX. It allows detailed control over 

the solution process and customizes the branch-and-cut tree (Atamturk and 

Savelsbergh (1999)). Branching nodes are selected using a best-estimate search 

strategy, a strategy in which one chooses the node estimated to have the best feasible 

integer solution obtainable. In our branch-and-cut tree, we apply SOS1 branching and 

insert the GUB cuts up to five times the total number of constraints. 

 
 Adding an excessive number of cuts works to improve the global lower 

bound. In order to improve the global upper bound, we integrate a heuristic that 

works to find good feasible solutions early in the search process. For this purpose, 

we use the Relaxation Induced Neighborhoods (RINS) heuristic. This heuristic 
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explores the neighborhood using information contained in the relaxation of the MIP 

model. In other words, it fixes variables which have the identical value in the 

incumbent and the LP solution, and solves the remaining MIP with limited 

branching. Danna et al. (2005) show RINS to be efficient in finding good feasible 

solutions early in the process.  

 
 

3.2.6. Experimentation and Computational Results 

Mainly three factors affect the difficulty of solving a particular problem instance: the 

network structure, the number of modes per activity, the tightness of the deadline. To 

test the presented algorithm, we use the test-bed 1 of Akkan et al. (2005), which 

contains large sized problems. The network structure is commonly defined with two 

parameters: the complexity index, CI, and the coefficient of network complexity, 

CNC. CI is a measure developed by Bein et al. (1986) to assess how far the given 

network is from being series–parallel. It is defined to be the minimum number of 

node reductions required to reduce a given two-terminal directed acyclic graph into a 

single-arc graph, when used together with series and parallel reductions. Assessing 

the distance of a given network from being series–parallel is important because 

DTCTP with series–parallel graphs could be solved quickly (Demeulemeester et 

al.,1996). The second complexity measure, CNC, is developed by Pascoe (1966) and 

defined to be the ratio of the number of arcs to the number of nodes.   

 
The number of modes per activity is randomly generated with discrete 

uniform distribution using two intervals: U[2, 10] and U[11, 20]. To compute the 

deadline for each instance, first the minimum possible project duration, Tmin (length 

of the critical path with modes that have the shortest duration) and the maximum 
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possible project duration, Tmax (length of the critical path with that have the longest 

duration), are calculated. Then, the deadline is determined as follows: 

 
δ = Tmin + θ (Tmax – Tmin), where θ ∈{0.15, 0.30, 0.45}                 (3.57) 

 
In this function the parameter θ defines the tightness of the deadline. Each 

mode of an activity defines a time/ cost pair. A cost function characterizes the 

time/cost relationship of the modes. In this test bed, concave (ccv), convex (cvx), and 

neither concave nor convex cost functions (hyb) are used to generate the cost figures.  

Table 2 summarizes the parameters and the related levels of the instances in the test 

bed. 

 
Table 2. Experimental Setting for Solving Deterministic Problems 

 

Parameters Level(s) 

Number of Nodes 17 

CI 13, 14 

CNC 5 , 6, 7, 8 

Number of Modes  U[2,10], U[11,20] 

Deadline Parameter (θ) 0.15, 0.30, 0.45 

Cost Function (CF) ccv, cvx, hyb 

 
 
CNC and CI are the determinants of the number of activities in a project.  

This experimental setting involves projects that contain from 85 to136 activities. We 

implement all the algorithms in C programming language on a Sun UltraSPARC 

12x400 MHz workstation with 3 GB RAM. Optimization software CPLEX 9.1 is 

used to solve the linear and integer programs at each step of the master problem. We 

use 432 problem instances, 144 project settings with 3 replicates, from the data set 
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provided by Akkan et al. (2005). Table 3 and Table 4 summarize the experimental 

results when the number of modes lies in the interval U[2,10] and U[11,20], 

respectively. The results of the exact procedure are presented under the column 

labeled with “Optimum”. The average number of linear and integer master problems 

solved and the average CPU time to solve the instances are reported under the 

columns “LP Iter.”, “IP Iter.” and “CPU(s)”, respectively. On the other hand, we 

depict the results of the approximate method under the column labeled “Truncated 

Solution”, within which the percentage of problem instances that the optimal solution 

is found, the average and maximum percentage of deviation from the optimal 

solution and the average percentage reduction in CPU time are reported under the 

columns “Ins Opt (%)”, “Avg. Dev (%)”, “Max Dev (%)”, “Dec. CPU (%)”, 

respectively. 

 
Table 3.  Summary of Computational Results (Number of Modes ∈  U[2, 10]) 

 

Optimum Truncated Solution 

 
LP Iter. IP Iter. CPU (s) Ins Opt 

(%) 

Avg. 
Dev  
(%) 

Max 
Dev 
(%) 

Dec. 
CPU 
(%) 

13 14.30 13.25 2187.81 57.14 0.13 0.87 34.00CI 
14 11.55 15.63 2120.74 49.51 0.22 1.27 43.86
5 9.51 9.24 147.05 39.22 0.22 0.97 47.25
6 13.06 12.08 627.09 51.92 0.20 0.94 38.01
7 13.85 16.17 2857.73 54.35 0.15 1.11 40.09

CNC 

8 15.53 23.16 6069.70 71.05 0.13 1.27 30.08
0.15 18.27 21.76 4730.22 76.19 0.06 0.82 29.45
0.30 12.43 13.18 1645.35 45.90 0.18 0.97 45.41θ 
0.45 7.65 8.70 60.98 36.51 0.30 1.27 43.62
ccv 12.76 13.63 3264.09 69.35 0.08 0.72 27.01
cvx 12.05 15.66 1447.30 28.13 0.31 1.27 56.67CF 
hyb 13.59 14.36 1757.56 62.30 0.15 0.94 33.96
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Table 4. Summary of Computational Results (Number of Modes ∈  U[11, 20]) 

 
 

Optimum Truncated Solution 

 
LP Iter. IP Iter. CPU (s) Ins Opt 

(%) 

Avg. 
Dev  
(%) 

Max 
Dev 
(%) 

Dec. 
CPU 
(%) 

13 17.34 14.34 14745.24 18.18 0.38 1.39 77.32CI 
14 14.62 17.24 16249.18 18.00 0.51 1.57 76.33
5 14.38 12.88 8117.71 18.00 0.50 1.57 75.22CNC 
6 17.20 17.68 14875.06 19.51 0.36 1.20 77.30

0.15 25.65 24.43 32288.42 26.09 0.25 0.95 72.67
0.30 15.09 15.52 7419.13 15.15 0.40 1.04 82.97θ 
0.45 9.60 8.43 808.51 17.14 0.60 1.57 72.03
ccv 17.10 12.06 8138.58 45.16 0.17 1.44 56.89
cvx 13.15 15.50 7945.58 3.85 0.71 1.56 93.11CF 
hyb 16.24 17.41 16378.87 5.88 0.49 1.57 80.76

 
 
We apply a Fixed Effects ANOVA test to the results in order to find out the 

variance effect of the experimental design factors to CPU time when the number of 

modes lies in the interval U[2, 10]. Test results including the coefficient of 

determination (R2) values of the tests are reported in Table 5. 

 
Table 5. The Effect of the Factors on the CPU Time: ANOVA Test 

 
Source DF Sum of  Squares Mean Square F p 

CI 1 10.981 10.981 3.240 0.073 
CNC 3 454.539 151.513 44.72 0.000 
CF 2 8.124 4.062 1.20 0.304 
θ 2 1040.568 520.284 153.56 0.000 

CI*CNC 3 90.889 30.296 8.94 0.000 
CI*CF 2 6.492 3.246 0.96 0.386 
CI* θ 2 5.982 2.991 0.88 0.415 

CNC*CF 6 40.314 6.719 1.98 0.070 
CNC* θ 6 34.746 5.791 1.71 0.121 
CF* θ 4 5.884 1.471 0.43 0.784 
Error 184 623.406 3.388   
Total 215 2321.927 R2 = 0.731 
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Before the test is performed, the necessary assumptions for ANOVA are 

checked and Box-Cox transformation is utilized to restore constant error variances 

and normality assumptions. From the experimental results given above, the following 

conclusions could be derived: 

• When Tables 3 and 4 are compared, it is evident that the average number 

of modes is highly influential on computational effort. The number of 

modes identifies the number of binary decision variables; therefore it is 

significantly effective on problem complexity. 

• ANOVA test reveals that the tightness of the deadline (θ) and the network 

complexity, measured with CNC and CI, significantly influence the 

computational effort. There is an inverse relationship between the project 

deadline and the computational effort. As the project deadline becomes 

looser, the number of MIP iterations and the time needed to solve the MP 

at each iteration both drastically decrease. As a result, the problem 

instances with loose deadlines could be solved more quickly.  

•  The instances with complex network structure, i.e. networks with larger 

CNC and CI, demand more computational effort. Tables 3 and 4 indicate 

that CNC is more influential on problem complexity when compared to 

CI. The reason is that CNC directly sets the number activities in the 

network and as the number of activities increase the number of binary 

variables increases as well. Additionally there exists an interaction 

between network complexity parameters. 

• Finally, the approximate truncation-based procedure generates solutions 

that are close to the optimal solution quickly. Moreover, in majority of the 

problem instances of the test bed, it obtains the optimal solution. One 



   59

major difference of the approximate results summarized in Tables 3 and 4 

is that the reductions in CPU times become significant as the number of 

modes increases. Therefore, especially for complex problem instances 

truncation-based heuristic provides a good solution alternative. 

 
In the next section, we address another special case of the DTCTP, namely 

the budget problem, and solve it exactly for large project instances. 

 
 

3.3. The Budget Problem  

 
3.3.1. Model Formulation 

A mixed integer-programming formulation of the budget problem DTCTP-B can be 

given as follows: 

 
Min  1nC +              (3.58) 

subject to 

1
j

jm
m M

x , j N
∈

= ∀ ∈∑         (3.59) 

 0
j

j i jm jm
m M

C C p x
∈

− − ≥∑    ( ),i j A∀ ∈       (3.60) 

0
j

jm jm
j N m M

c x B
∈ ∈

≤∑ ∑          (3.61) 

0≥jC     j N∀ ∈      (3.62) 

{ }0,1jmx ∈    jm M∀ ∈ j N∀ ∈     (3.63) 

 
In this formulation, the project completion time, Cn+1, is minimized (3.58), 

while the given budget, B0, is met (3.61). 
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3.3.2. Benders Reformulation of the Budget Problem 

Corollary 3.2: Using the path formulation defined by Lemma 3.1, DTCTP-B could 

be formulated as follows: 

 
Min z  

subject to 

{ }

0

0       =1

1                          

0 1                          

0

i j

j

j

j

s
jm jm

( i , j ) E m M

jm jm
j N m M

jm
m M

jm j

z p w x s , . . . , S

c x B

x j N

x , m M , j N

z

∈ ∈

∈ ∈

∈

− ≥

≤

= ∀ ∈

∈ ∀ ∈ ∀ ∈

≥

∑ ∑

∑ ∑

∑                   (3.64) 

 
Proof: As demonstrated in the proof of Lemma 3.1, given a vector 0x X∈ , 

the length of the longest path, which will be defined with a continuous variable z 

from now on, could be formulated as: 

 z =
( , )

Max  - :  1,...,
ij

j

s
jm jm

i j A m M

p x w s Sδ
∈ ∈

⎧ ⎫⎪ ⎪=⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑      (3.65) 

 
Combining 3.65 with the assignment and budget constraints, (3.64) 

formulates the DTCTP-B. 

          Q.E.D. 

 
For a given solution vector, the dual sub-problem turns out to be a critical 

path problem, which is a characteristic of the reformulation of the deadline problem 

as well. The difference is that at each iteration instead of feasibility cuts, optimality 

cuts are inserted. Since there is no constraint imposed on project completion time, 
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feasibility is maintained in each iteration. In order not to enumerate all the paths, we 

use a relaxation approach and generate the constraints when needed. We propose the 

following Benders Decomposition Algorithm to solve the DTCTP-B. 

 
1. Start with an initial solution, 1 0x X∈ ; set LB = −∞  , UB = ∞ , t = 1. 

2. Solve the SPt ( tx ): Max {
( )

jm

j

t
jm ij

i N j S i m M

p x w
∈ ∈ ∈
∑ ∑ ∑ : w∈ W} 

Get an extreme point tw , set UB = Min {UB,
( )

 jm

j

t t
jm ij

i N j S i m M
p x w

∈ ∈ ∈
∑ ∑ ∑ } 

If (UB = LB)  

            Stop and report tx as the optimal solution. 

            Else 

  Xt = X t-1∩ 0

( )
:

ij

j

t
jm jm

i N j S i m M
x X z p w x

∈ ∈ ∈

⎧ ⎫⎪ ⎪∈ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑  

3. Solve the relaxed master problem, MPt: zt = Min {z: x ∈  X t}. Let xt be the 

optimal solution. 

4. Set LB = zt, t = t + 1, tx = xt-1. 

5. Invoke  Preprocessing 

6. Return to Step 2 

 
As Benders Decomposition is known to converge slowly, we propose some 

enhancements to accelerate convergence and to solve large-scale instances exactly. 

 

3.3.3. Algorithmic Enhancements 

The first enhancement is integration of a preprocessing technique that serves to 

eliminate some of the modes, hence reducing the number of binary variables.   
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At each iteration of Benders Algorithm, MP solves a relaxed version of the 

problem and generates a LB for a minimization objective. LB is non-decreasing with 

respect to the number of iterations. We call the preprocessing after each MP iteration. 

In the following theorem, we show that some of the long modes, the modes with a 

long processing time, could be redundant and hence could be eliminated. The 

following theorem expresses the mode elimination procedure. 

 
Theorem 3.1: Given any LB for the DTCTP-B, for any activity i if there exists a 

mode m such that the length of the longest possible path that passes through activity i 

is less than or equal to the LB, then there exists an optimal solution such that activity 

i is performed either at mode m or at a mode with longer duration. 

 
Proof: Let XB denote the set of feasible mode assignments for DTCTP-B and luv(x) 

be the length of the longest path between node u and v, and A(x,i) be the length of the 

longest path that does not pass through activity  i given the mode assignment, x∈XB .  

 
The longest possible path that passes through activity i is the mode assignment such 

that mode m is assigned to activity i and the modes with longest durations are 

assigned to the remaining activities. We will denote this assignment as xL hereafter. 

Note that xL∈XB, otherwise as the modes with longest durations have the least cost, 

mode m would never become feasible and could be eliminated.  

 
Let us assume that there exists an optimal solution x' such that xim′= 1, where m < m′; 

without loss of generality, for any ,i N∈  m < m′ implies pim > pim′  and  cim < cim′. 

 
Given that, pim + l0i(xL) + lin+1(xL) ≤  LB,                    (3.66) 

we have,  

pim’ + l0i(x’) + lin+1(x’) <  pim + l0i(xL) + lin+1(xL) ≤  LB  ≤ Cn+1(x′)        (3.67) 
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Keep all the mode assignments in x′ other than activity i and assign mode m to 

activity i. Call this new assignment y, i.e. yim = 1 and yjm = xjm j N \ i∀ ∈ .  

