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ABSTRACT

RECEIVER DESIGN AND PERFORMANCE

ANALYSIS FOR CODE-MULTIPLEXED

TRANSMITTED-REFERENCE ULTRA-WIDEBAND

SYSTEMS

Mehmet Emin Tutay

M.S. in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Sinan Gezici

August 2010

In transmitted-reference (TR) and frequency-shifted reference (FSR) ultra-

wideband (UWB) systems, data and reference signals are shifted relative to each

other in time and frequency domains, respectively. The main advantage of these

systems is that they remove strict requirements of channel estimation. In order

to implement TR UWB systems, an analog delay line, which is difficult to build

in an integrated fashion, is needed. Although FSR systems require frequency

conversion at the receiver, which is much simpler in practice, they have data rate

limitations. Instead, a code-multiplexed transmitted-reference (CM-TR) UWB

system that transmits data and reference signals using two distinct orthogonal

codes can be considered. This system requires a simpler receiver and has better

performance than TR and FSR.

In the first part of the thesis, CM-TR systems are investigated and proba-

bility of error expressions are obtained. For the single user case, a closed-form

expression for the exact probability of error is derived. For the multiuser case, a

closed-form expression is derived based on the Gaussian approximation, and the
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results are compared in different scenarios. In the second part of the thesis, some

optimal and suboptimal receivers are studied. First, low complexity receivers,

such as the blinking receiver (BR) and the chip discriminator, are presented. The

requirements for these types of receivers are explained, and the conditions under

which their performance can be improved are discussed. Then, an analytical

analysis of the linear minimum mean-squared error (MMSE) receiver and the re-

quirements to implement this MMSE receiver are provided. Lastly, the optimal

maximum-likelihood (ML) detector is derived, which has higher computational

complexity and more strict requirements than the other receivers. Finally, sim-

ulation results are presented in order to verify the theoretical results and to

compare the performance of the receivers.

Keywords: Ultra-wideband (UWB), impulse radio (IR), multiple-access inter-

ference (MAI), transmitted-reference (TR), frequency-shifted reference (FSR),

coded-multiplexed transmitted-reference (CM-TR), blinking receivers (BR), chip

discriminator, linear MMSE, maximum-likelihood (ML).
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ÖZET

KOD ÇOĞULLAMALI VE REFERANS İLETİMLİ ÇOK GENİŞ

BANTLI SİSTEMLER İÇİN ALICI TASARIMI VE

PERFORMANS ANALİZİ

Mehmet Emin Tutay

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Sinan Gezici

Ağustos 2010

Referans iletimli ve frekans kaydırmalı çok geniş bantlı sistemlerde veri ve refer-

ans işaretleri birbirlerine göre zaman ve frekans bölgelerinde kaymış biçimdedir.

Bu sistemlerin en büyük avantajı, kanal tahmini ile ilgili zorlu isterlerin

kaldırılmasıdır. Referans iletimli çok geniş bantlı sistemlerde, tümdevrelerde

kullanılması zor olan analog gecikme hattına ihtiyaç duyulmaktadır. Frekans

kaydırmalı referans sistem alıcılarında ise pratikte çok daha basit olan frekans

çevrimi işlemi gerekmesine rağmen, bu sistemlerde veri hızı ile ilgili sınırlamalar

bulunmaktadır. Bunun yerine, veri ve referans işaretlerini iki ayrı dikgen

kod kullanarak ileten, kod çoğullamalı referans iletimli çok geniş bantlı sistem

düşünülebilir. Bu sistem, daha basit bir alıcı gerektirmekte ve referans iletimli

ve frekans kaydırmalı sistemlere göre daha iyi performans sağlamaktadır.

Tezin ilk kısmında kod çoğullamalı referans iletimli çok geniş bantlı sis-

temler incelenmekte ve hata olasılığı ifadeleri elde edilmektedir. Tek kul-

lanıcılı durumda, hata olasılığının tam olarak hesaplanmasını sağlayan bir ifade

çıkarılmaktadır. Çok kullanıcılı durumda ise, Gauss yaklaşımı temelli bir ifade
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elde edilmekte ve sonuçlar farklı senaryolar için kıyaslanmaktadır. Tezin ik-

inci kısmında, optimal olan ve olmayan bazı alıcılar çalışılmaktadır. öncelikle,

yanıp sönen alıcılar ve çip ayırtaç gibi çok karmaşık olmayan alıcılar sunul-

maktadır. Bu alıcılar için gereksinimler ve daha iyi performans sağlamaları

için gerekli koşullar tartışılmaktadır. Daha sonra, doğrusal en düşük ortalama

karesel hatalı alıcı ve bunu gerçekleştirmek için gereksinimler sunulmaktadır.

Son olarak, hesaplama karmaşıklığı en çok olan ve diğer alıcılardan daha çok

gereksinimi olan, optimal en büyük olabilirlik sezicisi elde edilmektedir. Ku-

ramsal sonuçları onaylamak ve alıcıların performansını kıyaslamak için benzetim

sonuçları gerçekleştirilmektedir.

Anahtar Kelimeler: Çok geniş bant, dürtü iletişim, çoklu erişim girişimi, refer-

eans iletim, frekans kaydırmalı referans, kod çoğullamalı referans iletimi, yanıp

sönen alıcılar, çip ayırtaç, doğrusal en düşük ortalama karesel hata, en büyük

olabilirlik.
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Chapter 1

Introduction

1.1 Objectives and Contributions of the Thesis

Since the US Federal Communications Commission (FCC) allowed the limited

use of ultra-wideband (UWB) technology [2], it has been regarded as a new

alternative in communication systems. A UWB signal possesses a bandwidth

larger than 500 MHz and can use the bands allocated to other systems due its low

power spectral density. Due to their large bandwidth and high time resolution,

UWB signals are considered as suitable for high-speed data transmission [3], and

accurate range and location estimation [4, 5]. In addition, UWB systems can be

used for low-to-medium data rate communication with low cost receivers.

In order to implement UWB systems, impulse radio (IR) systems can be

employed [6]-[10]. In IR systems, a train of pulses with durations on the order of

nanoseconds are transmitted. Each pulse resides in an interval called “frame”,

and a number frames are employed for each information symbol. The information

symbol can be carried by the positions or amplitudes of pulses [11]. In multiple

access environments, in order to prevent collisions and increase robustness against

interfering users, pulses of each user are transmitted according to a time-hopping
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(TH) sequence, which aims to decrease the probability of collision between pulses

of different users [6]. In addition to data modulation scheme, each pulse has a

polarity randomization code that provides additional robustness against multiple

access interference and eliminates spectral lines that violates UWB spectral mask

[2, 12].

In practice, each UWB pulse can reach a receiver via tens or even hundreds

of paths in a multipath environment. Hence, to collect energy from multipath

components, Rake receivers can be employed [13]. Due to the large number of

fingers [14, 15] and high sampling requirements, implementation of Rake receivers

is challenging for UWB systems. This complexity of the Rake receiver has mo-

tivated researchers to come up with an alternative solution that does not need

strict channel estimation requirements.

In order to ease the strict requirements of channel estimation, transmitted-

reference (TR) UWB systems are proposed [16]-[18]. In these types of systems,

one reference pulse and one data pulse are sent in each frame. The reference

pulse contains no information and its channel response is used at the receiver.

On the other hand, the data pulse is modulated by the information symbol

and separated by a time delay of D from the reference pulse. To estimate the

transmitted information symbol, the receiver employs the received signal r(t) and

its time shifted version r(t−D). However, the required analog delay element is

commonly made by a coaxial cable and it is difficult to build it in a low power

integrated receiver. For example, 20 ft of cable is needed for 20 nanoseconds of

time delay [19].

Since TR UWB leads to miniaturization problems, another modulation

scheme, which provides orthogonalization of data and reference signals in the

frequency domain, namely frequency-shifted reference (FSR) UWB is proposed

[20]. In FSR systems, frequency conversion is needed at the receiver instead of

analog time delay. Hence, the receiver is significantly simpler than that in TR
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systems. However, in order for the reference signal to serve as a reference for the

data signal, the frequency shift between data and reference signals must be less

than the coherence bandwidth [20]. Thus, FSR systems are employed for low

data rate systems.

Since FSR systems have a data rate limitation, code-orthogonalized trans-

mitted reference (COTR) or code-multiplexed transmitted-reference (CM-TR)

UWB systems are proposed [21], [22]. In these types of systems, reference and

data signals are transmitted with two distinct orthogonal codes. This feature

also avoids detailed channel estimation and provides low complexity receivers

similar to FSR. In addition there is no data rate limitation in these systems.

In Chapter 2 of this thesis, CM-TR systems are investigated and error prob-

abilities for single and multiple user cases are computed. First, energy obtained

from each frame is represented by chi-square random variables. Then, the deci-

sion rule for the information symbol reduces to the sign detection of the difference

between two chi-square random variables. In the single user case, the pulses are

transmitted in only Nf/2 frames. Hence, the problem reduces to the difference

of two chi-square random variables, where one is a central and the other is a

noncentral chi-square random variable. Then, a closed form expression for the

probability of error is derived. In the multi-user case, it is difficult to obtain a

closed form expression for the exact probability of error using the same approach.

Instead, the fact that a chi-square random variable is the sum of the square of

Gaussian random variables is exploited and for large values of degrees of freedom,

a closed form expression is obtained based on the central limit theorem (CLT).

In Chapter 3 of this thesis, some optimal and suboptimal receivers are an-

alyzed. First, low complexity receivers such as blinking receiver (BR) and chip

discriminator are studied. These types of receivers discard (some) colliding

pulses and estimate transmitted information based on uncorrupted or lightly

corrupted pulses [23]-[24]. The conditions under which these receivers perform
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well are discussed. Then, a linear MMSE receiver is analyzed, and its implemen-

tation requirements are discussed. Finally, as an optimal receiver, the maximum-

likelihood (ML) detector is obtained, which minimizes the probability of error.

This receiver is the most complex receiver among the studied ones and mainly

serves as a reference for the other receivers.

In Chapter 4 of this thesis, simulation results are presented to verify the

theoretical results. The channel statistics are taken from the IEEE 802.15.4a

models, CM1, CM2, CM3, and CM4. For each channel model, the optimal

integration interval is found and the simulations are performed by using those

optimal intervals.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, CM-TR UWB systems

are investigated and error probability expressions are computed. In the single

user case, an exact error probability is obtained, while for the multi-user case an

approximate closed form expression is derived.

In Chapter 3, some optimal and suboptimal receivers are analyzed and their

implementation requirements are investigated.

In Chapter 4, in order to verify the theoretical results and t compare perfor-

mance of various receivers, simulation results are presented.
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Chapter 2

Performance Analysis of

Conventional Receiver in

Multipath Fading Channels

In this chapter, CM-TR UWB systems are investigated and performance of the

conventional receiver is analyzed. First, a generic signal model that reduces to

TR, FSR and CM-TR UWB systems in special cases is provided (Section 2.1).

