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ABSTRACT

NOVEL SAR REDUCTION

 METHODS FOR MAGNETIC RESONANCE 

IMAGING

Yiğitcan Eryaman

Ph.D. in Electronics Engineering

Supervisor: Prof. Dr. Ergin Atalar

March 2011

In this thesis, novel methods are presented, which can be used to reduce the 

heating of the human body due to radiofrequency fields in magnetic resonance 

imaging (MRI). The proposed methods depend on the modification of the 

electric field distribution for reducing the specific absorption rate (SAR). These 

methods can be used to reduce the local SAR in the vicinity of metallic devices 

and the whole-volume average SAR, as shown by electromagnetic field 

simulations and phantom, animal and patient experiments. These results can 

improve the safety of MRI scans performed on patients with metallic implants 

and MRI-guided interventional procedures. Additionally, by reducing the whole 

body average SAR, safer and faster MRI scans can be performed. 



v

ÖZET

MANYETİK REZONANS GÖRÜNTÜLEME’DE 

ÖZGÜL SOĞRULMA HIZINI AZALTMAK 

İÇİN YENİ YÖNTEMLER

Yiğitcan Eryaman

Elektrik ve Elektronik Mühendisliği Bölümü Doktora

Tez Yöneticisi: Prof. Dr. Ergin Atalar

Mart 2011

Bu tezde, insan vücudunun Manyetik Rezonans Görüntüleme (MRG) esnasında 

radyofrekans (RF) alana bağlı ısınmasını azaltmak için kullanılabilecek yeni 

yöntemler sunulmaktadır. Önerilen yöntemler Özgül Soğrulma Hızı’nın (ÖSH) 

azaltılması için elektrik alanın değiştirilmesine dayanır. Elektromanyetik 

benzetimler, fantom, hayvan ve insan deneyleri ile gösterildiği üzere bu 

yöntemler metal cihazlarin yakinlarinda oluşan yerel ÖSH’nın ve tüm vücut 

ortalama ÖSH’nın azaltılması için kullanılabilir. Bu sonuçlar vücudunda implant 

taşıyan hastalarda yapılan MRG taramalarının ve MRG rehberliğindeki 

girişimsel ugyulamaların güvenliğini arttırabilir. Ayrıca tüm vücut ÖSH’nın

azaltılması suretiyle daha güvenli ve hızlı MRG taramaları da yapılabilir.

Anahtar Kelimeler: Manyetik Rezonans Görüntüleme(MRG), Özgül Soğrulma 

Hızı (ÖSH), implant, radyofrekans(RF) alan
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a safe imaging technology that provides 

many clinical benefits. Basically, MRI is performed by exciting magnetic spins 

with radiofrequency (RF) pulses and receiving the response generated by these 

spins as they relax into their original state. This response is spatially encoded by 

using the gradient fields and converted to an actual image. 

Although it is not desirable, the body is exposed to an electric field during the 

RF excitation of the spins. This electric field may cause heat dissipation as it 

penetrates the conductive medium of body tissues. The specific absorption rate 

(SAR) is used as a measure of the electromagnetic (EM) power dissipated in a 

given volume. Current regulations set limits [1] on both the average whole body 

SAR and the peak local SAR in order to ensure the safety of patients. 

Furthermore, regulations limiting the maximum temperature increase in 

different parts of the body are also included. 

The average-volume SAR is a factor that limits the maximum power that can be 

used for the RF excitation. The reduction of the average SAR is important for 

two reasons. First, an approximately quadratic relationship exists between the 

SAR and the operating frequency of the MRI. The frequency in MR scanners 

has increased over the years in order to benefit from the SNR advantages 

obtained at higher field strengths. Because SAR limits have remained the same, 

SAR reduction techniques must be developed in order to ensure patient safety in 

the higher field strengths. Second, the average SAR increases as the duration of 

the RF pulse decreases. Therefore, if fast scans with short RF pulses are to be 

implemented, the SAR should be reduced. 

The SAR may depend on both the transmit coil design and the sequence 

parameters. Accordingly, there are approaches that focus on tailoring the RF 

excitation and redesigning the MR sequences in order to reduce the average 

SAR [2-4]; other methods are based on designing new transmit coil geometries 

and RF shimming [5]. Methods that adopt both of these approaches for SAR 
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reduction have also been investigated [6]. Transmit arrays are promising due to 

the freedom of exciting the spins with multiple elements simultaneously [7]. 

