
CACHE LOCALITY EXPLOITING METHODS AND
MODELS FOR SPARSE MATRIX-VECTOR

MULTIPLICATION

A THESIS SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Kadir Akbudak

September, 2009

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Ayhan Altıntaş

I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof.ÖzcanÖztürk

Approved for the Institute of Engineering and Science:

Prof. Mehmet Baray
Director of the Institute

ii

ABSTRACT

CACHE LOCALITY EXPLOITING METHODS AND
MODELS FOR SPARSE MATRIX-VECTOR

MULTIPLICATION

Kadir Akbudak

Master in Computer Engineering and Information Science

Supervisor: Prof. Cevdet Aykanat

September, 2009

The sparse matrix-vector multiplication (SpMxV) is an important kernel operation

widely used in linear solvers. The same sparse matrix is multiplied by a dense vec-

tor repeatedly in these solvers to solve a system of linear equations. High performance

gains can be obtained if we can take the advantage of today’s deep cache hierarchy

in SpMxV operations. Matrices with irregular sparsity patterns make it difficult to

utilize data locality effectively in SpMxV computations. Different techniques are pro-

posed in the literature to utilize cache hierarchy effectively via exploiting data local-

ity during SpMxV. In this work, we investigate two distinct frameworks for cache-

aware/oblivious SpMxV: single matrix-vector multiply andmultiple submatrix-vector

multiplies. For the single matrix-vector multiply framework, we propose a cache-size

aware top-down row/column-reordering approach based on 1Dsparse matrix parti-

tioning by utilizing the recently proposed appropriate hypergraph models of sparse

matrices, and a cache oblivious bottom-up approach based onhierarchical clustering

of rows/columns with similar sparsity patterns. We also propose a column compres-

sion scheme as a preprocessing step which makes these two approaches cache-line-size

aware. The multiple submatrix-vector multiplies framework depends on the partition-

ing the matrix into multiple nonzero-disjoint submatrices. For an effective matrix-

to-submatrix partitioning required in this framework, we propose a cache-size aware

top-down approach based on 2D sparse matrix partitioning byutilizing the recently

proposed fine-grain hypergraph model. For this framework, we also propose a trav-

eling salesman formulation for an effective ordering of individual submatrix-vector

multiply operations. We evaluate the validity of our modelsand methods on a wide

range of sparse matrices. Experimental results show that proposed methods and mod-

els outperforms state-of-the-art schemes.

iii

iv

Keywords: Cache locality, sparse matrices, matrix-vector multiplication, matrix re-

ordering, computational hypergraph model, hypergraph partitioning, traveling sales-

man problem.

ÖZET

SEYREK MATṘIS-VEKTÖR ÇARPIMINDA
ÖNBELLEK YERELLİĞİ SAĞLAYAN Y ÖNTEM VE

MODELLER

Kadir Akbudak

Bilgisayar ve Enformatik Mühendisliği, Master

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2009

Seyrek matris-vektör çarpımı doğrusal denklem sistemiçözen yazılımlarda çok

önemli bir çekirdek işlemdir. Aynı seyrek matris, seyrek olmayan bir vektörle çok defa

çarpılır. Şu anki teknolojinin sunduğu çok seviyeli önbellekler etkin kullanılırsa, bu

çarpma işlemi sırasında önemli performans kazançlarıolabilmektedir. Lakin düzensiz

veri erişimine neden olan matrisler önbellekteki veri yerelliğinin kullanımını olum-

suz etkilemektedir. Bu problemi çözmek için önbellek yerelliğini kullanan pek çok

yöntem şu zamana kadar sunulmuştur. Bu çalışmada, bizde iki farklı çerçeve sunuy-

oruz: tek matris-vektor çarpımı ve çoklu matris-vektor c¸arpımı. Tek matris-vektör

çarpımı çerçevesinde, önbelleğin boyutunu dikkate alarak matrisin satır ve sütunlarını

yeniden sıralayan ve bu sıralama işlemini hiperçizge bölümleme ile yapan bir yöntem

sunuyoruz. Bir de önbelleğin boyutunu dikkate almadan yerelliği sağlayacak bir

yöntem öneriyoruz. Ve bu yöntemlere ek olarak sütunları sıkıştırıp alansal yerelliği

sağlayan önişleme yöntemi sunuyoruz. Çoklu matris-vektör çarpımı çerçevesinde, ma-

trisi alt matrislere ayırarak veri yerelliğini sağlamaya çalışmayı hedefliyoruz. Yine bu

ayırma işleminde de hiperçizge kullanılıyor. Alt matrislerin çarpma sırası da önem

taşıdığından veri yerelliğini arttıran bir sıralamayıbulma problemini de seyyar satıcı

problemi olarak çözülebileceğini açıklıyoruz. Deneysel sonuçlar bu önerilen çerçeve

ve yöntemlerin şu anda kullanılan yöntemlerden daha hızlı çalıştığını göstermektedir.

Anahtar s̈ozc̈ukler: Önbellek yerelliği, seyrek matrisler, matris-vektör çarpımı, matrisi

yeniden sıralama, bilişimsel hiperçizge modeli, hiperc¸izge bölümleme, seyyar satıcı

problemi .

v

Acknowledgement

I would like to express my deepest gratitude to my supervisorProf. Cevdet Aykanat

for his guidance, suggestions, and invaluable encouragement throughout the develop-

ment of this thesis. His patience, motivation, lively discussions and cheerful laughter

provided an invaluable and comfortable atmosphere for our work.

I am grateful to my family and my friends for their infinite moral support and help.

I owe special thanks to my friend Enver Kayaaslan.

Finally, I thank TÜBİTAK for supporting grant throughout my master program.

vi

To my family

vii

Contents

1 Introduction 1

2 Background 4

2.1 Data Storage Schemes used in Sparse Matrix-Vector Multiplication . . 4

2.1.1 Compressed Storage by Rows 5

2.1.2 Zig-Zag Compressed Storage by Rows 6

2.1.3 Incremental Compressed Storage by Rows 7

2.1.4 Zig-Zag Incremental Compressed Storage by Rows 8

2.2 Data Locality in Sparse Matrix-Vector Multiply 8

2.3 Hypergraph Partitioning . 9

2.4 Hypergraph Models for Sparse Matrix Partitioning 11

2.5 Breadth-First-Search-Based Algorithm for Row/ColumnReordering . 13

2.6 Travelling Salesman Problem . 14

3 Related Work 16

4 Single Matrix-Vector Multiply Framework 19

viii

CONTENTS ix

4.1 1D Decomposition of Sparse Matrices20

4.2 Hierarchical Clustering . 21

4.3 Compression Preprocessing for Spatial Locality 23

5 Multiple Submatrix-Vector Multiplies Framework 25

5.1 Pros and Cons compared to Conventional Framework 26

5.2 2D Decomposition of Sparse Matrices29

5.3 Ordering Submatrix-Vector Multiplies 29

6 Experimental Results 32

6.1 Experimental Setup . 32

6.1.1 Platform . 33

6.1.2 Data Sets . 33

6.2 Experiments with Single Matrix-Vector Multiply Framework 35

6.3 Experiments with Multiple Submatrix-Vector Multiplies Framework . 39

6.4 Comparison of Frameworks . 39

7 Conclusion 41

7.1 Conclusions . 41

7.2 Future Work . 42

Appendices 44

A Experimental Results in Detail 44

CONTENTS x

B Pictures of Reordered Matrices 46

List of Figures

2.1 Processing order of nonzeros stored using the CSR (on theleft) and

ZZCSR (on the right) schemes. Arrows denote the storage order of

nonzeros of a row. 6

3.1 Example for irregular code that are the focus in computation and data

ordering problem. C array is accessed through two index arraysa

andb. These two arrays cause indirection so the code shows irregular

access patter. 17

3.2 Sparse matrix-vecto multiply algorithm based on using the CSR

scheme.x array is thex-vector in the sparse matrix-vector multiplica-

tion y ← Ax . 18

B.1 Original Matrix psse1 . 47

B.2 Partitioned Matrix psse1 whenB = 1 andK = 2 48

B.3 Partitioned Matrix psse1 whenB = 2 andK = 4 49

B.4 Partitioned Matrix psse1 whenB = 3 andK = 8 50

B.5 Partitioned Matrix psse1 whenB = 4 andK = 16 51

xi

List of Tables

6.1 Properties of test matrices. .34

6.2 Normalized geometric and arithmetic means of simulation results for

matrices partitioned into 32K-sized parts using row-net and column-

net models. Original matrices are partitioned and their transposes, too.

Cache line size is 8 times size of double, 64Bytes. 36

6.3 Normalized geometric and arithmetic means of simulation results for

matrices partitioned into 32K-sized parts using row-net and column-

net models. Best result of either original matrix or its transpose is

selected. Cache line size is 8 times size of double, 64Bytes.. 37

6.4 Normalized geometric and arithmetic means of simulation results for

matrices partitioned into 32K-sized parts using row-net and column-

net models; and matrices reordered using BFS and Hierarchical algo-

rithms . 37

xii

LIST OF TABLES xiii

6.5 Normalized simulation results for some matrices. Results for only

compression method applied are inComp column. Results for matri-

ces are partitioned into 32K-sized parts using column-net model with-

out column reordering are inRow column; with column ordering in

Col. Results for column-net model without column reordering but

with compression are inColC column. Time elapsed for reordering

and compression are measured in milliseconds. Timing results for re-

ordering using column-net model int{Col} column. Compression, par-

titioning and total times for reordering using column-net model with-

out column reordering but with compression are given separately in

t{ColC} column. 38

6.6 Normalized geometric and arithmetic means of simulation results

for matrices partitioned into 32K-sized parts using fine-grain model.

NOTSP column contains results when TSP ordering not used.Cache

line size is 8 times size of double, 64Bytes.39

6.7 Normalized geometric and arithmetic means of simulation results for

matrices partitioned into 32K-sized parts using column-net model and

fine-grain model with TSP ordering. 40

A.1 Simulation results for matrices partitioned into 32K-sized parts. Cache

line size is 8 times size of double, 64Bytes.45

List of Algorithms

1 Sparse Matrix-Vector Multiplication using CSR scheme 6

2 Sparse Matrix-Vector Multiplication using ICSR scheme 7

3 Modified BFS Algorithm for Row/Column Ordering 14

4 Hypergraph Based Bottom-up Reordering HPART24

5 Hypergraph Based Clustering HCLUSTER 24

6 Multiple Sparse Submatrix-Vector Multiplications usingICSR scheme 26

xiv

Chapter 1

Introduction

Many applications became available in numerical computation on behalf of the devel-

opments in computer architecture. Nevertheless, these developments introduced some

problems such as performance gap between processor and memory speeds. Also there

still exits a trade-off between faster but small memories like cpu caches and slower but

larger memories like RAM. As a result, the need of new methodsand algorithms for

efficient usage of higher levels of memory increased in everyarea of computational

problems.

Efficiency in using higher level memories mainly depend on temporal and spatial

localities. According to literature, these localities areprovided throughout these two

ways: data ordering and iteration ordering.

Here data ordering means in what order the elements are stored; and in the same

way, iteration ordering means in which order the stored elements are processed. When

the data in consecutive memory locations is accessed with stride one, both spatial and

temporal localities can be exploited even in compilers. Such kind of applications are

said to beregular. On the contrary, it is considerable difficult to utilize thedata locality

effectively in irregular computations which induce irregular memory access patterns.

The sparse matrix-vector multiplication is one of them and the most important

kernel operation in linear solvers for the solution of large, sparse, linear systems of

equations. These solvers repeat the matrix-vector multiplication y ← Ax many times

with the same sparse matrix to solve a system of equations. Irregular access pattern

1

CHAPTER 1. INTRODUCTION 2

during this multiply operation, causes poor usage of cpu caches in today’s memory hi-

erarchy technology. However, sparse matrix-vector multiply operation has a potential

to exhibit very high performance gains when temporal and spatial localities discussed

in Section 2.2 are respected and exploited.