Then, the receiver structure is introduced and it is discussed that a CM-TR UWB

system can be modeled as a generalized non-coherent pulse-position modulated

system [1] (Section 2.2). Finally, the performance of the conventional receiver is

analyzed and a closed form expression of the exact error probability is obtained

for the single user case. Since it is difficult to derive an exact error probability for

the multiuser case using the same approach, a closed form expression is obtained

based on the Gaussian approximation (Section 2.3).
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2.1 Signal Model

First, a generic signal structure that reduces to TR, FSR and CM-TR UWB

signals in special cases is defined. The transmitted signal corresponding to the

kth user is given as [1]

s(k)(t) =

√
Ek

2Nf

Nf−1∑
j=0

[
a
(k)
j w

(
t− jTf − c

(k)
j Tc

)
+ b(k)a

(k)
j w

(
t− jTf − c

(k)
j Tc − Td

)
x(t)

]
, (2.1)

where Tf and Tc are, respectively, the frame and chip intervals, Nf is the number

of frames per symbol, Ek is the symbol energy for user k, w(t) is the UWB pulse

with unit energy, and b(k) ∈ {−1,+1} is the binary information symbol for user

k. In order to increase robustness against multiple access interference (MAI) and

avoid spectral lines [12], pulses are modulated by polarity randomization codes

a
(k)
j ∈ {−1,+1}, where a(k)j and a

(l)
i are independent for (k, j) ̸= (l, i). In order to

prevent catastrophic collisions between pulses of different users, a time-hopping

code c
(k)
j ∈ {0, 1, . . . , Nc − 1} is assigned to each user. Note that c

(k)
j and c

(l)
i are

independent for (k, j) ̸= (l, i).

The signal model in (2.1) reduces to TR, FSR and CM-TR systems for spe-

cific values assigned to Td and x(t). For TR systems, Td is time delay between

the data pulse and the reference pulse, and x(t) = 1. For FSR systems, the or-

thogonalization is provided in the frequency domain and time shift is not needed.

Hence, Td = 0 and x(t) =
√
2 cos(2πfot) are considered. For CM-TR systems,

Td = 0 and x(t) is given by

x (t) =

Nf−1∑
j=0

d̃
(k)
j p (t− jTf ) , (2.2)

where p(t) = 1 for t ∈ [0, Tf ] and p(t) = 0 otherwise, and d̃
(k)
j ∈ {−1,+1} is

the jth element of the code that provides orthogonalization of the data bearing

signal and the reference signal for kth user.
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From (2.2), (2.1) can be expressed as

s(k) (t) =

√
Ek

2Nf

Nf−1∑
j=0

a
(k)
j (1 + b(k)d̃

(k)
j )w(t− jTf − c

(k)
j Tc) . (2.3)

Assume that the signal in (2.3) passes through an L-path channel. The

channel impulse response can be written as

hc (t) =
L∑
l=1

αl δ(t− τl) , (2.4)

where δ(t) is the Dirac delta function, and αl and τl represent, respectively, the

channel coefficient and delay of the lth path.

Considering K users and Gaussian noise, the received signal for the kth user

can be expressed as

rk (t) =

√
Ek

2Nf

Nf−1∑
j=0

a
(k)
j (1 + b(k)d̃

(k)
j )w̃(t− jTf − c

(k)
j Tc) + n(t) , (2.5)

where w̃ (t) = w(t)∗hc(t), and n(t) is zero mean Gaussian noise with flat spectral

density of σ2 over the system bandwidth.

2.2 Receiver Structure

In order to estimate the transmitted information symbol corresponding to the

kth user, b(k), from the received signal in (2.3), the conventional receiver can

be used. The transmitted information symbol for the kth user employing the

conventional receiver can be found as

b̂(k) = sgn


Ts∫
0

r2(t)x(t)dt

 , (2.6)

where sgn{·} represents the sign operator and Ts is the symbol interval. From

(2.2), (2.6) can also be expressed as

b̂ = sgn


Nf−1∑
j=0

d̃
(k)
j

(j+1)Tf∫
jTf

r2(t)dt

 . (2.7)
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Let Sk and S̄k represent the sets of frame indices for which d̃
(k)
j = 1 and

d̃
(k)
j = −1, respectively; i.e.,

Sk = {j ∈ F | d̃(k)j = 1} (2.8)

S̄k = {j ∈ F | d̃(k)j = −1} (2.9)

where F = {0, 1, . . . , Nf − 1} is the set of frame indices [1]. Note that, in (2.3),

the orthogonalization codes for the reference pulses are set to 1 for all frames.

Hence, in order to achieve orthogonality condition between reference and data

signals, the condition

|Sk| = |S̄k| = Nf/2 , (2.10)

where Sk ∪ S̄k = F , must be satisfied.

From (2.5), it is observed that, for b(k) = 1, we transmit pulses in the frames

indexed by Sk and the frames indexed by S̄k contain no pulses. Similarly, for

b(k) = −1, we transmit pulses in the frames indexed by S̄k and the frames indexed

by Sk contain no pulses.

From (2.8) and (2.9), (2.7) can be expressed as

∑
j∈Sk

∫
Γj

r2(t)dt

b̂(k)=+1
>

<
b̂(k)=−1

∑
j∈S̄k

∫
Γj

r2(t)dt , (2.11)

which can be considered as a non-coherent detector for binary pulse position

modulation (PPM) [1]. Note that, in (2.7), the integration over which the energy

is calculated taken as Tf , whereas a generic expression is used in (2.11). If the

TH sequence for the user of interest is known, then the integration interval can

be chosen in an optimal manner, which will be discussed later.
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2.3 Performance Analysis

2.3.1 Formulation

The expression in (2.11) can be written as the difference of two chi-square random

variables as

D =
∑
j∈Sk

∫
Γj

r2(t)dt−
∑
j∈S̄k

∫
Γj

r2(t)dt

b̂(k)=+1
>

<
b̂(k)=−1

0 . (2.12)

Due to the presence of K users in the system, the received signal r(t) can be

expressed as

r(t) =
K∑
k=1

rk(t) + n(t) , (2.13)

where n(t) is white Gaussian noise and rk(t) denoted the received signal for the

kth user, which is given by

rk (t) =

√
Ek

2Nf

Nf−1∑
j=0

a
(k)
j (1 + b(k)d̃

(k)
j ) w̃(t− jTf − c

(k)
j Tc) . (2.14)

Without loss of generality, user 1 is considered as the user of interest. Also,

for b(1) ∈ {−1, 1} with equal probability, the probability of error can be expressed

from (2.12) as

Pe =
1

2
P
{
D > 0|b(1) = −1

}
+

1

2
P
{
D ≤ 0|b(1) = 1

}
. (2.15)

Assuming that the data bits are equally likely to be −1 or 1 for all users, the

probability of error can be expressed as

Pe =
1

2K

∑
b̃∈{±1}K−1

(
P
{
D > 0|b(1) = −1& b̃

}
+ P

{
D ≤ 0|b(1) = 1& b̃

})
,

(2.16)

where

b̃
∆
= [b(2) · · · b(K)]T

b
∆
= [b(1) · · · b(K)]T .

(2.17)
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It is also possible to express Pe in (2.16) in terms of the conditional cumulative

distribution function (CDF) of D, namely, P{D ≤ 0|b} = FD|b(0) and P{D >

0|b} = 1− FD|b(0).

Let r̃(t) =
∑K

k=1 rk(t) represent the sum of the received signals from all users.

Then, (2.12) can be written as

D =
∑
j∈S

∫
Γj

(r̃(t) + n(t))2dt−
∑
j∈S̄

∫
Γj

(r̃(t) + n(t))2dt . (2.18)

Note that no subscripts are used with S and S̄ for convenience, and S1 and S̄1

are implied unless stated otherwise.

For a given set of information symbols b, r̃(t) is a deterministic quantity.

Therefore, if we define random variables D1 and D2 as

D1 =
∑
j∈S

∫
Γj

(r̃(t) + n(t))2dt and D2 =
∑
j∈S̄

∫
Γj

(r̃(t) + n(t))2dt , (2.19)

then they are conditionally independent assuming that the noise realizations at

different integration intervals are independent, which is approximately true in

practice [1].

Since n(t) is zero mean Gaussian noise with a flat spectral density of σ2 over

the system bandwidth, the energy samples from jth frame
∫
Γj

(r̃(t) + n(t))2dt can

be shown to be distributed as chi-square random variables [25]. Therefore, (2.18)

can be represented as

D =
∑
j∈S

χ2
M(θj(b))−

∑
j∈S̄

χ2
M(θj(b)) , (2.20)

where χ2
M(·) denotes a chi-square distributed random variable with M degrees

of freedom, M is the approximate dimensionality of the signal space, which is

obtained from the time-bandwidth product, and θj(b) is the signal energy in the

jth frame (in the absence of noise) for a given set of binary information symbols
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b. From (2.13) (2.14) and (2.18), θj(b) can be obtained as

θj(b) =

∫
Γj

(
K∑
k=1

√
Ek

2Nf

a
(k)
j (1 + b(k)d̃

(k)
j ) w̃(t− jTf − c

(k)
j Tc)

)2

dt

=
K∑

k1=1

K∑
k2=1

√
Ek1Ek2

2Nf

a
(k1)
j a

(k2)
j

(
1 + b(k1)d̃

(k1)
j

)(
1 + b(k2)d̃

(k2)
j

)
×Rj

w̃

(
(c

(k1)
j − c

(k2)
j )Tc

)
, (2.21)

where the last term Rj
w̃(·) can be considered as the correlation function between

user k1 and user k2 in the jth frame and is defined as

Rj
w̃

(
(c

(k1)
j − c

(k2)
j )Tc

)
=

∫
Γj

w̃(t− jTf − c
(k1)
j Tc) w̃(t− jTf − c

(k2)
j Tc) dt . (2.22)

It follows from the definition of the chi-square distribution that the sum of in-

dependent chi-square random variables is also chi-square distributed. Therefore,

(2.20) can be written as

D = D1 −D2 = χ2
NfM

2

(∑
j∈S

θj(b)

)
− χ2

NfM

2

∑
j∈S̄

θj(b)

 , (2.23)

since |S| = |S̄| = Nf/2. For a given set of information symbols b, the CDF of

D can be found as

P{D ≤ 0|b} = P{D1 ≤ D2|b} =

∫
P{D1 ≤ x|b}fD2|b(x)dx

=

∫
FD1|b(x)fD2|b(x) dx , (2.24)

where fD2|b(x) denotes the conditional probability density function (PDF) of D2

given b.

Define M̃ = MNf/2, θ̃1 =
∑
j∈S

θj(b) and θ̃2 =
∑
j∈S̄

θj(b). Then, the conditional

CDF of D1 can be obtained after some manipulation (see Appendix A) as follows:

FD1|b(x) =
∞∑
j=0

e−θ̃1/(2σ2) (θ̃1/(2σ
2))j

j!