With that freedom, the SAR problem can be solved, along with the problem of 

RF field inhomogeneity. In most of the applications, a spatially homogenous RF 

excitation is usually desirable in order to obtain high-quality MR images. The 

RF field homogeneity is especially reduced in higher field strengths where the 

wavelength is comparable to the body size. RF shimming [8] and transmit sense 

[6] methods can be used with transmit arrays to solve the homogeneity problem 

while handling the SAR problem simultaneously. 

In the presence of metallic devices, the local SAR becomes more important for 

safety. The current clinical MR scanners operate safely within the SAR limits. 

However, when metallic devices are present in the patient, the SAR 

amplification near the device can be dangerous [9-12]. When the local SAR is 

amplified, the temperature may increase excessively in the vicinity of the 

device, and tissue damage and burns may occur [13]. To prevent this, patients 

carrying metallic devices are not allowed into the MR scanner; considering that 

there are many people in the world who have metallic implants, the importance 

of this problem can be appreciated. There is also a risk related to local heating 

around metallic devices in interventional procedures. With the advent of 

interventional MRI, it is now possible to perform catheterization and biopsy 

procedures under MRI guidance; however, RF safety problems introduce 

additional risks with these procedures [14-17]. A solution that directly addresses 

this safety problem may increase the quality of life of millions of people.

In general, for both diagnostic and interventional procedures, the reduction of 

RF heating of metallic devices is crucial for patient safety. Many solutions to 

this problem have been proposed in the literature. In most of these works, the 

device or its long conductor extension is modified electrically in order to 

prevent heating [18-21]. Although this approach is promising, in some 

applications, such as MR-guided biopsy procedures [22], it may be impractical 

to make a modification to the device. Furthermore, in the case of implanted 

devices, such as pacemakers and deep brain stimulators (DBS), the replacement 
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of the device with a safer one may not always be convenient for patients. Thus, 

instead of modifying the device, the electromagnetic (EM) field surrounding the 

device can be modified to reduce the RF heating, such that replacing the 

metallic device with a safer version is no longer necessary. 

The modification to the electric field should be made in order to reduce the RF 

heating only, and the resulting MR image quality should not be affected. In this 

thesis, methods to achieve this task are investigated. By modification of the EM 

field distribution, the RF heating of the human body was shown to be reduced. 

In Chapter 2, this approach is demonstrated to minimize the average SAR while 

keeping the magnitude of the transmit sensitivity unchanged. In addition, it is 

shown that, by releasing the phase constraint of the transmit sensitivity, the 

average SAR can be reduced even further. The optimum field solution that 

results in the minimum average SAR was also calculated [23].

Different RF excitation methods are used to reduce the RF heating due to 

implanted devices in the third chapter of the thesis. Evidence is provided that, a 

linearly polarized coil can be used to safely scan a patient with an implant [24]. 

The zero electric-field plane of the coil was coincided with the implant in order 

to prevent the tip heating of the metallic device. Furthermore, the transmit 

sensitivity characteristics of the coil were preserved with respect to a quadrature 

coil. This approach required either rotating the coil or the patient in order to 

reduce the electric field in the vicinity of the device. In Chapters 4 and 5, a 

similar task was achieved by using a two-channel and a multi-channel transmit 

array [25, 26], where the patient or the coil remained constant and the EM field 

was altered. In Chapter 4, a method to monitor the induced current on a metallic 

device is also presented. The method was based on measuring the induced 

current artifacts in the MR images: the safest two-channel excitation that 

cancelled the current on the device was found, and the RF heating was 

minimized. The application of a similar method to the multi-channel excitation 

is discussed in Chapter 5, with the average SAR and homogeneity issues also 

being addressed. Lastly, in Chapter 6, the effect of the phase variation of the 

electric field on the heating of the metallic device is investigated [27]. It is 
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shown that a linear-phased electric field variation would amplify  the heating at 

one of the tips of a metallic wire and reduce the heating at the other one. The 

lead/wire geometry was modified in order to achieve such a condition. 

