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ABSTRACT

SIGNAL REPRESENTATION AND RECOVERY

UNDER PARTIAL INFORMATION, REDUNDANCY,

AND GENERALIZED FINITE EXTENT

CONSTRAINTS

Sevinç Figen Öktem

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Haldun M. Özaktaş

July 2009

We study a number of fundamental issues and problems associated with linear

canonical transforms (LCTs) and fractional Fourier transforms (FRTs). First,

we study signal representation under generalized finite extent constraints. Then

we turn our attention to signal recovery problems under partial and redundant

information in multiple transform domains. In the signal representation part,

we focus on sampling issues, the number of degrees of freedom, and the time-

frequency support of the set of signals which are confined to finite intervals in two

arbitrary linear canonical domains. We develop the notion of bicanonical width

product, which is the generalization of the ordinary time-bandwidth product, to

refer to the number of degrees of freedom of this set of signals. The bicanonical

width product is shown to be the area of the time-frequency support of this set of

signals, which is simply given by a parallelogram. Furthermore, these signals can

be represented in these two LCT domains with the minimum number of samples

given by the bicanonical width product. We prove that with these samples the

discrete LCT provides a good approximation to the continuous LCT due to the

iii



underlying exact relation between them. In addition, the problem of finding the

minimum number of samples to represent arbitrary signals is addressed based on

the LCT sampling theorem. We show that this problem reduces to a simple geo-

metrical problem, which aims to find the smallest parallelogram enclosing a given

time-frequency support. By using this equivalence, we see that the bicanonical

width product provides a better fit to the actual number of degrees of freedom

of a signal as compared to the time-bandwidth product. We give theoretical

bounds on the representational efficiency of this approach. In the process, we

accomplish to relate LCT domains to the time-frequency plane. We show that

each LCT domain is essentially a scaled FRT domain, and thus any LCT domain

can be labeled by the associated fractional order, instead of its three parameters.

We apply these concepts knowledge to the analysis of optical systems with ar-

bitrary numbers of apertures. We propose a method to find the largest number

of degrees of freedom that can pass through the system. Besides, we investigate

the minimum number of samples to represent the wave at any plane in the sys-

tem. In the signal recovery part of this thesis, we study a class of signal recovery

problems where partial information in two or more fractional Fourier domains

are available. We propose a novel linear algebraic approach to these problems

and use the condition number as a measure of redundant information in given

samples. By analyzing the effect of the number of known samples and their dis-

tributions on the condition number, we explore the redundancy and information

relations between the given data under different partial information conditions.

Keywords: Linear canonical transform, fractional Fourier transform, bicanonical

width product, linear canonical series, linear canonical domain, signal represen-

tation, signal recovery, sampling, finite extent, partial information, redundancy,

condition number, optics
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ÖZET

KISMİ BİLGİ, ARTIKLIK VE GENELLEŞTİRİLMİŞ SONLU

KAPLAM KISITLARI ALTINDA SİNYAL TEMSİLİ VE GERİ

ÇATILMASI

Sevinç Figen Öktem

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Haldun M. Özaktaş

Temmuz 2009

Bu tezde doğrusal doğal ve kesirli Fourier dönüşümleri ile ilgili bir çok temel

konu ve problem ele alındı. İlk olarak, genelleştirilmiş sonlu kaplam kısıtları

altında sinyalin temsil edilmesi üzerine çalışıldı. Sonra birden çok dönüşüm

bölgesinde kısmi ve artık bilgiler verildiğinde, sinyalin geri çatılması prob-

lemiyle uğraşıldı. Sinyalin temsili kısmında, herhangi iki doğrusal doğal bölgede

sonlu aralıklara hapis olan sinyallerin örnekleme, serbestlik derecesi, ve zaman-

sıklık tanım alanı konularına odaklanıldı. Bu sinyallerin serbestlik derecesi için

zaman-bant genişliği çarpımının genellenmesi olan ikili doğrusal doğal genişlik

çarpımı kavramı geliştirildi. İkili doğrusal doğal genişlik çarpımının bu sinyal-

lerin paralelkenar şeklindeki zaman-sıklık tanım alanına karşılık geldiği ispat-

landı. Ayrıca, bu sinyaller ikili doğrusal doğal genişlik çarpımına eşit sayıdaki en

az örnek sayısı ile bu iki doğrusal doğal bölgede temsil edilebilir. Bu örneklerle

hesaplanan ayrık doğrusal doğal dönüşümünün, sürekli doğrusal dönüşüm için

oldukça iyi bir yaklaşım verdiği aralarındaki tam ilişki verilerek ispatlandı.

Bunun yanısıra, rastgele sinyallerin en az örnek ile temsil edilmesi problemine,

doğrusal doğal dönüşüm örnekleme teoremi kullanılarak bakıldı. Bu problemin
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zaman-sıklık tanım alanını içine alan en küçük paralelkenarı bulma problemine

karşılık geldiği ispatlandı. Bundan yararlanılarak, ikili doğrusal doğal genişlik

çarpımının sinyallerin serbestlik derecesine zaman-bant genişliği çarpımından

daha çok yaklaştığı görüldü. Bu yaklaşımın temsili verimliliği için kuram-

sal sınırlar verildi. Ayrıca, doğrusal doğal bölgelerin zaman-sıklık düzlemi ile

ilişkisi kuruldu. Her doğrusal doğal bölgenin aslında ölçeklenmiş kesirli Fourier

bölgelerine karşılık geldiği ve herhangi bir doğrusal doğal bölgenin ilişkili olduğu

kesir değeri ile etiketlenebileceği ispatlandı. Bu kavramlar açıklıklı optik sistem-

lerin incelenmesi konusunda kullanıldı. Sistemin serbestlik derecesinin bulan-

abilmesini sağlayan bir method geliştirildi. Bunun yanı sıra, dalganın herhangi

bir düzlemde en az ne kadar örnek ile temsil edilebileceği araştırıldı. Tezin diğer

kısmında ise, iki yada daha çok kesirli Fourier bölgelerinde kısmi bilgiler ver-

ildiğinde sinyalin geri çatılması üzerine çalışıldı. Bu problem için yeni bir doğrusal

cebirsel yaklaşım sunuldu ve kararsızlık oranı verilen noktalar arasındaki artık

bilgi miktarının ölçüsü olarak kullanıldı. Kararsızlık oranının bilinen nokta sayısı

ve diziliminden nasıl etkilendiği incelenerek, verilen noktalar arasındaki artıklık

ve bilgi ilişkileri araştırıldı.

Anahtar Kelimeler: Doğrusal doğal dönüşüm, kesirli Fourier dönüşümü, ikili

doğrusal doğal genişlik çarpımı, doğrusal doğal dizisi, doğrusal doğal bölge, sinyal

temsili, sinyalin geri çatılması, örnekleme, sonlu kaplam, kısmi bilgi, artıklık,

kararsızlık oranı, optik
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Chapter 1

INTRODUCTION

Linear canonical transforms (LCTs) are a three-parameter family of integral

transforms with wide application in optical, acoustical, electromagnetic, and

other wave propagation problems. The Fourier and fractional Fourier trans-

forms, coordinate scaling, and chirp multiplication and convolution operations,

are special cases of LCTs. In this thesis, we will study a number of fundamen-

tal issues and problems associated with linear canonical and fractional Fourier

transforms. First, we will study signal representation under generalized finite

extent constraints. Then we will turn our attention to signal recovery problems

under partial and redundant information in multiple transform domains.

In the first part, we deal with signals which are confined to finite intervals in

fractional Fourier domains or linear canonical domains. We investigate sampling

issues, the number of degrees of freedom, and the time-frequency support of this

set of signals. Earlier works in the literature deal with time- and band-limited

signals. Thus, when the time and frequency extents of signals are specified, the

sampling issues, number of degrees of freedom, and time-frequency support are

well-established. The number of degrees of freedom of time- and band-limited
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signals is given by the time-bandwidth product, which is of fundamental im-

portance in many areas of signal processing, and this is simply the area of the

time-frequency support of these signals given by a rectangular region.

However, it is always possible to specify the extent of a signal in other frac-

tional Fourier or linear canonical domains. For instance, in applications where

the underlying physics involves LCT type integrals as is the case with propaga-

tion problems, specification of the extents in the LCT domains may provide a

much better fit to the set of signals we are dealing with.

We find an expression for the number of degrees of freedom of signals con-

fined to finite intervals in two LCT domains, and refer to this new quantity as

the bicanonical width product. This result is significant since it constitutes a gen-

eralization of the time-bandwidth product. Moreover, to find the time-frequency

support of LCT-limited signals, we clearify the notion of LCT domains. FRT

domains are well-defined in the time-frequency plane; from analogy with FRT

domains, the term LCT domains has been used in the literature without reference

to their relationship to the time-frequency plane. One of the contributions of this

work is to figure out where LCT domains exist in the ordinary time-frequency

plane. With this, we show that the time-frequency support of the set of signals

we are dealing with is a parallelogram and its area is given by the bicanonical

width product. Furthermore, we can represent these signals in the specified LCT

domains with the minimum number of samples, which equals to the number of

degrees of freedom. We prove that with these samples discrete LCT provides a

good approximation to the continuous LCT due to the underlying exact relation

between them.

We then turn our attention to arbitrary sets of signals with arbitrary time-

frequency support. We investigate the minimum number of samples to represent

an arbitrary signal based on the LCT sampling criteria and the LCT domains

that we can represent the signal with that minimum number of samples. This
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investigation reduces to a simple geometric problem, which aims to find the

smallest parallelogram enclosing a given time-frequency support. We give the-

oretical bounds on the representational efficiency of this approach compared to

the actual number of degrees of freedom of the signals and minimum number

of samples given by the classical approach. We also extend this approach to

represent signals at a specific domain.

Finally, we apply these concepts to the analysis of optical systems. We pro-

pose a method to find the largest number of degrees of freedom that can pass

through the system without any information loss. Besides, we investigate the

minimum number of samples to represent the physical signal at an arbitrary

plane in the system and use these samples to simulate the optical system with

discrete-time systems.

In the second part, instead of paying our attention to the number of samples,

we are interested in their distribution to multiple domains. We mainly study

a class of signal recovery problems where partial information in two or more

fractional Fourier domains are available and the aim is to find the unknown

signal values by consolidating the known information. These problems have been

motivated by the existence of applications in optical, acoustical, electromagnetic,

and other wave propagation problems. This is because, the propagation of waves

can be considered as a process of continual fractional Fourier transformation.

Our purpose in this part is to investigate the redundancy and information

relations between the given data under different partial information constraints.

For this purpose, we propose a novel linear algebraic approach to these problems

and formulate the problem as a linear system of equations. Then, we deal with

the sensitivity issues of ill-posed problems and use the condition number as a

measure of redundant information in given samples. By analyzing the effect of

the number of known samples and their distributions on the condition number,

we aim to explore the redundancy and information relations between the given

3



data and independently from the signal to be recovered. Then, we apply this

approach to a number of distributions for cases when total number of knowns is

equal to and more than the number of unknowns.

In the process, we investigate the influence or dependency of a point in one

domain to the points in the other domain for both continuous-time and discrete-

time systems. We observe that a point in one domain affects (or is affected by)

more samples in the other domain as the fractional order increases. We use these

concepts to interpret the simulation results.

In Chapter 2, we present the exact relation between the continuous and dis-

crete linear transforms. Chapter 3 discusses the bicanonical width product and

its relationship to space-frequency plane. In Chapter 4, we investigate the prob-

lem of finding the minimum number of samples to represent arbitrary signals

based on the LCT sampling criteria. In Chapter 5, we apply these concepts to

analyze optical systems with arbitrary number of apertures. Chapter 6 investi-

gates the effect of one point in the input to the points in the output as a function

of fractional order when the output is related to its input through a FRT. In

Chapter 7, we provide a linear algebraic approach to the signal recovery prob-

lems under partial and redundant information in multiple transform domains.

We conclude in Chapter 8.
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Chapter 2

EXACT RELATION

BETWEEN CONTINUOUS

AND DISCRETE LINEAR

CANONICAL TRANSFORMS

2.1 Introduction

Discrete counterparts of continuous transforms are not only of intrinsic interest,

but are important for approximately computing the samples of continuous trans-

forms. For instance, the discrete Fourier transform (DFT) is commonly used to

obtain the samples of the Fourier transform (FT) of a function from the samples

of the original function.

Linear canonical transforms (LCTs) are a three-parameter family of integral

transforms with wide application in wave propagation problems [2] and have

also found use in optimal filtering [3]. The Fourier and fractional Fourier trans-

forms, coordinate scaling, and chirp multiplication and convolution operations,
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are special cases of LCTs. In this letter, we derive the exact relation between the

continuous LCT and the discrete LCT (DLCT) defined in [4] and implemented

in [5]. This provides the underlying foundation for approximately computing the

samples of the LCT of a continuous signal by replacing the transform integral

with a finite sum, and constitutes a generalization of the exact relation between

continuous and discrete FTs, which has been regarded as a fundamental theo-

rem by Papoulis [6]. Consequently, the DLCT in this letter approximates the

continuous LCT in the same sense that the DFT approximates the continuous

FT.

To state the above mentioned theorem for FTs, let f(u) and F (µ) be a

continuous-time signal and its FT, and define the periodically replicated func-

tions

f̄(u) ≡
∞
∑

n=−∞

f(u − n∆u), F̄ (µ) ≡
∞
∑

n=−∞

F (µ − n∆µ), (2.1)

where ∆u and ∆µ are arbitrary. Then, the samples of these functions form a

DFT pair as follows for any m:

F̄ (m δµ) = δu
∑

k∈<N>

f̄(k δu)e−i2πmk/N , (2.2)

where δu = 1/∆µ, δµ = 1/∆u, N = ∆u∆µ, and <N> denotes any interval

of length N . This exact relation between the continuous and discrete ordinary

Fourier transforms, provides the basis for approximately computing the samples

of the continuous FT of a function by using the DFT.

In addition to generalizing the above fundamental theorem to LCTs, we also

show that it can be expressed in terms of a new definition of the DLCT which,

unlike certain earlier definitions, can be explicitly expressed without reference to

the underlying continuous functions or their extents and sampling intervals. This

new definition would be useful in studies which are formulated in a purely discrete

setting and in developing fast transform algorithms. In the process we define the

linear canonical series, which is the generalization of the ordinary Fourier series.
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We also compare a computational algorithm based on these definitions of the

DLCT, with earlier proposed algorithms. Furthermore, we find an expression for

the number of degrees of freedom of signals confined to finite intervals in the time

and LCT domains. This result is significant since it constitutes a generalization

of the time-bandwidth product. We refer to this new quantity as the time-

canonical width product or more generally the bicanonical width product. The

results presented in this chapter has been recently published in [7].

2.2 Discrete Linear Canonical Transforms

The LCT with parameter matrix M is defined as [8]

fM(u) ≡ (CMf)(u) ≡
∫ ∞

−∞

CM(u, u′)f(u′) du′, (2.3)

CM(u, u′) ≡
√

β e−iπ/4 eiπ(αu2−2βuu′+γu′2),

where CM is the LCT operator, and α, β, γ are real parameters. The transform is

unitary and C−1
M

(u, u′) = CM−1(u, u′) = C∗
M

(u′, u). The unit-determinant matrix

M is equivalent to the three parameters and either set of parameters can be

obtained from the other [8]: M ≡ [γ/β, 1/β; − β + αγ/β, α/β]. The LCT

reduces to the ath-order fractional Fourier transform (FRT) when α = cot(aπ/2),

β = csc(aπ/2), γ = cot(aπ/2) [2] . The FRT operator Fa is additive in index:

Fa2Fa1 = Fa2+a1 and reduces to the ordinary FT and identity operators for

a = 1 and a = 0 respectively.

The discrete LCT f̂M(m δuM) of f̂(k δu) has been defined as follows for m =

−N/2, . . . , N/2 − 1 [4, 5]:

f̂M(m δuM) ≡ δu

N/2−1
∑

k=−N/2

f̂(k δu) CM(m δuM, k δu), (2.4)

CM(m δuM, k δu) =
√

β e−iπ/4e
iπ 1

N|β|
(α

δuM

δu
m2−2βkm+γ δu

δuM

k2)
,
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where δuM = (|β|Nδu)−1. Here δu and δuM are the sampling intervals in the

time and LCT domains. N is the number of samples. The carets in (2.4) are

to remind us that f̂M is not the continuous LCT of f̂ . The special case of

(2.4) corresponding to the FRT has been defined in [9], but we note that this

definition is different than the discrete FRT given in [10]. The definition in (2.4)

can be made unitary by including an additional factor
√

δuM/δu in front of the

summation.

The definition in (2.4), while suitable for certain purposes, is not a usual

way of defining a discrete transform, since the transform matrix exhibits the

undesirable quality of depending on the sampling intervals, whereas ideally it

would depend only on the number of samples N and the transform parameters

α, β, γ. One of the contributions of this letter is to show that an interval-

independent definition of the DLCT can still be used to approximately compute

continuous LCTs with arbitrary sampling intervals.

We express the transform matrix of this interval-independent and unitary

definition of the DLCT as follows:

CM[m, k] =

√
β e−iπ/4

√

N |β|
e

iπ 1

N|β|
(αm2−2βkm+γk2)

. (2.5)

This corresponds to the matrix elements in (2.4) with δu = δuM. We will

demonstrate in Section 2.3 how to use this interval-independent DLCT to ex-

actly compute DLCTs as defined in (2.4), as well as to approximately compute

continuous LCTs.

2.3 Fundamental Theorem for LCTs

Let f(u) and fM(u) be a continuous-time signal and its LCT with parameters

α, β, γ. Define the following periodically replicated functions where each period

has been modulated with varying phase terms:

8



f̄(u)(M−1,∆u) ≡
∞
∑

n=−∞

f(u − n∆u)e−iπγn∆u(2u−n∆u), (2.6)

f̄M(u)(M,∆uM) ≡
∞
∑

n=−∞

fM(u − n∆uM)eiπαn∆uM(2u−n∆uM), (2.7)

where ∆u and ∆uM are arbitrary. Both definitions are of identical form since

the value of α for M−1 is −γ [2]. It is also worth noting that the functions we

have just defined are chirp-periodic in the sense of [9, 11].

The generalization of the exact relation between continuous and discrete FTs

(2.2) to LCTs will be stated as a theorem:

Theorem: The samples of the functions defined in (2.6) and (2.7) are exactly

related to each other through the samples of the continuous kernel (the DLCT

matrix in (2.4)):

f̄M(m δuM)(M,∆uM) = δu
∑

k∈<N>

f̄(k δu)(M−1,∆u)CM(m δuM, k δu), (2.8)

for any m, where

δu =
1

|β|∆uM

, δuM =
1

|β|∆u
, N = ∆u∆uM|β|. (2.9)

Postponing the proof, we also express this exact relation in terms of the

interval-independent DLCT as a corollary:

Corollary:

f̄M(m δuM)(M,∆uM) =

√

∆u

∆uM

∑

k∈<N>

f̄(k δu)(M−1,∆u)CM
′ [m, k], (2.10)

where M′ corresponds to α′ = α∆uM/∆u, β ′ = β, γ′ = γ∆u/∆uM. Thus, the

interval-independent DLCT defined in (2.5) exactly relates the samples of the

functions defined in (2.6) and (2.7) to each other. The parameters α′, β ′, γ′

differ from the original α, β, γ because using the interval-independent DLCT

effectively involves a rescaling of the sampling intervals, and the LCT of a scaled

version of a function, is a scaled version of the LCT of the original function with

different parameters.
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The definition of the functions in (2.6) and (2.7), and the theorem and

corollary can easily be specialized to the FRT by replacing α → cot(aπ/2),

β → csc(aπ/2), γ → cot(aπ/2).

Proof of Theorem: Let fs(u) be the sampled version of a continuous signal

f(u) with sampling interval δu:

fs(u) =
∞
∑

n=−∞

f(n δu)δ(u − nδu) =
1

δu

∞
∑

n=−∞

f(u)ei2πnu/δu. (2.11)

Then, apply the LCT operator CM to the equivalent expressions for fs(u) in

(2.11) to obtain

f̄M(u)(M,∆uM) = δu

∞
∑

n=−∞

f(n δu)CM(u, n δu), (2.12)

where ∆uM = (|β|δu)−1. This result is the generalization of the Poisson sum

formula [6], and is related to the LCT sampling theorem [12, 13, 14]. The right-

hand side of this expression defines the discrete-time LCT [5] and its special case

for the FRT defines the discrete-time FRT [9].

Now, sample f̄M(u)(M,∆uM) in (2.12) with a sampling interval chosen as δuM =

(|β|Nδu)−1 with N an arbitrary integer. Then write the integer n as n = k+rN ,

k ∈<N>, where r is an integer running from −∞ to ∞:

f̄M(m δuM)(M,∆uM) = δu

∞
∑

r=−∞

∑

k∈<N>

f((k + rN)δu)CM(m δuM, (k + rN)δu).(2.13)

After changing the order of summations and substituting

CM(m δuM, (k + rN)δu) = CM(m δuM, k δu)eiπγrNδu2(2k+rN) (2.14)

in (2.13), we collect all the terms that depend on r in a summation and recognize

this summation as the sampled version of (2.6) with the sampling interval δu

where ∆u = Nδu. This completes the proof of (2.8).

We will make a number of comments before proving the corollary. Had the

derivation been carried out by applying the operator C−1
M

to the sampled version
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of fM(u) instead of applying CM to the sampled version of f(u), one would obtain

the duals of (2.8) and (2.12):

f̄(k δu)(M−1,∆u) = δuM

∑

m∈<N>

f̄M(m δuM)(M,∆uM)C
∗
M

(m δuM, k δu) (2.15)

f̄(u)(M−1,∆u) = δuM

∞
∑

n=−∞

fM(n δuM)C∗
M

(n δuM, u). (2.16)

Here (2.15) provides the exact relation for the inverse DLCT and (2.16) gives the

expression for the linear canonical series, which is the generalization of ordinary

Fourier series. The fractional Fourier series derived in [15, 16, 9] is a special

case of this series. Just as periodic functions have Fourier series expansions, a

function in the form of (2.6), which is chirp-periodic, has a linear canonical series

expansion. Here the expansion coefficients of f̄(u)(M−1,∆u) are δuMfM(n δuM).

Again in analogy with the ordinary Fourier case, linear canonical series can also

be used to represent an aperiodic signal f(u) with finite extent. But in this case,

the series will give the periodically replicated and phase modulated extension

of f(u) outside its finite extent. Unlike the discrete-time LCTs, which take

discrete signals to continuous signals [5, 16, 9], linear canonical series, which take

continuous signals to discrete signals, do not seem to have received attention in

the literature.

Just as periodicity and discreteness in either the time or frequency domain

implies the dual property in the other domain [17], (2.12) and (2.16) demonstrate

the idea that discreteness in either the time or LCT domains implies periodic

replication and phase modulation in the other domain, and vice versa [9]. If both

are present in one domain, they will both also be present in the other domain.

It is precisely in this case that, there exists an exact relation between these two

sets of samples, as given in (2.8) and (2.15).

Proof of Corollary: Substitute α′, β ′, γ′ for α, β, γ in (2.5). Then use (2.9)

and the DLCT matrix in (2.4) to obtain C
M

′ [m, k] =
√

δuδuM CM(mδuM, kδu).

Substitute this in (2.8) to obtain (2.10).
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2.4 Computation of Continuous LCTs

The exact relation between continuous and discrete LCTs provides the underlying

foundation for approximately computing the samples of the LCT of a continu-

ous signal by replacing the transform integral with a finite sum. Sampling the

continuous input function and the transform kernel will always lead to a finite

sum; however, this sum will not be exactly equal to the samples of the continu-

ous output. We may still choose this finite sum as the definition of the discrete

version of our transform, but then the relationship between the discrete input

and output vectors, and the samples of the continuous input and output remains

to be shown. In particular, for the DLCT in (2.4), the relation of f̂ and f̂M with

the samples of the original continuous functions is not apparent and our main

contribution is to exactly provide this relation ((2.8) and (2.10)).