γ(j + M̃/2 , x/(2σ2))

Γ(j + M̃/2)
, (2.25)
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where Γ(n) = (n − 1)! for positive integer n is the gamma function [26], and

γ(k, z) is the lower incomplete gamma function [27]. Similarly, the conditional

PDF of D2 is calculated as

fD2|b(x) =
1

2σ2
e

−(x+ θ̃2)

2σ2

(
x

θ̃2

) M̃
4
− 1

2

IM̃/2−1

(√
θ̃2x

σ2

)
, (2.26)

where Iv(z) for z ≥ 0 is the vth order modified Bessel function of the first kind

[27].

Note that if θ̃1 = 0 and θ̃2 = 0, then D1 and D2 are distributed as central

chi-square random variables, and the expressions above reduce, respectively, to

FD1|b(x) =
γ(M̃/2, x/2σ2)

Γ(M̃/2)
and fD2|b(x) =

xM̃/2−1e−x/2σ2

σM̃2M̃/2Γ(M̃/2)
. (2.27)

2.3.2 Single User Case

In the single user case, b = b(1) and the probability of error can be expressed as

Pe =
1

2
P{D1 > D2|b(1) = −1}+ 1

2
P{D1 ≤ D2|b(1) = 1} , (2.28)

where b(1) ∈ {−1,+1} with equal probability and D1 and D2 are as given in

(2.19) with r̃(t) = r1(t).

Note that, for b(1) = −1, we transmit the pulses in the frames indexed by S̄,

and the other frames contain no pulses. Thus, using (2.21), one can obtain

θj(−1) =


0 , if j ∈ S

θ , if j ∈ S̄

(2.29)

where

θ , 2E1

Nf

∫
Γj

w̃2(t)dt =
2E1Ew̃

Nf

. (2.30)

Then, from (2.23), D1 and D2 are distributed as follows:

D1 ∼ χ2
MNf

2

(0) and D2 ∼ χ2
MNf

2

(θNf/2) . (2.31)
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Similarly, for b(1) = 1,

D1 ∼ χ2
MNf

2

(θNf/2) and D2 ∼ χ2
MNf

2

(0) . (2.32)

From (2.31) and (2.32), the probability of error can be calculated based on (2.25)-

(2.27) as

Pe = P{D1 > D2|b(1) = −1} =

∫
P{D1 > x|b(1) = −1}P{D2 = x|b(1) = −1} dx

=

∫ (
1−

γ(
MNf

4
, x
2σ2 )

Γ(
MNf

4
)

)
1

2σ2
e−(x+θNf/2)/2σ

2

×
(

x

θNf/2

)MNf
8

− 1
2

IMNf
4

−1

(√
xθNf/2

σ2

)
dx . (2.33)

Note that Pe = P{D1 > D2|b(1) = −1} is used since P{D1 > D2|b(1) = −1} =

P{D1 ≤ D2|b(1) = 1} in (2.28) due to symmetry.

The probability of error expression in (2.33) can be evaluated numerically,

for example, in MATLAB. Although it provides an accurate expression for the

probability of error, a simpler approximate expression can also be useful in some

cases. To that aim, the Gaussian approximation is employed in the following in

order to obtain a simpler expression.

Lemma 2.1: In a single user system, for a given binary symbol b(1) ∈

{−1,+1}, D1 and D2 are Gaussian distributed as follows:

b(1) = −1 ⇒

 D1 ∼ N
(
σ2NfM

2
, σ4NfM

)
D2 ∼ N

(
σ2NfM

2
+ θNf/2, σ

4NfM + 2σ2θNf

)
b(1) = 1 ⇒

 D1 ∼ N
(
σ2NfM

2
+ θNf/2, σ

4NfM + 2σ2θNf

)
D2 ∼ N

(
σ2NfM

2
, σ4NfM

)
. (2.34)

Proof : Please see Appendix B.
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Note that for a given binary information symbol b(1), D1−D2 is also Gaussian

distributed based on the results in Lemma 2.1 as follows:

b(1) = −1 ⇒ D1 −D2 ∼ N
(
−θNf/2, 2σ4NfM + 2σ2θNf

)
(2.35)

b(1) = 1 ⇒ D1 −D2 ∼ N
(
θNf/2, 2σ4NfM + 2σ2θNf

)
(2.36)

Thus, from (2.28), the probability of error can be expressed as

Pe ≈ Q

(
θNf/2√

2σ2Nf (Mσ2 + θ)

)
, (2.37)

which can also be stated, based on (2.29), as

Pe ≈ Q

(
E1Ew̃√

2σ2(NfMσ2 + 2E1Ew̃)

)
. (2.38)

In order to compare the expressions in (2.33) and (2.38), some numerical

evaluations are performed. Figures 2.1–2.5 plot the bit error probability (BEP)

versus the signal-to-noise ratio (SNR) for different numbers of frames Nf . From

the plots, it is observed that, for a constant symbol energy, the performance of

the receiver degrades as Nf increases, which is expected from (2.38). Intuitively,

the receiver collects more noise as Nf increases for a constant symbol energy. In

addition, there is a good agreement between the exact theoretical results and the

simulation results. However, the approximate theoretical results match closely

to the simulation results only for large values of Nf . This can be explained by

the fact that the Gaussian approximation assumes get accurate for large values

of MNf/2.
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Figure 2.1: BEP versus SNR for a single user system with Nf = 4 and E1 = 1.
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Figure 2.2: BEP versus SNR for a single user system with Nf = 8 and E1 = 1.
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Figure 2.3: BEP versus SNR for a single user system with Nf = 16 and E1 = 1.
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Figure 2.4: BEP versus SNR for a single user system with Nf = 32 and E1 = 1.
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Figure 2.5: BEP versus SNR for a single user system with Nf = 64 and E1 = 1.

In Figures 2.1–2.5, a single path channel is considered for simplicity, and the

results are presented to verify the theoretical results (realistic multipath channels

are considered in Chapter 4). Since a single path scenario is considered in the

figures, the integration interval is taken as one pulse duration. Therefore, the

degrees of freedom for the chi-square random variable in each frame is small since

it is determined by the time duration and the bandwidth product. Therefore, the

Gaussian approximation gets accurate only for large Nf values since the degrees

of freedom of the decision variables are given by MNf/2 as shown in (2.31) and

(2.32). In practical UWB channels, there can be a large number of multipath

components; hence, a larger integration interval is employed. Therefore, the

Gaussian approximation can get more accurate in practice.
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2.3.3 Multiuser Case

In this section, the performance of the conventional receiver is analyzed for in

multiuser environments. Although it is difficult to obtain a reasonable expression

of the exact probability of error, a closed form expression can be obtained based

on the Gaussian approximation as in [28].

Without loss of generality, user 1 is assumed as the user of interest in a

K-user system. Assuming equiprobable information symbols for all users, the

probability of error can be expressed as

Pe =
1

2K

∑
b̃∈{±1}K−1

(
P
{
D1 −D2 ≥ 0 | b(1) = −1, b̃

}

+ P
{
D1 −D2 < 0 | b(1) = −1, b̃

})
, (2.39)

where b̃ = [b(2) · · · b(K)]T , and D1 and D2 are given as

D1 =
∑
j∈S

χ2
M(θj(b)) and D2 =

∑
j∈S̄

χ2
M(θj(b)) . (2.40)

Note that χ2
M(θj(b)) is a noncentral chi-square random variable with M degrees

of freedom and a noncentrality parameter of θj(b). Here, M is the approximate

dimensionality of the signal space, which is obtained from the time-bandwidth

product, and θj(b) denotes the energy obtained from jth frame (in the absence

of noise) for information bits b = [b(1) · · · b(K)]T (see (2.21)).

In the following lemma, the asymptotical normality of D1 and D2 is shown

similarly to [28].

Lemma 2.2: As MNf → ∞ , D1 and D2 are Gaussian distributed as

follows:

D1 ∼ N

(∑
j∈S

(σ2M + θj(b)) ,
∑
j∈S

(2Mσ4 + 4σ2θj(b))

)
,

D2 ∼ N

∑
j∈S̄

(σ2M + θj(b)) ,
∑
j∈S̄

(2Mσ4 + 4σ2θj(b))

 . (2.41)
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Proof : Please see Appendix B.

Since |S| = |S̄| = Nf/2, and the difference of two Gaussian random variables

is also Gaussian, the term D1 −D2 is normally distributed as

D1 −D2 ∼ N

∑
j∈S

θj(b)−
∑
j∈S̄

θj(b) , 2σ
4MNf + 4σ2

Nf−1∑
j=0

θj(b)

 . (2.42)

Then, the probability of error can be calculated from (2.39) as

Pe =
1

2K

∑
b̃∈{±1}K−1

Q


∑
j∈S̄

θj(b̃, b(1) = −1)−
∑
j∈S

θj(b̃, b(1) = −1)√
2σ4MNf + 4σ2

Nf−1∑
j=0

θj(b̃, b(1) = −1)



+ Q


∑
j∈S

θj(b̃, b(1) = 1)−
∑
j∈S̄

θj(b̃, b(1) = 1)√
2σ4MNf + 4σ2

Nf−1∑
j=0

θj(b̃, b(1) = 1)


 (2.43)

Note that for the single user case; that is, b = b(1), the expression above reduces

to (2.38) as expected.
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Chapter 3

Optimal and Suboptimal

Receivers

In this chapter, some optimal and suboptimal receivers are studied for CM-TR

UWB systems. First, low complexity receivers such as the blinking receiver (BR)

and the chip discriminator are discussed (Section 3.1 and 3.2). The main idea

behind these types of receivers is to discard some of the colliding pulses of the

user of interest and to estimate the transmitted information symbol based on

uncorrupted or slightly corrupted pulses. If the number of pulses with slight

or no collision is sufficiently high per information symbol, these two receivers

perform quite well. In addition to those receivers, a linear MMSE receiver is

analyzed and discussed (Section 3.3). This MMSE receiver needs some partial

channel knowledge and it is more complex than the previously discussed receivers.

Lastly, the ML detector is investigated and its exact and approximate calculations

are discussed (Section 3.4). Although, the ML detector is more complex and

impractical in many cases, it is optimal and serves as a reference.
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3.1 Blinking Receiver (BR)

The BR estimates the transmitted information symbol of the user of interest

(user 1) based on the set of energy samples obtained from different frames with

no collision of pulses [23]. In this case, the transmitted information symbol for

user 1 can be estimated as follows:∑
j∈S1

β̃jyj∑
j∈S1

β̃j

b̂(1)=+1
>

<
b̂(1)=−1

∑
j∈S̄1

β̃jyj∑
j∈S̄1

β̃j

, (3.1)

where yj is the energy sample from the jth frame, S1 and S̄1 are as in (2.8) and

(2.9), respectively, and the coefficients β̃j are given by

β̃j =

 1 , if |c(1)j − c
(k)
j | ≥ Tds/Tc

0 , otherwise
, (3.2)

with Tds denoting the delay spread of the channel and Tc being the chip interval.

