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ABSTRACT

Synchronization of Pendulum Like Systems

Deniz Kerimoğlu

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ömer Morgül

August 2011

Synchronization is a phenomenon that is widely encountered in nature, life sci-

ences and engineering. There exist various synchronization definitions in various

research fields. The general definition for synchronization is the adjustment of

rhythms of oscillating systems due to their weak interaction. Synchronization

problem depends on the type of applications that require suitable properties

and comparison functions. Different applications require different properties and

comparison functions. Throughout our study, we choose the comparison function

to be the difference of the states variables of the systems in hand.

In this thesis, we will present types and methods of synchronization which

has practical applications, i.e. mechanical systems. Then, we will investigate the

passive controlled in-phase synchronization of spring-damper coupled single and

double pendulum systems by using various stability analysis for both the sys-

tem in hand and its appropriately defined error dynamics. We mostly achieved

in-phase synchronization in these coupled pendulum systems with a few excep-

tions which are based on several conditions. Finally, we will explain the master-

slave synchronization of two ball hoppers using two different gait controllers,

namely, fully-actuated and under-actuated controllers. By using fully-actuated

controller for the slave hopper, we achieved apex state synchronization and by
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using under-actuated controller for the slave hopper, we achieved apex position

synchronization between these two hoppers in master slave configuration.

Keywords: In-phase Synchronization, Master Slave Synchronization, Coupled

Pendulum System, Ball hopper, Gait Controller.
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ÖZET

SARKAÇ BENZERİ SİSTEMLERİN EŞZAMANLAMASI

Deniz Kerimoğlu

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ömer Morgül

Ağustos 2011

Eşzamanlama doğada, fen bilimlerinde ve mühendislik analarında çokça karşılaş

ılan bir olgudur. Çeşitli araştırma alanlarında birçok eşzamanlama tanımı mev-

cuttur. Genel olarak eşzamanlama pasif bağlı salınan mekanik sistemlerin ritim-

lerinin uyum sağlaması olarak tanımlanabilir. Eşzamanlama problemi, uygun

özellikler ve karşılaştırma fonksiyonları gerektiren uygulama çeşitlerine bağlıdır.

Çeşitli uygulamalar çeşitli özellikler ve karşılaştırma fonksiyonları gerektirir.

Biz bu çalışmamızda, karşılaştırma fonksiyonunu elimizdeki sistemin durum

değişkenlerinin farkı olarak tanımlamaktayız. Bu çalışmamızda, uygulama alanı

bulan eşzamanlama çeşitlerini ve yöntemlerini vereceğiz, örneğin mekanik sis-

temler. Sonra, yay-sönümleyici bağlı basit ve çift sarkaç sistemlerinin pasif-

denetleyicili eş-faz eşzamanlamasını hem elimizde bulunan sisteme hem de bu sis-

temin hata dinamiğine çeşitli kararlılık analizleri uygulayarak inceleyeceğiz. Söz

konusu bağlı sarkaç sistemlerin çoğunun eş-faz eşzamanlamasını belirli koşullara

bağlı birkaç istisna durum dışında elde ettik. Son olarak, tam tahrikli ve ek-

sik tahrikli olacak şekilde iki farklı hareket denetleyicisi kullanarak iki tane top

zıplayanının efendi-köle eşzamanlamasını açıklayacağız. Köle zıplayanı için tam

tahrikli denetleyici kullandığımız durumda, efendi ve köle zıplayan arasında tepe
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noktası durum eşzamanlaması, eksik tahrikli denetleyici kullandığımız durumda

ise tepe noktası pozisyon eşzamanlaması elde ettik.

Anahtar Kelimeler: Eş-faz Eşzamanlaması, Efendi-Köle Eşzamanlaması, Bağlı

Sarkaç Sistemleri, Top Zıplayanı, Hareket Denetleyicisi.
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chronize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Touchdown and liftoff position error figures. After the first stride

touchdown and litoff positions synchronize. . . . . . . . . . . . . . 81

5.6 Differences of time that is spent between present apex to apex at

each stride. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Simultaneous master-slave synchronization of two ball hoppers

when there is no criteria applied to the initial conditions of the

slave hopper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 Simultaneous master-slave synchronization of two ball hoppers

when the criteria applied to the initial conditions of the slave hopper. 84

5.9 Master-Slave Synchronization of Two Ball Hoppers. For the mas-

ter hopper we choose k = 1, θ = 0, ∆y = 0.05 as the control
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Chapter 1

INTRODUCTION

Synchronization, a phenomenon that is abundant in science, nature, engineering

and social life, in its broadest context is the adjustment of rhythms of oscillating

systems due to their weak interaction [1]. Systems such as clocks, singing crick-

ets, cardiac pacemakers, firing neurons, and applauding audiences exhibit a ten-

dency to operate in synchrony and in systems such as robot manipulators, secure

communication networks, tele-operated machines, chemical reactions, computers

with parallel architecture we desire synchronous operation [2]. These phenom-

ena are universal and can be understood within a common framework based on

nonlinear dynamics.

Synchronization phenomenon is widely encountered in the natural world, the

chorusing of crickets, synchronous flash light in group of fire-flies, the metabolic

synchronicity in yeast cell suspension, see [3]. From an engineering perspective

the collective behavior of laser and power generator arrays is of special practi-

cal importance. Arrays of microwave oscillators and arrays of super-conducting

Josephson junctions are another object of intensive research[2]. In mechan-

ics, synchronization has found wide application in the construction of various
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vibro-technical devices [4], robot manipulators [5, 6]. In radio-physics, radio-

engineering, radiolocation, radio-measurements and radio-communication, syn-

chronization is employed for frequency stabilization of generators, for synthesiz-

ing frequencies and demodulation of signals in Doppler systems, in exact time

systems, by designing phase antenna arrays [7]. Several secure and efficient

communication schemes are based on chaotic phase synchronization [8, 9]. In

social life interpersonally coordinated processes that are organized in time, or

sometimes even occur simultaneously, can be subsumed under the notion of syn-

chronization [10].

Synchronization phenomena have been the subject of discussion in various

research areas since the 17th century, when the synchronization of two pendulum

clocks attached to a common support beam was first discovered by Christiaan

Huygens [11, 12]. In the middle of the nineteenth century Lord Rayleigh observed

synchronization when two distinct but similar pipes sound in unison. A new stage

in the investigation of synchronization was related to the development of electrical

and radio engineering in the 20th century when W. H. Eccles and J. H. Vincent

discovered the synchronization property of a triode generator. Since then many

interesting synchronization phenomena have been observed and reported in the

literature [1]. Today Synchronization has become such a pervasive phenomenon

that it is studied in a wide range of research fields and in this study the dynamics

of in-phase synchronization of various coupled mechanical systems and master-

slave synchronization of two ball hoppers are of interest.

The main concern of synchronization problem is the entrainment of all the

sub-systems in such a way that they perform the desired task. This could be

accomplished or observed in several ways [13]:

• In case of disconnected systems that present synchronous behavior this is

referred to as natural synchronization, e.g. all precise clocks are synchro-

nized in the frequency domain.
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• When synchronization is achieved by proper interconnections, i.e. without

any artificially introduced external action, then the systems in question are

referred to as self-synchronized, e.g. the synchronization of celestial bodies,

such as rotation of satellites around planets.

• When there exist external actions (input controls) and/or artificial in-

terconnections then this type of synchronization is called as controlled-

synchronization. Examples of this case are most of the practical applica-

tions of synchronization theory such as transmitter-receiver systems and

synchronized oscillators in communications.

Synchronization phenomenon has various definitions in the literature and to

generalize these definitions we introduce synchronization as follows:

Consider two continuous time dynamical systems,

dx

dt
= f1(t, x, y) (1.1)

dy

dt
= f2(t, x, y)

Here, x ∈ <d1 and y ∈ <d2 are vectors that may have different dimensions.

The sub-systems in eq.(1.1) are synchronized if there is a comparison function h

such that:

||h[g(x), g(y)]|| = 0, (1.2)

where ||.|| is some norm, g(x) and g(y) are the measured properties of the systems

such as the frequency or coordinates of the sub-systems[14]. In general terms,

synchronization problem depends on the type of application that requires suit-

able properties and comparison functions. Different applications require different

properties and comparison functions and those that are suitable for one appli-

cation are often completely unsuitable for another. For example, the following

comparison functions appear in the literature:

h[g(x), g(y)] = g(x)− g(y), (1.3)
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h[g(x), g(y)] = lim
t→∞

[g(x)− g(y)], (1.4)

h[g(x), g(y)] = lim
T→∞

1

T

∫ t+T

t

[g(x(s))− g(y(s))]ds, (1.5)

and they all have different purposes. In this thesis we focus on passive and active

controlled synchronization and consider (1.4) as our comparison function.

For the control point of view synchronization problem is solved by design-

ing controllers and/or interconnections that guarantee synchronization of multi-

composed systems with respect to a certain desired comparison function [15].

The controlled synchronization problem can be divided into two groups as

active and passive controlled synchronization problem.

• In active controlled synchronization scheme the problem is to achieve syn-

chronization with the use of external control input [16, 17, 18]. There

are numerous ways to choose an appropriate controller to achieve synchro-

nization in the literature. In [19], control of cooperative underactuated

manipulators with PD+gravity compensation scheme is studied, in [18]

a coupling scheme via a feedback loop with the controller composed of

quadratic form is proposed to synchronize oscillators, in [20] feedforward

and feedback control laws are designed to synchronize the phase of an oscil-

lator, in [15] computed torque methodology is used to synchronize robotic

and mechanical systems, in [16] synchronization of master-slave systems is

achieved using non-linear control methods.

• In passive controlled synchronization scheme the problem is to achieve syn-

chronization with the use of passive coupling components such as spring

and damper.

In this thesis we mainly deal with passive controlled in-phase synchronization

of simple pendulums and double pendulums under various coupling schemes and

active controlled master-slave synchronization of two ball hoppers.
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This thesis is organized as follows. In Chapter 2 we provide types and meth-

ods of synchronization in detail. Chapter 3 and Chapter 4 addresses the ana-

lytical analysis and simulation results of coupled simple pendulum and double

pendulum, respectively. In Chapter 5 we provide simulation results of master-

slave synchronization of two ball hoppers. Finally, we conclude the thesis in

Chapter 6.

1.2 Contributions of the Thesis

We provide an extensive analysis on the in-phase synchronization of simple pen-

dulums which are coupled under various coupling configurations of spring and

damper. Such an extensive research, to the benefit our knowledge, is novel

and our basic aim is to provide a simple guideline for passive synchronization

of simple pendulum systems. To achieve the aforementioned goal starting with

the two pendulums coupled with series spring-mass-damper case we analyze the

coupled simple pendulums by using analytical methods and we also provide nu-

merical simulation results which support our conclusions. We show analytically

in coupled four pendulums case and numerically in coupled seven pendulums

case that the pendulums are synchronized except for certain special cases. For

example, we analytically show that for four pendulums case, if the damper is in

the middle, and two springs on the right and on left of the damper have the same

spring constant then the synchronization can not be achieved. This is in fact the

only configuration in four pendulums case in which synchronization can not be

achieved. We tried to generalize this idea to higher number of pendulums case

and presented some numerical results. Then, we obtain bended matrix forms

of system and error matrices of coupled n pendulum system, but the analytical

stability analysis of such a general coupled systems remains as an open problem.
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Moreover, we investigate the role of spring and damper in synchronization

process. While the spring element couples the pendulums, i.e. no effect on

synchronization, the damper element synchronizes the pendulums by forcing the

velocities of its connection points to be same.

We couple two double pendulums in two different configurations, i.e. from

upper pendulums and from lower pendulums, and we show that for every positive

system parameters, i.e. k, c, m, l, l0, the upper pendulums coupled double

pendulums are synchronized and for every positive system parameters except

l0 = 1√
2
l the lower pendulums coupled double pendulums are also synchronized.

We note that these results have been proven analytically, and some numerical

simulation results have been added to support our claims.

Finally, we present synchronization of two ball hoppers in master-slave con-

figuration under two different deadbeat gait controllers namely, fully-actuated

controller and under-actuated controller. We obtain apex state synchronization

between the hoppers by using fully-actuated deadbeat controller and we obtain

meaningful apex position synchronization between the hoppers by using under-

actuated deadbeat controller. We note that these results are rather novel and

require further investigation.
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Chapter 2

TYPES AND METHODS OF

SYNCHRONIZATION

Since there are numerous synchronization applications and observations, various

synchronization types exist in the literature [14]. In our researh we restricted

the scope of the types of synchronization to practical applications. To achieve

synchronization goal, defined by the comparison function, there exist several

methods and we will mention about the widely used methods of synchronization

in the literature.

2.1 Types of Synchronization

Many research fields consider the synchronization in different terms and there is

not a unified definition or type of synchronization. Below we address the widely

used types of synchronization.
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2.1.1 Phase Synchronization

Phase synchronization is defined as the appearance of a certain relation between

the phases of interacting systems while the amplitudes remain uncorrelated[21,

22]. Since there is not a common definition of phase for regular and chaotic

systems, we need to define the phase and phase syncronization based on the

application. For regular systems there exist several phase definitions. Consider

the equation of motion of the simple harmonic motion,

m
d2x

dt2
+ kx = 0. (2.1)

The solution of the differential equation is,

x(t) = Acos(wt+ φ(0)). (2.2)

Here A and φ(0) are determined by the initial conditions of the system. For

this periodical solution the phase is defined as,

φ(t) = wt+ φ(0). (2.3)

In certain mechanical systems, phase is defined to be the state parameter of

the system such as position, velocity and rotational angle [23].

In non-linear systems phase is defined by using the phase-space of the system

as,

φ(t) = tan−1
ẋ(t)

x(t).
(2.4)

where x(t) is the variable which is of interest, and ẋ(t) is its time derivative

see e.g. [11].

In limit cycle oscillators phase is defined by the use of limit cycle differential

equation as [11], [24]:

φ̇(t) = w. (2.5)

8



and the phase of the system is,

φ(t) = wt+ φ(0). (2.6)

For the coupled limit cycle oscillators,which are also used in network synchro-

nization, phase equations are as follows:

φ̇1(t) = w1 + h1(φ1, φ2), (2.7)

φ̇2(t) = w2 + h2(φ1, φ2), (2.8)

and phases are determined once the coupling functions h1(φ1, φ2) and h2(φ1, φ2)

are chosen.