 
Since cim < cim′, the mode assignment remains feasible, i.e. y∈XB. For this new 

assignment,  

A(y,i) = A(x′,i) ≤ Cn+1(x′)                       (3.68),  

Cn+1(y) = Max { pim + l0i(y) + lin+1(y), A(y,i) }                    (3.69),  

and l0i(y) + lin+1(y) = l0i(x′) + lin+1(x′)                      (3.70)  

 
Using (3.68) and (3.70), we have 

 pim + l0i(y) + lin+1(y) =  pim + l0i(x′) + lin+1(x′) ≤  pim + l0i(xL) + lin+1(xL) ≤ LB ≤ 

Cn+1(x′), hence  due to (3.68), (3.69) , Cn+1(y) ≤ Cn+1(x′) 

 
Therefore, when (3.66) holds for any optimal solution such that xim′ = 1: m < m′, 

there exists an alternative optimal solution such that xim′′ = 1: m′′ = m or m′′ < m. 

Hence, all the modes m′ > m could be eliminated. 

          Q.E.D. 

 
In order to solve the DTCTP-B efficiently, we apply a branch-and-cut 

algorithm similar to the one described in Section 3.2.2. However, there exist some 

differences. The basic difference is that an initial phase that aims to provide a good 

UB quickly is integrated. This UB serves to cut off some of the branches in the 

subsequent MIP iterations; the nodes of which the optimal solution to the LP 

relaxation at that node is worse than the UB are not further branched.  

 
All the values of the parameters of the experimentation are set through a 

number of 30 pretests involving problems with various sizes. To obtain a good UB 

quickly, we insert many feasibility cuts in the first phase, i.e. the longest K1 = 100 
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paths are determined and, 100 cuts (only violated ones) are inserted at each stage. 

Furthermore in this phase, we solve the MP iterations approximately at a relative 

optimality tolerance level of ε1 = 4 %. Note that ε1 should be larger than the 

tolerance level used for solving the deadline problem in order to get an UB quicker. 

In the test runs, we try ε = 3, 4, 5 %. The fastest solutions are achieved with ε = 4 %. 

 
 Every MIP iteration in the budget problem generates a feasible solution, and 

the feasible solution with the smallest objective value found so far, called the 

incumbent solution, provides an UB. However in the deadline problem, the 

feasibility is not guaranteed at each iteration. In the first stage branch-and-bound 

algorithm is truncated and the objective value of the best solution found in that 

iteration is recorded as FR. The incumbent solution at the end of phase one is 

reported as the truncated heuristic solution. This solution is guaranteed to be within 

ε1 = 4 % of the optimal value, and we test the quality and efficiency of this solution 

with computational experiments.   

 
We move to the second phase when the truncated solution of the relaxed 

problem exceeds the upper bound, i.e. FR ≥ UB. This phase starts with only cuts 

generated from the LP relaxations and the algorithm is restarted with the last solution 

obtained at the end of phase 1. From now on, we set K2 = 25, ε2 = 2 % i.e. the 

longest 25 paths are determined and, 25 cuts (only violated ones) are inserted at each 

stage. Note that the cuts could be generated from any feasible solution; hence until 

FR ≥ UB, the MP iterations are solved approximately to generate the cuts. 

Afterwards, the MP is solved exactly until optimality is proven, i.e. UB = LB. 
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3.3.4. Computational Results 

We generate 120 problem instances, corresponding to 24 project settings with 5 

replicates, from the data set provided by Akkan et al. (2005). To compute the budget 

parameter for each instance, first the minimum possible project cost, Cmin (total cost 

with cheapest modes) and the maximum possible project cost, Cmax (total cost with 

most expensive modes), are calculated. Then, the budget is set as follows: 

 
B0 = Cmin + θ (Cmax – Cmin), where θ = 0.15             (3.71) 

 
For comparison purposes, we solve the hardest instances in the data set, 

hence we concentrate on the instances which the number of modes lie in the interval 

U[11, 20]. According to the experimentation results discussed in Section 3.2.7., these 

instances have been shown to demand the highest computational effort. In order to 

assess the efficiency of the proposed algorithm, we solve the MIP formulation given 

in 3.58 - 3.63 with optimization software CPLEX 9.1 and compare the results. A 

maximal time limit of three hours is set for each exact procedure. We classify the 

problems with respect to the coefficient of network complexity (CNC), which is the 

ratio of the number of arcs to the number of nodes. Table 6 and Table 7 summarize 

the experimental results for the instances with CNC = {5, 6} and CNC = {7, 8} 

respectively. A great majority of the instances with CNC = {5, 6} could be solved 

exactly within the time limits (Table 6), however both methods could solve only 

23.33 % of the instances when CNC = 7, and 10 % of the instances when CNC = 8. 

 
We present the results of the Benders Decomposition-based exact procedure 

and CPLEX implementation under the columns labeled with “BENDERS 

DECOMPOSITION” and “CPLEX”, respectively; the percentage of problem 

instances that the optimal solution is found within time limit and the average CPU 
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time of the problem instances for which an optimal solution is found with Benders 

algorithm are reported under the columns “Ins Opt (%)” and “CPU(s)”, respectively. 

CPLEX CPU time is assumed to be three hours for instances that CPLEX could not 

solve within time limit, hence average CPLEX CPU times are underestimated. 

Additionally, we report the percentage of modes eliminated, average and maximum 

optimality gaps (only the problem instances for which an optimal solution is found 

within the time limit) of the Benders Decomposition based exact procedure under the 

columns “Mode Elim (%)”, “Avg Gap (%) ”, and “Max Gap (%)”. 

 
On the other hand, the results of the approximate method are depicted under 

the column called “Truncated Solution”, the average of the percentage deviations 

from the optimal solution,  (only the problem instances for which an optimal solution 

is found) and the average CPU time in seconds are reported under the columns “Dev 

(%)”, “CPU(s)”, respectively.  



   

Table 6. Summary of Computational Results (CNC = 5, 6) 

CPLEX BENDERS DECOMPOSITION TRUNCATED 
SOLUTION Cost 

Function
 

CI CNC 
Ins Opt 

(%) CPU(s) Ins Opt 
(%) 

Mode Elim
(%) CPU(s) Avg Gap 

(%) 
Max Gap 

(%) 
Dev 
(%) CPU(s) 

5 100.00 984.61 100.00 15.63 506.45 - - 0.94 30.30 13 
6 60.00 1143.62 60.00 12.12 735.93 0.84 1.04 0.97 248.96 
5 100.00 96.86 100.00 12.29 255.87 - - 1.01 24.542 

 
 

CCV 

14 
6 100.00 1334.25 100.00 9.89 706.17 - - 0.83 77.13 
5 20.00 9281.64 100.00 9.76 4368.34 - - 1.81 9.83 13 
6 0.00 10800.00 20.00 7.31 7077.55 0.38 0.49 1.04 180.35 
5 80.00 6288.21 100.00 7.98 1983.08 - - 1.59 20.63 

 
 

CVX 

14 
6 0.00 10800.00 40.00 5.30 5719.84 0.38 0.47 0.62 377.49 
5 80.00 3680.55 100.00 15.10 186.29 - - 1.72 19.27 13 
6 60.00 5691.62 100.00 11.26 826.30 - - 1.76 93.90 
5 100.00 1409.49 100.00 10.56 459.28 - - 1.56 18.13 

 
 

HYB 

14 
6 40.00 6663.28 100.00 8.26 2676.92 - - 1.32 435.93 

67
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Table 7. Summary of Computational Results (CNC = 7, 8) 

 

Fixed Effects  ANOVA test is applied to the results in order to find out the 

variance effect of the experimental design factors to CPU time (only for the problem 

instances for which an optimal solution has been found) and the number of modes 

eliminated (for all instances). The treatment levels are fixed for these following 

factors: CNC, CI, and type of cost function (CF). Furthermore, the interactions 

between these factors are investigated. Before the test is performed, the necessary 

assumptions for ANOVA are checked and Box-Cox transformation is utilized to 

restore constant error variances and normality assumption. Test results including the 

coefficient of determination (R2) values of the tests are reported in Table 8 and Table 

9. 

 

 

BENDERS DECOMPOSITION Cost 
Function  CI CNC Mode Elim 

(%) 
Avg Gap 

(%) 
Max Gap 

(%) 
7 10.10 2.32 3.39 13 
8 8.18 3.11 3.2 
7 8.14 2.56 3.29 

 
 

CCV 14 
8 8.28 2.09 3.44 
7 6.54 1.64 2.61 13 
8 4.70 1.99 3.20 
7 4.32 2.05 2.44 

 
 

CVX 14 
8 4.35 2.47 3.22 
7 9.10 0.95 2.19 13 
8 6.94 0.78 1.58 
7 6.17 1.05 1.56 

 
 

HYB 14 
8 6.77 1.38 2.27 
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Table 8. The Effect of the Factors on the CPU Time: ANOVA Test 
 

Source DF Sum of  Squares Mean Square F p 

CI 1 3.067 3.067 1.400 0.244 

CNC 1 15.838 15.838 7.240 0.011 

CF 2 75.945 37.973 17.350 0.000 

CI*CNC 1 17.667 17.667 8.070 0.007 

CI*CF 2 5.696 2.848 1.300 0.284 

CNC*CF 2 4.899 2.450 1.120 0.337 

Error 38 83.181 2.189   

Total 47 235.037 R2 = 0.647 

 
 

Table 9. The Effect of Factors on Number of Modes Eliminated: ANOVA Test 
 

Source DF Sum of Squares Mean Square F p 

CI 1 5.480 5.480 36.890 0.000 

CNC 3 22.463 7.488 50.410 0.000 

CF 2 19.927 9.963 67.070 0.000 

CI*CNC 3 1.554 0.518 3.490 0.019 

CI*CF 2 0.197 0.099 0.660 0.517 

CNC*CF 6 0.211 0.035 0.240 0.963 

Error 102 15.152 0.148   

Total 119 64.985 R2 = 0.767 

 

 
We also illustrate the relationship between design factors to CPU time and to 

the number of modes eliminated in Figure 2 and Figure 3, respectively. It is 

noticeable that both computational effort and effectiveness of the preprocessing 

algorithms depends on CNC and cost type significantly. 
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Figure 2. The Effect of Design Factors on the CPU Time: Main Effects Plot 

 

 
Figure 3. The Effect of Design Factors on Mode Elimination: Main Effects Plot 

 

From the experimental results given above, the following conclusions could 

be derived: 

• There are two measures of network complexity: CI and CNC. No 

significant effect of CI on computational effort is observed, that is a result in 

line with Akkan et al. (2005)’s finding for approximate solutions of DTCTP-

D. However, it is easier to eliminate the modes of networks that have 

structures close to being series-parallel; hence CI is significantly effective on 

the performance of the preprocessing method. On the other hand, the 

instances with larger CNC involve more activities, hence the larger the CNC, 

the larger the problem complexity.  
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• The type of cost function is influential on both the computational effort 

and also on the effectiveness of the preprocessing method. The convex cost 

functions demand more computational effort and this is mainly due to the fact 

that less of the modes could be eliminated with preprocessing for these types 

of problem instances. This is illustrated in Figure 3. 

• Finally, the truncation-based heuristic generates solutions that are very 

close to the optimal solution fast. Besides, in most of the instances for which 

an optimal solution is found, it finds the optimal solution. Therefore, 

especially for harder instances, it represents a good solution alternative. 

 
 
3.4. Conclusions 

The DTCTP is a well-known project scheduling problem with practical implications. 

In this chapter, we mainly investigated two versions of the deterministic problem: 

deadline and budget versions. We have proposed an exact algorithm to solve these 

versions of realistic sizes. The major contribution of the work in this section lies in 

the decomposition approach and the developed branch-and-cut procedure. We have 

included several features to accelerate the convergence into the solution algorithm 

and in this way; we manage to solve large instances, project networks with up to 136 

activities, to optimality. 

 
Computational experiments are performed to measure the efficiency of the 

algorithm under various problem settings. Mainly three factors are affecting the 

difficulty in solving a particular problem instance: the network structure, the number 

of modes per activity and the tightness of the deadline. The major advantage of the 

proposed algorithm is that the optimal solutions can be obtained even in projects with 

complex network structures, large number of modes and tight deadlines. 
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In the next chapter, in order to address project environments more 

realistically, we relax the complete information and deterministic environment 

assumptions. We incorporate uncertainty into the analysis and propose robust 

optimization models for the DTCTP. 
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CHAPTER 4 

 

 ROBUST OPTIMIZATION MODELS FOR THE DISCRETE 

TIME/COST TRADE-OFF PROBLEM  

 

 

Existing studies on the DTCTP assume complete information and a deterministic 

environment; however projects are subject to different sources of uncertainty. 

Uncertainty may arise from activity durations, activity costs, resource availabilities 

and project network structure. This research addresses the uncertainty in activity 

costs. In practice, fluctuations in the exchange rates, in the factor prices or in the 

resource usages result in variability in costs. These fluctuations threaten achievement 

of project cost objectives. Therefore, it is essential to develop systematic methods to 

generate robust project schedules, which are less sensitive to uncertainty. For this 

purpose, we propose three robust optimization models for the DTCTP-D. In these 

models, we model the uncertainty via interval costs. The first model uses the 

restricted uncertainty approach of Bertsimas and Sim (2004), whereas the alternative 

novel models, Model 2 and Model 3, account for activity slacks, and criticality of the 

activities. The models will be explained further in the subsequent sections. 

 
We develop an exact algorithm based on Benders Decomposition to solve the 

first model. Computational experiments are carried out to show the efficiency of this 

approach and evaluate the performance of the algorithm under various problem 
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settings. Due to the complexity of the other two models, we develop a tabu search- 

based heuristic algorithm for solving the problem instances. Furthermore, we 

propose some robustness measures and evaluate the robustness of the schedules 

generated by the proposed models using these measures. The main contribution of 

the research in this section is the incorporation of uncertainty into a practically 

relevant project scheduling problem, the modeling approach and the development of 

customized solution algorithms. Furthermore, to the best of our knowledge, this 

research is the first application of robust optimization to the DTCTP. 

 
In Section 4.1, we review the applications of robust optimization in project 

scheduling. In Section 4.2, we propose a robust scheduling model and a Benders 

Decomposition-based solution algorithm for the robust DTCTP-D and present some 

computational results. In section 4.3 two alternative models are proposed. These 

models are compared with the model proposed in section 4.2 by using some 

robustness measures.  

 
 

4.1. Robust Optimization and Project Scheduling 

Robust optimization has attracted many researchers and has been applied to some 

well-known combinatorial optimization problems such as the shortest path and the 

knapsack problems during the last decade (see Section 1.3.2 for a detailed discussion 

of the methodology and for the related applications). However, it has been 

implemented in only a few project scheduling problems. Valls et al. (1998) examine 

a special resource constrained project scheduling problem (RCPSP) in which the 

activities might be interrupted for an uncertain period. Yamashita et al. (2008) 

address the resource availability cost problem (RACP), which minimizes a non-

decreasing discrete cost function of resources under the constraint that the project has 
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to be finished by a given deadline. They propose two alternative models: the first 

model minimizes the sum of the mean and variance of the costs, whereas the second 

one minimizes the maximum regret function. 

