
ANALYSIS OF TWO TYPES OF CYCLIC

BIOLOGICAL SYSTEM MODELS WITH TIME

DELAYS

a thesis

submitted to the department of electrical and

electronics engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Mehmet Eren Ahsen

July 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Hitay Özbay(Supervisor)
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Prof. Dr. Ömer Morgül

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Coşku Kasnakoğlu
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ABSTRACT

ANALYSIS OF TWO TYPES OF CYCLIC

BIOLOGICAL SYSTEM MODELS WITH TIME

DELAYS

Mehmet Eren Ahsen

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hitay Özbay

July 2011

In this thesis, we perform the stability analysis of two types of cyclic biologi-

cal processes involving time delays. We analyze the genetic regulatory network

having nonlinearities with negative Schwarzian derivatives. Using preliminary

results on Schwarzian derivatives, we present necessary conditions implying the

global stability and existence of periodic solutions regarding the genetic regu-

latory network. We also analyze homogenous genetic regulatory network and

prove some stability conditions which only depend on the parameters of the non-

linearity function. In the thesis, we also perform a local stability analysis of

a dynamical model of erythropoiesis which is another type of cyclic system in-

volving time delay. We prove that the system has a unique fixed point which

is locally stable if the time delay is less than a certain critical value, which is

analytically computed from the parameters of the model. By the help of sim-

ulations, existence of periodic solutions are shown for delays greater than this

critical value.
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ÖZET

ZAMAN GECİKMELİ İKİ DÖNÜŞSEL BİYOLOJİK SİSTEM

MODELİNİN ANALİZİ

Mehmet Eren Ahsen

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Hitay Özbay

Temmuz 2011

Bu tezde zaman gecikmeli iki farklı biyolojik sistem modelinin kararlılık analizi

yapılmıştır. Zaman gecikmesi içeren gen düzenleyici sistem modelinin kararlılık

analizi yapılmıştır. Bu modelde doğrusal olmayan öğelerin negatif Schwarz

türevleri olduğu varsayılmıştır. Schwarz türevleri hakkında elde edilen sonuçlar

kullanılarak, gen düzenleyici sistem modelinin kararlılığıyla ilgili sonuçlar is-

patlanmıştır. Ayrıca periyodik çözümlerin oluşmasını sağlayan koşullar elde

edilmiştir. Homojen gen düzenleyici sistem modeli incelenip kararlılığıyla ilgili

sonuçlar bulunmuştur. Ayrıca zaman gecikmesi içeren doğrusal olmayan Er-

itropoez modelinin kararlılık analizi yapılmıştır. İlk önce belirtilen sistemin tek

bir denge noktası olduğu ispatlanmış, daha sonra sistem bulunan denge noktası

etrafında doğrusallaştırılmıştır. Sistemin gecikme değeri belli bir kritik değerin

altında olması koşuluyla yerel kararlı olduğu gösterilmiştir. Simulasyonlar gecik-

menin bu kritik değerden yüksek olduğunda periyodik çözümler üretmiştir.

Anahtar Kelimeler: Kararlılık Analizi, Monoton Dinamik Sistemler, Schwarz

Türevi, Gen Düzenleyici Sistemler, Poincaré Bendixson Teoremi, Hill Fonksiy-

onları, Eritropoez, Zaman Gecikmesi.
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Özbay for his unlimited support, patience and guidance. I benefited a lot from

his deep knowledge on the topics discussed in this work.
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Chapter 1

Introduction

1.1 Cyclic Biological Processes

The process of creating images of the human body is called medical imaging. Af-

ter Wilhelm Conrad Röntgen discovered X-Rays in 1895, they have been widely

used for the purpose of creating various images of the human body. Although

there are side effects due to exposure to radiation, medical imaging has saved

thousands of lives by early diagnosis of disease. Creating machines for medical

imaging purposes not only requires medical knowledge but also requires advanced

knowledge of engineering and physics. This lead to the birth of a new interdisci-

plinary field called Biomedical Engineering, which also deals with mathematical

modeling of biological processes.

Since 1970s various models have been introduced for many different biological

processes. Mathematical modeling of biological processes not only helps us to

understand the underlying mechanisms better, but it also gives us a way of

controlling them. For example, an effective and reliable model of a disease may

help us determine correct therapeutic actions, e.g. the right amount of drug,

or delivery time of the drug. In 1965, Goodwin has put forward a low-order
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dynamical system that became the milestone example of biochemical oscillatory

networks under negative feedback [1]. In this thesis we deal with the analysis of

two different biological systems (a) gene regulatory networks, and (b) formation

of red blood cells in the human body (erythropoiesis).

By means of genes we pass our traits to our offspring. Gene expression is the

process by which the gene information is converted. It has two main processes

known as transcription and translation. In transcription, genes are copied into

messenger RNA after which mRNA is decoded to make the corresponding pro-

tein. The transcription process is effected by the activities of regulatory proteins.

The combination of these processes and interactions between regulatory proteins

and mRNA are referred as gene regulatory network. Gene regulatory networks

may be used to control various functions of living organisms since they play a

very important role in the process of protein synthesization. In the first part of

this thesis we will consider gene regulatory networks, which have the following

general mathematical model:

ṗ1(t) = −kp1p1(t) + fp1(gm(t− τgm))

ġ1(t) = −kg1g1(t) + fg1(p1(t− τp1))

...

ṗm(t) = −kpmpm(t) + fpm(gm−1(t− τgm−1))

ġm(t) = −kg1gm + fgm(pm(t− τpm)), (1.1)

where pi and gi represent the concentrations of protein and mRNA respectively

and the constants ki represent the degradation rates for mRNAs and proteins.

This model has been first analyzed by Goodwin in [1]. It has a cyclic pattern

which one can encounter in other fields of science as well. In [2], Townley et

al. considered a model similar to (1.1). The early results regarding oscillatory

behavior of the model (1.1) has been put forward by Hasting et al. [3]. These

results have been generalized by Mallet-Paret in [4]. Their result basically says

that the solution of the model (1.1) either converges to the equilibrium point
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or it is a nonconstant periodic solution. Basically, their result rules out any

chaotic behavior. Then, Allwright presented a simple condition regarding the

global attractivity of the unique equilibrium point, [5]. By using the results

presented in [4] and [5], we will try to make an analysis of the model (1.1).

We will analyze the system (1.1) with nonlinearities having negative Schwarzian

derivatives. The concept of Schwarzian derivatives has been widely used in the

analysis of nonlinear difference equations [6] as well as in projective geometry [7].

We will show in Chapter 2 that functions with negative Schwarzian derivatives

have very special forms. By using the results from Chapter 2, in Chapter 3 we will

present conditions regarding the stability and existence of oscillatory behavior of

the model (1.1).

In Chapter 4, we will consider another vital biological process namely ery-

thropoiesis which is the process of production erythrocytes known as red blood

cells. The red blood cells are responsible of transporting oxygen to our body

tissues, which is needed for energy production in our cells. We will consider a

recent model of Erythropoiesis proposed by Lai et al. in [8]. We will show that

the system in [8] has a unique equilibrium point which is locally stable for some

values of the delay. A global analysis of the model is still an open problem.

The models studied in Chapters 3 and 4 fall into the category of cyclic non-

linear systems with time delays. Analysis of such systems have been investigated

extensively in the literature [9], [10], [11] and [12]. There are various technique

developed depending on the type of nonlinearity and interaction of the time delay

with the nonlinearities. Here we use methods from [5], [4], [13] and [14] to ana-

lyze gene regulatory networks and erythropoiesis. Both systems have a feedback

mechanism so techniques from feedback stability analysis are also used.
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1.2 Literature Review

Note that we can rewrite the model (1.1) as follows:

ż1(t) = −λ1z1(t) + g1(z2(t− τ1))

ż2(t) = −λ2z2(t) + g2(z3(t− τ2))

...

żn(t) = −λnzn(t) + gn(z1(t− τn)). (1.2)

If we do the following change of variables

xi(t) := zi(t− hi), hi =
i∑

k=1

(τk), (1.3)

we obtain the mathematical model (1.4) which is equivalent to (1.2):

ẋ1(t) = −λ1x1(t) + g1(x2(t))

ẋ2(t) = −λ2x2(t) + g2(x3(t))

...

ẋn(t) = −λnxn(t) + gn(x1(t− τ)), (1.4)

where

τ =
n∑

k=1

(τk) = hn. (1.5)

In Chapter 3, we analyze the gene regulatory network (1.4) and present some

results regarding its stability. In [15], Wang et al. analyzed a generalized version

of the system (1.4) and by using the result of [4] they prove some conditions

implying delay independent unstability of equilibrium points, for which case the

system (1.4) has periodic solution for all positive values of the delay. In [10],

Enciso considered the gene regulatory network (1.4) under negative feedback.

He presented a global stability result by using the methods of [9], [16] and [17].

Moreover, by using a Hopf bifurcation approach he showed existence of periodic

solutions for some cases. In [14], Muller et al. introduced a general model

for repressilator and analyzed the model using the fact that Hill functions have

4



negative Schwarzian derivatives. In the present work, we first prove that bounded

functions with negative Schwarzian derivatives can only have two special forms

and they can have at most three fixed points. Then by using the results of [4]

and [5], we get the same global stability result of [10]. Different from [10] we

will prove results regarding the stability of the linearized system. We will show

that if the linearized system is unstable then system (1.4) has periodic solutions.

Moreover, we give upper and lower bounds for possible periodic solutions of the

system (1.4) under negative feedback. We also consider the homogenous genetic

regulatory network under negative feedback with nonlinearities in the form of Hill

functions and prove a result regarding the global stability of the homogenous

system. Furthermore, we analyzed the system (1.4) under positive feedback

which is to the author’s knowledge has not been considered in the literature

yet. We proved a global stability result regarding the positive feedback case

by using the results presented in [18]. In [18], Smith makes a general analysis

regarding the stability of monotone systems which includes the general regulatory

network model we consider as a subcase. His results lead us conclude that the

general solution of the system (1.4) under positive feedback converges towards

an equilibrium point of it [18], [19]. We also analyzed the homogenous genetic

regulatory network under positive feedback as a subcase.

In Chapter 4, we analyze the Erythropoiesis model proposed by Lai et al.

in [8]. To the author’s knowledge the model has not been investigated in the

literature. In the present work we prove a local stability result regarding the

Erythropoiesis model. But the nonlinearities involved in the model does not

possess special patterns which makes it hard to make a global analysis of the

model.
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Chapter 2

Preliminary Results

2.1 Definitions and Notations

In this section we will try to present some basic definitions and notations that

are frequently used in the thesis. Although most of the results presented in this

chapter can be generalized to any inner product space, we will concentrate on

Rn equipped with the usual Euclidean norm defined as

||x|| =
√
x2
1 + ...+ x2

n, for x = (x1, ..., xn)
T ∈ Rn. (2.1)

A subset K of the vector space Rn over the field R is called a convex cone if for

any scalars α , β ∈ R+ and vectors x, y ∈ K we have

αx+ βy ∈ K. (2.2)

Since the biological parameters such as number of genes, enzymes, mRNA take

positive values, we will analyze our systems in the cone Rn
+ which is defined as

Rn
+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, 2, ..., n}. (2.3)

The symbol C will denote the set of complex numbers and the set C+ is defined

as

C+ = {s ∈ C : Re(s) ≥ 0}. (2.4)

6



For a function

g(x) : K → K, (2.5)

where K is any set, gn(x) will denote the function which is the composition of

g(x) with itself n times. Given an interval I ⊆ R, Dn(I) will denote the set of n

times continuously differentiable functions defined on the interval I. A function

f(x) defined from the normed linear space X to the normed linear space Y is

bounded if

∃M ≥ 0 such that ||f(x)||Y ≤ M ||x||X ∀x ∈ X. (2.6)

A complex valued function f is said to belong to the set H∞ if it is analytic and

bounded in C+. The set H∞ is a commutative ring with unity over itself [13].

For a function f ∈ H∞, the infinity norm of f denoted as ||.||∞ is defined as

follows:

||f ||∞ = ess sup
s∈C+

|f(s)|. (2.7)

Note that this definition makes sense since f is bounded and analytic in C+.

Let x(t) be a vector function depending on the variable t. A point y ∈ Rn is said

to be an omega point of x(t) if there is an increasing sequence 0 < ti → ∞ and

we have

lim
ti→∞

(x(ti)) = y.

The omega limit set of the solution x(t) is the set of omega points of x(t).

2.2 Linear Time Invariant Systems

Linear systems are commonly encountered in engineering, mathematics and eco-

nomics. This chapter will present some basic results from Linear System Theory

that will be used frequently in Chapters 3 and 4 of the thesis. A retarded linear

time invariant (LTI) system with a single delay has the following state space

7



representation:

ẋ(t) = A0x(t) + A1x(t− τ), τ > 0, (2.8)

where A0, A1 ∈ Rn×n and x(t) ∈ Rn. Although the results we have in this

section can easily be generated to multiple delay case, we will concentrate on

single delay case as the mathematical models we will analyze in Chapters 3 and

4 have single delays.

Definition 1. The characteristic function χ(s) associated with the system (2.8)

is given by

χ(s) = det(sI − A0 − A1e
−τs). (2.9)

Definition 2. The characteristic function (2.9) is said to be stable if

χ(s) ̸= 0, ∀s ∈ C+. (2.10)

The system (2.8) is said to be stable if its characteristic function is stable. The

system (2.8) is said to be stable independent of delay if it is stable for all τ ≥ 0.

For constant matrices A0, A1, the characteristic equation of the system (2.8)

will be in the following form:

χ(s) = p0(s) + p1(s)e
−τs = 0, (2.11)

where p0(s), p1(s) are polynomials of degree n and n− 1 respectively.

Notice that when p0(s) and p1(s) in (2.11) do not have a common zero in C+,

we have

χ(s0) = 0 for some s0 ∈ C+ ⇔ 1 +
p1(s0)e

−τs0

p0(s0)
= 0. (2.12)

We will now present a Lemma which is commonly known as the Small-Gain

Theorem.

Lemma 1. Let g(s), h(s) ∈ H∞ such that

||gh||∞ < 1.

8



Then, the characteristic function

χ(s) = 1 + g(s)h(s)e−τs

is stable for all τ ≥ 0.

Proof. For fixed τ , we know that the characteristic function

χ(s) = 1 + g(s)h(s)e−τs

is stable if

χ(s) ̸= 0, ∀s ∈ C+.

Suppose for some s0 ∈ C+, we have

χ(s0) = 1 + g(s0)h(s0)e
−τs0 = 0

⇒ g(s0)h(s0)e
−τs0 = −1

⇒ |g(s0)h(s0)| ≥ 1

⇒ ||gh||∞ ≥ 1,

which contradicts the fact that ||gh||∞ < 1.

As a corollary of Lemma 1, we have the following result.

Lemma 2. Let G ∈ H∞, then for all |k| < ||g||−1
∞ the characteristic equation

χ(s) = 1 + kG(s)e−τs (2.13)

is stable independent of delay.

Proof. Let h(s) = k, then we have

||Gh||∞ < 1

and the result follows from Lemma 1.