For Chaotic system synchronization see [21].

Phase synchronization is widely used in synchronization of chaotic systems

and in secure communication system for receiver-transmitter efficiency.

2.1.2 Full Synchronization

Full synchronization is defined as the synchronization of both phase and ampli-

tude of the systems. Full synchronized systems behave in unision. Let θ1(t) and

θ2(t) be the state variables of the systems. In this case if,

lim
t→∞

θ1(t)− θ2(t) = 0, (2.9)

then the systems are in-phase synchronized and if,

lim
t→∞

θ1(t) + θ2(t) = 0, (2.10)

then the systems are anti-phase synchronized[23]. Both types are used in me-

chanical systems and robotic systems [15], [23].
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2.1.3 Frequency Synchronization

Frequency synchronization is the entrainment of frequencies of the systems while

phases are independent. Let wx and wy be the frequencies of the systems, nx

and ny be some integers. If,

nxwx − nywy = 0, (2.11)

then the frequencies of the systems are synchronized[14]. This type of synchro-

nization is widely used in communication systems.

2.1.4 Network Synchronization

Network synchronization is the entrainment of large populations of interacting

elements and it is the subject of intense research efforts in physical, biological,

chemical, and social systems. A successful approach to the problem of net-

work synchronization, called Kuramoto Model Approach, consists of modeling

each member of the population as a phase oscillator. In this way the dynam-

ics of the coupled complex system is reduced and synchronized. The Kuramoto

model consists of a population of N coupled phase oscillators θi(t) having natu-

ral frequencies wi distributed with a given probability density g(w), and whose

dynamics are governed by:

θ′i = wi +
N∑
j=1

Kij sin(θj − θi), i = 1, ..., N. (2.12)

Thus each oscillator tries to run independently at its own frequency, while the

coupling tends to synchronize it to all the others [25]. Network synchronization

is widely used in laser arrays, neural networks and chemical oscillators [1].
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2.2 Methods Of Synchronization

Nowadays, the developments in technology and the requirements on efficiency

and quality in production processes have resulted in complex and integrated

production systems. In actual production processes such as manufacturing, au-

tomotive applications, and teleoperation systems there is a high requirement on

flexibility and manoeuvrability of the involved systems. In most of these pro-

cesses the use of integrated and multi-composed systems is widely spread, and

their variety in uses is practically endless; assembling, transporting, painting,

welding, just to mention few. All these tasks require large manoeuvrability and

manipulability of the executing systems, often even some of the tasks can not

be carried out by a single system. In those cases the use of multi-composed

systems has been considered as an option. A multi-composed system is a group

of individual systems, either identical or different, that work together to execute

a task. On the other hand for mechanical systems that require flexibility and

manoeuvrability, synchronization is of great importance and these cooperative

behaviours can not be achieved by an individual system, e.g. multi finger robot-

hands, multi robot systems and multi-actuated platforms [26], [6], teleoperated

master-slave systems [27], [28]. In medicine, master-slave teleoperated systems

are used in surgery giving rise to more precise and less invasive surgery pro-

cedures [29], [30]. In aerospace applications coordination schemes are used to

minimize the error of the relative attitude in formations of satellites [31], [32].

The case of group formation of multiple robotic vehicles is addressed in [33].

As we have mentioned before there exist many synchronization applications

and observations and as a result numerous methods are applied to these types of

synchronization. In this study we constrain our research to the methods which

are applied widely in mechanical systems. Methods of synchronizations that are

applied to mechanical systems are as follows:
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2.2.1 Active Controlled Synchronization

The synchronization goal is achieved by designing controllers and/or intercon-

nections that guarantee the synchronous behaviour. In other words, by applying

external force, torque generated via feedforward and/or feedback controllers, the

synchronization is achieved. Depending on the formulation of the controlled

synchronization problem distinction should be made between mutual (internal)

synchronization and master-slave (external) synchronization.

• In the first and most general case, all synchronized objects occur on equal

terms in the unified multi-composed system. Therefore the synchronous

motion occurs as the result of interaction of all elements of the system, e.g.

coupled synchronized oscillators, cooperative systems [15].
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Figure 2.1: Mutual Synchronization of Subsystems

• In the second case, it is supposed that one object in the multi-composed

system is more powerful than the others and its motion can be considered

12



as independent of the motion of the other objects. Therefore the result-

ing synchronous motion is predetermined by this dominant independent

system, e.g. master-slave systems, coordinated system [15].

Slave
System 1

Desired
Trajectory

Current
Trajectory

Master
System

Slave
System n

Controller
Input 1

Controller
Input n

Figure 2.2: Master-Slave Synchronization of Subsystems

2.2.2 Passive Controlled Synchronization

Synchronization goal is achieved by using passive coupling elements. No con-

troller is designed and no externel force or torque is applied to synchronize the

systems in hand. Such couplings are torsional and translational spring and tor-

sional and translational damper [34].
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Chapter 3

PASSIVE CONTROLLED

IN-PHASE

SYNCHRONIZATION OF

COUPLED SIMPLE

PENDULUMS

In this chapter we will investigate the synchronization dynamics of simple pendu-

lums under various coupling schemes and present equations of motion, linearized

system and error equation analysis and stability analysis. The aims of this Chap-

ter are listed as follows:

• The basic aim of this Chapter is to achieve in-phase synchronization be-

tween single pendulums by coupling them with various spring-damper com-

binations and to provide a generalized formula or a guideline that guaran-

tees the synchronization of n pendulums which are coupled with a single

damper and n− 2 springs.
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• We want to reveal the role of spring and damper in synchronization process.

• We expect to observe in-phase synchronization between coupled simple

pendulums for any positive system parameters and we want to support our

findings by using both analytical and numerical analysis.

Starting from the analysis of two pendulums coupled with series spring-mass-

damper, we proceed with two pendulums coupled with series spring-damper.

Then we analyze two pendulums coupled with parallel spring-damper in normal

and oblique forms. Afterwards we analyze three or more pendulums coupled with

spring-damper combinations. Throughout the chapter we use several methods

and make several assumptions as listed below:

• We use small angle approximation for linearization of equations of motion,

i.e. we restrict the pendulum angles not to exceed 10◦.

• We assume that the spring and damper compresses and decompresses only

in the horizontal direction.

• All of the components in this study are assumed to be frictionless.

• We assume that pendulum rod, spring and damper are weightless.

• Equations of motion are obtained by using both free body diagrams and

by Lagrangians.

• For stability analysis Routh-Hurwitz criterion is widely used.

• Simulations are obtained by using the nonlinear equations of motion of the

systems under consideration in Matlab environment.
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3.1 Two Pendulums Coupled with Series Spring-

Mass-Damper

Consider the system shown in the Figure 3.1. We couple two pendulums from

point l0 with series connected spring, mass and damper and analyze the syn-

chronization dynamics. Suppose that the mass is attached to the beam with a

weightless string which does not exert torque but forces the mass to move only

in the horizontal direction. Here k is the spring stiffness, c is damping coeffi-

cient, θ1 and θ2 are pendulum angles and x is the connection point of spring and

damper with mass. Let m1, l1, m2, l2 denote the mass and length of the pendu-

lums, respectively. By using either free-body diagrams or performing Lagrangian

method, we obtain the following equations of motion:

m1l
2
1θ̈1 +m1gl1 sin θ1 + kl0 cos θ1(l0 sin θ1 − x) = 0, (3.1)

Mẍ− k(l0 sin θ1 − x) + c(ẋ− l0 cos θ2θ̇2) = 0, (3.2)

m2l
2
2θ̈2 +m2gl2 sin θ2 − cl0 cos θ2(ẋ− l0 cos θ2θ̇2) = 0. (3.3)

Figure 3.1: Two Double Pendulums Coupled with Series Spring-Mass-Damper

Next, we define the state variables of this system as,

z =
[
θ1 θ̇1 x ẋ θ2 θ̇2

]T
. (3.4)
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Now let assume m1 = m2 = m, l1 = l2 = l, which is reasonable for synchro-

nization, i.e. we assume the synchronization of two identical pendulums. When

we linearize the equations of motion around the equilibrium point z = 0, the

linearized equations of motion of the system can be written in matrix form as

ż = Az and A is given as follows:

A =



0 1 0 0 0 0

−g
l
− kl20

ml2
0 kl0

ml2
0 0 0

0 0 0 1 0 0

kl0
m

0 − k
m
− c
m

0 − cl0
m

0 0 0 0 0 1

0 0 0 cl0
ml2

−g
l
− cl20
ml2


. (3.5)

Instead of obtaining error equations, applying Routh-Hurwitz criterion to

equations of motion for this system is more appropriate. In order to obtain the

Routh array, the coefficients of characteric equation of the matrix A is used and

the first column of the Routh array is given as:

s6 1

s5
c(l2+l20)

ml2

s4
kl3+gl20m

ml3+ll20m

s3
cl20(2k

2l2+k2l20−2gklm+g2m2)

m2l(kl3+gl20m)

s2
gk(2k2l4+2k2l2l20+k

2l40−2gkl3m−gkl20m+(glm)2)

ml3(2k2l2+k2l20−2gklm+g2m2)

s1 gk3cl6

m2l3(2k2l4+2k2l2l20+k
2l40−2gkl3m−gkl20m+(glm)2)

s0 kg2

ml2

Table 3.1: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to equations of motion of the coupled system.
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After straightforward calculations, it can be shown that all the elements in

the first column of Routh array are positive. This analysis is given in the ap-

pendix. This shows that the linearized system is exponentially stable, hence the

original system given by (3.1)-(3.3) is also locally exponentially stable, i.e. if

z(0) is sufficiently small then z(t) → 0, as t → ∞. This is because of the mass

we connected between spring and damper. Our simulation results support our

findings. In the next section we extract this mass and achieve meaningful syn-

chronization. Typical simulation results for pendulum angles and error between

pendulum angles are given in Figures 3.2 and 3.3.
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Figure 3.2: Simulation of two pendulums coupled with spring, mass, damper.
We choose m1 = m2 = 1, k = 5, c = 1, l = 1, l0 = 0.5, θ1(0) = 8◦, θ̇1(0) =
0◦, θ2(0) = 3◦, θ̇2(0) = 0◦, x(0) = 0, ẋ(0) = 0 for simulation purposes.
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Figure 3.3: Error simulation of two pendulums coupled with spring, mass,
damper. We choose the above parameters for simulation purposes.

3.2 Two Pendulums Coupled with Series Spring-

Damper

Consider the system shown in the Figure 3.4. We couple two pendulums from

point l0 with series connected spring and damper and analyze the synchronization

dynamics. Here k is the spring stiffness, c is damping coefficient, θ1 and θ2 are

pendulum angles and x is the connection point of spring and damper. Let m1, l1,

m2, l2 denote the mass and length of the pendulums, respectively. By using either

free-body diagrams or performing Lagrangian method, we obtain the following

equations of motion:

m1l
2
1θ̈1 +m1gl1 sin θ1 + kl0 cos θ1(l0 sin θ1 − x) = 0, (3.6)

k(l0 sin θ1 − x)− c(ẋ− l0 cos θ2θ̇2) = 0, (3.7)

m2l
2
2θ̈2 +m2gl2 sin θ2 − cl0 cos θ2(ẋ− l0 cos θ2θ̇2) = 0. (3.8)
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Figure 3.4: Two Double Pendulums Coupled with Series Spring-Damper

Note that we can also obtain (3.6)-(3.8) from (3.1)-(3.3) by simply using

M = 0. Let us define the following state variables for this system,

z =
[
θ1 θ̇1 x θ2 θ̇2

]T
. (3.9)

Now let us assume m1 = m2 = m, l1 = l2 = l, which is reasonable for syn-

chronization, i.e. we assume the synchronization of two identical pendulums.

By linearizing the equations of motion around z = 0 we write the equations of

motion in ż = Az form and A is given as:

A =



0 1 0 0 0

−g
l
− kl20

ml2
0 kl0

ml2
0 0

kl0
c

0 −k
c

0 l0

0 0 0 0 1

kl20
ml2

0 − kl0
ml2

−g
l

0


. (3.10)

Applying Routh-Hurwitz criterion to the characteristic equation of matrix

A we have the first column as in Table 3.2. As it is seen from the Table 3.2,

the system is stable as long as k, c, l0, l,m parameters are positive. Two roots

are on the imaginary axis and three roots are on the left half plane. While the

roots on the left half plane stabilizes the pendulums, roots on the imaginary axis

forces the pendulums oscillate without damping. For further analysis consider

the following error dynamics analysis.
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s5 1

s4 k
c

s3
2kl20
ml2

s2 gk
lc

s1 ε

s0 g2k
l2c

Table 3.2: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to equations of motion of the coupled system.

Since this system have rotational (θ1, θ2) and translational (x) generalized

coordinates, the error equation, defined as the difference between pendulum an-

gles ze = [θ1 − θ2, θ̇1 − θ̇2], can not be written in the że = Aeze form, where

ze = [θ1 − θ2, θ̇1 − θ̇2]
T . In this case we define new state variables for error

dynamics and apply similarity transformation to matrix A as follows:

ẑe =
[
θ1 − θ2, θ̇1 − θ̇2, x, θ2, θ̇2

]T
, (3.11)

˙̂ze = TAT−1ẑe = Âẑe. (3.12)

where the transformation matrix is,

T =



1 0 0 −1 0

0 1 0 0 −1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (3.13)

For simplicity we define the following parameter:

K =
kl0
ml2

. (3.14)
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Then Â given by (3.12) can be computed as:

Â =



0 1 0 0 0

−g
l
− 2Kl0 0 2K −2Kl0 0

kl0
c

0 −k
c

kl0
c

l0

0 0 0 0 1

Kl0 0 −K Kl0 − g
l

0


. (3.15)

Now let us seperate ẑe ∈ <5 as ẑe = [ẑe1 ẑe2]
T where ẑTe1 = [e ė], ẑTe2 = [x θ2 θ̇2].