Additionally, a similar idea was tested with transmit arrays, which were used to 

generate an electric field whose phase changed linearly along the lead. A 

demonstration of the tip SAR amplification and reduction is provided. 
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2. MINIMUM SAR FOR RF SHIMMING BY 

ALLOWING SPATIAL PHASE VARIATION

2.1 Preface

The content of this chapter was presented (in part) in a conference publication [23], 

reference: Eryaman Y, Tunç C A., Atalar E “Minimum SAR for RF Shimming By 

Allowing Spatial Phase Variation” Proc Intl Soc Mag Reson Med 18(2009):4777.

2.2 Introduction

The Specific Absorption Rate (SAR) is a patient safety parameter that should be seriously 

considered in MRI procedures. There are many studies in the literature in which the 

whole body average SAR has been minimized under conditions of satisfying a target 

transmit sensitivity [5,6]. In one of these studies, the SAR due to a given multi-channel 

transmit coil was minimized with respect to the phase and the magnitude of the excitation 

currents of the individual channels [5]. In another work, the ultimate value of the SAR for 

transmit sense was calculated by the optimization of the field inside a homogenous body 

model [6]. In these studies, the target transmit sensitivities were chosen in order to obtain 

a uniform magnitude field distribution. However, reducing the SAR by relaxing the phase 

constraints of the target profile was not investigated. In the study presented here, by 

keeping the magnitude distribution of the target transmit profile within a given boundary,

the phase distribution was optimized to obtain the true ultimate SAR for the MRI coils. It 

was shown that it was possible to reduce the whole body SAR by orders of magnitude up 

to 30, while realizing a desired magnitude distribution for target sensitivity. For this 

purpose, the related optimization problem was solved by Particle Swarm Optimization 

(PSO) [3]. PSO is a search algorithm that can easily be implemented and used to solve 

optimization problems with various constraints. By using PSO, the optimum EM field 

distribution that satisfied the above conditions was calculated. Using well-known 

techniques [6], the current distributions that can generate the optimum field inside the 
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body model can also be calculated. These optimum current paths can be used to optimize 

RF coils and to obtain a minimum whole body SAR. 

2.3 Theory 

The average whole body SAR for a homogenous body model depends on the volume 

integral of the magnitude square of the electric field distribution, as shown below: 

 (1)

In this expression,   is the conductivity, and M is the total body mass. 

During MRI, it is usually desirable to obtain a uniform transmit sensitivity profile. In 

order to achieve that, the forward polarized field component, fH , should be constrained 

on desired locations in the body. For any given point of interest 0 0( , )  , the expression 

for the fH in cylindrical coordinates is shown below:

 (2)

where H and H  are the magnetic field components in the radial and angular directions, 

respectively.

In order to make a general formulation for the problem, the cylindrical basis expansion 

can be formulated to express the field, as follows: 

  (3)

The expression for each separate mode, mnE


, can be written as zj zjm
mn mnmnE E e e    
 

, 

where  and z are the angular and z coordinates in the cylindrical coordinate system, 

respectively, and m and n are integer variables representing the expansion modes. mnE  is 

a 3x2 matrix and is a function of  , the radial coordinate, but not  or z, and mn


 is a 

2
/

body
SAR M E dv 

mn

m n

E E
 

 

  
 

( ) j
fH H jH e 
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2x1 vector whose elements are the constants that multiply the basis functions and 

[ ]T
mn mn mnA B 


.

The mnE  matrix and its components are shown below:

 (4)

Using the basis expansion, the forward polarized field component, fH , can also be 

expressed, as follows:

 (4)

where each separate mode for fH can be expressed as shown below:

 (5)

Here, ' denotes the complex conductivity of the medium. zn  and n  are the wave 

numbers along the longitudinal and radial directions, respectively, which can be 

calculated as 2
0 0[ ]j j       , where L is the length of the cylinder.

For the case where the number of points of interest is equal to k, the whole constraint on 

the values of fH  can be written in the following matrix form:

 (6)

( ) 0

1
( ) ' ( )

1
' ( ) ( )

'

m n

m n m n

m n m n

J

J J

jJ J



 

 

 

   
 

   
 

 
 
 
 

  
 
 
 
 

mnE

( ) ( ) mnf fmn
mn

H r H r  
  

( 1)
1

'
( ) , ( )

2 2
j mz

f mn m

j
H r J e 
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where c, the desired transmit sensitivity profile, is represented by a kx1 vector whose 

elements are equal to the desired fH  values at each point of interest.   is a column 

vector that contains the weighting coefficients ( mnA  and mnB ) for each separate mode. 