Note that this receiver requires the knowledge of collisions between the pulses

of the user of interest and those of the interfering users. Therefore, this receiver

is more complex than the conventional receiver. Note also that this receiver

discards colliding pulses irrespective of the interference level. Thus, for channels

with large delay spreads, this receiver may perform poorly. In the formulation,

it is assumed that there occurs no inter-frame interference (IFI).

3.2 Chip Discriminator

In practice, there can be hundreds of echoes from multipath components and

the channel delay spread can be significantly larger than the pulse duration in a

UWB system. In such cases, the blinking receiver might be very inefficient, since

it does not have any information about the energies of interferers. Instead, the

chip discriminator can be considered. In the chip discriminator, the transmitted
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information symbol for user 1 can be found as∑
j∈S1

β̃jyj∑
j∈S1

β̃j

b̂(1)=+1
>

<
b̂(1)=−1

∑
j∈S̄1

β̃jyj∑
j∈S̄1

β̃j

, (3.3)

where yj is the energy obtained from the jth frame and the coefficients β̃j are

given by

β̃j =


1 if |c(1)j − c

(k)
j | ≥ ∆c or Ak

A1
≤ T

0 otherwise

, (3.4)

where ∆c is the threshold for the difference between the time-hoping (TH) codes

of user-1 and user-k, and T is the threshold for the ratio between the amplitude

of the kth user (Ak) and the user of interest (A1). By setting threshold values

T and ∆c, the colliding pulses with strong interferers are eliminated. In other

words, the pulses with low levels of interference are taken into account as well.

It should be noted that depending on the number of frames (Nf ), ∆c and T

values, the terms
∑

j∈S β̃j or
∑

j∈S̄ β̃j in (3.3) might be zero in some cases. In

such scenarios, the conventional receiver (β̃j = 1, j = 0, . . . , Nf − 1) might be

used. Then, if the number of pulses per information symbol, Nf/2, is low, this

receiver might perform closely to the conventional receiver.

In order to implement this receiver, only TH sequences and symbol energies

of all users are needed and two threshold levels must be determined. The per-

formance of this detector can be improved by setting threshold T based on the

interfering energy. However, this requires detailed channel information, hence, a

more complex receiver structure.

In Table 3.1, the optimal threshold values are shown for an example two-user

scenario, in which the user energies are E1 = 1 and E2 = 2. The channel models

CM1, CM2, CM3, and CM4 are as defined in [29].
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Table 3.1: Optimal threshold values for CM1, CM2, CM3 and CM4 channel

models in a 2-user system (E1 = 1 and E2 = 2) with Tc = 1 ns and SNR = 12

dB.

CM1 CM2 CM3 CM4

Optimal value of ∆c 25 25 12 20

3.3 Linear MMSE

In this section, the linear MMSE receiver is obtained. Let yj =
∫
Γj

r2(t)dt, j =

0, 1, . . . , Nf−1, represent the set of energy samples obtained from the Nf frames.

Assuming user 1 as the user of interest, yj can be expressed as

yj =

∫
Γj

[r1(t) + rI(t) + n(t)]2 dt

=

∫
Γj

[r1(t)]
2 dt+ 2

∫
Γj

r1(t) [rI(t) + n(t)]2 dt+

∫
Γj

[rI(t) + n(t)]2 dt , (3.5)

where n(t) is the Gaussian noise and rI(t) is the sum of all interfering signals

given by

rI(t) =
K∑
k=2

rk(t) . (3.6)

The received signal from user-k during the jth frame can be expressed as

rjk(t) =

√
Ek

2Nf

a
(k)
j (1+b(k)d̃

(k)
j )w̃(t−jTf−c

(k)
j Tc) for t ∈ [jTf , (j + 1)Tf ) . (3.7)
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From (3.7), (3.5) can be written as

yj =
E1

2Nf

(2 + 2b(1)d̃
(1)
j )

∫
Γj

w̃2(t− jTf − c
(1)
j Tc)dt

+ 2

√
E1

2Nf

a
(1)
j (1 + b(1)d̃

(1)
j )

∫
Γj

w̃(t− jTf − c
(1)
j Tc)[rI(t) + n(t)]dt

+

∫
Γj

[rI(t) + n(t)]2 dt .

To simplify the notation, the expression above can be written as

yj =
E1γ

(1)
j

Nf

+ b(1)αj + nj , (3.8)

where

γ
(1)
j =

∫
Γj

w̃2(t− jTf − c
(1)
j Tc)dt (3.9)

αj =
E1γ

(1)
j

Nf

d̃
(1)
j +

√
2E1

Nf

a
(1)
j d̃

(1)
j

∫
Γj

w̃(t− jTf − c
(1)
j Tc)[rI(t) + n(t)]dt (3.10)

nj =

√
2E1

Nf

a
(1)
j

∫
Γj

w̃(t− jTf − c
(1)
j Tc)[rI(t) + n(t)]dt +

∫
Γj

[rI(t) + n(t)]2 dt .

(3.11)

It should be noted that γ
(1)
j = Ew̃ if Γj includes all the multipaths.

Considering all the frames from 0 to Nf − 1, (3.8) can be generalized as

y = k+ b(1)α+ n , (3.12)

where

k , E1

Nf

[
γ
(1)
0 · · · γ(1)

Nf−1

]T
(3.13)

α , [α0 · · ·αNf−1]
T (3.14)

n , [n0 · · ·nNf−1]
T . (3.15)

In the linear MMSE receiver, the information symbol is estimated as [30]

b̂(1) = sgn
{
θT
MMSEy

}
, (3.16)
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where

θMMSE = arg min
θ

E
{(

θTy − b(1)
)2}

=
(
E
{
yyT

})−1
E {α}

=
(
kkT + E {n}kT + kE

{
nT
}
+ E

{
ααT

}
+ E

{
nnT

})−1
E {α} .

(3.17)

The closed-form expressions for the terms in (3.17) are obtained in the following

lemmas.

Lemma 3.1: Let the polarity randomization codes, a
(k)
j , k = 2, . . . , K be

i.i.d. random variables that take values ±1 with equal probability. Then, E {nj}

can be obtained as

E {nj} =
K∑
k=2

Ek

Nf

χj,k + |Γj| 2Bσ2 , (3.18)

where |Γj| denotes the length of the integration interval in the jth frame, and

χj,k ,
∫
Γj

[
w̃
(
t− jTf − c

(k)
j Tc

)]2
dt . (3.19)

Proof : Please see Appendix C.

Lemma 3.2: Let the polarity randomization codes, a
(k)
j , k = 2, . . . , K be i.i.d.

random variables that take values ±1 with equal probability. Then, E {njnl} can

be expressed as

E {njnl} =



4B2σ4 |Γ|2
(
1 + 1

B|Γ|

)
+

K∑
k=2

E2
k

N2
f

(
1 + d

(k)
j d

(k)
l

)
χj,k1χl,k2

+2Bσ2 |Γ|
K∑
k=2

Ek

Nf
(χj,k + χl,k)

+
∑

k1 ̸=k2

Ek1
Ek2

N2
f

χj,k1χl,k2 , j ̸= l

4B2σ4 |Γ|2
(
1 + 1

B|Γ|

)
+

K∑
k=2

2E2
k

N2
f
(χj,k)

2 + 4σ2
K∑
k=2

Ek

Nf
(B |Γ|+ 1)χj,k

+
∑

k1 ̸=k2

Ek1
Ek2

N2
f

(
χj,k1χj,k2 + 2

[
Rj

w̃((c
(k1)
j − c

(k2)
j )Tc)

]2)
+2E1

Nf

[
K∑
k=2

Ek

Nf

[
Rj

w̃((c
(1)
j − c

(k)
j )Tc)

]2
+ σ2γ

(1)
j

]
, j = l

(3.20)
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where |Γ| denotes the common integration interval for all the frames.

Proof : Please see Appendix D.

Lemma 3.3: Let the polarity randomization codes, a
(k)
j , k = 2, . . . , K be i.i.d.

random variables that take value ±1 with equal probability. Then, E {αjαl} can

be found as

E {αjαl} =



E2
1

N2
f
γ
(1)
j γ

(1)
l d

(1)
j d

(1)
l , j ̸= l

E2
1

N2
f
(χj,k)

2 + 2E1

Nf

[
K∑
k=2

Ek

Nf

[
Rj

w̃((c
(1)
j − c

(k)
j )Tc)

]2
+ σ2γ

(1)
j

]
, j = l

(3.21)

Proof : Please see Appendix E.

Note that E
{
yyT

}
in (3.17) can be estimated from the previous observations

in practice. Also, for polarity randomization codes a
(k)
j ∈ {−1,+1} being equally

likely,

E {αj} =
E1γ

(1)
j

Nf

d̃
(1)
j , (3.22)

where γ
(1)
j is given in (3.9). Thus, in order to implement this MMSE receiver,

the symbol energy, the TH sequence and the orthogonalization codes of the user

of interest (user 1) and γ
(1)
j must be known. Moreover, the implementation of

this receiver requires a matrix inversion. Therefore, the MMSE receiver is more

complex than the BR, the chip discriminator, and the conventional receiver.

Note also that the information symbol can be estimated based on Lemmas

3.1–3.3 for the theoretical evaluation of the MMSE receiver. In this case, the

knowledge of the symbol energies, the TH sequences and the orthogonalization

codes for all users is required. In addition, the channel state information, the

bandwidth of the receive filter and the integration interval should be known for

those theoretical evaluations.
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3.4 Maximum-Likelihood (ML) Detector

In order to compare the receivers discussed previously, the maximum-likelihood

(ML) detector is chosen as a reference. This receiver might be considered as

impractical, since it searches over 2K hypotheses. However, it minimizes the

probability of error and serves as an optimal receiver. In the ML detector, the

set of information symbols b = [b(1)...b(K)]T is estimated as

b̂ = arg max
b

pb(y) = arg max
b

Nf−1∏
j=0

pb(yj) . (3.23)

Taking the logarithm, we obtain

b̂ = arg max
b

log (pb(y)) = arg max
b

Nf−1∑
j=0

log (pb(yj)) , (3.24)

where pb(yj) is non-central chi-square distributed and given by

pb(yj) =
1

2σ2

(
yj

θj(b)

)M
4
− 1

2

e−
(θj(b)+yj)

2σ2 IM
2
−1

(√
θj(b)yj
σ2

)
. (3.25)

Note that, for a given set of binary information symbols b, if the signal energy

(in the absence of noise) is zero; that is, θj(b) = 0, then yj is central chi-square

distributed and pb(yj) given above reduces to

pb(yj) =
y

M
2
−1

j e
yj

2σ2

σM2
m
2 Γ(M/2)

. (3.26)

From (3.25), (3.24) can be expressed as

arg max
b

Nf−1∑
j=0

(
M

4
− 1

2

)
[log yj − log (θj(b))]

− (θj(b) + yj)

2σ2
+ log

{
IM

2
−1

(√
θj(b)yj
σ2

)}
. (3.27)

The expression in (3.27) provides an exact expression for the ML detector. How-

ever, the objective function can be computationally complex to evaluate. There-

fore, the Gaussian approximation is used to provide a simpler alternative solution.
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In Chapter 2, it has been observed that the Gaussian approximation can be

employed for large values of M . Hence, the PDF of yj can be written as

pb(yj) =
1√
2πσj

e
−

(yj−µj)
2

2σ2
j , (3.28)

where µj and σj are given respectively by

µj = σ2M + θj(b) , (3.29)

σj = 2Mσ4 + 4σ2θj(b) . (3.30)

Thus, (3.24) can be expressed alternatively as

arg max
b

log (pb(y)) = arg max
b

Nf−1∑
j=0

log (pb(yj))

= arg min
b

Nf−1∑
j=0

{
log(

√
2πσj) +

(yj − µj)
2

2σ2
j

}
. (3.31)

Note that in order to implement this detector, the channel state information,

the TH sequences, the polarity and orthogonalization codes for all users must be

known. This ML receiver is the most complex receiver among all the receivers

discussed in this study and serves as a reference.