Then,

˙̂ze1 = Â11ẑe1 + Â12ẑe2, (3.16)

˙̂ze2 = Â21ẑe1 + Â22ẑe2, (3.17)

where

Â11 =

 0 1

−g
l
− 2Kl0 0

 , (3.18)

Â12 =

 0 0 0

2K −2Kl0 0

 , (3.19)

Â21 =


kl0
c

0

0 0

Kl0 0

 , (3.20)

Â22 =


−k
c

kl0
c

l0

0 0 1

−K Kl0 − g
l

0

 . (3.21)

Differentiating (3.16) and using (3.18)-(3.21) we obtain:

¨̂ze1 = Â11
˙̂ze1 + Â12

˙̂ze2, (3.22)

= Â11
˙̂ze1 + Â12(Â21ẑe1 + Â22ẑe2),

= Â11
˙̂ze1 + Â12Â21ẑe1 + Â12Â22ẑe2.
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On the other hand from (3.19) and (3.21) we obtain:

Â12Â22 =

 0 0 0

−2K k
c

2Kl0
k
c

0

 = −k
c
A12. (3.23)

Using (3.16) and (3.23) in (3.22), we obtain:

¨̂ze1 = Â11
˙̂ze1 + Â12Â21ẑe1 −

k

c
( ˙̂ze1 − Â11ẑe1), (3.24)

= (Â11 −
k

c
I) ˙̂ze1 + (Â12Â21 +

k

c
Â11)ẑe1.

By using (3.18), we obtain:

Â11 −
k

c
I =

 −k
c

1

−2Kl0 − g
l
−k
c

 , (3.25)

Â12Â21 +
k

c
Â11 =

 0 0

−2Kl0
k
c
− g

l
0

 +
g

l
Â11 =

 0 k
c

−g
l
k
c

0

 . (3.26)

Using (3.25) and (3.26) in (3.24), we obtain the following error equation for ẑe1:

¨̂ze1 − (Â11 −
k

c
) ˙̂ze1 − (Â12Â21 +

k

c
Â11)ẑe1 = 0, (3.27)

¨̂ze1 +

 k
c

−1

2Kl0 + g
l

k
c

 ˙̂ze1 +

 0 k
c

g
l
k
c

0

 ẑe1 = 0.

Since ẑe1 = [e ė]T , from the first row of (3.27), we obtain ë − ë = 0, which is

trivially true. From the second row, we obtain:

e(3) +
k

c
e(2) + (2Kl0 +

g

l
)e(1) +

g

l

k

c
e = 0. (3.28)

The characteristic polinomial of (3.28) can be given as:

p(s) = s3 +
k

c
s2 + (2Kl0 +

g

l
)s+

g

l

k

c
. (3.29)

By using Routh-Hurwitz criterion, we have the Routh array as in Table 3.2. Since

the first column contains positive elements, it follows that (3.29) is a Hurwitz

polinomial, hence the linearized error dynamics given by (3.28) is stable. We can

summarize there results in the following theorem.
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s3 1

s2 k
c

s1 2Kl0c
k

s0 g
l
k
c

Table 3.3: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to equations of motion of the coupled system.

Theorem1 : Consider the system given by (3.6)-(3.8). Let us define e =

θ1 − θ2. Then the error dynamics are locally exponentially stable, i.e. if |e(0)|

and |ė(0)| are sufficiently small, then both e(t) and ė(t) converges to zero expo-

nentially fast.

Proof : Result follows from the linearization of (3.6)-(3.8) given by (3.9) and

(3.10), the error dynamics given by (3.28), and the standard Lyapunov stability

arguments, see e.g. [35].

Now let us consider the behaviour of the remaining dynamics given by (3.6)-

(3.8) in review of Theorem 1. Let us define θ = θ1, then by using e = θ1 − θ2 we

obtain θ2 = θ − e. Furthermore, let us define a new variable w as follows:

w = x− l0 sin θ. (3.30)

By using (3.30) in (3.7), we obtain:

cẇ + kw = f0(t), (3.31)

where f0(t) is a function which depends on e and ė such that |f0(t)| < M1e
−α1t

for some M1 > 0 and α1 > 0. It follows from (3.31) that w(t)→ 0 exponentially

fast. Moreover, the decay rate of the homogeneous part of (3.31) is given by −k
c
.

By using these in (3.6) and (3.8), we obtain:

θ̈i +
g

l
sin θi = fi(t), i = 1, 2. (3.32)

where fi(t) is an appropriate exponentially decaying function which depends on

e, ė and w. Hence if e(0), ė(0) and w(0) are sufficiently small, fi(t) is sufficiently

24



small as well. This shows that the solution of (3.32) are bounded provided that

the initial conditions indicated above are sufficiently small. Moreover, as t→∞

we have fi(t)→ 0 hence the dynamics of (3.32) converges to the dynamics of,

θ̈i +
g

l
sin θi = 0, (3.33)

i.e. asymptotically each pendulum exhibits standard uncoupled pendulum be-

haviours. Combining these, we obtain the following result.

Theorem2 : Consider the system given by (3.6)-(3.8). Let us define the set

S as follows:

S = {y ∈ <5| θ1 = θ2 = θ, θ̇1 = θ̇2 = θ̇, w = x− l0 sin θ = 0}. (3.34)

If |e(0)|, |ė(0)| and w(0) are sufficiently small, then all solutions of (3.6)-(3.8)

converges to S exponentially fast, moreover θi variables satisfy the dynamics

given by (3.33).

Proof : Since the solutions of (3.6)-(3.8) are bounded the w-limit set is well

defined and invariant. It also follows that w-limit set is a subset of S given by

(3.35). Then the result follows from standard stability arguments, e.g. LaSalle’s

invarance argument, see e.g. [35].

To further support the results given by Theorem 2 consider the linearized dy-

namics given by (3.12) and (3.15)-(3.21). Since e and ė are locally exponentially

stable, to study the dynamics of ẑe1, we may consider the following equation:

˙̂ze2 = Â22ẑe2. (3.35)

The behaviour of ẑe2 = [x, θ2, θ̇2]
T is determined by the roots of Â22. After simple

calculation we obtain:

p̂(s) = det(λI − Â22) = s3 +
k

c
s2 +

g

l
s+K

g

l
, (3.36)

= (λ+
k

c
)(λ2 +

g

l
). (3.37)
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Note that the root −k
c

corresponds to the decay rate of w given by (3.31), and

the complex roots of ±j
√

g
l

corresponds to the linearized pendulum oscillation

frequency. Typical simulation results are given in Figures 3.5 and 3.6.
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Figure 3.5: Simulation of two pendulums coupled with series spring and damper.
We choose m1 = m2 = 1, k = 2, c = 1, l = 1, l0 = 0.75, θ1(0) = 10◦, θ̇1(0) =
0◦, θ2(0) = −1◦, θ̇2(0) = 0◦, x(0) = 0 for simulation purposes.
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Figure 3.6: Error simulation of two pendulums coupled with series spring and
damper. We choose the above parameters for simulation purposes.
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Here we simulated the nonlinear system given in equations (3.6)-(3.8) for the

below mentioned parameter values. It is clear from Figures 3.5 and 3.6 that,

• Pendulums are synchronized, i.e. limt→∞ θ1(t)− θ2(t) = 0

• θ1(t) and θ2(t) converges to their natural oscillating frequencies.

3.3 Two Pendulums Coupled with Parallel

Spring-Damper

Consider the system shown in the Figure 3.7. We couple two pendulums from

point lo with parallel connected spring and damper and analyze the synchro-

nization dynamics. Let m1, l1, m2, l2 denote the mass and length of the pendu-

lums, respectively. By using either free-body diagrams or performing Lagrangian

method, we obtain the following equations of motion:

m1l
2
1θ̈1+m1gl1 sin θ1+kl2o cos θ1(sin θ1−sin θ2)+cl20 cos θ1(cos θ1θ̇1−cos θ2θ̇2) = 0,

(3.38)

m2l
2
2θ̈2+m2gl2 sin θ2−kl2o cos θ2(sin θ1−sin θ2)−cl20 cos θ2(cos θ1θ̇1−cos θ2θ̇2) = 0.

(3.39)

Figure 3.7: Two Double Pendulums Coupled with Parallel Spring-Damper
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Now let us assume m1 = m2 = m, l1 = l2 = l, which is reasonable for

synchronization, i.e. we assume the synchronization of two identical pendulums.

Let us define state variables for this system as z =
[
θ1 θ̇1 θ2 θ̇2

]
. Linearizing

the equations around z = 0 we have ż = Az and A is given as follows:

A =


0 1 0 0

−g
l
− kl20

ml2
− cl20
ml2

kl20
ml2

cl20
ml2

0 0 0 1

kl20
ml2

cl20
ml2

−g
l
− kl20

ml2
− cl20
ml2


. (3.40)

The stability analysis for this system is performed by using eigenvalue analysis

to the characteristic equation of the matrix A. The eigenvalues of the matrix A

can be given as:

s1 =

√
g

l
j, (3.41)

s2 = −
√
g

l
j, (3.42)

s3 = − cl20
ml2
−
√

(
cl20
ml2

)2 − 2kl20
ml2
− g

l
, (3.43)

s4 = − cl20
ml2

+

√
(
cl20
ml2

)2 − 2kl20
ml2
− g

l
. (3.44)

The eigenvalues s1 and s2, which are on the imaginary axis, force the pendulums

to oscillate without damping and the eigenvalues s3 and s4, which are on the left

half plane since the parameters k, c, l, l0, m are positive, stabilize the pendulum

error dynamics. To further justify these claims, let us define the synchronization

error e as e = θ1 − θ2. Then by subtracting (3.38) from (3.39) we obtain the

nonlinear error equation given as follows:

ml2ë+ cl20(cos θ1θ̇1 − cos θ2θ̇2)(cos θ1 + cos θ2)

+mgl(sin θ1 − sin θ2) + kl20(sin θ1 − sin θ2)(cos θ1 + cos θ2) = 0. (3.45)

Then by linearizing (3.45) around z = 0 or equivalently using the linearized

equations given above, linearized error dynamics can be given as follows:

ml2ë+ 2cl20ė+ (mgl + 2kl20)e = 0. (3.46)
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Let ze = [e ė] be the state variables defined for error equations. Then the error

equation is written in the form że = Aeze. The error matrix Ae is,

Ae =

 0 1

−g
l
− 2kl20

ml2
−2cl20
ml2

 , (3.47)

and the eigenvalues of Ae is,

λ1 = − cl20
ml2
−
√

(
cl20
ml2

)2 − 2kl20
ml2
− g

l
, (3.48)

λ2 = − cl20
ml2

+

√
(
cl20
ml2

)2 − 2kl20
ml2
− g

l
. (3.49)

Note that λ1 and λ2 given above are exactly the same as s3 and s4 given by

(3.43) and (3.44). The eigenvalues of the error equation are on the left half

plane and consequently pendulums are synchronized. Since the linearized error

dynamics are stable, the error dynamics for the system given by the nonlin-

ear equation (3.45) is also locally asymptotically stable, i.e. synchronization is

achieved. Typical simulation results are given in Figue 3.8.
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Figure 3.8: Simulation of two pendulums coupled with parallel spring and
damper. In these particular simulations we choose k = 2, c = 1, l0 = 0.75, l =
1, m1 = m2 = 1, θ1(0) = 9◦, θ̇1(0) = 0◦, θ2(0) = −2◦, θ̇2(0) = 0◦.
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Figure 3.9: Error simulation of two pendulums coupled with parallel spring and
damper. We choose the above parameters for simulation purposes.

As can be seen from Figures 3.8 and 3.9:

• limt→∞ θ1(t)− θ2(t) = 0 is achieved,

• θ1(t) and θ2(t) converges to their natural oscillating frequencies,

• Parallel coupled system synchronizes faster than the series coupled one.

3.4 Two Pendulums Coupled with Parallel

Spring-Damper in Oblique Form

Consider the system shown in the Figure 3.10. We couple two pendulums from

points l0 and l1 with parallel spring-damper in oblique form and analyze the

synchronization dynamics. Let m1, l1, m2, l2 denote the mass and length of

the pendulums, respectively. By using either free-body diagrams or performing

Lagrangian method, we obtain the following equations of motion:

m1l
2
1θ̈1 +m1gl1 sin θ1 + kl0 sinα1(l0 sin θ1 − l̂1 sin θ2) (3.50)
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+ cl0 sinα1(l0 cos θ1θ̇1 − l̂1 cos θ2θ̇2) = 0,

m2l
2
2θ̈2 +m2gl2 sin θ2 + kl̂1 sinα2(l0 sin θ1 − l̂1 sin θ2) (3.51)

− cl1 sinα2(l0 cos θ1θ̇1 − l̂1 cos θ2θ̇2) = 0.

where α1 = θ1 + arctan(d−l0 sin θ1+l̂1 sin θ2|l0−l̂1|
), α2 = α1 + θ2 − θ1 and d is the distance

between pendulums.

Figure 3.10: Two Double Pendulums Coupled with Parallel Spring-Damper in
Oblique Form

As in the previous section let us assume m1 = m2 = m, l1 = l2 = l, which is

reasonable for synchronization, i.e. we assume the synchronization of two iden-

tical pendulums. Let us define the state variables as before, i.e. z = [θ1 θ̇1 θ2 θ̇2].

By linearizing the equations of motion around z = 0, we obtain the linearized

equations as ż = Az, where the matrix A is given below:

A =


0 1 0 0

−g
l
− αlKl20 αlCl

2
0 αlKl0l1 αlCl0l1

0 0 0 1

αlKl0l1 αlCl0l1 −g
l
− αlKl21 αlCl

2
1


, (3.52)

where αl = d√
|l0−l1|2+d2

. The stability analysis of this system is performed by

using eigenvalue analysis since the dynamics resembles the normal spring-damper

coupled system explained in the previous section. The eigenvalues of the system
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matrix A can be given as follows:

s1 =

√
g

l
j, (3.53)

s2 = −
√
g

l
j, (3.54)

s3 =
1

2
(−αlC(l20 + l21)−

√
(αlC(l20 + l21))

2 − 4
g

l
− 4K), (3.55)

s4 =
1

2
(−αlC(l20 + l21) +

√
(αlC(l20 + l21))

2 − 4
g

l
− 4K). (3.56)

The eigenvalues s1 and s2, which are on the imaginary axis, force the pendulums

to oscillate without damping and the eigenvalues s3 and s4, which are on the left

half plane since the parameters m l, l0, l1, k, c, αl are positive, stabilize the

pendulum error dynamics.