Let us assume that a large percentage of the total energy of the signal is

respectively concentrated in the intervals [−∆u/2, ∆u/2] and [−∆uM/2, ∆uM/2]

in the time and LCT domains. Then, f̄(u)(M−1,∆u) ≈ f(u) and f̄M(u)(M,∆uM) ≈
fM(u) in the respective intervals, and from (2.8) and (2.10) the discrete LCT of

the samples of the function are the approximate samples of the continuous LCT

of that function:

fM(m δuM) ≈ δu

N/2−1
∑

k=−N/2

f(k δu) CM(m δuM, k δu) (2.17)

fM(m δuM) ≈
√

∆u

∆uM

N/2−1
∑

k=−N/2

f(k δu)CM′[m, k], (2.18)

where δu, δuM, and N are as given in (2.9). If both the functions f(u) and fM(u)

could be identically zero outside of the given intervals, the mapping between the

samples of these functions would be exact. But, since the extent of a function

and its LCT cannot both be finite for β 6= ∞ [18], there will be overlaps between

the periodically replicated and phase modulated functions, and the DLCT will
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be an approximation between the samples of the continuous signals. This ap-

proximation for the LCT and FRT is similar to that for the ordinary FT. The

functions (2.6) and (2.7) reveal the precise nature of overlap and aliasing that

occurs, which is somewhat different than the ordinary Fourier case due to the

phase terms appearing in the periodic replication. As with the DFT, the approx-

imation improves with increasing N since this decreases the overlap between the

replicas.

As is well-known, if the time-domain vector is periodic or periodically ex-

tended, the DFT summation can run over any interval of length N ; furthermore,

the output vector is periodic with period N . Likewise, if the time-domain vec-

tor is chirp-periodic or chirp-periodically extended (as in (2.6)), then the DLCT

summation can run over any interval of length N ; furthermore, the output vector

is chirp-periodic (as in (2.7)).

Both the DLCT in (2.4) and the interval-independent DLCT whose matrix

is given in (2.5) can be computed by performing a chirp multiplication, a fast

Fourier transform (FFT) and a second chirp multiplication, which takes 2N +

(N/2) log N time, where N = ∆u∆uM|β| [9, 4]. It is interesting to compare

this approach to computing LCTs with the algorithms given in [17, 19, 5]. All

of these produce output vectors which are good approximations to the samples

of the continuous transform, limited only by the fundamental fact that a signal

cannot have finite extent in more than one domain; since the sampling interval

is ensured to satisfy the Nyquist criterion, the output samples can be used to

reconstruct good approximations of the continuous output. On the other hand,

while the algorithms in [17, 19] also take ∼ N log N time, most of them involve

more than one FFT and therefore a larger factor in front, in addition to being

less transparent. However, this does not automatically mean that these earlier

algorithms are slower since the number of samples N in these works are not

directly comparable to that in this letter, as discussed below.
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2.5 Generalization of the Time-Bandwidth

Product

The conventional time-bandwidth product ∆u∆µ is the minimum number of

samples to identify a signal out of all signals whose energies are confined to time

and frequency intervals of length ∆u and ∆µ. Likewise, the product ∆u∆uM|β|
is the minimum number of samples to identify a signal out of all signals whose

energies are confined to time and LCT intervals of length ∆u and ∆uM. We

refer to the product ∆u∆uM|β| as the time-canonical width product . More gen-

erally, the term bicanonical width product will be used to refer to the product

∆uM1
∆uM2

|β1,2|, where ∆uM1
and ∆uM2

are the extents of the signal in two

arbitrary LCT domains and β1,2 is the parameter of the LCT between these do-

mains. The minimum number of samples needed to uniquely identify a signal is

also referred to as the number of degrees of freedom.

The time-bandwidth product is a notion derived from simultaneously specify-

ing the time and frequency extents of signals. Although this product is commonly

seen as an intrinsic property, it is in fact a notion that is specific to the FT and

the frequency domain. However, it is always possible to specify the extent of

a signal in other FRT or LCT domains. The set of signals thus specified will

constitute a different family of signals with a different number of degrees of free-

dom than that defined through specifying the extent in the ordinary frequency

domain. Indeed, there is no reason to think that families of signals encountered

in practice will necessarily uniformly fall into a rectangular region in the ordi-

nary time-frequency space. For instance, in applications where the underlying

physics involves LCT type integrals as is the case with propagation problems,

specification of ∆u and ∆uM may provide a much better fit to the set of signals

we are dealing with.
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While having a finite extent in one LCT domain is not sufficient to ensure

that a family of signals has a finite number of degrees of freedom, specifying two

LCT domains in which the signal is approximately confined to finite intervals

allows us to approximately represent the family of signals with a finite number

of degrees of freedom. The family of signals thus defined depends both on the

chosen LCT domains and the extent of the signals in those domains.

To approximately compute LCTs, we assume that the signal is approximately

confined to ∆u and ∆uM in the time and LCT domains. In contrast, in [17, 19]

it is assumed that the signal is confined to a rectangle or ellipse orthogonal to

the ordinary time-frequency axes in the time-frequency plane, regardless of the

parameters of the FRT or LCT to be computed. As noted before, it is not

possible to directly compare the present algorithm for computing LCTs to those

in [19] since different families of signals are assumed. Therefore, which algorithm

is better will depend strongly on what assumptions are best suited to the family

of signals we are dealing with. However, if we restrict our attention to [17] which

deals with the special case of FRTs, a comparison becomes possible. There the

signal is assumed to have negligible energy outside a circle of diameter ∆u in

the time-frequency plane. This implies that the signal will be approximately

confined to ∆u in both the time and FRT domains [20], so that the results of

this letter can be applied. The value of N = ∆u2| csc(aπ/2)| in our complexity

expressions is smaller than N = 2∆u2 appearing in [17] for 0.5 ≤ |a| ≤ 1.5, but

the real advantage lies in the fact that the numerical factor in front of N log N

will be considerably smaller than in this widely-used method.

It is interesting to note that the relations between the parameters given in

(2.9) are consistent with sampling theorems for the FRT [21, 22, 15, 9, 23, 24]

and LCT [12, 13, 14, 25], as well as the definition of the bicanonical width prod-

uct. In (2.9), δu−1 = |β|∆uM is the minimum rate for sampling the time-domain

representation of a signal that has finite extent ∆uM in the LCT domain in
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question. If we sample the time-domain signal at this rate, the total number

of samples over the extent ∆u is given by N = ∆u/δu = ∆u∆uM|β|, which

is the same as the number of samples N given in (2.9), and nothing but the

bicanonical width product. Alternatively, δu−1
M

= |β|∆u in (2.9) is the mini-

mum rate for sampling the LCT-domain representation of a signal that has finite

extent ∆u in the time domain. If we sample the LCT-domain signal at this

rate, the total number of samples over the extent ∆uM is once again given by

N = ∆uM/δuM = ∆u∆uM|β|. Thus we have accomplished to formulate such

that the number of samples in both domains are equal to each other regardless

of the LCT parameters, and this number of samples is the minimum possible

for both domains, for the given extents. This approach is in contrast to some

earlier works where the starting assumption is knowledge of the extent of the

signal in the ordinary time and frequency domains and the number of samples is

determined from the ordinary Nyquist sampling theorem [19, 26], whereas in our

formulation it is knowledge of the extents in two LCT domains and the number

of samples is determined from the LCT sampling theorem. We also note that

the relations in (2.9) reduce to the well-known results for the Fourier transform

when β = 1.

As a final remark, we note that the relation between the extents of the signals

and the number of samples expressed as ∆u∆uM = N/|β| is in agreement with

the uncertainty relation for LCTs. Since N ≥ 1 we can write ∆u∆uM ≥ 1/|β|
which is precisely the uncertainty relation for LCTs [2].
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Chapter 3

THE BICANONICAL WIDTH

PRODUCT: A

GENERALIZATION OF THE

TIME-BANDWIDTH

PRODUCT

3.1 Introduction

In this chapter, we will first discuss the bicanonical width product in more detail

and then give its relationship to the time-frequency plane. The conventional

time-bandwidth product is of fundamental importance in many areas of signal

processing and information optics because of its interpretation as the number of

degrees of freedom [2, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. For a family of

signals, whose members are approximately confined to an interval of length ∆u

in the time domain and to an interval of length ∆µ in the frequency domain, the
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time-bandwidth product N is defined as [2]

N ≡ ∆u∆µ, (3.1)

which is always greater than or equal to unity because of the uncertainty relation.

The conventional time-bandwidth product is the minimum number of sam-

ples to uniquely identify a signal out of all possible signals whose energies are

approximately confined to time and frequency intervals of length ∆u and ∆µ.

This argument is based on Nyquist’s sampling theorem. The Nyquist rate for

sampling the time-domain representation of a signal that has finite extent ∆µ in

the frequency domain is δu−1 = ∆µ. If we sample the time-domain signal at this

rate, the total number of samples over the extent ∆u is given by ∆u/δu = ∆u∆µ,

which is simply the time-bandwidth product N . Alternatively, δµ−1 = ∆u is the

Nyquist rate for sampling the frequency-domain representation of a signal that

has finite extent ∆u in the time domain. If we sample the frequency-domain

signal at this rate, the total number of samples over the extent ∆µ is given by

∆µ/δµ = ∆u∆µ, which is once again the time-bandwidth product N . The time-

bandwidth product of the set of time- and band-limited signals can be interpreted

as the number of degrees of freedom of the set of signals.

The time-bandwidth product is a notion derived from simultaneously specify-

ing the time and frequency extents of signals. Although this product is commonly

seen as an intrinsic property, it is in fact a notion that is specific to the FT and

the frequency domain. However, it is always possible to specify the extent of

a signal in other FRT or LCT domains. The set of signals thus specified will

constitute a different family of signals with a different number of degrees of free-

dom than that defined through specifying the extent in the ordinary frequency

domain. Obviously while having a finite extent in one LCT domain will not

be sufficient to ensure that a family of signals has a finite number of degrees

of freedom, specifying two LCT domains in which the signal is approximately

confined to finite intervals will allow us to approximately represent the family
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of signals with a finite number of degrees of freedom. The number of degrees

of freedom thus defined will certainly depend on both the chosen LCT domains

and the extent of the signals in those domains.

We now define the time-canonical width product, which gives the number of

degrees of freedom of signals which are confined to finite intervals in the time

and LCT domains. Let us assume that for a family of signals, a large percentage

of the total energy of its members is approximately confined to the intervals of

length ∆u and ∆uM in the time and LCT domains, respectively. Then, the

time-canonical width product is defined as [7]

N ≡ ∆u∆uM|β|, (3.2)

which is always greater than or equal to unity because of the uncertainty rela-

tion for LCTs. Here, β is the parameter of the LCT domain in question. We

emphasize that the time-canonical width product constitutes a generalization of

the time-bandwidth product. More generally, the term bicanonical width product

will be used to refer to the product [7]

N = ∆uM1
∆uM2

|β1,2|, (3.3)

where ∆uM1
and ∆uM2

are the extents of the signal in two arbitrary LCT do-

mains and β1,2 is the parameter of the LCT between these domains.

The time-canonical width product is the minimum number of samples to

uniquely identify a signal out of all possible signals whose energies are approxi-

mately confined to time and LCT intervals of length ∆u and ∆uM. Our argument

is based on the LCT sampling theorem [12, 13, 14], which will be reviewed in

Section 3.2. The minimum rate for sampling the time-domain representation of

a signal that has finite extent ∆uM in the LCT domain with parameter M is

δu−1 = |β|∆uM. If we sample the time-domain signal at this rate, the total

number of samples over the extent ∆u is given by ∆u/δu = ∆u∆uM|β|, which

is the same as the time-canonical width product. Alternatively, δu−1
M

= |β|∆u
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is the minimum rate for sampling the LCT-domain representation of a signal

that has finite extent ∆u in the time domain. If we sample the LCT-domain

signal at this rate, the total number of samples over the extent ∆uM is given by

∆uM/δuM = ∆u∆uM|β|, which is once again the time-canonical width product.

The derivation above can be easily generalized for the bicanonical width product

in (3.3). The bicanonical width product of the set of LCT-limited signals in two

domains can be interpreted as the number of degrees of freedom of the set of

signals.

Indeed, there is no reason to think that families of signals encountered in

practice will necessarily uniformly fall into a rectangular region in the ordinary

time-frequency plane. As is well-known, when the family of signals does not

have a rectangular support, the actual number of degrees of freedom will be less

than the time-bandwidth product. That is, we can represent these signals with

a number of samples less than the time-bandwidth product. In this case, the bi-

canonical width product may provide a better approximate to the actual number

of degrees of freedom, which will allow us to represent these signals with a less

number of samples. For instance, in applications where the underlying physics

involves LCT type integrals as is the case with wave propagation problems, spec-

ification of ∆u and ∆uM may provide a much better fit to the set of signals we

are dealing with.

In chapter 2, we have presented the exact relation between the continuous

LCT and the discrete LCT, which provides the underlying foundation for ap-

proximately computing the samples of the LCT of a continuous signal with the

DLCT. As we have seen, provided N is chosen to be at least equal to the bi-

canonical width product of the set of signals we are dealing with, the DLCT

which can be efficiently computed on a digital computer by taking N log N time

can be used to obtain a good approximation to the continuous LCT, limited only

by the fundamental fact that a signal cannot have finite extent in more than one
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domain. The approximation improves with increasing N . In that chapter, we

have also showed that chirp-periodicity (or equivalently, finite extent) in either

of the time or LCT domains implies discreteness in the other domain and vice

versa. If both chirp-periodicity and discreteness are present in either domain,

then they will both also be present in the other domain as well, implying a finite

number of degrees of freedom (which is given by the bicanonical width product).

This is the real basis of the definition of the DLCT, which has been first defined

in [4].

3.2 Linear Canonical Transforms

In this section, we will review LCTs for self-completeness. LCTs are a three-

parameter family of linear integral transforms which includes the Fourier and

fractional Fourier transforms, coordinate scaling, and chirp multiplication and

convolution operations as its special cases. LCTs can model a broad class of

optical systems involving thin lenses, sections of free space in Fresnel approxi-

mation, sections of quadratic graded-index media, and arbitrary combinations of

any number of these, also referred to as quadratic-phase systems.

The LCT of f(u) with parameter matrix M is defined as [8]

fM(u) ≡ (CMf)(u) ≡
∫ ∞

−∞

CM(u, u′)f(u′) du′, (3.4)

CM(u, u′) ≡
√

1

B
e−iπ/4 exp

[

iπ

(

D

B
u2 − 2

1

B
uu′ +

A

B
u′2

)]

,

where CM is the unitary LCT operator, A, B, C, D are the elements of the

matrix M, and AD − BC = 1.

The unit-determinant matrix M whose elements are A, B, C, D are equivalent

to the three real parameters α, β, γ and either set of parameters can be obtained
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from the other [8]:

M =





A B

C D



 =





γ/β 1/β

−β + αγ/β α/β



 (3.5)

The transform matrix M is useful in the analysis of optical systems because

if several systems are cascaded the overall system matrix can be found by mul-

tiplication of the corresponding matrices of each cascaded system.

The ath-order fractional Fourier transform (FRT) of a function f(u), denoted

by fa(u), is most commonly defined as [2]

fa(u) ≡ (Faf)(u) ≡
∫ ∞

−∞

Ka(u, u′)f(u′) du′, (3.6)

Ka(u, u′) ≡ Aφ exp
[

iπ
(

cot φu2 − 2 csc φuu′ + cotφu′2
)]

,

Aφ =
√

1 − i cotφ, φ = aπ/2

when a 6= 2j and Ka(u, u′) = δ(u − u′) when a = 4j and Ka(u, u′) = δ(u + u′)

when a = 4j ± 2, where j is an integer.

Dimensionless variables and parameters are employed throughout this chap-

ter for simplicity and purity and to avoid the problems associated with assigning

units to oblique axes in the time-frequency plane. We will assume that a di-

mensional normalization has been performed on the signals we work with and

that the coordinates appearing in the definition of the fractional Fourier trans-

form, linear canonical transform, Wigner distribution, etc., are all dimensionless

quantities.

The FRT is also a special case of the LCT with matrix

Fa =





cos(aπ/2) sin(aπ/2)

− sin(aπ/2) cos(aπ/2)



 , (3.7)

differing only by the factor e−iaπ/4:

CFaf(u) = e−iaπ/4Faf(u). (3.8)
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Arbitrary LCTs can be decomposed into cascade combinations of the FRT,

scaling, and chirp multiplication operations [19]:

M=





A B

C D



=





1 0

−q 1









M 0

0 1
M









cos φ sin φ

− sin φ cos φ



 (3.9)

Here, q is the chirp multiplication parameter, M > 0 is the scaling factor and φ =

aπ/2, where a is the order of the FRT. For the matrices of the chirp multiplication

and scaling operations, the reader may refer to section 5.1 in chapter 5. The

decomposition can be written more explicitly in terms of the LCT and FRT

domain representations of the signal in the form

fM(u) = exp
[

−iπqu2
]

√

1

M
fa

( u

M

)

. (3.10)

This decomposition was inspired by the optical interpretation in [1] and is also

a special case of the widely known Iwasawa decomposition [38, 39, 40]. As we

will see, the three parameters a, M , q are sufficient to satisfy the above equality

for arbitrary ABCD matrices. If we solve for a, M , q in (3.9), we will obtain the

decomposition parameters in terms of the matrix entries A, B, C, D as follows:

a =







2
π
arctan

(

B
A

)

, if A ≥ 0

2
π
arctan

(

B
A

)

+ 2, if A < 0
(3.11)

M =
√

A2 + B2, (3.12)

q =







−C
A
− B/A

A2+B2 , if A 6= 0

−D
B

, if A = 0
(3.13)

The ranges of the arccotangent lie in (−π/2, π/2].

Lastly, we will review the LCT sampling theorem. Let f(u) be a function

which, for a given parameter M , has an LCT with compact support such that

fM(u) is zero outside the interval [−∆uM/2, ∆uM/2]. Such a function can be

reconstructed from its samples taken at intervals δu ≤ 1/|β|∆uM. The recon-

struction formula, which we will refer to as the LCT interpolation formula, is

given by [14]

f(u) = δu |β|∆uM e−iπγu2

∞
∑

n=−∞

f(n δu) eiπγ(n δu)2sinc(β ∆uM(u − n δu)) (3.14)
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3.3 The Relation between Fractional Fourier

Domains and Linear Canonical Domains

Fractional Fourier domains correspond to oblique axes in the time frequency

plane, and thus they are intimately related to time-frequency representations

such as the Wigner distribution. The effect of ath-order fractional Fourier trans-

formation on the Wigner distribution of a signal is to rotate the Wigner distri-

bution by an angle φ = aπ/2 [41, 42, 20]. Mathematically,

Wfa
(u, µ) = Wf(u cos φ − µ sin φ, u sinφ + µ cosφ). (3.15)

The Radon transform operator RDN φ, which takes the integral projection of

the Wigner distribution of f(u) onto an axis making an angle φ with the u axis,

can be used to restate the previous property in the following manner [2]:

{RDN φ[Wf (u, µ)]}(ua) = |fa(ua)|2, (3.16)

where ua denotes the axis making angle φ = aπ/2 with the u axis. That is,

projection of the Wigner distribution of f(u) onto the ua axis gives |fa(ua)|2,
the squared magnitude of the ath order FRT of the function. Hence, the projec-

tion axis ua can be referred to as the ath order fractional Fourier domain ( see

Fig. 3.1) [41, 42]. The time and frequency domains are merely special cases of

the continuum of fractional Fourier domains.

Recently, there has also been increased interest in generalizing the fractional

Fourier transform and its properties to linear canonical transforms. From analogy

with fractional Fourier domains, the term LCT domain has been started to use

to refer to the domain where the LCT representation of the signal “lives” [43,

14, 44, 45]. However, although fractional Fourier domains are well-defined in

the time-frequency plane [41, 2], it is not yet established where LCT domains

exist and what they correspond to in the time-frequency plane. Moreover, LCT

domains are characterized by three parameters (one of the four matrix parameters
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Figure 3.1: The ath order fractional Fourier domain

is redundant because of the unit-determinant condition). Since each parameter

can vary independently, LCT domains are a three-parameter space; that is, each

LCT domain can be labeled with three parameters, which makes them hard to

visualize.

One of the contributions of this work is to figure out where linear canonical

domains exist in the ordinary time-frequency plane. We will show that each

LCT domain is a scaled FRT domain, and thus any LCT domain can be labeled

simply by its associated fractional order a. Therefore, each LCT domain is effec-

tively associated with only one parameter a and this parameter is monotonicly

increasing through arbitrary quadratic-phase systems (refer to [1] or chapter 5).

We will now introduce essentially equivalent domains by using the Iwasawa

decomposition given in (3.10). As we have seen, any arbitrary LCT of a signal

can be expressed as chirp multiplied and scaled version of the ath order FRT of

the signal, which we repeat here for convenience:

fM(u) = e−iπqu2

√

1

M
fa

( u

M

)

. (3.17)
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The parameters of the FRT, scaling, and chirp multiplication are given in terms

of the LCT parameters in (3.11), (3.12), and (3.13), respectively. Thus, in order

to compute an arbitrary LCT of a signal, we can first take the ath order FRT of

the signal. This operation moves the signal to the ath order fractional Fourier

domain. Secondly, we scale the transformed signal. Scaling does not effectively

move the signal to a different domain, and thus the signal is at a scaled FRT

domain after the scaling operation. Finally, we multiply the resulting signal with

a chirp to obtain the LCT. Chirp multiplication can be interpreted as a window-

ing operation in the current domain; thus, it does not change the domain of the

signal, just like the scaling operation. Therefore, linear canonical transformed

signal lives at a scaled ath order FRT domain. This discussion also reveals that

LCT domains are essentially equivalent to scaled fractional Fourier domains, and

thus they are not richer than FRT domains. Note that LCTs with the same A/B

or equivalently γ parameter, contain the same order of FRT in their decompo-

sition as seen from (3.11) and therefore they are associated with the same FRT

domain. We refer to such LCT domains as essentially equivalent domains . If a

signal has a compact support at a certain LCT domain, then the signal will have

also compact support in all essentially equivalent domains of this LCT domain.

Similar discussion has been given in [45] in a different context. The condition

A1/B1 = A2/B2 for essentially equivalent domains is equivalent to the condition

in [45] where the uncertainty relation is not valid.

Let us now consider a set of signals, whose members are approximately con-

fined to the intervals [−∆uM1
/2, ∆uM1

/2] and [−∆uM2
/2, ∆uM2

/2] in two LCT

domains, namely uM1
and uM2

. Since LCT domains are equivalent to scaled frac-

tional Fourier domains, each interval given in an LCT domain will define a scaled

interval in the associated FRT domain. To see this explicitly, we again refer to

(3.17), which implies that if fM(u) is confined to an interval of length ∆uM, so

is fa(u/M). Then, the extent of fa(u) is ∆uM/M , which gives the extent in the
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associated ath order FRT domain. Thus, for the set of signals in question, the ex-

tent in the a1th order FRT domain is ∆uM1
/M1 and the extent in the a2th order

FRT domain is ∆uM2
/M2, where a1 and a2 are related to M1 and M2 through

the equation (3.11). Note that we should take into account the FRT and scaling

parameters of the decomposition, but not the chirp multiplication parameter. It

is well-known that if the time-, frequency- or FRT-domain representation of a

signal is identically zero (negligible) outside a certain interval, so is its Wigner

distribution [2]. As a direct consequence of this fact, the Wigner distribution of

this set of signals is confined to the corridors of width ∆uM1
/M1 and ∆uM2

/M2

in the directions orthogonal to ua1
and ua2

, respectively. Thus, the support of the

Wigner distribution is a parallelogram defined by these corridors ( see Fig. 3.2.

In general, if more than two extents are specified in different LCT domains, the

time-frequency support will be a centrally symmetrical convex polygon defined

by these intervals (Fig. 3.3).

Figure 3.2: Support of the Wigner distribution when two extents are specified

Theorem 1. The bicanonical width product ∆uM1
∆uM2

|β1,2| is the area of the

parallelogram defined by the extents ∆uM1
and ∆uM2

in two LCT domains

(Fig. 3.2). Equivalently, it is the area of the time-frequency support of the signals,

which have finite extents ∆uM1
and ∆uM2

in uM1
and uM2

domains, respectively.

Proof. Let h1 and h2 be two heights of a parallelogram and φ denote the angle

between them. Then, the area of the parallelogram is given by h1h2| csc φ|.
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Figure 3.3: Support of the Wigner distribution when more than two extents are
specified

For the parallelogram defined by the extents ∆uM1
and ∆uM2

, the heights are

∆uM1
/M1 and ∆uM2

/M2, which correspond to the widths of the corridors. Then,

the area of this parallelogram is

Area =
∆uM1

M1

∆uM2

M2
| csc(φ1 − φ2)| (3.18)

=
∆uM1

∆uM2

M1M2| sin φ2 cos φ1 − cos φ2 sin φ1|
(3.19)

=
∆uM1

∆uM2

|A1B2 − B1A2|
(3.20)

= ∆uM1
∆uM2

|β1β2|
|γ1 − γ2|

(3.21)

= ∆uM1
∆uM2

|β1,2| (3.22)

As is well-known, when two extents are specified in the time and frequency

domains, the time-frequency support of the signal is confined to a rectangular

region. In this case, the time-bandwidth product equals to the number of degrees

of freedom since it gives the area of that rectangular region. We have showed

that in the general case when two extents are specified in arbitrary two LCT

domains, the time-frequency support of the signal is confined to a parallelogram.