9



Consider a characteristic function of the form (2.13), then ωc > 0 is called a

gain crossover frequency of the characteristic equation if we have

|kG(jωc)| = 1. (2.14)

Similarly, we call ωg a phase crossover frequency of the characteristic equation if

cos(∠k + ∠G(jωg)) = −1. (2.15)

Let us now analyze a characteristic function of the following form:

χ(s) = 1 +
ke−τs

(s+ a1)...(s+ an)
= 0 k ∈ R, ai ∈ R+. (2.16)

We will now present a Lemma regarding the stability of a characteristic equation

in the form (2.16). The proof of the Lemma will require the famous Nyquist

criteria in control theory. One may check [20] or any other introductory material

on control theory for a proof of the Nyquist result. Basically, Nyquist criteria

says that the characteristic equation (2.16) is stable if its Nyquist plot does not

encircle the point −1.

Lemma 3. Consider a characteristic equation in the form (2.16) and let

Kl =
n∏

i=1

(ai). (2.17)

Then one of the following holds:

1. If 0 < k < Kl, then χ(s) is stable independent of delay.

2. If Kl ≤ k ≤ Ku, then χ(s) is stable ∀τ < τm and unstable ∀τ ≥ τm, where

τm is smallest positive number satisfying

τ =
1

ωc

(
2πh+ π −

n∑
i=1

arctan(
ωc

ai
)

)
, h ∈ Z

where ωc > 0 is the unique gain crossover frequency satisfying the following

equation:

n∏
i=1

(ω2
c + a2i ) = k2

10



and Ku is given by the following formula

Ku =

√√√√ n∏
i=1

(ω2
g + a2i ),

where ωg > 0 is the smallest ω satisfying

cos

(
n∏

i=1

(
arctan

(
ω

ai

)))
= −1.

3. If k ≥ Ku, then χ(s) is unstable independent of delay.

4. If −Kl < k < 0, then χ(s) is stable independent of delay.

5. If k ≤ −Kl, then χ(s) is unstable independent of delay.

Proof. For fixed ai ∈ R+, let χ(s) be a characteristic equation in the form (2.16).

We have ∣∣∣∣ ke−τjωc

(jωc + a1)......(jωc + an)

∣∣∣∣ = 1

⇔
n∏

i=1

(ω2
c + a2i ) = k2.

But h(ω) =
∏n

i=1(ω
2 + a2i ) is an increasing function of ω and

h(0) =
n∏

i=1

(a2i ), h(∞) = ∞.

Therefore if k ≥ Kl, we have unique ωc satisfying

n∏
i=1

(ω2
c + a2i ) = k2.

Let Gτ (s) be defined as

Gτ (s) =
e−τs∏n

i=1(s+ ai)
.

If k satisfies the condition given in Part 1 and 4, then we

||kGτ (s)||∞ < 1 ∀τ ≥ 0

and the result follows from Lemma 2. For the proof of part 2 and 3, suppose

that we have

k ≥
n∏

i=1

(ai) = Kl

11



and consider the delay free system

f(s) = 1 + kG0(s). (2.18)

Since the roots of the characteristic function f(s) depends continuously on the

parameter k, we conclude that f(s) is stable for all k < Ku where Ku is the

smallest positive number such that the characteristic equation

1 +KuG(s) = 0 (2.19)

has a root on the imaginary axis [21]. That is ∃ ωg > 0 such that

1 +KuG0(jωg) = 0

⇒ Ku = −
n∏

i=1

(jωg + ai)

⇒ Ku =

√√√√ n∏
i=1

(w2
g + a2i ),

where ωg is the smallest positive number satisfying

cos

(
n∏

i=1

(
arctan

(
ωg

ai

)))
= −1.

If k ≥ Ku then we have

kG0(jωg) ≤ −1

so the Nyquist plot of the delay free system encircles the point −1 and the delay

free system is unstable by Nyquist criteria. Hence, if we have

Kl ≤ k ≤ Kp

then the delay free system is stable. By the continuous dependence of the roots

on the parameter τ , we know that the system will be stable for all τ < τm where

at τm is the smallest positive number such that for τ = τm the characteristic

function χ(s) has a root on the imaginary axis [21]. That is ∃ ωc ≥ 0 satisfying

1 +
ke−jτmωc∏n

i=1(jωc + ai)
= 0,

12



where ωc is the unique frequency satisfying

n∏
i=1

(ω2
c + a2i ) = k2

and τm is the smallest positive number satisfying

τm =
1

ωc

(
2πh+ π −

n∑
i=1

arctan(
ωc

ai
)

)
, for some h ∈ Z.

Note that τm depends on k and we have

τm(Ku) = 0 τm(Kl) = ∞. (2.20)

If τ ≥ τm, we have

∠(ke−τjωcG(jωc)) < −π (2.21)

since both

τω,

n∑
i=1

arctan(
ω

ai
) (2.22)

are increasing functions of ω. But (2.21) and (2.22) implies that for τ ≥ τm the

Nyquist plot of χ(s) will encircle the point −1 more than once so χ(s) is unstable

for τ ≥ τm. For part 3 of the Lemma, we have shown that if

k ≥ Kp,

then the delay free characteristic function is unstable and with the same argu-

ments as part 2 of the Lemma, the characteristic function will remain unstable as

we increase delay. For the proof of part 5 of the Lemma, note that for k ≤ −Kl

and any positive delay we have

χ(0) ≤ 0, χ(∞) = 1 ∀τ ≥ 0.

Intermediate theorem implies that ∃ y ∈ R+ such that

χ(y) = 0 ∀τ ∈ R+. (2.23)

Equation (2.23) proves that the characteristic function is unstable independent

of delay.

13



Although the systems we will consider in Chapters 3 and 4 are nonlinear,

we need Lemma 3 to determine the stability of the linearized systems. We will

use the fact that the linearized system and nonlinear system have similar local

behavior around the vicinity of an equilibrium point of the nonlinear system.

2.3 Functional Differential Equations

Most of the processes we observe in the nature can not be accurately modeled by

means of linear systems. Some processes involve nonlinearities, other processes

involve both nonlinearities and time delays at the same time. Such systems are

modeled by the help of functional differential equations. The biological systems

we will consider in Chapters 3 and 4 are nonlinear and also have lumped delays.

Therefore, we need to present some results that are widely used in the analysis

of Functional Differential Equations. A general model for a nonlinear process is

given by

ẋ = f(t, x(t), x(t− τ)), t ∈ R+, x(t) ∈ Rn, f : Rn → Rn. (2.24)

Most of the physical systems that are modeled are casual. Therefore, we assume

in (2.24) that

τ ≥ 0. (2.25)

If the function f(t, x(t), x(t − τ)) in (2.24) does not explicitly depend on t, the

system (2.24) is called autonomous. Otherwise, it is called nonautonomous. In

Chapters 3 and 4, we will deal with autonomous systems. Therefore, in this

section we will concentrate on autonomous systems. For the rest of the thesis we

will assume that our system has the following general form:

ẋ = f(x(t), x(t− τ)), x(t) ∈ Rn, τ ≥ 0, f : Rn → Rn. (2.26)

To find a solution of a functional differential equation (2.26), we need to know

initial values of the states. It is clear that for a system without a delay to find

14



a solution for t > t0 we need to know a single vector x(t0), where t0 ∈ R is our

initial time. For systems with a delay to find a unique solution of the system, we

need to know the value of x not only at present but we also need a knowledge of

the past. That is we need to know

x(θ) for t0 − τ ≤ θ ≤ t0, (2.27)

where t0 is the initial time. An excellent book on the analysis of functional dif-

ferential equations is [22] and it also contains results on the existence, uniqueness

and continuous dependence of the solutions on initial conditions which is beyond

the scope of this work. The systems we will consider in Chapters 3 and 4 satisfy

the technical conditions given in [22] so that the systems we will analyze have

unique solutions which depend continuously on initial conditions. Let us move to

another concept related to the analysis of functional differential equations which

is the concept of an equilibrium point. The constant vector 0 is called an equi-

librium point of the system (2.26), if f(0, 0) = 0. The linearization of system

(2.26) around the equilibrium point 0 given by the following:

ẋ = Ax(t) +Bx(t− τ), x(t) ∈ Rn, A, B ∈ Rn×n, (2.28)

where

Ai,j =
∂fi
∂xj

∣∣∣∣
x=0

, Bi,j =
∂fi

∂xj(t− τ)

∣∣∣∣
x=0

. (2.29)

The linearization of the system around its equilibrium points play an important

role in the analysis of functional differential equations. In fact, we know that

if the characteristic equation of the linearized system (2.28) is stable, then the

equilibrium point around which the linearization is done is locally stable. In

other words, the solutions with initial conditions in some neighborhood of the

equilibrium point will converge to the equilibrium point. In some special cases

one can conclude satisfactory information regarding the general behavior of a

system by just looking the linearization of it around its equilibrium points.
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2.4 Schwarzian Derivatives

The concept of Schwarzian derivative is widely used in predicting the periodic

orbits of nonlinear difference equations [6]. It is also commonly used in Projective

differential geometry with a proper generalization to Rn[7]. In this work, we will

only need some basic properties of the Schwarzian derivatives of functions defined

on an interval.

Let f be a continuous, three times differentiable function from I = (a, b)

with −∞ ≤ a < b ≤ ∞ to an interval J ⊆ R. The Schwarzian derivative of the

function f [6], denoted by Sf(x), is defined as

Sf(x) =


−∞ if f

′
(x) = 0

f
′′′
(x)

f ′(x)
− 3

2

(
f

′′
(x)

f ′(x)

)2

if f
′
(x) ̸= 0

(2.30)

In this work, we are dealing with functions satisfying one of the following condi-

tions:

f
′
(x) > 0 or f

′
(x) < 0 ∀x ∈ (0,∞). (2.31)

Therefore, Sf(x) > −∞ for the class of functions we are interested in. Some

immediate results which can be deduced from definition (4) are as follows:

Lemma 4. [6] Let I ⊆ R be an interval and suppose f , g ∈ D3(R+) such that

the function f ◦ g(x) is well-defined. Suppose also that we have

f
′
(x) ̸= 0 ∀x ∈ (0,∞), (2.32)

then the following hold:

1. For any c ∈ R and d ∈ R\{0}, Sf(x) = S(f(x)+c) and Sf(x) = S(df(x)).

2. S(f ◦ g)(x) = Sf(g(x)) · g′
(x)2 + Sg(x).

3. If Sf(x) ≤ 0, Sg(x) < 0 then S(f ◦ g)(x) < 0.
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4. If Sf(x) < 0 ∀x ∈ int(I), then f
′
cannot have positive local minima nor

negative local maxima.

Proof. 1. Observe that f
′
(x) = (f(x)+c)

′
which proves Sf(x) = S(f(x)+c).

We also have

f
′′′
(x)/f

′
(x) = (df

′′′
(x))/(df

′
(x))

f
′′
(x)/f

′
(x) = (df

′′
(x))/(df

′
(x)).

Therefore Sf(x) = S(df(x)).

2. The following set of equations will give us the desired result:

(f ◦ g)′(x) = f
′
(g(x))g

′
(x)

(f ◦ g)′′(x) = f
′′
(g(x))g

′
(x)2 + f

′
(g(x))g

′′
(x)

(f ◦ g)′′′(x) = f
′′′
(g(x))(g

′
(x))3 + 3f

′′
(g(x))g

′′
(x)g

′
(x) + f

′
(g(x))g

′′′
(x)

S(f ◦ g)(x) =
(f ◦ g)′′′

(f ◦ g)′(x)
− 3

2

(
(f ◦ g)′′(x)
(f ◦ g)′(x)

)2

=
g

′′′
(x)

g′(x)
+ 3

f
′′
(g(x))g

′′
(x)

f ′(g(x))
+

f
′′′
(g(x))g

′
(x)2

f ′(g(x))

− 3

2

(
f

′′
(g(x))g

′
(x)

f ′(g(x))
+

g
′′
(x)

g′(x)

)2

⇒ S(f ◦ g)(x) = Sf(g(x))g
′
(x)2 + Sg(x).

3. Since we have

Sf ≤ 0, Sg < 0 and g
′
(x)2 ≥ 0 ∀x ∈ int(I), (2.33)

part 2 of the Lemma implies that

S(f ◦ g)(x) = Sf(g(x))g
′
(x)2 + Sg(x) < 0. (2.34)

4. Suppose f
′
has a positive local minima at x ∈ int(I), then we have

f
′
(x) > 0, f

′′
(x) = 0, f

′′′
(x) ≥ 0

⇒ Sf(x) > 0
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which is a contradiction. Similarly, suppose that f
′
have negative local

maxima at x, and let

h(x) = −f(x).

Then, the function h
′
will have a positive local minima at x and from part

1 we have

Sh(x) = Sf(x) < 0. (2.35)

We have shown that h
′
can not have positive local minima so f

′
can not

have negative local maxima.

Let us now calculate Schwarzian derivatives of some functions which are com-

monly seen as nonlinearities in the modeling of physical systems, which includes

the Hill functions. Hill functions appear as nonlinearities in the gene regulatory

network we will consider in Chapter 3.

Example 2.4.1. Let us start with the exponential function

S(eax) = −a2

2
.

S(e−ax) = −5a2

2
.

In real life problems, we commonly encounter Hill function type nonlinearities.

Hill functions have the following general form:

f(x) =
a

b+ xm
+ c, g(x) =

axm

b+ xm
+ c a, b > 0 c ≥ 0 m ∈ N. (2.36)

We will now calculate Schwarzian derivatives of Hill functions in the interval

(0,∞). From Lemma 4, we know addition and multiplication with a constant

does not change the value of the Schwarzian derivative, so we will, without loss

of generality, calculate the Schwarzian derivative of the following functions

f(x) =
1

b+ xm
, g(x) =

xm

b+ xm
b > 0. (2.37)
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Notice that

f(x) =
1

b+ xm
= −1

b

(
xm

b+ xm
− 1

)
= −1

b
(g(x)− 1) .

Then from Lemma 1, we have

Sf(x) = Sg(x) = S

(
1

b+ xm

)
.

Therefore, without loss of generality, we will only calculate Sf(x). For this

purpose, let

h1(x) = b+ xm, h2(x) =
1

x
.

Then, we have

f(x) = h2 ◦ h1(x),

⇒ Sf(x) = S(h2 ◦ h1)(x) = Sh2(h1(x))h
′

1(x)
2 + Sh1(x)

Sh1(x) = −(m2 − 1)

x2
, Sh2(x) = 0

⇒ Sf(x) = −(m2 − 1)

x2
.

Lastly, let us calculate the Schwarzian derivative of the tangent hyperbolic func-

tion defined as

f(x) = a tanh(bx) = a

(
e2bx − 1

e2bx + 1

)
a, b ∈ R+.

For this purpose, let

g(x) = e2bx, h(x) =
x− 1

x+ 1
, (2.38)

then f(x) = h ◦ g(x) and we have

Sg(x) = −2b2

Sh(x) = 0

⇒ Sf(x) = S(h ◦ g)(x) = −2b2 < 0.

As a corollary of Example 2.2.1, we have the following result.
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Lemma 5. Let a,b > 0, c ≥ 0 and m ∈ N be constants. Suppose f and g are

Hill functions of the form (2.36). Then one of the followings holds:

1. If m = 1, then Sf(x) = Sg(x) = 0.

2. If m > 1, then Sf(x) = Sg(x) < 0.

3. If h(x) = a tanh(bx), then S(h(x))< 0.

The most important property of functions having negative Schwarzian deriva-

tives is presented in part 4 of Lemma 4. There we proved that the derivatives

of functions with negative Scwarzian derivatives can not possess positive local

minima or negative local maxima.

