CACHE LOCALITY EXPLOITING METHODS AND
MODELS FOR SPARSE MATRIX-VECTOR
MULTIPLICATION

A THESIS SUBMITTED TO
THE DEPARTMENT OF COMPUTER ENGINEERING AND
INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By
Kadir Akbudak
September, 2009

| certify that | have read this thesis and that in my opiniois itully adequate, in
scope and in quality, as a thesis for the degree of Masterieh&e.

Prof. Cevdet Aykanat (Advisor)

| certify that | have read this thesis and that in my opiniois itully adequate, in
scope and in quality, as a thesis for the degree of Masterieh&e.

Prof. Ayhan Altintas

| certify that | have read this thesis and that in my opiniois itully adequate, in
scope and in quality, as a thesis for the degree of Masterieh&e.

Asst. Prof.0zcanOztiirk

Approved for the Institute of Engineering and Science:

Prof. Mehmet Baray
Director of the Institute

ABSTRACT

CACHE LOCALITY EXPLOITING METHODS AND
MODELS FOR SPARSE MATRIX-VECTOR
MULTIPLICATION

Kadir Akbudak
Master in Computer Engineering and Information Science
Supervisor: Prof. Cevdet Aykanat
September, 2009

The sparse matrix-vector multiplication (SpMxV) is an imamt kernel operation
widely used in linear solvers. The same sparse matrix isipliel by a dense vec-
tor repeatedly in these solvers to solve a system of lineaateens. High performance
gains can be obtained if we can take the advantage of todags dache hierarchy
in SpMxV operations. Matrices with irregular sparsity patis make it difficult to
utilize data locality effectively in SpMxV computationsifigrent techniques are pro-
posed in the literature to utilize cache hierarchy effestyiwia exploiting data local-
ity during SpMxV. In this work, we investigate two distinaaieworks for cache-
aware/oblivious SpMxV: single matrix-vector multiply antultiple submatrix-vector
multiplies. For the single matrix-vector multiply framexkowe propose a cache-size
aware top-down row/column-reordering approach based orsdddse matrix parti-
tioning by utilizing the recently proposed appropriate éygvaph models of sparse
matrices, and a cache oblivious bottom-up approach baséieaarchical clustering
of rows/columns with similar sparsity patterns. We alsopmse a column compres-
sion scheme as a preprocessing step which makes these twaclpgs cache-line-size
aware. The multiple submatrix-vector multiplies framekvdepends on the partition-
ing the matrix into multiple nonzero-disjoint submatriceSor an effective matrix-
to-submatrix partitioning required in this framework, wepose a cache-size aware
top-down approach based on 2D sparse matrix partitioningtitiging the recently
proposed fine-grain hypergraph model. For this framewokkago propose a trav-
eling salesman formulation for an effective ordering ofiumual submatrix-vector
multiply operations. We evaluate the validity of our modat&l methods on a wide
range of sparse matrices. Experimental results show tbabped methods and mod-
els outperforms state-of-the-art schemes.

Keywords: Cache locality, sparse matrices, matrix-vector multgdimn, matrix re-
ordering, computational hypergraph model, hypergraphtmaning, traveling sales-
man problem.

OZET

SEYREK MATRIS- VEKTOR CARPIMINDA

ONBELLEK YERELLIGI SAGLAYAN Y ONTEM VE
MODELLER

Kadir Akbudak
Bilgisayar ve Enformatik Muhendisligi, Master
Tez Yoneticisi: Prof. Dr. Cevdet Aykanat
Eylul, 2009

Seyrek matris-vektor carpimi dogrusal denklem sisteiden yazilimlarda ¢ok
onemli bir cekirdek islemdir. Ayni seyrek matris, seymmayan bir vektorle ¢ok defa
carpilir. Su anki teknolojinin sundugu cok seviyetikiellekler etkin kullanilirsa, bu
carpma islemi sirasinda dnemli performans kazanglahilmektedir. Lakin diizensiz
veri erisimine neden olan matrisler dnbellekteki verrgtiginin kullanimini olum-
suz etkilemektedir. Bu problemi ¢cozmek icin dnbelledrslligini kullanan pek ¢ok
yontem su zamana kadar sunulmustur. Bu calismadalebiki farkli cerceve sunuy-
oruz: tek matris-vektor carpimi ve ¢oklu matris-vektarmmi. Tek matris-vektor
carpimi ¢gercevesinde, dnbellegin boyutunu dikk#desk matrisin satir ve suitunlarini
yeniden siralayan ve bu siralama islemini hipercizgénoieme ile yapan bir yontem
sunuyoruz. Bir de onbellegin boyutunu dikkate almadareNi§i saglayacak bir
yontem oneriyoruz. Ve bu yontemlere ek olarak suturgacistirip alansal yerelligi
saglayan onisleme yontemi sunuyoruz. Coklu matektdr carpimi cercevesinde, ma-
trisi alt matrislere ayirarak veri yerelligini saglansagalismayi hedefliyoruz. Yine bu
ayirma igsleminde de hipergizge kullaniliyor. Alt makeisn carpma sirasi da dnem
tasidigindan veri yerelligini arttiran bir siralamdplma problemini de seyyar satici
problemi olarak ¢ozulebilecegini acikliyoruz. Dgsel sonuglar bu dnerilen cerceve
ve yontemlerin su anda kullanilan yontemlerden dahl tahstigini gostermektedir.

Anahtar $zdikler. Onbellek yerelligi, seyrek matrisler, matris-vekt@argimi, matrisi
yeniden siralama, bilisimsel hipercizge modeli, hjpmege bolumleme, seyyar satici
problemi .

Acknowledgement

| would like to express my deepest gratitude to my supenisof. Cevdet Aykanat
for his guidance, suggestions, and invaluable encouraggetmeughout the develop-
ment of this thesis. His patience, motivation, lively dissiwns and cheerful laughter
provided an invaluable and comfortable atmosphere for arkw

| am grateful to my family and my friends for their infinite nadisupport and help.
| owe special thanks to my friend Enver Kayaaslan.

Finally, | thank TUBITAK for supporting grant throughout my master program.

Vi

To my family

Vil

Contents

1 Introduction 1
2 Background 4
2.1 Data Storage Schemes used in Sparse Matrix-Vectorpiadétion . . 4
2.1.1 Compressed StoragebyRows 5
2.1.2 Zig-Zag Compressed StoragebyRows 6

2.1.3 Incremental Compressed Storage by Rows

2.1.4 Zig-Zag Incremental Compressed Storage by Rows8
2.2 Data Locality in Sparse Matrix-Vector Multiply 8
2.3 Hypergraph Partitioning0 ... 9
2.4 Hypergraph Models for Sparse Matrix Partitioning 11
2.5 Breadth-First-Search-Based Algorithm for Row/ColuReordering . 13
2.6 Travelling Salesman Problem 14

3 Related Work 16

4 Single Matrix-Vector Multiply Framework 19

viii

CONTENTS

4.1 1D Decomposition of Sparse Matrices

4.2 Hierarchical Clustering

4.3 Compression Preprocessing for Spatial Locality

5 Multiple Submatrix-Vector Multiplies Framework
5.1 Pros and Cons compared to Conventional Framework
5.2 2D Decomposition of Sparse Matrices

5.3 Ordering Submatrix-Vector Multiplies

6 Experimental Results

6.1 ExperimentalSetup

6.1.1 Platform

6.1.2 DataSets e

6.2 Experiments with Single Matrix-Vector Multiply Framevk
6.3 Experiments with Multiple Submatrix-Vector Multiptid-ramework .

6.4 Comparisonof Frameworks.

7 Conclusion

7.1 Conclusions

7.2 FutureWork

Appendices

A Experimental Results in Detail

44

44

CONTENTS

B Pictures of Reordered Matrices

46

List of Figures

2.1

3.1

3.2

B.1

B.2

B.3

B.4

B.5

Processing order of nonzeros stored using the CSR (olefthend
ZZCSR (on the right) schemes. Arrows denote the storage afde
nONzeros of arow. o oo 6

Example for irregular code that are the focus in compariand data
ordering problem. C array is accessed through two index arrays

andb. These two arrays cause indirection so the code shows laregu
accesspatter. 17

Sparse matrix-vecto multiply algorithm based on usihg CSR
schemeux array is ther-vector in the sparse matrix-vector multiplica-

tiony <« Ax. e 18
Original Matrix pssel a7
Partitioned Matrix pssel whep=1andK =2 48
Partitioned Matrix pssel whep=2andK =4 49
Partitioned Matrix pssel whep=3andK =8 50
Partitioned Matrix pssel wheg=4andK =16 51

Xi

List of Tables

6.1

6.2

6.3

6.4

Properties of testmatrices.,

Normalized geometric and arithmetic means of simutatesults for
matrices partitioned into 32K-sized parts using row-net aolumn-
net models. Original matrices are partitioned and theirdpases, too.
Cache line size is 8 times size of double, 64Bytes.

Normalized geometric and arithmetic means of simutatesults for
matrices partitioned into 32K-sized parts using row-net aolumn-
net models. Best result of either original matrix or its spose is
selected. Cache line size is 8 times size of double, 64Bytes. . . .

Normalized geometric and arithmetic means of simutatesults for
matrices partitioned into 32K-sized parts using row-net aolumn-
net models; and matrices reordered using BFS and Hieraiciligo-
rthms

Xii

36

37

LIST OF TABLES Xiii

6.5 Normalized simulation results for some matrices. Resiar only
compression method applied areGfamp column. Results for matri-
ces are partitioned into 32K-sized parts using column-reetehwith-
out column reordering are iRow column; with column ordering in
Col. Results for column-net model without column reordering bu
with compression are in'olC' column. Time elapsed for reordering
and compression are measured in milliseconds. Timingtsefar re-
ordering using column-net model g, column. Compression, par-
titioning and total times for reordering using column-neidal with-
out column reordering but with compression are given seelgran
tlcacycolumn. ...

6.6 Normalized geometric and arithmetic means of simutatiesults
for matrices partitioned into 32K-sized parts using finakgmrmodel.
NOTS P column contains results when TSP ordering not used.Cache
line size is 8 times size of double, 64Bytes. 39

6.7 Normalized geometric and arithmetic means of simuatesults for
matrices partitioned into 32K-sized parts using columtredel and
fine-grain model with TSP ordering.

A.1 Simulation results for matrices partitioned into 32iKesl parts. Cache
line size is 8 times size of double, 64Bytes. 45

List of Algorithms

o 01 A W DN P

Sparse Matrix-Vector Multiplication using CSR scheme 6
Sparse Matrix-Vector Multiplication using ICSR scheme 7
Modified BFS Algorithm for Row/Column Ordering 41
Hypergraph Based Bottom-up Reordering HPART 24
Hypergraph Based Clustering HCLUSTER 24

Multiple Sparse Submatrix-Vector Multiplications usili€SR scheme 26

XV

Chapter 1

Introduction

Many applications became available in numerical compaortadin behalf of the devel-
opments in computer architecture. Nevertheless, thesgdaf@wents introduced some
problems such as performance gap between processor andyngmeds. Also there
still exits a trade-off between faster but small memoriks &ipu caches and slower but
larger memories like RAM. As a result, the need of new metlratsalgorithms for
efficient usage of higher levels of memory increased in eaeea of computational
problems.

Efficiency in using higher level memories mainly depend angeral and spatial
localities. According to literature, these localities @revided throughout these two
ways: data ordering and iteration ordering.

Here data ordering means in what order the elements arelstamd in the same
way, iteration ordering means in which order the stored el@are processed. When
the data in consecutive memory locations is accessed witle gine, both spatial and
temporal localities can be exploited even in compilers.hSkind of applications are
said to baegular. On the contrary, itis considerable difficult to utilize tii&ta locality
effectively in irregular computations which induce irréggyumemory access patterns.

The sparse matrix-vector multiplication is one of them ane tost important
kernel operation in linear solvers for the solution of largparse, linear systems of
equations. These solvers repeat the matrix-vector migiigpbn y < Ax many times
with the same sparse matrix to solve a system of equationsgullar access pattern

1

CHAPTER 1. INTRODUCTION 2

during this multiply operation, causes poor usage of cphesm today’s memory hi-
erarchy technology. However, sparse matrix-vector miyltgperation has a potential
to exhibit very high performance gains when temporal andiadacalities discussed
in Section 2.2 are respected and exploited.