In this case, the bicanonical width product equals to the number of degrees of

freedom since it gives the area of that parallelogram.
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Chapter 4

MINIMAL REPRESENTATION

OF SIGNALS: AN APPROACH

BEYOND THE

TIME-BANDWIDTH

PRODUCT

4.1 Introduction

As we have seen in the last chapter, when the extent of the signal is specified in

two LCT domains, its time-frequency-frequency support can be represented with

a parallelogram. The number of degrees of freedom of the signal is given by the

area of the parallelogram, which is equal to the bicanonical width product. We

can represent the signal in these two LCT domains with the minimum number

of samples, which equals to the number of degrees of freedom of the signal.
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In this chapter, we now turn our attention to arbitrary set of signals with

arbitrary time-frequency support. Our aim is to find the minimum number of

samples to represent these signals based on the LCT sampling criteria and find

the LCT domains that we can represent the signal with that minimum num-

ber of samples. Since signals limited in two LCT domains have parallelogram

shaped Wigner regions, this problem reduces to a simple geometric problem,

which aims to find the smallest parallelogram enclosing a given time-frequency

support. The problem of finding the smallest enclosing parallelogram with the

purpose of representing the signal using LCT interpolation can be considered as

the generalization of finding the smallest enclosing rectangle with the purpose

of representing the signal using Shannon interpolation. As is well-known, Shan-

non interpolation restricts us to two orthogonal domains in the time-frequency

plane since they must be related to each other through the Fourier transform.

However, the LCT interpolation allows us to use any arbitrary two domains in

the time-frequency plane since any such domains can be related to each other

through the LCT. The reader should refer to (3.14) in chapter 3 for the LCT

interpolation formula.

Given an arbitrary time-frequency support, the area of this support gives the

number of degrees of freedom of the signal. However, in general, we can not

represent the signal with this minimum number of samples by using Shannon

or LCT interpolation. Instead, some more sophisticated basis should be used.

Nevertheless, if we want to represent the signal using LCT interpolation, the

area of the smallest parallelogram enclosing the given region will give the min-

imum number of samples to represent the signal by using LCT interpolation.

This number of samples will be inevitably greater than the number of degrees of

freedom of the signal if the given support is not a parallelogram. However, using

LCT interpolation to represent the signal is still a better approach than using

Shannon interpolation, which is a special case of the LCT interpolation. This

is justified by the fact that enclosing a region with a parallelogram (defined by
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corridors of arbitrary angle in between) gives more flexibility to us than enclosing

it with a rectangle (defined by necessarily orthogonal corridors). Equivalently,

the bicanonical width product, which is the area of the smallest enclosing par-

allelogram will come closer to the number of degrees of freedom of the signal

as compared to the time-bandwidth product, which is the area of the smallest

enclosing rectangle. Finally, note that the signal can be represented with the

number of samples given by the area of the smallest enclosing parallelogram only

at the two LCT domains that correspond to two corridors defining the parallelo-

gram. The concept of representing the signal at different LCT domains than the

optimal ones will be also discussed later in this chapter.

4.2 Representing Signals in Optimal LCT Do-

mains

The problem of finding the smallest enclosing parallelogram has been discussed

in the literature in the context of rational decimation system design [46], sen-

sor selection [47] and pure mathematics [48]. The notion of minimal enclosing

parallelogram (MEP) has been used to refer to the parallelogram which has the

smallest area among all parallelograms that contain the given convex polygonal

region. Given a convex polygon C, let denote the MEP of C by PC and the sides

of PC as ei for i = 1, . . . , 4. Then, two important properties of the MEP can be

given as follows [49, 47]:

Property 1. For any convex polygon C, there exists a MEP PC such that either

e1 or e3 and e2 or e4 contain a side of C.

Property 2. There exists a line parallel to e1 and e3 such that it contains a

non-empty intersection of C and PC on its both sides. Similarly, there exists a

line parallel to e2 and e4 such that it contains a non-empty intersection of C and

PC on its both sides.
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Given a convex polygon C with n vertices, the MEP of C can be found

by using the minimal enclosing parallelogram algorithm of [49], which has a

complexity of O(n). This algorithm has also been extended in [46] to find the

MEP of an arbitrary polygon, either convex or concave. For this, the convex

hull of the input polygon is first computed by using the Graham Scan method

[50], which takes O(n log n) time. Then, the MEP of the convex hull is found by

using the minimal enclosing parallelogram algorithm for convex polygons given

in [49]. The obtained MEP of the convex hull will be also the MEP of the input

polygon. Thus, the technique to compute the MEP of an arbitrary polygonal

region is well-known. This technique also applies to non-polygonal regions since

any non-polygonal region can be efficiently approximated by a polygonal region.

We now consider an important special case of the MEP problem which is

for the case when the given region is a centrally symmetrical convex polygon.

Throughout this study, the term corridor will be used to refer to a pair of parallel

lines that are symmetric with respect to the origin. The region defined by the

intersection of arbitrary number of corridors with arbitrary widths and angles

will be called centrally symmetrical convex polygon [51]. Clearly, a centrally sym-

metrical convex polygon can be transformed into itself by reflection with respect

to the origin. The number of its vertices is even since they exist in opposite

pairs which can be connected to each other through the origin. Moreover, any

two opposite sides are equal and parallel to each other. When there are only

two corridors (equivalently, four sides), a centrally symmetrical convex polygon

reduces to a parallelogram.

As we have seen, the time-frequency support is a centrally symmetrical con-

vex polygon if two or more extents are specified in different LCT domains. Then,

the problem of finding the minimum number of samples to represent such signals

using the LCT interpolation reduces to the problem of finding the smallest par-

alellogram enclosing the resulting centrally symmetrical convex polygon. The
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solution of the MEP gets simpler in this special case based on the following

theorem:

Theorem 2. For any centrally symmetrical convex polygon C, there exists a

MEP PC such that each side of PC contain a side of C. Equivalently, there

exists a PC defined by two corridors of C.

Proof: Without loss of generality, from Property 1, let us assume that e1

contains a side of C, denoted by f . Then, e3, which is parallel to e1, must intersect

C in at least one point due to Property 2. Since C is centrally symmetric, there

is an opposite parallel side for each side of C. This implies that the intersection

of e3 and C will contain the opposite symmetric pair of the side f . Thus, if e1

contains a side of C, then e3 necessarily contains its opposite side. Similarly, if

e2 contains a side of C, then e3 necessarily contains its opposite side. As a result,

each side of PC contains a side of C. Since each parallel sides of C are defined

by one corridor, this is equivalent to say that PC is defined by two corridors of

C.

As a result, the MEP of a centrally symmetrical polygon C is the parallelo-

gram which has the smallest area among all parallelograms defined by any two

corridors of C. As we have seen before, given any two corridors of width w1

and w2, and the angle in between as φ1,2, the area of the parallelogram defined

by these corridors is w1w2| csc φ1,2|. If we define these corridors in the time-

frequency plane by specifying two extents ∆uM1
and ∆uM2

in the uM1
and uM2

LCT domains, the area of the resulting parallelogram is given by the bicanonical

width product ∆uM1
∆uM2

|β1,2|. Then, given many extents as ∆uMi
s in LCT

domains, the two extents that minimizes ∆uMi
∆uMj

|βi,j| among all i − j pairs

define the MEP of the centrally symmetrical convex support region.

Now, we want to find upper theoretical limits on the enclosing efficiency of

the MEP. Firstly, given a convex polygon C, the area of the MEP of C can be
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bounded by [47]

Area(PC) ≤ 2Area(C) (4.1)

This implies the following important result:

For an arbitrary convex polygonal time-frequency support, the num-

ber of samples required to represent the signal by using LCT interpo-

lation is at most two times of the actual number of degrees of freedom

of the signal.

In the special case of centrally symmetrical convex polygons, we believe that the

enclosing efficiency will be much better. We conjecture that an n-sided centrally

symmetrical convex polygon will be enclosed least efficiently when all of its n

sides are equal to each other. Then, if this is indeed true, it is clear that the

enclosing efficiency will also get worse as n → ∞. The equilateral centrally

symmetrical convex polygon converges to an ellipse in the limit n → ∞ and

the worst case enclosing efficiency of the MEP will be obtained based on our

conjecture by dividing the area of the smallest rectangle enclosing the ellipse to

the area of the ellipse:

Area(PC)

Area(C)
≤ 4ab

πab
(4.2)

where a and b are one-half of the ellipse’s major and minor axes, respectively.

Thus, for centrally symmetrical convex polygons, we have the following bound

for the area of the MEP, under the assumption that our conjecture is true:

Area(PC) ≤ 4

π
Area(C) (4.3)

The mentioned conjecture is based on the following observation. Consider

an equilateral centrally symmetrical convex polygon such that there exists at

least two MEPs that satisfy the Theorem 2 (see Figure 4.1). Let us denote the

corridors of the first MEP as l1 and l2 and the corridors of the second MEP as l3

and l4. Since each is a MEP of the equilateral polygon, the enclosing efficiency
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is same for both of MEPs. Now, consider increasing the width of corridor l3

upto corners v1 and v3 and/or increasing the width of corridor l4 upto corners

v2 and v4. After these operations, the polygon defined by all corridors will

have sides of different length, but the MEP defined by corridors l1 and l2 will

remain to be the MEP of the new polygon. Since the area of the new polygon

is larger, the enclosing efficiency of the same MEP is better after making the

polygon inequilateral. Similarly, if we increase the width of corridors l1 and l2

upto corners v5 and v7, and v6 and v8, the MEP defined by corridors l3 and

l4 will remain to be the MEP of the region with a higher enclosing efficiency.

This illustrates the rationale behind our conjecture, which states that a centrally

symmetrical convex polygon will be enclosed worst when all of its sides are of

equal length. Unfortunately we do not have a proof of this conjecture at this

point.

Figure 4.1: Illustration of the conjecture

We will now illustrate with one example the difference between Shannon and

LCT interpolation approaches. In the former case, we will find the smallest

rectangle enclosing the time-frequency support, while in the latter case we will
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find the smallest enclosing parallelogram. In Fig. 4.2, the smallest enclosing

parallelogram and rectangle are shown for a given time-frequency support, which

is indicated by the colored region. When we compare the area of the smallest

parallelogram with the area of the smallest rectangle, we can say that for this

example the LCT interpolation requires 27 percent less number of samples than

Shannon interpolation.

     
 

 

 

 

 

x

f

Figure 4.2: The smallest enclosing parallelogram (solid) and rectangle (dashed)

In a different context, the area of the smallest rectangle enclosing the time-

frequency support has been referred to as the generalized time-bandwidth product

[52, 53]. This generalization of the time-bandwidth product has been introduced

to obtain a measure for the time-frequency support of the signals that does not

change after fractional Fourier transformation operation, or equivalently rota-

tion in the time-frequency plane. That is, this is a rotation invariant measure of

compactness. The optimal short-time Fourier transform (STFT) kernel has been

derived that has the minimum generalized time-bandwidth product, or equiva-

lently that provides the most compact representation based on this product. This

analysis, which has dealt with the support of a signal, lead to signal adaptive

STFTs. Although the generalized time-bandwidth product has been regarded as

36



a better measure for the time-frequency support of signals in these works, it has

been also emphasized in [53] that “further research is required in obtaining other

forms of generalized time-bandwidth products that are invariant under a more

general area preserving time-frequency operations: the symplectic transforms

[54]”.

The bicanonical width product addresses this issue and it provides a measure

that is invariant under linear canonical transformation operation. That is, the

bicanonical width product is a linear distortion invariant measure of compactness.

Moreover, the area of the smallest parallelogram enclosing the time-frequency

support is a better measure than the area of the smallest enclosing rectangle since

the former does not necessarily require to fit to the support with two orthogonal

corridors with respect to each other. In this thesis work we mostly concentrate

on a family of signals instead of one signal, but similar discussions will also hold

for the support of a signal. Finding the optimal STFT kernel which minimizes

the bicanonical width product of the signal is also left as a subject for future

study.

It has also been suggested that instead of taking uniform samples in one of the

optimal LCT domains with the minimum number of samples, it may be better

to take these samples in the middle of both of these two optimal domains based

on the fact that in practice the SNR is usually better near the center of a signal

and we can represent the signal better by concentrating on sample values at the

center in both domains (Orhan Arikan, private communication).
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4.3 Representing Signals in a Specific LCT Do-

main

In this section, we turn our attention to the problem of finding the minimum

number of samples to represent the signal in a specific LCT domain by using

the LCT interpolation, when an arbitrary time-frequency support is given. As

we have noted before, the signal can be represented with the minimum number

of samples given by the area of the MEP only at the two LCT domains that

correspond to two corridors defining the MEP. Indeed, we need more samples

to represent the signal in the other LCT domains. This is a consequence of the

fact that when we want to sample the signal in an LCT domain that is different

than the optimal two LCT domains, we lose our flexibility to fit an arbitrary

parallelogram to the support region. Instead of fitting to the region with the

intersection of arbitrary two corridors, now we can only change one corridor since

the other corridor will be defined with respect to the sampling domain. This will

cause us to find a larger enclosing parallelogram than the MEP; therefore, we

will need more samples to represent the signal in other LCT domains.

The problem of finding the minimum number of samples to represent the sig-

nal in a specific LCT domain by using the LCT interpolation reduces to the prob-

lem of finding the minimum area parallelogram enclosing a given time-frequency

support when one corridor of the parallelogram is fixed. This is the generaliza-

tion of the problem of finding the minimum number of samples to represent the

signal in the time domain by using Shannon interpolation, which requires to find

the smallest enclosing rectangle orthogonal to the time-frequency axes. For a

convex polygon, the MEP algorithm in [49] can be easily adapted to the problem

of finding the MEP when one of its corridors is fixed.

For the special case of centrally symmetrical convex polygons, the solution of

the problem again gets simpler. In analogy with the previous approach, the MEP
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of a centrally symmetrical convex polygon C with the constraint of having a fixed

corridor is the parallelogram which has the smallest area among all parallelograms

defined by a corridor of C in addition to the fixed corridor. Given many extents

∆uMi
s in LCT domains, let us denote the domain that we want to represent the

signal as uMk
. The extent of the signal in this domain, denoted by ∆uMk

, can be

obtained from the time-frequency support of the signal or from equation (5.46) in

chapter 5. Then, the extent ∆uMi
that minimizes the area ∆uMk

∆uMi
|βki| with

respect to the parameter i define the MEP with the specified constraint. The

area of this MEP gives the minimum number of samples to represent the signal

in the uMk
domain by using the LCT interpolation. If we look to the problem

from the context of pure geometry, the problem can be solved by minimizing

wkwi| csc φk,i| with respect to the parameter i, where wi denote the width of the

ith corridor defining the centrally symmetrical convex polygon, wk denote the

width of the fixed corridor and φk,i denote the angle between these corridors.

Obviously, the area of the MEP when one of its corridors is fixed will generally

be larger than the area of the MEP found without any constraint. That is, when

we use the LCT interpolation, the minimum number of samples to represent

the signal in a specific LCT domain will be generally larger than the minimum

number of samples to represent the signal optimally. Therefore, as noted before,

we must take more samples due to the restriction in one corridor. We now want to

find an upper bound for this increase in the number of samples. Let MEPc denote

the MEP when one of its corridors is fixed. It is intuitive that the maximum

difference will occur when the MEP without any constraint encloses the given

region fully, i.e. when the region is a parallelogram, so that MEPc must enclose

this MEP, not a smaller region inside the MEP. We will find the upper bound

in the context of time-frequency plane both for simplicity and relevancy, though

it can also be easily found in the context of pure geometry. Let us denote the

domain that we want to represent the signal as u and consider a parallelogram-

shaped time-frequency support defined by two extents ∆uM1
and ∆uM2

, where
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the time axis corresponds to the u domain. Then, the extent in the u domain is

given by

∆u =
|β1|∆uM1

+ |β2|∆uM2

|γ1 − γ2|
, (4.4)

which can be obtained via equation (5.43) in chapter 5. The area of the MEP

found without any constraint is simply the area of the time-frequency support,

which is given by

NMEP = ∆uM1
∆uM2

|β1,2|. (4.5)

On the other hand, for the MEP with fixed corridor, one corridor will necessarily

come from the extent ∆u, and the other corridor will be defined by either ∆uM1

or ∆uM2
, whichever gives a smaller area. Then, the area of MEPc is given by

NMEPc
= min{∆u∆uM1

|β1|, ∆u∆uM2
|β2|} (4.6)

= min

{ |β1|2∆u2
M1

+ |β1β2|∆uM1
∆uM2

|γ1 − γ2|
,
|β2|2∆u2

M2
+ |β1β2|∆uM1

∆uM2

|γ1 − γ2|

}

If |β1|∆uM1
≤ |β2|∆uM2

, the first term will be the minimum. Otherwise, the sec-

ond term will be the minimum. Consider the case when |β1|∆uM1
≤ |β2|∆uM2

.

Then, the ratio of the area of MEPs with and without any constraint is as follows:

NMEP

NMEPc

=
∆uM1

|β1|
∆uM2

|β2|
+ 1 ≤ 2 (4.7)

since |β1|∆uM1
≤ |β2|∆uM2

. Also for the case when |β1|∆uM1
≥ |β2|∆uM2

, the

same result will be obtained. Note that the ratio is worst when any chosen corri-

dor does not create any difference on the area of the parallelogram defined. The

above result implies the following important conclusion for LCT interpolation:

For an arbitrary polygonal time-frequency support, the minimum

number of samples to represent the signal in a specific LCT domain

is at most twice the minimum number of samples to represent the

signal in any of two optimal LCT domains.

In order to find the minimum number of samples to represent the signal in

a specific domain, the most common approach is to use Shannon interpolation,
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which requires to fit an enclosing rectangle orthogonal to that specific domain

in the time-frequency plane. In the general case where the time-frequency sup-

port is not such a rectangle, some of the samples taken with this criterion will

be redundant. Instead, LCT interpolation can be used which will also require

to fix one corridor, but allow to choose the other corridor arbitrarily. This will

be equivalent to the problem of finding the minimum area parallelogram enclos-

ing the given time-frequency support when one corridor of the parallelogram is

fixed. The area of this enclosing parallelogram gives the minimum number of

samples to use with LCT interpolation. Thus, we can reconstruct a signal by

employing LCT interpolation, which will require less number of samples than

Shannon interpolation in the general case. The efficiency ratio between LCT

and Shannon interpolation is unbounded when a specific domain is specified for

the representation of the signal. We can see this easily by considering a very thin

oblique strip in the time-frequency plane, which is defined by two corridors of

nearly equal, but different angles. Assume that the signal will be represented in

a domain different than the oblique axis of the strip. Then, while we can enclose

this by a parallelogram of fixed corridor very tightly, a rectangle orthogonal to

the specified domain will enclose this very inefficiently; thus in this case, the

difference between the area of the smallest enclosing parallelogram and rectangle

will be very large.

We can do better than this if we can compute the LCT of the analog signal

prior to sampling. This continuous LCT computation can be performed by using

chirp modulators for time-domain signals and by using lenses for two dimensional

space-domain signals. With these, we can move the signal to one of the two

LCT domains, where it can be optimally represented. In this domain, we can

represent the equivalent information with less number of samples, which is at

most two times of the number of degrees of freedom for convex support regions.

If necessary, we can return back to the original domain with N log N DLCT

computation [7] after sampling the signal in the optimal LCT domain.
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We will now illustrate the difference between Shannon and LCT interpolation

approaches when the signal will be represented in a specific domain. In the former

case, we will find the smallest enclosing rectangle orthogonal to the specified

domain, while in the latter case we will find the smallest enclosing parallelogram

orthogonal to the specified domain, or equivalently when one of its corridors is

fixed to the this domain. In Fig. 4.3, the smallest enclosing parallelogram and

rectangle are shown when the signal will be represented in the time domain. The

shaded region indicates the given time-frequency support. When we compare

the area of the parallelogram with the area of the rectangle, we can say for this

example that the LCT interpolation requires 35 percent less number of samples

than Shannon interpolation.

     
 

 

 

 

 

x

f

Figure 4.3: The smallest enclosing parallelogram (solid) and rectangle (dashed)
when one of their corridors is fixed to the time domain
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Chapter 5

ANALYZING OPTICAL

SYSTEMS WITH

APPLICATIONS TO EXTENT

TRACING

In this chapter, we will first extend the results of chapter 3 for dimensionless

variables and parameters to dimensional variables and parameters. Then, we will

apply these results to analyze quadratic-phase optical systems. We will present

the number of degrees of freedom of the system and the largest space-frequency

region that can pass through an arbitrary quadratic-phase system without any

information loss. We will develop a method to investigate how the extent of an

arbitrary input signal changes as it passes through an optical system. Based

on this method, we will also provide formulas to directly trace the extent from

the given extents of the input signal. These extents will be used to simulate

the optical system with discrete-time systems with the same degree of accuracy

compared to continuous systems. We will also investigate the redundant and

effective apertures in a given system.
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5.1 Linear Canonical Transforms

LCTs are a three-parameter family of linear integral transforms which includes

the Fourier and fractional Fourier transforms, coordinate scaling, and chirp mul-

tiplication and convolution operations as its special cases. LCTs can model a

broad class of optical systems involving thin lenses, sections of free space in

Fresnel approximation, sections of quadratic graded-index media, and arbitrary

combinations of any number of these, also referred to as quadratic-phase systems.

The LCT of f(x) with parameter matrix M is defined as [8]1

fM(x) ≡ (CMf)(x) ≡
∫ ∞

−∞

CM(x, x′)f(x′) dx′, (5.1)

CM(x, x′) ≡
√

1

B
e−iπ/4 exp

[

iπ

(

D

B
x2 − 2

1

B
xx′ +

A

B
x′2

)]

,

where CM is the unitary LCT operator, A, B, C, D are the elements of the

matrix M, and AD −BC = 1. The unit-determinant matrix M whose elements

are A, B, C, D are equivalent to the three real parameters α, β, γ and either set

of parameters can be obtained from the other [8]:

M =





A B

C D



 =





γ/β 1/β

−β + αγ/β α/β



 (5.2)

The ath-order fractional Fourier transform (FRT) of a function f(x), denoted

by fa(x), is most commonly defined as [2]

fa(x) ≡ (Faf)(x) ≡
∫ ∞

−∞

Ka(x, x′)f(x′) dx′, (5.3)

Ka(x, x′) ≡ Aφ

s
exp

[

iπ

(

cot φ

s2
x2 − 2

csc φ

s2
xx′ +

cot φ

s2
x′2

)]

,

Aφ =
√

1 − i cotφ, φ = aπ/2

when a 6= 2j and Ka(x, x′) = δ(x − x′) when a = 4j and Ka(x, x′) = δ(x + x′)

when a = 4j±2, where j is an integer. The scale parameter s has been introduced

1The parameters and functions in this chapter correspond to the dimensional parameters
and physical functions in [2], which are distinguished from the dimensionless forms with carets.
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because the choice of scale has an effect on the fractional order observed at a

dimensional plane in an optical system. The above FRT definition reduces to

the regular FRT definition with dimensionless arguments when we define the

dimensionless variables u = x/s and u′ = x′/s, or simply when we set s = 1.

The FRT is also a special case of the LCT with matrix

Fa =





cos(aπ/2) (s2) sin(aπ/2)

−(1/s2) sin(aπ/2) cos(aπ/2)



 , (5.4)

differing only by the factor e−iaπ/4:

CFaf(x) = e−iaπ/4Faf(x). (5.5)

The transform matrix M is useful in the analysis of optical systems because

if several systems are cascaded the overall system matrix can be found by mul-

tiplication of the corresponding matrices of each cascaded system.