To analyze the error dynamics we needed to define an appropriate error func-

tion for this system, i.e. we should be able to write the error dynamics in the

form że = Aeze and ze = [e, ė]. In order to do that we define the following error

function:

e = l0θ1 − l1θ2. (3.57)

Then multiplying (3.50) and (3.51) with l0 and l1, respectively and assuming

m1 = m2 = m, l1 = l2 = l we subtract the resultant equations with each other

to obtain the following nonlinear error equation:

ml2(l0θ̈1 − l1θ̈2) + c(l0 cos θ1θ̇1 − l1 cos θ2θ̇2)(l
2
0 sinα1 + l21 sinα2)

+mgl(l0 sin θ1 − l1 sin θ2) + k(l0 sin θ1 − l1 sin θ2)(l
2
0 sinα1 − l21 sinα2) = 0. (3.58)

By linearizing (3.58) around ze = 0 the linearized error dynamics can be given

as follows:

ml2(l0θ̈1 − l1θ̈2) +mgl(l0θ1 − l1θ2) + αlk(l20 + l21)(l0θ1 − l1θ2) (3.59)

+ αlC(l20 + l21)(l0θ̇1 − l1θ̇2) = 0.
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The error dynamics given by (3.59) can be written as że = Aeze, where Ae is as

given below:

Ae =

 0 1

−g
l
− αlk(l20 + l21) αlc(l

2
0 + l21)

 , (3.60)

and the eigenvalues of the error matrix is,

λ1 =
1

2
(−αlC(l20 + l21)−

√
(αlC(l20 + l21))

2 − 4
g

l
− 4K), (3.61)

λ2 =
1

2
(−αlC(l20 + l21) +

√
(αlC(l20 + l21))

2 − 4
g

l
− 4K). (3.62)

Note that, as before, the eigenvalues λ1 and λ2 are exactly the same as the

eigenvalues s3 and s4 given by (3.55) and (3.56). The eigenvalues of the error

equation are on the left half plane and consequently pendulums are synchronized.

Since the linearized error dynamics are stable, the error dynamics for the system

given by the nonlinear equation (3.58) is also locally asymptotically stable, i.e.

synchronization is achieved. Typical simulation results are given in Figures 3.11

and 3.12.
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Figure 3.11: Simulation of two pendulums coupled with parallel spring and
damper in oblique form. In these particular simulations we choose k = 10, c =
1, l = 1, l0 = .75, l1 = .15, m1 = m2 = 1, θ1(0) = 10◦, θ̇1(0) = 0◦, θ2(0) =
1◦, θ̇2(0) = 0◦.
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Figure 3.12: Error simulation of two pendulums coupled with parallel spring
and damper in oblique form. We choose the above parameters for simulation
purposes.

As can be seen from Figures 3.11 and 3.12:

• limt→∞ l0θ1(t)− l1θ2(t) = 0 is achieved, i.e. systems are synchronized with

different amplitudes,

• θ1(t) and θ2(t) converges to their natural oscillating frequencies.

3.5 Three Pendulums Coupled with Spring-

Damper

Consider the system shown in the Figure 3.13. We couple three pendulums from

point l0 with double spring-damper and analyze the synchronization dynamics.

Let m1, l1, m2, l2, m2, l3 denote the mass and length of the pendulums, respec-

tively. By using either free-body diagrams or performing Lagrangian method,
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we obtain the following equations of motion:

m1l
2
1θ̈1+m1gl1 sin θ1+k1l

2
0 cos θ1(sin θ1−sin θ2)+c1l

2
0 cos θ1(cos θ1θ̇1−cos θ2θ̇2) = 0,

(3.63)

m2l
2
2θ̈2 +m2gl2 sin θ2 − k1l20 cos θ2(sin θ1 − sin θ2)− c1l20 cos θ2(cos θ1θ̇1 − cos θ2θ̇2)

+ k2l
2
0 cos θ2(sin θ2 − sin θ3) + c2l

2
0 cos θ2(cos θ2θ̇2 − cos θ3θ̇3) = 0, (3.64)

m3l
2
3θ̈3+m3gl3 sin θ3−k2l20 cos θ3(sin θ3−sin θ3)−c2l20 cos θ3(cos θ2θ̇2−cos θ3θ̇3) = 0.

(3.65)

Now let us assume m1 = m2 = m3 = m, l1 = l2 = l3 = l, which is reasonable for

Figure 3.13: Three Pendulums Coupled with Parallel Spring-Damper

synchronization, i.e. we assume the synchronization of three identical pendulums.

Let us define the state variables for this system as z = [θ1 θ̇1 θ2 θ̇2 θ3 θ̇3]. By

linearizing (3.63)-(3.65) around z = 0 we obtain ż = Az where A is given below:

A =



0 1 0 0 0 0

a2,1 −C1 K1 C1 0 0

0 0 0 1 0 0

K1 C1 a4,3 a4,4 K2 C2

0 0 0 0 0 1

0 0 K2 C2 a6,5 −C2


, (3.66)

and C1, C2, K1, K2 are given as:

C1 =
c1l

2
0

ml2
, C2 =

c2l
2
0

ml2
, K1 =

k1l
2
0

ml2
, K2 =

k2l
2
0

ml2
. (3.67)
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For this system the stability and synchronization analysis of both system and

error dynamics are performed by using Routh-Hurwitz criterion. Let us define

the characteristic polynomial of A as p(s) = det(sI − A). By applying Routh-

Hurwitz criterion to p(s), we obtain the first column of the Routh table as given

in Table 3.4.

s6 1

s5 2(C1 + C2)

s4 g
l

+
6C2

1C2+C1(6C2
2+4K1+K2)+C2(K1+4K2)

2(C1+C2)

s3
3(C2

2K
2
1 l+C

3
1C2(4g+6K2l)+2C1C2((2K2

1−3K1K2+2K2
2 )l+C

2
2 (2g+3K1l))+C2

1 (K
2
2 l+C

2
2 (8g+6(K1+K2)l)))

2(C1+C2)g+(6C2
1C2+C1(6C2

2+4K1+K2)+C2(K1+4K2))l

s2 g2+2gl(K1+K2)+3K1K2l2

l2

s1 ε

s0 g(g2+2gl(K1+K2)+3K1K2l2)
l3

Table 3.4: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to equations of motion of the coupled system.

Unless the parameters k1, c1, k2, c2 , l0 , l ,m are not negative we show

that the first column of the Routh array is always positive. That means the

system has four roots on the left half plane and two roots on the imaginary axis.

For further analysis consider the following nonlinear error dynamics, which are

obtained by assuming m1 = m2 = m3 = m, l1 = l2 = l3 = l and then subtracting

(3.63) from (3.64) and subtracting (3.64) from (3.65), respectively:

ml2(θ̈1 − θ̈2) +mgl(sin θ1 − sin θ2) + k1l
2
0(sin θ1 − sin θ2)(cos θ1 + cos θ2)

+c1l
2
0(cos θ1θ̇1 − cos θ2θ̇2)(cos θ1 + cos θ2)− k2l20 cos θ2(sin θ2 − sin θ3)

−c2l20 cos θ2(cos θ2θ̇2 − cos θ3θ̇3), (3.68)
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ml2(θ̈2 − θ̈3) +mgl(sin θ2 − sin θ3)− k1l20 cos θ2(sin θ1 − sin θ2

−c1l20 cos θ2(cos θ1θ̇1 − cos θ2θ̇2) + k2l
2
0(sin θ2 − sin θ3)(cos θ2 + cos θ3)

+c2l
2
0(cos θ2θ̇2 − cos θ3θ̇3)(cos θ2 + cos θ3) = 0. (3.69)

Linearizing these equations around z = 0, we have the following equations:

ml2(θ̈1− θ̈2)+2c1l
2
0(θ̇1− θ̇2)−c2l20(θ̇2− θ̇3)+(mgl2k1l

2
0)(θ1−θ2)−k2l20(θ2−θ3) = 0,

(3.70)

ml2(θ̈2− θ̈3)−c1l20(θ̇1− θ̇2)+2c2l
2
0(θ̇2− θ̇3)+(mgl2k2l

2
0)(θ2−θ3)−k1l20(θ1−θ2) = 0.

(3.71)

By defining the following state variables for the error equations:

ze = [e1 ė1 e2 ė2]
T , (3.72)

where

e1 = θ1 − θ2, ė1 = θ̇1 − θ̇2, (3.73)

e2 = θ2 − θ3, ė2 = θ̇2 − θ̇3, (3.74)

we are able to write the equations in że = Aeze format and the resultant error

matrix Ae is given as:

Ae =


0 1 0 0

−g
l
− 2K1 −2C1 K2 C2

0 0 0 1

K1 C1 −g
l
− 2K2 −2C2


. (3.75)

Let us define the characteristic polynomial p(s) of Ae as p(s) = det(sI −Ae).

Then by applying the Routh-Hurwitz criterion to p(s), we obtain the Routh

array as in Table 3.5.

We show that for positive k1, c1 k2, c2 , l0 , l ,m parameters, all the elements

in the first column of the Routh array are always positive in the appendix.

The analysis in appendix show that all the eigenvalues of the error equations
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s4 1

s3 2(C1 + C2)

s2 g
l

+
6C2

1C2+C1(6C2
2+4K1+K2)+C2(K1+4K2)

2(C1+C2)

s1
3(C2

2K1l+C3
1C2(4g+6K2l)+2C1C2((2K2

1−3K1K2+2K2
2 )l+C

2
2 (2g+3K1l))+C2

1 (K
2
2 l+C

2
2 (8g+6(K1+K2)l)))

2(C1+C2)g+(6C2
1C2+C1(6C2

2+4K1+K2)+C2(K1+4K2))

s0 g2+2g(K1+K2)l+3K1K2l2

l2

Table 3.5: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to error equation of the coupled system.

are on the left half plane, hence the linearized error equations are stable so

the error dynamics for the system given by the non-linear equations in (3.68)-

(3.69) are locally asymptotically stable. In other words, once |θ1(0)− θ2(0)| and

|θ2(0)− θ3(0)| are sufficiently small the synchronization goal is achieved [35]. On

the other hand, the two eigenvalues on the imaginary axis are related to the

oscillation of the pendulums without damping, i.e. [θ2, θ̇2]. Typical simulation

results are given in the Figures 3.14 and 3.15.
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Figure 3.14: Simulation of three pendulums coupled with parallel spring and
damper. In these particular simulations we choose k1 = 4, k2 = 3, c1 = 1, c2 =
1, l = 1, l0 = .75, m1 = m2 = 1, θ1(0) = 8◦, θ̇1(0) = 0◦, θ2(0) = −2◦, θ̇2(0) =
0◦, θ3(0) = 10◦, θ̇3(0) = 0◦
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Figure 3.15: Error simulation of three pendulums coupled with parallel spring
and damper. We choose the above parameters for simulation purposes.

When c1 ≥ 0, k1 ≥ 0 and c2 ≥ 0, k2 ≥ 0 then first column is positive, i.e.

θ1 − θ2, θ̇1 − θ̇2, θ2 − θ3, θ̇2 − θ̇3 decays to 0. Further analysis on this system

shows that one spring-damper couple is enough for synchronization as explained

below:

By choosing k2 = 0 and c1 = 0 we have the coupled system depicted in Figure

3.16.

Figure 3.16: Three Pendulums Coupled with Single Parallel Spring-Damper
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The equations of motion of the coupled system are given as:

m1l
2
1θ̈1 +m1gl1 sin θ1 + k1l

2
0 cos θ1(sin θ1 − sin θ2) = 0, (3.76)

m2l
2
2θ̈2+m2gl2 sin θ2+c2l

2
0 cos θ2(cos θ2θ̇2−cos θ3θ̇3)−k1l20 cos θ2(sin θ1−sin θ2) = 0,

(3.77)

m3l
2
3θ̈3 +m3gl3 sin θ3 − c2l20 cos θ3(cos θ2θ̇2 − cos θ3θ̇3) = 0. (3.78)
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Figure 3.17: Simulation of three pendulums coupled with single parallel spring
and damper. In these particular simulations we choose k1 = 10, c2 = 1, l =
1, l0 = .75, m1 = m2 = 1, θ1(0) = 8◦, θ̇1(0) = 0◦, θ2(0) = −2◦, θ̇2(0) =
0◦, θ3(0) = 10◦, θ̇3(0) = 0◦

Figures 3.17 and 3.18 show that this system also synchronizes but due to

the lack of one sping-damper couple it synchronizes slowly. Inspired from this

configuration, we couple four pendulums with two springs and one damper and

analyze it in the next section.
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Figure 3.18: Error simulation of three pendulums coupled with single parallel
spring and damper. We choose the above parameters for simulation purposes.

3.6 Four Pendulums Coupled with Two Springs

and One Damper(Damper-Spring-Spring

Configuration)

Consider the system shown in the Figure 3.19. We couple four pendulums from

point l0 with one damper and two springs, respectively. Then we analyze the

synchronization dynamics. Let m1, l1, m2, l2, m2, l3, m4, l4 denote the mass

and length of the pendulums, respectively. By using either free-body diagrams

or performing Lagrangian method, we obtain the following equations of motion:

m1l
2
1θ̈1 +m1gl1 sin θ1 + cl20 cos θ1(cos θ1θ̇1 − cos θ2θ̇2) = 0, (3.79)

m2l
2
2θ̈2+m2gl2 sin θ2−cl20 cos θ2(cos θ1θ̇1−cos θ2θ̇2)+k1l

2
0 cos θ2(sin θ2−sin θ3) = 0,

(3.80)

m3l
2
3θ̈3 +m3gl3 sin θ3 − k1l20 cos θ3(sin θ2 − sin θ3) + k2l

2
0 cos θ3(sin θ3 − sin θ4) = 0,

(3.81)

m4l
2
4θ̈4 +m4gl4 sin θ4 − k2l20 cos θ4(sin θ3 − sin θ4) = 0. (3.82)

Now let us assume m1 = m2 = m3 = m4 = m, l1 = l2 = l3 = l4 = l, which is rea-
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Figure 3.19: Four Pendulums Coupled with Two Springs and One Damper.

sonable for synchronization, i.e. we assume the synchronization of four identical

pendulums. As before, we define the state variables as z = [θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4].