In this work, we investigate two distinct frameworks for cache-aware/oblivious Sp-

MxV: single matrix-vector multiply and multiple submatrix-vector multiplies. For the

single matrix-vector multiply framework, we propose a cache-size aware top-down

row/column-reordering approach based on transformation asparse matrix to a singly-

bordered block-diagonal form by utilizing the recently proposed appropriate hyper-

graph models. We provide an upper bound on the total number ofcache misses based

on this transformation, and show that the objective in the hypergraph-partitioning-

based transformation model exactly corresponds to minimizing this upper bound. We

also propose a cache oblivious bottom-up approach based on hierarchical clustering

of rows/columns with similar sparsity patterns. Furthermore, a column compression

scheme as a preprocessing step which makes these two approaches cache-line-size

aware is presented.

The multiple submatrix-vector multiplies framework depends on the partitioning

the matrix into multiple nonzero-disjoint submatrices andthe ordering of submatrix-

vector multiplies. For an effective matrix-to-submatrix partitioning required in this

framework, we propose a cache-size aware top-down approachbased on 2D sparse

matrix partitioning by utilizing the recently proposed fine-grain hypergraph model.

We provide an upper bound on the total number of cache misses based on this matrix-

to-submatrix partitioning, and show that the objective in the hypergraph-partitioning-

based matrix-to-submatrix partitioning exactly corresponds to minimizing this upper

bound.

For this framework, we also propose a traveling salesman formulation for an effec-

tive ordering of individual submatrix-vector multiply operations. We provide a lower

bound on the total number of cache misses based on the ordering of submatrix-vector

multiplies, and show that the objective in TSP formulation exactly corresponds to min-

imizing this lower bound.

We evaluate the validity of our models and methods on a wide range of sparse

matrices. Experimental results show that proposed methodsand models outperforms

CHAPTER 1. INTRODUCTION 3

state-of-the-art schemes.

The rest of this thesis is organized as follows: Background material is introduced

in Chapter 2. In Chapter 3, we review some of the previous works about iteration/data

reordering and matrix transformations for exploting locality. Two frameworks as our

contributions in sparse matrix-vector multiplication aredescribed in Chapters 4 and 5.

We present the experimental results of these two frameworksand comparisons with

some of the previous works in Chapter 6. Finally, the thesis is concluded in Chapter 7.

Chapter 2

Background

In this chapter, we will review several schemes for storing sparse matrices in Sec-

tion 2.1. Data locality issues during matrix-vector multiplication will be considered

in Section 2.2. Then we will review definition of hypergraph and partitioning prob-

lems in Section 2.3. We will mention about two hypergraph models for 1D and 2D

decomposition of sparse matrices in Section 2.4. Finally, definition of the well known

Travelling Salesman Problem(TSP) will be told in Section 2.6.

2.1 Data Storage Schemes used in Sparse Matrix-

Vector Multiplication

In this chapter we will review an important storage schemeCompressed Storage by

Rows(CSR) and its variances,Zig-Zag Compressed Storage by Rows(ZZCSR), In-

cremental Compressed Storage by Rows(ICSR) andZig-Zag Incremental Compressed

Storage by Rows(ZZICSR) for sparse matrix-vector multiplication in Sections 2.1.1,

2.1.2,2.1.3 and 2.1.4, respectively.

There are two main storage schemes for sparse matrix-vectormultiply opera-

tion. They areCompressed Storage by Rows(CSR) andCompressed Storage by

Columns(CSC) [12, 34]. Each sparse-matrix storage scheme determines a distinct

computation scheme for the matrix-vector multiplication.In this thesis, we restrict our

4

CHAPTER 2. BACKGROUND 5

focus on cache-aware/oblivious computation of sparse matrix-vector multiply opera-

tion using the CSR storage scheme without loss of generality.

In the following subsections we review four CSR-based sparse-matrix storage

schemes.

1. CSR

2. Zig-zag CSR

3. ICSR

4. Zig-zag ICSR

For other types of schemes, books such as Duff, Erisman, and Reid [14] can be inves-

tigated.

2.1.1 Compressed Storage by Rows

CSR scheme is widely used in sparse matrix operations. In this scheme and in all

the remaining schemes mentioned in this section, only the nonzeros are naively stored

without using any structural information. Nonzeros are stored in a row-major format,

meanly nonzeros of a row are stored consecutively. This scheme contains three ar-

rays: nonzero, column-indexandrow-start. The values and the column indices of the

nonzeros are stored in row-major order in thenonzero and column-index arrays in

one-to-one manner, respectively. That is,column-index[i] stores the column-index

of the nonzero and the value of this nonzero is stored innonzero[i]. The row-start

array stores the index of the first nonzero element of each row. This index is used

to access both ofnonzeroandcolumn-indexarrays. Also the original row order of

the sparse matrixA is preserved while constructingrow-startarray and similarly the

original column order is preserved while constructingnonzeroandcolumn-indexar-

rays; but these preservations of the original orders are notobligatory, we will assume

these original orderings in this work. Algorithm 1 shows howthe sparse matrix-vector

multiplication can be performed using CSR storage scheme.

CHAPTER 2. BACKGROUND 6

Algorithm 1 Sparse Matrix-Vector Multiplication using CSR scheme

Require: nonzero , column-index androw -start arrays of am by n sparse matrixA
a dense input vectorx

1: for i← 1 to m do
2: tmp← 0
3: for j ← row -start[i] to row -start[i + 1]− 1 do
4: tmp← tmp + nonzero[i] ∗ x[column-index[j]]
5: end for
6: y[i]← tmp

7: end for
8: return y

Figure 2.1: Processing order of nonzeros stored using the CSR (on the left) and ZZCSR
(on the right) schemes. Arrows denote the storage order of nonzeros of a row.

2.1.2 Zig-Zag Compressed Storage by Rows

Zig-zag CSR(ZZCSR) scheme [40] is similar to CSR. In CSR scheme, multiplication

is being performed through increasing index on each row. In ZZCSR, multiplication

is being performed through increasing index on even-numbered rows and through de-

creasing index on odd-numbered rows. In this way, possibility of reuse of recently

retrievedx-vector entries in cache is increased. Figure 2.1 illustrates comparison of

these two schemes. This ZZCSR scheme can be simply implemented by reversing the

order of elements innonzeroandcolumn-indexarrays of odd-numbered rows in the

CSR scheme.

CHAPTER 2. BACKGROUND 7

2.1.3 Incremental Compressed Storage by Rows

Incremental Compressed Storage by Rows(ICSR) proposed in [25] and it is reported to

decrease instruction overhead by using pointer arithmetic. In addition, the idea behind

this storage scheme perfectly fits for matrices having emptyrows. In the CSR scheme,

all rows, whether they are empty or not, must be present in therow-start array. But

in ICSR, row indices of the empty rows are not stored at all, because row indices

and column indices are calculated by accumulating elementsof row-jumpandcolumn-

diff arrays on current values. In contrast, these indices are retrieved fromrow-start

andcolumn-indexarrays in CSR scheme. In other words, index of the next rowri

to be processed is calculated by addingrow-jump[i] to the current row index value.

In the same way, the index of the next columncj to be processed is calculated by

addingcolumn-diff[j] to the current column index value. Then, row increments are

triggered just after column index value becomes greater than number of columns. The

number of columns is subtracted from overflowed column indexvalue and used as new

column index. New row index is calculated using related element of row-jumparray

and current row index value. These steps can be easily understood from Algorithm 2.

Algorithm 2 Sparse Matrix-Vector Multiplication using ICSR scheme

Require: nonzero , column-di ff androw -jump arrays of am by n sparse matrixA
a dense input vectorx
number of nonzerosnnz in matrix A

1: i← row -jump[0]
2: j ← column-di ff [0]
3: k ← 0
4: r ← 1
5: tmp← 0
6: while k < nnz do
7: tmp← tmp + nonzero[k] ∗ x[j]
8: k ← k + 1
9: j ← j + column-di ff [k]

10: if j ≥ n then
11: y[i]← tmp

12: tmp← 0
13: j ← j − n

14: i← i + row -jump[r]
15: r ← r + 1
16: end if
17: end while
18: return y

CHAPTER 2. BACKGROUND 8

2.1.4 Zig-Zag Incremental Compressed Storage by Rows

Zig-Zag Incremental Compressed Storage by Rows(ZZICSR) [40] combines CSR and

zig-zag property. Temporal locality inx-vector is exploited using the zig-zag prop-

erty. In addition to this, empty rows are not stored. As a result, this scheme becomes

convenient for sparse matrices having a considerable amount of empty rows as well

as the temporal locality is achieved forx-vector . Like ZZCSR scheme, this scheme

can be implemented by putting negative values inrow-jumpandcolumn-indexarrays

of odd-numbered rows in the ICSR scheme. So that flow of process is reversed in

odd-numbered rows.

2.2 Data Locality in Sparse Matrix-Vector Multiply

Here, we will briefly mention about the data locality characteristics of matrix-vector

multiply operationy ← Ax using the CSR scheme as also discussed in [39]. In terms

of the A-matrix stored in CSR format, temporal locality is not feasible since the ele-

ments of each of thenonzero, column-index (column-diff in ICSR) androw -start

(row -jump in ICSR) arrays are accessed only once. Spatial locality is feasible and it

is achieved automatically by nature of the CSR scheme since the elements of each of

the three arrays are stored and accessed consecutively.

In terms of output vectory , temporal locality is not feasible since eachy -vector

result is written only once to the memory. As a different view[39], temporal locality

can be considered as feasible but automatically achieved atthe register level. Spatial

locality is feasible and it is achieved automatically sincethey -vector entry results are

stored consecutively.

In terms of input vectorx, both temporal and spatial locality are feasible. Tem-

poral locality is feasible since eachx-vector entry may be accessed multiple times.

However, exploiting the temporal and spatial locality for the x-vector is the major

concern in the CSR scheme sincex-vector entries are accessed through acolumn-

index array (column-diff in ICSR) in a non-contiguous manner.

These locality issues can be solved by reordering rows/columns of matrixA and

CHAPTER 2. BACKGROUND 9

the exploitation level of these data localities depends both on the existing sparsity

pattern of matrixA and the effectiveness of reordering heuristics.

2.3 Hypergraph Partitioning

A hypergraphH= (V,N) is defined as a set of verticesV and a set of nets (hyper-

edges)N . Every netnj ∈ N connects a subset of vertices, i.e.,nj⊆V . The vertices

connected by a netnj are called itspins (i.e., Pins(nj)). Weights can be associated

with the vertices. We usew(vi) to denote the weight of the vertexvi .

Given a hypergraphH = (V,N), Π = {V1, . . . ,VK} is called aK -way partition

of the vertex setV if each part is nonempty, i.e.,Vk 6= ∅ for 1 ≤ k ≤ K ; parts are

pairwise disjoint, i.e.,Vk ∩ Vℓ = ∅ for 1 ≤ k < ℓ ≤ K ; and the union of parts gives

V , i.e.,
⋃

k Vk = V . A K -way vertex partition ofH is said to satisfy the partitioning

constraint if

Wk ≤Wavg(1 + ε), for k = 1, 2, . . . , K (2.1)

In here, the weightWk of a partVk is defined as the sum of the weights of the ver-

tices in that part (i.e.,Wk =
∑

vi∈Vk
w(vi)), Wavg is the average part weight (i.e.,

Wavg = (
∑

vi∈V
w(vi))/K), andε represents the predetermined, maximum allowable

imbalance ratio.

In a partitionΠ of H , a net that connects at least one pin (vertex) in a part is said

to connectthat part. Connectivity setΛj of a net nj is defined as the set of parts

connected bynj . Connectivityλj = |Λj| of a net nj denotes the number of parts

connected bynj . A net nj is said to becut (external) if it connects more than one part

(i.e., λj > 1), anduncut(internal) otherwise (i.e.,λj = 1). The set of external nets of

a partitionΠ is denoted asNE . The partitioning objective is to minimize the cutsize

defined over the cut nets. There are various cutsize definitions. The relevant definition

is:

CHAPTER 2. BACKGROUND 10

cutsize(Π) =
∑

nj∈NE

(λj − 1) (2.2)

In here, each cut netnj contributesλj − 1 to the cutsize. The hypergraph partitioning

problem is known to be NP-hard [27].