2.5 Fixed Points

Fixed points of functions play very important role in the analysis of nonlinear

systems. In this section we first state some easy remarks regarding fixed points

of functions, then we will concentrate on determining fixed points of functions

having negative Schwarzian derivatives. Let us start with the definition of a fixed

point.

Definition 3. Let f(x) : X → Y be a function, then the point x ∈ X is called a

fixed point of f , if

f(x) = x.

The functions of interest in this thesis are defined from X ⊆ Rn to Y ⊆ Rn.

When n = 1, we will assume that f is defined on an interval X = (a, b) ⊆ R

and f ∈ D3(I). Let us present two basic results regarding the fixed points of

functions:
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Lemma 6. Let f : I → K be a decreasing function, where I and K are intervals.

Then, f can have at most one fixed point. Moreover, if I = R+ = [0,∞) and

f(0) ≥ 0, then f has a unique fixed point.

Proof. Suppose that there exists x < y such that f(x) = x and f(y) = y. Since f

is a decreasing function x = f(x) ≥ f(y) = y which is obviously a contradiction.

For the second part of the Lemma, let

g(x) = x− f(x).

Then, g is increasing and we have

g(0) = −f(0) ≤ 0, g(∞) = ∞,

so by intermediate value theorem ∃x0 ∈ [0,∞) satisfying

g(x0) = f(x0)− x0 = 0

⇒ f(x0) = x0.

Hence, f has at least one fixed point. The uniqueness follows from the first part

of the Lemma.

Lemma 7. Let f : I → K be a differentiable function, where I and K are

intervals. If we have

|f ′(x)| < 1 ∀x ∈ I,

then f can have at most one fixed point.

Proof. Suppose there exists x < y such that f(x) = x and f(y) = y. Then, by

mean value theorem, there exists z ∈ (x, y) satisfying

f ′(z) =
f(y)− f(x)

y − x
= 1.

But this contradicts the assumption that

|f ′(x)| < 1.

Hence, f can have at most one fixed point.

21



After these two basic Lemmas, we present the following result which reduces

the process of finding the fixed points of some multidimensional functions defined

on the cone Rn
+ to find the fixed points of a function defined on R+:

Lemma 8. Let h(x) : Rn
+ → Y ⊆ Rn

+ be defined as

h(x1, x2, ..., xn) =


h1(x2)

...

hn−1(xn)

hn(x1)


,

where

hi(zi) : R+ → Yi ⊆ R+ ∀i = 1, 2, ..., n.

Let the function q(t) from R+ to Y1 ⊆ R+ be defined as

q(t) = h1 ◦ h2 ◦ ... ◦ hn(t). (2.39)

The number fixed points of the functions h and q have the same cardinality. In

particular, if q is a decreasing function or we have

|h′

i(z)| < 1 ∀z ∈ R+ ∀i = 1, ...,m

then the function h has a unique fixed point.

Proof. Let x = (x1, x2, ..., xn) be a fixed point of h. Then, the following holds:

x1 = h1(x2)

x2 = h2(x3)

...

xn = hn(x1)

⇒ x1 = h1(x2) = h1 ◦ h2(x3) = ... = h1 ◦ h2 ◦ ... ◦ hn(x1) = q(x1)

Hence, x1 is a fixed point of q. Conversely, assume that

q(x1) = x1,
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and let

u = (x1, h2 ◦ ... ◦ hn(x1), h3 ◦ ... ◦ hn(x1), ..., hn(x1)).

It is easy to check that this special u satisfies h(u) = u. Note that if x, y are

fixed points of h such that x1 = y1, then we have

xn = hn(x1) = hn(y1) = yn

xn−1 = hn−1(xn) = hn−1(yn) = yn−1

...

x2 = h2(x3) = h2(y3) = y2,

which implies that

x = y.

So for any fixed point of q, we can find a unique fixed point of h. Therefore, the

number of fixed points of h and q can be bijectively mapped to each other and

has the same cardinality. Assume that q is a decreasing function and we have

q(0) ≥ 0.

By Lemma 6, g has a unique fixed point. Since the fixed points of h have the

same cardinality as the fixed points of the function q, h has a unique fixed point.

Also note that

|h′

i(zi)| < 1 ∀i = 1, ..., n ⇒ |q′
(t)| < 1 ∀t ∈ R+,

so q has a unique fixed point which implies that h has a unique fixed point.

Lemma 9. Let

h(x) =
a(x)

b(x)
,

where a and b are polynomials with

k = max(deg(a)), deg(b)) + 1.

Then, h has at most k fixed points.
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Proof. Suppose x is a fixed point of h, then we have

x =
a0 + a1x+ ...+ anx

n

b0 + b1x+ ...+ bmxm
=

a(x)

b(x)

⇒ b0x+ b1x+ ...+ bmx
m+1 − (a0 + a1x+ ...+ anx

n) = 0

⇒ p(x) = c0 + c1x+ ...+ ckx
k = 0.

By fundamental theorem of algebra a polynomial of degree k can have at most k

zeros, so p can have at most k zeros. Therefore, h has at most k fixed points.

Lemma 10. Let h(x) : R+ → Y ⊆ R+ be a bounded function. Suppose that

there exists a function G(s) which is analytic in C+ and we have

G(x) = h(x) ∀x ∈ R+.

Then, h has finitely many fixed points.

Proof. Suppose that the function h has infinite number of fixed points in R+.

Then, the set of fixed points of h is bounded and contains infinitely many el-

ements. Therefore, by the famous Bolzano-Weirstrass theorem the set of fixed

points of h(x) has an accumulation point. Let

H(s) = G(s)− s.

It can be seen that H(s) is analytic in C+. For any fixed point x of h we have

H(x) = 0.

Since the zeros of h has an accumulation point in R+ ⊆ C+, the zeros of the

analytic function H(s) has an accumulation point in C+ which implies that

H(s) = 0 ∀s ∈ C+.

Therefore, we have

h(x) = x ∀x ∈ R+, (2.40)

which is a contradiction to the boundedness of h.
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Let us give some examples to illustrate this Lemma:

Example 2.5.1. As a first example, let us consider the function e−x. It has

an analytic extension e−s so e−x can have finitely many fixed points. In fact, it

has a unique fixed point. The functions cosx, sin x, tanhx have also bounded

analytic extensions so they can have finite number of fixed points. In the models

of physical process, we encounter rational polynomials, exponentials, hyperbolic

functions which have finite number of fixed points. But one can construct inter-

esting functions that are infinitely many times differentiable on the real line but

have a Taylor series with a radius of convergence 0 everywhere. As an example

of such a function, one may refer to page 418 of [23].

Functions with negative Schwarzian derivatives, which include exponential

function, Hill functions and tangent hyperbolic function, are frequently encoun-

tered as nonlinearities in the modeling of real life processes. We will now present

some interesting results regarding the fixed points of functions having negative

Schwarzian derivatives. Let us start with the following two Lemmas:

Lemma 11. Let h be a three times differentiable function from R+ to Y ⊆ R+

and suppose that we have

−∞ < Sh(x) < 0 ∀x ∈ (0,∞).

Then h
′
can not be constant for any [a, b] ⊆ (0,∞) with a < b.

Proof. Suppose on the contrary that there exists positive constants a < b such

that h
′
is constant in [a, b]. Let c ∈ (a, b), then h

′′
(c) = 0 = h

′′′
(c) but this

implies that

Sh(c) = 0,

which is a contradiction. Therefore, h
′
can not be constant in any subinterval of

R+.
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Lemma 12. Let h be a three times differentiable function defined from R+ to

Y ⊆ R+ and suppose that

Sh(x) < 0 and h
′
(x) > 0 ∀x ∈ (0,∞).

Then if h
′′
(c) < 0 for some c ∈ R+ then we have

h
′′
(d) ≤ 0 ∀d ≥ c. (2.41)

Proof. Suppose there exists positive real numbers c < d such that h
′′
(c) < 0 and

h
′′
(d) > 0. Let I be defined as

I = [c, d]. (2.42)

Since h
′
is a continuous function and I is a compact set ∃ x1, x2 ∈ I such that

h
′
(x1) ≤ h

′
(x) ≤ h

′
(x2), ∀x ∈ I.

But since h
′′
(c) < 0, ∃y ≥ c satisfying

h
′
(y) < h

′
(c). (2.43)

Similarly, since h
′′
(d) > 0 ∃z ≤ d satisfying

h
′
(z) < h

′
(d). (2.44)

Equations (2.43) and (2.44) implies that

x1 ̸= c and x1 ̸= d (2.45)

and we have

h
′
(x1) ≤ h

′
(x) ∀x ∈ I.

Hence, by definition, x1 is a positive local minima of the function h
′
. But since

Sh(x) < 0, h
′
can not have a positive local minima. Therefore, we have

h
′′
(d) ≤ 0 ∀d ≥ c. (2.46)
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Now suppose that a function h, having the technical assumptions of Lemma

12, satisfies

h
′′
(y) = 0, h

′
(y) > 0 (2.47)

for some y ∈ (0,∞). Then we have

Sh(y) =
h

′′′
(y)

h′(y)
− 3

2

(
h

′′
(y)

h′(y)

)2

(2.48)

=
h

′′′
(y)

h′(y)
< 0 (2.49)

⇒ h
′′′
(y) < 0, (2.50)

which implies that the point y is a positive local maxima of the function h
′
.

Combining Lemma 12 and (2.50) we can conclude that if h
′
will be decreasing in

some interval [a, b] then it will be decreasing in [b,∞]. In particular, if h
′′
(0) < 0

then h
′′
(x) ≤ 0 for all x ≥ 0 which implies that h

′
(x) is a decreasing function.

Combining this fact with Lemmas 11 and 12, we obtain the following result.

Corollary 2.5.1. Let h be a three times differentiable function defined from R+

to Y ⊆ R+ and suppose that we have

Sh(x) < 0 and h
′
(x) > 0 ∀x ∈ (0,∞)

Then h
′
is a function from R+ to Y ⊆ R+ satisfying one of the following prop-

erties:

1. h
′
is a strictly increasing function on [0,∞].

2. h
′
is a strictly decreasing function on [0,∞].

3. There exists a ≥ 0 such that h
′
(x) is strictly increasing in (0, a) and strictly

decreasing in (a,∞).

Note that Lemma 11 implies that h
′
can not be constant in any interval,

so the strictly increasing or decreasing function assumptions in the statement

of Corollary 2.5.1 are without loss of generality. Although Corollary 2.5.1 is
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valid for functions having positive derivatives, a symmetric result can be proven

for functions with negative derivatives. Corollary 2.5.1 is a general statement

also covering unbounded functions, though the functions we are interested in are

bounded.

Remark 2.5.1. Let h be a function satisfying the assumptions of Corollary 2.5.1.

Moreover, suppose that h is bounded, then h
′
can not be a strictly increasing

function. Because if h
′
is a strictly increasing function then h can not be bounded.

Therefore, for a bounded function h with a negative Schwarzian derivative, either

h
′
is a strictly decreasing function in [0,∞] or there exists a ≥ 0 such that h

′
is

strictly increasing in (0, a) and strictly decreasing in (a,∞).

Remark 2.5.1 leads us to the following Definition:

Definition 4. For a bounded function h with a negative Schwarzian derivative,

we will say h is of type A if h
′
is a strictly decreasing function, and of type B

otherwise. The two types of functions are illustrated by the help of Figures 2.1

and 2.2.
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Figure 2.1: A typical x vs h
′
(x) graph for type A function.
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Figure 2.2: A typical x vs h
′
(x) graph for type B function.

Also note that whether the function h is of type A or B, we always have

lim
t→∞

h
′
(x) = 0. (2.51)

Remark 2.5.2. It is easy to determine whether a function h is of type A or B.

If h
′
(0) = 0, then it is clear that the function h is of type B. If we have

h
′
(0) > 0, (2.52)

and h
′′
(0) > 0 then h(x) is of type B. If (2.52) is satisfied and

h
′′
(0) ≤ 0, (2.53)

then h is of type A.

Remark 2.5.3. Suppose the function h is defined as follows:

h(x) = g ◦ g(x), (2.54)

where g is a function defined from R+ to X ⊆ R+ such that

Sg(x) < 0 and g
′
(x) < 0 ∀x ∈ (0,∞). (2.55)

Then, by the convolution property of the Schwarzian derivative, we have

Sh(x) < 0 ∀x ∈ (0,∞). (2.56)

Moreover, if x0 is a fixed point of h, then one of the following holds:
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1. x0 is a fixed point of g.

2. x0 < g(x0), so h(g(x0)) = g(g(g(x0))) = g(x0) and h has another fixed

point greater than x0.

3. g(x0) < x0, so h(g(x0)) = g(g(g(x0))) = g(x0) and h has another fixed

point less than x0.

Two examples of functions satisfying the conditions in 2.5.3 are Hill functions

and the tangent hyperbolic function. The gene regulatory network, which we

will analyze in Chapter 3, has nonlinearities in the form of Hill functions. Hence,

Assumptions in 2.5.3 does not limit us.

Proposition 1. Let f be a function of the form given in (2.54) with g satisfying

the assumptions given in Remark 2.5.3 and x0 be the unique fixed point of g.

Then, we have the following:

1. If |g′
(x0)| < 1, then h has the unique fixed point x0.

2. If h is of type A, then h has the unique fixed point x0 satisfying

h
′
(x0) < 1.

3. If h is of type B and

(i) h
′
(x0) < 1 then h has the unique fixed point x0.

(ii) h
′
(x0) > 1 then h has exactly three fixed points.

Proof. First note that since g is a strictly decreasing function, we have

g(0) > g(x) > 0 ∀x > 0, (2.57)

so g is a bounded function which implies that the function h is bounded. Since

g is a decreasing function, it has a unique fixed point x0. Observe that

h
′
(x) = g

′
(g(x))g

′
(x).
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Since

g
′
(x) < 0 ∀x ∈ (0,∞),

we have

h
′
(x) > 0 ∀x ∈ (0,∞).

At the unique fixed point x0 of g, we have the following equality:

h
′
(x0) = g

′
(g(x0))g

′
(x0) = (g

′
(x0))

2.

Therefore, we have

|g′
(x0)| < 1 ⇔ h

′
(x0) < 1

|g′
(x0)| > 1 ⇔ h

′
(x0) > 1.

We have shown that the function h is either of type A or type B. Therefore, if

we prove second and third part of the Proposition then the first part is follows

straightforwardl. For the first part of the Proposition assume that the function h

is of type A, then h
′
is strictly decreasing in R+. Notice that since h is bounded,

we have

lim
x→∞

(h
′
(x)) = 0.

If h
′
(x0) ≥ 1, then since h

′
is a decreasing function we have

h
′
(x) > 1 ∀x ∈ [0, x0].

From mean value theorem for some t ∈ [0, x0] we have the following:

h
′
(t) =

h(x0)− h(0)

x0

≤ x0 − h(0)

x0

≤ 1.

But on the other hand we have

h
′
(x) > 1, ∀x ∈ [0, x0],

so we arrived to a contradiction. Therefore, we have h
′
(x0) < 1. Now, suppose

there exists another fixed point of the function h. We know from Remark 2.5.3

this implies that

∃y ≥ x0 such that h(y) = y.
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But mean value theorem implies that there exists t ∈ [x0, y] such that

h
′
(t) =

h(y)− h(x0)

y − x0

= 1.