Lastly, B is the transmit sensitivity matrix whose elements are equal to the basis functions 

of fH  evaluated at the desired point of interests. 

The average whole body SAR in the homogenous body model can be written as follows:

 (7)

where mnR  is a Hermitian matrix and can be computed by using the following expression 

[6]: 

 (8)

The average whole body SAR can be expressed in a shorter form, as R  , where R is 

the electric field cross-correlation matrix whose block diagonals are equal to mnR .

After the definition of required variables, the SAR minimization problem can then be 

expressed as follows:

.                                                      (9)

The solution for this problem can easily be found by using the Lagrange optimizer 

method, as shown below:

 (10)

In MRI, the magnitude distribution of the transmit field profile is usually desired to be 

homogenous. However, the phase distribution is a free parameter that can be optimized in 

( / )
H

mn mnmn
mn

SAR M R     
 

0
2

bodyr H
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D= 0.2 m L=1 m

order to obtain a minimum whole body SAR. If the S matrix is defined as 1 1( )S BR B   , 

then the minimization problem above can be expressed as follows:

 (11)

where k is the number of sample points in the target transmit field profile, and  is the 

tolerance for the magnitude of fH .

As will be shown later, the solution of this problem will significantly decrease the SAR 

while preserving the magnitude distribution of the transmit sensitivity. 

2.4 Simulations

In all solutions, a homogenous body model diameter of 0.2 meters and a length of 1 meter 

were assumed (Figure 2.1).

Figure 2.1 The homogenous body phantom model with uniform electromagnetic properties is 

shown. The target transmit profile is obtained by constraining the field at 45 sample points, which 

forms a circular region of radius 8 cm.

min aac Sc

1 1 1,2,.....ic for ai kaa a     
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The relative permeability and permittivity for the phantom were chosen as 1 and 70, 

respectively. The conductivity was assumed to change linearly with the frequency, and it 

was taken as 0.4, 0.8 and 1.2 S/m for 1.5 T, 3.0 T and 4.7 T, respectively. 

As an initial solution, the target profile was assumed to include only a single point of 

interest. This point was chosen as the center of the cylinder. For a single-point profile, 

varying the phase of fH  for that point of interest did not have an effect on the minimum 

whole body SAR. The optimum coil sensitivity and the minimum whole SAR were 

calculated for 1.5 T, 3.0 T and 4.7 T.

To obtain a homogenous transmit sensitivity, multiple numbers of points were used for 

the target profile. First, a zero phase profile was assumed, and the corresponding 

optimum sensitivity and minimum SAR were calculated. Then, in order to generate the 

optimum phase distribution, the PSO algorithm [3] was used to solve the problem. A 

MATLAB (version 7.0, MathWorks Inc., Natick, MA) program was written to implement 

the algorithm. For the target transmit field profile, fH  was constrained to have a uniform 

magnitude at 45 sample points, which formed a circular region of a radius of 8 cm. Figure 

2.1 shows the location of sample points that fH  constrained. The phase distribution is 

optimized by using the particle swarm optimization method in order to minimize the 

whole body SAR. The simulations were made for 3 field strengths, 1.5 T, 3.0 T and 4.7 

T, and for 3 different tolerance values, 0  , 0.03   and 0.1  . Note that the 

transmit sensitivity was permitted to fluctuate in the interval [1 ,1 ]   . The SAR 

reduction with respect to a zero phase transmit profile was calculated. The optimum fH

distribution was calculated for the 0   case at 3 field strengths. Electric field maps 

related to the zero phase and optimum phase solutions were also generated.

2.5 Results

For the PSO solutions, the number of particles, the constriction factor and the cognitive 

and social rates for velocity updates were chosen, as explained in a previous work [40]. 

The fitness function was defined as the ratio of the average SAR. Each simulation lasted 
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(1.5 T) (3.0 T)

(4.7 T)

for 50-100 seconds using a PC with an AMD Athlon™ 64 Processor and 2.41 GHz 4 GB 

RAM.

As an initial solution, the target profile was assumed to include only a single point of 

interest. This point was chosen as the center of the cylinder and sets a lower bound for all 

of the other solutions. As will be shown, larger profiles consisting of multiple locations 

will result in larger SARs when compared with the solution found by using a single point 

of interest. Figure 2.2 shows the sensitivity variation in the z=0 transverse plane at 3 field 

strengths. Because SAR will depend on sequence parameters, such as flip angle and TR, 

the SAR value for each solution is reported here in arbitrary units. 