In this work, we investigate two distinct frameworks for baeaware/oblivious Sp-
MxV: single matrix-vector multiply and multiple submatrizector multiplies. For the
single matrix-vector multiply framework, we propose a aasize aware top-down
row/column-reordering approach based on transformatpasse matrix to a singly-
bordered block-diagonal form by utilizing the recently posed appropriate hyper-
graph models. We provide an upper bound on the total numbsaabfe misses based
on this transformation, and show that the objective in thpengraph-partitioning-
based transformation model exactly corresponds to mimmithis upper bound. We
also propose a cache oblivious bottom-up approach basetemardhical clustering
of rows/columns with similar sparsity patterns. Furtherey@ column compression
scheme as a preprocessing step which makes these two apggozache-line-size
aware is presented.

The multiple submatrix-vector multiplies framework degdsron the partitioning
the matrix into multiple nonzero-disjoint submatrices dhe ordering of submatrix-
vector multiplies. For an effective matrix-to-submatriarptioning required in this
framework, we propose a cache-size aware top-down apptoasdd on 2D sparse
matrix partitioning by utilizing the recently proposed figein hypergraph model.
We provide an upper bound on the total number of cache missegion this matrix-
to-submatrix partitioning, and show that the objectivehia hypergraph-partitioning-
based matrix-to-submatrix partitioning exactly corragg®to minimizing this upper
bound.

For this framework, we also propose a traveling salesmandtation for an effec-
tive ordering of individual submatrix-vector multiply o¢ions. We provide a lower
bound on the total number of cache misses based on the ayagraubmatrix-vector
multiplies, and show that the objective in TSP formulati@aatly corresponds to min-
imizing this lower bound.

We evaluate the validity of our models and methods on a widgeaf sparse
matrices. Experimental results show that proposed metaodsnodels outperforms

CHAPTER 1. INTRODUCTION 3

state-of-the-art schemes.

The rest of this thesis is organized as follows: Backgrouadenmal is introduced
in Chapter 2. In Chapter 3, we review some of the previous svaldout iteration/data
reordering and matrix transformations for exploting layalTwo frameworks as our
contributions in sparse matrix-vector multiplication described in Chapters 4 and 5.
We present the experimental results of these two framewamkiscomparisons with
some of the previous works in Chapter 6. Finally, the thest®ncluded in Chapter 7.

Chapter 2
Background

In this chapter, we will review several schemes for storipgrse matrices in Sec-
tion 2.1. Data locality issues during matrix-vector multiption will be considered

in Section 2.2. Then we will review definition of hypergrapidapartitioning prob-

lems in Section 2.3. We will mention about two hypergraph aiedor 1D and 2D

decomposition of sparse matrices in Section 2.4. Finadlfindion of the well known

Travelling Salesman Proble(SP) will be told in Section 2.6.

2.1 Data Storage Schemes used in Sparse Matrix-

Vector Multiplication

In this chapter we will review an important storage scheboenpressed Storage by
Rows(CSR) and its variancegZig-Zag Compressed Storage by Rq@gCSR), In-
cremental Compressed Storage by RGESR) andZig-Zag Incremental Compressed
Storage by Row&ZZICSR) for sparse matrix-vector multiplication in Sects 2.1.1,
2.1.2,2.1.3 and 2.1.4, respectively.

There are two main storage schemes for sparse matrix-veuitiiply opera-
tion. They areCompressed Storage by RoWSSR) andCompressed Storage by
Columns(CSC) [12, 34]. Each sparse-matrix storage scheme detesnardistinct
computation scheme for the matrix-vector multiplicatibmthis thesis, we restrict our

CHAPTER 2. BACKGROUND 5

focus on cache-aware/oblivious computation of sparseixaatctor multiply opera-
tion using the CSR storage scheme without loss of generality

In the following subsections we review four CSR-based sparatrix storage
schemes.

1. CSR
2. Zig-zag CSR
3. ICSR

4. Zig-zag ICSR

For other types of schemes, books such as Duff, Erisman, emt[R4] can be inves-
tigated.

2.1.1 Compressed Storage by Rows

CSR scheme is widely used in sparse matrix operations. #nsitheme and in all
the remaining schemes mentioned in this section, only theeros are naively stored
without using any structural information. Nonzeros areesdan a row-major format,
meanly nonzeros of a row are stored consecutively. Thisrsehsontains three ar-
rays: nonzerg column-indexandrow-start The values and the column indices of the
nonzeros are stored in row-major order in the:zero and column-index arrays in
one-to-one manner, respectively. Thatdsjumn-indez|i] stores the column-index
of the nonzero and the value of this nonzero is storeddnzeroli]. Therow-start
array stores the index of the first nonzero element of each Mws index is used
to access both afionzeroand column-indexarrays. Also the original row order of
the sparse matrix is preserved while constructimgw-startarray and similarly the
original column order is preserved while constructimanzeroand column-indexar-
rays; but these preservations of the original orders ar@blajatory, we will assume
these original orderings in this work. Algorithm 1 shows hitne sparse matrix-vector
multiplication can be performed using CSR storage scheme.

CHAPTER 2. BACKGROUND 6

Algorithm 1 Sparse Matrix-Vector Multiplication using CSR scheme

Require: nonzero , column-index androw-start arrays of am by n sparse matrixd
a dense input vectar

1: for ¢ — 1tom do
2 tmp «— 0
3: for j < row-startli] to row-start[i + 1] — 1 do
4: tmp «— tmp + nonzeroli] * z[column-index[j]
5: end for
6
7
8:

y[i] « tmp
end for
return y

\
y

y

Yy Y ¥ ¥ vy ¥y vy
A

Figure 2.1: Processing order of nonzeros stored using thRe(Gsthe left) and ZZCSR
(on the right) schemes. Arrows denote the storage orderrfaros of a row.

2.1.2 Zig-Zag Compressed Storage by Rows

Zig-zag CSRZZCSR) scheme [40] is similar to CSR. In CSR scheme, midapion

is being performed through increasing index on each row. 46 &R, multiplication
is being performed through increasing index on even-nuatbews and through de-
creasing index on odd-numbered rows. In this way, possibili reuse of recently
retrievedx-vector entries in cache is increased. Figure 2.1 illustrates coisgaof
these two schemes. This ZZCSR scheme can be simply implethbytreversing the
order of elements imonzeroand column-indexarrays of odd-numbered rows in the
CSR scheme.

CHAPTER 2. BACKGROUND 7

2.1.3 Incremental Compressed Storage by Rows

Incremental Compressed Storage by RGESR) proposed in [25] and it is reported to
decrease instruction overhead by using pointer arithmietiaddition, the idea behind
this storage scheme perfectly fits for matrices having emgss. In the CSR scheme,
all rows, whether they are empty or not, must be present imdtvestartarray. But

in ICSR, row indices of the empty rows are not stored at alGalbiee row indices
and column indices are calculated by accumulating elenoémésv-jumpandcolumn-
diff arrays on current values. In contrast, these indices arevetl fromrow-start
and column-indexarrays in CSR scheme. In other words, index of the next rpw
to be processed is calculated by addiog/-jumpli] to the current row index value.
In the same way, the index of the next columnto be processed is calculated by
addingcolumn-diff[j] to the current column index value. Then, row increments are
triggered just after column index value becomes greater tlbanber of columns. The
number of columns is subtracted from overflowed column ingdxe and used as new
column index. New row index is calculated using related elehofrow-jumparray
and current row index value. These steps can be easily unddrom Algorithm 2.

Algorithm 2 Sparse Matrix-Vector Multiplication using ICSR scheme

Require: nonzero , column-diff androw-jump arrays of an by n sparse matrix4
a dense input vectar
number of nonzerosnz in matrix A

1: i — row-jumpl|0]

2: j « column-diff [0]

3 k<0

4: r 1

5 tmp+«+ 0

6: while k < nnz do

7. tmp < tmp + nonzerolk] x x[j]
8 k<—k+1

9: j «— j+ column-diff [k
10: if 5 > n then
11: yli] — tmp
12: tmp — 0
13: j—j—n
14: i < i+ row-jumplr]
15: rer+1
16: endif
17: end while

18: return y

CHAPTER 2. BACKGROUND 8

2.1.4 Zig-Zag Incremental Compressed Storage by Rows

Zig-Zag Incremental Compressed Storage by R@¥$CSR) [40] combines CSR and
zig-zag property. Temporal locality im-vector is exploited using the zig-zag prop-
erty. In addition to this, empty rows are not stored. As altgthis scheme becomes
convenient for sparse matrices having a considerable anodlempty rows as well
as the temporal locality is achieved forvector. Like ZZCSR scheme, this scheme
can be implemented by putting negative valuesin-jumpandcolumn-indexarrays
of odd-numbered rows in the ICSR scheme. So that flow of psoeseversed in
odd-numbered rows.

2.2 Data Locality in Sparse Matrix-Vector Multiply

Here, we will briefly mention about the data locality chaearstics of matrix-vector
multiply operationy < Az using the CSR scheme as also discussed in [39]. In terms
of the A-matrix stored in CSR format, temporal locality is not fédsisince the ele-
ments of each of theonzero, column-index (column-diff in ICSR) androw-start
(row-jump in ICSR) arrays are accessed only once. Spatial localityasible and it

is achieved automatically by nature of the CSR scheme shrecelements of each of
the three arrays are stored and accessed consecutively.

In terms of output vectoy, temporal locality is not feasible since eaghwector
result is written only once to the memory. As a different vi@8], temporal locality
can be considered as feasible but automatically achievideeatgister level. Spatial
locality is feasible and it is achieved automatically sitteey -vector entry results are
stored consecutively.

In terms of input vector:, both temporal and spatial locality are feasible. Tem-
poral locality is feasible since eachvector entry may be accessed multiple times.
However, exploiting the temporal and spatial locality fbe tz-vector is the major
concern in the CSR scheme sineevector entries are accessed througladumn-
index array (column-diff in ICSR) in a non-contiguous manner.

These locality issues can be solved by reordering rowsiooduof matrix A and

CHAPTER 2. BACKGROUND 9

the exploitation level of these data localities depend#$ lmot the existing sparsity
pattern of matrixA and the effectiveness of reordering heuristics.

2.3 Hypergraph Partitioning

A hypergraphH = (V,) is defined as a set of vertic8s and a set of nets (hyper-
edges)V. Every netn; € N connects a subset of vertices, i.e;,C V. The vertices
connected by a net; are called itpins(i.e., Pins(n;)). Weights can be associated
with the vertices. We use(v;) to denote the weight of the vertex.

Given a hypergrapti{ = (V,N), II={V,,...,Vx} is called aK -way partition
of the vertex sed’ if each part is nonempty, i.el, # 0 for 1 < k < K; parts are
pairwise disjoint, i.e.V, NV, = () for 1 < k < ¢ < K; and the union of parts gives
V,ie., U, Ve = V. A K-way vertex partition ofH is said to satisfy the partitioning
constraint if

Wi < Wag(1+¢), fork=1,2,... K (2.1)

In here, the weightV, of a part); is defined as the sum of the weights of the ver-
tices in that part (i.e.Vy = >, o, w(vi)), Way, is the average part weight (i.e.,
Wavg = (D_,,cp w(vi))/K), ande represents the predetermined, maximum allowable
imbalance ratio.

In a partitionII of H, a net that connects at least one pin (vertex) in a part is said
to connectthat part. Connectivity set\; of a netn; is defined as the set of parts
connected byn;. Connectivity\; = |A;| of a netn; denotes the number of parts
connected by:;. A netn; is said to becut (externa) if it connects more than one part
(i.e., A; > 1), anduncut(internal) otherwise (i.e.\; = 1). The set of external nets of
a partitionlII is denoted asVz. The partitioning objective is to minimize the cutsize
defined over the cut nets. There are various cutsize defisitibhe relevant definition
is:

CHAPTER 2. BACKGROUND 10

cutsize(Il) = Z (A —1) (2.2)

njE/\/E

In here, each cut net; contributes); — 1 to the cutsize. The hypergraph partitioning
problem is known to be NP-hard [27].