As a special case, the ML detector can be investigated in a single user scenario.

In this case, (3.24) reduces to the Bayes decision rule, which, for equiprobable

information symbols and uniform cost assignment, can be expressed as [1]

∏
j∈S

y
1
2
−M

4
j IM

2
−1

(√
θyj

σ2

) b̂=+1
>

<
b̂=−1

∏
j∈S̄

y
1
2
−M

4
j IM

2
−1

(√
θyj

σ2

)
. (3.32)

Note that the Bayes rule in (3.32) also gives the minimum probability of error

due to the assumption of uniform cost assignment [31]. In [1], it is shown that for

large M values, the conventional receiver has nearly the same performance as the

optimal receiver in (3.32). As an example, Figure 3.1 plots the BEP versus M

for the conventional and the optimal receivers. From the plot, it is observed that

the conventional receiver performs nearly optimally for M ≥ 8. Note that the

28



degrees of freedom parameter, M , is determined by the product of the bandwidth

and integration interval (Γj). In practice, due to a large number of multipath

components, B|Γj| ≫ 1 and the condition of M ≥ 8 is commonly satisfied.
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Figure 3.1: BEP versus M for the conventional and the optimal receivers for the

single user scenario [1].
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Chapter 4

Simulation Studies

In this chapter, simulation results are presented in order to verify the theoretical

results and to compare the performance of the receivers considered in the previous

chapters. The UWB pulse w(t) is chosen as the second order derivative of the

Gaussian pulse [32]; that is,

w(t) =

(
1− 4πt2

ζ2

)
e
− 2πt2

ζ2 /
√
Ep , (4.1)

where Ep is a scalar chosen to set w(t) to unit energy and ζ = Tc/2.5 determines

the pulse width. An example of a unit energy pulse with Tc = 1 ns is illustrated

in Figure 4.1. The bandwidth of the receive filter is 5 GHz and the channel

statistics are taken from the IEEE 802.15.4a models CM1, CM2, CM3 and CM4

[29]. For the considered CM-TR UWB system, the system parameters are chosen

as Nf = 4 and Nc = 250, which correspond to a data rate of Rb = 1 Mbit/s data

rate.

In order to prevent catastrophic collisions between pulses of different users,

TH sequences are employed for each user in each case. To avoid inter-

frame interference (IFI), the TH sequences are chosen uniformly from the set

{0, 1, . . . , Nc −Nw}, where

Nw =

⌈
T

(i)
w

Tc

⌉
, (4.2)
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with T
(i)
w being the duration of channel response to the pulse given in 4.1 for the

ith channel model, Tc is chip duration (equal to 1 ns in the simulations) and ⌈·⌉

is the ceiling function. Table 4.1 indicates the values of Nw for different channel

models and the sets from which the TH sequences are chosen to avoid IFI.

Table 4.1: TH sequence sets for CM1, CM2, CM3 and CM4 channel models.

Channel

Model

Nw TH set

CM1 120 c
(k)
j ∈ {0, 1, . . . , 130}

CM2 140 c
(k)
j ∈ {0, 1, . . . , 110}

CM3 90 c
(k)
j ∈ {0, 1, . . . , 160}

CM4 80 c
(k)
j ∈ {0, 1, . . . , 170}
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Figure 4.1: A UWB pulse with Tc = 1ns.
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Due to the highly dispersive channel responses, the duration of the inte-

gration interval |Γ| is critical and can affect the performance of the receivers

significantly1. Figures 4.2–4.5 plot the BEP versus the integration interval |Γ|

for a two-user system for channel models CM1, CM2, CM3, and CM4, respec-

tively. The integration intervals for the minimum probability of error is given in

Table 4.2. From the plots and the table, it is observed that the performances

of receivers are highly dependent on the integration interval |Γ| and its optimal

value is different for different receivers. Figures 4.6–4.9 plot the BEP versus the

integration interval Γ, where the symbol energy of the interfering user is equal

to 2. The integration intervals for the minimum probability of error are given in

Table 4.3.
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Figure 4.2: BEP versus |Γ| for a 2-user system for CM1 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2.

1For a given receiver structure, the same integration interval Γ is used for all the frames.
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Figure 4.3: BEP versus |Γ| for a 2-user system for CM2 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2.
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Figure 4.4: BEP versus |Γ| for a 2-user system for CM3 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2.
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Figure 4.5: BEP versus |Γ| for a 2-user system for CM4 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2.
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Figure 4.6: BEP versus |Γ| for a 2-user system for CM1 with Nf = 4, Nc = 250,

E1 = 1 and E2 = 2.
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Figure 4.7: BEP versus |Γ| for a 2-user system for CM2 with Nf = 4, Nc = 250,

E1 = 1 and E2 = 2.
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Figure 4.8: BEP versus |Γ| for a 2-user system for CM3 with Nf = 4, Nc = 250,

E1 = 1 and E2 = 2.
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Figure 4.9: BEP versus |Γ| for a 2-user system for CM4 with Nf = 4, Nc = 250,

E1 = 1 and E2 = 2.

Table 4.2: Optimal integration intervals for CM1, CM2, CM3 and CM4 channel

models in a 2-user system (Ek = 1, for k = 1, 2) with 12 dB SNR value. All the

quantities are in nanosecond (ns).

Channel

Model

Single

User,

Simu.

Single

User,

Theo.

Conv.

Rec.,

Simu.

Conv.

Rec.,

Theo.

MMSE

Re-

ceiver

ML

Detec-

tor

CM1 48 48 32 32 38 32

CM2 54 54 42 42 38 38

CM3 22 22 18 18 18 18

CM4 36 36 32 32 32 36
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Table 4.3: Optimal integration intervals for CM1, CM2, CM3 and CM4 channel

models in a 2-user system (E1 = 1 and E2 = 2) with 12 dB SNR value. All the

quantities are in nanosecond (ns).

Channel

Model

Single

User,

Simu.

Single

User,

Theo.

Conv.

Rec.,

Simu.

Conv.

Rec.,

Theo.

MMSE

Re-

ceiver

ML

Detec-

tor

CM1 48 48 18 18 26 48

CM2 54 54 32 32 36 46

CM3 22 22 10 10 18 22

CM4 36 36 20 20 30 36
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Figure 4.10: BEP versus Eh/N0 for a 2-user system for CM1 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2.
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Figure 4.11: BEP versus Eh/N0 for a 2-user system for CM1 with Nf = 4,

Nc = 250, E1 = 1 and E2 = 2.
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Figure 4.12: BEP versus Eh/N0 for a 2-user system for CM2 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2.
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Figure 4.13: BEP versus Eh/N0 for a 2-user system for CM2 with Nf = 4,

Nc = 250, E1 = 1 and E2 = 2.
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Figure 4.14: BEP versus Eh/N0 for a 2-user system for CM3 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2.
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Figure 4.15: BEP versus Eh/N0 for a 2-user system for CM3 with Nf = 4,

Nc = 250, E1 = 1 and E2 = 2.
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Figure 4.16: BEP versus Eh/N0 for a 2-user system for CM4 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2.
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Figure 4.17: BEP versus Eh/N0 for a 2-user system for CM4 with Nf = 4,

Nc = 250, E1 = 1 and E2 = 2.

Figures 4.10–4.17 plot the BEP for the previously discussed system param-

eters. The BEPs are obtained as a function of the signal-to-noise ratio (SNR)

defined in terms of Eh/No, where Eh is the energy of h(t) given by

Eh =

∫
Γ

h2(t)dt , (4.3)

with h(t) =
√

E1

2Nf
w̃(t) and w̃(t) being the channel response to the unit energy

pulse w(t) given in Figure 4.1. Note that, in order to make a fair comparison

between different receivers, the optimal integration intervals in Tables 4.2 and

4.3 are used.

From the plots, it is observed that increasing the energy of the interfering

user, E2, degrades the performances of the conventional receiver and the linear

MMSE receiver, as expected. However, the performance of the ML detector im-

proves for the higher energy of the interfering user. This can be explained by
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the fact that ML detector assumes the knowledge of the parameters including

the symbol energy of the interfering user. Thus, increasing the energy of the

interfering user may provide improved detection performance. The chip discrim-

inator also performs better in the second scenario. This is an expected result,

since discarding the colliding pulses with higher interfering energies provides im-

proved performance. Note that, for large value of M , the PDF of the chi-square

distribution cannot be computed. Instead, the PDF given in (3.28) is used. Note

also that, among all the receivers, the ML receiver performs the closest to the

single user case. However, it assumes the most prior knowledge and has a more

complex structure than the other receivers.

The theoretical results of the single user case are the same in both scenarios as

expected and match with the simulation results perfectly for CM1 and CM2. In

channel models CM3 and CM4, the integration interval Γ is taken to be shorter,

which results in a small value of M (M = 2B|Γ|+ 1). Hence, the assumption of

large MNf/2 is not satisfied well in those cases. As observed from the figures,

there is a good agreement between the theoretical and the simulation results for

the two-user case.

Figures 4.18–4.21 plot the BEP versus the integration interval |Γ| for a three-

user system for channel models CM1, CM2, CM3, and CM4, respectively. All

the users have equal symbol energies (Ek = 1 for k = 1, 2, 3).
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Figure 4.18: BEP versus |Γ| for a 3-user system for CM1 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2, 3.
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Figure 4.19: BEP versus |Γ| for a 3-user system for CM2 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2, 3.
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Figure 4.20: BEP versus |Γ| for a 3-user system for CM3 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2, 3.
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Figure 4.21: BEP versus |Γ| for a 3-user system for CM4 with Nf = 4, Nc = 250

and Ek = 1 for k = 1, 2, 3.