Recently, multilevel HP approaches [4, 19, 21] have been proposed, leading to suc-

cessful HP tools hMetis [23] and Patoh [7]. These multilevelheuristics consist of 3

phases: coarsening, initial partitioning, and uncoarsening. In the first phase, a mul-

tilevel clustering is applied starting from the original hypergraph by adopting various

matching heuristics until the number of vertices in the coarsened hypergraph decreases

below a predetermined threshold value. Clustering corresponds to coalescing highly

interacting vertices to supernodes. In the second phase, a partition is obtained on the

coarsest hypergraph using various heuristcs including FM,which is an iterative refine-

ment heuristic proposed for graph/hypergraph partitioning by Fiduccia and Matthey-

ses [15] as a faster implementation of the KL algorithm proposed by Kernighan and

Lin [24]. In the third phase, the partition found in the second phase is successively

projected back towards the original hypergraph by refining the projected partitions on

the intermediate level uncoarser hypergraphs using various heuristics including FM.

The recursive bisection(RB) paradigm is widely used inK -way hypergraph par-

titioning and known to be amenable to produce good solution qualities. In the RB

paradigm, first, a two-way partition of the hypergraph is obtained. Then, each part

of the bipartition is further bipartitioned in a recursive manner until the desired num-

ber K of parts is obtained or part weights drop below a given maximum allowed part

weightWmax . In RB-based hypergraph partitioning, the cut-net splitting scheme [6] is

adopted to capture theλ− 1 cutsize metric given in Equation 2.2. In hypergraph par-

titioning, balancing the part weights of the bipartition isenforced as the bipartitioning

constraint.

The RB paradigm is inherently suitable for partitioning hypergraphs when K is not

known in advance. Hence, the RB paradigm can be successfullyutilized in clustering

rows/columns for cache-size aware row/column reordering.

CHAPTER 2. BACKGROUND 11

2.4 Hypergraph Models for Sparse Matrix Partition-

ing

Recently, several successful hypergraph models and methods are proposed for efficient

parallelization of sparse matrix-vector multiplication [5, 6, 9]. The relevant ones are

row-net, column-net, and row-column-net models. The row-net and column-net mod-

els are proposed and used for 1D rowwise and 1D columnwise partitioning of sparse

matrices, respectively, whereas row-column-net model is used for 2D fine-grain parti-

tioning of sparse matrices.

In therow-net hypergraph model[5, 6, 9]HRN (A)=(VC,NR) of matrix A, there

exist one vertexvj ∈ VC and one netni ∈ NR for each columncj and row ri ,

respectively. The vertexvj represents the DAXPY-like operation which multipliesxj

with columncj and adds the result of this scalar-vector product to the output vectory .

The weightw(vj) of a vertexvj ∈ VR is set to the number of nonzeros in columncj .

The netni connects the vertices corresponding to the columns that have a nonzero

entry in rowri . That is,vj ∈Pins(ni) if and only if aij 6=0. Here,ni represents the

y -vector entry yi andPins(ni) represents the set of scalar multiply results needed to

be accumulated inyi during matrix-vector multiply.

In thecolumn-net hypergraph model[5, 6, 9] HCN(A) = (VR,NC) of matrix A,

there exist one vertexvi ∈ VR and one netnj ∈ NC for each rowri and columncj ,

respectively. The vertexvi represents the inner product of rowri with the input vector

x. The weightw(vi) of a vertexvi ∈ VR is set to the number of nonzeros in rowri .

Net nj connects the vertices corresponding to the rows that have a nonzero entry in

column cj . That is, vi ∈ Pins(nj) if and only if aij 6= 0. Here, nj represents the

x-vector entry xj and Pins(nj) represents the set of inner product operations that

needxj during matrix-vector multiply.

In the row-column-net model[8] (also called as fine-grain model)HRCN (A) =

(VZ ,NRC) of matrix A, there exists one vertexvij ∈ VZ corresponding to each

nonzeroaij in matrix A. In net setNRC , there exists a row-netnr
i for each row

ri , and there exists a column-netnc
i and for each columncj . The vertexvij represents

the scalar multiply-and-add operationyij ← aijxj . Therefore each vertex is assigned

unit weight. The row-netnr
i connects the vertices corresponding to the nonzeros in the

CHAPTER 2. BACKGROUND 12

row ri , and the column-netnc
j connects the vertices corresponding to the nonzeros in

the columncj . That is,vij∈Pins(nr
i) andvij∈Pins(nr

j) if and only if aij 6=0. Note

that each vertexvij is a pin of exactly two nets. Here,nc
j representsxj andPins(nc

j)

represents the set of scalar multiply-and-add operations that needxj , whereasnr
i rep-

resentsyi and Pins(nr
i) represents the set of scalar multiply-and-add results needed

to accumulateyi .

The use of the hypergraphsHRN (A), HCN(A) andHRCN (A) in sparse matrix

partitioning for parallelization of matrix-vector multiply operation is described into

detail in [6, 9]. In particular, it has been shown that the partitioning objective (2.2)

corresponds exactly to the total communication volume, whereas the partitioning con-

straint (2.1) corresponds to maintaining a computational load balance for a given num-

ber K of processors.

In [3], it is shown that aK -way partition of 1DHRN (A) andHCN(A) models can

be decoded as inducing row-and-column reordering for transforming matrixA into a

K -way singly-bordered block-diagonal(SB) form. Here we will briefly describe how

a K -way partition of column-net model can be decoded a row and column ordering

for this purpose and a dual discussion holds for row-net model.

A K -way vertex partitionΠ={V1, . . . ,VK} of HCN(A) is considered as inducing

a (K + 1)-way partition{N1, . . . ,NK ; ,NE} on the net set ofHCN(A). HereNk

denotes the set of internal nets of vertex partVk , for eachk = 1, 2, . . . , K , whereas

NE denotes the set of external nets. The vertex partition is decoded as a partial row

reordering of matrixA such that the rows associated with vertices inVk+1 are ordered

after the rows associated with verticesVk , k = 1, 2, . . . , K − 1. The net partition is

decoded as a partial column reordering of matrixA such that the columns associated

with nets inNk+1 are ordered after the columns associated with nets inNk , k =

1, 2, . . . , K − 1, where the columns associated with the external nets are ordered last

to constitute the column border.

The above-mentioned approach of obtaining aK -way SB form of aK -way par-

tition of the column-net model can be extended to obtain a hierarchic SB form of a

K -way partition produced by using the RB paradigm. In this transformation, the bi-

partition obtained at each RB step is decoded as inducing a2-way SB form, where

these2-way SB forms are nested according to RB hierarchy. SB forms for different

CHAPTER 2. BACKGROUND 13

K values of thepsse1matrix are shown in Appendix B.

2.5 Breadth-First-Search-Based Algorithm for Row/Column

Reordering

Breadth-First Search(BFS) algorithm systematically explores edges of a graph

G = (V, E), level by level to discover every vertex reachable from the source vertexs.

All neighbors of a vertexv are visited before any sibling ofv . This process is repeated

for every unvisited vertex. The running-time complexity isO(|V + E|).

A BFS-like algorithm can be used to order rows/columns of a sparse matrix. The

resultant row order and column order are first-come first-serve basis. While process-

ing a row, all required columns are reordered consecutively. If a column is already

reordered by a previous row, it cannot be reordered again by other rows visited after.

This approach exploits spatial locality more than temporallocality.

The first row to be processed can be selected as randomly or therow which has

maximum degree can be source. In the algorithm, rows with maximum degrees are

selected throughout the processing of all rows.

The Algorithm 3 shows an algorithm that orders rows and columns of a given

matrix A . The rowOrdered array is used to determine whether a row is already pro-

cessed or not, similarlycolOrdered array is used for columns. ThenewRowOrder

andnewColumnOrder arrays contain corresponding new row and column indices of

current row and column indices, respectively. For a given sparse matrixA, rows(A)

denotes index set of rows of matrixA. columns(r) denotes set of column indices of

nonzeros in the rowr . Similarly, rows(c) denotes set of row indices of nonzeros in

the columnc.

CHAPTER 2. BACKGROUND 14

Algorithm 3 Modified BFS Algorithm for Row/Column Ordering

Require: Sparse matrix A
1: rowOrdered[∗]← false

2: columnOrdered[∗]← false

3: columnIndex← 1
4: rowIndex← 1
5: sort rows(A) by nonincreasing number of nonzeros in a row
6: for all r ∈ rows(A) in sorted orderdo
7: if rowOrdered[r] = false then
8: ENQUEUE(Q, r)
9: while Q 6= ∅ do

10: r ← head[Q]
11: rowOrdered[r]← true

12: newRowOrder[r]← rowIndex

13: rowIndex← rowIndex + 1
14: for all c ∈ columns(r) do
15: if columnOrdered[c] = false then
16: columnOrdered[c]← true

17: newColumnOrder[c]← columnIndex

18: columnIndex← columnIndex + 1
19: for all r2 ∈ rows(c) do
20: if rowOrdered[r2] = false then
21: ENQUEUE(Q, r2)
22: end if
23: end for
24: end if
25: end for
26: DEQUEUE(Q)
27: end while
28: end if
29: end for

2.6 Travelling Salesman Problem

Travelling salesman problem(TSP) is one of the most popular problems studied in

combinatorial optimization. There are many other problemsthat can be cast to TSP. In

this section, we will confine the problem definition on symmetric TSP with non-metric

distances. Informal definition can be as follows:

Definition 1 Given a list of cities and pairwise distances, find the shortest tour that

passes all cities exactly once.

TSP can also be modelled as a graph. Graph’s vertices correspond to cities, and edges

correspond to connections between city pairs. The edge weights are the distances

CHAPTER 2. BACKGROUND 15

between cities. The resultant graph may not be complete graph, there may not be edges

between some vertices, or the graph may be defined as completebut some edge weights

may be zero representing the non-existing edges. When this graph is represented by a

adjacency matrixW , entries of this matrix are edge weights so thisW matrix can be

called as aweight matrix. The weightwij represents the distance between verticesvi

and vj . Then aim is finding a permutation of verticesΠ =< Π(1), Π(2) . . .Π(n) >

that minimizes following objective function:

L = wvΠ(n)vΠ(1)
+

n−1
∑

i=1

wvΠ(i)vΠ(i+1)
(2.3)

whereL is the total length of the tour. Minimization and maximization of L are same

problems. If each edge weightwij is subtracted from largest edge weight(wmax + 1),

minimizing 2.3 becomes maximization of length of the tour.

In the case of finding a path instead of a shortest tour, the tour can be converted

to path by removing an edge. This edge must have the maximum weight so that the

length of the path is minimized.

TSP is proved to be a member of the set of NP-complete problems. So the most

efficient way solving this problem, is developing heuristics. The Lin-Kernighan heuris-

tic [28] is the most effective method considered in the literature for generating optimal

or near-optimal solutions for the symmetric traveling salesman problem. So, in this

work, a TSP solver library [18] implementing the heuristic proposed by Kernighan

and Lin [28] is used.

Chapter 3

Related Work

In the literature, there are numerous studies regarding computation and data ordering.

They can be classified into two categories according to the kind of access pattern of

applications. For applications having regular access pattern, compiler optimizations

become more available for computation and data ordering [29, 26]. For applications

whose access pattern changes through time, static improvements in compilers start

being insufficient and this kind of applications are referred as irregular [33]. As a

result dynamic orderings are required [13, 11, 1, 10, 31].

Reordering rows/columns of sparse matrices to exploit locality during sparse

matrix-vector multiplication is a special case of this general computation(or iteration)

and data ordering problem. Here, if we consider a matrixA stored in CSR scheme,

computation order corresponds to row order of matrixA and data order corresponds to

column order. Adding thatdynamicreordering algorithms work as inspector-executor

method used by Saltz [30]. This corresponds to matrix reordering algorithms that are

run before multiplication, they do not run at run-time an it is not necessary because

we have the whole matrix that determines computation and data orders. The example

code given in Figure 3.1 is the general case of the problem andthe code in Figure 3.2

is the special case of computation and data ordering.