By linearizing (3.79)-(3.82) around z = 0 we obtain ż = Az where A is given

below:

A =



0 1 0 0 0 0 0 0

−g
l
−c 0 c 0 0 0 0

0 0 0 1 0 0 0 0

0 c −g
l
−K1 −c K1 0 0 0

0 0 0 0 0 1 0 0

0 0 K1 0 −g
l
−K1 −K2 0 K2 0

0 0 0 0 0 0 0 1

0 0 0 0 K2 0 −g
l
−K2 0



, (3.83)

Let us define the characteristic polynomial p(s) of matrix A given above as

p(s) = det(sI −A). By applying the Routh-Hurwitz criterion to p(s), we obtain

the Routh array as in Table 3.6

Once the parameters k1, k2, c, m, l, l0 are positive it is clear that the first

column has all positive elements, hence six eigenvalues of the matrix A, which are

on the left half plane, stabilize the pendulum error dynamics while two eigenval-

ues of the matrix A, which are on the imaginary axis, continuously oscillate the

pendulums. For further analysis consider the following nonlinear error dynamics,
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s8 1

s7 2c

s6 k1
2

+ g
l

s5
3ck21l

2g+k1l

s4 k1k2
3

+
g2+(2gk1+

2gk2
3

)l

l2

s3
4ck21k

2
2l

2

3g2+2gl(3k1+k2)+k1k2l2

s2 g(g2+2gl(k1+k2)+3k1k2l2)
l3

s1 ε

s0 g2(g2+2gl(k1+k2)+3k1k2l2)
l4

Table 3.6: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to equations of motion of the coupled system.

which are obtained by assuming m1 = m2 = m3 = m4 = m, l1 = l2 = l3 = l4 = l

and then subtracting (3.79) from (3.80) and subtracting (3.81) from (3.82), re-

spectively,

ml2(θ̈1 − θ̈2) +mgl(sin θ1 − sin θ2) + cl20(cos θ1θ̇1 − cos θ2θ̇2)

(cos θ1 + cos θ2)− k1l20 cos θ2(sin θ2 − sin θ3) = 0, (3.84)

ml2(θ̈2 − θ̈3) +mgl(sin θ2 − sin θ3)− cl20 cos θ2(cos θ1θ̇1 − cos θ2θ̇2)

+k1l
2
0(sin θ2 − sin θ3)(cos θ2 + cos θ3)− k2l20 cos θ3(sin θ3 − sin θ4) = 0, (3.85)

ml2(θ̈3 − θ̈4) +mgl(sin θ3 − sin θ4)− k1l20 cos θ3(sin θ2 − sin θ3)

+k2l
2
0(sin θ3 − sin θ4)(cos θ3 + cos θ4) = 0. (3.86)

By using linearization, we obtain:

ml2(θ̈1 − θ̈2) +mgl(θ1 − θ2) + 2cl20(θ̇1 − θ̇2)− k1l20(θ2 − θ3) = 0, (3.87)

ml2(θ̈2−θ̈3)+mgl(θ2−θ3)−cl20(θ̇1−θ̇2)+2k1l
2
0(θ2−θ3)−k2l20(θ3−θ4) = 0, (3.88)
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ml2(θ̈3 − θ̈4) +mgl(θ3 − θ4)− k1l20(θ2 − θ3) + 2k2l
2
0(θ3 − θ4) = 0. (3.89)

Let us define the error variables as e1 = θ1 − θ2, e2 = θ2 − θ3, e3 = θ3 − θ4 and

the state variable ze = [e1 ė1 e2 ė2 e3 ė3]
T . By using (3.87)-(3.89), we obtain

że = Aeze, where Ae is given as:

Ae =



0 1 0 0 0 0

−g
l
−2C K1 0 0 0

0 0 0 1 0 0

0 C −g
l
− 2K1 0 K2 0

0 0 0 0 0 1

0 0 K1 0 −g
l
− 2K2 0


, (3.90)

where K1, K2 and C are given as:

K1 =
k1l

2
0

ml2
, K2 =

k2l
2
0

ml2
, C =

cl20
ml2

. (3.91)

Let us define the characteristic polynomial p(s) of matrix A as p(s) = det(sI−A).

By applying the Routh-Hurwitz criterion to p(s), we obtain the following Routh

array:

s6 1

s5 2C

s4 K1

2
+ g

l

s3
3CK2

1 l

2g+K1l

s2 K1K2

3
+

g2+(2gK1+
2gK2

3
)l

l2

s1
4CK2

1K
2
2 l

2

3g2+2gl(3K1+K2)+K1K2l2

s0 g(g2+2gl(K1+K2)+3K1K2l2)
l3

Table 3.7: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to error equation of the coupled system.

For positive K1, K2, C, l, l0 parameters the first column has always positive

elements. As a result, the linearized error dynamics are stable. This implies that,
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the nonlinear error equations given by (3.84)-(3.86) are locally asymptotically

stable. Typical simulation results are given in the Figures 3.20 and 3.21.
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Figure 3.20: Simulation of four pendulums coupled with two springs and one
damper. In these particular simulations we choose k1 = 20, k2 = 10, c = 1, l =
1, l0 = .85, m = 1, θ1(0) = 8◦, θ̇1(0) = 0◦, θ2(0) = −5◦, θ̇2(0) = 0◦, θ3(0) =
2◦, θ̇3(0) = 0◦ θ4(0) = 7◦, θ̇4(0) = 0◦

.
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Figure 3.21: Error simulation of four pendulums coupled with two springs and
one damper. We choose the above parameters for simulation purposes.
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3.7 Four Pendulums Coupled with Two Spring

and One Damper(Spring-Damper-Spring-

Configuration)

Consider the system shown in the Figure 3.22. We couple four pendulums from

point l0 with spring, damper and spring respectively. Then we analyze the syn-

chronization dynamics. Let m1, l1, m2, l2, m2, l3, m4, l4 denote the mass and

length of the pendulums, respectively as before. By using either free-body dia-

grams or performing Lagrangian method, we obtain the following equations of

motion:

m1l
2
1θ̈1 +m1gl1 sin θ1 + k1l

2
0 cos θ1(sin θ1 − sin θ2) = 0, (3.92)

m2l
2
2θ̈2+m2gl2 sin θ2+cl20 cos θ2(cos θ2θ̇2−cos θ3θ̇3)−k1l20 cos θ2(sin θ1−sin θ2) = 0,

(3.93)

m3l
2
3θ̈3+m3gl3 sin θ3−cl20 cos θ3(cos θ2θ̇2−cos θ3θ̇3)−k2l20 cos θ3(sin θ3−sin θ4) = 0,

(3.94)

m4l
2
4θ̈4 +m4gl4 sin θ4 − k2l20 cos θ4(sin θ3 − sin θ4) = 0. (3.95)

Now let us assume m1 = m2 = m3 = m4 = m, l1 = l2 = l3 = l4 = l,

Figure 3.22: Four Pendulums Coupled with Two Springs and One Damper.

which is reasonable for synchronization, i.e. we assume the synchronization of

46



four identical pendulums. As before, we define the state variable vector as z =

[θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4]
T . By linearizing (3.92)-(3.95) around z = 0, we obtain

the linearized error dynamics as ż = Az, where the matrix A is as given below:

A =



0 1 0 0 0 0 0 0

−g
l
−K1 0 K1 0 0 0 0 0

0 0 0 1 0 0 0

K1 0 −g
l
−K1 −C 0 C 0 0

0 0 0 0 0 1 0 0

0 0 0 C −g
l
−K2 0 K2 0

0 0 0 0 0 0 0 1

0 0 0 0 K2 0 −g
l
−K2 0



. (3.96)

Let us define the characteristic polynomial p(s) of matrix A given above as

p(s) = det(sI −A). By applying the Routh-Hurwitz criterion to p(s), we obtain

the following Routh array:

s8 1

s7 2C

s6 K1+K2

2
+ g

l

s5
Cl(2(K2

1+K
2
2 )+(K1−K2)2)

2g+(K1+K2)l

s4
g2(2(K2

1+K
2
2 )+(K1−K2)2)+2g(K1+K2)(K2

1+K
2
2+2(K1−K2)2)l+4K1(K1−K2)2K2l2

(2(K2
1+K

2
2 )+(K1−K2)2)l2

s3
16CK2

1 (K1−K2)2K2
2 l

2

g2(2(K2
1+K

2
2 )+(K1−K2)2)+2g(K1+K2)(K2

1+K
2
2+2(K1−K2)2)l+4K1(K1−K2)2K2l2

s2 g(g+2K1l)(g+2K2l)
l3

s1 ε

s0 g2(g+2K1l)(g+2K2l)
l4

Table 3.8: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to equations of motion of the coupled system.
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Once the parameters K1 K2, C, l, l0 are positive it is clear that the first col-

umn has all positive elements, hence the six roots on the left half plane stabilizes

the pendulums and two roots on the imaginary axis continuously oscillates the

pendulums. For further analysis consider the following nonlinear error dynamics,

which are obtained by assuming m1 = m2 = m3 = m4 = m, l1 = l2 = l3 = l4 = l

and then subtracting (3.92) from (3.93) and subtracting (3.94) from (3.95), re-

spectively,

ml2(θ̈1 − θ̈2) +mgl(sin θ1 − sin θ2) + k1l
2
0(sin θ1 − sin θ2)(cos θ1 + cos θ2)

−cl20 cos θ2(cos θ2θ̇2 − cos θ3θ̇3) = 0, (3.97)

ml2(θ̈2 − θ̈3) +mgl(sin θ2 − sin θ3) + cl20(cos θ2θ̇2 − cos θ3θ̇3)

(cos θ2 + cos θ3)− k1l20 cos θ2(sin θ1 − sin θ2)

−k2l20 cos θ3(sin θ3 − sin θ4) = 0, (3.98)

ml2(θ̈3 − θ̈4) +mgl(sin θ3 − sin θ4)− cl20 cos θ3(cos θ2θ̇2 − cos θ3θ̇3)

+k2l
2
0(sin θ3 − sin θ4)(cos θ3 + cos θ4) = 0. (3.99)

By linearizing (3.97)-(3.99) around z = 0, we obtain:

ml2(θ̈1 − θ̈2) +mgl(θ1 − θ2) + 2k1l
2
0(θ1 − θ2)− cl20(θ̇2 − θ̇3) = 0, (3.100)

ml2(θ̈2−θ̈3)+mgl(θ2−θ3)+2cl20(θ̇2−θ̇3)−k1l20(θ1−θ2)−k2l20(θ3−θ4) = 0, (3.101)

ml2(θ̈3 − θ̈4) +mgl(θ3 − θ4)− cl20(θ̇2 − θ̇3) + 2k2l
2
0(θ3 − θ4) = 0. (3.102)

Let us define the error variables as e1 = θ1 − θ2, e2 = θ2 − θ3, e3 = θ3 − θ4 and

the error state vector as ze = [e1 ė1 e2 ė2 e3 ė3]
T . By using (3.100)-(3.102) we

obtain że = Aeze, where the matrix Ae is as given below:

Ae =



0 1 0 0 0 0

−g
l
− 2K1 0 0 C 0 0

0 0 0 1 0 0

K1 0 −g
l
−2C K2 0

0 0 0 0 0 1

0 0 0 C −g
l
− 2K2 0


. (3.103)

48



Then let us define the characteristic polynomial pe(s) of matrix Ae given above

as pe(s) = det(sI − Ae). By applying the Routh-Hurwitz criterion to pe(s), we

obtain the following Routh array:

s6 1

s5 2C

s4 K1+K2

2
+ g

l

s3
Cl(2(K2

1+K
2
2 )+(K1−K2)2)

2g+(K1+K2)l

s2
g2(2(K2

1+K
2
2 )+(K1−K2)2)+2g(K1+K2)(K2

1+K
2
2+2(K1−K2)2)l+4K1(K1−K2)2K2l2

(2(K2
1+K

2
2 )+(K1−K2)2)l2

s1
16CK2

1 (K1−K2)2K2
2 l

2

g2(2(K2
1+K

2
2 )+(K1−K2)2)+2g(K1+K2)(K2

1+K
2
2+2(K1−K2)2)l+4K1(K1−K2)2K2l2

s0 g(g+2K1l)(g+2K2l)
l3

Table 3.9: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to error equation of the coupled system.

Note that for positive parameters K1, K2, C, l, l0, when K1 6= K2, the first

column is always positive. This indicates that the linearized error dynamics are

stable as long as all coefficients are positive and K1 6= K2. Hence, the original

nonlinear error dynamics are also locally exponentially stable. Therefore, the

local synchronization can be achieved in this case. When K1 = K2, the coefficient

of the s1 row of Routh array is 0, hence the linearized error dynamics are not

stable. Therefore, the stability of nonlinear error dynamics can not be concluded

with this approach. We end up with such a result because we have connected

the damper right between two springs. The two pendulums which are on the left

and on the right of the damper synchronize locally but not globally in case of

K1 = K2. We performed various simulations for the case K1 = K2 and K2 6= K2,

which are given in the Figures 3.23-3.26.
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Figure 3.23: Simulation of four pendulums coupled with two springs and one
damper for K1 = K2 case. In these particular simulations we choose k1 =
10, k2 = 10, c = 5, l = 1, l0 = .75, m = 1, θ1(0) = 8◦, θ̇1(0) = 0◦, θ2(0) =
−5◦, θ̇2(0) = 0◦, θ3(0) = 2◦, θ̇3(0) = 0◦ θ4(0) = 7◦, θ̇4(0) = 0◦

.
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Figure 3.24: Error simulation of four pendulums coupled with two springs and
one damper. We choose the above parameters for simulation purposes.
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Figure 3.25: Simulation of four pendulums coupled with two springs and one
damper for K1 6= K2 case. In these particular simulations we choose k1 =
20, k2 = 10, c = 5, l = 1, l0 = .75, m = 1, θ1(0) = 8◦, θ̇1(0) = 0◦, θ2(0) =
−5◦, θ̇2(0) = 0◦, θ3(0) = 2◦, θ̇3(0) = 0◦ θ4(0) = 7◦, θ̇4(0) = 0◦

.
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Figure 3.26: Error simulation of four pendulums coupled with two springs and
one damper. We choose the above parameters for simulation purposes.