Figure 2.2 The optimum transmit sensitivity for imaging a single point of interest is shown. 

Because the target profile consists of a single point, the sensitivity profile solutions are not 

homogenous. 

The SAR values obtained by each solution were 1, 6.51 and 29.66 arbitrary units (au). 

For these solutions, the relationship between the average SAR and field strength was 
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(1.5 T) (3.0 T)

(4.7 T)

Uniform circular 
target profile

Uniform circular 
target profile

Uniform circular 
target profile

expected to be quadratic. However, it was also assumed that the conductivity increased 

with the field strength. Therefore, the increase in the SAR due to the field strength was 

larger than a quadratic increase.

As the second solution, a uniform magnitude target profile was assumed; the phase of the 

target profile was assumed to be constant as well. The sensitivity of the optimum solution 

is shown in Figure 2.3.

Figure 2.3 The optimum transmit sensitivity for imaging a target profile is shown. Because the 

target profile consists of multiple points, the sensitivity solutions are homogenous. The phase 

throughout the profile was assumed to be constant. 

As expected, an almost perfectly homogenous sensitivity solution was obtained in the 

transverse plane for all of the field strengths. However, this homogeneity resulted in an 

increase in the average SAR. The SAR values obtained for these solutions were 4.30, 452

and 53,287 au for 1.5 T, 3.0 T and 4.7 T, respectively. This increase can easily be 
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(1.5 T) (3.0 T)

(4.7 T)

Uniform circular 
target profile

Uniform circular 
target profile

Uniform circular 
target profile

explained by the modal expansion of the EM field inside the phantom model. The modal 

expansion of a uniform profile in the space requires using modes with large indices. 

These modes exhibit a fast spatial variation in both the angular and longitudinal 

directions. Therefore, their SAR contribution to the solution is significantly higher than 

the modes with slower spatial variation. Therefore, an increase in SAR due to a 

homogenous target profile constraint is physically unavoidable. It should also be noted 

that among the infinitely many solutions satisfying the uniform phase-constant magnitude 

sensitivity profiles, these solutions have the minimum average SAR.

However, to alleviate this SAR problem, a different approach can be implemented. 

Although it is desirable to obtain a uniform magnitude distribution, the phase variation of 

the sensitivity is not a constraint. For this purpose, the optimization problem mentioned 

in Equation 11 is solved. The resulting transverse sensitivity solutions are shown in 

Figure 2.4.

Figure 2.4 The optimum transmit sensitivity for imaging a target profile is shown. Because the 

target profile consists of multiple points, the sensitivity solutions are homogenous. The phase 

throughout the profile is also optimized to minimize the average SAR. 
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Similar to the previous solution, the magnitude variation was kept constant through the 

target profile. The phase variation, however, was optimized to minimize the average 

SAR. Figure 2.5 shows the magnitude and the phase of the transmit sensitivity sampled in 

the radial direction. 

Figure 2.5 The transmit sensitivity due to the optimum solution sampled in the radial direction. 

The transmit sensitivity profile is homogenous in magnitude, as seen in Panel a. The phase 

variation is tolerated in order to minimize the average SAR, as seen in Panel b.

The SAR due to the optimum solutions was 1.64, 77.3 and 4027 au for 1.5 T, 3.0 T and 

4.7 T, respectively. Clearly, by releasing the phase constraints, a reduction with respect to 

the uniform phase solution was achieved. Similarly, by releasing the magnitude 

constraint, a reduction in SAR can be realized. For this purpose, the magnitude of the 

field was permitted to fluctuate in the interval [1 ,1 ]   , as indicated in equation 11.

Three different  values, 0, 0.03 and 0.1, were used for the solutions. Table 1 shows the 
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37.835.0612.954.7 T

12.6610.975.863.0 T

2.672.672.621.5 T

SAR
REDUCTION

δ=0 0.03  0.1 

amount of the reduction in the SAR with respect to the uniform magnitude-uniform phase 

solution. 

Table 1 Reduction in the SAR with respect to the uniform magnitude-uniform phase solution is 

shown.