Initial studies start with the work of Ding and Kennedy [13].They propose a

dynamic approach for both data and computation reordering.They presentconsecutive

packing(CPACK) where data is ordered when a computaion require it and after then

16

CHAPTER 3. RELATED WORK 17

for(i = 1 to 7)
. . .C[a[i]] . . .
. . .C[b[i]] . . .

endfor

1 2 3 4 5 6 7
a

b

»

3 2 1 3 6 4 2
1 5 4 2 3 6 6

–

1 2 3 4 5 6
C

ˆ

A B C D E F
˜

Figure 3.1: Example for irregular code that are the focus in computation and data
ordering problem.C array is accessed through two index arraysa and b. These two
arrays cause indirection so the code shows irregular accesspatter.

this reordered data no more moved.

Space-filling curves (e.g., Morton, Hilbert) can be used forcomputation order-

ing [20]. They are also used for data ordering [10] and are shown to be successful in

improving locality. Haase et al. [16] use Hilbert space-filling curve to order nonzeros

of the matrixA along the curve. They report speedups of up to 50 percent according

to the original CSR scheme.

Hwansoo and Tseng [17] propose an algorithm, Z-SORT, for reordering compu-

tations and another algorithm, GPART, for reordering data at run-time in. Z-SORT

algorithm finds a new loop iteration order using Z-curve which is a kind of space-

filling curve. GPART orders elements in data array to exploit spatial locality. After

data ordered by GPART, Z-SORT finds suitable computation ordering respecting the

order found by GPART.

Strout and Hovland [35] give metrics that guide while selecting the best ordering

method according to irregularity of applications. They introduce a temporal hyper-

graph model for ordering iterations to exploit temporal locality. They also generalize

spatial locality graph model to spatial locality hypergraph model to encompass the ap-

plications having multiple arrays that are accessed irregularly. Additionally, they pro-

pose a modified algorithm like Breadth-First Search for ordering data and iterations

simultaneously whereas Breadth-First Search is used for only data ordering in [1].

In a very recent work by Yzelman and Bisseling [40], row/column reordering

CHAPTER 3. RELATED WORK 18

for i = 1 to m do
sum = 0
for k = row -start[i] to row -start[i + 1]− 1 do

sum = sum + nonzero[i] ∗ x[column-index[k]]
endfor
y[i] = sum

endfor

1 2 3 4 5

A =

2

4

a11 a14

a22 a23 a24

a32 a34 a35

3

5

1 2 3 4 5 6 7 8
column − index

ˆ

1 4 2 3 4 2 4 5
˜

1 2 3 4 5
x

ˆ

x1 x2 x3 x4 x5
˜

Figure 3.2: Sparse matrix-vecto multiply algorithm based on using the CSR scheme.
x array is thex-vector in the sparse matrix-vector multiplicationy ← Ax .

scheme is proposed based on partitioning the rownet hypergraph model of an input

sparse matrixA. They achieve spatial locality onx-vector entries by clustering the

columns with similar sparsity pattern. They also exploit temporal locality forx-vector

entries by using zig-zag property of ZZCSR and ZZICSR schemes mentioned in Sec-

tion 2.1.2 and 2.1.4 respectively.

White and Sadayappan [39] use graph model for ordering rows and columns us-

ing the Metis graph partitioner [22]. Unfortunately they report that they could not

gain improvement for reordered matrices compared to original matrices during sparse

matrix-vector multiplication.

Pınar and Heath [32] try to permute nonzeros of the matrixA into contiguous

blocks to decrease the number of indirections and they formulate this problem as an

instance of the traveling salesman problem.

Beside reordering transformations, locality can be exploited by a cache-aware

method calledcache blockinglike in OSKI framework [37] and in [38]. Our con-

tributions in this thesis have both cache-aware and cache-oblivious aspects and they

will be presented in Chapters 4 and 5.

Chapter 4

Single Matrix-Vector Multiply

Framework

This is the conventional approach to matrix-vector multiply operation. They -vector

results are computed simply by multiplying matrixA with x-vector , i.e.,

y ← Ax (4.1)

The objective in this scheme is to reorder the columns and rows of matrix A for

maximizing the exploitation of temporal and spatial locality in accessingx-vector

entries. Recall that temporal locality in accessingy -vector entries is not feasible,

whereas spatial locality is achieved automatically because y -vector results are stored

and processed consecutively. Reordering the rows with similar sparsity pattern nearby

increases the possibility of exploiting temporal localityin accessingx-vector entries.

Reordering the columns with similar sparsity pattern nearby increases the possibility

of exploiting spatial locality in accessingx-vector entries. This row/column reorder-

ing problem can be considered as a row/column clustering problem and this clustering

process can be achieved in two distinct ways: top-down and bottom-up. In this sec-

tion, we first propose and discuss a cache-size aware top-down approach based on

1D partitioning of sparse matrixA and then a cache oblivious bottom-up approach

based on hierarchical clustering of rows with similar patterns. Then we propose a col-

umn compression scheme as a preprocessing step which makes these two approaches

cache-line-size aware.

19

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 20

4.1 1D Decomposition of Sparse Matrices

We consider a row/column reordering which permutes a given matrix A into aK -way

SB form

ASB = PAQ =















A11 A1B1

A22 A2B2

. . .
...

AKK AKBK















=















A1

A2

...

AK















. (4.2)

where the CSR data structure associated with each submatrixAk as follows

Ak = [0 . . . 0 Akk 0 . . . 0 AkBk
] . (4.3)

Here Akk denotes thek th diagonal block ofASB , whereasAB denotes the column

border as follows

AB =















A1B1

A2B2

...

AKBK















. (4.4)

Each column in the border is called arow-coupling columnor simplycoupling column.

Let λ(cj) denote the number of submatrices that contain at least one nonzero of column

cj of matrix ASB , i.e.,

λ(cj) = |{Ak : cj ∈ Ak}| (4.5)

In this notation, a columncj is coupling column ifλ(cj) > 1.

The following theorem gives the guidelines for a “good”A-to-ASB transforma-

tion.

Theorem 1 Given aK -way SB form of matrixA such that every submatrixAk can

fit into the cache. Then the numberΦ(ASB) of cache misses due to the access of

x-vector entries can be upperbounded as

Φ(ASB) ≤
∑

cj

λ(cj) (4.6)

in case of full-associativity of cache is assumed.

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 21

Proof Since each submatrixAk fits into the cache, eachx-vector entry corresponding

to a nonzero column of matrixAk will be loaded to the cache only once during the

yk = Akx multiply, under the full-associativity assumption. Therefore for a column

cj maximum number of cache misses that can occur is bounded above byλ(cj) due to

the access of correspondingx-vector entry xj . Thus, the numberΦ(ASB) of cache

misses due to the access ofx-vector entries cannot exceed
∑

cj
λ(cj). Note that this

upperbound also holds for the larger cache-line sizes.

Theorem 1 leads us to a cache-size aware top-down row/columnreordering through

an A-to-ASB transformation which minimizes the sum
∑

cj
λ(cj) of the λ values of

columns. Here, minimizing objective relates to minimizingthe cache misses due to

temporal locality.

More precisely, under the assumption that there is no empty column, since there

has to be at least one cache-miss for each columncj . The columncj bringsλ(cj)− 1

extra cache-misses due to temporal locality in the worst case.

Corollary 1 Given aK -way SB form of matrixA such that every submatrixAk can

fit into the cache. Then the numberΦadditional(ASB) of additional cache misses due to

the access ofx-vector entries can be upperbounded as

Φadditional(ASB) ≤
∑

cj

(λ(cj)− 1) (4.7)

As also discussed in [2], thisA-to-ASB transformation problem can be formu-

lated as an HP problem using the column-net model of matrixA with a part size

constraint of cache size and partitioning objective of minimizing cutsize according to

the connectivity-1 metric definition given in 2.2.

4.2 Hierarchical Clustering

For row/column reordering of sparse matrices, an hierarchical bottom-up approach is

also proposed. This idea is inspired from GPART Algorithm proposed by Han and

Tseng [17]. A nice property of this approach is being cache-oblivious. Different from

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 22

Han and Tseng, in this approach, hypergraph is used instead of graph. The given sparse

matrix is represented as a hypergraph by utilizing the column-net hypergraph model.

Thus, the rows are represented by vertices and the columns are represented by nets.

The reordering algorithm works in a bottom-up fashion and performs clustering phases

as far as it could be. On each clustering pass, the vertices are clustered according to

the “heavy net connectivity” metric which is commonly used on coarsening phase of

hypergraph partitioning tools. Each cluster is then behaved as a single vertex in the

next pass and this forms coarsened hypergraph constitutinga hierarchical structure.

The coarsening process continues until there exists one vertex left or all vertices are

disconnected in the coarsened hypergraph.

The proposed hierarchical clustering algorithm is presented in Algorithm 5. The

rows of the sparse matrix is reordered respecting the hierarchy of clustering. That is,

the rows are reordered in such a way that the rows corresponding to vertices of a cluster

are grouped together. This refers to the idea of clustering the rows with similar sparsity

patterns and consequently improves the exploitation of temporal locality. On each

clustering pass, first the vertices are sorted in decreasingorder of net degrees. Then

all vertices are processed respecting to this order. That is, the vertex with more nets is

processed before. The intention of “processing the vertex”is either assigning the vertex

to a cluster or form a new cluster with another vertex. If the vertex, to be processed,

is already clustered, then it is not further assigned to any cluster and the algorithm

passes to the next vertex. But if the vertex is not yet clustered, the most attractive

cluster is selected. The attractiveness of a cluster is evaluated by heavy net connectivity

metric. In this metric, the cluster with largest number of shared nets is most attractive.

Note that the other unclustered vertices are considered as one-vertex clusters when we

evaluate the attractiveness. Therefore, the processing vertex can either select a cluster

or an unclustered vertex as most attractive. If it selects a cluster, the vertex simply

joins that cluster. However, if the processing vertex selects an unclustered vertex, than

these two vertices form a new cluster. The above-mentioned procedure only reorders

the rows of the matrix. The columns are reordered as in CPACK approach in which

columns are moved into adjacent locations in the order they are first encountered by a

row [13]. Consequently, the overall process presents a simple yet effective algorithm

where temporal locality is exploited by reordering rows with similar sparsity patterns

nearby by utilizing the hierarchy of clustering and spatiallocality is exploited via a

post processing.

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 23

4.3 Compression Preprocessing for Spatial Locality

The column-net model exploits temporal locality in the firstplace. Reordering columns

utilizing the information obtained from vertex partition exploits spatial locality. Pro-

cess of reordering of columns is not necessarily to be done ifspatial locality is ex-

ploited via any method. Such a method is compression of columns. This is a prepro-

cessing step in which columns are grouped to form cache-line-sized clusters so that

only temporal locality will be considered in further steps.The requirement for taking

care of spatial locality disappears in further steps. This approach can be used as a

preprocessing step of any row reordering method.

The columns with similar sparsity pattern are clustered to form cache-line-sized

clusters. If a cluster cannot reach size of cache line, then they are left single. Clus-

tering process is performed via successive matchings of columns. All columns are

singleton clusters at the beginning. Clusters are processed in random order. Each

cluster selects the most attractive unprocessed cluster. The cluster that shares maxi-

mum number of rows with the selector cluster is most attractive. After every cluster

selects another cluster, one level ends and another level starts so number of levels is

log2cachelinesize. Each final cluster corresponds to a new column. This matrix can

be further processed for temporal locality. After this process, it is decompressed and

passed to matrix-vector multiply operation.

Consequently, this preprocessing approach makes any reordering method cache-

line-size aware.