Since h
′
(x) is a strictly decreasing function, we have

h
′
(x) < 1 ∀x ≥ x0. (2.58)

Therefore, h has the unique fixed point x0. For the third part of the Proposition,

we assume that h is of type B. We define a new function in the following way:

f(x) = x− h(x). (2.59)

Then clearly we have

f(0) < 0 and f
′
(x) = 1− h

′
(x). (2.60)

Note that the zero crossings of the function f and the fixed points of the function

h are the same. Suppose that

h
′
(x0) < 1. (2.61)

Also assume that the function h has a fixed point y which is different from x0.

From Remark 2.5.3, we can safely assume that

y < x0. (2.62)

Again from Remark 2.5.3 we have another fixed point of h which is denoted by

z and is greater than x0. For type B functions, we have either

h
′
(x) < h

′
(x0) < 1 ∀x ∈ [0, x0] (2.63)

or

h
′
(x) < h

′
(x0) < 1 ∀x ∈ [x0,∞]. (2.64)

If the condition (2.63) is satisfied then we have f(0) < 0 and

f
′
(x) > 0 x ∈ [0, x0]. (2.65)
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Then it is clear that f(y) < 0; so, in other words, we have

f(y) ̸= 0 (2.66)

which is a contradiction. For the case in equation (2.64) using a similar argument

we can show that f(z) ̸= 0. Hence, if (2.61) is satisfied, then h has the unique

fixed point x0. Now, let us assume that

h
′
(x0) > 1. (2.67)

But for a type B function h, we can have at most two different values such that

t1 and t2 such that

h
′
(ti) = 1 for i = 1, 2. (2.68)

Hence f can have at most three zero crossings which implies that the function h

has at most three fixed points. From (2.67) we can deduce the following

∃x1 > x0 such that f(x1) < 0, (2.69)

but since the function h is bounded we have

lim
t→∞

(f(x)) = ∞. (2.70)

Therefore, f has a zero crossing greater than x0, thus h has a fixed point greater

than x0. But we know that the function h has at most three fixed point. From

Remark 2.5.3 we can conclude that h has exactly three fixed points.

The results we obtained in Proposition 1 is vital for our discussion in Chapter

3. Although in Proposition 1 we assumed that the function h is in a special form

given by (2.54), the following Corollary gives a more general result.

Corollary 2.5.2. Let h be a bounded function from R+ to Y ⊆ R+ with

Sh(x) < 0.

Then, h has at most three fixed points.
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Proof. Let p(x) = x− f(x), then from the proof of Proposition 1, p can take the

value 0 at most three times. Therefore, the function h can have at most three

fixed points.

Remark 2.5.4. In Corollary 2.5.2, we showed that a function h having negative

Schwarzian derivative may have at most 3 fixed point. Suppose that h has exactly

3 fixed points and denote this three fixed points as y1, y2 and y3 which satisfies

y1 < y2 < y3. (2.71)

From the proof of Proposition 1, we can conclude the following inequalities:

h
′
(y1)) ≤ 1, h

′
(y2) ≥ 1, h

′
(y3) ≤ 1. (2.72)

In fact, the second item in Proposition 1 is valid for any function h with

Sh(x) < 0. But we will return to this point in Chapter 3. We close this section

with another Corollary of Proposition 1.

Corollary 2.5.3. Let h be a function of the form given in (2.54) with g satisfying

the conditions given in Remark 2.5.3 and let x0 be the unique fixed point of the

function g. Then, h is either Type A or Type B. If

|g′
(0)| > 1, (2.73)

then the function h has the unique fixed point x0 satisfying

h
′
(x0) ≤ 1.

Proof. The proof is very similar to the proof of the third part of Proposition 1.

If h is of type A, we are done already since it is just part two of Proposition 1.

Therefore, suppose that h is of type B. Let

f(x) = x− h(x).

Then, since we have

h
′
(0) > 1 (2.74)
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h
′
(x) = 1 just for one point. Therefore, f can take the value 0 only twice, but

the function h has either one fixed point or three fixed points. Therefore, h has

a unique fixed point. But we know that

h(x0) = g(g(x0)) = x0.

If we have

h
′
(x0) > 1,

then, from the proof of Proposition 1, we know that the function h has three

fixed points, which is a contradiction. Therefore, we have

h
′
(x0) ≤ 1.
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Chapter 3

Gene Regulatory Networks

3.1 Problem Formulation

In this section we will be concerned with the asymptotic stability of a class of

biological systems, the so-called gene regulatory networks which contains a feed-

back loop and time delays. Basically, a gene regulatory network can be described

as the interaction of DNA segments with themselves and with other biological

structures such as enzymes. Gene regulatory networks can be thought as an in-

dicator of the genes transcription rates into mRNA, which is used to deliver the

coding information required for the protein synthesis, [24]. The proteins synthe-

sized have two main duties either they can be used to give stiffness and rigidity

to certain biological components such as the cell wall or they are enzymes which

has the vital duty of catalyzing chemical reactions that take place in our body.

Gene regulatory networks can be modeled by either a Boolean network or a set

of continuous differential equations. In this work, we analyze a continuous time

cyclic model given in Figure 3.1.
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Figure 3.1: A continuous time model of Gene Regulatory System

Here Gi is a stable first order filter whose input is a nonlinear function of the

delayed output of Pi. Similarly Pi is a stable first order system whose input is a

nonlinear function of the delayed output of Gi−1 for 1 ≤ i < m − 1 and P1 has

an input which is a nonlinear function of the delayed output of Gm.

A continuous time model of the gene regulatory network in Figure 3.1 is

proposed in [25]. The model comprises of a set of differential equations given

in (1.1). Models similar to (1.1) are frequently encountered in the modeling

of biological processes such as mitogen-activated protein cascades and circadian

rhythm generator [12], [11], [2] and [26]. In [25], Chen and Aihara analyzed

a simplified version of the system (1.1) and proved a local stability result. In

the current work, we will assume that the functions fi(x) are nonlinear and have

negative Schwarzian derivatives. In this work, we will analyze system (1.4) which

is obtained from (1.2) with the linear transformation given in (1.3). For the sake

of clarity, we will rewrite the system model we analyze in this chapter.

ẋ1(t) = −λ1x1(t) + g1(x2(t))

ẋ2(t) = −λ2x2(t) + g2(x3(t))

...

ẋn(t) = −λnxn(t) + gn(x1(t− τ)). (3.1)

We suppose that the system (3.1) satisfies the following assumptions:

Assumption 1 For all i = 1, 2, ..., n, λi > 0.

Assumption 2 For all i = 1, 2, ..., n, the nonlinearity functions gi satisfy the

following conditions:

(i) gi is a bounded function defined on R+.
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(ii) We have either

g
′

i(x) < 0 or g
′

i(x) > 0 ∀x ∈ (0,∞). (3.2)

Assumption 2 simply means that the functions gi are monotone and take positive

values. The nonlinearity functions have R+ as their domain since their domain

represents biological variables which take positive values. Also note that the

condition g
′
i(0) = 0 is allowed, since it does not violate the monotonicity of the

functions gi. Let us define the following function:

g = (
1

λ1

g1) ◦ (
1

λ2

g2) ◦ ... ◦ (
1

λn

gn). (3.3)

We say that the gene regulatory network is under negative feedback if

g
′
(x) < 0 ∀x ∈ (0,∞). (3.4)

Conversely, the gene regulatory network is said to be under positive feedback if

the above inequality is reversed. It can be easily concluded that under negative

feedback g defined in (3.4) has a unique fixed point. In system (3.1) the nonlin-

earities are only due to the functions gi and in biological systems they often have

the Hill function form, which we discussed in Chapter 2. The system (3.1) has

been analyzed by Enciso in [10]. In [10], Enciso considered the system 3.1 under

negative feedback and based on the results of [9], [16], [17] and [26], he proved

that if

|g′
(x0)| < 1, (3.5)

then the solutions of the system (3.1) converges to the unique equilibrium point.

He also proved existence of periodic solutions by a Hopf bifurcation analysis. In

this work we get the same global stability result by the help of Theorem 1 of [5].

By using the results of Chapter 2, it is easy to see that the violation of (3.5)

implies the local unstability of the linearized system. Combining this fact with

the result of [4], we will conclude existence of periodic solutions. Moreover, we

also present a result regarding the upper and lower bounds regarding possible

periodic solutions. We have also proved a global stability result regarding the
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homogenous gene regulatory network under negative feedback involving nonlin-

earities in the form of Hill function. Furthermore, we also considered system

(3.1) under positive feedback and proved some global stability results by the

help of [18]. Although the nonlinearities in (3.1) are often in the form of a Hill

function, the results we obtained is valid for any kind of nonlinearity functions

having negative Schwarzian derivatives which includes Hill functions as a subset.

For the proofs of the results we will obtain in this section, we will frequently refer

to the results we obtained in Chapter 2 regarding the fixed points of functions

with negative Schwarzian derivatives.

3.2 Analysis of the Gene Regulatory Network

Let our system be in the form of (3.1) satisfying Assumption 1 and 2. In the

previous section we defined the following function:

g = (
1

λ1

g1) ◦ (
1

λ2

g2) ◦ ... ◦ (
1

λn

gn). (3.6)

Since the constants λi’s are positive by Assumption 1, the function g defined in

(3.6) is a well defined function on R+. As a result of Assumption 2 and the chain

rule, we have

g
′
(x) < 0 or g

′
(x) > 0 ∀x ∈ R+. (3.7)

When g
′
(x) < 0 we will say that the system (3.1) is under negative feedback

and g
′
(x) > 0 is referred as the positive feedback case. We will deal with both

cases separately and present some results regarding their stability and existence

of periodic solutions if any.
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3.2.1 Gene Regulatory Networks under Negative Feed-

back

In this section, we will consider the system (3.1) under negative feedback. That

is g defined in (3.6) satisfies:

g
′
(x) < 0 ∀x ∈ (0,∞). (3.8)

We start this section with a Lemma regarding the equilibrium points of the

system (3.1) under negative feedback.

Lemma 13. Consider the system in the form (3.1) satisfying Assumptions 1 and

2 under negative feedback. Then, the system has a unique equilibrium point in

Rn
+.

Proof. The function g defined in (3.6) is decreasing and we have

g(0) ≥ 0.

Therefore, by Lemma 6, we conclude that the function g has a unique equilibrium

point. Let x ∈ Rn
+ be an equilibrium point of the system. We have

x1 =
1

λ1

g1(x2)

...

xn =
1

λn

gn(x1)

which is in the form of Lemma 8. Therefore, the system (3.1) under negative

feedback has a unique equilibrium point in Rn
+.

Lemma 14. For the system (3.1), Rn
+ is a positively invariant set and for any

set of initial conditions the corresponding solution of the system remain bounded.

Proof. To prove positive invariance, we need only check the direction of the

vectors on the boundaries of the region

Rn
+ = {(x1, x2, ..., xn) ∈ Rn : xi ≥ 0 ∀i = 1, 2, ..., n}.

40



The boundaries of the region Rn
+ are just the planes xi = 0. If xi = 0 for some

i = 1, ..., n, then we have

ẋi = f(xi−1) ≥ 0,

so it points inside the region Rn
+ which shows that the region Rn

+ is an invariant

set of the system (3.1). For each i = 1, ..., n, let us define

|gi|∞ = sup
x∈R+

gi(x).

Since each gi is bounded and positive this definition makes sense. For the second

part of the lemma, note that

xi(t) >
1

λi

|gi|∞ ⇒ ẋi(t) < 0.

Therefore, we have

lim
t→∞

xi(t) ≤ |gi|∞ ∀i = 1, ..., n.

Hence, the solutions remain bounded for any positive initial condition.

Let xeq = (x1, ..., xn) be the unique equilibrium point of our system. Then,

we have the following linearization of system (3.1) around its unique equilibrium

point xeq:

ẋ(t) = A0x(t) + A1x(t− τ), (3.9)

A0 =


−λ1 g

′
1(x2) 0 . . . 0

0 −λ2 g
′
2(x2) . . . 0

...
. . . . . . . . .

...

0 0 . . . . . . −λn


(3.10)

A1 =


0 . . . 0

...
. . .

...

g
′
n(x1) 0 . . .

 (3.11)
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which gives us a characteristic equation of the following form:

χ(s) =
n∏

i=1

(s+ λi) + ke−τs (3.12)

k =

(
n−1∏
i=1

g
′

i(xi+1)

)
g

′

n(x1). (3.13)

Since we have λi > 0, the characteristic function χ(s) defined in (3.12) has all

its roots in C− if and only if the transfer function

G(s) :=

(
1 +

ke−τs∏n
i=1(s+ λi)

)
(3.14)

is stable. Then, we have the following Lemma:

Lemma 15. Let G(s) be as defined in (3.14), then G(s) is stable independent of

delay if

|g′
(x1)| < 1

Proof. By applying a Small-Gain argument we see that G(s) is stable indepen-

dent of delay if we have

|k| < (
n∏

i=1

λi). (3.15)

Note that at the unique equilibrium xeq = (x1, ..., xn) of the system (3.1), we

have

g(x1) = x1

that is x1 is the unique equilibrium point of the function g(x). Then, observe

that

|k| = |(
n−1∏
i=1

g
′

i(xi+1))g
′

n(x1)|

= |g′
(x1)| (

n∏
i=1

λi). (3.16)

Note that since the system is under negative feedback, we have k < 0. Combining

(3.15), (3.16) with a small gain argument, we obtain the desired result.
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Lemma 16. Let G(s) be a function of the form in (3.14), then G(s) is unstable

independent of delay if

|g′
(x1)| > 1 (3.17)

Proof. Since the system (3.1) is under negative feedback and

|g′
(x1)| > 1, (3.18)

we have

k < −
n∏

i=1

λi < 0. (3.19)

If 3.19 is satisfied, by part 5 of Lemma 3 we conclude that G(s) is unstable

independent of delay.

To continue our analysis, we need the following adoption of Theorem 1 in [5]:

Theorem 1. ([5])Consider the system (3.1) under assumptions 1 and 2 and

suppose that g defined in (3.3) is decreasing. Let xeq be the unique equilibrium

point of the system (3.1). If the function g ◦ g has a unique positive fixed point,

then for any nonnegative initial condition we have

lim
t→∞

x(t) = xeq. (3.20)

If the function g ◦ g has more than one but finitely many positive fixed points

and l and L are the lower and upper bounds of these fixed points, then for any

solution x(t) = (x1(t), x2(t), ..., xn(t)) of the system (3.1), we have

l < lim
t→∞

xi(t) ≤ lim
t→∞

xi(t) < L ∀i = 1, 2, ..., n. (3.21)

Theorem 1 leads to the following result.

Proposition 2. Consider the system (3.1) under negative feedback and let As-

sumptions 1 and 2 hold. Then, the system (3.1) has the unique equilibrium point
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xeq = (x1, ..., xn) and g defined in (3.3) has the unique fixed point x1 . Let each

gi in (3.1) have negative Schwarzian derivatives. If

|g′
(x1)| < 1, (3.22)

then for any nonnegative initial condition the solution satisfies

lim
t→∞

x(t) = xeq. (3.23)

Proof. From Theorem 1, we get the desired result if we can show that the function

f(u) = g(g(u))

has unique fixed point. Since the nonlinearity functions gi have negative

Schwarzian derivatives, the functions g and f have negative Schwarzian deriva-

tives by Lemma 4. Then the function f is in the form of Proposition 1. Hence,

if we have

|g′
(x1)| < 1

then by Proposition 1, we conclude that the function f has a unique fixed point

which is at the same time the unique fixed point of g. Since f has a unique fixed

point, the desired result follows from Theorem 1.