Recently, multilevel HP approaches [4, 19, 21] have beepgsed, leading to suc-
cessful HP tools hMetis [23] and Patoh [7]. These multildwaliristics consist of 3
phases: coarsening, initial partitioning, and uncoarsgnin the first phase, a mul-
tilevel clustering is applied starting from the originaldgrgraph by adopting various
matching heuristics until the number of vertices in the seaed hypergraph decreases
below a predetermined threshold value. Clustering coomdp to coalescing highly
interacting vertices to supernodes. In the second phasatiign is obtained on the
coarsest hypergraph using various heuristcs includingdhich is an iterative refine-
ment heuristic proposed for graph/hypergraph partitigioy Fiduccia and Matthey-
ses [15] as a faster implementation of the KL algorithm pegabby Kernighan and
Lin [24]. In the third phase, the partition found in the sed@hase is successively
projected back towards the original hypergraph by refinirgggrojected partitions on
the intermediate level uncoarser hypergraphs using v&heuristics including FM.

Therecursive bisectioffRB) paradigm is widely used ik -way hypergraph par-
titioning and known to be amenable to produce good solutigaities. In the RB
paradigm, first, a two-way partition of the hypergraph isam¢d. Then, each part
of the bipartition is further bipartitioned in a recursivanmer until the desired num-
ber K of parts is obtained or part weights drop below a given marmallowed part
weightW,,..... In RB-based hypergraph partitioning, the cut-net splifscheme [6] is
adopted to capture the— 1 cutsize metric given in Equation 2.2. In hypergraph par-
titioning, balancing the part weights of the bipartitioreisforced as the bipartitioning
constraint.

The RB paradigm is inherently suitable for partitioning Bygraphs when K is not
known in advance. Hence, the RB paradigm can be successtilibed in clustering
rows/columns for cache-size aware row/column reordering.

CHAPTER 2. BACKGROUND 11

2.4 Hypergraph Models for Sparse Matrix Partition-
ing

Recently, several successful hypergraph models and me#regroposed for efficient
parallelization of sparse matrix-vector multiplicatio, b, 9]. The relevant ones are
row-net, column-net, and row-column-net models. The r@wvamd column-net mod-
els are proposed and used for 1D rowwise and 1D columnwideigaing of sparse
matrices, respectively, whereas row-column-net modesésidor 2D fine-grain parti-
tioning of sparse matrices.

In therow-net hypergraph modé¢b, 6, 9] Hrn(A) = Ve, Nx) of matrix A, there
exist one vertexo; € Ve and one nety; € Ny for each columne; and rowr;,
respectively. The vertex; represents the DAXPY-like operation which multiplies
with columnc¢; and adds the result of this scalar-vector product to theutwigctory .

The weightw(v,) of a vertexv; € Vi is set to the number of nonzeros in column

The netn; connects the vertices corresponding to the columns tha hawnzero
entry in rowr;. Thatis,v; € Pins(n;) if and only if a;; # 0. Here,n; represents the
y-vector entryy; and Pins(n;) represents the set of scalar multiply results needed to
be accumulated ip; during matrix-vector multiply.

In the column-net hypergraph modf, 6, 9] Hen(A) = (Vr, Ne) of matrix A,
there exist one vertex;, € Vz and one nek; € A for each rowr; and columnc;,
respectively. The vertex; represents the inner product of reaywwith the input vector
x. The weightw(v;) of a vertexv; € Vx is set to the number of nonzeros in row
Net n,; connects the vertices corresponding to the rows that hawzeno entry in
columne;. That is,v; € Pins(n;) if and only if a;; # 0. Here, n; represents the
z-vector entry z; and Pins(n;) represents the set of inner product operations that
needz; during matrix-vector multiply.

In the row-column-net modd8] (also called as fine-grain modeW zcn(A) =
(Vz,Nxrc) of matrix A, there exists one vertex;; € Vz corresponding to each
nonzeroa,;; in matrix A. In net setNxc, there exists a row-net! for each row
r;, and there exists a column-net and for each column;. The vertexv;; represents
the scalar multiply-and-add operatigfy < a;;x;. Therefore each vertex is assigned
unit weight. The row-net] connects the vertices corresponding to the nonzeros in the

CHAPTER 2. BACKGROUND 12

row r;, and the column-net; connects the vertices corresponding to the nonzeros in
the columne; . That is,v;; € Pins(nj) andvy; € Pins(nj) if and only if a;; #0. Note

that each vertex;; is a pin of exactly two nets. Here;; represents;; and Pins(n)
represents the set of scalar multiply-and-add operatiwatsieedr ; , whereas: rep-
resentsy; and Pins(n}) represents the set of scalar multiply-and-add resultseteed
to accumulatey; .

The use of the hypergrapfigry(A), Hen(A) and Hron(A) in sparse matrix
partitioning for parallelization of matrix-vector multipoperation is described into
detail in [6, 9]. In particular, it has been shown that thetipaning objective (2.2)
corresponds exactly to the total communication volume,rediethe partitioning con-
straint (2.1) corresponds to maintaining a computatiavead Ibalance for a given num-
ber K of processors.

In [3], it is shown that aK -way partition of IDH zx(A) andHen(A) models can
be decoded as inducing row-and-column reordering for toamsng matrix A into a
K -way singly-bordered block-diagon&6B) form. Here we will briefly describe how
a K -way partition of column-net model can be decoded a row amghwo ordering
for this purpose and a dual discussion holds for row-net iode

A K -way vertex partitiodl={Vy, ..., Vi } of Hon(A) is considered as inducing
a (K + 1)-way partition{\1, ..., Nk;,Ng} on the net set of{ony(A). Here N,
denotes the set of internal nets of vertex pdst for eachk = 1,2,..., K, whereas
NE denotes the set of external nets. The vertex partition isdkat as a partial row
reordering of matrixA such that the rows associated with vertice¥jn, are ordered
after the rows associated with vertices, £ = 1,2,..., K — 1. The net partition is
decoded as a partial column reordering of mattixsuch that the columns associated
with nets in \V,,, are ordered after the columns associated with net&/jin k& =
1,2,..., K — 1, where the columns associated with the external nets asreatdast
to constitute the column border.

The above-mentioned approach of obtaining’avay SB form of aK -way par-
tition of the column-net model can be extended to obtain sahtdic SB form of a
K -way partition produced by using the RB paradigm. In thisgfarmation, the bi-
partition obtained at each RB step is decoded as induci2gnay SB form, where
these2-way SB forms are nested according to RB hierarchy. SB foonglifferent

CHAPTER 2. BACKGROUND 13

K values of thgpsseImatrix are shown in Appendix B.

2.5 Breadth-First-Search-Based Algorithm for Row/Column

Reordering

Breadth-First Search(BFS) algorithm systematically explores edges of a graph
G = (V. &), level by level to discover every vertex reachable from therse vertexs.

All neighbors of a vertex are visited before any sibling ef. This process is repeated
for every unvisited vertex. The running-time complexityds|V + £|).

A BFS-like algorithm can be used to order rows/columns ofarspmatrix. The
resultant row order and column order are first-come firstesbasis. While process-
ing a row, all required columns are reordered consecutivilg column is already
reordered by a previous row, it cannot be reordered agairth®r cows visited after.
This approach exploits spatial locality more than templardlity.

The first row to be processed can be selected as randomly oowherhich has
maximum degree can be source. In the algorithm, rows withimamx degrees are
selected throughout the processing of all rows.

The Algorithm 3 shows an algorithm that orders rows and colsirof a given
matrix A . TherowOrdered array is used to determine whether a row is already pro-
cessed or not, similarlgolOrdered array is used for columns. Thecw RowOrder
andnewColumnOrder arrays contain corresponding new row and column indices of
current row and column indices, respectively. For a givaarspmatrixA, rows(A)
denotes index set of rows of matriX. columns(r) denotes set of column indices of
nonzeros in the row-. Similarly, rows(c) denotes set of row indices of nonzeros in
the columnc.

CHAPTER 2. BACKGROUND 14

Algorithm 3 Modified BFS Algorithm for Row/Column Ordering

Require: Sparse matrix A
1: rowOrdered[x| < false

2. columnOrdered[] «— false
3: columnIndexr «— 1
4: rowlIndex 1
5: sortrows(A) by nonincreasing number of nonzeros in a row
6: for all r € rows(A) in sorted ordedo
7. if rowOrdered[r] = false then
8: ENQUEUE(Q,r)
9: while @ # 0 do
10: r <« head|Q]
11: rowOrdered[r| « true
12: newRowOrder|r] « rowlIndex
13: rowlndex < rowlndex + 1
14: for all ¢ € columns(r) do
15: if columnOrdered|c] = false then
16: columnOrdered|c| « true
17: newColumnOrder|c] < columnIndex
18: columnindexr < columnindex + 1
19: for all r2 € rows(c) do
20: if rowOrdered[r2] = false then
21: ENQUEUE(Q,r2)
22: end if
23: end for
24: end if
25: end for
26: DEQUEUE(Q)
27: end while
28: endif
29: end for

2.6 Travelling Salesman Problem

Travelling salesman problefT SP) is one of the most popular problems studied in
combinatorial optimization. There are many other problémas can be castto TSP. In
this section, we will confine the problem definition on symnest SP with non-metric
distances. Informal definition can be as follows:

Definition 1 Given a list of cities and pairwise distances, find the stsirteur that
passes all cities exactly once.

TSP can also be modelled as a graph. Graph’s vertices corrésp cities, and edges
correspond to connections between city pairs. The edgehigeye the distances

CHAPTER 2. BACKGROUND 15

between cities. The resultant graph may not be completéngtiapre may not be edges
between some vertices, or the graph may be defined as corbpteteme edge weights
may be zero representing the non-existing edges. Whenrtdghgs represented by a
adjacency matrixV, entries of this matrix are edge weights so thismatrix can be
called as aveight matrix The weightw;; represents the distance between vertiges
andv;. Then aim is finding a permutation of verticels=< II(1),I1(2)...II(n) >
that minimizes following objective function:

n—1

L= wvn(n)vnu) + § :wUH(i)vH(iJrl) (23)
i=1

where L is the total length of the tour. Minimization and maximizatiof /. are same
problems. If each edge weight; is subtracted from largest edge weight™** 4 1),
minimizing 2.3 becomes maximization of length of the tour.

In the case of finding a path instead of a shortest tour, thedam be converted
to path by removing an edge. This edge must have the maximughiveo that the
length of the path is minimized.

TSP is proved to be a member of the set of NP-complete probl&oghe most
efficient way solving this problem, is developing heuristi¢he Lin-Kernighan heuris-
tic [28] is the most effective method considered in the &itare for generating optimal
or near-optimal solutions for the symmetric traveling salan problem. So, in this
work, a TSP solver library [18] implementing the heuristroposed by Kernighan
and Lin [28] is used.

Chapter 3

Related Work

In the literature, there are numerous studies regardingpatetion and data ordering.
They can be classified into two categories according to thd &f access pattern of
applications. For applications having regular accessepatcompiler optimizations
become more available for computation and data orderingZ8P For applications
whose access pattern changes through time, static impewsnm compilers start
being insufficient and this kind of applications are refdrees irregular [33]. As a
result dynamic orderings are required [13, 11, 1, 10, 31].

Reordering rows/columns of sparse matrices to exploitlitycauring sparse
matrix-vector multiplication is a special case of this gaheomputation(or iteration)
and data ordering problem. Here, if we consider a matristored in CSR scheme,
computation order corresponds to row order of mattiand data order corresponds to
column order. Adding thadynamicreordering algorithms work as inspector-executor
method used by Saltz [30]. This corresponds to matrix reorgalgorithms that are
run before multiplication, they do not run at run-time ansitniot necessary because
we have the whole matrix that determines computation aral @laters. The example
code given in Figure 3.1 is the general case of the problenttendode in Figure 3.2
is the special case of computation and data ordering.

Initial studies start with the work of Ding and Kennedy [13They propose a
dynamic approach for both data and computation reordefihgy presentonsecutive
packing(CPACK) where data is ordered when a computaion requiredtadier then

16

CHAPTER 3. RELATED WORK 17

for(i =1to7)
..Clali]] ...
O] ...
endfor

b

1 2 3 4
c [A B C D

o o
o N

4 5
3 6
2 3

— W
TUN
=y

)

6
F]

ey

Figure 3.1: Example for irregular code that are the focusamgutation and data
ordering problem.C' array is accessed through two index arrayandb. These two
arrays cause indirection so the code shows irregular apedtes.

this reordered data no more moved.