As expected, as the constraints are released, the number of freedoms increases, and the 

SAR can be reduced further. Note that a maximum reduction of 37.8 was obtained with 

0.1  . With this solution magnitude, the sensitivity was permitted to fluctuate between 

0.9 and 1.1.

It should be noted that the field solutions are also critical to understand and design better 

RF coils with less average SAR. For this purpose, electric field variation should also be 

investigated. The z component of the electric field of both the uniform phase solutions 

and the optimum solutions were calculated for 1.5 T, 3.0 T and 4.7 T and are shown in 

Figure 2.6, Figure 2.7 and Figure 2.8, respectively. 0  is assumed for all of the solutions.

The longitudinal component of the field can be used to identify the coil geometry and the 

current paths on the coil. 
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(a) (b)

(a) (b)

Figure 2.6 The z component of the electric field in the z=0 transverse plane (1.5 T). The uniform 

phase solution is shown in Panel a, and the optimum solution is shown in Panel b.

Figure 2.7 The z component of the electric field in the z=0 transverse plane (3.0 T). The uniform 

phase solution is shown in Panel a, and the optimum solution is shown in Panel b. 
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(a) (b)

Figure 2.8 The z component of the electric field in the z=0 transverse plane (4.7 T). The uniform 

phase solution is shown in Panel a, and the optimum solution is shown in Panel b. 

In order to understand the geometry of the RF coil, the longitudinal variation of the 

electric field should also be investigated. Figure 2.9, Figure 2.10 and Figure 2.11 show 

this variation for both the uniform phase and optimum solutions. 
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(a) (b)
Figure 2.9 The z component of the electric field in the 0   half plane (1.5 T). The uniform 

phase solution is shown in Panel a, and the optimum solution is shown in Panel b.

(a) (b)
Figure 2.10 The z component of the electric field in the 0   half plane (3.0 T). The uniform 

phase solution is shown in Panel a, and the optimum solution is shown in Panel b.
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Figure 2.11 The z component of the electric field in the 0   half plane (4.7 T). The uniform 

phase solution is shown in Panel a, and the optimum solution is shown in Panel b. 0  is 

assumed.

2.6 Discussion

From Figure 2.5, Figure 2.6 and Figure 2.7, it can be seen that transmit arrays can be used 

to realize field variations. The electric field due to each channel element is visible in

Figure 2.5. The number of channels can be identified by a visual inspection of the results. 

Because the field varies in the angular direction, the coil elements can be fed with the 

appropriate excitation currents to approximate these field solutions. 

Furthermore, it can be seen from Figure 2.9, Figure 2.10 and Figure 2.11 that the electric 

field has a variation in the longitudinal direction. This may be achieved by modulating 

the amplitude of the conductor currents or the geometry of the coil in a longitudinal 

direction, such that the optimum field is approximated. Transmit array elements can be 

placed in a longitudinal direction with the same motivation as well. In all cases, the 
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solutions show that the effective length of the coil varies from one-third to one-half of the 

body length for different field strengths. 

2.7 Conclusion

In this work, the minimum average whole body SAR for RF shimming was calculated. 

The EM field of a transmit coil was optimized in order to achieve a homogenous transmit 

sensitivity and minimum whole body SAR. The reduction in SAR due to relaxing the 

phase and magnitude constraints was calculated. The optimum coil sensitivities and 

electric field magnitude distributions are also presented.
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3. REDUCTION OF IMPLANT RF HEATING 

THROUGH MODIFICATION OF TRANSMIT 

COIL ELECTRIC FIELD

3.1 Preface

The content of this chapter was published in a journal paper[24] Reference:

Eryaman, Y., Akin, B. and Atalar, E. Reduction of implant RF heating through 

modification of transmit coil electric field. Magnetic Resonance in Medicine, 

n/a. doi: 10.1002/mrm.22724))

3.2 Introduction

Magnetic resonance imaging (MRI) is known as a very safe imaging 

technology. However, because of the possibility of inducing excessive currents 

on the metallic wires, MRI scanning is generally not performed on people with 

metallic implants such as pacemakers. A radio-frequency (RF) electric field, 

although undesirable, is often generated in the body during the excitation of 

spins with RF magnetic field pulses. Power absorbed by the body under this 

electric field is determined by the specific absorption rate (SAR) and needs to be 

kept at a level that is safe to the patients. If a patient with a metallic implant is 

examined using MRI, a very significant SAR amplification may occur around 

the implant, which may cause excessive body heating and burns. Due to this 

well-known problem, patients with metallic implants are currently not allowed 

inside the MRI scanners. 