Note that the condition:

|g′
(x1)| < 1

also corresponds to the delay independent stability of the linearized system

around the unique equilibrium point of it. Therefore, Proposition 2 is consis-

tent with the result of Lemma 15. Most of the nonlinearity functions considered

in biological systems do have negative Schwarzian derivatives, including the Hill

functions. Therefore, the results we have in Proposition 2 are useful not only for

the analysis of gene regulatory networks but also for other biological processes e.g.

hematopoiesis [27]. After the global stability condition given in Proposition 1,

we will present another result regarding the oscillatory behavior of system (3.1).
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For this purpose, we will benefit from a generalized version of the well-known

Poincaré-Bendixson Theorem [4].

Theorem 2. ([4])Consider the system (3.1) under Assumptions 1 and 2 with the

unique equilibrium point x = (x1, ..., xn) and suppose that g(x) defined in (3.6)

is decreasing. Let x(t) be a solution of the system (3.1) which is bounded in Rn
+.

Then the omega-limit set of x(t) consists of either

(i) an equilibrium point, or

(ii) a nonconstant periodic orbit.

We showed that the system (3.1) has a unique equilibrium point and all so-

lutions with nonnegative initial conditions are bounded. Therefore, the results

presented in Theorem 2 are valid for system (3.1) under negative feedback. The-

orem 2 applied to our system leads us to the following.

Proposition 3. Consider the system (3.1) under negative feedback with its

unique equilibrium point xeq = (x1, ..., xn). Suppose that each gi has negative

Schwarzian derivative. Then, g defined in (3.3) has the unique fixed point x1. If

we have

|g′
(x1)| > 1 (3.24)

then there exists periodic solutions of the system (3.1). Moreover, for this case

the function

f(u) = g(g(u)) = u

has exactly three distinct fixed points. Let y1 and y2 be the two fixed points of the

function f other than x1. Then, if x(t) = (x1(t), ...., xn(t)) is the solution of the

system with any positive initial condition, we have

y1 < lim
t→∞

xi(t) ≤ lim
t→∞

xi(t) < y2 ∀i = 1, 2, ..., n. (3.25)

Proof. Theorem 2 implies that a solution x(t) of the system (3.1) either converges

to an equilibrium point or it is a nonconstant periodic solution. If we have

|g′
(x1)| > 1, (3.26)
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then

k < (
n∏

i=1

λi) < 0,

which implies that the linearized system is unstable for all positive values of

delay by Lemma 3. So the equilibrium point is locally unstable independent of

delay. Therefore, for some initial conditions around the unique equilibrium point

xeq, the corresponding solution of system (3.1) does not converge to xeq. But for

such initial conditions if the solution does not converge to the unique equilibrium

point xeq, it can only be a periodic solution by Theorem 2. Therefore, system

(3.1) has periodic solutions. It is easy to see that (3.21) implies (3.25).

Note that Proposition 3 not only gives the conditions on the existence of pe-

riodic oscillations but it also gives lower and upper bounds for periodic solutions

of the system (3.1). Till now we have dealt with the cases

(i) |g(x0)| < 1

(ii) |g(x0)| > 1.

We will now present a result concerning the g(x0) = −1 case.

Lemma 17. Let g(x) : R+ → Y ⊆ R+ be a function with a negative Schwarzian

derivative satisfying

g
′
(x) < 0 ∀x ∈ (0,∞).

Then g has a unique fixed point x0 and

g
′
(x0) ̸= −1. (3.27)

Proof. First of all note that g is a nonconstant, positive and strictly decreasing

function. Therefore, we have

g(0) > 0.

Note that if we have g(0) = 0 then

g(x) < 0 ∀x > 0
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which is a contradiction because g takes positive values. Since the function g is

monotonic, we have

0 < g(x) < g(0) ∀x ∈ (0,∞)

so g is bounded. The uniqueness of the fixed point of the function g follows from

Lemma 6. Let x0 be the unique fixed point of g. Since g(0) > 0, we have x0 > 0.

Let us define

f(x) = g ◦ g(x). (3.28)

Then, since the function g has negative Schwarzian derivative, by Lemma 4 the

function f has negative Schwarzian derivative. Also, the boundedness of g implies

that the function f is bounded. From Chapter 2, we know that the function f

is either of type A or B. Let f be of type A and suppose that

g
′
(x0) = −1, (3.29)

then we have

f
′
(x0) = (g

′
(x0))

2 = 1.

We know 0 < x0. Therefore, we have

f
′
(x) > 1 ∀ x ∈ [0, x0).

Let us define h as

h(x) = f(x)− x.

Notice the following facts:

h(0) = f(0) > 0, h
′
(x) = f

′
(x)− 1 > 0 ∀x ∈ [0, x0).

Then, by fundamental theorem of Calculus, we have the following inequality:

h(x0) = 0 = h(0) +

∫ x0

0

h
′
(x)dx > h(0) > 0

which gives us a contradiction. Therefore, we have

f
′
(x0) < 1 ⇒ g

′
(x0) ̸= −1
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when the function f is of type A.

Suppose now the function f is of type B, and we have

f
′
(x0) = 1.

We know that f can either have a unique fixed point or three fixed points. Since

f is of type B, we have either

f
′
(x) < 1 ∀x ∈ [0, x0) or f

′
(x) < 1 ∀x ∈ (x0,∞).

If f
′
(x) < 1 in [0, x0), we have

h(x0) = 0 = h(0) +

∫ x0

0

h
′
(x)dx > h(0) > 0,

which gives us a contradiction. For the other case assume that f
′
(x) < 1 in

(x0,∞). Then, for any x > x0 we have

h(x) = h(x0) +

∫ x

x0

h
′
(x)dx < 0 + x− x0 < x

which implies that the function f can not have a fixed point x greater than x0.

Also if we have

f
′
(x) < 1 ∀x ∈ [0, x0),

we get the following equality:

h(x0) = 0 = h(0) +

∫ x0

0

h
′
(x)dx > h(0) > 0,

which is again a contradiction. Therefore, considering the shape of type B func-

tion f(x), we see that there ∃ t < x0 such that

f
′
(x) > 1 ∀x ∈ (t, x0).

As a result we have the following

h(x0) = 0 = h(t) +

∫ x0

t

h
′
(x)dx = h(t)− a

⇒ h(t) = −
∫ x0

t

h
′
(x)dx < 0.
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Since we have

h(0) > 0 and h(t) < 0,

intermediate value theorem implies that ∃ k ∈ (0, t) such that

h(k) = 0.

Therefore, the point k < x0 is a fixed point of f . Then, we should have another

fixed point of the function f which is larger than x0. But we showed that f

can not have a fixed point larger than x0 which gives us another contradiction.

Therefore, we get the desired result that is

f(x0) = (g
′
(x0))

2 ̸= 1.

Remark 3.2.1. In Proposition, 2 we assumed that all the nonlinearity functions

gi satisfy

Sgi(x) < 0 ∀x ∈ (0,∞). (3.30)

But it is enough to have one nonlinearity function gi satisfying (3.30). The rest

of the nonlinearities may have

Sgi(x) ≤ 0. (3.31)

One interesting case is if the all the nonlinearity functions are in the following

form

gi(x) =
a

b+ x
+ c. (3.32)

Then, we have

Sg(x) = Sgi(x) = 0 ∀i = 1, ..., n. (3.33)

Then, f is in the following form:

f(x) = g ◦ g(x) = p+ x

q + x
p, q > 0 (3.34)

and has always a unique positive fixed point.
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3.2.2 Homogeneous Gene Regulatory Network with Hill

Functions

In this section we consider the homogenous gene regulatory network under neg-

ative feedback with Hill function type nonlinearities. In other words, we will

analyze the following system:

ẋi(t) = −xi(t) + f(xi+1(t)) i = 1, 2, ..., n− 1

ẋn(t) = −xn(t) + f(x1(t− τ)) (3.35)

(3.36)

where the function f in (3.35) has the following form:

f(x) =
a

b+ xm
a, b > 0 m = 1, 2, 3, ... (3.37)

Notice that f satisfies

f
′
(x) < 0 ∀x ∈ (0,∞).

Also note that to have negative feedback, we should have odd number of inter-

actions between genes. That is n should be an odd number.

Since f(0) > 0 and f is decreasing, we conclude that f has a unique fixed

point, x0, satisfying

x0 = f(x0) =
a

b+ xm
0

. (3.38)

Then, the unique equilibrium point of system (3.35) is xeq = (x0, ..., x0). Notice

that we have

f
′
(x0) = −m a xm−1

0

(b+ xm
0 )

2
= −m xm+1

0

a
. (3.39)

From (3.38) we get the following equation:

xm+1
0 = a− bx0. (3.40)

Let us define a new function h(x) as

h(x) = fn(x). (3.41)
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Then from Proposition 2, system (3.35) is stable if we have

|h′
(x0)| < 1 ⇔ (|f ′

(x0)|)n < 1. (3.42)

Combining (3.38) and (3.39), we get the following set of equations:

(|f ′
(x0)|)n < 1 ⇒ |(f ′

(x0))| < 1.

⇒ mxm+1
0

a
< 1

⇒ mxm+1
0 < a

⇒ m(a− bx0) < a

⇒ (m− 1)a

mb
< x0.

Let us define

p(x) = xm+1 + bx− a. (3.43)

Clearly p(x0) = 0 and we have

p
′
(x) = (m+ 1)xm + b > 0 ∀x ∈ (0,∞) (3.44)

and

p(0) = −a < 0. (3.45)

Since p(x0) = 0 and p is strictly increasing, we have

p

(
(m− 1)a

mb

)
< 0 ⇔ (m− 1)a

b
< x0. (3.46)

We then have the following identities:

p

(
(m− 1)a

mb

)
=

(
m− 1

m

)m+1 (a
b

)m+1

+
m− 1

m
a− a

=

(
m− 1

m

)m+1 (a
b

)m+1

− a

m
. (3.47)

Combining (3.46) and (3.47), we arrive at the following set of inequalities:

p

(
(m− 1)a

mb

)
< 0

⇔
(
m− 1

m

)m+1 (a
b

)m+1

<
a

m

⇔
( a

m

)m
<

(
b

m− 1

)m+1

. (3.48)
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If the constants a, b and m satisfy the inequality (3.48), then from Proposition

(2) the unique equilibrium point of system (3.35) is globally attractive. The

arguments we had so far are valid for m > 1 case. For m = 1 the Hill functions

do not have negative Schwarzian derivative. Now let m = 1 and a and b arbitrary

positive real numbers. Then, the system (3.35) has the unique equilibrium point

xeq = (x0, ..., x0) satisfying

x0 =
a

b+ x0

⇒ x2
0 = a− bx0

From Proposition 2, the unique equilibrium point of (3.35) is globally attractive

if

g
′
(x0) =

a

(b+ x0)2
=

x2
0

a
< 1

⇒ a− bx0 < a

⇒ 0 < x0. (3.49)

Equation (3.49) shows that for m = 1 the unique equilibrium point of (3.35)

is globally attractive regardless of the values of the positive constants a and b.

Thus the following result has been established.

Proposition 4. Consider system (3.35) and let xeq = (x0, ..., x0) be its equilib-

rium point.

(i) If m = 1, then xeq is globally attractive for all positive constants a, b.

(ii) If m = 2, 3, ... and a, b, m satisfy

(
a

m
)m < (

b

m− 1
)m+1,

then xeq is globally attractive.

(iii) The system (3.35) has periodic solutions for cases other than (i) and (ii).

In this section we considered the gene regulatory network under negative feed-

back with nonlinearities having negative Schwarzian derivatives. The results we
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obtained regarding the global attractivity of the unique fixed point of the system

are compatible with the delay independent stability condition of the linearized

system around its unique equilibrium point. We also analyzed the homogenous

gene regulatory network which has Hill type of nonlinearities commonly encoun-

tered in biological models.

3.2.3 Gene Regulatory System under Positive Feedback

In this section, we will consider the system (3.1) exposed to positive feedback.

As in the previous section let g be defined as

g(x) = g1 ◦ g2 ◦ ... ◦ gn(x) g : R+ → I ⊆ R+ (3.50)

where I is a bounded interval. For positive feedback, we require that g satisfies

g
′
(x) > 0 ∀x ∈ (0,∞). (3.51)

We start this section with the following Theorem adopted from [18]:

Theorem 3. Consider system (3.1) under positive feedback. Then, any solution

of system (3.1) with any nonnegative initial conditions converges to one of its

equilibrium points.

Like in the negative feedback case, we will assume that the nonlinearity func-

tions have negative Schwarzian derivatives and Assumptions 1 and 2 are satisfied.

But to ensure positive feedback only even number of nonlinearity functions may

have negative derivative. Another important point is that unlike the negative

feedback case, this time we may have g(0) = 0 which makes 0 a fixed point of g.

We start our analysis with a Corollary of Theorem 3.

Corollary 3.2.1. Consider system (3.1) under positive feedback. If the function

g defined in (3.50) has a unique fixed point, then the system (3.1) has a unique

equilibrium point xeq and any solution of the system with a nonnegative initial

condition will converge to its unique equilibrium point xeq.
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Proof. If g has a unique equilibrium point, then by Lemma 8 the system has

a unique equilibrium point. The global convergence result follows directly from

Theorem 3.

To continue the analysis, we will assume that each gi has negative Schwarzian

derivative. This leads us to the following result:

Proposition 5. Consider the system (3.1) under positive feedback and assume

that each gi has negative Schwarzian derivative. Then, g defined in (3.3) has

negative Schwarzian derivative and the following results hold:

(i) The function g has at most three fixed points.

(ii) If

g
′
(x) < 1 ∀x ≥ 0, (3.52)

then g has a unique fixed point. In this case, the system defined by (3.1) has a

unique equilibrium point xeq which is globally attracting.

(iii) If g
′
(0) > 1 then g has a unique positive fixed point.

Proof. (i) and (ii) follows from Lemma 1. For the third part if we have

g
′
(0) > 1, (3.53)

then whether the function g is of type A and type B it has a unique equilibrium

point from Corollary 2.5.3. Here the only point of confusion is that except for a

nonzero fixed point of the function g, 0 may also be a fixed point of it. Therefore,

it can have two fixed points.

Remark 3.2.2. In Proposition 5 the function g is not of the form g(x) = f◦f(x).

Therefore, g does not have to have odd number of fixed points. As an example,

one may consider the following function:

g(x) =
4x

1 + x
(3.54)

which has the fixed points 0 and 3.
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3.2.4 Homogenous Gene Regulatory Network under Pos-

itive Feedback

In this section we will deal with homogenous gene regulatory network under

positive feedback. Consider system (3.1) under positive feedback with

gi(x) = f(x), λi = 1, ∀i = 1, 2, ..., n, (3.55)

where f is defined from R+ to R+ Notice that we did not assume any special

form for f yet. We start our analysis with the following lemma:

Lemma 18. Let k(x) : R+ → I ⊆ R+ be a three times continuously differentiable

function satisfying

k
′
(x) > 0 ∀x ∈ (0,∞). (3.56)

Let h be defined on R+ as

h(x) = km(x). (3.57)

Then, any fixed point of h is a fixed point of k.