CHAPTER 4. SINGLE MATRIX-VECTOR MULTIPLY FRAMEWORK 24

Algorithm 4 Hypergraph Based Bottom-up Reordering HPART

Require: HypergraphH = (U ,N) , Tree levelt
1: if | U| = 1 or nodes ofH are disconnectedthen
2: return t

3: end if
4: Hcoarsen ← HCLUSTER(H)
5: tupper.lower ← t

6: return HPART(Hcoarsen , t)

Algorithm 5 Hypergraph Based Clustering HCLUSTER

Require: HypergraphH = (U ,N)
1: C ← ∅
2: for each nodeu ∈ U do
3: selected[u] ← FALSE

4: C ← C ∪ {{u}}
5: end for
6: for each nodeu ∈ U in decreasing order of number of netsdo
7: if selected[u] = FALSE then
8: C ← C − {{u}}
9: max← 0

10: for each clusterc ∈ C do
11: S ← ∅
12: for each nodev ∈ c do
13: S ← S ∪Nets[v]
14: end for
15: S ← S ∩Nets[u]
16: if max < |S| then
17: max← |S|
18: maxc← c

19: end if
20: end for
21: if max > 0 then
22: C ← C − {maxc}
23: if |maxc| = 1 then
24: selected[v] ← TRUE , wheremaxc = {v}
25: end if
26: c← maxc ∪ {u}
27: C ← C ∪ c

28: end if
29: end if
30: end for
31: return Hcoarsen due to clusterC

Chapter 5

Multiple Submatrix-Vector Multiplies

Framework

In this framework, we assume that the nonzeros of matrixA are partitioned arbitrarily

amongK submatrices such that each submatrixAk contains a mutually disjoint subset

of nonzeros. Then matrixA can be written as

A = A1 + A2 + · · ·+ Ak (5.1)

Note that this partitioning is not necessarily row disjointor column disjoint. That is,

the nonzeros of a given column of matrixA might be shared by multiple submatri-

ces. Similarly, the nonzeros of a given row of matrixA might be shared by multiple

submatrices. In this framework,y ← Ax can be computed as

for k ← 1 to K (5.2)

y ← y + Akx

The partitioning of matrixA into submatricesAk should be done in such a way that

the temporal and spatial locality of individual submatrix-vector multiplications are ex-

ploited in order to minimize cache misses during an individual submatrix-vector mul-

tiplication. This goal is similar as Single Matrix-Vector Multiply framework discussed

in Chapter 4. On the contrary, this framework requires partitioning of the matrixA

into submatrices whereas previous framework uses the method of reordering rows and

columns. We discuss pros and cons of this framework according to the conventional

25

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWORK26

framework y ← Ax in Section 5.1. In Section 5.2, we also show that partitioning

the matrixA into submatrices can be performed by 2D-partitioning of fine-grain hy-

pergraph model. The order of individual submatrix-vector multiply operations is also

important to exploit temporal locality. We state this ordering problem as an instance

of traveling salesman problem in Section 5.3.

5.1 Pros and Cons compared to Conventional Frame-

work

Since a global row and column ordering is assumed in Equation5.3, submatrices are

likely to contain empty rows. Hence, each individual sparsesubmatrix-vector multiply

operationy → y + Akx is performed using the ICSR scheme. As seen Algorithm 6,

individual submatrix-vector multiply results are accumulated in the output vectory on

the fly in order to avoid additional write operations.

Algorithm 6 Multiple Sparse Submatrix-Vector Multiplications using ICSR scheme

Require: nonzerok , column-di ff k and row -jumpk arrays of amk by nk sparse subma-
trix Ak where k = 1, 2 . . . K , K is total number of submatrices, number of nonzeros
nnzk in matrix Ak ,
a dense input vectorx

1: for k ← 1 to K do
2: i← row -jumpk[0]
3: j ← column-di ff k[0]
4: t← 0
5: r ← 1
6: tmp← 0
7: while t < nnzk do
8: tmp← tmp + nonzerok[t] ∗ x[j]
9: t← t + 1

10: j ← j + column-di ff k[t]
11: if j ≥ n then
12: y[i]← tmp

13: tmp← 0
14: j ← j − nk

15: i← i + row -jumpk[r]
16: r ← r + 1
17: end if
18: end while
19: end for
20: return y

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWORK27

Note that the conventional single matrix-vector multiply framework can be consid-

ered as a special case in which submatrices are also restricted to be row disjoint. Thus,

this framework brings an additional flexibility for exploiting the temporal and spa-

tial locality. ClusteringA-matrix rows/subrows with similar sparsity pattern into the

same submatrices increases the possibility of exploiting temporal locality in accessing

x-vector entries. ClusteringA-matrix columns/subcolumns with similar sparsity pat-

tern into the same submatrices increases the possibility ofexploiting spatial locality in

accessingx-vector entries as well as temporal locality in accessingy -vector entries.

However, this additional flexibility comes at a cost of disturbing the following lo-

cality compared to conventional approach. There is some disturbance in the spatial

locality in accessing the nonzeros of theA-matrix due to the division of three arrays

associated with nonzeros intoK parts. However, this disturbance in spatial locality is

negligible since elements of each of the three arrays are stored and accessed consecu-

tively during each submatrix vector multiply operation. That is, at most3(K−1) extra

cache misses occur compared to the conventionaly ← Ax scheme due to the distur-

bance of spatial locality in accessing the nonzeros ofA-matrix . Furthermore, multiple

read/writes of the submatrix-vector multiply results might bring some disadvantages

compared to conventional single matrix-vector multiply. These multiple read/writes

disturb the spatial locality of accessingy -vector entries as well as introducing a tem-

poral locality exploitation problem iny -vector entries.

Our problem here, can be defined as the matrix-to-submatrix partitioning prob-

lem. As a solution, the following theorem gives the guidelines for a “good” matrix-to-

submatrix partitioning:

Theorem 2 Consider a partitionΠ(A) of matrix A into K nonzero-disjoint subma-

trices A1, A2, . . . , AK . Let λ(ri) denote the number of submatrices that contain at

least one nonzero of rowri of matrix A, i.e., λ(ri) = |{Ak : ri ∈ Ak}|. Similarly let

λ(cj) denote the number of submatrices that contain at least one nonzero of column

cj of matrix A, i.e., λ(cj) = |{Ak : cj ∈ Ak}|.Let q denote the maximum number of

caches that a submatrix can fit into. Then the numberΦ(Π(A)) of cache misses due

to the access ofx-vector and y -vector entries can be upperbounded as

Φ(Π(A)) ≤
∑

ri

λ(ri) + q
∑

cj

λ(cj) (5.3)

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWORK28

if cache is assumed to be fully-associative.

Proof Consider the case that the line size is equal to thex/y -vector entry size. For

each submatrixAk , eachy -vector result ofAk is written only once to the memory.

For the sake of simplicity, we referΦ(Π(A)) asΦ. Let Φx andΦy respectively denote

the number of cache misses due to the access ofx-vector and y -vector entries for

Π(A). Then,

Φ = Φx + Φy (5.4)

The number of cache misses due to the access ofyi is at mostλ(ri) which happens

when no cache-reuse occurs in accessing toyi , that is,

Φy ≤
∑

ri

λ(ri). (5.5)

Let qk denote the minimum number of caches that submatrixAk can fit into. Since

full-associativity is assumed, for each submatrixAk , eachx-vector entry of Ak is

accessed at mostqk times. Therefore, the number of cache misses due to the access of

xj is at mostqk for each submatrixAk that xj is needed to be accessed. Then,

Φx ≤
∑

cj

∑

k:cj∈Ak

qk (5.6)

≤
∑

cj

∑

k:cj∈Ak

q (5.7)

= q
∑

cj

∑

k:cj∈Ak

1 (5.8)

= q
∑

cj

λ(cj) (5.9)

Equation 5.4, Equation 5.5 and Equation 5.9 together yield to Equation 5.3. Extending

the line size can only increase the cache-reuse and accordingly decrease the cache-

miss. Therefore, Equation 5.3 still holds for larger line sizes.

Corollary 2 When all submatrices fit into the cache then the numberΦ(Π(A)) of

cache misses due to the access ofx-vector andy -vector entries can be upperbounded

as

Φ(Π(A)) ≤
∑

ri

λ(ri) +
∑

cj

λ(cj) (5.10)

These theorems give exact upper bounds for when temporal reuse is exploited at

the utmost degree via fully-associativity.

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWORK29

5.2 2D Decomposition of Sparse Matrices

The aim is to partition the given sparse matrixA into K nonzero-disjoint submatrices.

Corollary 2 leads us to a cache-size aware top-down matrix-to-submatrix partitioning

which minimizes the sum
∑

ri
λ(ri)+

∑

cj
λ(cj) of λ values of rows and columns such

that the storage of each submatrix-vector multiply fits intothe cache. Here, minimizing

objective relates to minimizing the cache misses due to temporal locality.

More precisely, under the assumption that there is no empty column, since there

has to be at least one cache-miss for each rowri and each columncj . Thus the rowri

and the columncj , respectively, bringλ(ri)− 1 andλ(cj)− 1 extra cache-misses due

to temporal locality in the worst case.

Corollary 3 Given aK -way matrix-to-submatrix partitionΠ(A) of matrix A such

that every submatrixAk can fit into the cache. Then the numberΦadditional(Π(A)) of

additional cache misses due to the access ofx-vector and y -vector entries can be

upperbounded as

Φadditional(Π(A)) ≤
∑

ri

(λ(ri)− 1) +
∑

cj

(λ(cj)− 1) (5.11)

The matrix-to-submatrix partition problem can be formulated as an HP problem

using the row-column-net model of matrixA with a part size constraint of cache size

and partitioning objective of minimizing cutsize according to the connectivity-1 metric

definition given in Equation 2.2.

5.3 Ordering Submatrix-Vector Multiplies

The partitioning of matrixA into submatricesAk should be done in such a way that

the temporal and spatial locality of individual submatrix-vector multiplications are ex-

ploited in order to minimize cache misses during an individual submatrix-vector multi-

plication. When all the multiplications are considered, data reuse between two consec-

utive submatrix-vector multiplications must be maximizedto exploit temporal locality.

We give an exact lower bound for the cache misses due to the access ofx-vector and

y -vector entries for a given order of submatrices.

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWORK30

Theorem 3 Consider a partitionΠ̂(A) of matrix A into K nonzero-disjoint subma-

trices A1, A2, . . . , AK with a given ordering of the submatrices. Letγ(ri) and γ(cj),

denote the number of submatrix-subchains in which all submatrices contain at least

one nonzero of rowri and columncj , respectively. Letw denote the line size in terms

of a unit x/y -vector entry. If no submatrixAk can fit into one cache, then the number

Φ(Π̂(A)) of cache misses due to the access ofx-vector and y -vector entries can be

lowerbounded as

Φ(Π̂(A)) ≥

∑

ri
γ(ri) +

∑

cj
γ(cj)

w
(5.12)

Proof We will give the proof only for the columns, since a similar proof applies for

the rows; then total number of cache misses can be written as sum of cache misses due

to access ofy -vector entries andx-vector entries and can be formulated as

Φ(Π̂(A)) = Φr(Π̂(A)) + Φc(Π̂(A)) (5.13)

Consider a columncj of matrix A. Then there existsγ(cj) submatrix-subchains for

columncj . Since no submatrixAk can fit into one cache, it is guaranteed that there will

be no cache-reuse of columncj between two different submatrix-subchains including

cj . Therefore, at leastγ(cj) cache misses will occur for each columncj which yields

that the numberΦc(Π̂(A)) of cache misses due to the access ofx-vector entries is

greater than or equal to
∑

ri

∑

cj
γ(cj) in the case of unit cache-line-size, i.e.,w =

1. Since the number of cache-misses can maximally decreasew -fold, the number

Φc(Π̂(A)) of cache misses due to the access ofx-vector entries is greater than or

equal to
P

cj
γ(cj)

w
.

Theorem 4 Consider the TSP Instance (G = (V, E), w), where vertex setV de-

notes theK submatrices. There exists an edgeeij in E if and only if there exists

at least one row or column shared between submatricesAi and Aj . The weight of

edgewij denotes the sum of the number of shared rows and the number of shared

columns between submatricesAi and Aj . Then, finding an order ofV which maxi-

mizes the path weight corresponds to finding an order of submatrices which minimizes
∑

ri
γ(ri) +

∑

cj
γ(cj).