Space-filling curves (e.g., Morton, Hilbert) can be useddomputation order-
ing [20]. They are also used for data ordering [10] and arevsho be successful in
improving locality. Haase et al. [16] use Hilbert spacerdl curve to order nonzeros
of the matrix A along the curve. They report speedups of up to 50 percentdiogo
to the original CSR scheme.

Hwansoo and Tseng [17] propose an algorithm, @R§ for reordering compu-
tations and another algorithm,P&RT, for reordering data at run-time in. Ze®T
algorithm finds a new loop iteration order using Z-curve \ihis a kind of space-
filling curve. GPART orders elements in data array to exploit spatial localityte A
data ordered by €ART, Z-SORT finds suitable computation ordering respecting the
order found by GART.

Strout and Hovland [35] give metrics that guide while seferthe best ordering
method according to irregularity of applications. Theyadiuce a temporal hyper-
graph model for ordering iterations to exploit temporalditty. They also generalize
spatial locality graph model to spatial locality hyperdrapodel to encompass the ap-
plications having multiple arrays that are accessed itegtyu Additionally, they pro-
pose a modified algorithm like Breadth-First Search for ordedata and iterations
simultaneously whereas Breadth-First Search is used fgrdata ordering in [1].

In a very recent work by Yzelman and Bisseling [40], row/eotureordering

CHAPTER 3. RELATED WORK 18

for i =1tom do
sum =0
for k = row-startli] to row-startli + 1] — 1 do
sum = sum + nonzeroli] * z[column-indez|k|]|

endfor
yli] = sum
endfor
1 2 3 4 5
ail alq
A= a2 a3 a4
as2 as34 ass
1 2 3 4 5 6 7 8
column —index [1 4 2 3 4 2 4 5]

Figure 3.2: Sparse matrix-vecto multiply algorithm basadising the CSR scheme.
x array is thez-vector in the sparse matrix-vector multiplication— Az .

scheme is proposed based on partitioning the rownet hyggangmodel of an input
sparse matrixA. They achieve spatial locality on-vector entries by clustering the
columns with similar sparsity pattern. They also explatperal locality forx-vector
entries by using zig-zag property of ZZCSR and ZZICSR sclsementioned in Sec-
tion 2.1.2 and 2.1.4 respectively.

White and Sadayappan [39] use graph model for ordering rodscalumns us-
ing the Metis graph partitioner [22]. Unfortunately theypoet that they could not
gain improvement for reordered matrices compared to algmatrices during sparse
matrix-vector multiplication.

Pinar and Heath [32] try to permute nonzeros of the matriinto contiguous
blocks to decrease the number of indirections and they flai@uhis problem as an
instance of the traveling salesman problem.

Beside reordering transformations, locality can be exetbiby a cache-aware
method calleccache blockindike in OSKI framework [37] and in [38]. Our con-
tributions in this thesis have both cache-aware and cabheiaus aspects and they
will be presented in Chapters 4 and 5.

Chapter 4

Single Matrix-Vector Multiply
Framework

This is the conventional approach to matrix-vector muftipberation. They-vector
results are computed simply by multiplying mateixwith xz-vector , i.e.,

Yy «— Ax (4.1)

The objective in this scheme is to reorder the columns and kfwnatrix A for
maximizing the exploitation of temporal and spatial lotyaln accessinge-vector
entries. Recall that temporal locality in accessipgector entries is not feasible,
whereas spatial locality is achieved automatically beeausector results are stored
and processed consecutively. Reordering the rows witHasiisparsity pattern nearby
increases the possibility of exploiting temporal localityaccessing:-vector entries.
Reordering the columns with similar sparsity pattern nganbreases the possibility
of exploiting spatial locality in accessing-vector entries. This row/column reorder-
ing problem can be considered as a row/column clusteringl@noand this clustering
process can be achieved in two distinct ways: top-down atidineup. In this sec-
tion, we first propose and discuss a cache-size aware top-dpywroach based on
1D partitioning of sparse matrixl and then a cache oblivious bottom-up approach
based on hierarchical clustering of rows with similar paitse Then we propose a col-
umn compression scheme as a preprocessing step which rhakesttvo approaches
cache-line-size aware.

19

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 20

4.1 1D Decomposition of Sparse Matrices

We consider a row/column reordering which permutes a givatmimA into a K -way
SB form

All AlBl Al
A A A
Asp = PAQ = ” =17 @2
| AKK AKBK] | AK |
where the CSR data structure associated with each subrahtris follows
A =10...0 Apr 0...0 Agp,]. (4.3)

Here Ay, denotes the:th diagonal block ofAsz, whereasAg denotes the column
border as follows

Aug,
A
2 (4.4)

Ak By

Each column in the border is calledaw-coupling columror simplycoupling column
Let A(¢;) denote the number of submatrices that contain at least oreenmof column
c; of matrix Agg, i.e.,

M) = {Ak : ¢j € Ay} (4.5)

In this notation, a columm; is coupling column ifA(¢;) > 1.

The following theorem gives the guidelines for a “good*to- Asp transforma-
tion.

Theorem 1 Given a K -way SB form of matrix4d such that every submatri®, can
fit into the cache. Then the numbéx{ Asz) of cache misses due to the access of
x-vector entries can be upperbounded as

O(Asp) <) Aey) (4.6)

in case of full-associativity of cache is assumed.

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 21

Proof Since each submatrig,, fits into the cache, eachvector entry corresponding
to a nonzero column of matri¥;, will be loaded to the cache only once during the
yr = Apx multiply, under the full-associativity assumption. THere for a column

¢; maximum number of cache misses that can occur is boundee d&lyo\(c,) due to
the access of correspondingvector entry z;. Thus, the numbe®(Agz) of cache
misses due to the accessofvector entries cannot exceeﬁjcj A(c;). Note that this
upperbound also holds for the larger cache-line sizes.

Theorem 1 leads us to a cache-size aware top-down row/cotaardering through
an A-to-Agp transformation which minimizes the schj A(c;) of the A values of
columns. Here, minimizing objective relates to minimizithg cache misses due to
temporal locality.

More precisely, under the assumption that there is no engitymn, since there
has to be at least one cache-miss for each coluymiihe columne; brings A(c;) — 1
extra cache-misses due to temporal locality in the worst.cas

Corollary 1 Given aK -way SB form of matrix4 such that every submatrit, can
fit into the cache. Then the numb&,,4:1i0na (Asp) Of additional cache misses due to
the access of:-vector entries can be upperbounded as

CI>additional(AASB) S Z()\(C]) - 1) (47)

Cj

As also discussed in [2], thigl-to-Agp transformation problem can be formu-
lated as an HP problem using the column-net model of matriwith a part size
constraint of cache size and partitioning objective of mizing cutsize according to
the connectivity-1 metric definition given in 2.2.

4.2 Hierarchical Clustering

For row/column reordering of sparse matrices, an hieraathiottom-up approach is
also proposed. This idea is inspired fronPART Algorithm proposed by Han and
Tseng [17]. A nice property of this approach is being cachlesmus. Different from

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 22

Han and Tseng, in this approach, hypergraph is used instggdmh. The given sparse
matrix is represented as a hypergraph by utilizing the calmet hypergraph model.
Thus, the rows are represented by vertices and the colurenepresented by nets.
The reordering algorithm works in a bottom-up fashion andigges clustering phases
as far as it could be. On each clustering pass, the vertieeslastered according to
the “heavy net connectivity” metric which is commonly usedamarsening phase of
hypergraph partitioning tools. Each cluster is then betiaga single vertex in the
next pass and this forms coarsened hypergraph constitatimgrarchical structure.
The coarsening process continues until there exists oriexvieft or all vertices are
disconnected in the coarsened hypergraph.

The proposed hierarchical clustering algorithm is presgimt Algorithm 5. The
rows of the sparse matrix is reordered respecting the loieyasf clustering. That is,
the rows are reordered in such a way that the rows correspgialivertices of a cluster
are grouped together. This refers to the idea of clustehagdws with similar sparsity
patterns and consequently improves the exploitation opteal locality. On each
clustering pass, first the vertices are sorted in decreasihgr of net degrees. Then
all vertices are processed respecting to this order. Thtess/ertex with more nets is
processed before. The intention of “processing the verssither assigning the vertex
to a cluster or form a new cluster with another vertex. If teet@x, to be processed,
is already clustered, then it is not further assigned to dngter and the algorithm
passes to the next vertex. But if the vertex is not yet clestethe most attractive
cluster is selected. The attractiveness of a cluster isiated by heavy net connectivity
metric. In this metric, the cluster with largest number aiigld nets is most attractive.
Note that the other unclustered vertices are consideredeasertex clusters when we
evaluate the attractiveness. Therefore, the processmexvean either select a cluster
or an unclustered vertex as most attractive. If it selecthister, the vertex simply
joins that cluster. However, if the processing vertex gslao unclustered vertex, than
these two vertices form a new cluster. The above-mentioneckdure only reorders
the rows of the matrix. The columns are reordered asrAad® approach in which
columns are moved into adjacent locations in the order theyirgt encountered by a
row [13]. Consequently, the overall process presents alsiygi effective algorithm
where temporal locality is exploited by reordering rowshastmilar sparsity patterns
nearby by utilizing the hierarchy of clustering and spaliughlity is exploited via a
post processing.

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 23

4.3 Compression Preprocessing for Spatial Locality

The column-net model exploits temporal locality in the fpisice. Reordering columns
utilizing the information obtained from vertex partitiorpoits spatial locality. Pro-
cess of reordering of columns is not necessarily to be dospadfial locality is ex-
ploited via any method. Such a method is compression of cadurfihis is a prepro-
cessing step in which columns are grouped to form cacheslized clusters so that
only temporal locality will be considered in further stef$ie requirement for taking
care of spatial locality disappears in further steps. Tipisr@each can be used as a
preprocessing step of any row reordering method.

The columns with similar sparsity pattern are clusteredotonfcache-line-sized
clusters. If a cluster cannot reach size of cache line, then are left single. Clus-
tering process is performed via successive matchings einuad. All columns are
singleton clusters at the beginning. Clusters are prodesseandom order. Each
cluster selects the most attractive unprocessed cluste.cllister that shares maxi-
mum number of rows with the selector cluster is most ativactAfter every cluster
selects another cluster, one level ends and another lerét sb number of levels is
logscachelinesize. Each final cluster corresponds to a new column. This ma#ix ¢
be further processed for temporal locality. After this mss, it is decompressed and
passed to matrix-vector multiply operation.

Consequently, this preprocessing approach makes anyergggdnethod cache-
line-size aware.

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK

24

Algorithm

4 Hypergraph Based Bottom-up Reordering HPART

Require: HypergraphH = (U, N'), Tree levelt
. if |U| =1 or nodes ofH are disconnectethen
return ¢

:end if

. tupper-lower «—1
. return HPART (Hcoarsens t)

1
2
3
4: Hcoarsen — HCLUSTER(H)
5
6

Algorithm

5 Hypergraph Based Clustering HCLUSTER

Require: HypergraphH = (U, N)

1: C—0

2: for eachnodew € U/ do
3: selected}] — FALSFE

C «—
: end for

CU{{u}}

if selected]] = FALSE then

4
5
6: for eachnodew € U/ in decreasing order of number of neks
7
8

C—C—{{u}}

9: max «— 0
10: for eachclusterc € C do
11: S0
12: for eachnodewv € ¢ do
13: S «— SU Nets|v]
14: end for
15: S «— SN Netslu]
16: if maz < |S| then
17: max «— |S|
18: maxc < ¢
19: end if
20: end for
21: if max > 0 then
22: C — C — {maxc}
23: if |maxc| =1 then
24: selectedp] — TRUE, wheremaxc = {v}
25: end if
26: ¢ < mazcU{u}
27: C—CuUc
28: end if
29: endif
30: end for

31: return Heparsen due to clustelC

Chapter 5

Multiple Submatrix-Vector Multiplies
Framework

In this framework, we assume that the nonzeros of matrixre partitioned arbitrarily
amongk submatrices such that each submattixcontains a mutually disjoint subset
of nonzeros. Then matriXd can be written as

A=A 4+ A2 4. 4 A% (5.1)

Note that this partitioning is not necessarily row disjaantcolumn disjoint. That is,
the nonzeros of a given column of matrik might be shared by multiple submatri-
ces. Similarly, the nonzeros of a given row of matdxmight be shared by multiple
submatrices. In this framework,«<— Ax can be computed as

fork —1to K (5.2)
y —y+ Akx

The partitioning of matrix4 into submatricesA* should be done in such a way that
the temporal and spatial locality of individual submatviector multiplications are ex-
ploited in order to minimize cache misses during an indigidiubmatrix-vector mul-
tiplication. This goal is similar as Single Matrix-Vectorliply framework discussed
in Chapter 4. On the contrary, this framework requires parting of the matrix A
into submatrices whereas previous framework uses the mhetireordering rows and
columns. We discuss pros and cons of this framework acogiditthe conventional

25

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWOIK?26

frameworky < Ax in Section 5.1. In Section 5.2, we also show that partitignin
the matrix A into submatrices can be performed by 2D-partitioning of-fin@n hy-
pergraph model. The order of individual submatrix-vectadtiply operations is also
important to exploit temporal locality. We state this oidgrproblem as an instance
of traveling salesman problem in Section 5.3.