 
Both Valls et al. (1998) and Yamashita et al. (2008) follow a scenario-based 

approach, where a scenario represents a realization of the duration of the activities. 

On the other hand, Cohen et al. (2008) use interval uncertainty in their recent robust 

scheduling study. This study addresses the effects of uncertainty on the continuous 

time-cost trade-off problem and model the robust problem using the ARC 

methodology of Ben-Tal and Nemirovski (2004). Our research differs from the 

previous studies in the literature regarding both the problem addressed and 

uncertainty modeling approach followed. 

 
In the next section, a robust optimization model and a solution algorithm for 

the robust DTCTP-D are proposed.  

 
 

4.2. Robust Discrete Time/Cost Trade-Off Problem with Interval 

Data  

In many real-life projects a tardiness penalty or an opportunity cost may be incurred 

for each additional time unit the project is late. The cost may include explicit 

monetary charges, foregone revenue, lost profits, or goodwill losses. Due to these 

potential costs and early completion benefits, organizations seek on-time completion 

and aggressively monitor actual progress of these activities. The model proposed in 

this section addresses project environments in which timely completion of project 

activities is crucial. Build-Operate-Transfer (BOT) projects are good examples that 
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favor early completions. Since early completion is advantageous in these types of 

projects, timeliness of the activities is essential. 

  
When deviations from the baseline plan are observed and they are judged to 

threaten the completion of these activities on time, typically extra resources such as 

additional workers or extra machinery are assigned to these activities. As the activity 

durations generally depend on the resource allocation, it is usually possible to 

achieve time plan goals by allocating additional resources. These additional 

allocations create fluctuations in the amount of resources allocated to each activity 

and result in cost uncertainty. They also seriously affect the profitability of the 

projects. From this point of view, protection against deviations in total cost becomes 

the key concern of project managers. Hence, in this chapter, we fix the activity 

durations and assume that activity costs can take values in the intervals, i.e. jmc ∈  

,j m jmc c⎡ ⎤
⎣ ⎦ , jm M∀ ∈ , j N∀ ∈ . However, in order to address cost uncertainty robust 

optimization will be used and worst-case conditions will be examined. 

 
The traditional minmax (absolute robustness) criterion focuses on the worst-

case alternative, which corresponds to the scenario where each cost cjm is given by 

jmc , the upper bound of the corresponding interval. Optimization with respect to 

absolute robustness criterion is equivalent to the classic DTCTP-D with cjm = jmc . 

However, this approach of robustness is extremely pessimistic and rather unrealistic. 

A more realistic idea would be modeling the uncertainty only over a subset of the 

scenario space. One recent application of this restriction idea is the robust discrete 

optimization approach proposed by Bertsimas and Sim (2004). They assume that 

only a subset of the uncertain parameters is allowed to deviate from their estimates; 
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in other words, only Г of activity cost parameters (out of a total of n) involve random 

behavior.  If Г = 0, the influence of the cost deviations is ignored and the 

deterministic problem with nominal cost values is obtained. In contrast, if Г = n, 

maximal cost deviations are considered and the problem becomes a minmax 

optimization problem. Therefore, Г can be regarded as a parameter that reflects the 

pessimism level of the decision maker. High values of this parameter indicate a risk-

averse decision making behavior. 

 
 

4.2.1. Model 1 

In this section, a MIP model for DTCTP-D using Bertsimas and Sim’s approach is 

presented. We assume that at most 0 ≤ Γ ≤ n activities have cost values at their upper  

bounds and the remaining n-Γ coefficients are forced to be deterministic, i.e. they 

are set to nominal values: 
2

jm jm

jm

c c
c

+
=  and jm jm j md c c= − . The restricted uncertainty 

 model, which will be called Model 1, could be expressed by the following nonlinear 

formulation: 

f ( Γ ) = ,Min Max : :
j

jm jm j j

j N m M j Nj

n D

jm jm
j N m M

d x u u u Bc x x X
∈ ∈ ∈∈ ∈

≤ Γ ∈+ ∈
⎧ ⎫⎧ ⎫
⎨ ⎨ ⎬ ⎬

⎩ ⎭⎩ ⎭
∑∑ ∑∑∑    (4.1) 

 
In this formulation, the set of coefficients, which are subject to uncertainty, 

are determined by the binary vector u, i.e. Bn refers to n dimensional binary vector 

and u chooses Γ of the activities which have the largest cost deviations among n 

activities. This is a restrictive uncertainty approach as cost deviations for only a 

subset of the activities are considered. For demonstration purposes, we use the 

simple network in Figure 4, which is adapted from the example of De et al. (1995). 

The project has a deadline of δ = 6. Each activity has two mode alternatives and 



   78

for each mode alternative, the triplet, (pjm, cjm, jmc ) values are shown above the 

nodes. 

 

Figure 4. The Example Network (Robust Problem) 
 

 For this small problem, the objective function values of the deterministic 

and robust problems are displayed in Table 10. Optimal solutions are marked with a 

“*”. The rows of the table illustrate the feasible mode combinations for the activities.  

 
Table 10. Comparison of Robust and Deterministic Solutions 

Activity =  -  jm jm jmd c c  
Robust Objective: 

f( Γ )  

1 2 3 4

C5 f ( 0 ) 

j =1 j = 2 j = 3 j = 4 Г = 1 Г = 2 Г = 3 

2 2 2 2 5 68 8 2 10 1 78 86 88 

2 2 2 1 6 65 8 2 10 2 75 83 85 

2 2 1 2 6 62 8 2 2 1 70 72 74 

2 2 1 1 6 59 8 2 2 2 67 69* 71* 

1 2 2 2 5 48 15 2 10 1 63 73 75 

1 2 2 1 6 45 15 2 10 2 60 70 72 

1 1 2 2 6 44* 15 3 10 1 59* 69* 72 
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It could be observed from Table 10 that the optimal mode assignments to the 

deterministic problem and the robust problem with Γ = 3 are different. Therefore it 

can be concluded that, Γ, the parameter that controls the level of pessimism, is 

effective on the choice of activity modes.  

 
 

4.2.1.1. Benders Reformulation  

In this section, we show how to solve Model 1, which is given in Equation 4.1, using 

a Benders Decomposition algorithm. 

 
Proposition 4.1: Model 1 could be formulated as follows: 

Min 
j

jm jm
j N m M

c x z
∈ ∈

+∑ ∑  

subject to 

{ }

0 1

1

1

0 1

j

i j

j

j

k
jm j jm

j N m M

s
jm jm

( i , j ) A m M

jm
m M

jm j

z d u x                 k , . . . , K

p w x                   s   , . . . , S

x                                     j N

x ,                                      m M

δ

∈ ∈

∈ ∈

∈

− ≥ =

≤ =

= ∀ ∈

∈ ∀ ∈

∑ ∑

∑ ∑

∑

0

, j N ,

z ,

∀ ∈

≥

   (4.2) 

where,  ( )  for k k k
1 nu u ,...,u , k 1,...,K= = are the extreme points of the polytope  

U = { Nu R∈ : ,j
j N

u
∈

≤ Γ∑ 0 1u≤ ≤ }. 

Proof :  

We could reformulate (4.1) as: 

f (Γ) = Min  ( )  :
j

D
jm jm

j N m M

c x g x x X
∈ ∈

⎡ ⎤
+ ∈⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ , where      (4.3) 
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g(x) = Max :
j

jm jm j j
j N m M j N

nd x u u ,u BΓ
∈ ∈ ∈

≤ ∈
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑             (4.4) 

 
Given a solution vector, 0x X∈ , g(x) is a knapsack problem of which LP 

relaxation has binary optimal solutions (see Theorem 1 of Bertsimas and Sim 2003), 

hence g(x) could be rewritten as: 

 

g(x) = Max 0 1,  j N : ,  
j

jm jm j j j
j N m M j N

d x u u uΓ
∈ ∈ ∈

≤ ≤ ≤ ∀ ∈
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑            (4.5) 

 
U is a polytope and is therefore bounded and nonempty polyhedral set, thus 

we have,  

g(x) = 
1 k K
Max  

j

jm jm
j N m M

k
jd x u

∈ ∈
≤ ≤

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑        (4.6) 

 
Hence using (4.6), (4.3) could be reformulated as: 

,
M in : ,  1, . . ,

D
j j

k
jm jm jm j jm

x X z j N m M j N m M

c x z z d u x k K
∈ ∈ ∈ ∈ ∈

⎧ ⎫⎪ ⎪+ ≥ =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ ∑ (4.7) 

 
Combining Lemma 3.1 and (4.7), (4.2) formulates Model 1. Note that we add the 

non-negativity constraint on z for the sake of algorithmic convenience. 

            Q.E.D. 

 
Enumerating all the extreme points and paths is burdensome, so we use a 

relaxation approach and generate the constraints as needed. In the subsequent 

sections, we discuss the details of the proposed Benders Decomposition algorithm to 

solve the problem exactly in an efficient manner: 
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Solution Algorithm: 
 

Introduce an additional index t to the notation to denote the values at iteration t. 

 

1. Start with an initial solution, 1 0x X∈ , set z0 = −∞  , t = 1. 

2. Solve SP1 
t( tx ) : ηt = Max {

( )

- vjm

j

t
jm ij

i N j S i m M

p x w δ
∈ ∈ ∈
∑ ∑ ∑ : (w, v)∈ W} and 

Solve SP2 
t( tx ) : ψt = Max{

∈ ∈
∑ ∑ jm

j

t
jm j

j N m M

d x u : j
j N

u Γ
∈

≤∑ , 0 1ju   , j N≤ ≤ ∀ ∈ } 

 let ut be the optimal solution. 

3. If  SP1 
t( tx ) is unbounded (primal infeasible) then 

Get an extreme ray ( tw , tv ) and set tu = ut. 

X t = X t-1∩ { 0

( )
: 0t

ij

j

t
jm jm

i N j S i m M
x X p w x v

∈ ∈ ∈

∈ − ≤∑ ∑ ∑ δ } 

If ( ψt > zt-1 ) 

X t = X t∩ { 0 :
j

j

t
jm jm

j N m M

x X z d u x
∈ ∈

∈ ≥ ∑ ∑ } 

Else 

If ( ψt > zt-1 ) 

X t = X t-1∩ 0{ : }
j

j

t
jm jm

j N m M
x X z d u x

∈ ∈

∈ ≥ ∑ ∑  

Else 

           Stop and report tx as the optimal solution. 

           End if 

4. Solve the relaxed master problem, MPt :  

φt = Min {
j

jm jm
j N m M

c x
∈ ∈
∑ ∑ + z : x∈X t}.  

Let xt be the optimal solution and zt be the optimal objective function. 

5. LB = φ t, t = t +1, tx = xt-1. 

6. Return to Step 2. 
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In order to accelerate convergence and to solve large instances, we follow the 

branch-and-cut procedure described in 3.2.5. The basic difference is that at each 

iteration, in addition to the feasibility cuts, optimality cuts are inserted through 

solving an additional LP, SP2( x ). It could be solved to optimality through a 

greedy algorithm. This algorithm orders
j

jm jm
m M

d x
∈
∑  values and this order identifies 

Γ of the activities which maximally affect the objective function. 

 
 
4.2.1.2. Experimentation and Computational Results 

We employ the test bed used for deterministic problems to test the robust model. In 

addition to the parameters used to define the deterministic problems, two additional 

parameters, namely robustness level (Γ) and uncertainty factor (ψ), are required to 

solve the robust problem. The uncertainty factor represents the rate by which the 

variables djm are allowed to change around cjm, i.e. djm = ψcjm, where ψ is uniformly 

distributed in [0.1, 1]. Table 11 summarizes the parameters of the test bed. 

 
Table 11. Experimental Setting for Solving the Robust Problem 

 
Parameter Level(s) 
CI 13 
CNC 5, 6, 7, 8 
Number of modes  U[2,10] 
Deadline parameter ( θ) 0.15 
Nominal cost function ccv, cvx, hyb 
Uncertainty factor (ψ)   U[0.1, 1.0] 
Pessimism Level (Γ) 0, ⎢ ⎥⎣ ⎦0.25n , ⎢ ⎥⎣ ⎦0.5n , ⎢ ⎥⎣ ⎦0.75n  

 
 
Three instances are solved for each parameter setting. All the algorithms are 

implemented in C programming language on a Sun UltraSPARC 12x400 MHz 
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workstation with 3 GB RAM. Optimization software CPLEX 9.1 is used to solve the 

linear and integer programs. 

Computational experiments demonstrate that the parameter Γ reflects the risk 

attitude of the decision maker and highly affects the schedule construction. As the 

decision makers become more risk-averse, larger Γ values should be employed in the 

model so that schedules with lower worst-case costs can be generated. However, 

these schedules usually perform worse when nominal costs are attained. In practice 

the expected activity cost is used as the nominal cost. Figure 5 sketches the impact of 

the parameter Γ on schedule generation and shows the multi-criteria behavior of the 

robust problem.  

 
Figure 5. The Impact of Pessimism Level on Schedule Generation 

 
 
Every point in the figure represents the optimal solution of Model 1 for a 

specific project network with n = 85 under a given Γ.  Therefore every point is 

characterized by the risk attitude of the decision maker, and the corresponding 

schedule is generated by using Model 1. Note that the cost of each activity is 

represented with two parameters: the nominal cost and the worst-case cost. As it is 
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illustrated in the figure, total nominal cost (
j

jm jm
j N m M

c x
∈ ∈
∑ ∑ ) and total worst-case 

cost (
j

jm jm
j N m M

c x
∈ ∈
∑ ∑ ) of a schedule typically conflicts, i.e. a schedule with a lower 

 nominal cost yields higher cost at the worst-case. However, there may be 

exceptional instances such as the solution generated with Γ = 0.05n⎢ ⎥
⎣ ⎦  in Figure 5, 

which is a dominated solution.  

 
Besides the level of pessimism of the decision maker, we investigate the 

effects of various complexity parameters on the solution efficiency and summarize 

the results in Table 12. The results of the exact procedure are presented under the 

column labeled with “Optimum”; the average number of linear and integer master 

problems solved and the average CPU time in seconds to solve the instances are 

reported under the columns “LP Iter.”, “IP Iter.”, “CPU(s)”, respectively. 

 
Table 12. Summary of Computational Results 

 
Optimum Truncated Solution 

 

 LP 
Iter. 