44



The integration intervals for the minimum probability of error are given in

Table 4.4. From the table, it is observed that the performances of receivers

are highly dependent on the integration interval and the optimal value of the

integration duration varies from receiver to receiver as in the previous scenarios.

Table 4.4: Optimal integration intervals for CM1, CM2, CM3 and CM4 channel

models in a 3-user system (Ek = 1 for k = 1, 2, 3) with 12 dB SNR value. All

the quantities are in the unit of nanosecond (ns).

Channel

Model

Single

User,

Simu.

Single

User,

Theo.

Conv.

Rec.,

Simu.

Conv.

Rec.,

Theo.

MMSE

Re-

ceiver

ML

Detec-

tor

CM1 48 48 20 20 26 34

CM2 54 54 36 36 38 38

CM3 22 22 16 16 18 18

CM4 36 36 28 28 30 32
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Figure 4.22: BEP versus Eh/N0 for a 3-user system for CM1 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2, 3.
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Figure 4.23: BEP versus Eh/N0 for a 3-user system for CM2 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2, 3.
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Figure 4.24: BEP versus Eh/N0 for a 3-user system for CM3 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2, 3.
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Figure 4.25: BEP versus Eh/N0 for a 3-user system for CM4 with Nf = 4,

Nc = 250 and Ek = 1 for k = 1, 2, 3.
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Figures 4.22–4.25 plot the BEP versus Eh/No, where Eh is the energy of

h(t) as given in (4.3). Note that, in order to make a fair comparison between

different receivers, the optimal integration intervals in Table 4.4 are used. From

the plots, it is observed that the simulation results match well with the theoretical

calculations for the conventional receivers in the three-user scenario. Compared

to the two-user scenario, the performance of all the receivers degrades. Also, the

chip discriminator performs very closely to the conventional receiver.
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Chapter 5

Conclusions

In this thesis, the performance of CM-TR systems has been analyzed and the

probability of error expressions have been obtained. For the single user case, a

closed form expression of the exact error probability has been derived. For the

multiuser case, a closed form expression based on the Gaussian approximation is

presented. Simulation results have matched closely with the theoretical analysis

for realistic channel models.

Besides the conventional receiver employed in CM-TR systems, some optimal

and suboptimal receivers have been proposed. First, low-complexity receivers

such as the blinking receiver (BR) and the chip discriminator have been pre-

sented. In the former case, the knowledge of TH sequences is required and the

decision is made based on the uncorrupted pulses of the user of interest. In the

latter case, the symbol energies of the users are needed together with the TH

sequences, and two threshold levels are set for both the TH sequences and the

symbol energies of the users. Due to the highly dispersive nature of UWB chan-

nels and the related system parameters, these receivers are inefficient and perform

poorly in many cases. Then, the linear minimum mean-squared error (MMSE)

receiver has been derived, and its performance has been analyzed. Finally, the
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optimal maximum-likelihood (ML) detector has been derived, which has higher

computational complexity and more strict requirements than the other receivers.

Simulation results have shown that the linear MMSE receiver is the best among

the considered suboptimal receivers.
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APPENDIX A

Chi-Square Distribution

Let X1, . . . , Xi, . . . , Xk be independent Gaussian distributed random variables

with means µi and variances σ2
i . Then, the random variable

X =
k∑

i=1

(
Xi

σi

)2

(A.1)

is distributed as a chi-square random variable with k degrees of freedom and

parameter λ given as

λ =
k∑

i=1

(
µi

σi

)2

. (A.2)

For random variable X defined in (A.1), the probability density function (PDF)

and the cumulative distribution function (CDF) can be written respectively as

[33]

p(x) =
1

2
e−(x+λ)/2

( x
λ

)k/4−1/2

Ik/2−1(
√
kx , ) (A.3)

F (x) =
∞∑
j=0

e−λ/2 (λ/2)
j

j!

γ(j + k/2, x/2)

Γ(j + k/2)
, (A.4)

where Iv(z) is the vth order modified Bessel function of the first kind, Γ(n) = (n−

1)! is the gamma function and γ(k, z) is the lower incomplete gamma function.
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For the conventional receiver, the energy obtained from the jth frame can be

expressed as

yj =

(j+1)Tf∫
jTf

[w̃(t) + n(t)]2 dt , j = 0, . . . , Nf − 1 , (A.5)

where w̃(t) is the deterministic received pulse and n(t) is zero mean Gaussian

noise with a flat spectral density of σ2 over the system bandwidth. Thus, yj can

be shown to be distributed as a central chi-square random variable [25]. In other

words, yj can be denoted as χ2
M(θ), where M is the degrees of freedom obtained

as 2BTf + 1 and θ is the signal energy (in the absence of noise), which can be

obtained as
∫ (j+1)Tf

jTf
|w̃(t)|2 dt.

For large M , the filtered noise and data pulse over the integration interval of

duration Tf can be written as [25]

M∑
i=1

niϕi(t) and
M∑
i=1

µiϕi(t) , (A.6)

where ϕi’s are orthonormal functions over the integration interval and ni’s are

zero mean independent Gaussian random variables with variances σ2 . Thus,

from (A.5), random variable Y can be defined as

Y =

(j+1)Tf∫
jTf

(
M∑
i=1

(µi + ni)ϕi(t)

)2

dt =
M∑
i=1

(µi + ni)
2 . (A.7)

Thus, from (A.1), the expression

Y = σ2X (A.8)

can be obtained. In a similar way, θ (the signal energy in the absence of noise)

can be written as

θ =

(j+1)Tf∫
jTf

(
M∑
i=1

µiϕi(t)

)2

dt =
M∑
i=1

µ2
i = σ2λ , (A.9)
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where λ is given in (A.2). Therefore, from (A.3) and (A.4), the PDF and the

CDF of random variable Y can be expressed as

p(y) =
1

2σ2
e

−(y+ θ)

2σ2

( y
θ

)M
4
− 1

2
IM/2−1(

√
θy

σ2
) , (A.10)

F (y) =
∞∑
j=0

e−θ/2σ2 (θ/2σ2)j

j!

γ(j + θ/2σ2, y/2σ2)

Γ(j + θ/2σ2)
. (A.11)

Note that if there is no pulse in frame j or if pulses from different users cancel

each other, than the energy sample yj can be shown to be distributed as

yj =

(j+1)Tf∫
jTf

n2(t)dt = χM(0) . (A.12)

For large values of M , the filtered noise n(t) can be written as

M∑
i=1

niϕi(t) , (A.13)

where ϕi’s are orthonormal functions over the integration interval Tf and ni’s are

zero mean Gaussian random variables with variance σ2. Then, random variable

Y can be defined as

Y =

(j+1)Tf∫
jTf

(
M∑
i=1

niϕi(t)

)2

dt =
M∑
i=1

n2
i . (A.14)

Therefore, the PDF and the CDF of random variable Y can be obtained as

p(y) =
yM/2−1e−y/2σ2

σM2M/2Γ(M/2)
, (A.15)

F (y) =
γ(k/2, y/2σ2)

Γ(k/2)
. (A.16)

Note that, in the calculations above, the integration interval is taken as Tf . If

the TH sequences are known, then it can be taken to be smaller than the frame

interval Tf in order to collect less noise and to increase the signal-to-noise ratio

(SNR) [34]. In that case, the degrees of freedom becomes M = 2B|Γj|+1, where

Γj is the integration interval.
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APPENDIX B

Proof of Lemmas 2.1 and 2.2

Let Yj denote the random variable for the energy sample obtained from the jth

frame. Then,

Yj =

(j+1)Tf∫
jTf

r2(t)dt j = 0, . . . , Nf − 1 , (B.1)

where r(t) is the received signal and Tf is the frame interval. For frames with

no pulses, Yj can be defined from (A.14) as

Yj =
M∑
i=1

n2
i , (B.2)
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where ni’s zero mean independent Gaussian random variables with variance σ2.

Then,

E {Yj} =
M∑
i=1

E
{
n2
i

}
(B.3)

= σ2M

E
{
Y 2
j

}
=

M∑
i,k=1

E
{
n2
in

2
k

}
(B.4)

=
M∑
i=1

E
{
n4
i

}
+

M∑
i ̸=k=1

E
{
n2
i

}
E
{
n2
k

}
= 3σ4M + (M2 −M)σ2σ2

= (M2 + 2M)σ4

V ar(Yj) = E
{
Y 2
j

}
− E2 {Yj} (B.5)

= 2Mσ4

Hence,

Yj ∼ N
(
Mσ2, 2Mσ4

)
. (B.6)

Note that, for b(1) = −1, no pulses are transmitted in the frames indexed by S.

It can be shown that the summation D1 =
∑
j∈S

Yj is also Gaussian distributed.

E {D1} =

Nf/2∑
j=1

E {Yj} (B.7)

=
σ2MNf

2

V ar(D1) =

Nf/2∑
j=1

V ar(Yj) (B.8)

= σ4MNf

Thus,

D1 ∼ N
(
σ2MNf

2
, σ4MNf

)
. (B.9)

If there is any data pulse in the jth frame,

Yj =

(j+1)Tf∫
jTf

(
M∑
i=1

(µi + niϕi(t))

)2

dt =
M∑
i=1

(µi + ni)
2 , (B.10)
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where
∑M

i=1 µ
2
i = θj(b) is the energy obtained (in the absence of noise) from the

jth frame for binary information bits b. Thus,

E{Yj} = Mσ2 + θj(b) . (B.11)

If we define Xi = (µi + ni)
2, then

E
{
Y 2
j

}
=

M∑
i,j=1

E
{
X2

i X
2
j

}
=

M∑
i=1

E
{
X4

i

}
+

M∑
i̸=j=1

E
{
X2

i

}
E
{
X2

j

}
=

M∑
i=1

E
{
X4

i

}
+

[
M∑
i=1

E
{
X2

i

}]2
−

M∑
i=1

[
E
{
X2

i

}]2
(B.12)

V ar(Yj) = E
{
Y 2
j

}
− E2 {Yj}

=
M∑
i=1

E
{
X4

i

}
−

M∑
i=1

[
E
{
X2

i

}]2
=

M∑
i=1

E
{
(ui + ni)

4}− M∑
i=1

[
E
{
X2

i

}]2
, ni ∼ (0, σ2)

=
M∑
i=1

E
{
n4
i + 4n3

iui + 6n2
iu

2
i + 4niu

3
i + u4

i

}
−

M∑
i=1

[
E
{
X2

i

}]2
=

M∑
i=1

(3σ4 + 6σ2u2
i + u4

i )−
M∑
i=1

(
σ2 + u2

i

)2
= 2σ4M + 4σ2

M∑
i=1

u2
i

= 2σ4M + 4σ2θj(b) (B.13)

The summation D2 =
∑
j∈S̄

Yj has the following parameters:

E{D2} =
∑
j∈S̄

E{Yj} (B.14)

=
σ2MNf

2
+
∑
j∈S̄

θj(b) .
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V ar(D2) =
∑
j∈S̄

V ar(Yj) (B.15)

= σ4MNf + 4σ2
∑
j∈S̄

θj(b) .