5.1 Pros and Cons compared to Conventional Frame-

work

Since a global row and column ordering is assumed in Equéati®nsubmatrices are
likely to contain empty rows. Hence, each individual spatgematrix-vector multiply
operationy — y + A*x is performed using the ICSR scheme. As seen Algorithm 6,
individual submatrix-vector multiply results are accuated in the output vectay on

the fly in order to avoid additional write operations.

Algorithm 6 Multiple Sparse Submatrix-Vector Multiplications usir@3R scheme

Require: nonzero®, column-diff * androw-jump” arrays of am* by n* sparse subma-
trix A¥ wherek = 1,2... K, K is total number of submatrices, number of nonzeros
nnz® in matrix A*,

a dense input vectar
1: for k — 1to K do

2 i« row-jump®[0

3 j « column-diff 0]

4. t+—0

5: r—1

6: tmp«+—20

7: while t < nnz* do

8 tmp « tmp + nonzero®[t] * z[j]
9: t—t+1
10: § « j + column-diff ¥[t]
11: if 5 > n then
12: yli] — tmp
13: tmp — 0
14: je—j—nk
15: i i+ row-jump”[r]
16: r—1r+1
17: end if
18: end while
19: end for

20: return 'y

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWORK?27

Note that the conventional single matrix-vector multiplgrhework can be consid-
ered as a special case in which submatrices are also redtticbe row disjoint. Thus,
this framework brings an additional flexibility for explmg the temporal and spa-
tial locality. ClusteringA-matrix rows/subrows with similar sparsity pattern inte th
same submatrices increases the possibility of exploigngpbral locality in accessing
x-vector entries. Clusteringd-matrix columns/subcolumns with similar sparsity pat-
tern into the same submatrices increases the possibilégymbiting spatial locality in
accessing-vector entries as well as temporal locality in accessingector entries.

However, this additional flexibility comes at a cost of dising the following lo-
cality compared to conventional approach. There is sontertisnce in the spatial
locality in accessing the nonzeros of tHematrix due to the division of three arrays
associated with nonzeros info parts. However, this disturbance in spatial locality is
negligible since elements of each of the three arrays aredstnd accessed consecu-
tively during each submatrix vector multiply operation.atfs, at mos8(/K —1) extra
cache misses occur compared to the conventignal Az scheme due to the distur-
bance of spatial locality in accessing the nonzerod ehatrix . Furthermore, multiple
read/writes of the submatrix-vector multiply results ntiphng some disadvantages
compared to conventional single matrix-vector multiplynese multiple read/writes
disturb the spatial locality of accessigguector entries as well as introducing a tem-
poral locality exploitation problem img-vector entries.

Our problem here, can be defined as the matrix-to-submadititipning prob-
lem. As a solution, the following theorem gives the guidesifior a “good” matrix-to-
submatrix partitioning:

Theorem 2 Consider a partitionlI(A) of matrix A into K nonzero-disjoint subma-
trices A, A%,..., AKX, Let \(r;) denote the number of submatrices that contain at
least one nonzero of row: of matrix A, i.e., \(r;) = [{A* : r; € A*}|. Similarly let
A(c¢;) denote the number of submatrices that contain at least oneero of column

c; of matrix A, i.e., A(c;) = |{A* : ¢; € A¥}|.Let ¢ denote the maximum number of
caches that a submatrix can fit into. Then the numb@r(A)) of cache misses due
to the access af-vector and y-vector entries can be upperbounded as

B(II(A)) < Y Ari)+a Y Alcy) (5.3)

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWOIK?28

if cache is assumed to be fully-associative.

Proof Consider the case that the line size is equal toathe-vector entry size. For
each submatrixA*, eachy-vector result of A* is written only once to the memory.
For the sake of simplicity, we refap(II(A)) as®. Let ¢, and®, respectively denote
the number of cache misses due to the access ofctor and y-vector entries for
II(A). Then,

o=, +P, (5.4)
The number of cache misses due to the accegs of at most\(r;) which happens
when no cache-reuse occurs in accessing tohat is,

d, < Z A(r5). (5.5)

Let ¢, denote the minimum number of caches that submatfixcan fit into. Since
full-associativity is assumed, for each submatd%, eachz-vector entry of A is
accessed at most, times. Therefore, the number of cache misses due to thesagtes
z; is at mostg;, for each submatrixA* thatz; is needed to be accessed. Then,

¢j kic;€AR

<> > 4 (5.7)
¢j kic;€AR

=gy > 1 (5.8)
Cj kic;€AF

= > M) (5.9)

Equation 5.4, Equation 5.5 and Equation 5.9 together yeekuation 5.3. Extending
the line size can only increase the cache-reuse and acgtydlacrease the cache-
miss. Therefore, Equation 5.3 still holds for larger linzesi.

Corollary 2 When all submatrices fit into the cache then the numbg@i(A)) of
cache misses due to the accessafector andy-vector entries can be upperbounded
as

D(TI(A)) < Y M) + D Aley) (5.10)

These theorems give exact upper bounds for when temporse istexploited at
the utmost degree via fully-associativity.

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWOIK?29

5.2 2D Decomposition of Sparse Matrices

The aim is to partition the given sparse matdxnto K nonzero-disjoint submatrices.
Corollary 2 leads us to a cache-size aware top-down mairsubmatrix partitioning
which minimizes the sum -)‘(Ti)JFch A(c;) of A values of rows and columns such
that the storage of each submatrix-vector multiply fits thiescache. Here, minimizing
objective relates to minimizing the cache misses due to teabjocality.

More precisely, under the assumption that there is no emgdtyrm, since there
has to be at least one cache-miss for eachirpand each column;. Thus the rowr;
and the column;, respectively, bring\(r;) — 1 and A(¢;) — 1 extra cache-misses due
to temporal locality in the worst case.

Corollary 3 Given a K -way matrix-to-submatrix partitiodI(A) of matrix A such

that every submatrixd* can fit into the cache. Then the nUMBEY4;tiona (TI(A)) of

additional cache misses due to the access-afector and y-vector entries can be
upperbounded as

Dagaitionat (TH(A)) <Y (M) = 1)+ Y (Me;) — 1) (5.11)

The matrix-to-submatrix partition problem can be formethhis an HP problem
using the row-column-net model of matrix with a part size constraint of cache size
and partitioning objective of minimizing cutsize accomlio the connectivity-1 metric
definition given in Equation 2.2.

5.3 Ordering Submatrix-Vector Multiplies

The partitioning of matrix4 into submatricesA* should be done in such a way that
the temporal and spatial locality of individual submatviexctor multiplications are ex-
ploited in order to minimize cache misses during an indigidwbmatrix-vector multi-
plication. When all the multiplications are consideredadause between two consec-
utive submatrix-vector multiplications must be maximizee@xploit temporal locality.
We give an exact lower bound for the cache misses due to tlessoéz-vector and
y-vector entries for a given order of submatrices.

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWOIKS30

Theorem 3 Consider a partitionlI(4) of matrix A into K nonzero-disjoint subma-

trices A', A% ..., AK with a given ordering of the submatrices. Lgtr;) andy(c;),

denote the number of submatrix-subchains in which all suboes contain at least

one nonzero of row; and columnc;, respectively. Letv denote the line size in terms

of a unit z/y-vector entry. If no submatrixd* can fit into one cache, then the number

®(TI(A)) of cache misses due to the access afector and y-vector entries can be
Do 7(7"1) + e, ’Y(CJ)

B(T1(A)) > " (5.12)

lowerbounded as

Proof We will give the proof only for the columns, since a similappf applies for
the rows; then total number of cache misses can be writtemma®tcache misses due
to access ofj-vector entries andc-vector entries and can be formulated as

B(TI(A)) = @, (TI(A)) + D (TI(A)) (5.13)

Consider a columm; of matrix A. Then there exists(c;) submatrix-subchains for
columng;. Since no submatrix* can fitinto one cache, itis guaranteed that there will
be no cache-reuse of colunan between two different submatrix-subchains including
¢;. Therefore, at least(c;) cache misses will occur for each columnwhich yields
that the numbe#b.(I1(A)) of cache misses due to the access:ebector entries is
greater than or equal t_, >°. 7(c;) in the case of unit cache-line-size, i.e:, =

1. Since the number of cache-misses can maximally decreai#d, the number

®,(TI(A)) of cache misses due to the accessrefector entries is greater than or
Z ’Y(])

equal to

Theorem 4 Consider the TSP Instanc& (= (V, &), w), where vertex seV de-
notes theKX submatrices. There exists an edge in £ if and only if there exists
at least one row or column shared between submatri¢esnd A’. The weight of
edgew;; denotes the sum of the number of shared rows and the numbeaefds
columns between submatricel$ and A7. Then, finding an order of which maxi-
mizes the path weight corresponds to finding an order of stiieea which minimizes

> (i) + 220, 7(c5).

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWOIK31

Proof

2.

Ti

v(r:) +Z’Y(Cj)

DA N {4) 1A — A) N)

T4

DA N e+ D 1A, — A)N {e)
|A21‘ + Z ‘(A'Lk - Aik_1>|

K
Al + > 1(As, — (A, N A)]
k=2

K
|Al1‘ + Z(‘Alk| - ‘Alk N Aik—l‘)
k=2

] =

K
|Alk‘ - Z ‘Alk N Aikq‘
k=2

K
|A74k‘ - Z Wiy ig 1
k=2

k=1

] =

T

1

In the above formulationA;, is used to denote théth submatrix in the order of

submatrices and{;, is also used to denote the set of rows and columns that belong

to the submatrix4,, . The maximum value op_r_, w;,_;, . will yield the minimum

value of}_, ~(r;)+>_. 7(c;). Then, finding an order of which maximizes the path

weight S5 w;, ;,_, corresponds to finding an order of submatrices which mirgsiiz

2o V(i) 22 ()

According to Theorem 4, the lower bour)d, ~(r;) +>_. 7(¢;) corresponds to
the objective function of the TSP instance constructedérttieorem.

Chapter 6
Experimental Results

Throughout the previous chapters, we investigate ways jplibéing data locality by
reordering/partitioning a sparse matuix In this chapter, we show the improvements
gained by the proposed models and frameworks. A cache dionusaused to show
these improvements. The existing state-of-the-art mazieth as row-net model [40]
and BFS-based algorithm [1] are also tested.

6.1 Experimental Setup

The two contributed frameworks and underlying models aseté@n decreasing cache
misses incurred by:-vector and y-vector entries so using a cache simulator will
make the improvement obtained by our contributions morarcl®ne must pay more
attention to sum of cache misses caused:byector andy-vector entries to see the
proof of our proposed concepts.

All simulation results are normalized according to the nemdff cache misses for
original, unprocessed matrices. The cache miss ratio il #he number of cache
misses does not change. If number of cache misses is detneasea a method ap-
plied, the ratio is smaller than 1.00. Similarly, if numbéicache misses is increased
when a method applied, the ratio is greater than 1.00. Thetns@nalization equation

32

CHAPTER 6. EXPERIMENTAL RESULTS 33

is as follows: ‘
M1SSreordered (6 1)

ratio = —
MiSSoriginal

The data type used in storage of matrices is double predisiating-point number
which has size of 8 bytes on the test platform. Only the indeaya use integers which
have size of 4 bytes.