Now, we will give the effect of some simple optical components and their

transformation matrices. If we denote the wavelength of light in the medium

of propagation by λ, a thin lens of focal length f multiplies the wave with

exp[−iπx2/λf ], which mathematically corresponds to chirp multiplication. The

corresponding LCT matrix is given by

Q1/λf =





1 0

−1/λf 1



 . (5.6)

Propagation through a section of free space of length d in the Fresnel ap-

proximation is equivalent to convolution with ei2πd/λe−iπ/4
√

1/λd exp[iπx2/λd],

which mathematically corresponds to chirp convolution. The corresponding LCT

matrix is given by

Rλd =





1 λd

0 1



 . (5.7)
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The scaling operation with M > 0 maps a function f(x) into 1/Mf(x/M)

and its corresponding transformation matrix is

MM =





M 0

0 1/M



 . (5.8)

It is unfortunate that we use M to denote a generic transformation matrix and

that we use M to denote the scaling parameter, but they can be distinguished

from context.

The LCT matrix of a quadratic graded-index medium of length d exhibiting

a refractive index profile n2(x) = n2
0[1 − (x/χ)2] is given by

Fd/d0 =





cos[(d/d0)π/2] (λχ) sin[(d/d0)π/2]

−(λχ)−1 sin[(d/d0)π/2] cos[(d/d0)π/2]



 , (5.9)

where d0 = χπ/2. This is essentially a fractional Fourier transform relation with

order d/d0 and s =
√

λχ.

Arbitrary LCTs can be decomposed into cascade combinations of the FRT,

scaling, and chirp multiplication operations [19]:

M=





A B

C D



=





1 0

−q/s2 1









M 0

0 1
M









cos φ sin φs2

− sin φ/s2 cos φ



 (5.10)

Here, q is the chirp multiplication parameter, M > 0 is the scaling factor and

φ = aπ/2, where a is the order of the FRT. The decomposition can be written

more explicitly in terms of the LCT and FRT domain representations of the

signal in the form

fM(x) = exp
[

−iπ
q

s2
x2
]

√

1

M
fa

( x

M

)

(5.11)

This decomposition was inspired by the optical interpretation in [1] and is also a

special case of the widely known Iwasawa decomposition [38, 39, 40]. As we will

see, the three parameters a, M , q are sufficient to satisfy the above equality for

arbitrary ABCD matrices. If we solve for a, M , q in (5.10), we will obtain the
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decomposition parameters in terms of the matrix entries A, B, C, D as follows:

a =







2
π
arctan

(

1
s2

B
A

)

, if A ≥ 0

2
π
arctan

(

1
s2

B
A

)

+ 2, if A < 0
(5.12)

M =
√

A2 + (B/s2)2, (5.13)

q =







−s2 C
A
− 1

s2

B/A
A2+(B/s2)2

, if A 6= 0

−s2 D
B

, if A = 0
(5.14)

The ranges of the arccotangent lie in (−π/2, π/2].

We now review the effect of a linear canonical transform on the Wigner distri-

bution (WD) of a signal. Roughly speaking, the WD, Wf (x, f), is a phase-space

distribution that gives the distribution of signal energy over space and frequency;

its definition in terms of f(x) may be found elsewhere [55, 2]. The WD of fM(x)

is related to the WD of f(x) by a linear distortion:

WfM(Ax + Bf, Cx + Df) = Wf(x, f). (5.15)

The Jacobian of this coordinate transformation is equal to the determinant of

the matrix M, which is unity. Therefore, this coordinate transformation does

not change the support area of the Wigner distribution. The support area of the

Wigner distribution can be interpreted as the number of degrees of freedom of

the signal.

Let us also review the effect of multiplication on the Wigner distribution. If

g(x) = f(x)h(x), then

Wg(x, f) =

∫

Wf (x, f ′)Wh(x, f − f ′)df ′. (5.16)

Thus, if two functions are multiplied in the x domain, their Wigner distributions

are convolved along the f direction.
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5.2 The Relation between Fractional Fourier

Domains and Linear Canonical Domains

Fractional Fourier domains correspond to oblique axes in the space frequency

plane, and thus they are intimately related to space-frequency representations

such as the Wigner distribution. The effect of ath-order fractional Fourier trans-

formation on the Wigner distribution of a signal is to rotate the Wigner distri-

bution by an angle φ = aπ/2 [41, 42, 20]. Mathematically,

Wfa
(x, f) = Wf(x cos φ − fs2 sin φ, xs−2 sin φ + f cos φ). (5.17)

The squared magnitude of the ath order FRT of a function f(x) is given by

|fa(x)|2 =

∫

Wfa
(x, f)df. (5.18)

To avoid the problems associated with assigning units to oblique axes in the

dimensional space-frequency plane, let ua denote the axis making angle φ = aπ/2

with the horizontal axis in the dimensionless space-frequency plane (Fig. 5.1).

Then, the above equation is equivalent to say that the projection of the Wigner

distribution of a function onto the ua axis gives the squared magnitude of the ath

order FRT of the function with dimensionless parameters. Hence, the projection

axis ua can be referred to as the ath order fractional Fourier domain [41, 42].

The space and frequency domains are merely special cases of the continuum of

fractional Fourier domains.

Recently, there has also been increased interest in generalizing the fractional

Fourier transform and its properties to linear canonical transforms. From analogy

with fractional Fourier domains, the term LCT domain has been used to refer

to the domain where the LCT representation of the signal “lives” [43, 14, 44,

45]. However, although fractional Fourier domains are well-defined in the space-

frequency plane [41, 2], it is not yet established where LCT domains exist and

what they correspond to in the space-frequency plane. Moreover, LCT domains
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Figure 5.1: The ath order fractional Fourier domain

are characterized by three parameters (one of the four matrix parameters is

redundant because of the unit-determinant condition). Since each parameter

can vary independently, LCT domains are a three-parameter space; that is, each

LCT domain can be labeled with three parameters, which makes them hard to

visualize.

One of the contributions of this work is to figure out where linear canonical

domains exist in the ordinary space-frequency plane. We will show that each

LCT domain is a scaled FRT domain, and thus any LCT domain can be labeled

simply by its associated fractional order a. Therefore, each LCT domain is

effectively associated with only one parameter a and as we will see, this parameter

is monotonically increasing through arbitrary quadratic-phase systems.

We will now introduce essentially equivalent domains by using the Iwasawa

decomposition given in (5.11). As we have seen, any arbitrary LCT of a signal

can be expressed as chirp multiplied and scaled version of the ath order FRT of

the signal, which we repeat here for convenience:

fM(x) = exp
[

−iπ
q

s2
x2
]

√

1

M
fa

( x

M

)

. (5.19)
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The parameters of the FRT, scaling, and chirp multiplication are given in terms

of the LCT parameters in (5.12), (5.13), and (5.14), respectively. We note that

all of the variables in (5.19) are dimensional. However, in order to avoid the

problems associated with assigning units to oblique axes in phase-space, before

refering to FRT domains, we need to define the dimensionless form of fa(x). The

dimensionless form f̄a(u) and the dimensional form fa(x) are related to each other

through the relation f̄a(u) = fa(su). In order to compute an arbitrary LCT of a

signal based on (5.19), we can first take the ath order FRT of the signal. This

operation moves the signal to the ath order fractional Fourier domain. Secondly,

we scale the transformed signal. Scaling does not effectively move the signal

to a different domain, and thus the signal is at a scaled FRT domain after the

scaling operation. Finally, we multiply the resulting signal with a chirp to obtain

the LCT. Chirp multiplication can be interpreted as a windowing operation in

the current domain; thus, it does not change the domain of the signal, just like

the scaling operation. Therefore, linear canonical transformed signals live at a

scaled ath order FRT domain. This discussion also reveals that LCT domains are

essentially equivalent to scaled fractional Fourier domains, and thus they are not

richer than FRT domains. Note that LCTs with the same A/B or equivalently

γ parameter, contain the same order of FRT in their decomposition as seen

from (5.12) and therefore they are associated with the same FRT domain. We

refer to such LCT domains as essentially equivalent domains . The condition

A1/B1 = A2/B2 for essentially equivalent domains is equivalent to the condition

in [45] where the uncertainty relation is not valid.

As the signal passes through an arbitrary quadratic-phase system, it will

continuously visit LCT domains of different parameters. Since LCT domains

are equivalent to scaled FRT domains, there exists a FRT order associated with

each domain. The order a begins from 0 at the input of the system, and then

monotonically increases as a function of distance. The reason is that the FRT

order does not change after a lens system and it increases as a function of distance
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in a section of free-space or quadratic graded-index media [1]. (To see this, use

(5.12) together with equations (5.6), (5.7), (5.9).) Since an arbitrary quadratic-

phase system consists of an arbitrary concatenation of thin lenses, sections of

free-space and quadratic graded-index media, passing through such a system

corresponds to passing through scaled FRT domains of monotonically increasing

order.

Let us now consider a set of signals, whose members are approximately con-

fined to the intervals [−∆uM1
/2, ∆uM1

/2] and [−∆uM2
/2, ∆uM2

/2] in two LCT

domains, namely uM1
and uM2

. Since LCT domains are equivalent to scaled

fractional Fourier domains, each interval given in an LCT domain will define a

scaled interval in the associated FRT domain. To see this explicitly, we again

refer to (5.19), which implies that if fM(x) is confined to an interval of length

∆uM, so is fa(x/M). Then, the extent of fa(x) is ∆uM/M and the extent of its

dimensionless form f̄a(u) is ∆uM/Ms, which gives the extent in the associated

ath order FRT domain in the dimensionless space-frequency plane. Thus, for the

set of signals in question, the extent in the a1th order FRT domain is ∆uM1
/M1s

and the extent in the a2th order FRT domain is ∆uM2
/M2s, where a1 and a2

are related to M1 and M2 through equation 5.12. Note that we should take

into account the FRT and scaling parameters of the decomposition, but not the

chirp multiplication parameter. It is well-known that if the space-, frequency- or

FRT-domain representation of a signal is identically zero (negligible) outside a

certain interval, so is its Wigner distribution [2]. As a direct consequence of this

fact, the Wigner distribution of this set of signals is confined to the corridors of

width ∆uM1
/M1s and ∆uM2

/M2s in the directions orthogonal to ua1
and ua2

,

respectively. Thus, the support of the Wigner distribution is a parallelogram

defined by these corridors ( see Fig. 5.2). In general, if more than two extents

are specified in different LCT domains, the space-frequency support will be a

centrally symmetrical convex polygon defined by these intervals (Fig. 5.3).
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Figure 5.2: Support of the Wigner distribution when two extents are specified

Figure 5.3: Support of the Wigner distribution when more than two extents are
specified

Theorem 3. The bicanonical width product ∆uM1
∆uM2

|β1,2| is the area of the

parallelogram defined by the extents ∆uM1
and ∆uM2

in two LCT domains

(Fig. 5.2). Equivalently, it is the area of the space-frequency support of the

signals, which have finite extents ∆uM1
and ∆uM2

in uM1
and uM2

domains,

respectively.

Proof. Let h1 and h2 be two heights of a parallelogram and φ denote the angle

between them. Then, the area of the parallelogram is given by h1h2| csc φ|.
For the parallelogram defined by the extents ∆uM1

and ∆uM2
, the heights are

∆uM1
/M1s and ∆uM2

/M2s, which correspond to the widths of the corridors.
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Then, the area of this parallelogram is

Area =
∆uM1

M1s

∆uM2

M2s
| csc(φ1 − φ2)| (5.20)

=
∆uM1

∆uM2

M1M2s2| sinφ2 cos φ1 − cos φ2 sin φ1|
(5.21)

=
∆uM1

∆uM2

|A1B2 − B1A2|
(5.22)

= ∆uM1
∆uM2

|β1β2|
|γ1 − γ2|

(5.23)

= ∆uM1
∆uM2

|β1,2| (5.24)

As is well-known, when two extents are specified in the space and frequency

domains, the space-frequency support of the signal is confined to a rectangular

region. In this case, the space-bandwidth product equals to the number of degrees

of freedom since it gives the area of that rectangular region. We have showed that

in the general case when two extents are specified in arbitrary two LCT domains,

the space-frequency support of the signal is confined to a parallelogram. In this

case, the bicanonical width product equals to the number of degrees of freedom

since it gives the area of that parallelogram.

5.3 Phase-Space Window of Optical Systems

We now investigate the largest space-frequency region that can pass through

the system without any information loss, which we refer to as the phase-space

window of the system. The area of the phase-space window will give the number

of degrees of freedom of the system. In this section, we develop a method that

allows us to find the phase-space window in terms of the system parameters for

an arbitrary quadratic phase system with arbitrary number of apertures.

We will first establish the notation that will be used throughout this chapter.

Let us consider a quadratic-phase system, which consists of arbitrary number
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of lenses, sections of free space and quadratic graded-index media as well as

apertures. For simplicity we restrict ourselves to a single transverse dimension.

The input plane is defined as z = 0. The output plane is variable ranging from

z = 0 to z = zf , where zf is the length of the optical system. Each z plane

corresponds to an LCT domain. Let M(z) denote the matrix of the system

lying between 0 and z (excluding the apertures), which can be readily calculated

using the matrices for lenses, sections of free space and quadratic graded index

media, and the concatenation property. The elements of M(z) will be denoted by

A(z), B(z), C(z), and D(z). Since LCT domains are equivalent to scaled FRT

domains, let a(z), M(z), q(z) represent the fractional transform order, the scaling

factor and chirp multiplication parameter of the FRT description of the system

occupying the interval [0, z], which can be determined from A(z), B(z), C(z),

and D(z) by using the Iwasawa decomposition. As we have seen before, the order

a(z) begins from 0 at the input of the system, and then monotonically increases

as a function of distance. We further let L denote the total number of apertures

in the system. Then, zj and ∆j will denote respectively the position and size

of a particular rectangular aperture j in the system. The matrix M(zj , zk) will

be used to denote the matrix of the system between jth and kth apertures and

βj,k will be used to denote its β parameter. M(zj) will denote the matrix of

the system up to the jth aperture. We will denote its matrix coefficients by Aj ,

Bj , Cj, Dj, its decomposition parameters by aj , Mj , qj and its β parameter by

βj , which is equivalent to β0,j by definition. Note that M(zj) is also equivalent

to M(0, zj) by definition. z−j and z+
j will be used to denote the distance of the

planes immediately to the left and immediately to the right of the jth aperture.

We can now investigate the phase-space window of an arbitrary optical sys-

tem. For a lossless transfer through the system, the extent of the signal just

before each aperture must be not larger than the size of the aperture. That is,

the following condition must be satisfied for j = 1, 2, . . . , L:

∆uMj
≤ ∆j , (5.25)
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where ∆uMj
denotes the extent of the signal in the uMj

domain, which corre-

sponds to the domain at z = zj plane. For the same reasons discussed in Section

5.2, the above condition is equivalent to

∆uaj
≤ ∆j/Mjs, (5.26)

where ∆uaj
denotes the extent of the signal in the ajth order FRT domain. Thus,

for every j ∈ [1, L], the signal must be confined to the interval of length ∆j/Mjs

in the ajth order FRT domain. This condition defines a corridor of width ∆j/Mjs

in the direction orthogonal to uaj
in the space-frequency plane. By intersecting

the corridors defined by each aperture, the bounded region in the space-frequency

plane can be obtained as a centrally symmetrical convex polygon. (see Figure 5.3

by replacing ∆uMj
/Mjs → ∆j/Mjs for each j ∈ [1, 4]). The resulting centrally

symmetrical convex polygon defined by normalized aperture sizes is the phase-

space window of the system. The area of the phase-space window is the number

of degrees of freedom of the system; that is, at most that many number of degrees

of freedom can pass through the system.

A concrete example will be useful. Fig. 5.4 shows a system consisting of

several apertures and lenses, whose focal lengths have been indicated in meters

right above them. The fractional transform order a, the scale parameter M , and

the chirp multiplication parameter q of the system are plotted as functions of

z in Fig. 5.5. The phase-space window of this system is shown in Fig. 5.6.

This region is defined by the 2nd, 4th and 8th apertures in the system. Other

apertures does not affect the phase-space window of the system.

We can represent the degrees of freedom of the system both as a region and

as a number. Let us denote the phase-space window of the system as Rsys and

the phase-space region of the input signal as Rsig. Let us also denote the area

of these regions as Asys and Asig, respectively. For an arbitrary input signal, in

order to pass through the system without any information loss, it is necessary

that Asig be smaller than Asys. However, this is not sufficient. Even if the area
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Figure 5.4: Optical system

is smaller, if Rsig does not lie completely inside Rsys, information loss will take

place. A similar discussion has been previously given in [28].

If Rsys does not enclose Rsig completely, then approximately the intersection

of the two regions Rsig and Rsys will pass through the system. This approximation

is valid if after each limiting aperture we can neglect the broadening of the region

along the orthogonal domain. To see this, let us first assume that the broadening

effects are negligible. Then, given an arbitrary phase-space region Rsig at the

input, one can obtain the phase-space region at the output by tracing the region

throughout the system and simply cutting some parts of it whenever a limiting

aperture is reached. With this approach, the obtained phase-space region at the

output will be simply the propagated version of the input region given by the

intersection of the regions Rsig and Rsys. Therefore, when a signal with greater

number of degrees of freedom is input into a system with smaller number of

degrees of freedom, an uninvertible information loss will take place. The amount

of lost information will be the area of the non-overlapping regions between Rsig

and Rsys.

However, this simple and intuitive result may lose its validity when we take

into account the broadening effects. We will now clarify that the broadening

effects are truly negligible for real physical signals and systems, which makes
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Figure 5.5: Evolution of a(z), M(z), q(z) as functions of z: λ = 0.5 µm and
s = 0.3 mm [1, 2]

the above simple result always valid for our purposes. For simplicity, let us

work with rectangular regions in phase-space, and thus take the time-bandwidth

product as the measure of number of degrees of freedom. Let us denote the time-

bandwidth product of the signal as ∆u∆µ = N , where N ≥ 1. For an arbitrary

window, we can in general approximate the product of its spatial extent ∆ug

and spectral extent ∆µg as unity, equivalently ∆ug∆µg ≈ 1. Assume that the

window allows only κ portion of the signal to pass, that is ∆ug = κ∆u where

κ < 1. Then, after the window, the new extent in the space domain will be
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Figure 5.6: The phase-space window of the system

given by ∆u′ = κ∆u. Moreover, since multiplication in space domain implies

convolution in the frequency domain, the new extent in the frequency domain will

be approximately the sum of the spectral extents of the signal and the window.

The spectral extent of the signal is ∆µ = N/∆u and the spectral extent of the

window is ∆µg ≈ 1/∆ug = 1/κ∆u = ∆µ/κN . Then, the new extent in the

frequency domain is ∆µ′ ≈ ∆µ+∆µ/κN = ∆µ(1+1/κN). Therefore, the time-

bandwidth product of the signal after the windowing operation is ∆u′∆µ′ ≈
∆u∆µ(κ + 1/N). Here, the first term corresponds to the decreased region area

due to windowing and the second term corresponds to the additional area of

the region that comes from the broadening effect. However, if κ ≫ 1/N , or

equivalently N ≫ 1/κ, then we can neglect the term 1/N as compared to κ. This

means that in this case the area coming from the broadening effect is negligible.

Thus, we can neglect the broadening effect if N ≫ 1/κ. This condition is true

for most real physical signals and systems. For a physical signal that contains

any reasonable information, such as an image, the number of degrees of freedom

will be much larger than unity and also much larger than 1/κ, as long as κ is not

very close to 0, or equivalently the aperture does not nearly fully limit the signal.

For instance, consider a window that allows only 0.1 portion of the signal to pass.

Even in this case, N ≫ 10 will be sufficient and most information bearing signals

will satisfy this condition easily.
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5.4 Wigner-based Extent Tracing

In this section, we investigate how the extent of an arbitrary input signal changes

as it passes through an optical system. For this, we will track the Wigner distri-

bution of the signal throughout the system. This investigation will also cover the

lossy transfer case which arises when the input signal has a larger phase-space

region than the phase-space window of the system. Our main purpose is to use

these extents to find the minimum number of samples to represent the physical

signal at an arbitrary plane and to simulate the optical system with discrete-time

systems. These concepts will be investigated in Section 5.8.

In order to track the Wigner distribution throughout the system, we will

assume polygonal regions in phase-space. However, the proposed method will also

apply to non-polygonal regions since any non-polygonal region can be efficiently

approximated by a polygonal region. In [5] four-sided polygonal phase-space

regions have been assumed in order to develop an automated method for tracking

the space-bandwidth product. We will develop an automated method for tracking

the extent of the signal through the system by making use of the terminology

and approach presented in [5].

Let us assume that we are given a polygonal phase-space region of a signal.

The matrix that contains the coordinates of the corners of the polygonal region

will be denoted by the corner matrix S. For instance, for a polygon with n

corners (x1, f1), (x2, f2), . . ., (xn, fn), the corner matrix S is given by [5]

S =





Sx

Sf



 =





x1 x2 . . . xn

f1 f2 . . . fn



 (5.27)

where Sx and Sf are 1xn row vectors which respectively contain the x and f co-

ordinates of the corners. The extent in the space domain is simply the maximum

distance between any two of the x coordinates, which is given by

∆x = max{Sx} − min{Sx} (5.28)
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where max and min operators find respectively the maximum and minimum

element in a vector.

Any arbitrary quadratic-phase system is mathematically equivalent to the

combination of many LCT blocks and multiplication with rectangular functions.

While an LCT block models a section of the quadratic-phase system, multipli-

cation with a rectangular function models the rectangular apertures between

the sections of quadratic-phase systems. In order to track the corner matrix S

through the system, we need to find the effect of an LCT block and the effect of

a rectangular window on S.

The effect of a linear canonical transform on the Wigner distribution is a

linear distortion given by (5.15). Then, the effect of an LCT block on the corner

matrix S is as follows [5]

S′ = MS =





A B

C D









x1 x2 . . . xn

f1 f2 . . . fn



 (5.29)

=





Ax1 + Bf1 Ax2 + Bf2 . . . Axn + Bfn

Cx1 + Df1 Cx2 + Df2 . . . Cxn + Dfn





where S and S′ are the corner matrices before and after the LCT block, respec-

tively. As seen, although the number of corners remains to be the same after

an LCT block, the position of each corner may change due to the change in the

shape of the phase-space region.

Secondly, we will investigate the effect of a rectangular windowing on the

Wigner distribution and the corner matrix S. Let ∆j denote the width of the

window. Firstly, if the extent of the signal before windowing is already smaller

than ∆j , then clearly the windowing operation will not affect the signal, an thus

its phase-space region and corner matrix S. However, if the extent is larger

than ∆j , then the phase-space region will change. Because windowing involves

multiplication with a rectangle function, it implies convolution of the Wigner

distribution of the signal with the Wigner distribution of the rectangle function
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along the f direction (see equation (5.16)). The Wigner distribution of the

function rect(x/∆j) is given by [2]

Wrect(x, f) = 2∆j

[

1 − 2|x|
∆j

]

rect

{

x

∆j

}

sinc

{

2∆j

[

1 − 2|x|
∆j

]

f

}

(5.30)

Observe that the Wigner distribution is nonzero only along the corridor defined

by the rectangle function. This will cause compaction of the Wigner distribution

to a corridor of width ∆j which is orthogonal to the x axis. Moreover, convolv-

ing the Wigner distribution of the signal with Wrect(x, f) along the f direction

will result in broadening of the Wigner distribution in the f direction that is

comparable with the extent of Wrect(x, f) in the f direction. This extent is ap-

proximately 1/∆j independent of x, and thus the spread in the f direction after

windowing will be ∼ 1/∆j [20]. This result is crude and tricky since it can be

problematic when the extent of the signal distribution in the f direction becomes

comparable with 1/∆j (see the discussion in the appendix). However, for prac-

tical physical signals and windows, we will not encounter this problematic case.

This approximation will be also valid throughout this work since in our case the

extent of the signal in the f direction is much larger than 1/∆j.

With the understanding of the effect of rectangular windowing on the Wigner

distribution, we can now find the effect of this operation on the corner matrix S.

Firsly, compaction of the Wigner distribution to a corridor of width ∆j which

is orthogonal to the x axis will define new corners for the Wigner distribution

while removing some previously existing ones. After intersecting this corridor

with the polygon defined by current S, we can recognize the intersection points

as the new additional corners. We should also remove the corners that are outside

this corridor. By taking into account these changes, the corner matrix S will be

modified appropriately. Lastly, the broadening effect in the f direction should

be reflected to the vertical coordinate of each corner. The intersection points

above at the two sides of the corridor and all the corners in between will have

increased vertical coordinates by an amount 1/2∆j. Similarly, the intersection
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points below at the two side of the corridor and all the corners in between will

have decreased vertical coordinates by an amount 1/2∆j.