IP 
Iter. CPU(s) 

Ins 
Opt 
(%) 

Avg 
Dev 
(%) 

Max 
Dev 
(%) 

Dec 
CPU
(%) 

5 16.32 19.23 1400.96 81.82 0.03 0.42 25.03

6 22.42 27.33 10427.91 100 0.00 0.00 15.04

7 23.00 31.14 18044.09 90.91 0.01 0.22 16.38
CNC 

8 20.28 31.88 19139.61 84.00 0.03 0.37 16.20

⎢ ⎥⎣ ⎦0.25n  19.42 26.84 8772.72 87.10 0.02 0.31 21.64

⎢ ⎥⎣ ⎦0.5n  20.40 27.73 10789.31 87.10 0.02 0.37 18.07

R
ob

us
t 

Γ 

⎢ ⎥⎣ ⎦0.75n  21.77 27.58 11690.94 93.55 0.01 0.42 14.81

5 15.00 12.00 410.87 44.44 0.21 0.82 27.77

6 22.50 15.25 1935.93 100 0.00 0.00 21.42

7 22.00 17.17 7277.80 71.00 0.02 0.12 28.81

D
et

er
m

in
is

tic
 

CNC 

8 21.14 31.29 10974.72 75.00 0.01 0.04 30.44
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The results of the approximate method are depicted under the column called 

“Truncated Solution”, within which, the percentage of problem instances that the 

optimal solution has been found, the average percentage deviation from the optimal 

solution, the maximum percentage deviation from the optimal solution and the 

average CPU time reduction with truncation are reported under the columns “Ins Opt 

(%)”, “Avg Dev (%) ”, “Max Dev (%)”, “Dec CPU (%)”, respectively. 

  
Table 12 reveals that the network complexity, which is measured with CNC, 

and the pessimism level are influential on the computational effort given in CPU 

seconds. The instances with complex network structure and higher pessimism level 

require more computational effort. Among these influential factors, CNC has already 

been shown to be influential in solving the deterministic problems in Chapter 3. 

When the CPU time for solving the deterministic problem and the robust problem are 

compared, we conclude that considerably higher computational effort is required 

when the notions of uncertainty and robustness are incorporated into the model. 

Finally, the truncation-based heuristic may be used as a solution alternative for large 

scale instances, as it is shown to be generating quick solutions that are very close to 

the optimal solution.  

 
 The main advantage of Model 1 is that it could be solved exactly by 

decomposing the problem into two subproblems. However, the drawback is that it 

assumes the activities with the same cost intervals are equally uncertain and all 

activities are likely to have cost values at the upper bounds. In real life, criticalities of 

the activities are crucial as well. Considering this shortcoming, we propose two novel 

models that integrate the criticality of multi-mode project networks and then compare 

the performances of all the three models in the next section.  
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4.2.2.  Criticality-Based Uncertainty Models 

 
4.2.2.1. Model 2 

In Model 1, we assume that a subset of the activities has cost values at their upper 

bounds and the remaining coefficients are set to their nominal values. While 

determining this subset, only the activity costs are considered but the activity 

durations are ignored. However, cost and time are interdependent as they both 

depend on the amount of resource allocation. Activities having large slacks (i.e. non-

critical activities) provide flexibility in resource allocation. It is possible to delay 

their starting times or to elongate the durations via lowering the amount of resource 

allocations. Due to these flexibilities, these activities involve less risk to achieve the 

cost targets when compared to the critical activities. On the other hand, in case of 

disruptions, managers usually allocate more resources to critical activities or in 

managerial terms crash these activities and this requires extra cost. 

  
 The conventional measure of an activity's criticality is the total slack, which 

is the amount of time by which the completion time of the activity can exceed its 

earliest completion time without delaying the project completion time. It is a measure 

of the insensitivity of schedule performance with respect to activity delays. The 

activities that have no slacks are defined to be critical activities. We will propose a 

criticality definition that is different from the conventional measure, as well. 

 
Disregarding the activity slacks and assigning the worst-case costs to 

activities with ample slacks make Model 1 unrealistically pessimistic. To eliminate 

this over pessimism, the activities with cost values at the upper bounds are chosen 

from the critical ones in the criticality-based robust model. Given the mode 

assignments, only Γ controls the pessimism level in model 1, however in the new 
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model the critical activity set and Γ control the pessimism level. The following 

model represents the criticality-based approach.  

 

f ( Γ ) = ,M ax M ax : :
j

jm jm j j

j N m M j CRj

jm jm
j N m M

Dnd x u u u Bc x x X
∈ ∈ ∈∈ ∈

≤ Γ ∈+ ∈
⎧ ⎫⎧ ⎫
⎨ ⎨ ⎬ ⎬

⎩ ⎭⎩ ⎭
∑∑ ∑∑∑ (4.8) 

 
CR refers to the set of critical activities in (4.8). In this new approach, 

criticality definition becomes crucial. For our problem, slacks are defined with 

respect to a specific mode assignment. As the mode assignments change, the slack 

distribution among the activities also changes.  

 
In real-life projects, it would make much more sense to evaluate the activity 

slacks with respect to activity’s duration since the higher the ratio of slack to activity 

time the higher its capability to compensate for a delay. The reason is that as the 

activity durations increase the probability of a larger number of disruptions to be 

observed while the activity is being performed, increases. Thus, we use the 

slack/duration ratio to assess criticality of activities and define the activities that have 

slack values less than 100ξ % of the activity duration as potentially critical activities, 

i.e. CR = { j N∈  : TSj / pj ≤ ξ } where TSi   refers to the total slack of activity i. 100ξ 

% will be called slack duration threshold (SDT) from now on. In this study, we set 

the SDT to 25 %, i.e. ξ = 0.25. The effect of this parameter on schedule construction 

will be discussed in the computational analysis section in Section 4.2.3.2. When 

compared with the classical definition, this new definition enlarges the criticality set. 

 
In order to clarify the differences among the proposed models, the simple 

network in Figure 4 is used. Table 13 depicts the objective function values of the 

deterministic models (Γ = 0) and two robust models (with Γ = 1, 2, 3). The rows of 
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the table show the feasible mode combinations for the activities. Optimal solutions 

are marked with a “*” and given a mode combination, the critical activities are 

underlined. Note that activity slacks depend on mode assignments, i.e. if a different 

feasible mode assignment is chosen, the slack amounts differs. It can be observed 

from the table that Γ and ΓCR, which control the level of pessimism in the restricted 

uncertainty model and criticality-based model respectively, are effective on the 

choice of activity modes.  

 
Table 13. Comparison of Robust Models 

 

 
 
As Model 2 considers less risk premium in schedule costs, it is less 

pessimistic than Model 1. The following proposition proves this fact. 

 
Proposition 4.2: Model 1 is more pessimistic than Model 2. 

Proof: 

Given a schedule x∈XD
, define the risk premiums considered in Model 1 and 2 as: 

 

g1(x) = Max  : 
j

n jm jm j j
j N m M j Nu B

d x u u
∈ ∈ ∈∈

≤ Γ
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ ,             (4.9) 

Activity(j)  -  mjm jm jd c c=  Robust Objective:  f (Γ) 
 

1 2 3 4 
C5 f(Γ= 0) 

j= 1 j = 2 j = 3 j= 4 Γ = 1 ΓCR= 1 Γ = 2 ΓCR=2 

2 2 2 2 5 68 8 2 10 1 78 68 86 68 

2 2 2 1 6 65 8 2 10 2 75 67 83 69 

2 2 1 2 6 62 8 2 2 1 70 64 72 66 

2 2 1 1 6 59 8 2 2 2 67 61 69* 63 

1 2 2 2 5 48 15 2 10 1 63 63 73 63 

1 2 2 1 6 45 15 2 10 2 60 60 70 62* 

1 1 2 2 6 44* 15 3 10 1 59* 59 * 69* 62 * 

Fe
as

ib
le

 M
od

e 
C

om
bi

na
tio

ns
 

2 1 2 2 6 64 8 3 10 1 74 67 82 68 
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g2(x) = Max  : 
j

n jm jm j j
j N m M j CRu B

d x u u
∈ ∈ ∈∈

≤ Γ
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ ,  

where CR = {j: TSj/pj ≤ ξ , j N∈ },               (4.10) 

 

The feasibility sets are: 1 : j
j N

nu B uU
∈

∈ ≤ Γ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

∑ , and 2 : .j
j CR

nu B uU
∈

∈ ≤ Γ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

∑  

 
From the definition of CR, any j CR N∈ ⊆ ; hence for any 2u U∈ ,then 1u U∈  as 

well, i.e. 2 1U U⊆ . Besides, both of the models defined in (4.9) and (4.10) have the 

same objective function, thus Model 1 is a relaxation of Model 2. As the problems 

are maximization problems,   

g2(x) ≤ g1(x)  Dx X∀ ∈       (4.11) 

             Q.E.D. 

 
Corollary 4.1: The optimal solution of the Model 2 provides a lower bound to 

Model 1. 

Proof: 

Using the notation introduced in Proposition 4.2, Models 1 and 2 could be 

reformulated as follows: 

z1 = Min {h1(x) : x ∈  XD}       (4.12) 

z2 = Min {h2(x) : x ∈  XD}        (4.13)   

where h1(x) =  
j

jm jm
j N m M

c x
∈ ∈
∑ ∑ + g1(x) and h2(x) =

j

jm jm
j N m M

c x
∈ ∈
∑ ∑ + g2(x). 

Let x*∈XD be the optimal solution of Model 1, then using Proposition 4.2,  

g2(x*) ≤ g1(x*)          (4.14) 

 
Combining (4.12), (4.13), and (4.14) 
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z2 ≤ h2(x* ) =  *
j

jm jm
j N m M

c x
∈ ∈
∑ ∑ + g2(x*) ≤ z1 = h1(x* ) =  *

j

jm jm
j N m M

c x
∈ ∈
∑ ∑ + g1(x*).  

          Q.E.D. 

 
In order to be able to write the open form of the model in (4.8), an extra 

continuous decision variable set Ej, j N∀ ∈  which denotes the earliest finishing time 

of activity j, and the following constraints are introduced to the deterministic model.  

 
 0

j

j i jm jm
m M

E E p x
∈

− − ≥∑          ( ),i j A∀ ∈              (4.15) 

0jE ≥   j N∀ ∈              (4.16) 

 
 The open form of Model 2 could now be written as follows: 

 

Min ( ( ) : ,(4.15),(4.16) )
j

D
jm jm j

j N m M
jc x M E x x XC ω

∈ ∈

+ + ∈
⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑                (4.17) 

( )xω  = Max  :  ( 0 25)
j j

jm jm j j j j jm jm
j N m M j N m M

n
jd x u u , E u . p x ,u BCΓ

∈ ∈ ∈ ∈

≤ ≤ ∈
⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ ∑     (4.18) 

 
Note that in this new formulation Cj denotes the latest finishing time and 

j jC E−  represents the total slack of activity j, j N∀ ∈ . In (4.17), M refers to a “big” 

number. The formulation includes nonlinear discrete components and has many 

binary integer variables and constraints. Given this complex structure, we use Tabu 

Search (TS) to solve the model and obtain good quality approximate solutions. 

Details of the algorithm and the parameter tuning will be discussed in Section 

4.2.2.3. In the following subsection, we propose an alternative criticality-based 

approach, which lies in between the restricted uncertainty and criticality-based 
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approaches regarding the level of conservatism. The same TS methodology is used to 

solve Models 2 and 3. 

 

4.2.2.2. Model 3 

This model also accounts for the cost deviations in the non-critical activity set, but 

unlike the first criticality model, the critical activities have priority over non-critical 

ones. Given the mode combinations, Γ activities which have cost values at their 

upper bounds are chosen from the critical activity set firstly. If the cardinality of the 

critical activity set is less than Γ, the remaining units are chosen from the non-critical 

activity set. While calculating the cost deviations both for the critical and non-critical 

activities, activities that have the cost coefficients influencing the objective most are 

given the priority. The following model illustrates the criticality-based alternative 

approach, namely Model 3:  

 

f( Γ ) = Max ( ) :
j

jm jm
j N m M

Dc x x x X  
∈ ∈

+ ω ∈
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑      (4.19) 

( )xω  = Max { }, Min ,: ,
j

jm jm j j j
j N m M j N j CR

nd x u u u CR u B
∈ ∈ ∈ ∈

≤ Γ ≥ Γ ∈
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ ∑         (4.20) 

 

In the above formulation, |CR| refers to the cardinality of the set of critical 

activities. This reformulation of Model 3 has a similar complex structure with the 

formulation of Model 2 (4.15 - 4.18) as it also includes nonlinear discrete 

components and many binary integer variables and constraints.  

 
A feasible schedule of the network in Figure 4 and how criticality affects the 

possible courses of action are depicted in Table 14. Furthermore, the table 

summarizes the model characteristics to elucidate the differences among the models.



   

Table 14. Summary of the Model Characteristics on an Example Schedule 
 

A Feasible Schedule from Figure 4.1 

 Activity 1 Activity 2 Activity 3 Activity 4 

Modes 2 2 2 1 

Duration 2 3 1 3 

Slack 3 0 2 0 

Criticality Non-critical Critical Non-critical Critical 

Possible Courses of Action in Cases of Disruptions 

Activity Status   Non-Critical  Critical 

Possible Courses of 
Action  

• No need for crashing. 
• Ample slack creates resource allocation 

flexibility which increases the chance of 
meeting the expected cost. 

• Need for crashing which requires extra cost. 
• Deviation from the expected cost is highly 

likely in order to meet the schedule 

Differences Among Models 

Model 1 Does not account for criticality. 

Model 2 Accounts for slacks and only critical activities are assigned to upper bounds. 

Model 3 Accounts for slacks, gives priority to critical activities but includes non-critical activities as well. 

92
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The criticality requirement makes Model 2 and 3 more difficult to solve. 

Next, we provide the details of the TS heuristic to solve these criticality-based 

models. 

 

4.2.2.3. Solution Methodology: Tabu Search and Parameter Settings 

TS is a local-search improvement heuristic proven to be effective to solve many 

difficult combinatorial optimization problems (e.g., Hazir et al., 2008). It has a 

punishment mechanism to avoid getting trapped at local optima by forbidding or 

penalizing moves that cause cycling among solution points previously visited. These 

forbidden moves are called “tabu”. The short term memory keeps track of move 

attributes that have changed during the recent past and these attributes become tabu 

for a specific number of iterations. Under some conditions, tabu status of a move can 

be overridden. These conditions are called aspiration criterion. There are two 

commonly used strategies to obtain good solutions: diversification is used to direct 

the search into less visited regions of the search space, whereas intensification is 

used to fully explore a certain region. 

 
 Local search-based algorithms may not result in high quality solutions for the 

DTCTP-D, since it is not simple to identify a feasible solution in the neighborhood of 

the current solution; classical move operators do not guarantee feasibility. To 

overcome this shortcoming, we apply the features proposed by Kulturel-Konak et al. 

(2003), which are specially designed to solve constrained optimization problems. 

Their algorithm uses an adaptive penalty function which encourages the search to 

proceed through a portion of the infeasible region, namely the “near feasibility 

threshold (NFT)”. The generated solutions are penalized according to their distances 
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to the feasibility region. Their method requires few parameters and is shown to be 

insensitive to parameter changes. 