6.1.1 Platform

The experiments of using original matrices and reordereices in the single matrix-
vector multiply framework are performed on a cache simulatso used in [40].The
experiments related with the multiple matrix-vector mllés framework are also per-
formed on the cache simulator.

Simulation results of experiments are given for when caate dize is size of 8
doubles, cache size is 32KB and set-associativity is 8. ddnéiguration is taken from
[40]. Some of results are given for when cache line size of dbtltoand number of
cache lines is one eighth of original cache line number siocthehe size is still 32KB.
The aim is to show only the effect of temporal locality clgdyecause spatial locality
for x and y vectors cannot exist when only 1 double is retrieved whencheaniss
occurs.

6.1.2 Data Sets

The proposed frameworks are tested and validated on nus@enatrices collected
from The University of Florida Sparse Matrix Collection |3@5eneral properties of
these matrices can be seen Table 6.1.

The columns can be explained as follows:

1. #Rows : number of rows
2. #Cols : number of columns

3. #Nonzeros : number of nonzeros

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.1: Properties of test matrices.

name | #Rows #Cols F#Nonzeros | Symmetricity | drow deol
Square symmetric matrices
bloweya 30004 30004 150009 yes 5 5
bloweybl 30003 30003 109999 yes 4 4
dixmaanl 60000 60000 299998 yes 5 5
dtoc 24993 24993 69972 yes 3 3
F2 71505 71505 5294285 yes 74 74
msc10848 10848 10848 1229776 yes| 113 113
msc23052 23052 23052 1142686 yes 50 50
Na5 5832 5832 30563(yes 52 52
ncvxgp9 16554 16554 5404(yes 3 3
ship.001 34920 34920 3896496 yes| 112 112
smt 25710 25710 374958 yes| 146 146
Trefethen20000 20000 20000 554466 yes 28 28
TSOPEFS.b300 29214 29214 4400122 yes| 151 151
tumal 22967 22967 8776(yes 4 4
tuma2 12992 12992 4936% yes 4 4
Square unsymmetric matrices
mixtank.new 29957 29957 199091 99% 66 66
powersim 15838 15838 6442 53% 4 4
memplus 17758 17758 9914 50% 6 6
sme3Db 29067 29067 208106 44% 72 72
sme3Dc 42930 42930 314865 44% 73 73
circuit4 80209 80209 30760 36% 4 4
circuit.3 12127 12127 4813 30% 4 4
poli_large 15575 15575 3303 0.05% 2 2
fd18 16428 16428 6340 0% 4 4
ns3Da 20414 20414 167959 0% 82 82
poisson3Da 13514 13514 35276 0% 26 26
Zd_Jac3 22835 22835 191572 0% 84 84
Zhaol 33861 33861 16645 0% 5 5
Zhao?2 33861 33861 16645 0% 5 5
Rectangular matrices

baxter 27441 30733 111576 no 4 4
ch7-8-b2 11760 1176 3528(no 3 30
co9 10789 22924 109651 no 10 5
cq9 9278 21534 96653 no 10 4
ex3stal 17443 17516 68779 no 4 4
fomell 12142 24460 71264 no 6 3
fomel2 24284 48920 142528 no 6 3
ge 10099 16369 44825% no 4 3
Kemelmacher 28452 9693 10087% no 4 10
Ip_dflo01 6071 12230 35637 no 6 3
Ip_pds02 2953 7716 16571 no 6 2
Ip_stocfor3 16675 23541 72721 no 4 3
psse0 26722 11028 102432 no 4 9
pssel 14318 11028 57376 no 4 5
psse2 28634 11028 115262 no 4 10
sharte2-b1 17160 286 34320 no 2 120

CHAPTER 6. EXPERIMENTAL RESULTS 35

4. Symmetricity : For square matrices, it is percantage of the number of off-
diangonal nonzeros that have symmetric entries to totabeumf off-diangonal
nonzeros

5. d,.. : number of nonzeros per row

6. d., : number of nonzeros per column

6.2 EXxperiments with Single Matrix-Vector Multiply
Framework

The two column-net and row-net hypergraph models for 1Difgaming of sparse ma-
trices are evaluated. Using row-net hypergraph model ipgsed in [40] and using
column-net model is our proposal. First of all, performanoésparse matrix-vector
multiply operation using matrices partitioned accordiogitese two models are com-
pared. In row-net model, columns with similar sparsity atiare gathered together by
reordering columns so spatial locality ofvector entries is exploited. Also partitions
on columns induce partitions on rows. This induced row partiis used to reorder
rows to increase temporal locality et vector entries. Additionally, the cut rows are
placed between two partitions as proposed in [40] instegqultiing these rows at the
end. If these cut rows are put at the emdyector entries retrieved to cache to be used
by previous parts cannot be reused in cut rows.

On the other hand, column-net model is directly related watmporal locality.
Rows with similar sparsity pattern are gathered togetheebydering rows so tempo-
ral locality ofz-vector entries is exploited. Also the induced column partitionssd
to reorder columns to increase spatial localityrebector entries. The columns in the
cut are placed at the end. Putting these columns betweenramsrmay decrease cache
missed incurred by:-vector entries but the gain so small to be significant.

These two mentioned methods exploit both spatial and teahpmeality but first
method gives more importance to spatial locality. In castirne second method gives
more importance to temporal locality. The results show tiaaporal locality is more
important and proves correctness of Theorem 1.

CHAPTER 6. EXPERIMENTAL RESULTS 36

Table 6.2: Normalized geometric and arithmetic means otikition results for ma-
trices partitioned into 32K-sized parts using row-net aoldimn-net models. Original
matrices are partitioned and their transposes, too. Cactesize is 8 times size of
double, 64Bytes.

Ezisting Method Proposed Method

A — Row-net [40] | AT — Row-net[40] | A — Column-net | AT — Column-net

x y x+y tot | x y x+y tot | x y x+y tot | x Y

r+y tot

Geometric means

Square Symmetric [0.69 1.00 0.75 0.93.69 1.00 0.75 0.93.52 1.00 0.61 0.9{10.52 1.00 0.61 0.91
Square Unsymmetr(®@.49 1.00 0.51 0.78.48 1.00 0.50 0.78.27 1.00 0.30 0.7(0.28 1.00 0.31 0.70
Rectangular 0.39 1.00 0.47 0.70.55 1.00 0.66 0.8/0.28 1.00 0.37 0.6/0.39 1.00 0.53 0.82
Overall 0.50 1.00 0.56 0.8M.57 1.00 0.63 0.88.34 1.00 0.41 0.79.39 1.00 0.47 0.81
Arithmetic means
Square Symmetric {0.76 1.00 0.81 0.9.76 1.00 0.81 0.93.57 1.00 0.65 0.910.57 1.00 0.65 0.91
Square Unsymmetr{®@.75 1.00 0.75 0.80.71 1.00 0.72 0.80.46 1.00 0.52 0.780.48 1.00 0.53 0.76
Rectangular 0.51 1.00 0.55 0.7/.78 1.00 0.85 0.910.38 1.00 0.47 0.7{10.64 1.00 0.73 0.86
Overall 0.67 1.00 0.70 0.8(0.76 1.00 0.80 0.890.47 1.00 0.54 0.790.57 1.00 0.64 0.85

When we consider the structure of a matrix, its structure faggur either row-
net model or column-net model. If a sparse mattixgives greater cutsize in row-net
model and its transposé’ give less cutsize in column-net model, then this mattix
is said to favour row-net model. Taking best result of piarihg hypergraph induced
by A and AT will get rid of this bias. This bias does not exist in squarmsyetric
matrices. It exists in square unsymmetric and rectangukgrices and its effect is
more clear especially in rectangular matrices as seen ile ab. In Table 6.3, the best
of A and A" results is selected for each matrix. The colum-net model@lsperforms
the row-net model in this unbiased condition. Results faheaatrix can be seen in
Table A.1.

A cache-oblivious method is using the BFS-like Algorithmk8re we denote this
algorithm as BFS. The columns of a sparse mattixare reordered while reordering
rows so spatial locality may be exploited fervector entries. The difference between
cache miss ratios of row-net model and BFS is considerabfji @s seen in Table 6.4.
BFS is simple and it gives effective row/column order wheatisp locality is feasible.
If cache line size is equal to size of one double, BFS losesfitstiveness in its
resulting order. However, Hiearchical algorithm does petlits effectivenetss as BFS
when cache line size is equal to size of one double, becausmgiders temporal
locality beside spatial locality. Selecting initial row BFS does not affect the quality
of ordering a lot, selecting a row with minimum or maximum rlaen of nonzeros
performs slightly better than using the row order of oridjmatrix.

CHAPTER 6. EXPERIMENTAL RESULTS

37

Table 6.3: Normalized geometric and arithmetic means ofition results for matri-

ces partitioned into 32K-sized parts using row-net androokinet models. Best result
of either original matrix or its transpose is selected. @date size is 8 times size of
double, 64Bytes.

Existing Method Proposed Method
Row-net [40] Column-net
x y x+y tot | x y x+y tot
Geometric means
Square Symmetric [0.69 1.00 0.75 0.93.52 1.00 0.61 0.91
Square Unsymmetr|{®.47 1.00 0.49 0.7/0.26 1.00 0.30 0.69
Rectangular 0.33 1.00 0.42 0.710.23 1.00 0.33 0.67
Overall 0.47 1.00 0.53 0.790.32 1.00 0.39 0.75
Arithmetic means
Square Symmetric |{0.76 1.00 0.80 0.9.57 1.00 0.64 0.91
Square Unsymmetr{®.70 1.00 0.71 0.80.45 1.00 0.51 0.75
Rectangular 0.42 1.00 0.49 0.73.32 1.00 0.41 0.70
Overall 0.62 1.00 0.66 0.8(0.44 1.00 0.52 0.79

Table 6.4: Normalized geometric and arithmetic means ofitron results for matri-
ces partitioned into 32K-sized parts using row-net androokinet models; and matri-
ces reordered using BFS and Hierarchical algorithms

FExisting Methods Proposed Methods
Row-net [40] BFS [1] Column-net Hierarchical
T y z+y tot | x y z+y tot | x y x4y tot | x y x4y tot

Cache line size is 8 times size of double, 64Bytes.
ARITHMETIC|0.67 1.00 0.70 0.80.65 1.00 0.67 0.83.47 1.00 0.54 0.7P0.69 1.00 0.69 0.83
GEOMETRIC |0.51 1.00 0.56 0.8@.45 1.00 0.50 0.7@.34 1.00 041 0.7%.45 1.00 0.50 0.79

Cache line size equals size of one double, 8Bytes.
ARITHMETIC|0.73 1.00 0.79 0.95.82 1.00 0.84 0.980.60 1.00 0.67 0.9%0.69 1.00 0.75 0.94
GEOMETRIC |0.67 1.00 0.75 0.9%.71 1.00 0.75 0.9@.50 1.00 0.59 0.9%.58 1.00 0.66 0.94

CHAPTER 6. EXPERIMENTAL RESULTS 38

The compression method can be used alone or as a prepracsgsm When
it is used as preprocessing step, time consumed in HP isafsmteenough as seen
in Table 6.5. However this method does not give good resattalf matrices, even
situation worsens.

Table 6.5: Normalized simulation results for some matricRgsults for only com-
pression method applied are lomp column. Results for matrices are partitioned
into 32K-sized parts using column-net model without columardering are inRow
column; with column ordering i'ol. Results for column-net model without column
reordering but with compression are @/C' column. Time elapsed for reordering
and compression are measured in milliseconds. Timingtesol reordering using
column-net model irt;c,;; column. Compression, partitioning and total times for re-
ordering using column-net model without column reordebaogwith compression are

given separately ityc,cy column.
Comp Row Col ColC |ticon t{coiC}

name tpart tcomp ttot

mscl0848 1.14 0.55 0.48 0.6)7 8710/1253 402 1655
ship.001 1.02 0.71 0.67 0.88352435433 1657 7089
smt 0.87 0.61 0.58 0.6429880 5065 1401 6466
F2 0.79 0.38 0.31 0.5447010 8358 1829 10186
sme3Db 0.46 0.1 0.03 0.0B8178752965 1177 4142
sme3Dc 0.45 0.1 0.03 0.0831430/5555 1845 7400
ns3Da 0.42 0.1 0.04 0.08147382683 1009 3691
dixmaanl| 1.02 0.35 0.34 0.381763] 725 102 827

fd18 1.97 0.75 044 0.B 710] 333 31 364
poli_large 1.1 0.82 0.64 0.88 355 170 14 184
Zhao2 3.02 0.99 0.46 0.9 2050/ 1025 83 1108

Zhaol 3.03 0.99 0.46 1.04 2030{1020 83 1103

As a result, applying the proposed reordering scheme usilgm-net model de-
creases number of cache misses considerably according tontrdered case. How-
ever, the improvement isighly dependent on the structure of the matrix. If prepro-
cessing time is also important BFS or Hierarchical algonghcan be used because
hypergraph partitioning takes longer time.