Thus, D2 is Gaussian distributed as

D2 ∼ N

σ2MNf

2
+
∑
j∈S̄

θj(b), σ4MNf + 4σ2
∑
j∈S̄

θj(b)

 (B.16)

Similarly, D1 is distributed as

D1 ∼ N

(
σ2MNf

2
+
∑
j∈S

θj(b), σ4MNf + 4σ2
∑
j∈S

θj(b)

)
(B.17)

Since D1 and D2 are independent Gaussian random variables, their difference is

also Gaussian distributed as

D = (D1 −D2) ∼ N

∑
j∈S

θj(b)−
∑
j∈S̄

θj(b), 2σ4MNf + 4σ2

Nf−1∑
j=0

θj(b)


(B.18)

Assume that the only user in the system is user 1. Then, equations above reduce

to

b = b(1) = −1 ⇒ D1 ∼ N
(
σ2MNf

2
, σ4MNf

)
(B.19)

⇒ D2 ∼ N
(
σ2MNf

2
+

θNf

2
, σ4MNf + 2σ2θNf

)
(B.20)

⇒ D ∼ N
(
−θNf

2
, 2σ4MNf + 2σ2θNf

)
. (B.21)
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APPENDIX C

Proof of Lemma 3.1

In Chapter 3, nj is defined as

nj =

√
2E1

Nf

a
(1)
j

∫
Γj

w̃(t− jTf − c
(1)
j Tc)[rI(t) + n(t)]dt +

∫
Γj

[rI(t) + n(t)]2 dt .

(C.1)

Taking the expectation of both sides,

E{nj} =

√
2E1

Nf

a
(1)
j

∫
Γj

w̃
(
t− jTf − c

(1)
j Tc

) K∑
k=2

√
Ek

2Nf

a
(k)
j E{1 + b(k)d̃

(k)
j }

× w̃
(
t− jTf − c

(k)
j Tc

)
dt+

∫
Γj

E
{
[rI(t) + n(t)]2

}
dt . (C.2)

Assume b(k) ∈ {−1,+1} with equal probability and define

Rj
w̃((c

(1)
j − c

(k)
j )Tc) =

∫
Γj

w̃
(
t− jTf − c

(1)
j Tc

)
w̃
(
t− jTf − c

(k)
j Tc

)
dt . (C.3)

Then, (C.2) can be written as

E {nj} =

√
2E1

Nf

a
(1)
j

K∑
k=2

√
Ek

2Nf

a
(k)
j Rj

w̃((c
(1)
j − c

(k)
j )Tc)

+

∫
Γj

E
{
rI(t)

2
}
dt+

∫
Γj

E
{
n(t)2

}
dt . (C.4)
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Note that in the equation above, n(t) is zero mean Gaussian noise and∫
Γj

E {rI(t)n(t)} dt =
∫
Γj

E {rI(t)}E {n(t)} dt = 0 . (C.5)

Note also that, since the received signal passes through a low-pass filter with

bandwidth B, we have colored noise. Thus, in (C.4),∫
Γj

E
{
n(t)2

}
dt = |Γj|2Bσ2 , (C.6)

where |Γj| is the duration of the integration interval for frame j.

From (3.6) and (3.7),

[
rjI(t)

]2
=

K∑
k1=2

K∑
k2=2

√
Ek1Ek2

2Nf

a
(k1)
j a

(k2)
j

(
1 + b(k1)d̃

(k1)
j

)(
1 + b(k2)d̃

(k2)
j

)
× w̃

(
t− jTf − c

(k1)
j Tc

)
w̃
(
t− jTf − c

(k2)
j Tc

)
. (C.7)

Taking the expectation and integrating the both sides in the equation above, we

obtain∫
Γj

E
{[

rjI(t)
]2}

dt =

K∑
k1=2

K∑
k2=2

√
Ek1Ek2

2Nf

a
(k1)
j a

(k2)
j (1 + δ [k1 − k2])R

j
w̃((c

(k1)
j − c

(k2)
j )Tc) (C.8)

Note that the equation above follows from (C.3) and the fact that b(k) ∈

{−1,+1} with equal probability. Thus, from (C.6) and (C.8),

E{nj} =
K∑
k=2

√
E1Ek

Nf

a
(1)
j a

(k)
j Rj

w̃((c
(1)
j − c

(k)
j )Tc) +

K∑
k1=2

K∑
k2=2

√
Ek1Ek2

2Nf

a
(k1)
j a

(k2)
j

× (1 + δ [k1 − k2])R
j
w̃((c

(k1)
j − c

(k2)
j )Tc) + |Γj|2Bσ2 . (C.9)

The polarity randomization codes a
(2)
j , . . . , a

(k)
j are assumed to be i.i.d. ran-

dom variables that take values {−1,+1} with equal probability. Then,

E {nj} =
K∑
k=2

Ek

Nf

χj,k + |Γj| 2Bσ2 , (C.10)
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where

χj,k =

∫
Γj

[
w̃
(
t− jTf − c

(k)
j Tc

)]2
dt . (C.11)
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APPENDIX D

Proof of Lemma 3.2

From (C.1), the term njnl can be written as

njnl =
2E1

Nf

a
(1)
j a

(1)
l C1 +

√
2E1

Nf

a
(1)
j C2 +

√
2E1

Nf

a
(1)
l C3 + C4 , (D.1)

where

C1 =

∫
Γj

∫
Γl

w̃
(
t1 − jTf − c

(1)
j Tc

)
w̃
(
t2 − lTf − c

(1)
l Tc

)
[rI(t1) + n(t1)] (D.2)

× [rI(t2) + n(t2)] dt2dt1

C2 =

∫
Γj

∫
Γl

w̃
(
t1 − jTf − c

(1)
j Tc

)
[rI(t1) + n(t1)] [rI(t2) + n(t2)]

2 dt2dt1 (D.3)

C3 =

∫
Γj

∫
Γl

w̃
(
t2 − lTf − c

(1)
l Tc

)
[rI(t2) + n(t2)] [rI(t1) + n(t1)]

2 dt2dt1 (D.4)

C4 =

∫
Γj

∫
Γl

[rI(t1) + n(t1)]
2 [rI(t2) + n(t2)]

2 dt2dt1 . (D.5)

In (D.2), taking the expectation of both sides,

E {C1} =

∫
Γj

∫
Γl

w̃
(
t1 − jTf − c

(1)
j Tc

)
w̃
(
t2 − lTf − c

(1)
l Tc

)
(D.6)

× (E {rI(t1)rI(t2)}+RN(t1 − t2)) dt2dt1 .

The equation above follows from (C.5) and the fact

E {n(t1)n(t2)} = RN(t1 − t2) . (D.7)
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From (3.7) and assuming that b(k) ∈ {−1,+1} with equal probability,

E {rI(t1)rI(t2)} =
K∑

k1=2

K∑
k2=2

√
Ek1

Ek2

2Nf
a
(k1)
j a

(k2)
l

(
1 + d̃

(k1)
j d̃

(k2)
l δ [k1 − k2]

)
× w̃

(
t1 − jTf − c

(k1)
j Tc

)
w̃
(
t2 − lTf − c

(k2)
l Tc

) (D.8)

Then, from (D.6) and (C.3),

E {C1} =
K∑

k1=2

K∑
k2=2

√
Ek1

Ek2

2Nf
a
(k1)
j a

(k2)
l

(
1 + d̃

(k1)
j d̃

(k2)
l δ [k1 − k2]

)
Rj

w̃((c
(1)
j − c

(k1)
j )Tc)

×Rl
w̃((c

(1)
l − c

(k2)
l )Tc) +

∫
Γj

∫
Γl

w̃
(
t1 − jTf − c

(1)
j Tc

)
w̃
(
t2 − lTf − c

(1)
l Tc

)
× RN(t1 − t2)dt2dt1 .

(D.9)

Note that in the equation above, RN(t1 − t2) = 2σ2B sinc(2B(t1 − t2)); however,

for large values of B, the approximation can be performed as

RN(t1 − t2) = σ2δ(t1 − t2) . (D.10)

Thus,

E {C1} =
K∑

k1=2

K∑
k2=2

√
Ek1

Ek2

2Nf
a
(k1)
j a

(k2)
l

(
1 + d̃

(k1)
j d̃

(k2)
l δ [k1 − k2]

)
×Rj

w̃((c
(1)
j − c

(k1)
j )Tc)R

l
w̃((c

(1)
l − c

(k2)
l )Tc) +

 0, j ̸= l

σ2γ
(1)
j , j = l

(D.11)

where γ
(1)
j is given in (3.9).

Also, from (D.3),

E {C2} =

∫
Γj

∫
Γl

w̃(t1 − jTf − c
(1)
j Tc)

× E
{
(rI(t1) + n(t1))

(
r2I (t2) + 2rI(t2)n(t2) + n2(t2)

)}
dt2dt1 (D.12)

Using the previous results,

E {C2} =

∫
Γj

∫
Γl

w̃(t1 − jTf − c
(1)
j Tc)1

[
E{rI(t1)r2I (t2)}+ 2Bσ2E{rI(t1)}+

+2E{rI(t2)}RN(t1 − t2) + E{n(t1)n2(t2)}
]
dt2dt1 (D.13)
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Assuming that b(k) ∈ {−1,+1} with equal probability for user k,

E{rI(t1)r2I (t2)} =
K∑

k1=2

K∑
k2=2

K∑
k3=2

√
Ek1Ek2Ek3

(2Nf )1.5
a
(k1)
j a

(k2)
l a

(k3)
l ẽw̃(t1 − jTf − c

(k1)
j Tc)

× w̃(t2 − lTf − c
(k2)
l Tc)w̃(t2 − lTf − c

(k3)
l Tc) , (D.14)

where

ẽ = E
{
(1 + b(k1)d̃

(k1)
j )(1 + b(k2)d̃

(k2)
l )(1 + b(k3)d̃

(k3)
l )

}

=



1 if k1 ̸= k2 ̸= k3;

1 + d̃
(k1)
j d̃

(k1)
l if k1 = k2 ̸= k3

or k1 = k3 ̸= k2;

2 if k2 = k3 ̸= 1;

2 + d̃
(k1)
j d̃

(k1)
l if k1 = k2 = k3.

(D.15)

Although n(t) is colored noise, the following equality can be obtained after

some approximation.∫
Γj

∫
Γl

w̃(t1 − jTf − c
(1)
j Tc)E{n(t1)n2(t2)}dt2dt1 ≈ 0 . (D.16)

From (3.7) and the results above, E{C2} can be expressed as

E{C2} =
K∑

k1=2

K∑
k2=2

K∑
k3=2

√
Ek1Ek2Ek3

(2Nf )1.5
a
(k1)
j a

(k2)
l a

(k3)
l ẽRj

w̃((c
(1)
j − c

(k1)
j )Tc)

×Rl
w̃((c

(k2)
l − c

(k3)
l )Tc) + 2Bσ2|Γl|

K∑
k=2

√
Ek

2Nf

a
(k)
j Rj

w̃((c
(1)
j − c

(k)
j )Tc)+

+ 2


0 , j ̸= l

σ2
K∑
k=2

√
Ek

2Nf
a
(k)
j Rj

w̃((c
(1)
j − c

(k)
j )Tc) , j = l

(D.17)
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E{C3} can be found same as above if j and l are interchanged.