CHAPTER 5. MULTIPLE SUBMATRIX-VECTOR MULTIPLIES FRAMEWORK31

Proof

∑

ri

γ(ri) +
∑

cj

γ(cj) =
∑

ri

(|Ai1 ∩ {ri}|+
K

∑

k=2

|(Aik − Aik−1
) ∩ {ri}|)

+
∑

cj

(|Ai1 ∩ {cj}|+
K

∑

k=2

|(Aik − Aik−1
) ∩ {cj}|)

= |Ai1|+
K

∑

k=2

|(Aik −Aik−1
)|

= |Ai1|+
K

∑

k=2

|(Aik − (Aik ∩Aik−1
))|

= |Ai1|+
K

∑

k=2

(|Aik | − |Aik ∩Aik−1
|)

=
K

∑

k=1

|Aik | −
K

∑

k=2

|Aik ∩ Aik−1
|

=

K
∑

k=1

|Aik | −
K

∑

k=2

wik,ik−1

In the above formulation,Aik is used to denote thek th submatrix in the order of

submatrices andAik is also used to denote the set of rows and columns that belong

to the submatrixAik . The maximum value of
∑K

k=2 wik,ik−1
will yield the minimum

value of
∑

ri
γ(ri)+

∑

cj
γ(cj). Then, finding an order ofV which maximizes the path

weight
∑K

k=2 wik,ik−1
corresponds to finding an order of submatrices which minimizes

∑

ri
γ(ri) +

∑

cj
γ(cj).

According to Theorem 4, the lower bound
∑

ri
γ(ri) +

∑

cj
γ(cj) corresponds to

the objective function of the TSP instance constructed in the theorem.

Chapter 6

Experimental Results

Throughout the previous chapters, we investigate ways of exploiting data locality by

reordering/partitioning a sparse matrixA. In this chapter, we show the improvements

gained by the proposed models and frameworks. A cache simulator is used to show

these improvements. The existing state-of-the-art modelssuch as row-net model [40]

and BFS-based algorithm [1] are also tested.

6.1 Experimental Setup

The two contributed frameworks and underlying models are based on decreasing cache

misses incurred byx-vector and y -vector entries so using a cache simulator will

make the improvement obtained by our contributions more clear. One must pay more

attention to sum of cache misses caused byx-vector andy -vector entries to see the

proof of our proposed concepts.

All simulation results are normalized according to the number of cache misses for

original, unprocessed matrices. The cache miss ratio is 1.00 if the number of cache

misses does not change. If number of cache misses is decreased when a method ap-

plied, the ratio is smaller than 1.00. Similarly, if number of cache misses is increased

when a method applied, the ratio is greater than 1.00. The used normalization equation

32

CHAPTER 6. EXPERIMENTAL RESULTS 33

is as follows:

ratio =
missreordered

missoriginal

(6.1)

The data type used in storage of matrices is double precisionfloating-point number

which has size of 8 bytes on the test platform. Only the index arrays use integers which

have size of 4 bytes.

6.1.1 Platform

The experiments of using original matrices and reordered matrices in the single matrix-

vector multiply framework are performed on a cache simulator also used in [40].The

experiments related with the multiple matrix-vector multiplies framework are also per-

formed on the cache simulator.

Simulation results of experiments are given for when cache line size is size of 8

doubles, cache size is 32KB and set-associativity is 8. Thisconfiguration is taken from

[40]. Some of results are given for when cache line size of 1 double and number of

cache lines is one eighth of original cache line number so that cache size is still 32KB.

The aim is to show only the effect of temporal locality clearly because spatial locality

for x and y vectors cannot exist when only 1 double is retrieved when a cache miss

occurs.

6.1.2 Data Sets

The proposed frameworks are tested and validated on numerous matrices collected

from The University of Florida Sparse Matrix Collection [36]. General properties of

these matrices can be seen Table 6.1.

The columns can be explained as follows:

1. #Rows : number of rows

2. #Cols : number of columns

3. #Nonzeros : number of nonzeros

CHAPTER 6. EXPERIMENTAL RESULTS 34

Table 6.1: Properties of test matrices.

name #Rows #Cols #Nonzeros Symmetricity drow dcol

Square symmetric matrices

bloweya 30004 30004 150009 yes 5 5
bloweybl 30003 30003 109999 yes 4 4
dixmaanl 60000 60000 299998 yes 5 5
dtoc 24993 24993 69972 yes 3 3
F2 71505 71505 5294285 yes 74 74
msc10848 10848 10848 1229776 yes 113 113
msc23052 23052 23052 1142686 yes 50 50
Na5 5832 5832 305630 yes 52 52
ncvxqp9 16554 16554 54040 yes 3 3
ship 001 34920 34920 3896496 yes 112 112
smt 25710 25710 3749582 yes 146 146
Trefethen20000 20000 20000 554466 yes 28 28
TSOPFFS b300 29214 29214 4400122 yes 151 151
tuma1 22967 22967 87760 yes 4 4
tuma2 12992 12992 49365 yes 4 4

Square unsymmetric matrices

mixtank new 29957 29957 1990919 99% 66 66
powersim 15838 15838 64424 53% 4 4
memplus 17758 17758 99147 50% 6 6
sme3Db 29067 29067 2081063 44% 72 72
sme3Dc 42930 42930 3148656 44% 73 73
circuit 4 80209 80209 307604 36% 4 4
circuit 3 12127 12127 48137 30% 4 4
poli large 15575 15575 33033 0.05% 2 2
fd18 16428 16428 63406 0% 4 4
ns3Da 20414 20414 1679599 0% 82 82
poisson3Da 13514 13514 352762 0% 26 26
Zd Jac3 22835 22835 1915726 0% 84 84
Zhao1 33861 33861 166453 0% 5 5
Zhao2 33861 33861 166453 0% 5 5

Rectangular matrices
baxter 27441 30733 111576 no 4 4
ch7-8-b2 11760 1176 35280 no 3 30
co9 10789 22924 109651 no 10 5
cq9 9278 21534 96653 no 10 4
ex3sta1 17443 17516 68779 no 4 4
fome11 12142 24460 71264 no 6 3
fome12 24284 48920 142528 no 6 3
ge 10099 16369 44825 no 4 3
Kemelmacher 28452 9693 100875 no 4 10
lp dfl001 6071 12230 35632 no 6 3
lp pds02 2953 7716 16571 no 6 2
lp stocfor3 16675 23541 72721 no 4 3
psse0 26722 11028 102432 no 4 9
psse1 14318 11028 57376 no 4 5
psse2 28634 11028 115262 no 4 10
sharte2-b1 17160 286 34320 no 2 120

CHAPTER 6. EXPERIMENTAL RESULTS 35

4. Symmetricity : For square matrices, it is percantage of the number of off-

diangonal nonzeros that have symmetric entries to total number of off-diangonal

nonzeros

5. drow : number of nonzeros per row

6. dcol : number of nonzeros per column

6.2 Experiments with Single Matrix-Vector Multiply

Framework

The two column-net and row-net hypergraph models for 1D partitioning of sparse ma-

trices are evaluated. Using row-net hypergraph model is proposed in [40] and using

column-net model is our proposal. First of all, performances of sparse matrix-vector

multiply operation using matrices partitioned according to these two models are com-

pared. In row-net model, columns with similar sparsity pattern are gathered together by

reordering columns so spatial locality ofx-vector entries is exploited. Also partitions

on columns induce partitions on rows. This induced row partition is used to reorder

rows to increase temporal locality ofx-vector entries. Additionally, the cut rows are

placed between two partitions as proposed in [40] instead ofputting these rows at the

end. If these cut rows are put at the end,x-vector entries retrieved to cache to be used

by previous parts cannot be reused in cut rows.

On the other hand, column-net model is directly related withtemporal locality.

Rows with similar sparsity pattern are gathered together byreordering rows so tempo-

ral locality ofx-vector entries is exploited. Also the induced column partition is used

to reorder columns to increase spatial locality ofx-vector entries. The columns in the

cut are placed at the end. Putting these columns between two parts may decrease cache

missed incurred byx-vector entries but the gain so small to be significant.

These two mentioned methods exploit both spatial and temporal locality but first

method gives more importance to spatial locality. In contrast, the second method gives

more importance to temporal locality. The results show thattemporal locality is more

important and proves correctness of Theorem 1.

CHAPTER 6. EXPERIMENTAL RESULTS 36

Table 6.2: Normalized geometric and arithmetic means of simulation results for ma-
trices partitioned into 32K-sized parts using row-net and column-net models. Original
matrices are partitioned and their transposes, too. Cache line size is 8 times size of
double, 64Bytes.

Existing Method Proposed Method

A−Row-net [40] AT −Row-net [40] A− Column-net AT − Column-net

x y x+y tot x y x+y tot x y x+y tot x y x+y tot

Geometric means

Square Symmetric 0.69 1.00 0.75 0.930.69 1.00 0.75 0.930.52 1.00 0.61 0.910.52 1.00 0.61 0.91
Square Unsymmetric0.49 1.00 0.51 0.760.48 1.00 0.50 0.760.27 1.00 0.30 0.700.28 1.00 0.31 0.70
Rectangular 0.39 1.00 0.47 0.720.55 1.00 0.66 0.870.28 1.00 0.37 0.670.39 1.00 0.53 0.82
Overall 0.50 1.00 0.56 0.800.57 1.00 0.63 0.850.34 1.00 0.41 0.750.39 1.00 0.47 0.81

Arithmetic means

Square Symmetric 0.76 1.00 0.81 0.930.76 1.00 0.81 0.930.57 1.00 0.65 0.910.57 1.00 0.65 0.91
Square Unsymmetric0.75 1.00 0.75 0.820.71 1.00 0.72 0.820.46 1.00 0.52 0.760.48 1.00 0.53 0.76
Rectangular 0.51 1.00 0.55 0.750.78 1.00 0.85 0.910.38 1.00 0.47 0.710.64 1.00 0.73 0.86
Overall 0.67 1.00 0.70 0.830.76 1.00 0.80 0.890.47 1.00 0.54 0.790.57 1.00 0.64 0.85

When we consider the structure of a matrix, its structure mayfavour either row-

net model or column-net model. If a sparse matrixA gives greater cutsize in row-net

model and its transposeAT give less cutsize in column-net model, then this matrixA

is said to favour row-net model. Taking best result of partitioning hypergraph induced

by A and AT will get rid of this bias. This bias does not exist in square symmetric

matrices. It exists in square unsymmetric and rectangular matrices and its effect is

more clear especially in rectangular matrices as seen in Table 6.2. In Table 6.3, the best

of A andAT results is selected for each matrix. The colum-net model also outperforms

the row-net model in this unbiased condition. Results for each matrix can be seen in

Table A.1.

A cache-oblivious method is using the BFS-like Algorithm-3. Here we denote this

algorithm as BFS. The columns of a sparse matrixA are reordered while reordering

rows so spatial locality may be exploited forx-vector entries. The difference between

cache miss ratios of row-net model and BFS is considerably small as seen in Table 6.4.

BFS is simple and it gives effective row/column order when spatial locality is feasible.

If cache line size is equal to size of one double, BFS loses itseffectiveness in its

resulting order. However, Hiearchical algorithm does not lose its effectivenetss as BFS

when cache line size is equal to size of one double, because itconsiders temporal

locality beside spatial locality. Selecting initial row inBFS does not affect the quality

of ordering a lot, selecting a row with minimum or maximum number of nonzeros

performs slightly better than using the row order of original matrix.

CHAPTER 6. EXPERIMENTAL RESULTS 37

Table 6.3: Normalized geometric and arithmetic means of simulation results for matri-
ces partitioned into 32K-sized parts using row-net and column-net models. Best result
of either original matrix or its transpose is selected. Cache line size is 8 times size of
double, 64Bytes.

Existing Method Proposed Method

Row-net [40] Column-net

x y x+y tot x y x+y tot

Geometric means

Square Symmetric 0.69 1.00 0.75 0.930.52 1.00 0.61 0.91
Square Unsymmetric0.47 1.00 0.49 0.760.26 1.00 0.30 0.69
Rectangular 0.33 1.00 0.42 0.710.23 1.00 0.33 0.67
Overall 0.47 1.00 0.53 0.790.32 1.00 0.39 0.75

Arithmetic means

Square Symmetric 0.76 1.00 0.80 0.930.57 1.00 0.64 0.91
Square Unsymmetric0.70 1.00 0.71 0.820.45 1.00 0.51 0.75
Rectangular 0.42 1.00 0.49 0.730.32 1.00 0.41 0.70
Overall 0.62 1.00 0.66 0.830.44 1.00 0.52 0.79

Table 6.4: Normalized geometric and arithmetic means of simulation results for matri-
ces partitioned into 32K-sized parts using row-net and column-net models; and matri-
ces reordered using BFS and Hierarchical algorithms

Existing Methods Proposed Methods

Row-net [40] BFS [1] Column-net Hierarchical

x y x+y tot x y x+y tot x y x+y tot x y x+y tot

Cache line size is 8 times size of double, 64Bytes.