CHAPTER 6. EXPERIMENTAL RESULTS 39

Table 6.6: Normalized geometric and arithmetic means ofition results for matri-

ces partitioned into 32K-sized parts using fine-grain mod&D7'S P column contains

results when TSP ordering not used.Cache line size is 8 sme®f double, 64Bytes.
NOTSP TSP

x y x+y tot | x y x+y tot

ARITHMETIC[0.51 7.53 0.80 0.88.45 5.97 0.73 0.82

GEOMETRIC |0.39 3.20 0.62 0.810.30 2.72 0.51 0.78

6.3 Experiments with Multiple Submatrix-Vector Mul-
tiplies Framework

The fine-grain hypergraph model is used in 2D decomposifianse matrices. This
decomposition is used to partition the matrixint submatricesd,. Rows of each
submatrix have similar sparsity pattern and similarly cohs of each submatrix have
similar sparsity pattern. Dimensions of these submatiacesas the original matrix’s
so numbers of empty rows and columns are considerable @g3ezdt number of empty
columns disturbs spatial locality af-vector entries. Locating internal column nets of
each submatrix consecutively decreases bad effects dditigbance. Large number
of empty rows causes performance loss in the CSR storagenschet not in ICSR.
Number of cache misses measured using CSR is proportiottalnwmber of whole
rows but in ICSR it is proportional with number of non-empdyws. When row order-
ing of each submatrix is considered, the internal row netaered consecutively to
increase the disturbed spatial localitywfvector entries.

The order of submatrix-vector multiplies is also importafie cache miss differ-
ence between random ordering and order found by TSP can béns&able 6.6.

As aresult, itis shown that the multiple submatrix-vectaitiplies framework can
preferred to conventional scheme and ordering submatincesases temporal reuse
between consecutive multiply operations.

6.4 Comparison of Frameworks

Column-net model in single matrix-vector multiply framewautperform others in
both cases, spatial locality is available or not. Unfortehathe second framework

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.7: Normalized geometric and arithmetic means otikition results for ma-
trices partitioned into 32K-sized parts using column-netdel and fine-grain model

with TSP ordering.

Column-net

Fine-grain

x y x+y tot

X

y x+y tot

Cache line size is 8 times size of double, 64Bytes.

ARITHMETIC
GEOMETRIC

0.47 1.00 0.54 0.7
0.34 1.00 0.41 0.7

.45 597 0.73 0.82
.30 2.72 0.51 0.78

Cache line size equals size of one double, 8Bytes.

ARITHMETIC
GEOMETRIC

0.60 1.00 0.67 0.9
0.50 1.00 0.59 0.9

.51 2.09 0.67 0.93
42 1.57 0.59 0.93

cannot achieve lower cache miss ratios as shown in Tablé\#heén cache line size is
size of one double, performances of these two fraweworksiamar. This shows that
the disturbed spatial localities af and y vectors cannot be re-gained, there still exist

unsolved issues in exploting spatial locality.

Chapter 7

Conclusion

In this chapter, we will conclude the results of our work, @edsider some opinions
about the future work of this thesis.

7.1 Conclusions

Two hypergraph partitioning models were proposed for reond) a sparse matrix to
minimize cache misses caused by input/output vector d@pigxV. For each model,
a framework proposed to exploit the benefits of the model.s&€hmodels aim firstly
to exploit temporal locality of input vector in single matvector multiply framework
and of both input and output vectors in multiple matrix-wganultiplies framework.
After then, spatial locality is exploited for these vectdfsrthermore, column-net and
fine-grain hypergraph models introduce a much more accreptesentation for cache
misses during SpMxV than the row-net hypergraph model wherigmporal locality
is considered. It is shown that exploting temporal locahi&s generally more impor-
tance during SpMxV. Reordering rows/columns for obtainspgtial locality comes
after, and it must respect the order exploiting temporalibc

Although 2D partitioning using fine-grain hypergraph mogiges smaller cutsizes
than 1D partitioning using column-net model, the multiplatrix-vector multiplies
framework cannot outperform. One of the possible reasa&igroblem of recruiting
the spatial locality of output vector entries whose spadtiedlity was disturbed while

41

CHAPTER 7. CONCLUSION 42

reordering rows.

7.2 Future Work

The proposed frameworks can be more cache-oblivious. Mgaadtitioning a matrix
till it fits into cache is not always feasible when we consittetay’s HP partitioners.
After some recursive bisections, a cache-oblivious algorisuch as BFS can be used
to reorder rows/columns to exploit both temporal and specality.

There are further research issues in fine-grain model becatlsough 2D parti-
tioning using fine-grain hypergraph model gives smallesizets than 1D partitioning
using column-net model, the multiple matrix-vector mulép framework cannot out-
perform.

Appendices

43

Appendix A

Experimental Results in Detall

Experimental results for each matrix are given in this appenThere are four types
of columns:

1. x : misses caused hy-vector entries

2. y : misses caused by-vector entries

3. x4y : sum of x-vector andy-vector misses

4. tot : total miss count

44

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL

45

Table A.1: Simulation results for matrices partitionewiB2K-sized parts. Cache line
size is 8 times size of double, 64Bytes.

FExisting Method Proposed Method
A — Row-net [40] | AT — Row-net [40] A — Column-net AT — Column-net
name T y x4y tot | x y x4y tot | x y x4y tot | x y x4y tot
Square symmetric matrices
bloweya 1.18 1.00 1.13 1.0Q31.18 1.00 1.13 1.030.61 1.00 0.73 0.940.61 1.00 0.73 0.94
bloweybl 0.90 1.00 0.93 0.98.90 1.00 0.93 0.98.62 1.00 0.74 0.93.62 1.00 0.73 0.93
dixmaanl 0.35 1.00 0.51 0.8/0.35 1.00 0.51 0.8/0.34 1.00 0.51 0.8/0.34 1.00 0.51 0.87
dtoc 0.72 1.00 0.84 0.980.72 1.00 0.84 0.98.72 1.00 0.84 0.980.72 1.00 0.84 0.96
F2 0.54 1.00 0.55 0.93.53 1.00 0.55 0.9@.28 1.00 0.31 0.9{0.28 1.00 0.31 0.90
msc10848 0.68 1.00 0.70 0.980.69 1.00 0.71 0.98.44 1.00 0.47 0.9/0.44 1.00 0.47 0.97
msc23052 0.50 1.00 0.55 0.980.50 1.00 0.55 0.98.35 1.00 0.41 0.98.35 1.00 0.41 0.95
Na5 1.24 1.00 1.22 1.02.26 1.00 1.24 1.08..10 1.00 1.10 1.011.08 1.00 1.08 1.01
ncvxgp9 0.36 1.00 0.45 0.790.36 1.00 0.46 0.7.23 1.00 0.35 0.7[0.23 1.00 0.35 0.70
ship.001 0.97 1.00 0.97 1.00.97 1.00 0.97 1.000.70 1.00 0.72 0.990.70 1.00 0.72 0.99
smt 0.70 1.00 0.71 0.98.69 1.00 0.70 0.98.54 1.00 0.56 0.9}0.53 1.00 0.55 0.97
Trefethen20000|0.42 1.00 0.43 0.63.42 1.00 0.43 0.63.58 1.00 0.58 0.7(0.59 1.00 0.59 0.72
TSOPEFSb300/1.62 1.00 1.61 1.0/1.62 1.00 1.60 1.0|1.12 1.00 1.11 1.0(1.13 1.00 1.13 1.01
tumal 0.66 1.00 0.76 0.93.66 1.00 0.76 0.93.49 1.00 0.64 0.890.49 1.00 0.64 0.89
tuma2 0.62 1.00 0.73 0.920.62 1.00 0.73 0.9%0.49 1.00 0.64 0.9(0.49 1.00 0.64 0.90
Square unsymmetric matrices
mixtank new 0.61 1.00 0.62 0.920.61 1.00 0.62 0.90.24 1.00 0.26 0.8/.24 1.00 0.26 0.85
powersim 0.49 1.00 0.64 0.9{10.46 1.00 0.61 0.9(0.45 1.00 0.62 0.90.42 1.00 0.59 0.89
memplus 1.22 1.00 1.18 1.041.24 1.00 1.19 1.08.68 1.00 0.74 0.9.67 1.00 0.73 0.93
sme3Db 0.08 1.00 0.09 0.380.08 1.00 0.08 0.318.03 1.00 0.03 0.340.03 1.00 0.03 0.34
sme3Dc 0.08 1.00 0.08 0.3@.08 1.00 0.08 0.31@.03 1.00 0.03 0.33.03 1.00 0.03 0.33
circuit4 1.67 1.00 1.50 1.181.53 1.00 1.39 1.1P1.07 1.00 1.05 1.0P1.08 1.00 1.06 1.02
circuit-3 1.20 1.00 1.13 1.03L.25 1.00 1.17 1.04€0.79 1.00 0.86 0.91.03 1.00 1.02 1.01
poli_large 0.93 1.00 0.95 0.980.96 1.00 0.98 0.990.62 1.00 0.76 0.910.79 1.00 0.88 0.96
fd18 0.61 1.00 0.72 0.9@0.73 1.00 0.81 0.98.44 1.00 0.59 0.880.52 1.00 0.66 0.91
ns3Da 0.12 1.00 0.12 0.380.12 1.00 0.12 0.38.04 1.00 0.04 0.33.04 1.00 0.04 0.33
poisson3Da 0.13 1.00 0.14 0.440.13 1.00 0.14 0.440.07 1.00 0.08 0.4{0.07 1.00 0.08 0.40
Zd_Jac3 1.80 1.00 1.75 1.071.26 1.00 1.26 1.08L.03 1.00 1.02 1.0{0.93 1.00 0.93 0.98
Zhaol 0.76 1.00 0.81 0.9%0.75 1.00 0.81 0.940.46 1.00 0.57 0.8/0.47 1.00 0.58 0.87
Zhao2 0.75 1.00 0.80 0.9%0.76 1.00 0.81 0.940.46 1.00 0.57 0.8/0.47 1.00 0.58 0.87
Rectangular matrices

baxter 0.38 1.00 0.47 0.7/0.33 1.00 0.42 0.730.42 1.00 0.50 0.790.32 1.00 0.41 0.72
ch7-8-b2 0.43 1.00 0.75 0.952.36 0.99 2.29 1.3(0.80 1.00 0.91 0.98.59 0.99 2.52 1.38
co9 0.22 1.00 0.24 0.580.69 1.00 0.79 0.98.15 1.00 0.18 0.5/0.48 1.00 0.65 0.92
cq9 0.24 1.00 0.26 0.58.72 1.00 0.82 0.9.15 1.00 0.18 0.53.49 1.00 0.67 0.93
ex3stal 1.50 1.00 1.32 1.081.41 1.00 1.29 1.080.82 1.00 0.88 0.9171.09 1.00 1.06 1.02
fomell 0.37 1.00 0.39 0.5H.24 1.00 0.30 0.5.17 1.00 0.19 0.4{0.10 1.00 0.17 0.46
fomel2 0.38 1.00 0.39 0.580.24 1.00 0.30 0.58.17 1.00 0.19 0.4.10 1.00 0.17 0.47
ge 0.23 1.00 0.29 0.60.57 1.00 0.70 0.9M0.17 1.00 0.24 0.5[0.37 1.00 0.57 0.86
Kemelmacher [1.25 1.00 1.09 1.0{0.63 1.00 0.68 0.910.87 1.00 0.95 0.990.47 1.00 0.53 0.87
Ip_dfio01 0.37 1.00 0.39 0.58.23 1.00 0.30 0.5.16 1.00 0.19 0.4[0.10 1.00 0.17 0.46
Ip_pds02 0.14 1.00 0.18 0.43.46 1.00 0.69 0.90.12 1.00 0.15 0.4(0.32 1.00 0.61 0.88
Ip_stocfor3 0.79 1.00 0.86 0.9/0.38 1.00 0.58 0.88.79 1.00 0.86 0.9j0.36 1.00 0.57 0.87
psse0 0.32 1.00 0.55 0.89.44 1.00 0.51 0.8@.24 1.00 0.50 0.8/0.36 1.00 0.44 0.83
pssel 0.20 1.00 0.33 0.73.37 1.00 0.47 0.80.16 1.00 0.30 0.7@0.28 1.00 0.40 0.79
psse2 0.16 1.00 0.34 0.780.34 1.00 0.40 0.780.12 1.00 0.31 0.7j@0.27 1.00 0.33 0.77
sharte2-b1 1.12 1.00 1.00 1.01.13 1.00 3.11 1.780.81 1.00 1.00 1.0[r.48 1.00 2.47 1.54
ARITHMETIC |0.67 1.00 0.70 0.83.76 1.00 0.80 0.880.47 1.00 0.54 0.790.57 1.00 0.64 0.85
GEOMETRIC |0.50 1.00 0.56 0.800.57 1.00 0.63 0.850.34 1.00 0.41 0.78.39 1.00 0.47 0.81