3.8 Multiple Pendulums Coupled with a Single

Damper and Springs

To generalize the ideas presented in the previous sections, let us consider the

case where n pendulums are coupled with a single damper and n − 2 springs,
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respectively. Such a configuration for n = 7 is given in Figure 3.27. Let us

consider the original nonlinear equations, which will be similar to (3.79)-(3.82) for

n = 4 case. Such equations can be obtained by either using free-body diagrams

or Lagrangian analysis. Assume that all masses are equal and the lengths of the

pendulums are equal as well, i.e. we consider the synchronization of identical

pendulums as before. Let us denote the state variable z as,

z = [θ1 θ̇1 ... θi θ̇i ... θn θ̇n]T . (3.104)

Figure 3.27: Seven Pendulums Coupled with Five Springs and One Damper.

By linearizing the equations of motion around z = 0, we obtain the linearized

equations as ż = Az, where matrix A will have a bended matrix form similar to

(3.83). Let us divide the matrix A in 2x2 blocks as Ai,j ∈ <(2x2), i = 1, 2, ..., n,

j = 1, 2, ..., n. Then, by generalizing (3.83) it is straightforward to show that the

matrices Ai,j can be given as below:

A1,1 =

 0 1

−g
l
−c

 , A1,2 = A2,1 =

 0 0

0 c

 , A2,2 =

 0 1

−g
l
−K1 −c

 ,
(3.105)

Ai,i =

 0 1

−g
l
−Ki−2 −Ki−1 0

 , Ai,i+1 = Ai+1,i =

 0 0

Ki−2 0

 , (3.106)

An,n =

 0 1

−g
l
−Kn−2 0

 , A1,j = A2,j = Ai,k =

 0 0

0 0

 , (3.107)

where i = 3, ..., n− 1, j = 3, .., n k = 1, ..., n and k 6= i, i− 1, i+ 1.
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For the synchronization error dynamics, let us define the errors as e1 = θ1−θ2,

ei = θi − θi+1, en−1 = θn−1 − θn. Let us define the error state as,

ze = [e1 ė1 ... ei ėi ... en−1 ėn−1 ]T . (3.108)

The linearized error dynamics can be given as że = Eze, here E ∈ <. As

before, the error matrix E can be divided into 2x2 blocks as Ei,j ∈ <(2x2),

i = 1, 2, ..., n− 1, j = 1, 2, ..., n− 1. By generalizing (3.90), it is straightforward

to show that E has the following form:

E1,1 =

 0 1

−g
l
−2c

 , E2,1 =

 0 0

0 c

 , Ei,i =

 0 1

−g
l
− 2ki−1 0

 , (3.109)

Ei−1,i = Ei+1,i =

 0 0

ki−1 0

 , E1,j = Ei,k

 0 0

0 0

 , (3.110)

where i = 2, ..., n− 1, j = 3, .., n− 1 k = 1, ..., n and k 6= i, i− 1, i+ 1.

Although E has a well-defined structure, we could not be able to find its

characteristic polynomial and perform Routh-Hurwitz analysis, as we did for the

cases n = 2, 3, 4. However, our simulations show that as long as the parameter

values are positive and Ki 6= Kj, which is an exception only for n = 4 spring-

damper-spring case, the error dynamics are stable, hence global synchronization

is achieved. As an example, we consider n = 7 case, as shown in Figure 3.27.

The resulting system matrix A and error matrix E can be given as below in

abbreviated form:
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A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0

a2,1 −C 0 C 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 C a4,3 −C K1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 K1 0 a6,5 0 K2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 K2 0 a8,7 0 K3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 K3 0 a10,9 0 K4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 K4 0 a12,11 0 K5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 K5 0 a14,13 0



,

(3.111)

where a2,1 = −g
l
, a4,3 = −g

l
−K1, a6,5 = −g

l
−K1 −K2, a8,7 = −g

l
−K2 −K3,

a10,9 = −g
l
−K3 −K4, a12,11 = −g

l
−K4 −K5, a14,13 = −g

l
−K5

E =



0 1 0 0 0 0 0 0 0 0 0 0

e2,1 −2C K1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 C e4,3 0 K2 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 K1 0 e6,5 0 K3 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 K2 0 e8,7 0 K4 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 K3 0 e10,9 0 K5 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 K4 0 e12,11 0



, (3.112)
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where e2,1 = −g
l
, e4,3 = −g

l
− 2K1, e6,5 = −g

l
− 2K2, e8,7 = −g

l
− 2K3, e10,9 =

−g
l
− 2K4, e12,11 = −g

l
− 2K5. We perform various simulations and show that

the synchronization occurs. As can be seen from the Figures 3.28 and 3.29 the

synchronization of seven pendulums is achieved. The analytical stability analysis

of such a generalization remains as an open problem.
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Figure 3.28: Simulation of seven pendulums coupled with five springs and one
damper. Parameter values are k1 = 20, k2 = 10, k3 = 20, k4 = 20, k5 = 20, c =
5, l = 1, l0 = .75, m = 1, θ1(0) = 8◦, θ̇1(0) = 0◦, θ2(0) = −1◦, θ̇2(0) =
0◦, θ3(0) = 5◦, θ̇3(0) = 0◦, θ4(0) = 7◦, θ̇4(0) = 0◦, θ5(0) = 6◦, θ̇5(0) =
0◦, θ6(0) = −2◦, θ̇6(0) = 0,◦ θ7(0) = −3◦, θ̇7(0) = 0◦.
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Figure 3.29: Error simulation of seven pendulums coupled with five springs and
one damper. We choose the above parameters for simulation purposes.

3.9 Discussion and Contribution

In this part of the thesis, we investigated in-phase synchronization between single

pendulums which are coupled under various combinations of spring and damper.

Initially, we coupled two pendulums with series connected spring and damper and

with parallel connected spring and damper to observe and compare the synchro-

nization dynamics under different coupling forms. We observed that the parallel

coupled system synchronizes faster than the series coupled system because in

parallel coupled case, the damper has a direct connection between pendulums.

Then we turned our attention to the analysis of synchronization dynamics of

coupled multiple simple pendulums. We observed in-phase synchronization in

all of the coupled systems as we have expected by using both analytical and

numerical methods except one particular coupling configuration in four pendu-

lums coupled with spring-damper-spring case. This special case consists of a
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damper in the middle of pendulums and two springs which have equal spring

constants and placed to the right and left of the damper. In fact, this is the

only configuration in four pendulums case for which passive synchronization

fails. Generalizing this result we conjectured that if there exist equal numbers of

springs on the left and right side of the damper and the sum of the coefficients

of the springs which are on the left and right sides of the damper are equal, i.e.

k1 + k2 + k3 + ... = ... + kn−2 + kn−1 + kn then the synchronization can not be

achieved. Then we tried to derive a formula that generalizes the stability analysis

of n pendulums which are coupled with a single damper and n − 2 springs and

provides a guideline for simple pendulum synchronization. But we could only

obtain bended matrix forms of system and error matrices. These points require

further investigation.

Finally, we investigated the role of spring and damper in synchronization

process. We revealed that the spring element only couples the pendulums, in

other words it has no effect on synchronization. On the other hand, the damper

element synchronizes the pendulums by equating the velocities of its connecting

points.
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Chapter 4

PASSIVE CONTROLLED

IN-PHASE

SYNCHRONIZATION OF

COUPLED DOUBLE

PENDULUMS

In this chapter we will investigate the synchronization dynamics of double pen-

dulums under two different coupling schemes in which we present equations of

motion, linearized systems, error equations and stability analysis. Two double

pendulums are coupled by using parallel spring-damper in two different config-

urations namely, upper pendulums coupled and lower pendulums coupled. The

aims of this Chapter are listed as follows:

• The basic aim of this Chapter is to achieve in-phase synchronization

between double pendulums under two different coupling configurations

namely, upper pendulums coupled and lower pendulums coupled, and to
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compare the synchronization dynamics between these two coupling config-

urations.

• As in the previous Chapter we expect to observe in-phase synchronization

between coupled double pendulums for any positive system parameters

which provides a guideline for double pendulum synchronization. We want

to support our findings by using both analytical and numerical methods.

Throughout the chapter we use several methods and make several assump-

tions as listed below:

• We use small angle approximation for linearization of equations of motion,

i.e. we restrict the pendulum angles not to exceed 10◦.

• We assume that spring and damper compresses and decompresses only in

the horizontal diection.

• All of the components in this study are assumed to be frictionless.

• We assume that the pendulum rod, spring and damper are weightless.

• Equations of motion are obtained by using both free body diagrams and

by Lagrangians.

• For stability analysis Routh-Hurwitz criterion is widely used.

• Simulations are obtained by using the nonlinear equations of motion of the

systems under consideration in Matlab environment.

For simplicity we define the following parameter to be used thoughout the Chap-

ter:
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c1 = cos θ1, c2 = cos θ2, c3 = cos θ3, c4 = cos θ4, s1 = sin θ1, s2 = sin θ2,

s3 = sin θ3, s4 = sin θ4, c12 = cos(θ1 − θ2), c34 = cos(θ3 − θ4),

s12 = sin(θ1 − θ2), s34 = sin(θ3 − θ4), m12 = (m1 +m2), la = l − l0,

lb = l − 2l0,m34 = (m3 +m4), (4.1)

and let the sum of coupling terms be represented as:

Sc1 = kl20(sin θ1 − sin θ3) + cl20(cos θ1θ̇1 − cos θ3θ̇3),

Sc2 = c[l1 cos θ1θ̇1 + l0 cos θ2θ̇2 − (l3 cos θ3θ̇3 + l0 cos θ4θ̇4)] + k[l1 sin θ1 + l0 sin θ2

− (l3 sin θ3 + l0 sin θ4)]. (4.2)

4.1 Two Double Pendulums Coupled from Up-

per part with Parallel Spring and Damper

Consider the system shown in the Figure 4.1. We couple two identical double

pendulums from the point l0 of the upper pendulums with parallel spring-damper

and analyze the synchronization dynamics.

Let m1, l1, m2, l2, m3, l3, m4, l4 denote the mass and length of the pendu-

lums, respectively. By using either free-body diagrams or performing Lagrangian

method, we obtain the following equations of motion:

θ̈1 =
−m2l1c12(l1s12θ̇

2
1 − gs2)−m2l1l2s12θ̇

2
2 −m12gl1s1 − c1Sc1

m12l21 −m2l1l2c122
(4.3)

θ̈2 =
m12l1(l1s12θ̇

2
1 − gs2) + c12(m2l1l2s12θ̇

2
2 +m12gl1s1 + c1Sc1)

m12l1l2 −m2l1l2c122
(4.4)
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Figure 4.1: Two Double Pendulums Coupled from Upper part with Parallel
Spring and Damper

θ̈3 =
−m4l3c34(l3s34θ̇

2
3 − gs4)−m4l3l4s34θ̇

2
4 −m34gl3s3 + c3Sc1

m34l23 −m4l3l4c342
(4.5)

θ̈4 =
m34l3(l3s34θ̇

2
3 − gs4) + c34(m4l3l4s34θ̇

2
4 +m34gl3s3 − c3Sc1)

m34l3l4 −m4l3l4c342
(4.6)

Now let us assume m1 = m2 = m3 = m4 = m, l1 = l2 = l3 = l4 = l, which

is reasonable for synchronization, i.e. we assume the synchronization of two

identical double pendulums. Let us define the state variables for this system as

z =
[
θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4

]
. By linearizing (4.3)-(4.6) around z = 0

we obtain ż = Az where A is given below:
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A =



0 1 0 0 0 0 0 0

−2g
l
−K −C g

l
0 K C 0 0

0 0 0 1 0 0 0 0

2g
l

+K C −2g
l

0 −K −C 0 0

0 0 0 0 0 1 0 0

K C 0 0 −2g
l
−K −C g

l
0

0 0 0 0 0 0 0 1

−K −C 0 0 2g
l

+K C −2g
l

0



. (4.7)

and C, K are given as:

K =
kl20
ml2

, C =
cl20
ml2

. (4.8)

Applying Routh-Hurwitz criterion to the characteristic polynomial of this

system matrix, we obtain the first column of the Routh table but it is too large

to analyze. So instead we try to obtain the eigenvalues of this matrix, but because

of the system matrix is too large we are only able to obtain the eigenvalues which

are on the imaginary axis. The eigenvalues of the matrix A which are on the

imaginay axis can be given as:

s1 = −

√
(2 +

√
2)g

l
j, (4.9)

s2 = −

√
(2−

√
2)g

l
j, (4.10)

s3 =

√
(2 +

√
2)g

l
j, (4.11)

s4 =

√
(2−

√
2)g

l
j. (4.12)

These eigenvalues are related to the undamped oscillatory motion of the dou-

ble pendulums. We expect the remaining four eigenvalues to be on the left half
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plane to show that the double pendulum error dynamics are stable, hence that

they synchronize. To find these eigenvalues we define the state variables vector

ẑe for error dynamics and apply similarity transformation to matrix A as follows:

ẑe = [θ1 − θ3, θ̇1 − θ̇3, θ2 − θ4, θ̇2 − θ̇4, θ3, θ̇3, θ4, θ̇4], (4.13)

˙̂ze = TAT−1ẑe = Âẑe, (4.14)

where the transformation matrix is given as:

T =



1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (4.15)

Then Â given by (4.14) can be computed as:

Â =



0 1 0 0 0 0 0 0

−2K − 2g
l
−2C g

l
0 0 0 0 0

0 0 0 1 0 0 0 0

2K + 2g
l

2C −2g
l

0 0 0 0 0

0 0 0 0 0 1 0 0

K C 0 0 −2g
l

0 g
l

0

0 0 0 0 0 0 0 1

−K −C 0 0 −2g
l

0 −2g
l

0



. (4.16)

Since we are interested in the error dynamics, we first define the synchro-

nization errors as e1 = θ1 − θ3, e2 = θ2 − θ4 and the state variable ze as
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ez = [e1 ė1 e2 ė2]
T . From (4.16), the linearized error dynamics can be calcu-

lated as że = Âeze, where Âe is given below:

Âe =


0 1 0 0

−2g
l
− 2K −2C g

l
0

0 0 0 1

2g
l

+ 2K 2C −2g
l

0


. (4.17)

Let us define the characteristic polynomial of Âe as p̂e(s) = det(sI − Âe).

By applying Routh-Hurwitz criterion to p̂e(s), we obtain the first column of the

Routh table as given below:

s4 1

s3 2C

s2 2K + 3g
l

s1 2Cg2

3gl+2Kl2

s0 2g(g+Kl)
l2

Table 4.1: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to error equation of the coupled system.