Now, we can investigate how the extent of an input signal changes through an

optical system when its phase-space region is specified. Given a polygonal phase-

space region, we can define the initial corner matrix. Even if the given region

is not a polygon, but an arbitrarily shaped region, then it is always possible

to efficiently approximate it by a polygonal region and define the initial corner

matrix accordingly. Then, we can track the corner matrix, and thus the extent

of the signal through the system.

Instead of specifying the initial phase-space region of the signal, it is possible

to specify its extents in two different LCT domains, say ∆uM1
and ∆uM2

. Then,

we know from the discussion in Section 5.2 that the initial phase-space region will

be a centrally symmetrical convex parallelogram as shown in Fig. 5.2. However,

we need to find the corners of this parallelogram in order to apply the above

procedure. Since it is most appropriate to define the corridors in dimensionless

domains, we will first find the corners of the shape in the dimensionless Wigner

domain and then express these corners in the dimensional Wigner domain. The

corridors defined by the extent ∆uM1
are given by the lines

µ = − cot φ1u ± ∆uM1

2sM1 sin φ1
(5.31)

Similarly, the corridors defined by the extent ∆uM2
are given by the lines

µ = − cot φ2u ± ∆uM2

2sM2 sin φ2

(5.32)

From the intersection of the lines in (5.31) and (5.32), the corners of the paral-

lelogram in the dimensionless Wigner domain can be obtained as

S̄ =





u1 u2 −u1 −u2

µ1 µ2 −µ1 −µ2



 (5.33)
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where

u1 =
1

cot φ1 − cotφ2

(

∆uM1

2sM1 sin φ1

+
∆uM2

2sM2 sin φ2

)

(5.34)

u2 =
1

cot φ1 − cotφ2

(

∆uM1

2sM1 sin φ1
− ∆uM2

2sM2 sin φ2

)

(5.35)

µ1 =
1

cot φ1 − cotφ2

(

− cot φ1
∆uM2

2sM2 sin φ2
− cotφ2

∆uM1

2sM1 sin φ1

)

(5.36)

µ2 =
1

cot φ1 − cotφ2

(

cot φ1
∆uM2

2sM2 sin φ2

− cot φ2
∆uM1

2sM1 sin φ1

)

(5.37)

Since we can pass to the dimensional Wigner domain from the dimensionless one

by scaling the u axis by s and scaling the µ axis by 1/s, the dimensional form of

the above S matrix can be obtained as

S =





x1 x2 −x1 −x2

f1 f2 −f1 −f2



 (5.38)

where x1 = su1, x2 = su2, f1 = µ1/s, and f2 = µ2/s.

We now apply this procedure for the system in Fig. 5.4. When two extents

are specified in two FRT domains, Fig. 5.7 shows the evolution of the extent E(z)

as a function of z. The reader can study the evolution of the Wigner distribution

in conjunction with the graphs in Fig. 5.8. The simulations are repeated by

specifying a much larger initial phase-space region and the results are shown in

Fig. 5.9. Observe that even if we start with a very large or infinite support

in the phase-space, the signal gets adapted to the system latest after passing

the second aperture provided that the first two apertures do not lie in nearly

essentially equivalent domains. Then, other apertures cut the region slightly

compared to the first two apertures. This is due to the fact that the phase-space

region has two dimensions, space and frequency; therefore, we can confine it with

at least two corridors. One corridor is not sufficient; at least two corridors are

required to bound an unbounded region. These two domains need not be space

and frequency domains, they can be any LCT/FRT domains as long as they are

not nearly parallel to each other (in order to create different corridors). In the
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case that when these two domains are nearly parallel to each other, we will need

more than two corridors to meaningfully bound the region.

5.5 Direct Extent Tracing Formulas

Based on the Wigner-based extent tracing method, we will now provide formulas

to directly trace the extent from the given extents of the input signal. For this,

we will first derive the formulas to find the extent of a signal at an arbitrary

LCT domain when arbitrary number of extents are specified in arbitrary LCT

domains. Formulas allowing us to find an extent from many given extents will

be based on the knowledge obtained in the last section. Then, we will use these

formulas to track the extent of a signal as it propagates through an optical system

when a centrally symmetrical convex polygonal space-frequency region is given

at the input, or equivalently the extent of the signal is specified in arbitrary LCT

domains. The advantage of these formulas is that the extent at an arbitrary plane

in the system can be found without refering to the Wigner domain and thus, we

can trace the extent directly without performing the simulations described in the

last section.

Remember from Section 5.2 that if two or more extents are specified in differ-

ent LCT domains, the space-frequency support will be a centrally symmetrical

convex polygon defined by these extents (see Fig. 5.3). First let us concentrate

on the case when only two extents are specified. Let ∆uM1
and ∆uM2

denote

the specified extents in the uM1
and uM2

domains, respectively. In this case,

the support will be a parallelogram, whose corners in the (dimensional) Wigner

domain is given in (5.38). Let uM3
be the domain where we want to find the

extent. In order to find ∆uM3
, we should first take into account the effect of

LCT on the Wigner support. We can compute the new corner matrix after the
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LCT as

S′ = M3S =





A3 B3

C3 D3









x1 x2 −x1 −x2

f1 f2 −f1 −f2



 (5.39)

=





A3x1 + B3f1 A3x2 + B3f2 −A3x1 − B3f1 −A3x2 − B3f2

C3x1 + D3f1 C3x2 + D3f2 −C3x1 − D3f1 −C3x2 − D3f2





The corners here defines the support of the Wigner distribution of the trans-

formed signal. Therefore, the horizontal axis x corresponds to the uM3
domain

and the vertical axis f corresponds to the frequency domain with respect to the

uM3
domain. Then, the maximum distance between any two of the x coordinates

is the extent of the signal in the uM3
domain:

∆uM3
= max{S′

x} − min{S′
x}. (5.40)

After considering all possible results of the above equation, ∆uM3
can be ex-

pressed more explicitly as follows:

∆uM3
= |A3x1| + |B3f1| (5.41)

=

(
∣

∣

∣

∣

∣

A3 − B3
cot φ2

s2

M1 sin φ1

∣

∣

∣

∣

∣

∆uM1
+

∣

∣

∣

∣

∣

A3 − B3
cot φ1

s2

M2 sin φ2

∣

∣

∣

∣

∣

∆uM2

)

1

| cotφ1 − cotφ2|
(5.42)

=

(
∣

∣

∣

∣

A3 − B3A2/B2

B1

∣

∣

∣

∣

∆uM1
+

∣

∣

∣

∣

A3 − B3A1/B1

B2

∣

∣

∣

∣

∆uM2

)

1

|A1/B1 − A2/B2|
(5.43)

=

∣

∣

∣

∣

(γ3 − γ2)β1

(γ2 − γ1)β3

∣

∣

∣

∣

∆uM1
+

∣

∣

∣

∣

(γ3 − γ1)β2

(γ2 − γ1)β3

∣

∣

∣

∣

∆uM2
(5.44)

Here, the equations (5.12) and (5.13) is used in (5.42) to obtain (5.43), which

gives the extent in terms of the matrix entries A, B, C, D. Moreover, (5.2) is

used in (5.43) to obtain (5.44), which gives the extent in terms of the parameters

α, β, γ.

Now, we will concentrate on the case when three extents are specified. Let

∆uM1
, ∆uM2

, and ∆uM3
denote the specified extents in the uM1

, uM2
, and uM3

domains, respectively. Let uM4
be the domain where we want to find the extent.

Now, we will follow the same procedure as the two extents given case. The three

corridors defined by the extents will be given in the similar form with (5.31).
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These corridors will intersect at six points, which will give the corners in the S

matrix. Then, the new corner matrix will be computed after applying the LCT

with parameter M4. After simplifications the extent in the uM4
domain can be

obtained as follows, although the algebra is somewhat involved:

∆uM4
=min

(
∣

∣

∣

∣

A4 − B4A2/B2

B1

∣

∣

∣

∣

∆uM1
+

∣

∣

∣

∣

A4 − B4A1/B1

B2

∣

∣

∣

∣

∆uM2

)

1

|A2/B2 − A1/B1|
,

(
∣

∣

∣

∣

A4 − B4A3/B3

B1

∣

∣

∣

∣

∆uM1
+

∣

∣

∣

∣

A4 − B4A1/B1

B3

∣

∣

∣

∣

∆uM3

)

1

|A3/B3 − A1/B1|
,

(
∣

∣

∣

∣

A4 − B4A3/B3

B2

∣

∣

∣

∣

∆uM2
+

∣

∣

∣

∣

A4 − B4A2/B2

B3

∣

∣

∣

∣

∆uM3

)

1

|A3/B3 − A2/B2|
(5.45)

It is now straightforward to generalize equations (5.43) and (5.45) to the case

when k extents are specified. Given k extents ∆uM1
, . . ., ∆uMk

in the uM1
, . . .,

uMk
domains for k ≥ 2, the extent in the uMk+1

domain is given by

∆uMk+1
= min

i,j
i6=j

1≤i,j≤k

(
∣

∣

∣

∣

Ak+1 − Bk+1Aj/Bj

Bi

∣

∣

∣

∣

∆uMi
+

∣

∣

∣

∣

Ak+1 − Bk+1Ai/Bi

Bj

∣

∣

∣

∣

∆uMj

)

× 1

|Aj/Bj − Ai/Bi|
(5.46)

= min
i,j
i6=j

1≤i,j≤k

∣

∣

∣

∣

(γk+1 − γj)βi

(γj − γi)βk+1

∣

∣

∣

∣

∆uMi
+

∣

∣

∣

∣

(γk+1 − γi)βj

(γj − γi)βk+1

∣

∣

∣

∣

∆uMj
(5.47)

Note that if only one extent ∆uM1
is given in the uM1

domain, the extent in the

uM2
domain will be infinite unless uM2

is an esentially equivalent domain of uM1
.

If A1/B1 = A2/B2, then the scaled extents must be equal to each other since we

are essentially in the same domain: ∆uM2
/sM2 = ∆uM1

/sM1. Therefore, for

the case when one extent is given, ∆uM2
= ∆uM1

M2/M1 if A1/B1 = A2/B2, and

∆uM2
= ∞, otherwise.

We now return to the discussion of tracing the extent through an optical

system by using the direct extent tracing formulas. Let us assume that the

phase-space region of the input signal is given as a centrally symmetrical convex

polygon or equivalently the extent of the signal is specified in arbitrary LCT

domains. Then, a careful examination of the method introduced in Section 5.4

66



reveals that the phase-space region of the signal at an arbitrary plane in the

system is always given by the intersection of some corridors. First of all, based

on our assumption, the initial phase-space region is defined by the intersection of

some corridors. Moreover, each aperture introduces an additional new corridor

in the phase-space and as we will see below, if it is limiting it will broaden all of

the previously defined corridors with the appropriate trigonometric ratio. Then,

the extent at any intermediate plane can be obtained from direct extent tracing

formulas by taking into account the extents defining the corridors of the phase-

space region at that intermediate plane. We will first give the theorem for the

broadening term and prove it before describing the method.

Theorem: Compaction to an interval of extent ∼ ∆u in any domain u neces-

sarily results in a spread in the LCT domain uM by the amount ∼ 1/|β|∆u.

Proof using Convolution Theorem for LCTs: The convolution theorem for

LCTs is as follows [14]:

CM{f(x)g(x)} = |β|eiπαx2

[(e−iπαx2

fM(x)) ∗ G(βx)] (5.48)

where G(x) is the FT of g(x). Compaction of a signal f in the u domain can be

realized by multiplying f(u) with the window rect( u
∆u

) in that domain. By using

the above formula, we can express the effect of compaction as follows:

CM{f(u)rect(
u

∆u
)} = |β|eiπαu2

[(e−iπαu2

fM(x)) ∗ ∆usinc(β ∆u u)] (5.49)

Thus, multiplication with a rectangle function implies convolution of the chirp

multiplied version of the LCT of the signal with a sinc function in the LCT

domain, followed by final a chirp multiplication. Since we are interested in the

extent, we can take the absolute value of both sides of (5.49). Then, the extent

in the uM domain after multiplication with a rectangle in the u domain can be

approximated as the extent of the chirp multiplied version of fM(u) plus the

extent of the sinc function. Since the extent of the chirp multiplied version of

fM(u) is equal to the extent of fM(u), broadening of the distribution of f in the
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uM direction is comparable to the extent of the the sinc function in (5.49). This

extent is simply 1/|β|∆u.

Of course, this theorem is a consequence of the generalized uncertainty rela-

tion for LCTs.

Proof from geometry: This will be the extension of the proof of compaction

in FRT domains given in [20]. Compaction to an interval of extent ∆u in any

domain u necessarily results in a spread ∼ | sin φ|/∆u in any FRT domain ua

(see Fig. 5.10). Consider an LCT domain uM, which is esentially equivalent to

the FRT domain ua. This implies that Iwasawa decomposition of M contains

the FRT order a. Then, by using the relation between the extents of essentially

equivalent domains given in section 5.1, the spread in uM domain can be obtained

as ∼ (M | sin φ|)/∆u. This is equal to ∼ 1/|β|∆u based on (5.10).

Let P extents ∆uM1
,. . .,∆uMP

be specified in the uM1
,. . .,uMP

domains for

the input signal, where P ≥ 0. We let βl
j denote the β parameter between the

LCT domains of jth aperture and lth extent, equivalently between the LCT

domains with parameter M(zj) and Ml. Then, until we arrive at the 1st aper-

ture, i.e. for z ≤ z−1 , the extent in the LCT domain with parameter M(z) can

be found from (5.45) given the extents ∆uM1
,. . .,∆uMP

in uM1
,. . .,uMP

. When

z = z+
1 , if the aperture is not limiting (i.e. if ∆i > E(z−1 )), then E(z+

1 ) = E(z−1 ).

However, if the aperture is limiting, then E(z+
1 ) = ∆i and all of the previ-

ously specified extents will broaden with the appropriate trigonometric ratio.

By also including the new corridor defined by the 1st aperture, the corridors in

the phase-space will now have the widths ∆uM1
+1/|β1

1 |∆1,. . .,∆uMP
+1/|βP

1 |, ∆1

in the uM1
,. . .,uMP

, uMz1
domains. Then, for z+

1 < z ≤ z−2 , the extent in the

LCT domain with parameter M(z) can be found from (5.45) given the extents

∆uM1
+ 1/|β1

1 |∆1,. . .,∆uMP
+ 1/|βP

1 |, ∆1 in uM1
,. . .,uMP

, uMz1
. Then, after the

second aperture, the extent at this plane will remain the same if the aperture
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is not limiting. However, if it is limiting, the extent at this plane will nec-

essarily be the aperture size ∆2 and new corridors will be defined by the ex-

tents ∆uM1
+ 1/|β1

1 |∆1[E(z−1 ) > ∆1] + 1/|β1
2 |∆2,. . .,∆uMP

+ 1/|βP
1 |∆1[E(z−1 ) >

∆1]+1/|βP
2 |∆2,∆1 +1/|β1,2|∆2,∆2 in uM1

,. . .,uMP
, uMz1

, uMz2
. The brackets [−]

denotes the Iverson brackets. If x is true, [x] = 1 and otherwise, [x] = 0. We can

repeat this approach until we reach the end of the system.

Finally, the phase-space region at the output will be defined by the extents

(

∆uM1
+

1

|β1
1 |∆1

[E(z−1 ) > ∆1] + . . . +
1

|β1
L|∆L

[E(z−L ) > ∆L]

)

, . . . ,

(

∆uMP
+

1

|βP
1 |∆1

[E(z−1 ) > ∆1] + . . . +
1

|βP
L |∆L

[E(z−L ) > ∆L]

)

,

(

∆1 +
1

|β1,2|∆2
[E(z−2 ) > ∆2] + . . . +

1

|β1,L|∆L
[E(z−L ) > ∆L]

)

,

(

∆2 +
1

|β2,3|∆3
[E(z−3 ) > ∆3] + . . . +

1

|β1,L|∆L
[E(z−L ) > ∆L]

)

, . . . , ∆L (5.50)

in the following domains:

uM1
, . . . , uMP

, uMz1
, uMz2

, . . . , uMzL
(5.51)

5.6 Redundant Apertures

We have seen that for a given family of signals if the extent of the signal at

the plane just before an aperture is smaller than the size of the aperture ,i.e.

E(z−i ) < ∆i, then this aperture will not be limiting, or equivalently will be

redundant. Thus, upto this point, we talked about redundant apertures for a

given family of signals. In this section, our aim is to find the apertures in a

system that are redundant for any given family of signals. We will refer to these

apertures as absolutely redundant apertures. Removing the absolutely redundant

apertures from the system (or replacing them with apertures of infinite size)

will not create any difference in the behaviour of the system. Equivalently, the
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system with removed apertures is fully equivalent to the original system with all

apertures in addition to providing a simpler analysis.

If an aperture is redundant when the input signal has infinite space-

frequency support, then this aperture is absolutely redundant, equiv-

alent to say it is redundant for any given family of signals.

This result can be verified as follows: If the input signal has infinite support,

then the first aperture will introduce the first corridor to the region. The second

aperture will introduce the second corridor and will also enlarge the first corridor

with the appropriate trigonometric ratio. Therefore, just after the ith aperture,

the phase-space region will be confined to the corridors defined by the extents

(∆1 + 1/|β1,2|∆2 + . . . + 1/|β1,i|∆i), (∆2 + 1/|β2,3|∆3 + . . . + 1/|β2,i|∆i), . . ., ∆i

in the uMz1
, uMz2

, . . ., uMzi
domains. Now, consider the case when an arbitrary

family of signals is given at the input with its extents specified as ∆uM1
,. . .,∆uMP

in the domains uM1
,. . .,uMP

. For this set of signals, just after the ith aperture,

the phase-space region will be confined to the corridors defined by the extents

(∆uM1
+1/|β1

1 |∆1 + . . .+1/|β1
i |∆i), . . ., (∆uMP

+1/|βP
1 |∆1 + . . .+1/|βP

i |∆i) in

the domains uM1
,. . ., uMP

in addition to the corridors of the region of the infinite-

support signal. Since the phase-space region of the arbitrary family of signals

contains additional corridors that comes from the initial region at any plane in

the system, it lies inside the phase-space region of infinite-support signals. As

a result, the phase-space region at any plane in the system will be the largest

when the input signal has infinite support. Therefore, if an aperture does not

cut the region of the infinite-support signals, it can not also cut the region of

any other family of signals, which lies inside this. This implies that redundant

apertures for the infinite-support signals are also redundant for any family of

signals. Note that the first two aperture of the system can never be absolutely

redundant as long as they are not at essentially equivalent domains since they

always limit the region of an infinite-support input signal. We also note that
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for a given family of signals, there may be redundant apertures other than the

absolutely redundant apertures. In our example system, the 3th, 5th, 6th, and

7th apertures are absolutely redundant.

We have also seen in Section 5.3 that the phase-space window of the system

is defined by some of the apertures, but not all. Since the absolutely redundant

apertures can be removed from the system without introducing any change in

the behaviour of the system, the following statement is always true:

The absolutely redundant apertures can not define the phase-space

window of the system.

In our example system, the phase-space window is defined by the 2th, 4th, and

8th apertures, which are not absolutely redundant.

5.7 Effective Apertures

In this section, we are interested in a pure geometrical problem which aims to

find the smallest centrally symmetrical convex polygon enclosing a given centrally

symmetrical convex polygon with more number of sides. The general case of this

problem for convex polygons has been previously discussed in [56, 57, 58].

Consider a given n-sided centrally symmetrical convex polygon defined by

n/2 corridors. Our aim is to approximate this polygon with a k-sided centrally

symmetrical convex polygon defined by k/2 corridors, where k ∈ {4, 6, . . . , n−2}.
Then, we define the error in approximating the polygon as the ratio of the area

of the non-overlapping regions between the original and approximated polygons

to the area of the original polygon. The approximation will be considerably

good even when we approximate with 4 sides, or equivalently with 2 corridors.

We have previously conjectured that the approximation error will be the largest
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when an n-sided symmetrical convex polygon becomes an ellipse in the limiting

case of n → ∞. In this limiting case, if we fit a rectangular to the ellipse, which

corresponds to approximating with 2 corridors, the normalized error is given by

error =
4ab − πab

4ab
=

4 − π

4
≈ 0.21 (5.52)

where a and b are one-half of the ellipse’s major and minor axes, respectively.

Thus, assuming our conjecture is true, the worst case error is 21%, which occurs

when the polygon converges to an ellipse in the limit n → ∞ and when we

approximate the ellipse with only 2 corridors. Provided that our conjecture is

true, even when we approximate with 2 corridors, the approximation will be

considerably good.

We have proved before that the corridors of the minimum area enclosing

parallelogram are from the corridors of the original polygon. In the general case,

the smallest enclosing symmetrical polygon with fewer number of sides will be

defined by the corridors of the original symmetrical polygon, which has been

proved in [56].

Let the original polygon be constructed with n corridors and k be the number

of corridors we want to keep in the approximate polygon. We conjecture that

the smallest enclosing polygon with k + 1 corridors contains all the corridors of

the smallest enclosing polygon with k corridors. That is, the smallest enclos-

ing polygon with k + 1 number of corridors can be constructed by adding one

additional corridor to the corridors of that with k corridors.

The above geometrical observations allow two meaningful interpretations in

the context of apertured optical systems. First, we can model the phase-space

window of a system with fewer number of apertures than the number of non-

redundant apertures to a good degree of approximation. Second, the state of the

signal at any arbitrary plane can be approximated with fewer number of corridors

(upto minimum of two corridors) to represent its phase-space region. That is,
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we can select fewer number of apertures than the number of non-redundant

apertures to approximately represent all of the apertures in the system. Now,

we will discuss these interpretations more deeply based on our example system.

Fig. 5.11 presents the phase-space window of our system and the smallest

parallelogram enclosing it. As we have seen in Section 5.6, this window is defined

by three apertures, which are the 2nd, 4th, and 8th apertures in the system. The

smallest enclosing paralelogram defined by two apertures is obtained from the

previous three apertures as the 2nd and 4th ones. Observe that the error in

approximating the phase-space window with this closest fitting parallelogram is

considerably small.

The smallest enclosing paralelogram will have the smallest area among those

defined by other pairs of apertures. The way to find these apertures from the

present apertures is to find the apertures that define the parallelogram with the

smallest area. As we have seen in the Section 5.2, the area of the parallelo-

gram defined by two corridors of width ∆uM1
/M1s and ∆uM2

/M2s in two LCT

domains is given by the bicanonical width product ∆uM1
∆uM2

|βi,j|. Also re-

member that each aperture defines a corridor of width ∆i/Mzi
in uMi

domain.

Then, the apertures that minimizes ∆i∆j|βi,j| are the apertures that define the

smallest enclosing parallelogram. We refer to these apertures as the most effective

apertures.

As we have seen in Section 5.6, there are four absolutely redundant apertures

in the system we considered. The non-redundant apertures in the absolute sense

are the 1st, 2nd, 4th, and 8th apertures in the system. After removing the

absolutely redundant apertures, both the system and the state of the signal at

any arbitrary plane will remain the same. Now, we want to investigate the effect

of decreasing the number of apertures beyond the number of non-redundant

apertures on the state of the signal. Fig. 5.12a shows the extent of the signal

after one of the non-redundant apertures is removed from the system. The legend
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shows the remaining apertures in the system. Fig. 5.12b presents the extent of

the signal after two non-redundant apertures are removed from the system. For

comparison, the extent of the signal when all of the non-redundant apertures are

present in the system is also given in each figure. Observe that although some

apertures are not absolutely redundant, removing some of them from the system

may not change the behaviour of the system much after some point. When we

choose the apertures to be removed correctly, similar extent will be obtained at

the output, as compared to the exact extent.

Fig. 5.12c shows the extent of the signal when the phase-space region of the

signal at the output is approximated optimally with 2 apertures and 3 apertures.

The removed apertures are chosen such that they causes minimal error in the

phase-space region at the output. Observe that when we leave only the 2nd and

4th apertures in the system, this has a very similar behaviour both at the output

and at the region after these two apertures, as compared to the system with all

apertures.