  
In our TS algorithm, each solution is represented with a mode assignment 

vector. Infeasible mode assignments are allowed with some penalties. The algorithm 

starts the exploration in the infeasible region with the least cost solution, the solution 

in which the activities are assigned to the longest modes. By using a cost-based 

fitness function that is composed of total project cost and an adaptive penalty cost, it 

keeps searching for feasible and efficient directions until the stopping criterion is 

satisfied. As a penalty function, we use the adaptive one proposed in Kulturel-Konak 

et al. (2003). 

 
In order to fully explore the neighborhood of the generated solutions, we 

examine the entire neighborhood with both mode decreasing and increasing moves. 

The neighborhood of a solution is comprised of solutions with the all possible mode 

assignments that could be obtained by a single mode decreasing or increasing move. 

Hence the mode of a single activity alters.  

 
To find the best parameters, some test problems of varying problem sizes are 

solved for a wide range of system parameters. In the test runs, we test a tabu list of 

size 5, 7, and 10. The best solutions are achieved with a tabu list of size 7. This short 

term memory structure prevents cycling in between some solutions. However, we 

define the aspiration criterion so that tabu status of a move can be overridden if it 

leads to a solution better than the incumbent solution. 

 
 The stopping criterion is set to 10,000 iterations after observing that it is 

sufficient to obtain convergence for the test instances. In order to direct the search 
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into less-visited regions of the search space and escape from local optima, we use a 

simple diversification strategy. If the incumbent solution is not updated for 1,000 

iterations, the algorithm restarts with a randomly generated neighbor of the initial 

solution; the tabu list is initialized and the move values are recalculated according to 

the new solution. 

 The only difference in TS algorithms of Model 2 and Model 3 is the cost 

component of the fitness function. Solution representation, memory structure, 

penalty function and parameter setting are the same. In the following subsection, we 

introduce some robustness measures to assess the robustness of the generated 

schedules and compare the effectiveness of the proposed robust project scheduling 

models by using these measures. 

 
 
4.2.3. Comparison of the Proposed Models 

In this section, we first give a brief review of the metrics to evaluate schedule 

robustness. Afterwards, we perform computational experiments and evaluate the 

generated schedules by using several robustness measures. 

 

4.2.3.1. Robustness Measures 

Existing robust scheduling studies generally address machine environments and often 

follow scenario-based approaches, where scenarios for job attributes are required to 

be defined.  They basically employ two types of robustness measures: direct 

measures, which are derived from realized performances, and heuristic approaches, 

which utilize simple surrogate measures. Computational burden of optimizing direct 

measures is generally higher when compared to surrogate measures. We refer the 

readers to Sabuncuoğlu and Gören (2005) for a detailed discussion of the measures. 
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Since achieving project completion time and project cost targets are crucial 

for project managers, we evaluate the robustness of project schedules both in terms 

of cost and time. The evaluation is based on the following measures in this 

dissertation. 

 
I. Cost-Based Measures 

 
a) Expected Realized Cost 

 The cost of performing each activity is represented with two parameters: the 

nominal cost and the worst-case cost. We assume that the nominal cost of a mode is 

equal to the expectation over all the scenarios corresponding to possible alternatives 

in practice. Therefore, for a given schedule the summation of the nominal costs over 

all activities defines the expected realized cost of the project schedule. The schedule 

which has the minimal expected realized cost is chosen as the most robust schedule. 

 
b) Worst-Case Cost 

 The upper bounds of the cost intervals define the worst-case costs, the 

maximal cost among all possible scenarios. Hence the summation of the upper 

bounds of the cost intervals over all activities characterizes the worst-case realized 

cost of a schedule. The schedule that has the smallest worst-case cost (among all 

schedules) is chosen. This is a risk-averse approach and corresponds to the minimax 

objective in decision analysis.  

 
c) Cost of the Reference Scenario 

 This measure concentrates on a specific scenario in which critical activities 

are realized at the worst-case costs with the remaining activities being realized at the 
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nominal costs. The schedule that has the smallest cost with respect to this scenario is 

selected. 

 
II.  Time-Based Measures 

 
 We introduce some time-based robustness measures and discuss them briefly 

in this chapter. A more detailed discussion and a comprehensive literature review of 

these measures will be given in Chapter 5. 

 
a) Average Total Slack 

 Average of the slacks, or equivalently the sum of the slacks over all the 

activities could be used to assess schedule robustness. The schedules with larger 

average total slacks are preferred in terms of robustness. 

 
b) Dispersion of Slack/Duration Ratios 

 Uniform distribution over the schedule is expected to be beneficial as it 

distributes the delay risk among activities evenly. As a dispersion measure, we use 

the coefficient of variation (CV), which is the standard deviation divided by its mean, 

of activity slacks. Since larger means and smaller variances of slack/duration ratios 

are preferred in terms of robustness, the schedules with larger CV’s will be more 

robust. 

 
c) Percentage of Critical Activities 

 By definition, delays in critical activities may result in delays in the project 

completion time. Therefore, schedules with a smaller number of critical activities are 

preferred in terms of robustness. We employ the ratio of the number of critical 

activities to the total number of activities in the project as a robustness measure. 
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d) Project Buffer Size 

 Buffers are protection mechanisms against uncertainty in the duration of 

activities. Project buffers are inserted to the end of projects to avoid possible delays 

in project completion. We use the ratio of project buffer size to project deadline as a 

robustness measure. The larger the project buffer, the more protected the project 

against disruptions. 

 
 
4.2.3.2. Computational Analysis 

Computational experiments are carried out to evaluate the performance of the models 

under different problem settings and the models are compared using the above-

mentioned robustness measures. We refer the readers to 4.2.3 for details of the 

experimental setting. For comparison purposes we set pessimism level to Γ 

= ⎢ ⎥⎣ ⎦0.25n . In the computational study, for each setting 3 different instances are 

solved, hence each model is tested with 36 problems. Table 15 compares the 

introduced models with 7 robustness measures. While comparing, Model 1 is taken 

as the reference model and percent differences between robustness measure of the 

reference model and the criticality-based models are reported. For each robustness 

measure the average percentage deviation from the reference model and the 

percentage of problem instances that the model dominates the reference model are 

reported in the rows % Dev, % Dom, respectively. We also report the paired t-test 

confidence intervals (CI) for percent differences between robustness measures of 

restricted uncertainty model and criticality-based models. 95 % confidence level is 

used in these intervals. Furthermore, statistical significance of the differences is 

reported. The last row expresses whether minimization or maximization of the 

measure is preferred in terms of robustness. 



   

Table 15. Model Comparison with Robustness Measures 
 

Cost Based Measures Time Based Measures 

 
Expected 

Cost 
Worst Case 

Cost 
Reference 
Scenario Average Slack Slack 

Dispersion % Critical Project 
Buffer 

% Dev 3.60* 14.56* -17.33* 10.37* -10.34* -72.58* 3.17* 

CI (2.51, 4.69) ( 13.29, 15.84) (-18.86, -15.81) (8.45, 12.28) (-14.27, -6.41) (-77.98, -67.18) (2.82, 3.52) Model 
2 

% Dom 13.89 0 100 100 86.11 100 100 

% Dev 0.67 9.21* -9.24* 2.97* -55.94* -17.67* 0.57* 

CI (-0.27, 1.61) (7.96, 10.43) ( -11.41, -7.07) (1.46, 4.48) (-58.28, -53.60) (-22.22, -13.12) (0.39, 0.76) 

 
 

Model 
3 

% Dom 38.89 2.78 94.44 80.56 100 88.89 91.67 

Optimization 
Criterion Min Min Min Max Min Min Max 

 

 Note: Statistical significance of % Dev is tested. 
 * indicates that test statistic for is significant at 5% level

99
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When worst-case robustness measure is considered, Model 1 dominates the 

criticality-based models. This finding is consistent with the argument that Model 1 is 

over-pessimistic. Model 1 is better in most of the problem instances when the 

expected realized cost of the models is compared. However, in this case differences 

among model performances are small. As could be expected, Model 1 performs 

poorly under the specific scenario in which critical activities are realized at the 

worst-case costs whereas the remaining activities at the nominal costs. Model 2 

outperforms the other models under this scenario. 

 
When time based measures are considered, Model 1 is dominated by Models 

2 and 3. Model 2 minimizes the number of critical activities and it is more protected 

against disruptions since it has larger project buffers. Furthermore, it produces the 

largest average slack. Model 3 distributes the slacks more evenly among the 

activities, hence results in lower coefficient of variations. It could also be observed 

that the performance of Model 3 lies between the performances of the Model 1 and 2 

for majority of the robustness measures. 

 
The parameter Γ reflects the risk attitude of the decision makers. As the 

decision makers become more risk-averse, larger Γ values should be used so that 

schedules with lower worst-case costs could be generated.  Note that Model 2 is not 

so sensitive to the changes in parameter Γ when compared to other models. This is 

basically due to the criticality requirement. The second parameter that affects model 

characteristics is the slack/duration threshold (SDT). Lower SDT results in different 

reactions in criticality-based models. Since the risk premiums are incurred for only 

critical activities in Model 2, as the threshold decreases, the number of critical 

activities is reduced so that total risk premium decreases and the model converges to 
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the deterministic DTCTP with nominal costs. However, in Model 3, a reduction in 

the threshold might increase the total risk premiums, as risks of non-critical activities 

are also incorporated. 

 
Besides the model characteristics, we investigate the solution efficiency and 

report the results in Table 16. This table illustrates the average CPU time to solve the 

problem instances for each model. The problems are classified according to the 

coefficient of network complexity (CNC), which is the ratio of the number of arcs to 

the number of nodes. Each iteration of the criticality-based models requires higher 

computational efforts due to model complexity and we run TS sufficiently long 

(10,000 iterations) to achieve convergence to high quality solutions. 

 
Table 16. Models and Computational Requirements 

 
CPU (sec) 

 
Model 1 Model 2 Model 3 

5 1400.96 3567.47 3309.628 
6 10427.91 6311.57 6094.823 
7 18044.09 17332.73 16075.57 

CNC 

8 19139.61 38854.95 37804.99 
 
 
 

4.3. Conclusions  

In response to the crucial need to build robust project schedules that are less 

vulnerable to disruptions caused by uncontrollable factors, in this chapter we have 

proposed three alternative models to formulate the robust DTCTP. In these models 

the uncertainty in the cost of activities is addressed.  In order to solve the models, we 

have developed both exact and heuristic algorithms. The first model is solved exactly 

by using Benders Decomposition; the other two criticality-based models are rather 

complex and solved approximately by a tabu search algorithm. 
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To evaluate the performance of the algorithms under various problem 

settings, we have conducted computational experiments. We have assessed the 

robustness of the schedules generated by the algorithms by using several cost and 

time-based robustness measures. When worst-case cost of the generated schedules is 

considered, Model 1 is advantageous; but it is usually dominated by the criticality-

based models regarding time-based robustness measures. 

 
The major contribution of this chapter is the development of robust 

optimization models, which incorporates uncertainty into DTCTP, and the 

development of tailored solution approaches. To the best of our knowledge, the 

models in this section are the first implementation of robust optimization to the 

DTCTP. In that sense, results presented in this chapter serve as a useful base to fill 

the research gap in developing robust project schedules for multi-mode project 

networks. 
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CHAPTER 5  
 

 
 

ROBUSTNESS MEASURES AND A SCHEDULING 

ALGORITHM FOR THE DISCRETE TIME/COST TRADE-OFF 

PROBLEM  

 
 
 
5.1. Introduction 

In this chapter, we focus on generating robust schedules for the DTCTP that exhibit 

the ability to protect performance against unexpected events. More precisely, we 

address the case where the processing times of some activities might be subject to 

uncontrollable disruptions, and the problem is to select a mode for each activity so 

that the project is likely to be completed within a preset deadline and the total cost is 

minimized. We propose some models and algorithms to generate project schedules 

that are not affected largely by disruptions. These scheduling algorithms will assist 

project managers to reach time and cost-based project objectives. 

 
Firstly, we introduce formal surrogate measures that aim at providing an 

accurate estimate of the schedule robustness. The effectiveness of each proposed 

measure is thoroughly assessed through computational experiments. Using the 

insight revealed by the computational study, we propose a two-stage robust 

scheduling algorithm that requires successively solving two variants of the 

deterministic discrete time/cost trade-off problem. Finally, we address the 



   104

relationship between budget amplification and robustness, and introduce an 

analytical model to support the decision makers in budget allocation decisions. We 

provide evidence that the proposed approach can be extended to solve a complex 

robust discrete time/cost trade-off problem with tardiness penalties and earliness 

revenues.  

 
 

5.2. Robustness Measures (RM)  

Developing formal quantitative metrics that provide a good estimate of schedule 

robustness is crucial to develop efficient scheduling algorithms. The baseline 

schedules that are created by utilizing these robustness measures are capable of 

absorbing unanticipated disruptions. Furthermore, these metrics should be calculated 

easily for a given baseline schedule. Optimizing direct measures in project networks 

is generally more difficult when compared to optimizing surrogate measures. The 

reason is that project networks consist of multiple paths that usually intersect and it is 

difficult in these networks to determine the effects of disruptions analytically. A 

reasonable approach to increase the computational efficiency is to use good surrogate 

measures and determine a scheduling algorithm optimizing these surrogate measure. 

 
In project scheduling literature, there are only a few studies that propose 

measures to assess the robustness of project schedules. They address randomness in 

duration of the activities and suggest the use of surrogate measures due to the 

complexity of analytical determination of realized performances. Al-Fawzan and 

Haouari (2005) use the sum of free slacks as a surrogate metric for measuring the 

robustness of a schedule. Kobylański and Kuchta (2008) discuss a limitation of this 

measure and propose using the minimum of all free slacks or the minimum of free 

slack/duration ratios. However, focusing on the minimum values has the weakness 
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that two schedules with the same minimum values could have different distributions 

and the measures proposed by Kobylański and Kuchta (2008) fail to differentiate 

between these schedules. On the other hand, Lambrechts et al. (2008) introduce a 

free slack utility function. Lately, Chtourou and Haouari (2008) propose twelve 

predictive indicators for resource constrained networks. Clearly there is a need for 

further work to develop new measures and test the quality and efficiency of these 

measures. 

 
Now, we introduce nine slack-based measures that could be used to evaluate 

schedule robustness. Subsequently they will be analyzed and compared through 

simulation. As we concentrate on the quality robustness, we use total slack (TS) 

instead of free slack (FS), and propose and test the following surrogate measures: 

 
a) Average Slack 

The average slack, or equivalently, the sum of the slacks is commonly used to 

assess schedule robustness in scheduling literature (Leon et al. (1994), Al-Fawzan 

and Haouari (2005), Gören and Sabuncuoğlu (2008)). Experimental studies of Leon 

et al. (1994) on job shop scheduling reveal that there is a high correlation between 

robustness and the average slack value. However, it has not been experimentally 

tested for project scheduling problems. The average slack measure for project 

networks could be formulated as follows:  

 

RM1= 1=
∑

n

i
i

T S

n
                            (5.1)    

 
In this formulation TSi   refers to the total slack of activity i. 
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b) Weighted Slack 

Minimizing the average of slacks assumes that the contribution of slacks to 

robustness is the same for each activity. However, some of the activities are more 

likely to delay the project completion; hence more slacks should be allocated to these 

activities. One approach to accomplish this is to give larger weights to these 

activities and minimize the total weighted slack. Chtourou and Haouari (2008) 

propose to use the number of immediate successors as the weights since the activities 

having larger number of successors are more likely to affect the project makespan. 