Appendix B

Pictures of Reordered Matrices

Pictures in this appendix show the resulting matrices gitetitioning the original
matrix pssel Each diagonal block in the pictures of partitioned masiogpresents
a part in the partitioned hypergrag® corresponding to partitioned sparse matrix
AB . Here B denotes total number of recursive bisections. A containsk =27
number of parts. The off-diagonal borders consists of colaets that are cut between
two distinct parts during recursive bisection in columrn-medel and the maximum
number of such border blocks 3.

46

APPENDIX B. PICTURES OF REORDERED MATRICES 47

2000

4000

6000

gl 2ol SR,
Vi AR LT &e&*fw xzn‘&*;“‘* st

*
i x
o
S
B

ﬁfﬁf@% S P Tk e ﬁig ’@ﬁﬂ**‘* J:%“f;ﬁ“*?ﬁ? 2 “%ég
: Eaal

*

8000

10000

.
;o=
ey e
=¥
12000 B
:

\x&x _ 2 % %

. - L &

a
:: - —)
,.*i*‘f ot " o, X ws X i s <
F o AN SR : ey 2 :ﬁ F 5 Zﬁ*’l‘imi ié}ﬁi‘w@ 4;‘
0] 2000 4000 6000 8000 10000

14000

e R o X ,;
»{ fﬁ‘*’i BT e X %‘
= e ; =

L

Figure B.1: Original Matrix pssel

48

APPENDIX B. PICTURES OF REORDERED MATRICES

L ¥ T I
*
¥

2000
6000
8000

10000

12000

14000

4000 6000 8000 10000

2000

Figure B.2: Partitioned Matrix pssel whéh=1 and K = 2

2000

4000

6000

8000

10000

12000

14000

o 2000 4000 6000

APPENDIX B. PICTURES OF REORDERED MATRICES 49

I XIERCEN 6K X

W Rk Ry oK

* %;»%:‘,

K x K Fx ox K

Figure B.3: Partitioned Matrix pssel whéh= 2 and K =4

APPENDIX B. PICTURES OF REORDERED MATRICES 50

O 1 1 1 1 1
1
r
]
r
2000 [o - L
) k< W |
i
2.
gu
*
i
‘six
= N B ¥
4000 | o N T
;:
3
- **,‘; i L
6000 | ., ~
8000 | TRy
NG
-f 5 st E
10000 C N
T -1]
12000 |
14000
1 1 1 1 L 4
o) 2000 4000 6000 8000 10000

Figure B.4: Partitioned Matrix pssel whéh= 3 and K = 8

APPENDIX B. PICTURES OF REORDERED MATRICES 51

2000 | TG 5

4000 S

6000 | o

4
ek W ek R 1S XX P 1

8000 |- NG

10000 -

12000 -

5
b
£
Bt o
, R B PN nmmmmmmm‘*””‘*
e Phe hﬁum PEETRT

1

14000 - &
]]]] i\

o 2000 4000 6000 8000 10000

Figure B.5: Partitioned Matrix pssel whéh= 4 and K = 16

Bibliography

[1] I. Al-Furaih and S. Ranka. Memory hierarchy managementterative graph
structuresParallel Processing Symposium, Internationi0298, 1998.

[2] C. Aykanat, A. Pinar, and. V. Catalyiirek. Permuting sparse rectangular matri-
ces into block-diagonal form. Technical Report BU-CE-Q208mputer Engi-
neering Department, Bilkent University, Turkey, 2002. arsér version appears
on SIAM Journal on Scientific Computing, Vol. 26, No. 6, 2004.

[3] C. Aykanat, A. Pinar, and). V. Catalyirek. Permuting sparse rectangular
matrices into block-diagonal form.SIAM Journal on Scientific Computing
26(6):1860-1879, 2004.

[4] T.N. Buiand C. Jones. A heuristic for reducing fill in spamatrix factorization.
In Proc. 6th SIAM Conf. Parallel Processing for Scientific Catipg, pages 445—
452, 1993.

[5] U. V. Catalyiirek and C. Aykanat. Decomposing irregulaarse matrices for
parallel matrix-vector multiplications. IRroceedings of 3rd International Sym-
posium on Solving Irregularly Structured Problems in Pé&hlirregular’96, vol-
ume 1117 ol ecture Notes in Computer Scienpages 75-86. Springer-Verlag,
1996.

[6] U. V. Catalyiirek and C. Aykanat. Hypergraph-partitiantlvased decomposition
for parallel sparse-matrix vector multiplicatiohEEE Transactions on Parallel
and Distributed System$0(7):673-693, 1999.

52

BIBLIOGRAPHY 53

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

U. V. Catalyiirek and C. AykanatPaToH: A Multilevel Hypergraph Partition-
ing Tool, Version 3.0 Bilkent University, Department of Computer Engineer-
ing, Ankara, 06533 Turkey. PaToH is availablehdtt p: // bm . osu. edu/
~um t/ sof t war e. ht m 1999.

U. V. Catalylrek and C. Aykanat. A fine-grain hypergraphdeiofor 2d de-
composition of sparse matriceéRarallel and Distributed Processing Symposium,
International 3:30118b, 2001.

U. V. Catalyuirek, C. Aykanat, and B. Ucar. On two-dimemsibsparse matrix
partitioning: Models, methods, and a recip&ubmitted to SIAM Journal on
Scientific Computing

J. M. Crummey, D. Whalley, and K. Kennedy. Improving nawnhierarchy
performance for irregular applications using data and adatpn reorderings.
In International Journal of Parallel Programmingages 425-433, 2001.

R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Poamys The design and
implementation of a parallel unstructured euler solvengsioftware primitives.
In AIAA Journa) 1992.

J. Demmel, J. Dongarra, A. Ruhe, and H. van der V3stplates for the solution
of algebraic eigenvalue problems: a practical guidgociety for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

C. Ding and K. Kennedy. Improving cache performance ymamic applica-
tions through data and computation reorganization at me.tiSIGPLAN Not.
34(5):229-241, 1999.

I. S. Duff, A. M. Erisman, and J. K. ReidDirect methods for sparse matrices
Clarendon Press, New York, NY, USA, 1989.

C. M. Fiduccia and R. M. Mattheyses. A linear time heticidor improving
network partitions. InProc. 19th IEEE Design Automation Conpages 175
181. IEEE, 1982.

G. Haase, M. Liebmann, and G. Plank. A hilbert-ordertmplitation scheme for
unstructured sparse matricebit. J. Parallel Emerg. Distrib. Syst22(4):213-
220, 2007.

BIBLIOGRAPHY 54

[17] H. Han and C. Tseng. Exploiting locality for irregulagientific codes. IEEE
Trans. Parallel Distrib. Syst17(7):606—618, 2006.

[18] K. Helsgaun. An effective implementation of the linrkeghan traveling sales-
man heuristicEuropean Journal of Operational Researd26:106-130, 2000.

[19] B. Hendrickson and R. Leland. A multilevel algorithn fpartitioning graphs.
Technical report, Sandia National Laboratories, 1993.

[20] G.Jinand M. J. Crummey. Using space-filling curves famputation reordering.
In Proceedings of the Los Alamos Computer Science InstROG5.

[21] G. Karypis and V. Kumar. A fast and high quality multiehscheme for parti-
tioning irregular graphsSIAM Journal on Scientific Computing0(1):359-392,
1998.

[22] G. Karypis and V. KumarMeTiS A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Redg Orderings of
Sparse Matrices Version 4.Qniversity of Minnesota, Department of Comp. Sci.
and Eng., Army HPC Research Center, Minneapolis, 1998.

[23] G. Karypis, V. Kumar, R. Aggarwal, and S. ShekhalvleTiS A Hypergraph Par-
titioning Package Version 1.0.University of Minnesota, Department of Comp.
Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[24] B. W. Kernighan and S. Lin. An efficient heuristic procee for partitioning
graphs.Bell System Technical Journa9:291-307, 1970.

[25] J. Koster. Parallel Templates for Numerical Linear &ga, a High-Performance
Computation Library. Master’s thesis, Utrecht Universiyly 2002.

[26] M.S. Lam and M.E. Wolf. A data locality optimizing algtrm. SIGPLAN Not.
39(4):442-459, 2004.

[27] T. Lengauer.Combinatorial Algorithms for Integrated Circuit LayouWilley—
Teubner, Chichester, U.K., 1990.

[28] S. Lin and B. W. Kernighan. An effective heuristic algbm for the traveling-
salesman problenOperations Researcl21(2):498-516, 1973.

BIBLIOGRAPHY 55

[29] K.S. McKinley, S. Carr, and C. Tseng. Improving datadlity with loop trans-
formations.ACM Trans. Program. Lang. Sys18(4):424-453, 1996.

[30] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, akdCrowley. Prin-
ciples of runtime support for parallel processors. I@8 '88: Proceedings of
the 2nd international conference on Supercomputoages 140-152, New York,
NY, USA, 1988. ACM.

[31] N. Mitchell, L. Carter, and J. Ferrante. Localizing raffine array references. In
PACT '99: Proceedings of the 1999 International Confereondarallel Archi-
tectures and Compilation Techniquemge 192, Washington, DC, USA, 1999.
IEEE Computer Society.

[32] A. Pinar and M. T. Heath. Improving performance of sparsatrix-vector mul-
tiplication. In Supercomputing '99: Proceedings of the 1999 ACM/IEEE agenfe
ence on Supercomputing (CDROMage 30, New York, NY, USA, 1999. ACM.

[33] L. Rauchwerger. Run-time parallelization: its timestme.Parallel Comput.
24(3-4):527-556, 1998.

[34] Y. Saad. Iterative Methods for Sparse Linear Systems, Second BdiSociety
for Industrial and Applied Mathematics, April 2003.

[35] M. M. Strout and P. D. Hovland. Metrics and models forndsying transfor-
mations. InProc. of the Second ACM SIGPLAN Workshop on Memory System
Performance (MSP04pages 23—-34, Washington DC., June 2004. ACM.

[36] A. D. Timothy. University of florida sparse matrix cotééon. NA Digest 92,
1994.

[37] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A libraryf automatically
tuned sparse matrix kerneldournal of Physics: Conference Serié§(1):521+,
2005.

[38] R. W. Vuduc and H. Moon. Fast sparse matrix-vector miittation by exploiting
variable block structure. pages 807-816. 2005.

[39] J. White. On improving the performance of sparse matagtor multiplication.
In In Proceedings of the International Conference on Hight®enance Com-
puting pages 578-587. IEEE Computer Society, 1997.

BIBLIOGRAPHY 56

[40] A. N. Yzelman and Rob H. Bisseling. Cache-oblivious rsgamatrix—vector
multiplication by using sparse matrix partitioning metsodSIAM Journal on
Scientific Computing31(4):3128-3154, 2009.