It can be easily seen from the Table 4.1 that the elements in the first column

of the Routh array are always positive which shows that all the eigenvalues of the

error equations are on the left half plane, the remaining four eigenvalues as we

have mentioned above, hence the linearized error equations are stable. As a result

the the nonlinear error dynamics of this system, obtained by subtracting (4.3)

from (4.5) and (4.4) from (4.6), are locally asymptotically stable. In other words,

once |e1(0)|, |ė1(0)|, |e2(0)| and |ė2(0)| are sufficiently small the synchronization

goal is achieved [35]. On the other hand, since the eigenvalues of A and Â are the

same and the remaining four eigenvalues are on the left half plane, the matrix

A has stable and oscillatory eigenvalues as we have observed in the previous

sections. Typical simulation results are given in Figures 4.2 and 4.3.
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Figure 4.2: Simulation of two double pendulums coupled from upper pendulums.
In these paticular simulations we choose m = 1, l = 1, k = 10, c = 5, l0 =
0.75, θ1(0) = −5◦, θ̇1(0) = 0◦, θ2(0) = −9◦, θ̇2(0) = 0◦, θ3(0) = 8◦, θ̇3(0) =
0◦, θ4(0) = 4◦, θ̇4(0) = 0◦.
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Figure 4.3: Error simulation of two coupled double pendulums. We choose the
above parameters for simulation purposes.
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4.2 Two Double Pendulums Coupled from

Lower part with Parallel Spring and

Damper

Consider the system shown in the Figure 4.4. We couple two identical double

pendulums from the point l0 of the lower pendulums with parallel spring-damper

and analyze the synchronization dynamics.

Figure 4.4: Two Double Pendulums Coupled from Lower part with Parallel
Spring and Damper

Let m1, l1, m2, l2, m3, l3, m4, l4 denote the mass and length of the pendu-

lums, respectively as before. By using either free-body diagrams or performing

Lagrangian method, we obtain the following equations of motion:

θ̈1 =
−c12(m2l1l2s12θ̇

2
1 −m2gl2s2 − l0c2Sc2)−m2l

2
2s12θ̇

2
2 −m12gl2s1 − l2c1Sc2

m12l1l2 −m2l1l2c122

(4.18)
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θ̈2 =
m12(m2l2(l1s12θ̇

2
1 − gs2)− l0c2Sc2) +m2l2c12(m2l2s12θ̇

2
2 +m12gs1 + c1Sc2)

m12m2l22 − (m2l2c12)2

(4.19)

θ̈3 =
−c34(m4l3l4s34θ̇

2
3 −m4gl4s4 + l0c4Sc2)−m4l

2
4s34θ̇

2
4 −m34gl4s3 + l4c3Sc2

m34l3l4 −m4l3l4c342

(4.20)

θ̈4 =
m34(m4l4(l3s34θ̇

2
3 − gs4) + l0c4Sc2) +m4l4c34(m4l4s34θ̇

2
4 +m34gs3 − c3Sc2)

m34m4l24 − (m4l4c34)2

(4.21)

Now let us assume as before m1 = m2 = m3 = m4 = m, l1 = l2 = l3 = l4 = l,

which is reasonable for synchronization, i.e. we assume the synchronization of

two identical double pendulums. Let us define the state variables for this system

as z =
[
θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4

]
as before. By linearizing (4.18)-(4.21)

around z = 0 we obtain ż = Az where A is given below:

A =



0 1 0 0 0 0 0 0

a2,1 −Clla a2,3 −Cl0la Klla Clla Kl0la Cl0la

0 0 0 1 0 0 0 0

a4,1 Cllb a4,3 Cl0lb −Kllb −Cllb −Kl0lb −Cl0lb

0 0 0 0 0 1 0 0

Klla Clla Kl0la Cl0la a6,5 −Clla a6,7 −Cl0la

0 0 0 0 0 0 0 1

−Kllb −Cllb −Kl0lb −Cl0lb a8,5 Cllb a8,7 Cl0lb



.

(4.22)

where a2,1 = −Klla − 2g
l
, a2,3 = g

l
−Kl0la, a4,1=2 g

l
+Kllb , a4,3 = −2g

l
+ Kl0lb,

a6,5 = −Klla − 2g
l
, a6,7 = g

l
−Kl0la, a8,5 = 2g

l
+Kllb, a8,7 = −2g

l
+Kl0lb
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Applying Routh-Hurwitz criterion to the characteristic polynomial of this

system matrix or the eigenvalue analysis does not yield meaningful results since

the matrix A is too large. Instead of analytical analysis we applied numerical

methods to analyze the synchronous behaviour of the coupled system. In this

analysis we obtain and plot the eigenvalues of matrix A by spanning k and c

parameters between 0 to 100. Figure 4.5 illustrates the results we obtain.

Figure 4.5: Plot of eigenvalues of matrix A. In this particular simulations we
choose m = 1, l = 1, l0 = 0.75, k = 0 to 100 and c = 0 to 100.

It is clear from the Figure 4.5 that the eigenvalues remain either on the left half

plane and on the imaginary axis as we have expected. The eigenvalues which are

on the imaginary axis, force the double pendulums to oscillate without damping

and the eigenvalues which are on the left half plane stabilize the pendulum error

dynamics.

For further analysis consider the error dynamics given below. Let us define

the state variable vector ẑe for error dynmamics as follows:

ẑe = [θ1 − θ3, θ̇1 − θ̇3, θ2 − θ4, θ̇2 − θ̇4, θ3, θ̇3, θ4, θ̇4], (4.23)

and matrix T be the transformation matrix given as:
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T =



1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (4.24)

Applying similarity transformation to the matrix A, i.e. Â = TAT−1, we

obtain the matrix Â as follows:

Â =



0 1 0 0 0 0 0 0

â2,1 −2Clla â2,3 −2Clal0 0 0 0 0

0 0 0 1 0 0 0 0

â4,1 2Cllb â4,3 2Clbl0 0 0 0 0

0 0 0 0 0 1 0 0

Klla Clla Klal0 Clal0 −2g
l

0 g
l

0

0 0 0 0 0 0 0 1

−Kllb −Cllb −Klbl0 −Clbl0 2g
l

0 −2g
l

0



, (4.25)

where â2,1 = −2g
l
− 2Klla, â2,3 = g

l
− 2Klal0, â4,1 = 2g

l
+ 2Kllb, â4,3 =

−2g
l

+ 2Klbl0.

Since we are interested in the error dynamics, we first define the synchro-

nization errors as e1 = θ1 − θ3, e2 = θ2 − θ4 and the state variable ze as

ze = [e1 ė1 e2 ė2]
T . From (4.25), the linearized error dynamics can be calcu-

lated as że = Âeze, where Âe is given below:
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Âe =


0 1 0 0

−2g
l
− 2Klla −2Clla

g
l
− 2Klal0 −2Clal0

0 0 0 1

2g
l

+ 2Kllb 2Cllb −2g
l

+ 2Klbl0 2Clbl0


. (4.26)

Let us define the characteristic polynomial of Âe as p̂e(s) = det(sI − Âe).

By applying Routh-Hurwitz criterion to p̂e(s), we obtain the first column of the

Routh table as given in Table 4.2. It can be easily seen from the Table 4.2 that all

the elements in the first column of Routh array are positive unless l0 6= 1√
2
l. This

shows that all the eigenvalues of the error equations are on the left half plane as

long as l0 6= 1√
2
l, hence the linearized error equations are stable. As a result, the

the nonlinear error dynamics of this system, obtained by subtracting (4.18) from

(4.20) and (4.19) from (4.21), are locally asymptotically stable. In other words,

once |e1(0)|, |ė1(0)|, |e2(0)| and |ė2(0)| are sufficiently small the synchronization

goal is achieved [35]. In case of l0 = 1√
2
l, the term which corresponds to s1

becomes 0 in the first column of the Routh table and the error dynamics become

oscillatory, hence synchronization can not be achieved. Typical simulation results

are given in Figures 4.6-4.9.

s4 1

s3 2C(l20 + l2a)

s2 2K(l20 + l2a) + g (l−2l0)2+2(l−l0)2
l20+l

2
a

s1
2Cg2(l2−2l20)2

l(2Kl(l20+l
2
a)

2+g((l−2l0)2+2(l−l0)2))

s0
2g(g+Kl(l2b+2l20))

l2

Table 4.2: The first column of the Routh table which is obtained by applying
Routh-Hurwitz criterion to error equation of the coupled system.
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Figure 4.6: Simulation of two double pendulums coupled from lower pendulums.
In these paticular simulations we choose m = 1, l = 1, k = 10, c = 3, l0 =
0.95, θ1(0) = −1◦, θ̇1(0) = 0◦, θ2(0) = −3◦, θ̇2(0) = 0◦, θ3(0) = 10◦, θ̇3(0) =
0◦, θ4(0) = 8◦, θ̇4(0) = 0◦.
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Figure 4.7: Error simulation of two coupled double pendulums. We choose the
above parameters for simulation purposes.
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Figure 4.8: Simulation of two double pendulums coupled from lower pendulums.
In these paticular simulations we choose m = 1, l = 1, k = 10, c = 3, l0 =
1√
2
l, θ1(0) = −1◦, θ̇1(0) = 0◦, θ2(0) = −3◦, θ̇2(0) = 0◦, θ3(0) = 10◦, θ̇3(0) =

0◦, θ4(0) = 8◦, θ̇4(0) = 0◦.
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Figure 4.9: Error simulation of two coupled double pendulums. We choose the
above parameters for simulation purposes.

4.3 Discussion and Contribution

In this part of the thesis, we investigated in-phase synchronization between dou-

ble pendulums which are coupled under two different coupling configurations.

72



Initially, we coupled two double pendulums from upper pendulums with parallel

connnected spring and damper. We obtained analytically that the double pendu-

lums are synchronized for any positive system paramaters. Then we proceed with

coupling two double pendulums from lower pendulums with parallel connected

spring and damper. Interestingly, opposed to what we have expected we ob-

tained numerically and analytically that the double pendulums are synchronized

for any positive system parameter except for a particular coupling l0 = 1√
2
l.

Finally, we tried to compare the synchronization dynamics between these

two coupling configurations but either by using analytical or numerical methods

we could not find meaningful comparison results. This point requires further

investigation.
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Chapter 5

ACTIVE CONTROLLED

MASTER SLAVE

SYNCHRONIZATION OF TWO

BALL HOPPERS

In this Chapter we will present dynamics and synchronization of two ball hoppers

in master-slave configuration. We try to achieve master-slave synchronization by

using different gait controllers and provide simulation results. The aims of this

Chapter are listed as follows:

• The basic aim of this Chapter is to achieve master-slave synchronization

between two ball hoppers under two different gait controllers namely, fully-

actuated and under-actuated controllers, which is the first step of under-

standing the synchronious behaviour behind the legged systems.

• In this Chapter we expect to achieve full synchronization, i.e. time and apex

state synchronization, between the hoppers in fully-actuated controller case
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and we expect to achieve partial apex state synchronization between the

hoppers in under-actuated controller case.

5.1 Overview of SLIP model and Ball Hopper

In this section, we will briefly present the SLIP (Spring Loaded Inverted Pendu-

lum) model and the simplified hopper model, which is also refered as controllable

ball or ball hopper. This simplified model summerizes the dynamics of the SLIP

model [36]. Now, let us give definitions of dynamics of the SLIP model first.

The SLIP model consists of a point mass, which represents the total mass

for the system of interest, attached to a massless spring leg and it is depicted

in the Figure 5.1. SLIP has two seperate dynamics, namely flight and stance

dynamics and each of these dynamics is divided into two subdynamics and they

are explained as follows [36], [37]:

Figure 5.1: The SLIP Model

• In flight, the model follows an uncontrollable ballistic trajectory and de-

pending on the sign of the vertical velocity of the model, SLIP ascents or

descent. In ascent phase the vertical velocity is positive and continuously

decreases in magnitude until the SLIP reaches it’s maximum height. In

descent phase the vertical velocity is negative and continuously increases
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in magnitude until the spring leg touches the ground. Now let us present

the flight dynamics. Let the state variables of the SLIP be given as:

b = [bx bẋ by bẏ btx]
T , (5.1)

where bx, by are horizontal and vertical body (mass) positions, bẋ, bẏ are

horizontal and vertical body velocities and btx is the horizontal toe position.

Then the flight dynamics of the SLIP is given as follows:

ḃ = [bẋ 0 bẏ − g bẋ ]. (5.2)

• In stance, the toe, i.e. the spring, touches the ground and remains sta-

tionary on the ground and depending on the sign of the rate of change of

the leg length, SLIP compresses or decompresses. In compression phase

the rate of change of leg length is negative and the stored energy on the

spring increases until the mass of the SLIP reaches it’s minimum height.

In decompression phase the rate of change of leg length is positive and the

stored energy on the spring decreases until the SLIP lifts off the ground.

The stance dynamics can be given as follows:

mq̈r = mqrq̇
2
θ + k(l0 − qr)−mg cos(qθ), (5.3)

0 =
d

dt
(mq2r q̇θ) +mgqr sin qθ, (5.4)

where m, g are body mass and gravitational acceleration; l0, k are leg rest

length and leg stiffnessand and qr, qθ are leg length and leg angle.

The process of changing from one phase to another is called transition and the

transition events of the SLIP play a key role throughout the chapter. Let us give

the general properties of these events.

• Apex : This event occurs during the flight phase when the SLIP body

reaches its maximum height, i.e. maximum gravitational potential energy,

between ascend and descend phases.
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• Touchdown : This is the flight to stance transition event, i.e. the transition

from descent phase to compression phase. It occurs when the leg touches

to the ground.

• Bottom : This event occurs during the stance phase when the SLIP body

reaches its mininum height(minimum leg length), i.e. the spring potential

energy reaches its maximum value, between compression and decompres-

sion phases.

• Liftoff : This is the stance to flight transition event, i.e. the transition from

decompression phase to ascent phase. It occurs when the leg lifts off the

ground.

The simplified SLIP model or ball hopper, which is depicted in the Figure

5.2, summarizes and mimics the dynamics of the SLIP model.