E{C3} =
K∑

k1=2

K∑
k2=2

K∑
k3=2

√
Ek1Ek2Ek3

(2Nf )1.5
a
(k1)
l a

(k2)
j a

(k3)
j ẽRl

w̃((c
(1)
l − c

(k1)
l )Tc)

×Rj
w̃((c

(k2)
j − c

(k3)
j )Tc) + 2Bσ2|Γj|

K∑
k=2

√
Ek

2Nf

a
(k)
l Rl

w̃((c
(1)
l − c

(k)
l )Tc)+

+ 2


0 , j ̸= l

σ2
K∑
k=2

√
Ek

2Nf
a
(k)
l Rl

w̃((c
(1)
l − c

(k)
l )Tc) , j = l

(D.18)

In (D.5) taking the expectations of both sides and using the previous results,

E{C4} =

∫
Γj

∫
Γl

E
{
(rI(t1) + n(t1))

2 (rI(t2) + n(t2))
2} dt2dt1

=

∫
Γj

∫
Γl

[
E{r2I (t1)r2I (t2)}+ E{r2I (t1)}2Bσ2 + 4E{rI(t1)rI(t2)}RN(t1 − t2)+

+ 2Bσ2E{r2I (t2)}+ E{n2(t1)n
2(t2)}dt2dt1 (D.19)

Using (D.10),

E{C4} =

∫
Γj

∫
Γl

E{r2I (t1)r2I (t2)}dt2dt1 +
∫
Γj

∫
Γl

E{n2(t1)n
2(t2)}dt2dt1+

+ 2Bσ2

|Γl|
∫
Γj

E{r2I (t1)}dt1+|Γj|
∫
Γl

E{r2I (t2)}dt2

+

+


4σ2

∫
Γl

E{r2I (t)}dt , j = l

0 , j ̸= l

(D.20)

From (3.7) and (C.3),∫
Γj

∫
Γl

E{r2I (t1)r2I (t2)}dt2dt1 =
∑

k1,k2,k3,k4

√
Ek1Ek2Ek3Ek4

4N2
f

a
(k1)
j a

(k2)
j a

(k3)
l a

(k4)
l g̃

×Rj
w̃((c

(k1)
j − c

(k2)
j )Tc)R

l
w̃((c

(k3)
l − c

(k4)
l )Tc) , (D.21)
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where

g̃ = E
{(

1 + b(k1)d̃
(k1)
j

)(
1 + b(k2)d̃

(k2)
j

)(
1 + b(k3)d̃

(k3)
l

)(
1 + b(k4)d̃

(k4)
l

)}

=



4
(
1 + d̃

(k1)
j d̃

(k2)
l

)
if k1 = k2 = k3 = k4

1 if k1 ̸= k2 ̸= k3 ̸= k4

4 if (k1 = k2) ̸= (k3 = k4)

2
(
1 + d̃

(k)
j d̃

(k)
l

)
if three equal (k) one different(

1 + d̃
(k1)
j d̃

(k1)
l

)(
1 + d̃

(k2)
j d̃

(k2)
l

)
if (k1 = k3) ̸= (k2 = k4)

or (k1 = k4) ̸= (k2 = k3)

(D.22)

The following equality can be obtained after some approximation [35, 28].∫
Γj

∫
Γl

E{n2(t1)n
2(t2)}dt2dt1 = 4B2σ4 |Γ|2

(
1 +

1

B|Γ|

)
. (D.23)

Then, using the results above and assuming that |Γj| = |Γl| = |Γ|,

E {C4} = 4B2σ4 |Γ|2
(
1 +

1

B|Γ|

)
+

∑
k1,k2,k3,k4

√
Ek1Ek2Ek3Ek4

4N2
f

a
(k1)
j a

(k2)
j a

(k3)
l a

(k4)
l g̃

×Rj
w̃((c

(k1)
j − c

(k2)
j )Tc)R

l
w̃((c

(k3)
l − c

(k4)
l )Tc)+

+ 2Bσ2 |Γ|
∑
k1,k2

√
Ek1Ek2

2Nf

(1 + δ(k1 − k2))

×
[
a
(k1)
j a

(k2)
j Rj

w̃((c
(k1)
j − c

(k2)
j )Tc) + a

(k1)
l a

(k2)
l Rl

w̃((c
(k1)
l − c

(k2)
l )Tc)

]
+ 4σ2δ[j − l]

∑
k1,k2

√
Ek1Ek2

2Nf

a
(k1)
j a

(k2)
j (1 + δ(k1 − k2))R

j
w̃((c

(k1)
j − c

(k2)
j )Tc)

(D.24)
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The polarity randomization codes a
(2)
j , . . . , a

(k)
j can be assumed to be i.i.d.

random variables that take values {−1,+1} with equal probability. Then,

E {C1} =


K∑
k=2

Ek

Nf

[
Rj

w̃((c
(1)
j − c

(k)
j )Tc)

]2
+ σ2γ

(1)
j , j = l

0 , j ̸= l

(D.25)

Also, it can be easily seen that

E {C2} = E {C3} = 0 . (D.26)

E {C4} :

Let j ̸= l :

E {C4} = 4B2σ4 |Γ|2
(
1 +

1

B|Γ|

)
+

K∑
k=2

E2
k

N2
f

(
1 + d̃

(k)
j d̃

(k)
l

)
(χj,kχl,k)

+
∑
k1 ̸=k2

Ek1Ek2

N2
f

χj,k1χl,k2

+ 2Bσ2 |Γ|
K∑
k=2

Ek

Nf

(χj,k + χl,k)

Let j = l : (D.27)

E {C4} = 4B2σ4 |Γ|2
(
1 +

1

B|Γ|

)
+ 4σ2

K∑
k=2

Ek

Nf

(B |Γ|+ 1)χj,k

+
K∑
k=2

2E2
k

N2
f

(χj,k)
2 +

∑
k1 ̸=k2

Ek1Ek2

N2
f

χj,k1χj,k2+

+ 2
∑
k1 ̸=k2

Ek1Ek2

N2
f

[
Rj

w̃((c
(k1)
j − c

(k2)
j )Tc)

]2
(D.28)

From (D.1),

E {njnl} =
2E1

Nf

a
(1)
j a

(1)
l E {C1}+

√
2E1

Nf

a
(1)
j E {C2}+

√
2E1

Nf

a
(1)
l E {C3}+ E {C4}

(D.29)
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Finally, E{njnl} can be written as

E {njnl} =



4B2σ4 |Γ|2
(
1 + 1

B|Γ|

)
+

K∑
k=2

E2
k

N2
f

(
1 + d̃

(k)
j d̃

(k)
l

)
χj,kχl,k

+2Bσ2 |Γ|
K∑
k=2

Ek

Nf
(χj,k + χl,k)

+
∑

k1 ̸=k2

Ek1
Ek2

N2
f

χj,k1χl,k2 , j ̸= l

4B2σ4 |Γ|2
(
1 + 1

B|Γ|

)
+

K∑
k=2

2E2
k

N2
f
(χj,k)

2 + 4σ2
K∑
k=2

Ek

Nf
(B |Γ|+ 1)χj,k

+
∑

k1 ̸=k2

Ek1
Ek2

N2
f

(
χj,k1χj,k2 + 2

[
Rj

w̃((c
(k1)
j − c

(k2)
j )Tc)

]2)
+2E1

Nf

[
K∑
k=2

Ek

Nf

[
Rj

w̃((c
(1)
j − c

(k)
j )Tc)

]2
+ σ2γ

(1)
j

]
, j = l

(D.30)
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APPENDIX E

Proof of Lemma 3.3

In Chapter 3, αj is defined as

αj =
E1γ

(1)
j

Nf

d̃
(1)
j +

√
2E1

Nf

a
(1)
j d̃

(1)
j

∫
Γj

w̃(t− jTf − c
(1)
j Tc)[rI(t) + n(t)]dt . (E.1)

Taking the expectation of both sides,

E {αj} =
E1γ

(1)
j

Nf

d̃
(1)
j +

√
2E1

Nf

a
(1)
j d̃

(1)
j

∫
Γj

w̃
(
t− jTf − c

(1)
j Tc

)
E {rI(t)} dt , (E.2)

since n(t) is zero mean Gaussian noise. From (3.6) and (3.7),

E {αj} =
E1γ

(1)
j

Nf

d̃
(1)
j +

K∑
k=2

√
E1Ek

Nf

a
(1)
j a

(k)
j d̃

(1)
j Rj

w̃((c
(1)
j − c

(k)
j )Tc) . (E.3)

The polarity randomization codes a
(2)
j , . . . , a

(k)
j can be assumed to be i.i.d.

random variables that take values {−1,+1} with equal probability. Then,

E {αj} =
E1

Nf

γ
(1)
j d̃

(1)
j . (E.4)
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From (E.1) αjαl can be written as

αjαl =
E2

1

N2
f

γ
(1)
j γ

(1)
l d̃

(1)
j d̃

(1)
l (E.5)

+
E1γ

(1)
j

Nf

d̃
(1)
j

√
2E1

Nf

a
(1)
l d̃

(1)
l

∫
Γl

w̃
(
t− lTf − c

(1)
l Tc

)
(rI(t) + n(t))dt

+
E1γ

(1)
l

Nf

d̃
(1)
l

√
2E1

Nf

a
(1)
j d̃

(1)
j

∫
Γj

w̃
(
t− jTf − c

(1)
j Tc

)
(rI(t) + n(t))dt

+
2E1

Nf

a
(1)
j a

(1)
l d̃

(1)
j d̃

(1)
l C1 ,

where C1 is given in (D.2).

Taking the expectation and using (3.6),

E {αjαl} =
E2

1γ
(1)
j γ

(1)
l

N2
f

d̃
(1)
j d̃

(1)
l +

+
E1γ

(1)
j

Nf
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j a
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(1)
l

K∑
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√
EkE1
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a
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(1)
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(k)
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(1)
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(1)
j d̃
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j
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√
EkE1

Nf

a
(k)
j Rj
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(1)
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+
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j a
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j d̃

(1)
l E {C1} (E.6)

The polarity randomization codes a
(2)
j , . . . , a

(k)
j can be assumed to be i.i.d.

random variables that take values {−1,+1} with equal probability. Then,

E {αjαl} =



E2
1

N2
f
γ
(1)
j γ

(1)
l d̃

(1)
j d̃

(1)
l , j ̸= l

E2
1
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f
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(1)
j − c

(k)
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j

]
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(E.7)
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