ARITHMETIC 0.67 1.00 0.70 0.830.65 1.00 0.67 0.830.47 1.00 0.54 0.790.69 1.00 0.69 0.83
GEOMETRIC 0.51 1.00 0.56 0.800.45 1.00 0.50 0.790.34 1.00 0.41 0.750.45 1.00 0.50 0.79

Cache line size equals size of one double, 8Bytes.

ARITHMETIC 0.73 1.00 0.79 0.950.82 1.00 0.84 0.960.60 1.00 0.67 0.920.69 1.00 0.75 0.94
GEOMETRIC 0.67 1.00 0.75 0.940.71 1.00 0.75 0.960.50 1.00 0.59 0.920.58 1.00 0.66 0.94

CHAPTER 6. EXPERIMENTAL RESULTS 38

The compression method can be used alone or as a preprocessing step. When

it is used as preprocessing step, time consumed in HP is decreased enough as seen

in Table 6.5. However this method does not give good results for all matrices, even

situation worsens.

Table 6.5: Normalized simulation results for some matrices. Results for only com-

pression method applied are inComp column. Results for matrices are partitioned

into 32K-sized parts using column-net model without columnreordering are inRow

column; with column ordering inCol . Results for column-net model without column

reordering but with compression are inColC column. Time elapsed for reordering

and compression are measured in milliseconds. Timing results for reordering using

column-net model int{Col} column. Compression, partitioning and total times for re-

ordering using column-net model without column reorderingbut with compression are

given separately int{ColC} column.
Comp Row Col ColC t{Col} t{ColC}

name tpart tcomp ttot

msc10848 1.14 0.55 0.48 0.67 8710 1253 402 1655

ship 001 1.02 0.71 0.67 0.8835243 5433 1657 7089

smt 0.87 0.61 0.58 0.6429880 5065 1401 6466

F2 0.79 0.38 0.31 0.5647010 8358 1829 10186

sme3Db 0.46 0.1 0.03 0.0317875 2965 1177 4142

sme3Dc 0.45 0.1 0.03 0.0331430 5555 1845 7400

ns3Da 0.42 0.1 0.04 0.0314738 2683 1009 3691

dixmaanl 1.02 0.35 0.34 0.38 1763 725 102 827

fd18 1.97 0.75 0.44 0.8 710 333 31 364

poli large 1.1 0.82 0.64 0.88 355 170 14 184

Zhao2 3.02 0.99 0.46 0.92 2050 1025 83 1108

Zhao1 3.03 0.99 0.46 1.04 2030 1020 83 1103

As a result, applying the proposed reordering scheme using column-net model de-

creases number of cache misses considerably according to the unordered case. How-

ever, the improvement ishighly dependent on the structure of the matrix. If prepro-

cessing time is also important BFS or Hierarchical algorithms can be used because

hypergraph partitioning takes longer time.

CHAPTER 6. EXPERIMENTAL RESULTS 39

Table 6.6: Normalized geometric and arithmetic means of simulation results for matri-
ces partitioned into 32K-sized parts using fine-grain model. NOTSP column contains
results when TSP ordering not used.Cache line size is 8 timessize of double, 64Bytes.

NOTSP TSP

x y x+y tot x y x+y tot

ARITHMETIC 0.51 7.53 0.80 0.850.45 5.97 0.73 0.82
GEOMETRIC 0.39 3.20 0.62 0.810.30 2.72 0.51 0.78

6.3 Experiments with Multiple Submatrix-Vector Mul-

tiplies Framework

The fine-grain hypergraph model is used in 2D decomposition sparse matrices. This

decomposition is used to partition the matrixA int submatricesAk . Rows of each

submatrix have similar sparsity pattern and similarly columns of each submatrix have

similar sparsity pattern. Dimensions of these submatricesare as the original matrix’s

so numbers of empty rows and columns are considerable great.Great number of empty

columns disturbs spatial locality ofx-vector entries. Locating internal column nets of

each submatrix consecutively decreases bad effects of thisdisturbance. Large number

of empty rows causes performance loss in the CSR storage scheme but not in ICSR.

Number of cache misses measured using CSR is proportional with number of whole

rows but in ICSR it is proportional with number of non-empty rows. When row order-

ing of each submatrix is considered, the internal row nets are ordered consecutively to

increase the disturbed spatial locality ofy -vector entries.

The order of submatrix-vector multiplies is also important. The cache miss differ-

ence between random ordering and order found by TSP can be seen in Table 6.6.

As a result, it is shown that the multiple submatrix-vector multiplies framework can

preferred to conventional scheme and ordering submatricesincreases temporal reuse

between consecutive multiply operations.

6.4 Comparison of Frameworks

Column-net model in single matrix-vector multiply framework outperform others in

both cases, spatial locality is available or not. Unfortunately the second framework

CHAPTER 6. EXPERIMENTAL RESULTS 40

Table 6.7: Normalized geometric and arithmetic means of simulation results for ma-
trices partitioned into 32K-sized parts using column-net model and fine-grain model
with TSP ordering.

Column-net F ine-grain

x y x+y tot x y x+y tot

Cache line size is 8 times size of double, 64Bytes.

ARITHMETIC 0.47 1.00 0.54 0.790.45 5.97 0.73 0.82
GEOMETRIC 0.34 1.00 0.41 0.750.30 2.72 0.51 0.78

Cache line size equals size of one double, 8Bytes.

ARITHMETIC 0.60 1.00 0.67 0.920.51 2.09 0.67 0.93
GEOMETRIC 0.50 1.00 0.59 0.920.42 1.57 0.59 0.93

cannot achieve lower cache miss ratios as shown in Table 6.7.When cache line size is

size of one double, performances of these two fraweworks aresimilar. This shows that

the disturbed spatial localities ofx andy vectors cannot be re-gained, there still exist

unsolved issues in exploting spatial locality.

Chapter 7

Conclusion

In this chapter, we will conclude the results of our work, andconsider some opinions

about the future work of this thesis.

7.1 Conclusions

Two hypergraph partitioning models were proposed for reordering a sparse matrix to

minimize cache misses caused by input/output vector duringSpMxV. For each model,

a framework proposed to exploit the benefits of the model. These models aim firstly

to exploit temporal locality of input vector in single matrix-vector multiply framework

and of both input and output vectors in multiple matrix-vector multiplies framework.

After then, spatial locality is exploited for these vectors. Furthermore, column-net and

fine-grain hypergraph models introduce a much more accuraterepresentation for cache

misses during SpMxV than the row-net hypergraph model when the temporal locality

is considered. It is shown that exploting temporal localityhas generally more impor-

tance during SpMxV. Reordering rows/columns for obtainingspatial locality comes

after, and it must respect the order exploiting temporal locality.

Although 2D partitioning using fine-grain hypergraph modelgives smaller cutsizes

than 1D partitioning using column-net model, the multiple matrix-vector multiplies

framework cannot outperform. One of the possible reasons isthe problem of recruiting

the spatial locality of output vector entries whose spatiallocality was disturbed while

41

CHAPTER 7. CONCLUSION 42

reordering rows.

7.2 Future Work

The proposed frameworks can be more cache-oblivious. Meanly, partitioning a matrix

till it fits into cache is not always feasible when we considertoday’s HP partitioners.

After some recursive bisections, a cache-oblivious algorithm such as BFS can be used

to reorder rows/columns to exploit both temporal and spatial locality.

There are further research issues in fine-grain model because although 2D parti-

tioning using fine-grain hypergraph model gives smaller cutsizes than 1D partitioning

using column-net model, the multiple matrix-vector multiplies framework cannot out-

perform.

Appendices

43

Appendix A

Experimental Results in Detail

Experimental results for each matrix are given in this appendix. There are four types

of columns:

1. x : misses caused byx-vector entries

2. y : misses caused byy -vector entries

3. x+y : sum ofx-vector andy -vector misses

4. tot : total miss count

44

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 45

Table A.1: Simulation results for matrices partitioned into 32K-sized parts. Cache line
size is 8 times size of double, 64Bytes.

Existing Method Proposed Method

A−Row-net [40] AT −Row-net [40] A− Column-net AT − Column-net

name x y x+y tot x y x+y tot x y x+y tot x y x+y tot

Square symmetric matrices

bloweya 1.18 1.00 1.13 1.031.18 1.00 1.13 1.030.61 1.00 0.73 0.940.61 1.00 0.73 0.94
bloweybl 0.90 1.00 0.93 0.980.90 1.00 0.93 0.980.62 1.00 0.74 0.930.62 1.00 0.73 0.93
dixmaanl 0.35 1.00 0.51 0.870.35 1.00 0.51 0.870.34 1.00 0.51 0.870.34 1.00 0.51 0.87
dtoc 0.72 1.00 0.84 0.960.72 1.00 0.84 0.960.72 1.00 0.84 0.960.72 1.00 0.84 0.96
F2 0.54 1.00 0.55 0.930.53 1.00 0.55 0.930.28 1.00 0.31 0.900.28 1.00 0.31 0.90
msc10848 0.68 1.00 0.70 0.980.69 1.00 0.71 0.980.44 1.00 0.47 0.970.44 1.00 0.47 0.97
msc23052 0.50 1.00 0.55 0.960.50 1.00 0.55 0.960.35 1.00 0.41 0.950.35 1.00 0.41 0.95
Na5 1.24 1.00 1.22 1.021.26 1.00 1.24 1.031.10 1.00 1.10 1.011.08 1.00 1.08 1.01
ncvxqp9 0.36 1.00 0.45 0.750.36 1.00 0.46 0.750.23 1.00 0.35 0.700.23 1.00 0.35 0.70
ship 001 0.97 1.00 0.97 1.000.97 1.00 0.97 1.000.70 1.00 0.72 0.990.70 1.00 0.72 0.99
smt 0.70 1.00 0.71 0.980.69 1.00 0.70 0.980.54 1.00 0.56 0.970.53 1.00 0.55 0.97
Trefethen20000 0.42 1.00 0.43 0.630.42 1.00 0.43 0.630.58 1.00 0.58 0.720.59 1.00 0.59 0.72
TSOPFFS b300 1.62 1.00 1.61 1.071.62 1.00 1.60 1.071.12 1.00 1.11 1.011.13 1.00 1.13 1.01
tuma1 0.66 1.00 0.76 0.930.66 1.00 0.76 0.930.49 1.00 0.64 0.890.49 1.00 0.64 0.89
tuma2 0.62 1.00 0.73 0.920.62 1.00 0.73 0.920.49 1.00 0.64 0.900.49 1.00 0.64 0.90

Square unsymmetric matrices

mixtank new 0.61 1.00 0.62 0.920.61 1.00 0.62 0.920.24 1.00 0.26 0.850.24 1.00 0.26 0.85
powersim 0.49 1.00 0.64 0.910.46 1.00 0.61 0.900.45 1.00 0.62 0.900.42 1.00 0.59 0.89
memplus 1.22 1.00 1.18 1.041.24 1.00 1.19 1.050.68 1.00 0.74 0.930.67 1.00 0.73 0.93
sme3Db 0.08 1.00 0.09 0.380.08 1.00 0.08 0.380.03 1.00 0.03 0.340.03 1.00 0.03 0.34
sme3Dc 0.08 1.00 0.08 0.360.08 1.00 0.08 0.360.03 1.00 0.03 0.330.03 1.00 0.03 0.33
circuit 4 1.67 1.00 1.50 1.161.53 1.00 1.39 1.121.07 1.00 1.05 1.021.08 1.00 1.06 1.02
circuit 3 1.20 1.00 1.13 1.031.25 1.00 1.17 1.040.79 1.00 0.86 0.971.03 1.00 1.02 1.01
poli large 0.93 1.00 0.95 0.980.96 1.00 0.98 0.990.62 1.00 0.76 0.910.79 1.00 0.88 0.96
fd18 0.61 1.00 0.72 0.920.73 1.00 0.81 0.950.44 1.00 0.59 0.880.52 1.00 0.66 0.91
ns3Da 0.12 1.00 0.12 0.380.12 1.00 0.12 0.380.04 1.00 0.04 0.330.04 1.00 0.04 0.33
poisson3Da 0.13 1.00 0.14 0.440.13 1.00 0.14 0.440.07 1.00 0.08 0.400.07 1.00 0.08 0.40
Zd Jac3 1.80 1.00 1.75 1.071.26 1.00 1.26 1.081.03 1.00 1.02 1.000.93 1.00 0.93 0.98
Zhao1 0.76 1.00 0.81 0.940.75 1.00 0.81 0.940.46 1.00 0.57 0.870.47 1.00 0.58 0.87
Zhao2 0.75 1.00 0.80 0.940.76 1.00 0.81 0.940.46 1.00 0.57 0.870.47 1.00 0.58 0.87