5.8 Simulating Optical Systems

The fact that all physical systems support only a finite number of degrees of

freedom means that their effect on signals can be simulated with discrete-time

systems with the same degree of accuracy compared to continuous systems. Fur-

ther insight on these matters may be obtained from chapter 2, which discusses

how the DLCT provides an approximation to the continuous LCT. It has been

presented in that chapter that provided N is chosen to be at least equal to the

bicanonical width product of the set of signals we are dealing with, the DLCT

which can be efficiently computed on a digital computer by taking N log N time

can be used to obtain a good approximation to the continuous LCT. The ap-

proximation improves with increasing N .
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Now, we will discuss how we can simulate an apertured optical system by

using the DLCT mentioned in [7] and defined in [4]. As discussed before, such

an optical system is equivalent to the combination of many LCT blocks and

rectangular windows. We will make sure that at every stage, the number of

samples is sufficient for recovery of the continuous signal in the LCT sampling

sense with careful attention to representational efficiency. Special care is taken to

choose the minimum number of samples to represent the signal at intermediate

stages so that the method is as efficient as possible.

Let the phase-space region and N samples of the input signal is given, where

N is sufficient to recontruct its continuous version. In order to simulate each LCT

block, we examine the phase-space region after the LCT computation, and then

we determine the extent of the output signal from this region. Then, the number

of samples required to represent the signal is the bicanonical width product

∆u∆uM|β|, where β is the parameter of the LCT to be computed, ∆u and ∆uM

are the extent of the signal before and after the LCT, respectively. Let denote

the number of samples before the LCT block as Ni and the number of samples

required after the LCT block as No. If No = kNi, we must upsample the signal

before the LCT block by a factor of k when k > 1 and downsample by a factor of

k when k < 1. Then, we can compute the DLCT with the parameter of the LCT

block. The samples obtained will be good approximations of the true samples of

the transformed signal. Whenever we reach to a aperture, we can multiply the

samples of the intermediate result with the samples of the rectangle function,

which will be equivalent to removing some of the samples from the tail ends.

The number of samples at the output of the window will be always sufficient to

recontruct the continuous signal since this number of samples will give the area of

the parallelogram with corridors defined at the same domains as compared to the

one before the window and therefore will cover all the phase-space region after the

window (In fact, fewer number of samples may also be sufficient to represent the

signal after the aperture when the high frequency components are confined to the
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removed regions, but here we do not need to downsample because resampling will

be needed for the next LCT block computation anyway.) Then, we will repeat

the described process for the next LCT block and window until we reach to

the end of the system. Thus, by carefully following the evolution of the space-

frequency support region through each LCT block, we can obtain the output

samples, which are good approximations of the samples of the continuous output

function and the continuous output function (that is, they can be recovered via

interpolation of these samples). Note that although downsampling operations

are not necessary for the algorithm to work properly, they are performed since

representational efficiency is our ultimate goal. In practice, one can choose not

to perform downsampling operations during the actual computation.

Finally, we discuss the relation for down and upsampling operations. The

issue of sampling rate conversion has been explored in many works including

[44, 24, 59]. Let us consider a function f , whose extents are given in the u

and uM1
domains as ∆u and ∆uM1

. Then, the function is recoverable from its

samples when the sampling interval δu equals to 1/|β1|∆uM1
:

f(u) = e−iπγ1u2

N1/2−1
∑

n=−N1/2

f(nδu)eiπγ1δu2n2

sinc(
u

δu
− n), (5.53)

where N1 = ∆u∆uM1
|β1|. If we want to resample the function such that it has

N2 number of samples, then the new samples f̂ can be obtained as follows:

f̂(kδ̂u) = e−iπγ1δ̂u
2
k2

N1/2−1
∑

n=−N1/2

f(nδu)eiπγ1δu2n2

sinc(k
δ̂u

δu
− n) (5.54)

for k ∈ [−N2/2, N2/2 − 1], where δ̂u = δuN1/N2. Note that this requires the

additional knowledge of γ1.
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5.9 Future Work

The convolution theorem for LCTs is given as [14]

CM{f(x)g(x)} = |β|eiπαx2

[(e−iπαx2

fM(x)) ∗ G(βx)] (5.55)

where G(x) is the FT of g(x). The dual of this theorem can be obtained as

follows:

CM{f(x)g(x)} = |α|eiπαx2 ∗ [(e−iπαx2 ∗ fM(x))g(
α

β
x)] (5.56)

The derivation of the above result is straightforward, which takes as a starting

point F{F−1CM{f(x)g(x)}}, apply the convolution theorem in (5.55) for the

operator F−1CM and then the convolution property of the Fourier transform

for the operator F . When one of the functions is a rectangle function, the

convolution relations reduce to the following equations:

CM{f(x)rect(
x

∆
)} = |β|eiπαx2

[(e−iπαx2

fM(x)) ∗ sinc(∆βx)] (5.57)

= |β|eiπαx2

[(e−iπαx2CM{rect( x

∆
)}) ∗ F(βx)] (5.58)

= |α|eiπαx2 ∗ [(e−iπαx2 ∗ fM(x))rect(
α

β∆
x)] (5.59)

= |α|eiπαx2 ∗ [(e−iπαx2 ∗ CM{rect( x

∆
)})f(α

β
x)] (5.60)

Multiplication with a rectangle function is like windowing in the FRT domains

whose orders are close to 0 and in the LCT domains which are essentially equiv-

alent to these FRT domains. But, this windowing operation is a modified one as

seen in (5.59). Moreover, this operation is like convolution with a sinc function

in the FRT domains whose orders are close to 1 and in the LCT domains which

are essentially equivalent to these FRT domains. But, this convolution operation

is a modified one as seen in (5.57). Whether it is like a windowing or convolution

operation depends on the shape of the Wigner support. To see this, consider

the figure in 5.10. If we intersect the region before and after the windowing,

which are drawn with dashed and solid lines in the figure, the FRT domain that

contains the intersection point is the critical domain for us. If a domain is above
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this critical domain, then the effect of the operation is more like a convolution

operation and the extent in this domain increases after the operation, which can

be approximated as ∆uM + 1/∆|β| by using (5.57). If a domain is below the

critical domain, then the effect of the operation is more like a windowing oper-

ation and the extent in this domain decreases after the operation, which can be

approximated as M∆ cos φ + ∆µ/|β| by using (5.58).

It may be possible to track the extent by using these formulas. The output

can be written explicitly in terms of the input by using only the first of the above

equations, which will be insufficient to extract the extent information; however,

it seems to be hard to do this by using two of the equations. This problem is

left as a subject for future study because of the following reasons. First, we have

reached all of our goals by using the Wigner-based extent tracing method and

direct extent tracing formulas. Second, this approach will be less acurate than

the proposed method. Third, this does not also have a computational advantage.

In the Wigner-based method, we only work with corner points, which does not

create more computational cost than this. In fact, in the direct extent tracing

formulas, the Wigner distribution is totally dispensed with.

5.10 Appendix

In this part, we will investigate the broadening effect of rectangular windowing

on the Wigner distribution for three different cases and different values of x. As

we have discussed, rectangular windowing results in convolution of the Wigner

distribution of the signal with the Wigner distribution of the rectangle function

along the f direction. This cause broadening in the f direction and the amount

of broadening seems to depend on the value of x. Let us denote the width of

the rectangular window by ∆x and the extent of the signal in the f direction

in the Wigner domain by ∆f . We investigate the following cases: ∆f ≪ 1/∆x,
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∆f = 1/∆x, and ∆f ≫ 1/∆x when x = 0, x = 0.25∆x, and x = 0.45∆x. Note

that x can take values between [−∆x/2, ∆x/2], in general. The results of the

convolution are shown in Fig. 5.13.

When ∆f ≪ 1/∆x, the extent of the signal in the f direction is very small

compared to the main lobe of the sinc function, which is the Fourier transform

of the rectangle function. For this reason, after convolution the envelope of the

sinc function is preserved. The extent of the convolved function can be defined

with respect to this envelope, which is given by ∆f + 1/∆x for all x. For

the case ∆f ≫ 1/∆x, the extent of the signal in the f direction is very large

compared to the main lobe of the sinc function. Based on the full width at half

maximum (FWHM) criterion, we can define the extent of the convolved function

as ∆f + 1/∆x for all x. However, for the case ∆f = 1/∆x, the extent of the

signal in the f direction is comparable to the main lobe of the sinc function.

In this case, it is problematic to define the extent as the sum of the extent of

convolved functions, which would be the same for all x, as it can be seen from Fig.

5.13b. Therefore, approximating the spread in the f direction after windowing

as ∼ 1/∆j is crude and tricky and can be problematic when the extent of the

signal distribution in the f direction becomes comparable with 1/∆x.
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Figure 5.7: E(z) vs z for the system shown in figure 5.4
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Figure 5.8: Evolution of Wigner distribution
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Figure 5.9: E(z) vs z for a larger initial phase-space region
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Figure 5.10: Compaction in the ath domain
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Figure 5.11: The phase-space window of the system and its approximation
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Figure 5.12: The extent of the signal for different removed apertures
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Figure 5.13: Convolution results for different values of x
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Chapter 6

EFFECTIVE POINT SPREAD

OF THE FRACTIONAL

FOURIER TRANSFORM

In this chapter, we will investigate the effect of one point in the input to the

points in the output as a function of the fractional order a when the output is

related to its input through a FRT. We will refer to the mostly affected region

in the output as the effectiveness region of the input point. The width of this

region will be also referred to as the effectiveness width. We will also look to

this problem from the reverse side and investigate how one point in the output is

affected from the points in the input. We will refer to the mostly affecting region

in the input as the dependency region of the output point. The width of this

region will be also referred to as the dependency width. Moreover, the change in

the effective output width as a function of the fractional order a will define an

expanding cone from input to output and the change in the dependency width

as a function of the fractional order a will define an expanding cone from output

to input. Thus, cones are bidirectional. Our aim is to find the dependency and
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effectiveness regions and their associated cones both for the continuous-time and

the discrete-time systems.

The effectiveness and dependency regions have physical meanings. The effec-

tiveness region of an input point gives the points at the output that we observe

a change when we vary that particular input point. Similarly, the dependency

region of an output point gives the points in the input that create a change on

that particular output point. The points outside the effectiveness and depen-

dency region have negligible effects on the particular point in the reverse plane

and we can say that particular point depends only on the points inside these

regions.

6.1 Continuous Case

Consider a function whose Wigner distribution is approximately confined to a

circle of diameter ∆u. This means that a sufficiently large percentage of the

signal energy is contained in this circle. That is, the representations of the

signal in all fractional Fourier domains are approximately confined to the interval

[−∆u/2, ∆u/2], or equivalently the representations of the signal in all fractional

Fourier domains are bandlimited to [−∆u/2, ∆u/2]. Then, consider a system

whose output is related to its input through a FRT. We will use two analytical

approaches to derive the effectiveness and dependency regions for the set of

continuous-time signals, which satisfy our assumption. The first approach will

rely on the functions and the second approach will make use of the instantaneous

frequency.
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6.1.1 First Approach

Consider a system whose output is related to its input through a FRT. Let

f(u) denote the input function and fa(u) denote the output function, where the

relation between f(u) and fa(u) is given by the ath order FRT. Based on our

assumption, the input function is bandlimited to the interval [−∆u/2, ∆u/2]. If

we denote its Fourier transform by F (µ), we have

F (µ) = F (µ) × rect(
µ

∆u
) (6.1)

and equivalenly,

f(u) = f(u) ∗ ∆u sinc(∆u u) (6.2)

Since the output function is also bandlimited to the same interval, we can simi-

larly write

fa(u) = fa(u) ∗ ∆u sinc(∆u u) (6.3)

We want to find the effective FRT kernel, denoted by K̄ef
a (u, u′), when the

input and output functions satisfy (6.2) and (6.3), respectively. If we start with

the FRT relation and then use (6.2), we obtain

fa(u) =

∫

Ka(u, u′) f(u′) du′ (6.4)

=

∫

Ka(u, u′)

∫

f(u′′)∆u sinc(∆u(u′ − u′′)) du′′ du′ (6.5)

=

∫

f(u′′)

(
∫

Ka(u, u′)∆u sinc(∆u(u′ − u′′))du′

)

du′′ (6.6)

where the expression inside brackets is the effective kernel obtained after us-

ing (6.2), or equivalenly the effective kernel for a bandlimited input function.

This kernel is the convolution of the original kernel with sinc function along the

88



direction of u′:

Kef
a (u, u′) = Ka(u, u′) ∗ ∆u sinc(−∆uu′) (6.7)

=

∫

Ka(u, u′′)∆u sinc(∆u(u′′ − u′))du′′ (6.8)

= F a(∆u sinc(∆u(u − u′))) (6.9)

= eiπu′2 sinφ cos φe−i2πuu′ sin φF a{∆u sinc(∆u u)}(u− u′ cos φ)(6.10)

where the final equality follows due to the following property

f(u − ξ)
Fa

−→ eiπξ2 sin φ cos φe−i2πuξ sinφfa(u − ξ cos φ) (6.11)

We will further take into account bandlimitedness in the output domain by

using (6.3):

fa(u) = fa(u) ∗ ∆u sinc(∆uu) (6.12)

=

(
∫

Kef
a (u, u′) f(u′) du′

)

∗ ∆u sinc(∆uu) (6.13)

=

∫

f(u′)

(
∫

Kef
a (u′′, u′) ∆u sinc(∆u(u − u′′)) du′′

)

du′ (6.14)

where the expression inside brackets is the final effective kernel when both the

input and output are assumed to be bandlimited. This kernel is the convolution

of the previous effective kernel with sinc function along the direction of u:

K̄ef
a (u, u′) = Kef

a (u, u′) ∗ ∆u sinc(∆uu) (6.15)

= Ka(u, u′) ∗ ∆u sinc(−∆uu′)) ∗ ∆u sinc(∆uu) (6.16)

We can write the above result in two more different forms:

K̄ef
a (u, u′) = e−iπu′2 sinφ cos φ (6.17)

×
(

e−i2πu′(u−u′ cos φ) sin φF a{∆u sinc(∆u u)}(u− u′ cos φ)
)

∗ ∆u sinc(∆uu)

K̄ef
a (u, u′) = e−iπu2 sinφ cos φ (6.18)

×
(

e−i2πu(u′−u cos φ) sin φF a{∆u sinc(∆u u′)}(u′ − u cosφ)
)

∗ ∆u sinc(−∆uu′)
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We can now investigate the effectiveness and dependency regions by using the

above effective kernels. Firstly, we will investigate the effect of one point in the

input to points in the output. To find the effectiveness region, consider a partic-

ular u′ value, which corresponds to a particular input point and investigate the

extent of the effective kernel with respect to the output parameter u. For this,

let us consider the magnitude of the kernel in (6.17) by taking u′ as a constant.

Since convolution is a translation invariant operation, we can first convolve the

unshifted versions of the functions and then shift the result by u′ cos φ. As we will

discuss below, the extent after convolution can be approximated as the sum of the

extent of the convolved terms. The extent of e−i2πu′u sinφF a{∆u sinc(∆u u)}(u) is

equal to the extent of |F a{∆u sinc(∆u u)}(u)| since we can think in terms of mag-

nitude. This extent can be approximated as ∆u| sin φ| (see the appendix for its

crude derivation and supporting simulation results). The extent of ∆u sinc(∆uu)

is ∼ 1/∆u, which can be neglected. Thus, we can conclude that the effectiveness

region has width ∼ ∆u| sin φ|, which is centered at u = u′ cos φ.

As mentioned above, we have approximated the extent after convolution as

the sum of the extent of the convolved terms. This approximation is valid in

our case since the complex exponential which multiplies the FRT of the sinc be-

fore convolution does not oscillates more rapidly compared to the convolved sinc

function. To see this, consider the instantaneous frequency of the complex expo-

nential exp(−i2πu′(u − u′ cos φ) sin φ) with respect to the u parameter since we

convolve over this variable in (6.17). The instantaneous frequency of the complex

exponential is given by (2π)−12πu′ sin φ = u′ sin φ. Since we have assumed that

u′ is in the interval [−∆u/2, ∆u/2], the frequency can be at most ∆u sin φ/2.

(We can find this as ∆u sin2 φ/2 if we limit ourselves to the approximate support

length of the FRT of the sinc, which is given by ∆u sin φ.) Then, the highest

oscillation frequency of the complex exponential will be obtained as ∆u/2 when

a = 1. The highest frequency of the convolved sinc function is also ∆u/2. As
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a result, the complex exponential oscillates at most with the same frequency as

the sinc function, and thus it will never wash out the convolution integral.

Similarly, we can investigate how one point in the output is affected from the

points in the input. To find the dependency width, consider a particular u value,

which corresponds to a particular output point and investigate the extent of the

effective kernel with respect to the input parameter u′. For this, let us consider

the magnitude of the kernel in (6.18) by taking u as a constant. Again, we can

first convolve the unshifted versions of the functions and then shift the result

by u cos φ. The extent after convolution can be approximated as the sum of the

extent of the convolved terms. The extent of e−i2πuu′ sin φF a{∆u sinc(∆u u′)}(u′)

is equal to the extent of |F a{∆u sinc(∆u u′)}(u′)|, which is given by ∼ ∆u| sinφ|.
The extent of ∆u sinc(∆uu′) is ∼ 1/∆u, which can be again neglected. Thus,

we can conclude that the dependency region has width ∼ ∆u| sinφ|, which is

centered at u′ = u cos φ. Note that the dependency and effectiveness widths are

the same, given by ∼ ∆u| sinφ|. We will see that this is also true in the discrete

case.

Fig. 6.1 shows the magnitudes of the effective kernel for different transform

orders when ∆u = 16 and either u or u′ is zero. The vertical axis can be

considered as the variable parameter of the kernel, either u or u′, whichever is

nonzero. The width for three different definitions are plotted in figure 6.2. The

solid curve shows the width computed based on the full width at half maximum

(FWHM) criterion where the maximum is taken as the average of values in the

region, which does not fall below 1. The dashed curve shows the width when

FWHM criterion is used by considering the maximum value of the kernel as the

maximum. The chain-dotted line represents the width when the threshold is

defined as 1 and the width is determined from the length of the region that has

higher value than this threshold. For comparison, the approximation ∆u| sinφ|
is also plotted with dotted line. Although the definition for the approximate
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width is ambiguous, observe that the approximation is satisfactory for all values

of the fractional order and for all width definitions. For easier interpretation, the

expanding cones from input to output and output to input are also plotted in

figures 6.3 and 6.4.
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Figure 6.1: Magnitudes of the effective kernel for different transform orders when
∆u = 16

6.1.2 Second Approach

The FRT kernel Ka(u, u′) is a complex exponential which exhibits a varying

instantaneous frequency both as a function of u and u′. In order to compute

the FRT of a function f(u), we need to integrate it after multiplication with the

kernel. Let us assume that the input signal f(u) is bandlimited to the interval

[−∆u/2, ∆u/2]. Then, we can say that if the kernel changes with larger frequency

than κ∆u
2

where κ ≥ 1 is a chosen constant, then the contribution of these parts

to the integral can be approximated as zero. The reasoning is that the function

does not contain higher frequencies than ∆u/2 and if the exponential oscillates
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Figure 6.2: Effective width of the kernel based on FWHM (solid) and its approx-
imation (dashed) as a function of the fractional order

faster, it will wash out the integral at these parts. Based on these ideas, for a

bandlimited function we will define the effective width of the kernel as the range

where the instantaneous frequency is larger than κ∆u
2

.

Since we integrate with respect to the u′ variable for computation of the

FRT, we need to find the instantaneous frequency of the kernel by taking u′ as a

variable and u as a constant. Then, the instantaneous frequency can be obtained

as (2π)−1d(π cot φu2 − 2π csc φuu′ + π cot φu′2)/du′ = − csc φ u + cotφu′. By

setting this equal to ±κ∆u
2

, we have

− csc φ u + cot φu′ = ±κ
∆u

2
(6.19)

If we also assume that the output signal is bandlimited to the interval

[−∆u/2, ∆u/2], we can find another relation between u and u′. For this, con-

sider the inverse FRT relation between the input and output signal. In order
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Figure 6.3: Expanding cone from input to output when the width is computed
based on FWHM (solid) and when the width is approximated (dashed)

to compute the inverse FRT of fa(u), we need to integrate it after multiplica-

tion with the kernel K−a(u
′, u). Similarly, we can say that if the kernel changes

with larger frequency than κ∆u
2

where κ ≥ 1 is a chosen constant, then the

contribution of these parts to the integral can be approximated as zero. Thus,

we can define the effective width of the kernel as the range where the instan-

taneous frequency is larger than κ∆u
2

. Since we integrate with respect to the

u variable for computation of the inverse FRT, we need to find the instan-

taneous frequency of the kernel by taking u as a variable and u′ as a con-

stant. Note that we always use the variable u for the output variable and u′

for the input variable. Then, the instantaneous frequency can be obtained as

(2π)−1d(−π cotφu′2 + 2π csc φu′u− π cot φu2)/du = csc φ u′ − cotφu. By setting

this equal to ±κ∆u
2

, we have

csc φ u′ − cotφu = ±κ
∆u

2
(6.20)
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Figure 6.4: Expanding cone from output to input when the width is computed
based on FWHM (solid) and when the width is approximated (dashed)

If we solve for u in (6.19), we obtain

u = cos φu′ ± sin φκ
∆u

2
(6.21)

The above equation gives us the range of u values at the output for which the

contribution of the input at point u′ to the integral is nonnegligible. This defines

the mostly affected region in the output from a point in the input, which we

refer to as effectiveness region. Here, the first term cosφu′ defines the center of

the region at the output according to the input point u′, which is simply a shift

in u. The second term gives us the width of the region as | sinφ|κ∆u, which is

simply the effectiveness width. Therefore, when we investigate the effect of an

input point u′ to the output, the kernel is centered at u = cos φu′ with a width of

| sin φ|κ∆u. Note that this result is completely consistent with the result given

in Section 6.1.1 if we choose κ = 1.
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If we solve for u′ in (6.20), we obtain

u′ = cos φu ± sin φκ
∆u

2
(6.22)

The above range of u′ values defines the mostly affecting region in the input for a

point in the output, which we refer to as the dependency region. Therefore, the

effective kernel is centered at u′ = cos φu with a width of | sin φ|κ∆u. Note that

this result is also consistent with the result given in Section 6.1.1 if we choose

κ = 1. However, if we solve for u′ in (6.19) and u in (6.20), we will obtain

different range of values for u and u′, which are inconsistent with the results of

Section 6.1.1. Exploring the reason behind this remains as an open problem, but

we suspect that these solutions are not valid under our approximations.

We will also define the height of the effective kernel as the magnitude of the

original FRT kernel, which is given by |Aφ| = |√1 − i cotφ|. By approximating

the effective kernel as a rectangle of width | sin φ|κ∆u and height |√1 − i cotφ|,
we can investigate how the energy changes as a function of the order a:

Energy = Height2 × Width (6.23)

= |
√

1 − i cotφ |2 | sin φ|κ∆u (6.24)

= | 1 − i cot φ | | sin φ|κ∆u (6.25)

=
√

1 + (cotφ)2| sin φ|κ∆u (6.26)

= κ∆u (6.27)

Therefore, the energy is the same for all values of order a.

6.2 Discrete Case

We will now explore the concepts of effectiveness and dependency regions in

the discrete case. For this, we will consider the discrete FRT defined in [10].

Let us denote the ath order discrete FRT matrix as Fa. In order to investigate
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the contribution of samples in one domain to a sample in the other domain,

we investigate the change in the magnitude of the coefficients throughout one

row and one column of Fa. Investigating the change throughout one row tells

us how much one sample in the output domain (corresponding to that row)

is affected from the samples in the input domain. Similarly, investigating the

change throughout one column tells us how much one sample in the input domain

(corresponding to that column) affect the samples in the output domain. In

fact, both row and column investigation will give the same result since Fa is a

symmetric matrix. Therefore, the effect of an input point to the output and the

dependency of an output point to the input will be the same. From now on,

we will only investigate the dependency region, but the reader should remember

that all of the results hold also for the effectiveness region.

Let N denote the number of samples in both domains. Then, the range of

input and output samples is [−N/2, N/2−1]. We choose N = 256 for illustration

purposes. Firstly, we investigate the effect of input samples to the 0th output

sample. As shown in figure 6.5, the influence or dependency of a point in one

domain to the points in the other domain spreads as a increases, similar with the

continuous case. (See in figure 6.6 that the width increases with the order a ) We

will refer to this phenomena as the spread of information. For small values of a,

there is only local dependency and as a increases, the contribution of other points

increases while the contribution of points in the local area sharply decreases, by

this way the contribution of all points starts to be equalized as a → 1.