Proof. Suppose that h(0) = 0 and k(0) > 0, then we have

h(0) = kn(0) > ... > k(k(0)) > k(0) > 0 (3.58)

which is contradiction. Therefore, k(0) = 0 and 0 is a fixed point of the function

k. Let x > 0 be a fixed point of the function h and suppose k(x) ̸= x. Then, we

have either

x < k(x) or k(x) < x. (3.59)

If x < k(x), then since k is a strictly increasing function we have

h(x) = kn(x) > ... > k(x) > x. (3.60)

But we know that h(x) = x so (3.60) gives us a contradiction. Similarly, if we

have k(x) < x then

h(x) = kn(x) < ... < k(x) < x
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which is again a contradiction. Therefore, we should have k(x) = x. Also, it is

easy to see that any fixed point x of k is a fixed point of h. Thus, we conclude

that the functions k and h have the same fixed points.

Remark 3.2.3. The homogenous system is under positive feedback either if

(i) f
′
(x) > 0 for all x ∈ (0,∞) or

(ii) f
′
(x) < 0 for all x ∈ (0,∞) and n = 2m for some positive integer m.

We will first deal with the case (ii) of Remark 3.2.3. From linear algebra, we

know that every positive number has a unique prime decomposition. We also

know that n is an even integer. Then, we have either

(i) n = 2k for some positive integer k or

(ii) n = 2k1pk21 ....pknn , where p1, p2, ..., pn are distinct prime numbers and ki > 0.

We have the following Lemma regarding case (ii) of Remark 3.2.3:

Lemma 19. Consider the homogenous gene regulatory network (3.1) under pos-

itive feedback with

f
′
(x) < 0. (3.61)

Moreover, suppose that f has negative Schwarzian derivative. Then, f has a

unique fixed point, say x0 > 0, and one of the following holds:

(i) We have n = 2k. In this case

g(x) = fn(x) (3.62)

has the unique fixed point x0 provided that

|f ′
(x0)| < 1. (3.63)

If |f ′
(x0)| > 1, then g has exactly three equilibrium points.

(ii) When n = 2k1pk21 ....pknn , we define h as

h(x) = f (
∏n

i=1 p
ki
i )(x). (3.64)

In this case h has a unique fixed point x0 which is also the unique fixed point of

f . If

|f ′
(x0)| < 1 (3.65)
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then we have |h′
(x0)| < 1 and g defined in (3.62) has the unique fixed point x0.

If we have

|f ′
(x0)| > 1, (3.66)

then |h′
(x0)| > 1 and g defined in (3.62) has exactly three equilibrium points.

Proof. Firstly, since f is monotonically decreasing we know that it has a unique

fixed point x0 by Lemma 6. Suppose n = 2k and let

g(x) = fn(x). (3.67)

Now, let h1(x) = f 2k−1
(x), then we have

g(x) = h1(h1(x)) and h
′

1(x) > 0 ∀ x ∈ (0,∞). (3.68)

From Lemma 18 with m = 2, we conclude that any fixed point x of g is a fixed

point of the function h1. Let h2(x) = f2k−2
(x), then we have

h1(x) = h2(h2(x)) (3.69)

and again from Lemma 18 we conclude that any fixed point of h1 is a fixed point

of h2. Since n = 2k we know that g has as many fixed points as hk−1 which is

defined as

hk−1(x) = f(f(x)). (3.70)

If we have

|f ′
(x0)| < 1 (3.71)

at the unique equilibrium point x0 of f , we conclude that hk−1 has a unique

equilibrium point. Therefore, from Lemma 18 we deduce that g has a unique

fixed point. Lemma 3 also implies that if

|f ′
(x0)| > 1, (3.72)

then the function hk−1(x) has exactly three fixed points. Therefore, from

Lemma 18 the function g has three fixed points.
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Now for the second part, consider n = 2k1pk21 ....pknn and let

k = pk21 ....pknn .

and

h(x) = fk(x).

Since k is an odd number, we have

h
′
(x) < 0 ∀x ∈ (0,∞).

We also know that h has a negative Schwarzian derivative from Lemma 4. There-

fore, h has a unique fixed point by Lemma 1. Since f is decreasing it has a unique

fixed point x0. Also note that

h(x0) = fk(x0) = x0. (3.73)

From (3.73) we conclude that the unique fixed point x0 of f is the unique fixed

point of h. Also note that

|h′
(x0)| < 1 ⇔ |f ′

(x0)| < 1.

Similarly, we have

|h′
(x0)| > 1 ⇔ |f ′

(x0)| > 1.

Notice that

g(x) = h2k1 (x). (3.74)

Then the rest of the arguments are the same as the proof of the first part.

We will continue our analysis with case (i) of Remark 3.2.3. We consider

the homogenous gene regulatory under positive feedback with the nonlinearity

function f satisfying

f
′
(x) > 0 ∀x ∈ (0,∞). (3.75)
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Lemma 20. Consider the homogenous gene regulatory network (3.1) under pos-

itive feedback with the nonlinearity function f satisfying (3.75). Then, the func-

tion

g(x) = fn(x) (3.76)

has as many fixed points as f . In particular, if f has a unique fixed point, then

system (3.1) has a unique equilibrium which is globally attractive.

Proof. A direct application of Lemma 18 and Proposition 3 leads to the desired

result.

We are interested in the fixed points of the function f . If, further, f has

a negative Schwarzian derivative, we know that it has one, two or three fixed

points. As an example, let us consider the following Hill type of functions and

try to find some conditions regarding its fixed points. The type of functions we

will consider is given by

f(x) =
axm

b+ xm
+ c, a, b, c > 0 (3.77)

so we rule out zero as a fixed point by taking the constant c strictly positive.

Then x > 0 is a fixed point of the function defined in (3.77) if x is a root of the

following polynomial:

h(x) = xm+1 − (a+ c)xm + bx− bc. (3.78)

Some interesting cases regarding the function (3.78) may occur. Let us consider

one such interesting example. Let a = 3.6, b = 5, m = 2 and c = 0.4, then we

have

h(x) = xm+1 − (a+ c)xm + bx− bc = (x− 1)2(x− 2)

which implies that the function f has exactly two fixed points. We will try to

find a sufficient condition depending on the parameters a, b, c and m so that the

function f defined in (3.77) has a unique equilibrium point. First note that for
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arbitrary positive constants a, b, c and m, we have

h(0) = −bc < 0. (3.79)

Therefore, if we have

h
′
(x) ≥ 0 ∀x ∈ R+, (3.80)

then h can have at most one positive root so f has a unique fixed point. For

m > 1, we have

h
′
(x) = (m+ 1)xm − (m)(a+ c)xm−1 + b

= xm−1((m+ 1)x−m(a+ c)) + b = h1(x) + b.

In order to guarantee (3.80) , we should have

h1(x) ≥ −b ∀x ∈ R+. (3.81)

But h1 takes its minimum at the point y where

h
′

1(y) = 0. (3.82)

As a result of (3.82), we get the following equations:

h
′

1(x) = (m+ 1)(m)xm−1 − (m)(m− 1)(a+ c)xm−2

= xm−2(m)(m+ 1)(x− m− 1

m+ 1
(a+ c))

⇒ h
′

1(y) = 0 ⇔ y =
m− 1

m+ 1
(a+ c)

⇒ min(h1(x)) = h1

(
m− 1

m+ 1
(a+ c)

)
= −

(
m− 1

m+ 1

)m−1

(a+ c)m. (3.83)

Combining this with (3.80) and (3.82), we arrive at the following result:(
m− 1

m+ 1

)m−1

(a+ c)m ≤ b ⇒ h1(x) ≥ −b ⇒ h
′
(x) ≥ 0.

Hence the following result has been established.
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Lemma 21. Let f be given as a function in the form (3.77). Then the following

holds:

(i) If m = 1, then for any positive constants a, b and c, the function f has a

unique fixed point.

(ii) If m = 2, 3, ... and the positive constants a, b and c satisfy(
m− 1

m+ 1

)m−1

(a+ c)m ≤ b, (3.84)

then f has a unique fixed point.

Proof. We already proved the case (ii). For the case where m = 1, let a, b and c

be arbitrary positive constants. If y is a fixed point of the function f , we have

h(y) = y2 + (b− a− c)y − bc = 0.

But h can have at most two roots. Since

h(0) < 0 h(−∞) = ∞, (3.85)

h has only one positive root; so, f has a unique fixed point.

We have said in Theorem 3 that under positive feedback, the solution con-

verges to one of the equilibrium points independent of delay, see also [18]. There-

fore, there should always exist at least one equilibrium point which is locally

stable for all values of delay. The following result establishes this property.

Lemma 22. Consider the system (3.1) under positive feedback, i.e., g defined in

(3.50) satisfies:

g
′
(x) > 0 ∀x ∈ R+.

Suppose that g is bounded and continuously differentiable, then g has a fixed point

x1 ∈ R+ such that

g
′
(x1) ≤ 1.
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Thus, the system is locally stable around the equilibrium point xeq =

(x1, x2, ..., xn), where

xn = gn(x1)/λn, . . . , x2 = g2(x3)/λ2.

Proof. Since the function g is bounded, the following supremum is well-defined:

a = sup
x∈R+

(g(x)). (3.86)

It is clear that if x is a fixed point of g, then x ≤ a. Let the set S be defined as

S = {x ∈ R+ : g(x) = x}, (3.87)

then, because of (3.86), b = sup(S) exists. Note that since g is bounded and

positive, the set S is nonempty. Since b = sup(S), there exists a sequence xi ∈ S

such that

g(xi) = xi and lim
i→∞

(xi) = b. (3.88)

Since g is continuous, we have

g(b) = b.

Suppose that for all fixed points x of g, we have

g
′
(x) > 1.

Then, g(b) = b and g
′
(b) > 1, but since g bounded then ∃z > b such that

g(z) = z. (3.89)

But this is contradiction to (3.86), so there exists some x1 ∈ R+ such that

g
′
(x1) ≤ 1. (3.90)

The stability of the linearized system follows from the structure of the transfer

function given in (3.14) and using the result of Lemma 15.
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3.3 Simulation Results

We now illustrate the theoretical results obtained in previous sections by exam-

ples.

Example 3.3.1. We consider system (3.1) with n = 3, λ1 = λ2 = λ3 = 1, and

the nonlinearity functions are given by

g1(x) =
1

1 + x
g2(x) =

2

2 + x
g3(x) =

1

3 + x
. (3.91)

The unique equilibrium point of the system can be found as xeq = (0.83, 0.4, 0.45)

and at the unique fixed point of g we have

g
′
(0.83) = 0.0173 < 1. (3.92)

Therefore, by Proposition 2 we expect that the solution converges to xeq in-

dependent of delay. Figure 3.2 shows the solution of the system with x(0) =

(1, 0.9, 0.8), τ = 0. As expected the solution converges to xeq. Figure 3.3 is the

solution of the same system with x(0) = (0.4, 2, 0.6), τ = 4. The solution again

converges to xeq.
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Figure 3.2: x1(t), x2(t) and x3(t) vs t graphs of system with x(0) = (1, 0.9, 0.8), τ = 0
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Figure 3.3: x1(t), x2(t) and x3(t) vs t graphs of system with x(0) = (0.4, 2, 0.6), τ = 4

Example 3.3.2. (Homogenous Negative Feedback Case) In this example we will

try to illustrate the results of Proposition 4. Consider the homogenous negative

feedback case with a = 2, b = 0.25, m = 3, n = 3 and f is given by

f(x) =
2

0.25 + x3
(3.93)

Note that

(
a

m
)m = 0.2963 > (

b

m− 1
)m+1 = 0.00024. (3.94)

The function h defined as

h(x) = f ◦ f(x),

has three fixed points given by y1 = 0.0039, y2 = 1.1442 and y3 = 8. From

Proposition 4 and Theorem 1 we expect oscillatory solutions of the system and

the following inequality to be satisfied:

0.0039 = y1 < lim
t→∞

xi(t) ≤ lim
t→∞

xi(t) < y3 = 8 ∀i = 1, 2, 3. (3.95)

The simulation results, with initial conditions x1(0)=1, x2(0) = 3, x3(0) = 4 and

τ = 0, are shown in Figure 3.4. We have periodic solutions as expected and the

inequality in (3.95) is satisfied.

Now consider the same problem with a = 2, b = 2, m = 3, n = 3, then we

have

f(x) =
2

2 + x3
which implies (

a

m
)m = 1 < (

b

m− 1
)m+1 = 8. (3.96)
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In this case the unique equilibrium point can be calculated as

xeq = (0.7709, 0.7709, 0.7709). (3.97)

From Proposition 4, we expect the solution of the system to converge to xeq for

any initial condition. The simulation result with three sets of initial conditions

and time delays are shown in Figures 3.5, 3.6 and 3.7. The simulation results

confirms the theory: x(t) converges to xeq independent of delay in all the cases

studied above.
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Figure 3.4: x1(t), x2(t) and x3(t) vs t graph of system with x(0) = (3, 3, 4), τ = 0
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Figure 3.5: x1(t), x2(t) and x3(t) vs t graphs of system with x(0) = (0.3, 2, 3), τ = 0
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Figure 3.7: x1(t), x2(t) and x3(t) vs t graphs of system with x(0) = (3, 0.5, 1.5), τ = 5

Example 3.3.3. In this example, we will consider the homogenous gene regula-

tory network under positive feedback. For this purpose, let the function f be in

the following form:

f(x) =
3.6x2

5 + x2
+ 0.4. (3.98)

Let n = 3, in this case the system has two equilibrium points

e1 = (1, 1, 1), e2 = (2, 2, 2). (3.99)

From Theorem 3, we expect the general solution of the system either to converge

to e1 or to e2. First, let us simulate the system with x1(0) = 0.9, x2(0) = 0.95

and x3(0) = 0.85 and τ = 0. We get the simulation results shown in Figure 3.8.

As can be seen from Figure 3.8, the solution converges to the equilibrium point

e1. Let us simulate the same system with initial conditions x1(0) = 1, x2(0) = 3,

x3(0) = 4 and τ = 2. The simulation results is shown in Figure 3.9. When we

change the initial conditions, the system converges to the other equilibrium e2

which is compatible with the theoretical results we obtained.