Rectangular matrices
baxter 0.38 1.00 0.47 0.770.33 1.00 0.42 0.730.42 1.00 0.50 0.790.32 1.00 0.41 0.72
ch7-8-b2 0.43 1.00 0.75 0.952.36 0.99 2.29 1.320.80 1.00 0.91 0.982.59 0.99 2.52 1.38
co9 0.22 1.00 0.24 0.560.69 1.00 0.79 0.950.15 1.00 0.18 0.520.48 1.00 0.65 0.92
cq9 0.24 1.00 0.26 0.580.72 1.00 0.82 0.960.15 1.00 0.18 0.530.49 1.00 0.67 0.93
ex3sta1 1.50 1.00 1.32 1.081.41 1.00 1.29 1.080.82 1.00 0.88 0.971.09 1.00 1.06 1.02
fome11 0.37 1.00 0.39 0.550.24 1.00 0.30 0.550.17 1.00 0.19 0.400.10 1.00 0.17 0.46
fome12 0.38 1.00 0.39 0.550.24 1.00 0.30 0.550.17 1.00 0.19 0.400.10 1.00 0.17 0.47
ge 0.23 1.00 0.29 0.600.57 1.00 0.70 0.900.17 1.00 0.24 0.570.37 1.00 0.57 0.86
Kemelmacher 1.25 1.00 1.09 1.010.63 1.00 0.68 0.910.87 1.00 0.95 0.990.47 1.00 0.53 0.87
lp dfl001 0.37 1.00 0.39 0.550.23 1.00 0.30 0.550.16 1.00 0.19 0.400.10 1.00 0.17 0.46
lp pds02 0.14 1.00 0.18 0.430.46 1.00 0.69 0.900.12 1.00 0.15 0.420.32 1.00 0.61 0.88
lp stocfor3 0.79 1.00 0.86 0.970.38 1.00 0.58 0.880.79 1.00 0.86 0.970.36 1.00 0.57 0.87
psse0 0.32 1.00 0.55 0.890.44 1.00 0.51 0.850.24 1.00 0.50 0.870.36 1.00 0.44 0.83
psse1 0.20 1.00 0.33 0.730.37 1.00 0.47 0.820.16 1.00 0.30 0.720.28 1.00 0.40 0.79
psse2 0.16 1.00 0.34 0.780.34 1.00 0.40 0.790.12 1.00 0.31 0.770.27 1.00 0.33 0.77
sharte2-b1 1.12 1.00 1.00 1.003.13 1.00 3.11 1.780.81 1.00 1.00 1.002.48 1.00 2.47 1.54
ARITHMETIC 0.67 1.00 0.70 0.830.76 1.00 0.80 0.890.47 1.00 0.54 0.790.57 1.00 0.64 0.85
GEOMETRIC 0.50 1.00 0.56 0.800.57 1.00 0.63 0.850.34 1.00 0.41 0.750.39 1.00 0.47 0.81

Appendix B

Pictures of Reordered Matrices

Pictures in this appendix show the resulting matrices afterpartitioning the original

matrix psse1. Each diagonal block in the pictures of partitioned matrices represents

a part in the partitioned hypergraphHB corresponding to partitioned sparse matrix

AB . HereB denotes total number of recursive bisections. AndHB containsK =2B

number of parts. The off-diagonal borders consists of column nets that are cut between

two distinct parts during recursive bisection in column-net model and the maximum

number of such border blocks isB .

46

APPENDIX B. PICTURES OF REORDERED MATRICES 47

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

Figure B.1: Original Matrix psse1

APPENDIX B. PICTURES OF REORDERED MATRICES 48

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

Figure B.2: Partitioned Matrix psse1 whenB = 1 andK = 2

APPENDIX B. PICTURES OF REORDERED MATRICES 49

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

Figure B.3: Partitioned Matrix psse1 whenB = 2 andK = 4

APPENDIX B. PICTURES OF REORDERED MATRICES 50

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

Figure B.4: Partitioned Matrix psse1 whenB = 3 andK = 8

APPENDIX B. PICTURES OF REORDERED MATRICES 51

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

Figure B.5: Partitioned Matrix psse1 whenB = 4 andK = 16

Bibliography

[1] I. Al-Furaih and S. Ranka. Memory hierarchy management for iterative graph

structures.Parallel Processing Symposium, International, 0:0298, 1998.

[2] C. Aykanat, A. Pınar, and̈U. V. Çatalyürek. Permuting sparse rectangular matri-

ces into block-diagonal form. Technical Report BU–CE–0203, Computer Engi-

neering Department, Bilkent University, Turkey, 2002. a shorter version appears

on SIAM Journal on Scientific Computing, Vol. 26, No. 6, 2004.

[3] C. Aykanat, A. Pınar, and̈U. V. Çatalyürek. Permuting sparse rectangular

matrices into block-diagonal form.SIAM Journal on Scientific Computing,

26(6):1860–1879, 2004.

[4] T. N. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization.

In Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445–

452, 1993.

[5] Ü. V. Çatalyürek and C. Aykanat. Decomposing irregularlysparse matrices for

parallel matrix-vector multiplications. InProceedings of 3rd International Sym-

posium on Solving Irregularly Structured Problems in Parallel, Irregular’96, vol-

ume 1117 ofLecture Notes in Computer Science, pages 75–86. Springer-Verlag,

1996.

[6] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition

for parallel sparse-matrix vector multiplication.IEEE Transactions on Parallel

and Distributed Systems, 10(7):673–693, 1999.

52

BIBLIOGRAPHY 53

[7] Ü. V. Çatalyürek and C. Aykanat.PaToH: A Multilevel Hypergraph Partition-

ing Tool, Version 3.0. Bilkent University, Department of Computer Engineer-

ing, Ankara, 06533 Turkey. PaToH is available athttp://bmi.osu.edu/
∼umit/software.htm, 1999.

[8] Ü. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2d de-

composition of sparse matrices.Parallel and Distributed Processing Symposium,

International, 3:30118b, 2001.

[9] Ü. V. Çatalyürek, C. Aykanat, and B. Ucar. On two-dimensional sparse matrix

partitioning: Models, methods, and a recipe.Submitted to SIAM Journal on

Scientific Computing.

[10] J. M. Crummey, D. Whalley, and K. Kennedy. Improving memory hierarchy

performance for irregular applications using data and computation reorderings.

In International Journal of Parallel Programming, pages 425–433, 2001.

[11] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and

implementation of a parallel unstructured euler solver using software primitives.

In AIAA Journal, 1992.

[12] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst.Templates for the solution

of algebraic eigenvalue problems: a practical guide. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2000.

[13] C. Ding and K. Kennedy. Improving cache performance in dynamic applica-

tions through data and computation reorganization at run time. SIGPLAN Not.,

34(5):229–241, 1999.

[14] I. S. Duff, A. M. Erisman, and J. K. Reid.Direct methods for sparse matrices.

Clarendon Press, New York, NY, USA, 1989.

[15] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving

network partitions. InProc. 19th IEEE Design Automation Conf., pages 175–

181. IEEE, 1982.

[16] G. Haase, M. Liebmann, and G. Plank. A hilbert-order multiplication scheme for

unstructured sparse matrices.Int. J. Parallel Emerg. Distrib. Syst., 22(4):213–

220, 2007.

BIBLIOGRAPHY 54

[17] H. Han and C. Tseng. Exploiting locality for irregular scientific codes. IEEE

Trans. Parallel Distrib. Syst., 17(7):606–618, 2006.

[18] K. Helsgaun. An effective implementation of the lin-kernighan traveling sales-

man heuristic.European Journal of Operational Research, 126:106–130, 2000.

[19] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.

Technical report, Sandia National Laboratories, 1993.

[20] G. Jin and M. J. Crummey. Using space-filling curves for computation reordering.

In Proceedings of the Los Alamos Computer Science Institute, 2005.

[21] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-

tioning irregular graphs.SIAM Journal on Scientific Computing, 20(1):359–392,

1998.

[22] G. Karypis and V. Kumar.MeTiS A Software Package for Partitioning Unstruc-

tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of

Sparse Matrices Version 4.0. University of Minnesota, Department of Comp. Sci.

and Eng., Army HPC Research Center, Minneapolis, 1998.

[23] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar.hMeTiS A Hypergraph Par-

titioning Package Version 1.0.1. University of Minnesota, Department of Comp.

Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[24] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs.Bell System Technical Journal, 49:291–307, 1970.

[25] J. Koster. Parallel Templates for Numerical Linear Algebra, a High-Performance

Computation Library. Master’s thesis, Utrecht University, July 2002.

[26] M.S. Lam and M.E. Wolf. A data locality optimizing algorithm. SIGPLAN Not.,

39(4):442–459, 2004.

[27] T. Lengauer.Combinatorial Algorithms for Integrated Circuit Layout. Willey–

Teubner, Chichester, U.K., 1990.

[28] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-

salesman problem.Operations Research, 21(2):498–516, 1973.

BIBLIOGRAPHY 55

[29] K.S. McKinley, S. Carr, and C. Tseng. Improving data locality with loop trans-

formations.ACM Trans. Program. Lang. Syst., 18(4):424–453, 1996.

[30] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, andK. Crowley. Prin-

ciples of runtime support for parallel processors. InICS ’88: Proceedings of

the 2nd international conference on Supercomputing, pages 140–152, New York,

NY, USA, 1988. ACM.

[31] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine array references. In

PACT ’99: Proceedings of the 1999 International Conferenceon Parallel Archi-

tectures and Compilation Techniques, page 192, Washington, DC, USA, 1999.

IEEE Computer Society.

[32] A. Pinar and M. T. Heath. Improving performance of sparse matrix-vector mul-

tiplication. InSupercomputing ’99: Proceedings of the 1999 ACM/IEEE confer-

ence on Supercomputing (CDROM), page 30, New York, NY, USA, 1999. ACM.

[33] L. Rauchwerger. Run-time parallelization: its time has come.Parallel Comput.,

24(3-4):527–556, 1998.

[34] Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Society

for Industrial and Applied Mathematics, April 2003.

[35] M. M. Strout and P. D. Hovland. Metrics and models for reordering transfor-

mations. InProc. of the Second ACM SIGPLAN Workshop on Memory System

Performance (MSP04), pages 23–34, Washington DC., June 2004. ACM.

[36] A. D. Timothy. University of florida sparse matrix collection. NA Digest, 92,

1994.

[37] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automatically

tuned sparse matrix kernels.Journal of Physics: Conference Series, 16(1):521+,

2005.

[38] R. W. Vuduc and H. Moon. Fast sparse matrix-vector multiplication by exploiting

variable block structure. pages 807–816. 2005.

[39] J. White. On improving the performance of sparse matrix-vector multiplication.

In In Proceedings of the International Conference on High-Performance Com-

puting, pages 578–587. IEEE Computer Society, 1997.

BIBLIOGRAPHY 56

[40] A. N. Yzelman and Rob H. Bisseling. Cache-oblivious sparse matrix–vector

multiplication by using sparse matrix partitioning methods. SIAM Journal on

Scientific Computing, 31(4):3128–3154, 2009.