We will now investigate the effect of input samples to an output sample when

the output sample is located at different points than the center. As seen in

Figure 6.7, the effect at different locations than the center is approximately a

shifted version of the effect at the center, which is similar with the result of

the continuous case. However, they are not an exact shift as in the continuous

case since some distortions also take place, which may be caused due to discrete
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Figure 6.5: The effect on 0th sample for different transform orders

approximation. We also note that the discrete FRT has a periodic nature since

its eigenvectors are periodic with period N [2]. Then, the input vector which is

decomposed in terms of these eigenvectors is in fact assumed to be periodic with

N , and thus the output is also periodic with N . We observe this periodic nature

also in the figures of 6.7 since the effect on one end is continuously followed by

the effect on the other end. Also note that we can further assume periodicity in

the continuous case to match the results of the discrete case in this sense.

Let us compare the results of the discrete case with the results of the con-

tinuous case. In the continuous case, we have assumed an input function whose

Wigner distribution is approximately confined to a circle of diameter ∆u. If we

sample such a function, we need to take at least N = ∆u2 samples. Then, the

results of the discrete case obtained with N = 256 samples correspond to the case

when ∆u = 16 in the continuous case. The continuous and discrete kernels are

plotted in Figure 6.8 for comparison. The effective width has been approximated

as ∆u| sinφ| in the continuous case and the accordingly defined width corridors
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Figure 6.6: Width in the discrete case based on FWHM (solid) and the approx-
imation in the continuous case (dashed)

are also plotted on the continuous kernel. The equivalence of these corridors in

the discrete case can be found by taking ∆u| sin φ|/(1/
√

N) = N | sin φ| samples

in the dependency region. The corridors defined accordingly are also plotted on

the discrete kernel. As seen in Figure 6.8, approximating the dependency region

as N | sin φ| produce a close approximation in the discrete case, although it is

not very tight. We can see this also in Figure 6.6 where the dependency width

is computed based on three different width definitions. The solid curve shows

the width defined by the FWHM criterion where the maximum is taken as the

average of values in the region, which does not fall below 1/16. The dashed

curve shows the width when FWHM criterion is used by considering the maxi-

mum value of the kernel as the maximum. The chain-dotted line represents the

width when the threshold is defined as 1/16 and the width is determined from

the length of the region that has higher value than this threshold. For compar-

ison, the approximation N | sin φ| is also plotted with dotted line. Although the
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(a) Effect on −128th sample
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(b) Effect on −64th sample

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1
a=0
a=0.2
a=0.4
a=0.6
a=0.8
a=1

(c) Effect on 127th sample
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(d) Effect on 64th sample

Figure 6.7: The effect on samples located at different points than the center for
different transform orders

definition for the approximate width is ambiguous, observe that all of the three

widths are close to the approximate width N | sin φ|.

Let us also investigate the change in the energy for the discrete case. Let us

define the height as the average of the values in the dependency region. Remem-

ber that we have defined the dependency region based on three different crite-

rions. For comparison with the continuous case, this is multiplied with ∆u and

the approximation of the height in the continuous case, given by |√1 − i cotφ|,
is also plotted with dashed lines ( Figure 6.9). As shown in Figure 6.9, roughly
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speaking, the energy is the same for all values of a also in the discrete case, where

the errors may be due to our width and height definitions. We also note that

for direct comparison with the continuous case, we can normalize the width in

the discrete case by 1/
√

N , since each sample is taken at intervals of this length.

After normalization, the energy will be approximately
√

N for all values of a,

which is equal to ∆u, and thus it is also consistent with the continuous case.

6.3 Appendix

In this part, we will figure out the extent of the FRT of sinc and rectangle

functions. Let us consider the function ∆u sinc(∆u u). We can assume that

the sinc function is confined to the intervals of length ∼ 1/∆u and ∆u in the

time and frequency domains, respectively. Roughly speaking, this will define a

rectangular region in the time-frequency plane. If we compute ath order FRT

of a sinc, this will correspond to a rotation in the time-frequency plane and the

width of the transformed function can be found via projection onto the rotated

axis. As seen from Fig. 6.10, this width is simply ∼ ∆u sin φ + (1/∆u) cosφ.

When ∆u ≫ 1, this can be further approximated as ∼ ∆u sin φ.

We will now illustrate that ∆u sin φ + (1/∆u) cosφ provides a satisfactory

approximation to the extent of a transformed sinc function. Fig. 6.11 shows the

magnitudes of the fractional Fourier transforms of a sinc function for different

orders when ∆u = 16. The extent based on the full width at half maximum

(FWHM) criterion and the approximation ∆u sin φ+(1/∆u) cosφ are plotted in

figure 6.12. Observe that the approximation is valid for all values of the fractional

order.

With similar arguments, it is possible to approximate the effective width

of the ath order FRT of a rectangle function rect(u/∆u) as ∼ (1/∆u) sinφ +

∆u cos φ. When ∆u ≫ 1, this can be further approximated as ∼ ∆u cos φ.
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Figure 6.8: The kernel in the discrete and continuous cases for different transform
orders
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Chapter 7

LINEAR ALGEBRAIC

ANALYSIS OF SIGNAL

RECOVERY FROM PARTIAL

FRACTIONAL FOURIER

DOMAIN INFORMATION

7.1 Introduction

In this chapter, we will turn our attention to a class of signal recovery problems

where partial information in two or more fractional Fourier domains are available

and the aim is to find the unknown signal values by using known information.

These problems have been motivated by the existence of wide applications in op-

tical, acoustical, electromagnetic, and other wave propagation problems [2]. This

is because, the propagation of waves can be considered as a process of contin-

ual fractional Fourier transformation, where the fractional order monotonically

106



increases as a function of the distance [60]. As the wave propagates, first the

function itself, then its fractional Fourier transforms of increasing order and fi-

nally in the far-field its Fourier transform is observed. The measurement planes

perpendicular to the axis of propagation correspond to fractional Fourier do-

mains (FRFDs). Thus, the problem considered here corresponds to the problem

of recovering waves from their measurements distributed over several planes. We

can encounter with these problems in many different situations. For instance,

if measurements can not be taken with sufficient spatial resolution, but with

a lower one or if it is not possible to take measurements at some parts of the

measurement plane, then we can take measurements at more than one plane un-

der these constraints and find all unknown samples at a certain plane by using

these measurements [61]. By this way, we can compensate for the information

deficiency caused by the measurement constraints.

While some ad hoc algorithms have been applied to these problems, there

has not been much theoretical progress. A numerical solution to the problem in

pure fractional Fourier domain context has been given in [62], where an iterative

algorithm has been developed based on the method of projections onto convex

sets. The problem when amplitude measurements are not possible has been

addressed in [63], which deals with the problem of recovering a complex signal

from the magnitudes of multiple fractional Fourier transforms. A numerical

approach to the recovery of the signal from its samples at arbitrarily distributed

points has been presented in an optical context in [64]. An information theoretic

approach has been discussed in [65].

Our purpose in this work is to develop a novel linear algebraic approach to

these problems. We will formulate the problem as a linear system of equations

and deal with the sensitivity issues of ill-posed problems. With these, we aim to

investigate how much data is needed to recover the signal within some tolerable

error and explore the redundancy and information relations between the given
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data for different sample distributions and independently from the signal to be

recovered.

7.2 Problem Definition

Consider two fractional Fourier domains such that each domain is sampled at

N uniform points. Let a1 and a2 be the orders of these two domains. Let

f = [f(−N/2), ..., f(N/2 − 1)]T and g = [g(−N/2), ..., g(N/2 − 1)]T denote the

vectors of length N which represent the samples of the signals f and g in the

a1th and a2th order FRFDs, respectively. If a = a2 − a1, the relation between

the signals at these domains is given by

g = Faf , (7.1)

where Fa denotes the N ×N ath order discrete FRT matrix given in [10]. Here,

we approach the problem in a purely discrete context. However, if we consider

the vectors as the samples of continuous-time signals, then the above relation

will be an approximation and and there will also be a contribution to the error

coming from this approximation. As we will see later in (7.7), condition number

will also be a measure for this error.

Let m1 and m2 denote the number of known samples in the a1th and a2th

order FRFDs, respectively. If the known indices in both domains form the

vectors k = [k1, ..., km1
]T and n = [n1, ..., nm2

]T , then the vectors f(k) =

[f(k1), ..., f(km1
)]T and g(n) = [g(n1), ..., g(nm2

)]T contain the known signal val-

ues of f and g, respectively. Similarly, if the indices in vectors k̄ and n̄ are

unknown respectively for f and g, then f(k̄) and g(n̄) represent the unknown

signal values.

Let Fa(n,k) be an m2 x m1 submatrix of Fa obtained by choosing its

n1th,...,nm2
th rows and k1th,...,km1

th columns. By choosing the same rows and
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the remaining columns, one can also construct the submatrix Fa(n, k̄), which is

m2 x (N − m1). Then, the relation in (7.1) can be rewritten as follows:

g(n) = Fa(n, k̄)f(k̄) + Fa(n,k)f(k). (7.2)

Since f(k̄) contains known samples of f , we can move it to the left hand

side (LHS). Then, by denoting the known term in the LHS as g′ = g(n) −
Fa(n,k)f(k), the linear system of equations for the solution of the problem can

be obtained as

g′ = Fa(n, k̄)f(k̄). (7.3)

Thus, in order to find f(k̄) which contains the unknown signal values of f ,

we need to solve the above system of equations. Similarly, to find g(n̄) which

contains the unknown signal values of g, we should solve

f ′ = F−a(k, n̄)g(n̄), (7.4)

where f ′ = f(k) − F−a(k,n)g(n).

Knowing the signal completely in one domain is equivalent to knowing it in all

domains. Thus, when the signal is partially known in two domains, it is enough

to find the signal either in the a1th or a2th order domain. In this work, we choose

to find the signal firstly in the domain with largest number of known samples.

We refer to the domain where we want to find the signal as the reference plane.

That is, if m1 > m2, the reference plane is chosen as the a1th order FRFD and

otherwise, it is chosen as the a2th order FRFD.

We could also choose the reference plane as the domain with fewer number

of samples or as any other domain that does not contain any known sample.

Although the problem solution should be independent of the chosen reference

plane theoretically, the condition number will differ by a small amount depending

on which one is chosen. However, there is at most one order of difference between

these condition numbers and this largest difference is obtained only when the

accuracy of the solution is good. Thus, in fact the chosen reference plane will
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not create much difference on our numerical results. Moreover, when we choose

the domain with largest number of known samples as the reference plane, the

condition number is experimentally minimum among other choices of reference

plane. Besides giving more accurate solutions, this choice is also more practical

since it requires us to solve for a fewer number of unknowns. Because of these

advantages, we choose the reference plane as the domain with largest number of

known samples.

7.3 Analysis

In this work, our aim is to investigate the redundancy and information relations

between the known samples. For this purpose, we will investigate the sensitivity

or accuracy of the solution of the problem, which can be obtained by using

(7.3) or (7.4). As is well known, if the matrix Fa(n, k̄) or F−a(k, n̄) is rank

deficient, for the unknown signal values there are infinitely many solutions if

the known signal values are consistent with each other and there is no solution

when both rank deficiency and inconsistency exist. If the matrix has full rank,

although the solution is unique, the accuracy of it depends on the conditioning

of the problem. This is because, the solution of the problem will be affected

from the limited machine precision and measurement errors depending on its

conditioning. Throughout this study, we will use the condition number of the

system matrix as the measure of conditioning. With this, we will investigate how

the condition number of Fa(n, k̄) or F−a(k, n̄) is affected from the distribution

of known samples.

Before continuing to our discussion, we will first provide a basic review of

the condition number and its properties. The condition number associated with

the linear equation Ax = b gives a bound on how inaccurate the solution x and

measures the rate at which the solution x will change with respect to a change

110



in b or A [66]. Change in b can come from experimental data or from roundoff,

and can change the solution completely when we have a large condition number.

The condition number of a nonsingular square matrix A is defined as [66]

cond(A) = ‖A‖‖A−1‖ (7.5)

with respect to a given matrix norm. For rectangular matrices, pseudoinverse

is used instead of inverse in the definition of the condition number. Condition

number of a matrix measures its closeness to rank deficiency and thus for square

matrices, it is the measure of closeness to singularity.

In this study, condition number in l2 norm is used, which is given by the ratio

of the largest singular value to the smallest [66]:

cond(A) =
σmax(A)

σmin(A)
(7.6)

Although the value of the condition number depends on the particular norm used,

these values can differ by at most a fixed constant because of the equivalence

of the underlying vector norms. Thus, they are equally useful as quantitative

measures of conditioning [66].

Let A be an arbitrary m × n matrix, where m ≥ n. Then, some of the

important properties of the condition number are as follows [66]:

• cond(A) ≥ 1.

• cond(A) = 1 if A is unitary.

• cond(A) = ∞ if rank(A) < n.

• cond(γA) = cond(A) for any nonzero scalar γ.

Values of condition number close to 1 indicate a well-conditioned matrix and

small uncertainty in the solution.
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The condition number is an amplification factor that bounds the maximum

relative error in the solution due to a given relative error in the input data. For

a square matrix, the error bounds are given by [66]:

‖δx‖/‖x‖
‖δb‖/‖b‖ ≤ cond(A),

‖δx‖/‖x + δx‖
‖δA‖/‖A‖ ≤ cond(A) (7.7)

We may not be able to rely on the results of computations when an ill-conditioned

matrix is used. If the input data is accurate to machine precision, then the

relative error in the computed solution can be reasonably bounded by [66]

‖δx‖
‖x‖

<
≈ cond(A)ǫmach (7.8)

The usual rule of thumb is that about log10(cond(A)) decimal digits of accuracy

is lost in the computed solution relative to the accuracy of the input.

Returning back to our discussion, for the purpose of investigating the re-

dundancy and information relations between the given data, we use condition

number as a measure of redundant information in given samples. The reason-

ing is that since the condition number measures the sensitivity of the solution

to perturbations in the input data, large condition numbers are associated with

large uncertainties in the solution. It is also intuitive that as the dependency in

the given data increases, the uncertainty in the solution will also increase. Thus,

conditioning of the problem can be a measure for dependency. If the condition

number is high, it can be suggested that there is much dependency between given

samples, or equivalently we do not have enough information to recover the signal

accurately.

Since the matrix Fa is unitary and symmetric, we can show that the following

equalities are true for the 2-norm condition number:

cond2(F
a(n, k̄)) = cond2(F

a(k̄,n)) (7.9)

= cond2(F
−a(k̄,n)) (7.10)

= cond2(F
−a(n, k̄)) (7.11)
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The condition numbers above indicate that the accuracy of the solution is the

same for the following problems, respectively:

1. The indices in k are known for the signal f and the indices in n are known

for the signal g.

2. The indices in n̄ are known for the signal f and the indices in k̄ are known

for the signal g.

3. The indices in k̄ are known for the signal f and the indices in n̄ are known

for the signal g.

4. The indices in n are known for the signal f and the indices in k are known

for the signal g.

Thus, all of the above problems are equivalent to each other in terms of re-

dundancy. If we consider the first and third ones together, it is clear that the

accuracy of the solution is the same when we exchange the knowns and unknowns

with each other in both domains. Moreover, if we consider the first and last ones

together, changing the sample distributions between two domains does not af-

fect the accuracy of the solution. This supports the symmetrical structure of

the problem and shows that as expected, the direction of propagation does not

create any difference on the solution.

Equation (7.9) follows from the following derivation. The matrix norm in-

duced by the Euclidean vector norm is the largest singular value of the matrix:

‖A‖2 = σmax(A) [66]. Since the transpose of a matrix has the same singular

values with the original matrix, we have ‖A‖2 = ‖AT‖2. Then,

cond2(A
T ) = ‖AT‖2‖(AT )−1‖2 = ‖AT‖2‖(A−1)T‖2 = ‖A‖2‖A−1‖2 = cond2(A)

(7.12)
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Since Fa is a symmetric matrix, Fa(n, k̄) = (Fa(k̄,n))T . From the above result,

the condition numbers of Fa(n, k̄) and Fa(k̄,n) are also the same. This completes

the proof of (7.9).

The equation (7.11) follows from the fact that Fa is a unitary matrix,

i.e. (Fa)H = F−a. Since Fa is also symmetric, (Fa)∗ = F−a, and thus

(Fa(n, k̄))∗ = F−a(n, k̄). Since the conjugate of a matrix has the same sin-

gular values with the original matrix, we have cond2(A
∗) = cond2(A). Then,

Fa(n, k̄) and F−a(n, k̄) have the same condition number. This completes the

proof of (7.11). By combining (7.9) and (7.11), one can also obtain (7.10).

As noted before, instead of choosing the domain with largest number of known

samples as the reference plane, one could also choose an empty domain as the

reference plane. We will now discuss this case in more detail. Without loss of

generality, we can say that 0th order domain does not contain any known sample

so that we can choose it as reference. To formulate the problem, let us denote

the signal in the reference plane as h. Then, the relation between signals are

given by f = Fa1h and g = Fa2h. If we write these relations only for known

samples and combine together, we obtain




f(k)

g(n)



 =





Fa1(k)

Fa2(n)



h, (7.13)

where Fa1(k) and Fa2(n) denote submatrices of Fa1 and Fa2 obtained by choosing

k1th,...,km1
th rows and n1th,...,nm2

th rows, respectively. We need to solve the

above system of equations in order to find the signal in the reference plane.

Although Fa1(k) and Fa2(n) have orthogonal rows seperately, their combination

may contain non-orthogonal rows since the rows of FRT matrices of order a1 and

a2 are not necessarily orthogonal to each other.

Based on the above formulation, we will now prove that the chosen reference

plane does not create any difference on the accuracy of the solution. For this, we

need to prove the following lemma:

114



Lemma: For any arbitrary matrix A and unitary matrix B,

cond(AB) = cond(A) (7.14)

Proof of Lemma:

cond(AB) = ‖AB‖‖(AB)−1‖ = ‖AB‖‖B−1A−1‖ (7.15)

From unitary property of the matrix B, one can obtain

‖AB‖ = maxx 6=0
‖ABx‖
‖x‖ = maxy 6=0

‖Ay‖
‖B−1y‖ = maxy 6=0

‖Ay‖
‖y‖ = ‖A‖ (7.16)

where we make the substitution y = Bx and use the fact that since B−1 is

unitary, it preserves the length, equivalently ‖B−1y‖ = ‖y‖. Similarly,

‖B−1A−1‖ = maxx 6=0
‖B−1A−1x‖

‖x‖ = maxx 6=0
‖A−1x‖
‖x‖ = ‖A−1‖ (7.17)

If we substitute these two results in (7.15), we can recognize the final result as

cond(A). This completes the proof of (7.14).

By using this lemma, we can now show that the chosen reference plane does

not create any difference on the conditioning of the problem. Let us choose the

ath order domain as reference. Then, the accuracy of the solution depends on

the condition number of the following matrix:

F1 =





Fa1−a(k)

Fa2−a(n)



 (7.18)

If we choose the âth order domain as the reference such that â 6= a, the accuracy

depends on the following matrix:

F2 =





Fa1−â(k)

Fa2−â(n)



 (7.19)

Since Fa1−a ∗Fa−â = Fa1−â, if we multiply F1 from right by Fa−â, we will obtain

F2. That is, F2 = F1F
a−â. Since Fa−â is a unitary matrix, by using the above

lemma, we have cond(F2) = cond(F1). Thus, the conditioning of the problem is

the same for different reference plane choices.
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7.4 Numerical Results

In the numerical results, the fractional order a is varied in the range [0, 1] with

equal intervals of length 0.1 and the number of samples N in both domains

is chosen as 256. We take m1 and m2, which represents the number of known

samples in two domains, as powers of 2 up to 128 and then choose their symmetric

values with respect to 128 up to 256. In the plots, for different m1 and m2 pairs,

the change in the logarithm of the condition number (to base 10) is investigated

as a function of the order a.

We apply the developed approach to a number of distributions, which will

be explained by using figure 7.1. Here, we denote the known samples with dark

squares and the unknown samples with empty squares. There are mainly two

groups: uniform vs accumulated distributions and complemantary vs overlapping

distributions. In the uniform distribution, the known samples are distributed

uniformly in both domains. When number of known samples in both domains

are equal to each other, the illustration of this distribution is given in figures 7.1a

and 7.1b. On the other hand, in the accumulated distribution, the known samples

are accumulated at one side in both domains, which is again illustrated in figures

7.1c and 7.1d for the equal number of knowns case. Moreover, known samples in

one domain can be chosen as complementary or overlapping with respect to the

known samples in the other domain. For the complementary case, the unknown

indices in one domain are known in the other domain as illustrated in 7.1a and

7.1c. In contrast, for the overlapping case, the known indices in one domain

are known in the other domain, as shown in 7.1b and 7.1d. When the number

of known samples is more than N , complementary and overlapping is applied

such that respectively maximum possible nonoverlapping and overlapping occurs

between known samples in two domains. We look to each four combinations of

these groups. The reason for investigation of these distributions is that they

provide good examples of the best case and worst case distributions.
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(a) Uniform-
complementary

(b) Uniform-
overlapping

(c)
Accumulated-
complementary

(d)
Accumulated-
overlapping

Figure 7.1: Illustration of different distributions

More precisely, if we denote the number of known samples in one domain as

m, we use the following rules for the sample distributions:

1. Uniform-overlapping distribution: For both domains,

(a) For m ≤ N/2, multiples of N/m are the known points and the re-

maining ones are unknown.

(b) For m > N/2, the points which satisfy N/(N −m)− 1 (mod N/(N −
m)) are unknown and the remaining ones are the known points.

2. Uniform-complementary distribution: Rules for the a1th order domain are

the same as above. For the a2th order domain, the rules are reversed as

following:

(a) For m ≤ N/2, the points which satisfy N/m − 1 (mod N/m) are the

known points and the remaining ones are unknown.

(b) For m > N/2, multiples of N/(N − m) are the unknown points and

the remaining ones are known.

3. Accumulated-overlapping distribution: For both domains, the first m sam-

ples from below are known and the remaining ones are unknown.

4. Accumulated-complementary distribution: For the a1th order domain, the

first m samples from below are known and the remaining ones are unknown
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whereas for the a2th order domain, the first m samples from above are

known and the remaining ones are unknown.

The uniform distribution corresponds to the physical situation when we have

a measurement device with insufficient spatial resolution. In order to know the

wave with the desired full resolution, we take measurements with the insufficient

resolution at two different planes [61]. Moreover, the accumulated distribution

corresponds to the case when we can take measurements only in a limited interval

at a measurement plane, but with full resolution. In this case, to know the wave

completely at one plane, we take measurements in limited intervals at two planes.

As we have seen in chapter 6, the spread of light on a plane perpendicular to

the propagation axis increases as a function of distance. That is, the fractional

order a, which depends on the distance for free space propagation, increases, a

point in one domain affects more points in the other domain. A similar argu-

ment also holds for the dependency of the points. These concepts will be used to

comment on the numerical results. For interpretations, we will originate cones

from the known points in the domain with fewer number of knowns (in order

to deal with fewer number of cones). If a cone originated from a known sample

contains only known points in the opposite domain, then roughly speaking, this

known sample is redundant since it completely depends on already known sam-

ples. However, if the cone contains one unknown sample in the opposite domain,

then it will be nonredundant since the known samples in the opposite domain can

not determine its value by their own. Thus, whether a cone contains an unknown

or not is important for our redundancy investigation. More precisely, the optimal

case occurs when each cone originating from a known sample contains only one

unknown. Since each known sample is affected only by one different unknown

in the opposite domain, there is no dependency between these known samples.

However, when the cones start to contain some unknowns in common, then this

means that each known is affected by these common unknowns. Even worse than
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this is when the knowns are close to each other so that the common unknowns

inside their cones affect these known samples similarly. Naturally, such similar-

ity will create dependency between known samples. We note that this approach

investigates the effect of unknown samples in one domain to known samples in

the other domain and the constructed submatrix of the recovery problem also

contains these effects.

In the experiments, we investigate for different distributions the change in

the condition number as a function of the order a when total number of known

samples in two domains is equal to and more than N . In our interpretations, we

will use the term strict redundancy to refer to the case when the system matrix

has linearly dependent columns, or equivalently the matrix is rank-deficient and

the term relative redundancy to refer to the case when the columns are close to

being linearly dependent. When we have linearly dependent rows, the associated

known samples will be considered as strictly redundant whereas when the rows

are close to being linearly dependent, the associated known samples will be con-

sidered as relatively redundant. In the numerical results, we have observed strict

redundancy when a = 0 and a = 1. Since the discrete FRT matrix does not

have a closed-form expression for other values of a, we can only speak in terms

of relative redundancy in this case. We also note that the results may not be

reliable when we are very close to the strict redundancy cases at a = 0 and a = 1

since chirp functions exhibit unusual behaviours in these limits.