They address resource constrained networks and use free slacks; however free slacks 

resulted in poor correlations in our pretests, we adapt the measure using total slacks 

as follows: 

 

RM2 = 
1

n

i i
i

NIS TS
=

×∑                                      (5.2)    

 
In this formulation, NISi refers to the number of immediate successors. Instead 

of concentrating on immediate successors, we suggest to use the number of all 

successors, NS, both immediate and indirect. As a result we formulate the robustness 

measure as follows: 

 

RM3 = 
1

n

i i
i

NS TS
=

×∑                 (5.3)   

  
c) Slack Utility Function 

The average or weighted slack approach assumes the same return for every 

unit of slack assigned. This approach might unnecessarily inflate slacks for some of 

the activities. One alternative approach to eliminate this problem is to use a function 

that has diminishing returns per extra unit of slack. 
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For the resource constrained networks, Lambrechts et al. (2008) use a free 

slack based weighted utility function. Due to poor correlations in the pretests with 

free slacks, we use TS instead and assuming equal weights for each activity, we 

propose the following adapted measure: 

 

RM4 = 
1 1

iTSn
j

i
i j

NS e−

= =
∑ ∑                 (5.4)    

 
In practice, it would make more sense to evaluate the activity slacks with 

respect to the activity’s duration, since the higher the slack/duration ratio (SDR), the 

higher its capacity for preventing delay. The reason for this is that as the activity 

durations increase, the probability of observing longer delays while the activity is 

being performed increases. Thus, as an alternative approach, we propose to use 

SDR’s to assess robustness as follows: 

 

RM5 =
1 1

iSDRn
j

i
i j

NS e
⎡ ⎤⎢ ⎥

−

= =
∑ ∑ , where SDRi = i

i

TS
p                         (5.5)    

 
Chtourou and Haouari (2008) define a threshold level and assume zero return 

when the slacks allocated is more than the threshold. We adapt this measure as 

follows: 

 

RM6 = { }
1

, .
n

i i
i

Min TS frac p
=
∑                (5.6) 

 
The parameter frac refers to the expected percentage increase in activity 

duration. We set this parameter to 20% in our experiments.  
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d) Dispersion of  Slacks 

In addition to the magnitudes of activity slacks, their dispersion over the 

activities might be consequential to evaluate schedule robustness. Low variability of 

activity slacks is expected to be beneficial as it distributes the risk of delay among 

activities evenly. As a dispersion measure, we propose using the coefficient of 

variation (CV), which is the standard deviation divided by its mean, and formulate 

the robustness measure as: 

 

RM7 = 
 ( )i

i

V a r S D R
S D R

, where SDRi = i
i

TS
p             (5.7) 

  
Since high slack quantities and small variability among activities are 

preferred regarding the robustness, the schedules with smaller CV are deemed to be 

more robust. 

 
e) Percentage of Potentially Critical Activities 

The conventional measure of an activity's criticality is its TS value, which in 

fact assesses the insensitivity of schedule performance with respect to the activity 

delay. Traditionally in the literature, the activities that have zero slacks are defined to 

be critical activities. As first mentioned in Section 4.2.2.1, we further enlarge the set 

of critical activities and use the SDR as a criterion to identify the criticality of 

activities and define the activities that have slack values less than 100ξ % of the 

activity duration as potentially critical activities, i.e. CR = {j: TSj /pj ≤ ξ}. In Section 

4.2.3, we discussed the impact of the slack duration threshold on schedule 

construction and decided to set ξ = 0.25.  

 
Since delays in potentially critical activities probably result in delays in the 

project completion time, schedules with less number of critical activities are 
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preferred regarding robustness. We employ the ratio of the number of potentially 

critical activities to the total number of activities as a quality robustness measure and 

formulate as:  

 

RM8 = |CR| = 
i

i N
I

n
∈
∑

, where 
1 if  0.25
0 o/w 

i i i

i

I TS p
I
= ≤⎧

⎨ =⎩
           (5.8)   

 
f) Project Buffer Size 

Project buffers as protectors of the project schedule against uncertainty in the 

duration of activities, are added to the end of projects to prevent possible delays. The 

critical chain project management (CCPM) emphasizes the importance of buffer 

management and proposes to insert project buffers. In CCPM, safety factors are 

eliminated from individual activities and aggregated at the end as a project buffer. 

Since these buffers aim to prevent the project from exceeding the due date, CCPM is 

a quality robust scheduling method. We refer the reader to Herroelen and Leus 

(2001), for an experimental evaluation of CCPM, and to Tukel et al. (2006) for 

analysis of several buffer sizing methods. 

 
 Schedules with larger project buffers are preferred regarding robustness. 

However, it may deteriorate other performance measures such as project cost. This 

trade-off makes analytical determination of buffer sizes crucial. In spite of the 

importance, there exist only a few analytical methods to determine the size of buffers 

in the literature (see section 2.2.2). In this research, we propose using the project 

buffer size as percentage of project deadline. This quality robustness measure is 

formulated below: 

RM9 = 1100 - nCδ
δ

+
                     (5.9) 
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In the next section, we perform an experimental study to assess the quality of 

proposed robustness measures and present the results of a computational study.  

 

 

5.3. Experimental Analysis of the Robustness Measures 

 
 
5.3.1. Experimental Methodology 

We use Monte-Carlo Simulation to generate a random set of realizations of activity 

durations to test robustness measures. Project Management Institute (2004) defines 

Monte-Carlo Simulation in the context of project management as  “a technique that 

computes or iterates the project cost or schedule many times using input values 

selected at random from probability distributions of possible costs or durations, to 

calculate a distribution of possible total project cost or completion dates”. Simulation 

is frequently used both in machine and project scheduling to model the stochastic and 

dynamic nature of scheduling systems and to test the performance of the proposed 

algorithms. 

 
Given a baseline schedule for a benchmark project and realizations of activity 

durations, we evaluate the effect of disruptions on project performance by the use of 

some performance measures. These measures are functions of the difference between 

the given project deadline and the expected realized completion time. Having 

simulated the projects, the robustness measure that has the highest correlation with 

the performance measures (PM) is selected as the best metric to represent robustness. 

The following performance measures are used in our simulation to evaluate the 

quality robustness of the schedules: 
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1. PM1: The proportion of replicates in which the project ends before the           

deadline. 

2. PM2: Average delay in the project completion time as percentage of the  

   project deadline (i.e. 100 1nC δ
δ
+ −  for delayed projects). 

 
As a test set for assessing the effectiveness of the robustness measures, we use 

the DTCTP instances generated by Akkan et al. (2005). For each problem instance 

the schedules are generated using the given scheduling policy. Then robustness 

measures of the generated schedules are calculated and afterwards performance 

measures are determined through simulation. The following algorithm is used to test 

the robustness measures using simulation. 

 
1. Schedule Generation: Given the scheduling policy, generate an initial 

baseline schedule. Then calculate the RMi, ( i = 1,…,9 ) of each schedule. 

 
2. Monte-Carlo Simulation: 

a. Set the processing time of each activity to a random number generated   

by using the activity time distribution (in other words, the activity 

durations are perturbed while executing the schedule in the simulation 

run). 

b. Generate the early start schedule (ESS) by using the randomly generated 

durations and classical critical path method operations. Find out and 

record the project completion time.  

c.  Repeat step 2, Nr (Number of Replications) times.  

 
3.  Correlation Computation: Calculate the PMj, (j = 1, 2 ). Compute and 

report the correlation between RMi and PMj (i = 1,…,9;  j = 1, 2). 
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 The following three scheduling policies are used in the algorithm above: 

1) Optimal DTCTP-D: An initial baseline schedule is generated assuming 

no disruptions and solving the DTCTP-D exactly. Optimal mode 

assignments to this problem set are determined by using Benders 

Decomposition (see Section 3.2.3 for the details). After assigning the 

modes, corresponding ESS is determined by using classical CPM 

calculations. 

2)  Project Buffer Insertion: Buffer insertion policy assumes a smaller 

deadline, i.e. δ’ = δ (1- τ), 0 < τ < 1, and inserts a project buffer at the end of 

the schedule. The project buffer size is proportional to the project due date. 

Modes are assigned to activities by solving the DTCTP-D exactly with δ’ 

and then corresponding ESS is determined. 

3) Safety Time Insertion: Safety time insertion introduces a safety time for 

each activity that is proportional to the nominal durations, i.e. pi’ = pi (1 + 

∆), .i N∀ ∈  Modes are assigned to the activities by solving the DTCTP-D 

exactly, assuming the augmented durations. However, the so-called 

roadrunner mentality is used to generate the schedule, i.e. the non-gating 

tasks (activities with non-dummy predecessors) are started as soon as 

possible and safety times are ignored in this schedule. 

 
For each problem instance, we generate 21 alternative schedules using the 

policies defined above (optimal DTCTP; τ ∈ {0.01, 0.02, ... , 0.10}; ∆ ∈ { 0.01, 

0.02,..., 0.10}). To model the activity durations, we use a lognormal distribution with 

mean equal to the baseline duration and CV = 0.5. Many other project scheduling 

studies also suggest the use of this distribution (see Tavares et al. (1998), Herroelen 
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and Leus (2001) and Tukel et al. (2006)). Tavares et al. (1998) list the following 

reasons to choose the lognormal distribution: 

 
(a) There is a lower bound which corresponds to the minimal feasible 

duration. This limit is due to contractual or technical reasons. 

(b) The lognormal distribution is an asymmetric distribution with the 

mode on the left side of the expected value, which is a very common 

feature of the duration of the activities. 

(c) The upper quantiles are unbounded. Actually, the occurrence of 

uncertain and inconvenient factors can always delay even further, the 

duration of the activity. 

 
 We generate a normal pseudo-random number, X, given a source of uniform 

pseudo-random numbers by using the polar form of the Box-Muller (1958) 

transformation. Then, the exponential function Y = eX returns a lognormal random 

variable. Since projects are temporary events, we employ terminating simulations; 

the processing of dummy finish activity terminates the simulation. To determine the 

number of replications required, we use the sequential procedure proposed by Law 

and Kelton (2000, see Chap. 9.4). This procedure inserts new replications one by one 

and determines the length of the simulation so that 95 % confidence level for the 

mean of the performance measures is constructed. In this procedure, a relative error 

of 5 %, which specifies a bound on the percentage error of the point estimate of the 

sample means, is used.   

 
5.3.2. Computational Results 

We use a subset of the random instances generated by Akkan et al. (2005) to test the 

proposed measures and algorithms. Table 17 summarizes the parameters and their 

levels in the test bed.  
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Table 17. Experimental Setting of the Simulation Analysis 
 

Parameter Level(s) Parameter Level(s)

CI 13 Deadline parameter 0.15

CNC 5, 6, 7, 8 Nominal cost ccv, cvx, hyb

Number of modes  U[2,10]  

  

 In the computational study, for each setting three different instances are 

solved, hence each measure is tested with thirty six problems. To evaluate the 

relationship between robustness and performance measures, we run regression 

models and report the coefficient of determination (R2) and the significance levels. 

Table 18 illustrates the average of R2 over all problem instances that have the same 

network complexity figures. In this regression, each RMi, (i = 1, … , 9) is modeled as 

the independent variable and PMj (j = 1, 2) as the dependent variable. Before running 

the regression model, the necessary assumptions of normality, equal variance and 

independence are checked. To ensure the sampling independence, different seeds are 

used for different scheduling policies and Box-Cox transformation is utilized to 

assure the constant variance assumption. 

  
 Table 18 demonstrates that when R2 are compared, the buffer size (RM9) is 

the best robustness measure regardless of the network complexity. Furthermore, 

RM1, RM2, RM3, RM5, RM8 also have high correlations with the PM. For all the 

measures, the R2 figures are found to be insensitive to the changes in CNC. Proposed 

transformation of the slack utility function has significantly improved the 

correlations (RM5 vs. RM4). Furthermore, weighting with the number of the entire 

successors instead of the immediate successors improves the R2 figures (RM3 vs. 

RM2).  

 



   

Table 18. Results of Regression of Robustness Measures on Performance Measures 
 

R2 

CNC = 5 

R2 

CNC = 6 

R2 

CNC = 7 

R2 

CNC = 8 

R2 

Average  

PM1 PM2 PM1 PM2 PM1 PM2 PM1 PM2 PM1 PM2 

RM1 0.9104 0.8717 0.9486 0.9301 0.9611 0.9446 0.9812 0.9579 0.9503 0.9261 

RM2 0.9468 0.9191 0.9681 0.9503 0.9542 0.9432 0.9778 0.9634 0.9617 0.9440 
RM3 0.9538 0.9251 0.9701 0.9552 0.9582 0.9460 0.9754 0.9627 0.9644 0.9479 

RM4 0.2239 0.2541 0.1928 0.2194 0.2318 0.2454 0.2284 0.2537 0.2192 0.2429 

RM5 0.8529 0.8376 0.9349 0.9239 0.9131 0.8972 0.9402 0.9299 0.9119 0.8989 
RM6 0.6411 0.6626 0.5867 0.6270 0.5347 0.5378 0.5814 0.5364 0.5860 0.5889 

RM7 0.3789 0.3803 0.4016 0.3952 0.6597 0.6610 0.6765 0.6711 0.5292 0.5269 

RM8 0.8524 0.8381 0.8726 0.8608 0.8253 0.8164 0.7500 0.7470 0.8251 0.8156 
RM9 0.9603 0.9462 0.9703 0.9612 0.9707 0.9588 0.9802 0.9653 0.9704 0.9579 
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 We compare the best four RM among each other, test the significance of the 

differences, report the t-test with 95 % confidence interval, and the corresponding p 

values in Table 19. This table illustrates that RM9 and RM3 are good estimates of 

schedule robustness. They have significant differences when compared to the other 

robustness measures. Based on the results of the computational study, we propose a two-

phase approach for generating robust schedules in Section 5.4. 