Figure 5.2: The Ball Hopper

Now let us define the dynamics of ball hopper. During flight, the simplified

hopper follows an uncontrollable ballistic trajectory. Let the state variables of

the ball hopper be given as:

X = [y z ẏ ż], (5.5)

where y, z, ẏ, ż variables denotes the horizontal and vertical system positions

and velocities, respectively.
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The flight dynamics of the ball hopper can be given as:

Ẋ = [ẏ ż ÿ z̈] = [ẏ ż 0 − g]. (5.6)

In the stance dynamics, the compression and decompression of the spring until

the liftoff event is realized using a direct, instantaneous touchdown to liftoff map,

controlled by the horizontal shift ∆y, the liftoff velocity angle θ, and the liftoff

velocity magnitude gain k. Let us explain these control parameters which have

very close correspondence to control parameters used for the SLIP model [36].

• The liftoff velocity magnitude gain, denoted by k, approximately corre-

sponds to the spring energy control for the SLIP model.

• The liftoff velocity angle adjustment, denoted by θ, closely corresponds to

the touchdown leg angle of the SLIP model with respect to ground normal.

• The position shifting control,denoted by ∆y, which corresponds to the av-

erage stiffness of the SLIP leg, is used to increase or decrease the horizontal

span of the stance phase.

Then the touchdown to liftoff map for the simplified hopper model is given by:

Xlo = AXtd +B, (5.7)

where A and B are given as:

A =


1 0 0 0

0 1 0 0

0 0 1− (1 + k) sin2 θ 0.5(1 + k) sin 2θ

0 0 0.5(1 + k) sin 2θ 1− (1 + k) cos2 θ


, (5.8)

B =


∆y

0

0

0


[36]. (5.9)
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5.2 Master-Slave Synchronization of Two Ball

Hoppers using Fully-Actuated Controller

In this section, we will present master-slave synchronization of two ball hop-

pers using fully-actuated controller. By fully-actuated control we mean that all

three control parameters, namely k, θ and ∆y can be utilized by the controller.

Synchronization is achieved by finding appropriate control inputs which are nec-

essary to bring the mass hopper from any state Xn to the selected goal point Xg.

We use a simple deadbeat controller for the simplified hopper. The controller

measures the ball hopper’s state at every apex and applies a single-step deadbeat

controller, i.e. selects control inputs, which brings the hopper to the goal state.

Now assume that a ball hopper, which is called the master hopper, is driven

by a controller already designed and is not relevant for the synchronization goal.

In other words, this controller ensures convergence of the states of the master

hopper to a desired trajectory. Initially, we train the master hopper for a stride

to measure the corresponding apex state. Then the slave hopper tries to imitate

the motion of the master hopper from one stride behind. We assume that we

have the full knowledge about the master hopper, i.e. we precisely measure the

apex states of the master hopper. After the first stride of the master hopper by

using the deadbeat controller, we try to estimate the control parameters of the

master hopper. Then we apply these estimated control parameters to the slave

hopper. So applying these control parameters to the slave hopper we obtain

master-slave synchronization between these two hopper. Figure 5.3 shows that

the controller estimates of the slave hopper perfectly match with the control

inputs of the master hopper.

Figure 5.3 states the perfect apex state sychronization of the ball hoppers.

Even if we could achieve apex state synchronization and perfect trajectory track-

ing, the time synchronization of ball hoppers fails due to the use of deadbeat
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Figure 5.3: Master-Slave Synchronization of Two Ball Hoppers. For the master
hopper we choose k = 1, θ = 0, ∆y = 0.05 as the control inputs and [y z ẏ ż] =
[1 0.4 1 0] as the initial conditions. In this particular simulation we choose the
initial conditions for the slave hopper as [y z ẏ ż] = [0.5 0.5 0.6 0]

controller. Let us denote the apex state variables of master and slave hoppers as

Xm = [ym zm ẏm żm] and Xs = [ys zs ẏs żs], respectively and for further analysis

consider the following error figures:
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Figure 5.4: Apex states error figures. The y, z, ẏ state variables fully synchronize.
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Figure 5.5: Touchdown and liftoff position error figures. After the first stride
touchdown and litoff positions synchronize.
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Figure 5.6: Differences of time that is spent between present apex to apex at
each stride.

Here ye = ym − ys, ze = zm − zs, ẏe = ẏm − ẏs, że = żm − żs are the position

errors between master and slave hopper, yloe = ylom − ylos and ytde = ytdm − ytds

are touchdown and liftoff position errors between master and slave hopper. In

Figure 5.4 the apex state synchronization can be easily seen between two ball

hoppers. Since the slave hopper traces the master hopper from one stride behind,
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there is a constant horizontal (y) distance between two hoppers which can be

seen in the first plot of Figure 5.4. Figure 5.6 states that the master and slave

hopper has different initial conditions and in the first stride the present apex

to next apex times of master and slave hoppers differ. But after the deatbeat

controller is applied, slave hopper traces the master hopper with a constant phase

difference due to the different initial conditions. These error figures are obtained

by averaging 930 different intial conditions, i.e. [ys zs ẏs] for 100 strides.

5.3 Master-Slave Synchronization of Two Ball

Hoppers using Under-Actuated Controller

In this section, we will present master-slave synchronization of two ball hoppers

using under-actuated controller. Synchronization is achieved by finding appro-

priate control inputs [k, θ] in case of fixed control parameter ∆y, which is a

reasonable restriction. With the use of under-actuated controller, we achieve the

apex position synchronization but due to the fixed control parameter ∆y the

apex velocity synchronization can not be achieved.

Now consider the scenario that we have constructed for the master-slave syn-

chronization of two ball hoppers in the previous section. But this time let the

hoppers start moving almost simultaneously, i.e. we assume master hopper hits

the ground before the slave hopper and ∆y = 0.08 for the slave hopper. We as-

sume that we have the full knowledge about the master hopper, i.e. we precisely

measure the apex states of the master hopper. By using the under-actuated

deadbeat controller, i.e. keeping ∆y fixed, we try to choose such control param-

eters k and θ that the slave hopper imitates the master hoppers trajectory. We

choose k and θ by using the nonlinear equations obtained from (5.7)-(5.9). In

Figure 5.7, which shows the syncronization of two hoppers with respect to time,

the slave hopper jumps forth and back continuosly, which is meaningless. We
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come up with such a result because, the under-actuated controller achieves only

apex position synchronization but the apex velocity synchronization fails. To

achieve meaningful master-slave synchronization between the hoppers we define

two criteria as follows which depend on the initial conditions:

• The liftoff horizontal position of the slave hopper is desired to be smaller

than the next apex horizontal position of the master hopper:

ys(0)+ ẏs(0)

√
2zs(0)

g
+∆ys < ym(0)+ ẏm(0)(

√
2zm(0)

g
+
żmlo(0)

g
)+∆ym(0).

(5.10)

• The touchdown horizontal position of the slave is desired to be larger than

the apex horizontal position of the master hopper:

ys(0) + ẏs(0)

√
2zs(0)

g
> ym(0). (5.11)
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Figure 5.7: Simultaneous master-slave synchronization of two ball hoppers when
there is no criteria applied to the initial conditions of the slave hopper.

Now, let the hoppers start moving almost simultaneously and satisfy the

conditions given below. To visualize the gaits consider the following figure:
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Figure 5.8: Simultaneous master-slave synchronization of two ball hoppers when
the criteria applied to the initial conditions of the slave hopper.

So, in Figure 5.8 we solved the moving back and forth problem. But this time

the collision of the masses problem occurs. Due to the simulataneous gaits of

the hoppers, they collide. To overcome this problem let the master hopper move

one stride ahead from the slave hopper. The aforementioned case is illustrated

in Figure 5.9. Now, we achieve meaningful synchronization between master and

slave hoppers. For further analysis consider the error figures. Figure 5.10 shows

that the slave hopper traces the apex position of the master hopper from one

stride behind, i.e. ye is constant, but the oscillating ẏe means that the slave

hopper fails to synchronize the horizontal velocity with the master hopper at the

apex. In Figure 5.11, we can reach the same result, i.e. horizontal velocity of the

master and slave hoppers are not synchronized. Figure 5.12 states that the slave

hopper traces the master hopper with two different time phases, namely lead

and lag time phases. These error figures are obtained by averaging 460 different

intial conditions, i.e. [ys zs ẏs] for 100 strides.
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Figure 5.9: Master-Slave Synchronization of Two Ball Hoppers. For the master
hopper we choose k = 1, θ = 0, ∆y = 0.05 as the control inputs and [y z ẏ ż] =
[1 0.4 1 0] as the initial conditions. In this particular simulation we choose the
initial conditions for the slave hopper as [y z ẏ ż] = [0.5 0.47 3 0]
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ẏ e

10 20 30 40 50 60 70 80 90 100
−1

0

1
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Figure 5.10: Apex states error figures.
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Figure 5.11: Touchdown and liftoff position error figures.
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5.4 Discussion and Contribution

In this part of the thesis, we presented synchronization of two ball hoppers in

master-slave configuration under two different deadbeat gait controllers namely,

fully-actuated controller and under-actuated controller. The apex state synchro-

nization between hoppers is easily achieved by using fully-actuated controller,

in other words we successfully estimated the control parameters of the master

hopper (k, θ ∆y) by using the deadbeat controller. But the deadbeat controller

synchronized the slave hopper in one stride which made it impossible to synchro-

nize hoppers in time.

Finally, meaningful apex position synchronization between hoppers is

achieved by using under-actuated controller (k, θ, and fixed ∆y), i.e. we used

nonlinear touchdown to liftoff equations to choose appropriate k and θ control

inputs, if we apply several criteria to the initial conditions of the slave hopper.

The fixed ∆y control parameter prevented us to control the horizontal velocity

of the slave hopper, so the apex velocity synchronization is failed. Due to the use

of deadbeat controller, as in the fully-actuated case, time synchronization also

failed, but both the apex velocity and time differences are shown to be bounded

in simulations. We note that the results presented in this chapter are novel and

require further investigation for the synchronization of multiple ball hoppers and

SLIP systems.
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Chapter 6

CONCLUSIONS

In this thesis, we firstly introduced the general notion about synchronization phe-

nomenon and then we provided the general types and methods of synchronization

which are widely used in practical applications. Afterwards we investigated the

passive controlled in-phase synchronization between coupled simple and double

pendulum systems. Finally we considered the master-slave synchronization of

the two ball hoppers.

In Chapter 1, we introduced various examples of synchronization which are

widely encountered in natural events, life sciences and engineering applications.

Then we gave the definitions of synchronization and problems of synchronization

which are existed in the literature. In this study, we defined the synchronization

as the adjustment of rhythms of oscillating systems due to their weak interaction.

In Chapter 2, we provided the types and methods of synchronization which

are widely used in practical applications. Throughout the thesis we used full

synchronization, i.e. in-phase synchronization and master-slave synchronization.

In Chapter 3, we coupled simple pendulums under various configurations by

using spring and damper motivated by the idea of providing a generalized formula

88



or a guideline for simple pendulum synchronization. To analyze and show the

synchronous behaviour between the coupled pendulums we firstly linearized the

equations of motion using the small angle approximation, i.e. pendulum angles

are restricted to be smaller than 10◦. The linearization process enabled us to

write the equations of motion of the systems in hand and its appropriately defined

error dynamics in matrix forms A and Ae, respectively. The analytical analysis

applied to matrices A and Ae showed that all of the pendulums we coupled are

synchronized except for some special cases. For example, in four pendulums case

we showed analytically that if there is a single damper in the middle pendulum

and a single spring on the left and a single spring on the right of the damper with

equal spring constants, then the synchronization can not be achieved. In fact, this

is the only configuration in four pendulums case where passive synchronization

fails. By generalizing this conclusion to multiple pendulums case, we conjectured

that if there exist equal numbers of springs on the left and right side of the

damper and the sum of the coefficients of the springs which are on the left and

right sides of the damper are equal, i.e. k1 + k2 + k3 + ... = ...+ kn−2 + kn−1 + kn

then the synchronization can not be achieved. Analytical proof of this conjecture

requires further investigation. Then we revealed the role of spring and damper

in synchronization process. The spring element had no effect on synchronization

other than coupling the pendulums and the damper element had the effect of

synchronizing pendulums by equating the velocities of its connection points.

In Chapter 4, we coupled double pendulums under two different coupling

configurations, i.e. upper pendulums coupled and lower pendulums coupled,

to show that the double pendulums are synchronized for any positive system

parameters k, c, m, l, l0 and to compare the synchronization dynamics between

these two coupling configurations. The analytical and numerical analysis we

applied to matrices A and Ae showed that the upper pendulums coupled double

pendulum system synchronizes for all positive k, c, m, l, l0 parameter values

and the lower pendulums coupled double pendulum system synchronizes for all
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positive k, c, m, l, l0 except l0 = 1√
2
l. Either by using analyitcal or numerical

methods we could not find meaningful comparison results between upper and

lower coupled double pendulums.

In Chapter 5, we tried to synchronize two ball hoppers in master-slave config-

uration by using two different gait controllers namely, fully-actuated controller

(k, θ, ∆y) and under-actuated controller (k, θ, ∆y is fixed). In the fully-actuated

controller case, we achieved apex state synchronization between the hoppers by

successfully estimating the control parameters of the master hopper. The time

synchronization of the hoppers could not be achieved due to the use of deadbeat

controller. In the under-actuated controller case, by making use of the nonlinear

touchdown to liftoff nonlinear equations to choose appropriate k and θ and by

finding appropriate criteria for the initial conditions of the slave hopper, we were

able to achieve meaningful apex position synchronization between hoppers, but

the fixed ∆y control parameter constrained the control on the horizontal velocity

of the slave hopper. As a result, the apex velocity synchronization is failed and

the slave hopper traced the master hopper with leading and lagging time phases.

The simulation results show that both the apex velocity and time differences

between present apex to next apex are bounded. These results are, to the best

of our knowledge, novel and require further investigation.
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APPENDIX A

Presentation of Positive

Routh-Hurwitz First Columns

Consider the Table 3.1. We need to show that the terms correspond to the s2 and

s3 are positive. The s3 term can be written as 2k2l2+kl20 +(kl0−gm)2 by making

use of the square form and s2 can be written as k2l4 + gkl20m+ (kl2 +kl20− glm)2

by adding and subtracting gkl20m from the term and by making use of the square

form.

Consider the Table 3.4. We need to show that the term corresponds to s3 is

positive once we show 2K2
1−3K1K2+2K2

2 is positive. By adding and subtracting

K1K2 from the term and by making use of the square form the above term can

be written as 2(K1 −K2)
2 +K2. The same method applies to the Table 3.5 for

s1 term.
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