7.4.1 Case where total number of knowns are equal to

the number of unknowns

In this part, total number of known samples is equal to N , i.e. m1 + m2 = N .

Figure 7.2, 7.3, 7.5 and 7.4 show condition number vs. a curves for accumulated

and uniform distributions when known samples are shared differently between
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two domains. The dotted lines in these figures show the condition number curves

when we exchange the values of m1 and m2 in the corresponding solid line.

Although solid and dotted lines are very close to each other, they are not the

same for some distributions. The difference occurs because, when N is even, the

samples at the edges are −N/2 and N/2 − 1, so that there is a slight difference

between two versions of a distribution, which touch to the bottom and above

edges. For easier comparison, the curves for all distributions when m1 = 16,

m2 = 240 are plotted together in figure 7.6.
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Figure 7.2: Condition number vs a for accumulated-complementary distribution
and different pairs of m1 and m2 satisfying m1 + m2 = N (The legend is also
valid for Figure 7.3)

As seen in the figures, as m1 → N/2, the condition number gets worse for

all distributions. That is, as the number of known samples in two domains

gets closer to each other, the condition number increases for all distributions.

This indicates that distributing known samples equally to each domain causes

the largest amount of redundant information in the given data. To understand
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Figure 7.3: Condition number vs a for accumulated-overlapping distribution and
different pairs of m1 and m2 satisfying m1 + m2 = N

the reasoning behind this, consider the cones originating from the knowns in

the domain with the fewer number of knowns. As m1 → N/2, we will have

more cones, each with overlapping regions with each other that contain both

known and unknown samples. Thus, the relative dependency between these

known samples increases as m1 → N/2. To see this more easily, let us first

consider the domain with maximum number of known samples. Known samples

in this domain are completely independent from each other, and thus there is

no redundancy between them. Say, we have 240 known samples in one domain

and 16 known samples in the other domain. Then, these 240 known samples

are strictly non-redundant since they are in the same domain. However, other

16 samples will relatively depend on each other. As m1 → N/2, the number

of fully non-redundant known samples decreases. Thus, we can consider the

maximum number of known samples in one domain as a lower limit for number

121



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Fractional order: a

Lo
g(

C
on

di
tio

n 
nu

m
be

r)

m
1
=1, m

2
=255

m
1
=2, m

2
=254

m
1
=4, m

2
=252

m
1
=8, m

2
=248

m
1
=16, m

2
=240

m
1
=32, m

2
=224

m
1
=64, m

2
=192

m
1
=128, m

2
=128

Figure 7.4: Condition number vs a for uniform-complementary distribution and
different pairs of m1 and m2 satisfying m1 + m2 = N (The legend is also valid
for Figure 7.4)

of nonredundant samples. As m1 → N/2, the lower limit decreases and the

gap between this limit and N increases, and thus it becomes harder for other

relatively dependent known samples to fill this gap.

Observe from the figures that as a increases, the condition number also in-

creases in general for all distributions. This is because, when a is small, there is

only local dependency and as a approaches 1, each known point will be depen-

dent with equal weights to the points in the other domain. If we think in terms

of the cones, the overlap between cones increases as a increases, and thus the

dependency between known samples defining these cones also increases.

Let us first investigate the accumulated-complementary case in detail. At

a = 0, known points in two domains are fully complementary to each other, and

thus there is no redundancy between them. For very small values of a, there

is still local dependency and each cone contains only one unknown in the other
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Figure 7.5: Condition number vs a for uniform-overlapping distribution and
different pairs of m1 and m2 satisfying m1 + m2 = N

domain, so there is still no redundancy. When a increases sligthly, there will

be overlaps between the cones and they will start to contain common unknowns.

Thus, relative dependency between known samples will increase. As we increase a

further, after some point each cone will start to contain all of the unknowns in the

other domain. Since known samples are very close to each other, they will define

similar cones, and thus the effect of unknown samples to each known sample will

be very similar for all known samples. Since there is similar dependency between

each known sample in one domain and unknown samples in the other domain,

there will be dependency between known samples in this domain. Until we reach

this situation, the condition number will increase sharply since the equations

become to be closely linearly dependent to each other. After this point, slight

increase in the condition number will be observed since the effect of unknown

samples becomes more similar for each known sample as a → 1. As noted before,

there is a limit to how much redundancy can be involved and this limit depends on

the maximum number of known samples in one domain, or equivalently closeness
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Figure 7.6: Condition number vs a for all distributions when m1 = 16 and
m2 = 240

of m1 to N/2. However, for different m1 values that are close to N/2, it looks like

the curves saturate to the same level for large values of a. In fact, this is not true

because saturation is due to the precision limits of Matlab. If we had enough

high precision, the levels would be seperated for each different value of m1. We

have checked that when we have lower precision, the condition number for lower

values of m1 also saturates to the same level with the higher m1 values. Thus,

as m1 increases, condition number increases only within the precision limits.

Now, let us also investigate the accumulated-overlapping case. In this case,

for the values of m1 that are close to N/2 (more precisely, for m1 > 32), the

condition number is not within precision limits for any value of fractional order

a. We can obtain condition numbers which are within the precision limits only

for considerably uneven distributions (more precisely, for m1 ≤ 32). As we have

discussed before, there is a lower limit for redundancy, which depends on the
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maximum number of known samples in one domain. For a = 0 case, we have

strict redundancy and the known information is at its lower limit. For consid-

erably uneven distributions, this lower limit is still close to N . For this reason,

even when a increases slightly from 0, it can get out of strict redundancy sit-

uation quickly since the additional information given by known samples in the

other domain can fill much of this information gap. However, for nearly even

distributions, the difference between the lower limit and N is large, and thus the

additional information from other known samples can not close this difference

since the relative dependency between these points is high as discussed before.

Moreover, as the order increases, this relative dependency also increases slightly

due to having more similar effects. In fact, for larger values of a, overlapping

case gives similar results with the complementary case. This result is expected

since for large values of a, the domains are far apart from each other and the

content of the overlaps between the cones starts to be similar in terms of both

common known and unknown samples. Thus, being complementary or overlap-

ping does not create much difference on the dependency between known points

when a is large. But note that the complementary case performs better than the

overlapping case for small values of a. We can generalize this result such that

shifts in known points in one domain does not affect much the amount of infor-

mation they carry when two domains are not very close to each other. For the

accumulated-complementary distribution, we finally note that since the discrete

FRT has a periodic nature, the effect of one sample at the edge continues at the

other edge, which adds complementarity to the problem in contrast to defining

it as an overlapping distribution. Although this behaviour does not exist in the

continuous case, here we obtain better results in the discrete case compared to

the real physical situation due to this behaviour.

As clearly seen from figure 7.6, uniform distribution gives better condition

numbers than the accumulated distribution. Thus, measurements that spread all

over the plane carries more information than the same number of measurements
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that are concentrated in a particular region. To see this, consider our usual cones

from knowns in the domain with fewer number of known samples. For small val-

ues of a, there is only one unknown inside each cone, which corresponds to the

optimal case, and thus there is no dependency between the known samples. How-

ever, if we increase a further, depending on the value of m1, after some point each

cone starts to contain common unknowns with the other cones. This will cause a

small increase in the condition number until each cone contains all the unknowns

in the other domain. This increase is very small compared to the accumulated

case because, since known samples are apart from each other, dependency of

each known point to unknown points in the other domain is different for differ-

ent known points. That is, each known point is affected by one unknown sample

dominantly and since this dominant unknown sample is different for each known

sample, there is still less dependency between known points. As we take known

samples more closely to each other (or equivalently, as m1 → N/2), this relative

dependency will be larger and so will the condition number. If we increase a be-

yond the point where each cone contains all the unknowns, slight changes in the

condition number can be observed due to the equalization of the effects as a → 1.

In the uniform case, there is strict redundancy at a = 1 since the matrix is rank

deficient in this case (see the appendix for a proof). Thus, the values at a = 1

are not much meaningful due to numerical limitations since it should be theoret-

ically infinite in this case. But, note that the values at these points are also not

much relevant for our interpretations. As similar with the accumulated case, the

uniform-overlapping case will be similar with the uniform-complementary case

after it gets rid of the strict redundancy at a = 0.
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7.4.2 Case where total number of knowns are more than

the number of unknowns

This experiment investigates the improvement in the condition number when

m1 + m2 ≥ N , or equivalently when we increase the total number of known

samples beyond N . The curves in figure 7.7 and 7.8 are obtained by starting

with the m1 = 16 and m2 = 240 case and doubling m1 each time. We see that

as we increase the number of known samples in one domain, the large condi-

tion numbers in the accumulated case improves very quickly while considerably

small condition numbers in the uniform case get better. Thus the amount of

information that will be used for the recovery of the signal becomes better. Also

observe that for accumulated distributions, even when we exceed N considerably,

the condition number is not small enough for large values of a. The behaviour

of the curves can be understood with similar cone investigations. For instance,

for accumulated-complementary case, the sharp increase in the condition num-

ber will start when the overlap between each two cones contains at least one

unknown since this will create dependency between known samples.

We modify the previous investigation such that m2 also increases while m1

doubles. As seen from figures 7.9 and 7.10, improvement is observed for the

accumulated distribution compared to the previous case. For the accumulated

distribution, the increase in the condition number starts later, which is because,

the overlap between each two cones starts to contain at least one unknown for a

larger value of a. Moreover, the condition number saturates to lower values for

all m1 and m2 pairs. This is because, since maximum number of known samples

in one domain has increased, the lower limit to how much redundancy involved

has also increased.

Lastly, we investigate the case when there are equal number of samples in both

domains. As seen from figures 7.11 and 7.12, condition number is very small for
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most of the distributions. However, for accumulated-overlapping distribution,

even considerably large number of known samples do not give small condition

numbers for relatively small values of a. That is, it can not quickly move away

from the strict redundancy case. We can see the reason from the cones easily.

For small values of a, there are unknowns which are not covered by any of the

cones originating from knowns in the other domain. Thus, roughly speaking, all

of the knowns in one domain say nothing about some unknowns in the other

domain. This situation is overcomed when every unknown is covered by at least

one cone. Up to this point, condition number will get better quickly and after

this point, smaller changes will occur on the condition number.

7.4.3 Case when partial information is given in four do-

mains

Up to this point, we have considered the problem of recovering signals from

partial fractional Fourier domain information when two domains are involved.

Generalization of this investigation to multiple domains is desired. A preliminary

work is performed on this subject. For this, we consider four FRFDs and the

order of each domain is chosen such that they are equally separated equal with

intervals of ∆a. We investigate the case when all the known samples are equally

distributed between each domain for different distributions. Without loss of

generality, we can say that the 0th order plane does not contain any known

sample so that we can choose it as our reference plane. Since we choose an

empty plane as reference, the formulation will be an extended version of the one

given in (7.13). The condition number for different values of ∆a and for different

distributions is obtained as shown in table 7.1. One can also investigate the

condition number for random distribution of known points to multiple domains.
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∆a Accumulated-
Complementary

Accumulated-
Overlapping

Uniform-
Complementary

Uniform-
Overlapping)

0.125 2.2076 1.4002e+003 2.4315 1.4711e+017
0.25 4.0786 175.9445 7.7509 2.7279e+017

Table 7.1: Condition number for four domain case

7.5 Future Work

It may be possible to derive the condition number explicitly for arbitrary sample

distributions by using the discrete FRT given in [4], since this matrix has a closed

form expression. One can also find optimal or suboptimal measurement places

for the signal recovery problem by using minimum condition number criteria.

This approach has been used in different areas in the literature [67, 68] and is

here left as a subject for future study. It may be also interesting to recover real

physical signals with the approach given in this work and compare the recovery

error vs. fractional order with our condition number plots. Applicability of this

work to phase retrieval problems and to other parametric transforms different

than FRT are also left for future work.

For future research, we also note that the definition of the condition number

used in this work is affected by the row and column scaling [66], which is not

consistent with its interpretation as the measure of dependent information. The

definition in [69] given by

cond(A) = ‖|A−1||A|‖ (7.20)

is invariant under row scaling, and thus may be more appropriate for our pur-

poses. After some preliminary work performed on this issue, we have observed

that both definitions give similar curves, only with the small difference that the

latter has a little more smoother variations compared to the former. This in-

dicates that we typically do not encounter with poorly scaled matrices in this

work.
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7.6 Appendix

Let us first consider the complementary case such that multiples of P are un-

known in the time domain and multiples of P are known in the frequency domain.

Assume that N is a multiple of P 2. We want to prove the rank deficiency of the

system matrix Fa(n, k̄). As is well-known, the elements of the lth row of the

DFT matrix are e−j 2π
N

ln where the sample index n is an integer running from 0

to N −1. We can obtain the system matrix from the DFT matrix by choosing its

rows and columns that are multiples of P . The size of this submatrix is N
P
× N

P
.

The entry that lies in the kth row and the mth column of the submatrix is given

by e−j 2π
N

(Pk)(Pm). Rank deficiency can occur when some rows of the matrix are

repeated, or equivalently when

e−j 2π
N

(Pk)(Pm) = e−j 2π
N

(P (k+T ))(Pm) (7.21)

1 = e−j 2π
N

P 2Tm (7.22)

The above equality is satisfied for all values of m (for all elements in a row) if

and only if T = N
P 2 . As a result, the first N

P 2 rows are repeated P times inside

the system matrix, and thus the number of independent rows is N
P 2 , which gives

the rank of the matrix. Thus, the rank is 1/P th of the matrix size. That is,

N/P 2 known samples carry the same information as the N/P known samples in

the frequency domain.

Another way to see this result is to write the equations for the known samples

in the frequency domain in terms of the unknown samples in the time domain.

Let us denote the signal and its Fourier transform as x and X, and divide the

known samples in the frequency domain to P equal intervals as X[Pk], X[N/P +
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Pk], ..., X[N − N/P + Pk] with k = 0, 1, ..., N
P 2 − 1. Then, we have

X

[

N

P
m + Pk

]

=
1√
N

N−1
∑

n=0

x[n]e−j 2π
N

(N
P

m+Pk)n

=
1√
N

N/P−1
∑

n=0

x[Pn]e−j 2π
P

Pmne−j 2π
N

P 2kn + Additional terms

=
1√
N

N/P−1
∑

n=0

x[Pn]e−j 2π
N

P 2kn + Additional terms (7.23)

where m = 0, 1, . . . , P −1, and the additional terms depend on known samples in

the time domain. Here, again the rows of the system matrix will be repeated P

times with each repetition being of length N/P 2. Here, unorganized DFT with

nonnegative indices is used, but the result can be easily extended to the samples

with negative indices by using the periodicity of the DFT.

As proved in section 7.3, the condition number remains the same when we

exchange the known and unknown samples between two domains. As a result,

the above result for rank deficiency is also valid when multiples of P are known

in the time domain and multiples of P are unknown in the frequency domain.

Let us now investigate the overlapping case, which corresponds to the case

when all samples in the frequency domain are shifted by the same amount. Let

multiples of P be unknown in the time domain and X[Pk + c] are given in the

frequency domain where c is an arbitrary integer. Then, the rank-deficiency

result will still be valid since all equations will be multiplied with the same

constant. Shifting the known points in the time domain will also give the same

result from the equivalence of the problems. Thus, we can conclude that if

known samples in one domain and unknown samples in the other domain goes

with equal intervals of length P , then rank deficiency always occurs regardless

of their starting point.

We can generalize the above rank deficiency result for the following signal

recovery problem: Multiples of P or a shifted version of this are unknown (known)

in the time domain and arbitrary samples are known (unknown) in the frequency
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domain. In this more general case, the known samples in the frequency domain

can be categorized into P different subsequences of the interval [0, N − 1], each

going with intervals of P :

0, P, 2P, 3P . . .

1, 1 + P, 1 + 2P, 1 + 3P . . .

2, 2 + P, 2 + 2P, 2 + 3P . . .

...
...

...
...

P − 1, 2P − 1, 3P − 1, 4P − 1 . . .

(7.24)

We know from previous investigation that each different sequence will give N/P 2

independent rows and the matrix will be repeated after N/P 2 rows. Since we

have totally P sequences, when all of the N samples are given, the matrix will

have P (N/P 2) = N/P independent rows, and thus will have full rank. However,

we do not need all of the N samples in the frequency domain to achieve full-rank,

indeed N/P samples will be sufficient. In order to obtain a full rank matrix for the

signal recovery problem, we should choose N/P samples as following: Take N/P 2

samples from each sequence, but the distance between any two sample should

never be a multiple of N/P 2. As a final remark, we note that this approach is

only for obtaining full-rank matrices and may not guarantee that it has a small

condition number.
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(a) Accumulated-complementary distribution
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(b) Accumulated-overlapping distribution

Figure 7.7: Condition number vs a for accumulated distribution when m1+m2 ≥
N and m1 is doubled each time (The legend is valid for both plots)
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(a) Uniform-complementary distribution
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(b) Uniform-overlapping distribution

Figure 7.8: Condition number vs a for uniform distribution when m1 + m2 ≥ N
and m1 is doubled each time (The legend is valid for both plots)
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(a) Accumulated-complementary distribution
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(b) Accumulated-overlapping distribution

Figure 7.9: Condition number vs a for accumulated distribution when m1+m2 ≥
N with m1 doubled and m2 increased each time (The legend is valid for both
plots)
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(a) Uniform-complementary distribution
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(b) Uniform-overlapping distribution

Figure 7.10: Condition number vs a for uniform distribution when m1 +m2 ≥ N
with m1 doubled and m2 increased each time (The legend is valid for both plots)
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(a) Accumulated-complementary distribution
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(b) Accumulated-overlapping distribution

Figure 7.11: Condition number vs a for accumulated distribution when m1+m2 ≥
N and m1 = m2 (The legend is valid for both plots)
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(b) Uniform-overlapping distribution

Figure 7.12: Condition number vs a for uniform distribution when m1 +m2 ≥ N
and m1 = m2 (The legend is valid for both plots)
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Chapter 8

CONCLUSIONS

In the first part of the thesis, we have studied a number of fundamental issues

associated with signal representation under finite extent contraints in the FRT

or LCT domains. First of all, we have developed the notion of the bicanonical

width product, which is the number of degrees of freedom of the set of signals

which are confined to finite intervals in two arbitrary LCT domains. This result

is significant since it constitutes a generalization of the ordinary time-bandwidth

product. Moreover, we have showed that the bicanonical width product is the

area of the time-frequency support of this set of signals, which is simply given

by a parallelogram. Furthermore, these signals can be represented in these two

LCT domains with the minimum number of samples, given by the bicanonical

width product.

In addition, we have addressed to the problem of finding the minimum num-

ber of samples to represent arbitrary signals based on the LCT sampling criteria

and figured out the LCT domains in which we can represent the signal with

that minimum number of samples, given by the bicanonical width product. We

have showed that this problem reduces to a simple geometrical problem, which

aims to find the smallest parallelogram enclosing a given time-frequency support.
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By using this equivalence, we have seen that the bicanonical width product will

provide a better fit to the actual number of degrees of freedom of an arbitrary

signal as compared to the time-bandwidth product. Thus, it allows us to rep-

resent the signal with fewer numbers of samples. Theoretical bounds on the

representational efficiency of this approach have been also provided. With this,

we have showed that for an arbitrary convex polygonal space-frequency support,

the number of samples to represent the signal with this approach is at most two

times the actual number of degrees of freedom of the signal.

Furthermore, we extend this approach and its equivalent geometrical prob-

lem to the problem of representing signals at a specific domain. In this case,

the bicanonical width product provides fewer number of samples than the time-

bandwidth product, with the difference being substantial in some cases.

In the process, we have accomplished to relate LCT domains to the time-

frequency plane. We have showed that each LCT domain is essentially a scaled

FRT domain, and thus any LCT domain can be labeled only by its associated

fractional order a. As a result, throughout an optical system, we can label

any plane with only one parameter a even though LCTs have three parameters.

Thus the puzzling aspects of a three-parameter family of domains, especially

the problem of how these domains are sequenced or structured, is eliminated

and instead, we can view them them as FRT domains of monotonicly increasing

order.

We have also presented the exact relation between the continuous LCT and

the discrete LCT, which provides the underlying foundation for approximately

computing the samples of the LCT of a continuous signal with the DLCT. We

have showed that, provided N is chosen to be at least equal to the bicanonical

width product of the set of signals we are dealing with, the DLCT which can

be efficiently computed by taking N log N time can be used to obtain a good

approximation to the continuous LCT. With this, we have accomplished to use
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the DLCT such that the number of samples in both domains are equal to each

other regardless of the LCT parameters, and this number of samples is the min-

imum possible for both domains, for the given extents. In addition, we have

showed that an interval independent definition of the DLCT can be used to ap-

proximately compute continuous LCTs. This new definition would be useful in

studies which are formulated in a purely discrete setting and in developing fast

transform algorithms. In the process, we have also defined the linear canonical

series, which is the generalization of the ordinary Fourier series.

We have lastly analyzed arbitrary quadratic-phase optical systems with arbi-

trary numbers of apertures. The number of degrees of freedom of the system has

been found both as a region and as a number in terms of the system parameters,

and the redundant and effective apertures have been investigated. Moreover, we

have developed a method to investigate the change in the extent of an arbitrary

input signal throughout the system. Based on this method, we have also derived

formulas to directly trace the extent from the given extents of the input signal.

These extents are useful to find the minimum number of samples to represent the

wave at an arbitrary plane and to simulate the optical system with discrete-time

systems with the same degree of accuracy compared to continuous systems.

In the second part, we have turned our attention to signal recovery problems

under partial and redundant information in multiple transform domains. We

have proposed a novel linear algebraic approach to these problems and used the

condition number as a measure of the redundant information in given samples.

By analyzing the effect of the number of known samples and their distributions

on the condition number, we have explored the redundancy and information

relations between the given data under different partial information conditions.

We have observed that distributing known samples equally to each domain

causes the largest amount of redundant information in the given data. More-

over, measurements that spread all over the planes carry more information than
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the same number of measurements that are concentrated in a particular region.

Roughly speaking, as a increases, the amount of redundant information increases.

Besides, being complementary or overlapping does not create much difference on

the dependency between known points when a is not very small. However, for

small values of a, the complementary distribution is better conditioned than the

overlapping case.

In the process, we have found the effectiveness region of an input point and

the dependency region of an output point. We have showed that these regions

expand as the fractional order increases for both continuous-time and discrete-

time FRT systems. That is, for small values of a, there is only local dependency

and as a → ∞, the contribution of all points are equalized. These concepts have

been used to interpret the simulation results.
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[61] A. E. Cetin, H. Özaktaş, and H. M. Ozaktas, “Resolution enhancement of

low resolution wavefields with POCS algorithm,” Electronics Lett., vol. 39,

pp. 1808–1810, 2003.

[62] H. E. Guven, H. M. Ozaktas, A. E. Cetin, and B. Barshan, “Signal recovery

from partial fractional fourier domain information and its applications,” IET

Signal Process., vol. 2, pp. 15–25, 2008.

[63] M. Ertosun, H. Atli, H. Ozaktas, and B. Barshan, “Complex signal recovery

from multiple fractional fourier-transform intensities,” Appl. Opt., vol. 44,

no. 23, pp. 4902–4908, 2005.

[64] G. B. Esmer, V. Uzunov, L. Onural, H. M. Ozaktas, and A. Gotchev,

“Diffraction field computation from arbitrarily distributed data points in

space,” Signal Process.: Image Commun., vol. 22, pp. 178–187, 2007.

149



[65] A. Ozcelikkale, H. M. Ozaktas, and E. Arikan, “Optimal measurement under

cost constraints for estimation of propagating wave fields,” in Proc. IEEE

Int. Symp. Information Theory, June 2007, pp. 696–700.

[66] M. T. Heath, Scientific Computing: An Introductory Survey. New York:

Mc Graw Hill, 2002.

[67] C. Madtharad, S. Premrudeepreechacharn, N. Watson, and R. Saeng-Udom,

“An optimal measurement placement method for power system harmonic

state estimation,” IEEE Trans. Power Del., vol. 20, no. 2, pp. 1514–1521,

April 2005.

[68] C. Rakpenthai, S. Premrudeepreechacharn, S. Uatrongjit, and N. Watson,

“Measurement placement for power system state estimation by decomposi-

tion technique,” in Proc. Int. Conf. Harmonics and Quality of Power, Sept.

2004, pp. 414–418.

[69] R. D. Skeel, “Scaling for numerical stability in gaussian elimination,” J.

ACM, vol. 26, no. 3, pp. 494–526, 1979.

150