 
Table 19. Individual 95% Confidence Intervals for All Pairwise Comparisons 

 
PM1 

 RM3 RM2 RM1 

RM9 
(-0.318, 1.518) 

0.193 
(-0.212, 1.946) 

0.112 
(0.385, 3.626) * 

0.017 

RM3  (-0.063, 0.596) 
0.109 

(0.106, 2.705)* 
0.035 

RM2   (0.015, 2.263)* 
0.047 

PM2  RM3 RM2 RM1 

RM9 
(-0.074, 2.052) 

0.067 
(0.148, 2.624)* 

0.029 
(1.455, 4.912)* 

0.001 

RM3  (0.059, 0.735)* 
0.023 

(0.820, 3.569)* 
0.003 

RM2   
 

(0.650, 2.945)* 
0.003 

  * Statistically significant difference 

 
 
5.4. A Methodology to Generate Robust Schedules 

Using the insight revealed by the simulation results, we generate the baseline schedule 

by maximizing the project buffer size (RM9), the robustness measure that has the highest 

correlation with PM, so that the schedule involves sufficient safety time to absorb 

unanticipated disruptions. However, while maximizing robustness, the project cost 
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should remain within acceptable limits. We propose to use the following two-phase 

methodology to generate a robust schedule: 

 
Phase 1: Exact solution of the DTCTP-D: Given a project deadline, DTCTP-D is 

formulated and solved exactly. The objective value of the optimal solution sets a 

threshold budget value, B0, for the subsequent phase. This is the minimum achievable 

cost under the assumption that each activity lasts as it is planned and the deadline 

constraint is satisfied. However, this generated schedule is not protected against 

disruptions. In the sequel, we refer to this schedule as the non-protected schedule and we 

will use it as a benchmark.  

 
Phase 2: Exact solution of the DTCTP-B:  Having set the budget to B0, an initial 

baseline schedule is generated by solving the DTCTP-B exactly to assign modes to 

activities and generating the corresponding early start schedule (ESS) given the mode 

assignments. In doing so, the algorithm aims at inserting a maximal-size project buffer 

while controlling the project cost. Furthermore, given the mode assignments, ESS 

maximizes the sum of total slacks, equivalently RM1. 

 
In our experiments, we notice that small and medium-sized DTCTP-D and 

DTCTP-B instances could be efficiently solved using CPLEX 9.1. The exact solutions 

are based on the formulations given in sections 3.2.1 and 3.3.1. However, for solving 

large-scale instances exactly, we use Benders Decomposition (see Section 3.2.3 and 

3.3.2). 
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As expected, we observe that increases in the budget result in increases in the 

project buffer obtained after solving an appropriate DTCTP-B. Consequently, in order to 

improve the schedule robustness, we set in Phase 2 an “inflated” budget B = (1+ η) B0 

(with η > 0). However, as this policy inflates the budget, it is crucial to address the 

trade-off between project cost and schedule robustness. For this purpose, an analytical 

model to set η  in a most profitable way will be introduced in Section 5.5. 

 
Interestingly, a slight increase in the project buffer usually results in a significant 

improvement in the performance measures. We test the significance of the difference 

between the performance measures of the protected schedules with η = 0.02 and the non-

protected schedules (η = 0) as well as the corresponding confidence intervals. The results 

are summarized in Table 20. We see from this table that when the proposed two-phase 

approach is used, it is possible to increase the probability of completing the project on-

time significantly with small budget amplifications. 

 
Table 20. The Significance Test for the Differences  

 
CV = 0.25  Protected (η = 0.02) 

Non- 
Protected (η = 0) PM1 PM2 

PM1 (18.570, 24.790)*  
PM2  (-0.334, -0.229)* 

 CV = 0.5 
 PM1 PM2 

PM1 ( 2.841, 4.609)*  
PM2  (-0.972, -0.576)* 

* indicates that test statistic for is significant at 5% level 

 
Figure 6 shows the relationship between budget amplification and the RM9. This 

figure depicts the behavior of the buffer size as a function of the percentage increase of 



   119

the budget (i.e. 100η). The averages over all of the project instances included in the 

aforementioned test bed are reported in this figure. Figure 6 clearly demonstrates the 

strong correlation between budget increase and buffer size increase. 

 

0

5

10

15

20

25

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

Budget Amplification (%)

Pr
oj

ec
t B

uf
fe

r (
%

)

 

Figure 6. The Relationship between Budget Amplification and Buffer Size 
Increase 

 
 

In order to assess the effectiveness of the proposed two-phase approach, we carry 

out an extensive simulation study. First, we set the budget amplification rate η. Then, for 

each instance of the test bed, we randomly generate perturbed processing times and 

compute the project completion time. Finally, we calculate the average values of PM1 

and PM2 over all instances (recall that PM1 represents the proportion of replicates that 

the project ends within the deadline, and that PM2 represents the percentage excess of 

project completion time over the deadline). In our experiments, we use for each instance, 

a coefficient of variation (CV) of 0.25 and 0.5, respectively, to characterize small and 

moderate variability in the activity durations. Figure 7 and Figure 8 illustrate the 
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simulation results and show the relationship between budget amplification and 

performances measures PM1 and PM2, respectively.  
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Figure 7. The Relationship between Budget Amplification and PM 1 
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Figure 8. The Relationship between Budget Amplification and PM2 
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Looking at these figures, we see that when variability is low, the performance 

measures could be significantly improved with small budget increases. Indeed, when CV 

= 0.25, with a 6% budget increase (η = 6), PM1 increased from 44% to 89% and PM2 

decreased from 2.93% to 2.06%. The major effect of uncertainty in activity durations is 

that, when variability gets larger, much larger budget amplification is required to have 

the projects completed on time. For instance, when there is low uncertainty 7% is 

required to achieve 90% of projects completed on time whereas when there is high 

variability 36% amplification is required to have the same performance. We call the 

schedules obtained at the end of Phase 2 as protected schedules. When Figure 6 and 

Figure 7 is compared, it is evident that RM9 and PM1 (especially with CV= 0.5) give 

similar responses to budget amplifications and this similarity supports the strong 

correlation in between these measures (see Table 18).  

 
In addition to the above mentioned performance measures (PM1, PM2), we also 

illustrate the average project completion time deviations from the project deadline in 

Figure 9. This measure evaluates the project lateness as it considers the negative 

deviations as well. Note that as uncertainty increases, much larger budget amplifications 

are required to complete the projects before the deadline. For example in Figure 5.4 

when CV = 0.25, 3% budget increase is sufficient, whereas when CV = 0.5, a budget 

increase of 16% is required. 
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Figure 9. The Relationship between Budget Amplification and Average Lateness 
 

So far, we have addressed the relationship between the allocated budget and 

various robustness measures. We show that using the two-phase approach, the larger the 

budget is and the more robust is the derived schedule. However, a crucial issue is to 

decide on the budget to be allocated and to determine the corresponding activity modes 

so that an optimal trade-off between cost and robustness is achieved. In the next section, 

firstly, we propose a model for this challenging issue and then we present the solution 

approach. 

 
5.5. Analytical Study on Budget Allocation 

 
5.5.3. A Model with Tardiness Penalties and Earliness Revenues 

In order to model the trade-off between the budget and the performance measures, we 

use monetary units as a common basis to combine time and cost-based performance 

measures and we propose a model maximizing the net profit. A penalty cost is incurred 
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in cases when the project finishes later than the due date. On the other hand, in cases of 

early completions, we assume that the enterprise can increase the profit by elongating 

the operating period. These additional profits are typical in BOT projects (characteristics 

of these types of projects are discussed in Chapter 3).  

 
Thus, the problem is to determine the budget to be allocated (or equivalently, the 

increase coefficient η) such that the expected net profit: 

 
  h (η) = { }1 0 0, ( ) (1 )nMax C Bρ δ η η+− − + - { }10, ( )nMax Cζ η δ+ −   (5.10) 

 
is maximized. In the above function, 1( )nC η+  refers to the expected project completion 

time, ρ, and ζ denote the revenue rate and the tardiness penalty rate per unit time, 

respectively. The complexity of the model in (5.10) rests in finding out the expected 

completion times ( 1( )nC η+ ). It is difficult to calculate exactly due to the complex 

network structures. For this purpose, we propose an analytical model to estimate the 

expected completion times. This approach aims to minimize computational effort by 

limiting the alternatives to be investigated. In the next section, a mathematical model is 

introduced to set the budget and generate the schedule so that the profit-based 

performance measure (5.10) is maximized.  

 
 

5.5.4.  Solution Approach 

A striking observation in Figure 5.4 is that average lateness varies almost linearly with 

budget amplification. To evaluate this relationship, having checked the assumptions, we 

fit a linear regression model. For instance, when the data illustrated in Figure 5.4 is used, 
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and CV = 0.5, the linearity assumption is valid for 0 0 20.η≤ ≤  and R2 = 0.997. In this 

sequel, we have the following assumptions: 

 
A1: The expected project completion time is a convex piecewise linear function of 

the budget amplification factor with k intervals. That is: 

1

1 0 1 1 1 1 1
1

( ) ( )+ ( )   if   
i

n j j j i i i i k
j

C a b bη η η η η η η η η
−

+ − − − − −
=

= + − − ≤ ≤ <∑ ,   i 1,...,k - 1=        (5.11), 

where 0 0η = , ai   and bi  represents the intercepts and slopes of linear segments. 

 
In practice, 2-4 segments would be reasonable to approximate the time/cost 

relationship in (5.11) well. It could be better approximated with more linear segments; 

however, it requires more computational effort as defining a segment requires simulating 

the project.  

 
A2: The slopes are assumed to be negative and increasing with respect to budget 

increases, i.e. 1 0i ib b , i = 1,...,k +< <    

  
This assumption expresses that the budget amplifications have diminishing rate of 

return. As the budget continues to increase, the marginal reduction in the project 

completion decreases. The following proposition defines the structure of the optimal 

solution. 

 

Proposition 5.1: Given the profit function in 5.11 and assumptions A1, and A2 the 

optimal budget amplification policy is either one of the break points of the piecewise 

linear function or the critical point which makes the expected completion time zero. 
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 Proof: 

 
The proof rests on investigating all the possible parameter settings and finding out 

the optimal budget allocation in that setting. Given a budget allocation, the project could 

be either early or late and each case is considered separately due to the structure of 

(5.11). 

 
In order to make a distinction between these two cases, we find the critical budget  

factor, cη , such that 1( ) 0.n cC η+ =  If it is not possible to complete on time with the  

maximum budget, i.e. 1 1 1
1

( ) ( )
k

n k o j j j
j

C a bη η η δ+ − −
=

+ − <∑ , then we set .c kη η=  On the  

other hand if the project is expected to be early without any budget increase (a0 ≤ δ), 

then we set 0cη = . 

 
The project is expected to be late when 0 cη η≤ ≤ , hence in this case 

h (η) =
1

1 10 1 1
1

( )+ ( ) )(1 ) (
i

j j j i io
j

b bB aη η η ηζ δη
−

− − − −
=

− −+ − + −− ∑  

= 
1

1 1 1 1 1
1

0 0( )- (( ))
i

j j j i i io
j

a Bb b bBζ η ηδ ζ ηηζ
−

− − − − −
=

−+ − +−− ∑   (5.12) 

On the other hand, if 0 ,cη η< <  then project is expected to be early, hence 

 h (η) =
1

1 1 01 1
1

( )( (- ( ))) 1
i

j j j i i
j

oa Bb bρ δ ηη η η η
−

− − − −
=

−− −−− +∑  

= 
1

1 1 1 1 0 0 1
1

( ( )- ) ( )
i

o j j j i i i
j

a b b B B bρδ ρ η η η ρ η
−

− − − − −
=

− + − − − +∑    (5.13) 

Two additional parameters are required to be defined:  
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d1 = Max{i: i cη η< , i = 0, … , k}, d2 = Min{i: 1i cη η+ > , i = 0,… , k}. Three cases each 

containing three sub-cases could be identified such that each condition has specific 

optimality conditions: 

 

Case 1: 0

0

B
b

ζ −
≤  : 

In this case, 0

i

B
b

ζ −
≤    i 1,...,k -1= , due to A2. 

1a. 
2

0

d

B
b

ρ −
≤  :  Due to A2, 0

i

B
b

ρ −
≤    2i d ,...,k -1= . 

This is the case that any budget amplification does not improve the profits. The optimal 

policy is * 0.η =  

1b. 
2

0

d

B
b
− < 0

1k

B
b

ρ
−

−
≤ , 

Define f = Min {i: 0

i

B
b

ρ −
< ,   2i d 1,...,k -1= + }. The optimal policy is * 0η =  with 

profit: (0)h = 0)( oa Bζ δ−− − or * fη η= with 

( )fh η = 1 1
1

0( )( (1 )) .
f

j j j f
j

oa b Bρ δ η η η− −
=

− − +−−∑ The profits are compared and the 

comparison results in:  

1
1

01 0           ( ) 0
*

              

if ( )

/

( )

o w

f

j j j f
j

f

oa Bb η ηζ ρ η

η

δ ρ
η

− −
=

⎧
− − − − ≤−

=
⎪
⎨
⎪
⎩

∑
 

1c. 0

1k

B
b

ρ
−

−
<  : due to A2, 0

i

B
b

ρ−
<    2i d ,...,k -1.=  
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In this case, optimal policy is either * 0η =  with profit (0)h = 0)( oa Bζ δ−− − or 

* kη η= with ( )kh η = 1 1
1

0( )( (1 )) .
k

j j j k
j

oa b Bρ δ η η η− −
=

− − +−−∑  Comparison results in:  

1 1 0
1

0            if ( )( ) ( ) 0
*

               o/w

k

o j j j k
j

k

a b Bδ ζ ρ ρ η η η
η

η

− −
=

⎧
− − − − − ≤⎪= ⎨

⎪
⎩

∑
 

 

Case 2: 
1

0 0

0 d

B B
b b

ζ− −
< ≤  

Define e = Min {i: 0

i

B
b

ζ −
< , i = 1,… , d1}.  