66



0 2000 4000 6000 8000 10000
0.9

0.92

0.94

0.96

0.98

1

Time

 

 

x
1
 (state)

0 2000 4000 6000 8000 10000
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time

 

 

x
2
 (state)

0 2000 4000 6000 8000 10000
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Time

unnamed

 

 

x
3
 (state)

Figure 3.8: x1(t), x2(t) and x3(t), τ = 0 vs t graph for the homogenous gene regulatory

network under positive feedback
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Figure 3.9: x1(t), x2(t), x3(t) and τ = 2 vs t graph with x(0) = (0.9, 0.95, 0.85), τ = 0

Example 3.3.4. In this example we will investigate the positive feedback with

n = 3 and having the following nonlinearity function

f(x) =
2x

2 + x
+ 1. (3.100)

This gives the unique equilibrium point xeq = (2, 2, 2), so we expect the solutions

to converge to xeq for any arbitrary initial condition. Figures 3.11 and 3.10

show the simulation results of the system corresponding to the initial conditions

x(0) = (3, 0.5, 4), τ = 0 and x(0) = (5, 3, 0.7), τ = 5 respectively. As we expect

the solution converges to the unique equilibrium point xeq.
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Figure 3.10: x1(t), x2(t) and x3(t) vs t graph with x(0) = (5, 3, 0.7), τ = 5
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Figure 3.11: x1(t), x2(t) and x3(t) vs t graph with x(0) = (3, 0.5, 4), τ = 0

Example 3.3.5. In this example, we will again investigate the homogenous

positive feedback case but this time the system has three fixed points. Namely,

consider the system (1.4) with λi = 1 and gi(x) = f(x) is given by

f(x) = g ◦ g(x), (3.101)

where g has the following form:

g(x) =
2

0.25 + x3
. (3.102)

The function g has the unique fixed point y2 = 1.1442 and the function f has

y1 = 0.0039, y2 = 1.1442 and y3 = 8 as its three fixed points. Therefore,

the system has three equilibrium points z1 = (y1, y1, y1), z2 = (y2, y2, y2) and

z3 = (y3, y3, y3). If we calculate the derivative of f at its fixed points, we get the

following results:

f
′
(y1) = 2.13 · 10−6 < 1 f

′
(y2) = 6.6096 > 1 f

′
(y3) = 2.14 · 10−6 < 1.

(3.103)
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The characteristic equation H i
τ (s) of the linearized system around each zi is given

by the following formula:

H i
τ (s) = 1 +

(f(yi))
3e−τs

(s+ 1)3
i = 1, 2, 3. (3.104)

Since we have

(f(yi))
3 < 1 for i = 1, 3,

the system is locally stable independent of delay around z1 and z3. The linearized

system around z2 has the following characteristic equation:

H2
τ (s) = 1 +Gτ (s) = 1 +

288e−τs

(s+ 1)3
.

For τ = 0, G0(s) has the Nyquist diagram shown in Figure 3.14. Since G0(s)

encircles the point −1 twice, H2
τ (s) has two zeros in C+. As we increase the

delay value the first negative real axis crossing of H2
τ (s) will always be less than

−1, so the the Nyquist diagram encircles the point −1 more than once for all

positive values of the delay. Therefore, the linearized system is locally unstable

independent of delay around z2. Therefore, we expect the solution to converge

to either z1 or z3. Figure 3.12 shows the solution of the system with x(0) =

(1, 1.2, 1.4), τ = 0. Although x(0) is near to z2 the solution converges to z3.

Figure 3.13 shows the simulation results of the system with x(0) = (1, 0.9, 0.8)

and τ = 2. Again, x(0) is near to z2 but the solution converges to z1 which

confirms our theoretical expectations.
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Figure 3.12: x1(t), x2(t) and x3(t) vs t graph with x(0) = (1, 1.2, 1.4), τ = 0
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Chapter 4

A model of erythropoiesis

4.1 Erythropoiesis

In the paper [8], Lai et.al. proposed a dynamical model accounting for the process

of murine erythropoiesis. In this chapter, we will consider the proposed model

and develop some local stability results. Before starting the analysis, let us give

a brief introduction to the process of erythropoiesis.

Erythrocytes, commonly known as red blood cells, are the most common

type of blood cell in the human body which are responsible for the delivery of the

oxygen to our tissues. This vital duty of red blood cells make them indispensable

for human. In human body, nearly 2 million new erythrocytes are produced per

second and at a given time a human may have approximately 20 trillion red blood

cells. The new red blood cells are developed in the bone narrow and do have

a life time of 100 days [28]. Erythrocytes have a red color due to the fact that

it contains hemoglobin which is the iron-containing protein used for the oxygen

transport.
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Erythropoiesis is a 7 day process of production of erythrocytes which take

place in the red bone marrow of our bones. Erythropoiesis is stimulated by the

decrease of oxygen delivery to the kidney. A feedback loop involving erythro-

poietin (Epo) regulates the erythropoiesis. For normal times, the production of

erythrocytes should be equal to the destruction of it and the total number of

erythrocytes present in our body should be enough to satisfy the need of oxy-

gen of our tissues. Figure 4.1 is presented for the visualization of the feedback

mechanism involved in erythrocytes:

Figure 4.1: The feedback loop involved in the process of Erythropoiesis.

The Epo has the primary duty of protecting red blood cells from apoptosis

which is the programmed cell death in organisms. One role of Epo during the

formations of erythropoiesis is when Epo binds EpoR in non-differentiated cells

of the bone marrow, the protein JAK2, which is responsible for DNA transcrip-

tion and activity in the cell, is activated and promotes the activation of EpoR

through the phosphorylation of several tyrosine which residues in the receptor.

Then the transcription factor STAT5 is recruited to the activated EpoR, is phos-

phorylated, dimerised and gets activated. Once activated, dimerised STAT5

translocates into the nucleus and promotes the transcription of several essential

genes involved in the modulation of erythropoiesis. The adequate function of the
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JAK2-STAT5 signalling during erythropoiesis is crucial to ensure the success in

the differentiation and maturation of red blood cells and recent results suggest

that the pathway appears deregulated in certain kinds of leukaemia [8]. Hence,

we see that Epo plays the major role for the process erythropoiesis to start.

4.2 Mathematical Model for Erythropoiesis

For the analysis of the model given in [8], we will assume zero Epo injection.

After changing the symbols of variables of the mathematical model in [8], we

have the following mathematical model:

d

dt
x1(t) = −a1x1(t)− a2x1(t)x8(t) + a0

d

dt
x2(t) = −a3x2(t) + a2x1(t)x8(t)

d

dt
x3(t) = −a6x3(t) + a5(1− 2x3(t)− 2x4(t))x2(t)

d

dt
x4(t) = −a4x4(t) + a6x3(t)

d

dt
x5(t) = a7x5(t)− a8x5(t)x4(t)− a9x5(t)

2

d

dt
x6(t) = −a11x6(t) + a10x5(t− τ)x4(t− τ)

d

dt
x7(t) = −a13x7(t) +

a12
xg
6(t)

d

dt
x8(t) = −a15x8(t) + a14x7(t). (4.1)

The values of the positive constants ai and the biological parameters correspond-

ing model states xi are given in Appendix A. As the biological model variables

xi make sense when they take positive values, we will analyze the system (4.1) in

the cone R8
+. As we said in Chapter 2, equilibrium points play an important role

in the analysis of dynamical systems. For that reason we start the analysis of

the system (4.1) by determining the equilibrium points of it in R8
+. We present

the following Lemma regarding the equilibrium points of the system (4.1):

Lemma 23. The system (4.1) has a unique equilibrium point in R8
+.
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Proof. Let x = (x1, ..., x8) ∈ R8
+ be an equilibrium point of the system (4.1).

Firstly, note that

xi ̸= 0 ∀i = 1, 2, ..., 8.

Because if x6 = 0 we have

x7 = ∞

or if xi = 0 for i ̸= 6 we have

x6 = ∞.

Therefore, xi ̸= 0 for all i = 1, 2, ..., 8. After this little remark, we can safely say

that at an equilibrium point x the following equations are satisfied:

x1 =
a0
a1

− a2
a1

x1x8

x2 =
a2
a3

x1x8

x3 =
a5
a6

(1− 2x3 − 2x4)x2

x4 =
a6
a4

x3

x5 =
a7
a9

− a8
a9

x4

x6 =
a10
a11

x5x4

x7 =
(a12/a13)

xg
6

x8 =
a14
a15

x7, (4.2)

where

xi > 0 ∀i = 1, 2, ..., 8. (4.3)
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By carefully organizing the equations in (4.2), we get the following set of equa-

tions:

x1 =
a0

a1 + a2x8

= g1(x8)

x2 =
a2
a3

x1x8 =
a2
a3

x1

(
a0 − a1x1

a2x1

)
= g2(x1)

x3 =
a5
a6

(1− 2x3 − 2x4)x2 =
(a5a4)x2

a6a4 + (2a5(a6 + a4))x2

= g3(x2)

x4 =
a6
a4

x3 = g4(x3)

x5 =
a7
a9

− a8
a9

x4 = g5(x4)

x6 =
a10
a11

x5x4 =
a10
a11

x5

(
a7 − a9x5

a8

)
= g6(x5)

x7 =
(a12/a13)

xg
6

= g7(x6)

x8 =
a14
a15

x7 = g8(x7), (4.4)

Notice that for t > 0 the functions gi(t) in (4.4) are well defined functions from

R+ to R. In fact, the only problematic function is g7 since for t < 0 the function

g7(t) = (t)6.19 (4.5)

may take complex values. But for biological reasons we are interested in equilib-

rium points with positive coordinates. Note that except for g2 and g6, we have

functions that are well-defined from R+ to Yi ⊆ R+. Now, suppose that we have

two equilibrium points x, y ∈ Rn
+. If for some i ∈ {1, 2, ..., 8} we have

xi = yi, (4.6)

then from (4.6) and (4.4) we get the following set of equations:

xi+1 = yi+1 = gi(xi) = gi(yi) ∀i = 1, 2, ..., 7. (4.7)

Equation (4.7) implies that x8 = y8, so we have

x1 = g1(x8) = g1(y8) = y1. (4.8)

Therefore, we have x = y. In other words, if two equilibrium points of the

system (4.1) have the same value for some coordinate, then these two equilibrium
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points are equal to each other. Since we are interested only in the equilibrium

points with positive coordinates, we have to find the intervals Ii ⊆ R+ such that

gi(Ii) ⊆ R+. Now, notice the following facts:

g1 : R+ → [0, a0/a1], g
′

1 < 0

g2 : [0, a0/a1] → [0, a0/a3], g
′

2 < 0

g3 : [0, a0/a3] →
[
0,

a0a4a5
a0a4a6 + 2a5(a4 + a6)

]
, g

′

3 > 0

g4 :

[
0,

a0a4a5
a0a4a6 + 2a5(a4 + a6)

]
→ Y4, g

′

4 > 0

g5 :

[
0,

a0a5a6
a0a4a6 + 2a5(a4 + a6)

]
→ Y5, g

′

5 < 0

g6 :

[
b,
a7
a9

]
→

[
0,

a10b(a7 − a9b)

a8a11

]
, g

′

6 > 0

g7 : R+ → R+, g
′

7 < 0

g8 : R+ → R+, g
′

8 > 0, (4.9)

where b > a7/(2a9), Y4 and Y5 are given by

b =
a7(a0a4a6 + 2a5(a4 + a6))− a0a5a6

a9(a0a4a6 + 2a5(a4 + a6))

Y4 =

[
0,

a0a5a6
a0a4a6 + 2a5(a4 + a6)

]
Y5 =

[
a7(a0a4a6 + 2a5(a4 + a6))− a0a5a6a8

a9(a0a4a6 + 2a5(a4 + a6))
,
a7
a9

]
. (4.10)

Note that by constructing the domains and ranges of the functions gi, we have

made related calculations so that the following function is well-defined:

g(y) = g6 ◦ g5 ◦ g4 ◦ g3 ◦ g2 ◦ g1 ◦ g8 ◦ g7(y). (4.11)

From (4.9), we see that g is a well defined function from R+ to
[
0, a10b(a7−a9b)

a8a11

]
and by chain rule we have the following equality:

g
′
(y) = g

′

6(g5(g4(g3(g2(g1(g8(g7(y))))))))× g
′

5(g4(g3(g2(g1(g8(g7(y)))))))

× g
′

4(g3(g2(g1(g8(g7(y))))))× g
′

3(g2(g1(g8(g7(y)))))× g
′

2(g1(g8(g7(y))))

× g
′

1(g8(g7(y)))× g
′

8(g7(y))× g
′

7(y) ∀y ∈ R+.
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From equation (4.9), we have

g
′
(y) < 0 ∀y ∈ R+ (4.12)

Notice that for any equilibrium point x = (x1, ..., x8) of the system (4.1), we have

the following equality:

x6 = g(x6).

In other words, for every equilibrium point of the system (4.1), we have a fixed

point of the function g. But we have also shown that, two different equilib-

rium points have different coordinates. Therefore, the system (4.1) has as many

equilibrium points as the fixed points of g. Since g is a function from R+ to[
0, a10b(a7−a9b)

a8a11

]
, by Lemma 6 we conclude that g has a unique fixed point, which

implies that the system (4.1) has a unique equilibrium point.

To find the unique equilibrium point of the system (4.1), we need only to find

the unique fixed point of g defined in the proof of Lemma 23. The unique fixed

point of g gives us the sixth coordinate x6 of the unique equilibrium point x of

the system (4.1). To find other coordinates of the equilibrium point, we just use

the relation in (4.9). We conclude this section with the following result.

Proposition 6. For any τ ≥ 0, the system (4.1) has a linearization around its

unique equilibrium point with a characteristic function in the following form:

χ(s) = P (s) +Q(s)e−τs, (4.13)

where P (s), Q(s) are polynomials with deg(P ) > deg(Q) and the function P (s)

has no zeros in C+. The characteristic equation χ(s) is stable ∀τ < τm and

unstable ∀τ > τm, where τm is the smallest positive integer such that ∃ ωm ≥ 0

satisfying

χ(jωm) = P (jωm) +Q(jωm)e
−τjωm = 0.

Proof. For the proof of this Lemma, we will first linearize the system (4.1) around

its unique equilibrium point and then show that the characteristic equation of
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the linearized system is stable ∀τ < τm, which in turn implies that the system

(4.1) is locally stable around its unique equilibrium point ∀τ < τm. Let

xeq = (x1, ..., x8) ∈ R8
+

be the unique equilibrium point of the system (4.1), then the linearization of the

system (4.1) around xeq will give us the following linear system:

ẋ = A0x(t) + A1x(t− τ), (4.14)

where A0, A1 are R8×8 constant matrices in the following form:

A0 =



−k1 0 0 0 0 0 0 −k2

k3 −k4 0 0 0 0 0 k2

0 k5 −k6 −k7 0 0 0 0

0 0 k8 −k9 0 0 0 0

0 0 0 −k10 −k11 0 0 0

0 0 0 0 0 −k12 0 0

0 0 0 0 0 −k13 −k14 0

0 0 0 0 0 0 k15 −k16,



(4.15)

A1 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 k17 k18 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0,



(4.16)
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and ki’s are positive constants given by:

k1 = a2x8 + a1 =
a0
x1

k2 = a2x1 k3 = a2x8

k4 = a3 k5 = a5(1− 2x3 − 2x4) =
a6x3

x2

k6 = 2a5x2 + a6

k7 = 2a5x2 k8 = a6 k9 = a4

k10 = a8x5 k11 = a9x5 k12 = a11

k13 = ga12x
−g−1 =

ga13x7

x6

k14 = a13 k15 = a14

k16 = a15 k17 = a10x5 k18 = a10x4.