2a.
2

0

d

B
b

ρ −
≤ , * eη η=  

2b. 
2

0

d

B
b
− < 0

1k

B
b

ρ
−

−
≤ : 

Compare ( )eh η = 1 01
1

( )( ( )) 1
e

j j j
j

o eba Bζ δη η η− −
=

− + − +− −∑ with 

( )fh η = 1 1
1

0( )( (1 )) .
f

j j j f
j

oa b Bρ δ η η η− −
=

− − +−−∑  Comparison results in 

1 1 1 1
1 1

0            ( ) ( ) ) 0
*

            

if ( )(

  o

)

/w

(
f e

e j j j j j j f e
j

f

o
j

b ba Bη η η ηδ ζ ρ ρ η η η
η

ζ

η

− − − −
= =

− − − ≤
⎧

− − − + −⎪
⎨
⎪

=

⎩

∑ ∑

 

2c. 0

1k

B
b

ρ
−

−
<  
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Now compare ( )eh η = 1 01
1

( )( ( )) 1
e

j j j
j

o eba Bζ δη η η− −
=

− + − +− −∑ with 

( )kh η = 1 1
1

0( )( (1 )) .
k

j j j k
j

oa b Bρ δ η η η− −
=

− − +−−∑ The optimal policy is: 

1 1 1 1
1 1

0            ( ) ( ) ) 0
*

            

if ( )(

  o

)

/w

(
k e

e j j j j j j k e
j

k

o
j

b ba Bη η η ηδ ζ ρ ρ η η η
η

ζ

η

− − − −
= =

− − − ≤
⎧

− − − + −⎪
⎨
⎪

=

⎩

∑ ∑

 
 

Case 3: 
1

0

d

B
b

ζ−
< : Due to A2, 0

i

B
b

ζ −
≥    1i 0,...,d 1= −  

3a.
2

0

d

B
b

ρ −
≤ , The optimal policy is * .cη η=  

3b. 
2

0

d

B
b
− < 0

1k

B
b

ρ
−

−
≤  , the optimal policy is * .fη η=   

3c. 0

1k

B
b

ρ
−

−
≥ , the optimal policy is * .kη η=  

 
The following table summarizes the cases and the corresponding optimal budget 

amplification policies:  

Table 21. Budget Amplification Policies  
 

             
                  ρ  

ζ  2

00,
d

B
b

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦ 2

0 0

1

,
d k

B B
b b −

⎛ ⎤
− −⎜ ⎥⎜ ⎥⎝ ⎦

 0

1

,
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B
b −

⎛ ⎞
− ∞⎜ ⎟
⎝ ⎠

 

0

0

0, B
b

⎡ ⎤
−⎢ ⎥

⎣ ⎦
 * 0η =  * {0, }fη η∈  * {0, }kη η∈  

1

0 0

0

,
d

B B
b b

⎛ ⎤
− −⎜ ⎥⎜ ⎥⎝ ⎦

 * eη η=  * { , }e fη η η∈  * { , }e fη η η∈  

1

0 ,
d

B
b

⎛ ⎞
− ∞⎜ ⎟⎜ ⎟
⎝ ⎠

 * cη η=  * fη η=  * kη η=  
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Considering all the possibilities summarized in Table 21, the optimal budget 

amplification policy is defined with either one of the break points or the critical point 

which makes the expected completion time zero. 

          Q.E.D. 

 
 As an immediate result of Proposition 5.1, we propose the following algorithm to 

allocate the budget. 

 
1. Initialization: 

a. Define the minimum and maximum budgets, B0, and Bmax.  

Define the number of intervals, k, to approximate this time/cost. Partition 

0, kη⎡ ⎤⎣ ⎦  into k segments, where max 0

0
k

B B
B

η −
= . 

b. Given B = B0, generate the schedule by solving the DTCTP-B exactly. 

c. Invoke Monte Carlo Simulation (the activity durations are perturbed while 

executing   the schedule in the simulation run), and find out the expected 

completion time, set a0 = 1(0)nC + . 

2. For i = 1,…,k 

a. Set the budget, B = (1+ iη ) B0.  

b. Given B, generate the schedule by solving the DTCTP-B exactly. 

c. Invoke Monte Carlo Simulation and find the expected completion time, 

1( )n iC η+ . Then, set 1 1 1
1

1

( ) ( )n i n i
i

i i

C Cb η η
η η

+ + −
−

−

−
=

−
, and 1 1 1( )i i i i ia a b η η− − −= + − . 
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3. Having defined the parameters, ρ, ,ζ  B0, ai ,bi    0i ,...,k= , use Table 21 to find 

out the optimal policy. 

 
 The major advantage of the proposed analytical approach is that it limits the 

number of computations of the expected project completion time. The expected 

completion time of a project is estimated by invoking the scheduling method and 

simulating the project. Now we only calculate it for at most k+1 budget settings. These 

are the break-points of the piecewise linear function. Furthermore, Table 21 illustrates 

that optimal policy is either one of the break points or the critical point that expected 

completion time is zero. 

 
 
5.6. Conclusion 

In this chapter, we have introduced several robustness measures and a two-phase robust 

scheduling algorithm for multi-mode project networks. We have investigated the 

pertinence of the robustness measures by using simulation. The test results indicate that 

the buffer size is the most appropriate robustness measure. Based on this finding, we 

have proposed a two-phase methodology for generating robust schedules, which are 

protected against variability in activity durations. Afterwards we have performed 

computational experiments to assess the effectiveness of the algorithm under various 

problem settings. The results revealed that a slight increase in the budget results in 

significant improvements in the performance measures. Furthermore, the budget 

amplification consistently improves the schedule robustness. Therefore, we have 

examined the trade-off between project cost and schedule robustness. To model this 
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trade-off, we have developed an analytical model and proposed an appropriate solution 

strategy. 

 
 To the best of our knowledge, the research in this chapter is the first work that 

concentrates on robustness measures and robust scheduling algorithms for multi-mode 

project networks. As a future extension of this research, deriving robust schedules for 

the multi-mode resource constrained project scheduling problem with crashable modes 

(Ahn and Erenguc, 1998) could be addressed. This problem might be viewed as a natural 

combination of the well-known multi-mode resource constrained project scheduling 

problem and the time/cost trade-off problem. We expect that the results presented in this 

chapter might provide a useful base for investigating this challenging problem. 
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CHAPTER 6 
 
 
 

GENERAL DISCUSSION AND CONCLUSIONS 
 
 
 
 
In this dissertation, we have investigated the deterministic and robust discrete time/cost 

trade-off problems, formulated models and developed solution algorithms for these 

problems. These challenging project scheduling problems are practically relevant as it is 

often possible to reduce the duration of activities with additional expenses and there 

exists multiple activity processing alternatives in real life projects. 

 
We have addressed three major research issues. Firstly, we have investigated the 

issue of how to solve large-scale deterministic DTCTP instances to optimality. The 

second issue deals with how to generate robust project schedules efficiently. Finally, the 

third issue deals with the development of new approaches and measures for the 

assessment of project schedule’s robustness. The contribution of this dissertation lies in: 

i) the algorithms developed to solve the large scale deterministic DTCTP 

instances exactly,  

ii) the approaches and mathematical models developed to generate robust project 

schedules,  

 iii) the formal quantitative metrics to assess robustness of project schedules. 
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First, we have investigated deterministic project environments and have 

proposed Benders Decomposition-based algorithms to solve two variants of the 

deterministic DTCTP: the deadline and budget versions. Although Benders 

Decomposition is known to exhibit slow convergence, we have included several features 

to accelerate its convergence and make it feasible to solve large-scale instances to 

optimality. We have solved the deadline and the budget problems for project networks 

with up to 136 activities exactly.  Extensive computational experiments have been 

performed to measure the efficiency of the algorithm under various problem settings and 

investigate the interactions in between problem parameters.   

 
Secondly, we have incorporated uncertainty into the problem and have 

formulated robust optimization DTCTP models. Interval uncertainty is assumed for 

unknown cost parameters and three alternative robust optimization models have been 

proposed. We have compared the schedules that have been generated with these models 

on the basis of schedule robustness. Furthermore, we have assessed the performance of 

the proposed algorithms under various experimental problem settings. Until now, 

DTCTP has been studied under the assumption that problem parameters are completely 

known. To the best of our knowledge, the models introduced in this dissertation are the 

first attempt to optimize DTCTP under uncertainty. 

 
In order to assess the robustness of project schedules, we have proposed some 

formal quantitative robustness metrics and experimentally tested the applicability of 

these metrics using simulation. Among various alternatives, the measures that are 

calculated easily for a given baseline schedule and that provide a good estimate of 

schedule robustness are emphasized. We have showed that the buffer size is the most 
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appropriate robustness measure regardless of the network complexity. Based on this 

finding, we have proposed a two-phase methodology for generating robust schedules. In 

the first phase of the methodology, we set the minimum required budget. Next, in the 

second phase, this budget is slightly inflated by a specified amplification factor and then 

the buffer size is maximized. We have provided strong empirical evidence that the 

budget amplification consistently improves the schedule robustness. Therefore, we have 

addressed the important issue of determining the best trade-off between the project cost 

and the schedule robustness. To that aim, we have proposed an extended model 

involving both tardiness penalties and earliness revenues and we have described an 

appropriate solution strategy that requires a restricted number of simulations. 

 
The scheduling algorithms developed in this dissertation respond to the crucial 

need to build robust project schedules that are less vulnerable to disruptions caused by 

uncontrollable factors. Furthermore, they serve as a basis to develop decision support 

systems (DSS) that will help project managers in planning under uncertain 

environments. As multi-mode scheduling is addressed, managers could plan considering 

multiple activity processing alternatives. Practical impact of the proposed models and 

algorithms could be observed via developing an integrated DSS. They comprise the 

optimization module of an integrated DSS. This DSS would counsel project managers to 

generate protected schedules that help to minimize the deviations from the time and 

cost-based project objectives proactively. Integrating the DSS into widely used 

commercial software packages would be very valuable in practice as it enhances the 

scheduling functions of these packages. 
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Furthermore, as a future extension of this research, robust optimization models 

and robustness metrics could be formulated for Multi-Mode Resource Constrained 

Project Scheduling Problem (MRCPSP), which allows the use of both renewable and 

nonrenewable resources. For this new generalized problem setting, in addition to the 

uncertainty in activity durations or costs, the uncertainty in resource requirements or in 

resource availabilities could also be addressed. These extension alternatives will serve to 

model the project environments more realistically and work to generate schedules that 

are protected against various kinds of uncertainty. We believe that the results presented 

in this dissertation might prove as a useful base for investigating multi-mode resource 

project scheduling addressing other sources of uncertainty. 
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AN ILLUSTRATIVE EXAMPLE FOR DTCTP-D: 

 
Consider the simple project network in Figure 10 (the example of De et al., 1995). Each 

activity has two mode alternatives and for each mode alternative, (pi1,ci1)  and (pi2, ci2)  

are given above the nodes in the figure. The project has a deadline of 6 units, i.e. δ = 6.  

 

 
Figure 10. The Example Network (Deterministic Problems) 

 
 

For the given problem, the primal and dual solutions are represented with vectors 

xT = [x11,x12,x21,x22,x31,x32,x41,x42] and wT = [w01, w02, w13, w23, w24, w35, w45], 

respectively. The procedure to solve the illustrative example by using the algorithm 

outlined above could be summarized as follows: 

Initialization: 1x = [0, 1, 0, 1, 0, 1, 0, 1], LB = −∞  UB = ∞ . 

Iteration 1: 

• Solve SP ( 1x ) : C5 = 5.  

• Feasible and bounded primal and dual solutions: UB = 0

∈ ∈
∑ ∑ jm

j

jm
j N m M

c x = 68. 

• Solve MP1: 

(4,20) 
(2,40) 

(3,6) 
(1,12) 

2 

0 

3

5 

1 

4

Start 
(3,3) 
(2,6) 

 (4,6) 
(3,10) 

Finish 

i
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 Min 20x11+40x12+ 6x21+10x22+6x31+12x32+3x41+6x42 

 subject to 

 x11+x12 =1 

 x21+x22 =1 

 x31+x32 =1 

 x41+x42 =1 

 x11,x12,x21,x22,x31,x32,x41,x42 { }0 1∈ ,  

• x1 = [1,0,1,0,1,0,1,0], z1 = 1
jm

j

jm
j N m M

c x
∈ ∈
∑ ∑ = 35,  

• t =2,  2x = x1 = [1,0,1,0,1,0,1,0] . 

Iteration 2: 

• Solve SP( 2x ): C5 = 7. 

• Infeasible primal, unbounded dual solutions: 2w = [1, 0, 1, 0, 0, 1, 0]. 

• Solve MP2: 

 Min  20x11+40x12+ 6x21+10x22+6x31+12x32+3x41+6x42 

 subject to 

 x11+x12 =1 

 x21+x22 =1 

 x31+x32 =1 

 x41+x42 =1 

 4 x11 +2x12+3 x31+ x32≤6 

 x11,x12,x21,x22,x31,x32,x41,x42 { }0,1∈  

• x2 = [1,0,1,0,0,1,1,0], z2 = 2
jm

j

jm
j N m M

c x
∈ ∈
∑ ∑ = 41. 

• t = 3, 3x = x2= [1,0,1,0,0,1,1,0]. 

Iteration 3: 

• Solve SP ( 3x ); C5 = 7. 

• Infeasible primal, unbounded dual solutions: 3w = [0, 1, 0, 0, 1, 0, 1] 

• Solve MP3: 
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 Min 20x11+40x12+ 6x21+10x22+6x31+12x32+3x41+6x42 

 subject to 

 4 x11 +2x12+3 x31+ x32≤6 

 4 x21 +3x22+3 x41+ 2x42≤6 

 x11+x12=1 

 x21+x22=1 

 x31+x32=1 

 x41+x42=1 

 x11,x12,x21,x22,x31,x32,x41,x42 { }0,1∈  

• x3 = [1,0,1,0,0,1,0,1], z3 = 3
jm

j

jm
j N m M

c x
∈ ∈
∑ ∑ = 44. 

• t = 4, 4x = x3 = [1,0,1,0,0,1,0,1]. 

Iteration 4: 

• Solve SP2( 4x ), C5 = 6 

• Feasible and bounded primal and dual solutions: 

 
 Terminate with x* = [1,0,1,0,0,1,0,1], z* = 4

j

jm jm
j N m M

c x
∈ ∈
∑ ∑  = 44. 

 
 

AN ILLUSTRATIVE EXAMPLE FOR THE DTCTP-B: 

We solve the budget problem with B0 = 44 . 

Initialization: 1x = [1, 0, 1, 0, 1, 0, 1, 0], LB = −∞  UB =∞ , 

Iteration 1: 

• Solve SP ( 1x ): UB = C5 = 7. 

• 1w = [1, 0, 1, 0, 0, 1, 0] 

• Solve MP1 : 

 Min z 

 subject to 

 x11+x12=1 

 x21+x22=1 
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 x31+x32=1 

 x41+x42=1 

 20x11+40x12+ 6x21+10x22+6x31+12x32+3x41+6x42≤ 44 

 z≥ 4 x11 +2x12+3 x31+ x32 

 x11,x12,x21,x22,x31,x32,x41,x42 { }0,1∈  

• x1 = [1,0,1,0,0,1,1,0], LB = 5 

• t =2,  2x = x1 = [1,0,1,0,0,1,1,0]. 

Iteration 2: 

• Solve SP( 2x ): UB = C5 = 7. 

• 2w = [0, 1, 0, 0, 1, 0, 1]. 

• Solve MP2: 

 Min z 

 subject to 

 x11+x12=1 

 x21+x22=1 

 x31+x32=1 

 x41+x42=1 

 20x11+40x12+ 6x21+10x22+6x31+12x32+3x41+6x42 ≤ 44 

 z≥ 4 x11 +2x12+3 x31+ x32 

 z≥ 4 x21 +3x22+3 x41+ 2x42 

 x11,x12,x21,x22,x31,x32,x41,x42 { }0,1∈  

• x2= [1,0,1,0,0,1,0,1], LB =6. 

• t = 3, 3x = x2 = [1,0,1,0,0,1,0,1]. 

Iteration 3: 

• Solve SP( 3x ); UB = C5 = 6. 

• 3w = [0, 1, 0, 0, 1, 0, 1]. 

• UB = LB  

  Terminate with x* = [1,0,1,0,0,1,0,1], z* = 6. 
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