The characteristic equation of the linearized system (4.14) can be calculated by

the following formula:

χ(s) = det(sI − A0 − A1e
−τs). (4.17)

Let us now seperate the matrix (sI − A0 − A1e
−τs) into four submatrices as

following:

(sI − A0 − A1e
−τs) =

B1 B2

B3 B4,

 (4.18)

where Bi ∈ R4×4 are the four sub-matrices of (sI − A0 − A1e
−τs). By the the

result given in Appendix B, we have the following equality:

χ(s) = det(sI − A0 − A1e
−τs) = det(B4)det(B1 −B2B

−1
4 B3). (4.19)

Before moving further, let us write the matrices B1, B2, B3 and B4 explicitly:

B1 =


s+ k1 0 0 0

−k3 s+ k4 0 0

0 −k5 s+ k6 k7

0 0 −k8 s+ k9


B2 =


0 0 0 k2

0 0 0 −k2

0 0 0 0

0 0 0 0



B4 =


s+ k11 0 0 0

−k18e
−τs s+ k12 0 0

0 k13 s+ k14 0

0 0 −k15 s+ k16


B3 =


0 0 0 k10

0 0 0 −k17e
−τs

0 0 0 0

0 0 0 0


(4.20)
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Notice that

det(B4) = (s+ k11)(s+ k12)(s+ k14)(s+ k16),

which obviously has no roots in C+. To continue our analysis, we need to calcu-

late det(B1 −B2B
−1
4 B3). Firstly, notice the following:

(B2B
−1
4 B3) = B2


x1 0 0 0

x2 x5 0 0

x3 x6 x8 0

x4 x7 x9 x10


B3. (4.21)

= B2


0 0 0 x1k10

0 0 0 x2k10 − x5k17e
−τs

0 0 0 x3k10 − x6k17e
−τs

0 0 0 x4k10 − x7k17e
−τs


(4.22)

=


0 0 0 k2c(s)

0 0 0 −k2c(s)

0 0 0 0

0 0 0 0,


(4.23)

where c(s) is given by the following equation:

c(s) = (x4k10 − x7k17e
−τs) = k13k15k17(s+ k11 −

k10k18
k17

).

Then, we have the following equality:

det(B1 −B2B
−1
4 B3) = det




s+ k1 0 0 −k2c(s))

−k3 s+ k4 0 k2c(s)

0 −k5 s+ k6 0

0 0 −k8 0




= (s+ k1)(s+ k4)(s

2 + (k6 + k9)s+ k6k9 + k7k8)

+ k2k5k8c(s)(s+ k1 − k3).
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Then the characteristic equation of the linearized is given by the following:

χ(s) = det(sI − A0 − A1e
−τs) = det(B4)det(B1 −B2B

−1
4 B3)

= (s+ k1)(s+ k4)(s
2 + (k6 + k9)s+ k6k9 + k7k8)

× (s+ k11)(s+ k12)(s+ k14)(s+ k16)

× (1 +Ke−τsG1(s)G2(s)G3(s)),

where K, G1(s), G2(s) and G3(s) are given by

K = (k2k5k8k13k15k17)

G1(s) =
s+ k1 − k3
s+ k11

G2(s) =
(s+ k11 − k10k18

k17
)

s+ k12

G3(s) =
1

(s+ k1)(s+ k4)(s+ k14)(s+ k16)(s2 + (k6 + k9)s+ k6k9 + k7k8)
.

For any s0 ∈ C+ the following condition is satisfied:

χ(s0) = 0 ⇔ (1 +Ke−τsG1(s0)G2(s0)G3(s0)) = 0. (4.24)

When we do the related calculations, we observe the following equations:

(k1 − k3) = 0.15 > 0.009 = k11

(k11 −
k10k18
k17

) = 0.00899 > k12 = 0.00016.

But this implies that the functions

|G1(jω)|, |G2(jω)|, and |G3(jω)| ω ∈ [0,∞] (4.25)

are decreasing. Let us define the following function:

G(s) = G1(s)G2(s)G3(s). (4.26)

For

τ >
1

k1 − k3
+

1

k11 − k10k18
k17

= 118, (4.27)

∠(G(jω)e−jω) (4.28)
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is a decreasing function of ω. But then we have a very similar situation like

in Lemma 3. In fact, the results we obtained in Lemma 3 are valid here. The

function G defined in (4.26) belongs to H∞, and |G(jω)| is a decreasing function

of ω ∈ [0,∞]. Note that the characteristic function of the linearized system is

stable if and only if the characteristic equation

Hτ (s) = 1 +Ke−τsG(s) = 0

has no roots in C+. For τ = 0, we will prove in simulation part that the delay

free characteristic equation H0 = 1+KG(s) is stable. We also have KG(0) > 1,

hence we do not have stability independent of delay condition. Note that G(s)

has no poles in C+. Increasing delay will make the linearized system unstable

since the functions

|G(jω)|, ∠(G(jω)e−jω)

are decreasing functions of ω and we have

KG(0) > 1.

Therefore, if we increase the delay value enough, the first negative axis crossing

of the Nyquist plot of the function Hτ (s) will be at a value less than −1 so the

Nyquist plot of the function Hτ (s) will encircle the point −1 at least once so the

characteristic equation will be unstable as a result of the Nyquist criteria. To

find the critical value τ , we will use the fact that the roots of the characteristic

function of the linearized system depends continuously on the parameter τ which

means that the characteristic function of the linearized system will be stable for

all τ < τm where τm is the smallest positive number such that the function

Hτ (s) = 1 +Ke−τsG(s)

has a root on the imaginary axis. Since |G(jω)| is a decreasing function of ω, we

can find the critical value of τm by the following formula:

τm =
PM

ωm

, (4.29)

82



where PM denotes the phase margin of the characteristic function KG(s) [20].

As |G(jω)| is a decreasing function, when we increase τ > τm the Nyquist plot

of the function

Ke−τsG(s) (4.30)

will encircle −1 more than once since if τ is increased first negative real axis

crossing of the Nyquist plot will happen at a lower frequency. Hence, |G(jω)|

at this low frequency will be greater than 1. This completes our proof that the

system will be stable for all τ < τm and it will be unstable for all τ > τm. In

(4.29), we have shown that the calculation τm will require the value of the gain

margin of some characteristic function which can be calculated by simulation

programs easily. For analytic calculation, we will use the fact that the function

|G(jω)| is decreasing. We know that

|G(0)K| > 1,

and |G(jω)K| is a strictly decreasing function of ω and we have

lim
ω→∞

|G(jω)K| = 0.

By the intermediate value theorem ∃ωm > 0 such that

|G(jωm)K| = 1.

Since |G(jω)K| is strictly decreasing function of ω we have a unique gain

crossover frequency, which can be found by the solution of the roots of a poly-

nomial. To see this note that

|G(jω)K| =
∣∣∣∣P (jω)

Q(jω)

∣∣∣∣ = Pm(ω)

Qm(ω)
,

where Pm(ω) and Qm(ω) are polynomials. Hence, we have the following equality:

Pm(ωm)−Qm(ωm) = 0

⇒ ωm is the positive root of the polynomial Pm(ω)−Qm(ω).
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Then, τm is given by the following equation:

τm =
π + ∠(G(jωm))

π
.

We have shown the local stability of the equilibrium point of the system

(4.1) for some values of the delay. Note that since the nonlinearities involved

in the system (4.1) are somehow arbitrary, we could not estimate the domain of

attraction of the unique equilibrium point of the system (4.1). If xi = 0 for some

i = 1, 2, ..., 8, then we have ẋi ≥ 0, which means that R8
+ is an invariant set of

the the system (4.1). But due to the shape of nonlinearities, the system can not

be categorized as a monotone dynamical system, which makes it hard for us to

make a complete analysis of the system (4.1). Therefore, the global analysis of

system (4.1) is still an open question.

4.3 Simulation Results

In this section we will try to verify results obtained in the previous section by

means of simualtions. We calculated the coordinates unique xeq equilibrium of

the system (4.1) as following:

x1 = 0.997928 x2 = 0.000296 x3 = 0.000236 x4 = 0.000229

x5 = 3 x6 = 0.4957 x7 = 0.007329 x8 = 0.062302

To calculate τm, we first show that the linearized delay free system is stable. We

do this by drawing the Nyquist graph of the function KG(s). The graph we

obtained is presented in Figure 4.2.
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Figure 4.2: Nyquist Plot of the function KG(s).

As we can see from Figure 4.2 the Nyquist plot does not encircle −1, therefore

1 + KG(s) is stable. We also see that increasing delay may make the system

unstable. For the calculation of τm, we will benefit from the Bode plot of KG(s).

Figure 4.3 shows the Bode plot of the function KG(s); we can conclude from

this plot that the undelayed system is stable. The phase margin and crossover

frequency of the system are calculated as

PM = 1.73 rad, ωm = 0.01 radh−1. (4.31)

−500

−400

−300

−200

−100

0

100

G
en

lik
 (

dB
)

10
−4

10
−2

10
0

10
2

10
4

−540

−360

−180

0

F
az

 (
de

g)

Bode Diyagramý

Frekans  (rad/s)

Figure 4.3: Bode plot of the function KG(s).
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Then, the critical τm can be calculated as:

τm = PM/ωm = 1.73/0.01 = 1730 h. (4.32)

The biologic variable x6, which represents the red blood cell levels, is bio-

logically more important than the other variables. Therefore, we only show the

simulation results corresponding to x6. The unit of time in the simulations are

hours (h). The sixth coordinate of the output of system with initial conditions

y = (0.3, 0.4, 1.5, 1.2, 2, 0.2, 0.2, 0.2) and delay value τ = 1000 h < τm are given

in Figure 4.4. As we can see in Figure 4.4 x6 converges to the sixth coordinate

of xeq, which is compatible the theoretical results.
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Figure 4.4: Output of the sixth coordinate x6 with initial conditions y and τ = 1000h.
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Figure 4.5 shows the simulation results corresponding to the initial condition

yν = (1.3, 0.03, 0.03, 0.03, 3.2, 0.6, 0.01, 0.01) and a time delay of

τ = 5000 h > τm. (4.33)

From equation (4.33), we can conclude that the equilibrium point is locally un-

stable for this value of delay. From Figure 4.5 we see that x6 has an oscillatory

behavior, which confirms the local unstability of xeq.
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Figure 4.5: Output of the sixth coordinate x6 with initial conditions yν and τ = 5000h.

Although after looking Figures 4.4 one may be tempted to conclude that

the general solution of the system (4.1) converges to xeq, it may not be the
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case since the result we proved in the previous section is just a local stability

result. Therefore, there may exists some initial conditions such that the solutions

corresponding to these initial conditions may not converge to xeq. The system can

have periodic solutions or it may even show chaotic behavior. A global analysis

will more likely require some advanced results from differential topology[29]. So

further work is required to prove the observation that the unique equilibrium xeq

of the system (4.1) is a global attractor.

88



Chapter 5

Conclusions

In this work, we analyzed two cyclic nonlinear biological models with time de-

lays, namely, the genetic regulatory network and the erythropoiesis model. For

the analysis of the genetic regulatory network, we assume that the nonlinearity

functions have negative Schwarzian derivatives and by the help of the results

presented in [4], [5], and [18], we performed a detailed analysis of the genetic

regulatory feedback. For the erythropoiesis model, we proved a delay dependent

local stability result.

In Chapter 2, we gave the required mathematical background and some pre-

liminary results which are needed for our analysis in Chapters 3 and 4. We also

recalled some basic results for the analysis of linear time delay systems. Another

important concept from Chapter 2 is the Schwarzian derivative. We proved that

functions having negative Schwarzian derivatives can only have two forms. Based

upon this classification, we proved some results about the fixed points of such

functions.

In Chapter 3, we considered gene regulatory networks modeled as cyclic non-

linear dynamical systems with time delayed feedback. We analyzed negative
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feedback and positive feedback cases separately. We assumed that the nonlin-

earity functions have negative Schwarzian derivatives.

For the negative feedback case we obtained global stability conditions inde-

pendent of delay. Also derived is a condition for instability independent of delay

(leading to oscillatory behavior); the computation of a general expression for the

period of oscillations is the subject of a future study. As a special case of the

negative feedback, we considered the homogenous gene regulatory network where

all nonlinearity functions are equal to a Hill function. For this case, we proved a

delay independent global stability result depending only on the parameters of the

Hill function. A similar result is given for the existence of oscillatory solutions.

For positive feedback case, we derived conditions for single positive equilib-

rium point, which is asymptotically stable independent of delay. In some cases

there are more than one equilibrium point. For these cases, we demonstrated how

to compute these equilibrium points and whether they are stable or not. For the

case with more than one locally stable equilibrium, one interesting problem can

be the calculation of the radius of convergence of each stable equilibrium point.

Furthermore, homogenous network is considered as a special case and some easy

result to check existence of single equilibrium point is proven.

In Chapter 4, we analyzed a mathematical model of Erythropoiesis proposed

in [8]. We first showed that the model has a unique fixed point in R8
+. Then, the

linearization of the system around this unique fixed gave us a locally stable system

for some values of delay. We also found the critical delay value and showed, by

the help of simulations, for delay values larger than this critical value, the system

has oscillatory behavior.
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APPENDIX A

Erythropoiesis Model

A.1 Model Variables

Variable Symbol Variable Name Variable Definition
x1 Ej Non-activated receptor complex EpoR/JAK2
x2 pEpJ Epo-bound activated EpoR/JAK2 complex
x3 DpS Activated cytosolic STAT5
x4 DpSnc (pEpj) Activated nuclear STAT5
x5 PC Red blood progenitor cell levels
x6 RB Cells levels
x7 mEpo Levels of Epo messenger RNA in the renal cortices
x8 Epo Blood levels of erythropoietin, Epo

Table A.1: Model variables of Erythropoiesis
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A.2 Model Parameters

Parameters Definition Value
a0 Synthesis rate of non-activated receptor complex (Ej) 0.15 h−1

a1 Degradation rate of Ej 0.15 h−1

a2 Activation rate of Epo 0.005 h−1

a3 Degradation rate of activated EpoR/JAK2 (pEpj) 1.05 h−1

a4 Degradation rate of nuclear STAT5 (DpSnc) 28.02 h−1

a5 Synthesis rate of activated cytosolic STAT5 (DpS) 21.78 h−1

a6 Degradation rate of DpS 27.23 h−1

a7 Synthesis rate of proliferation cells (PC) 0.009 h−1

a8 Activation rate of DpSnc 2.06× 10−7 h−1

a9 Degradation rate of PC 0.03 h−1

a10 Synthesis rate of red blood cells (RB) 0.115 h−1

a11 Degradation rate of RB 0.00016 h−1

a12 Synthesis rate of Epo messenger RNA (mEpo) 0.02 h−1

a13 Degradation rate of mEpo 210 h−1

a14 Synthesis rate of Epo 15.3 IU/mL h
a15 Degradation rate of Epo 1.8 IU/mL h
g Kinetic order 6.19

Table A.2: Model parameters for Erythropoiesis
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APPENDIX B

Matrix Equalities

Lemma 24. Let A and B be square matrices. Then the following equality holds:

det(K) = det

A 0

C B

 = det(A)det(B)

Proof. If A or B is singular then det(A)det(B) = 0, but also the matrix K has

linearly dependent rows if det(A) = 0 or it has linearly dependent columns if

det(B) = 0 in both cases giving us det(K) = 0. Now, suppose both A and B are

nonsingular, then notice that

K =

A 0

C B

 =

A 0

0 I

I 0

0 B

 I 0

B−1C I


⇒ det(K) = det(A)det(B)1 = det(A)det(B).

Lemma 25. Let A and D be square matrices and D is nonsingular, then the

following equality holds:

det(K) = det

A B

C D

 = det(D)det(A−BD−1C).
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Proof. A B

C D

 =

I 0

0 D

 A B

D−1C I


=

I 0

0 D

A−BD−1C B

0 I

 I 0

D−1C I

 .

By using Lemma 24, we get the desired equality.
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