Previous studies [9,10] have assessed the implant heating problem via both in 

vitro and in vivo approaches. Mathematical models have also been presented 

[11,12] and the validity of these models has been further verified by comparison 

with the experimental data. A detailed analysis of the problem was conducted in 

[11] by solving the bio-heat equation with Green’s function and the linear 
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system theory. The maximum steady-state temperature increase in the tissue 

near a transmitter catheter antenna was calculated. In [12], a parameter called 

the “safety index” was introduced, which combines the effect of the SAR gain 

of the implant lead and the bio-heat transfer process to measure the in vivo 

temperature changes. Variations of the safety index with respect to the length 

and radius of the implant lead, the thickness of the insulation, tissue 

conductivity and permittivity were also investigated. These studies presented a 

good model of tissue heating caused by metallic wires in RF fields. In another 

study, experimental methods were developed to measure and monitor the RF-

induced currents inside implants [29].

Modifications of the implant leads and wires for reducing the RF-induced 

heating were investigated in other studies. In two of these studies, a series of 

chokes was added to the coaxial cables [18,19] to reduce the currents generated 

on the cable shield. In another study [20], the effects of coiled wires on induced 

heating were investigated. By introducing air gaps and lowering the parasitic 

capacitance, the self-resonance frequency of a coiled wire was shifted to the 

operating frequency. This change increased the impedance of the wire and thus 

reduced the RF heating. However, all of these designs are based on modifying 

the lead wires or cables, which makes it difficult to produce mechanically robust 

leads. In addition, for patients who already have pacemakers, replacing the 

original leads with these modified safer leads may not always be feasible. For 

these reasons, modifications of the implant lead designs or the catheters may not 

always be the most appropriate solution for the MRI-induced RF heating of 

metallic wires.

The relationship between the electric field distribution and the temperature 

increase of the implant leads was recently investigated [30]. It was found that 

tissue heating depends on the orientation of the lead with respect to the direction 

of the electric field. To identify the worst-case scenario, an optimization-based 

approach was used in [31] to calculate the EM field that could produce the 

maximum heating at the wire tip. However, studies to optimize the EM 

transmitter field to minimize the implant heating were not carried out.
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In this study, we showed that the transmitter coil field used in MRI could be 

optimized to steer the electric field away from the implant lead and thus prevent 

heating. As demonstrated experimentally, a linearly polarized birdcage coil 

could be used for this purpose. Although this approach preserved the 

homogeneous transmit sensitivity characteristics of the coil, it caused a doubling 

of the whole-body SAR. To alleviate this problem and achieve uniform 

sensitivity, we further modified the field of the transmitter coil to minimize both 

whole-body SAR and the implant heating. Details of this approach are described 

in the following sections.

3.3 Theory

3.3.1) Implant-Friendly RF Coil

In the standard quadrature birdcage coils, the electric field is uniform in the 

angular direction but varies roughly linearly in the radial direction [32]. 

Therefore, an implant lead placed at the edge of the body experiences a high 

electric field, which induces currents both on the lead and in the body and 

eventually causes local SAR amplification. The electric field distribution of a 

standard forward polarized quadrature birdcage coil in an infinitely long 

homogeneous model can be approximated by ignoring the end-ring currents as 

follows (see the appendix for a detailed derivation): 

(12)

                                    

where zE , E , E  are the longitudinal, angular and radial components of the 

electric field, respectively; fH is the transmit sensitivity of the coil;   is the 

Larmor frequency; 0 and are the permeability and permittivity, respectively; 

  is the conductivity of the homogeneous model;  and  are the radial and 

angular coordinates in the cylindrical coordinate system, respectively; and j is 

the imaginary number defined by 1 . Similarly, the electrical field of a 

linearly polarized coil can be expressed as follows: 

0 , 0, 0
2

f j
z
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E e E E
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(13)

                                    

Note that j indicates a 90-degree phase shift with respect to a real field 

expression. As can be seen from the above equations, linear and quadrature 

birdcage coils have similar transmit sensitivity yet different electric field 

distributions. The transmit sensitivities of each coil are approximately uniform 

in the transverse plane. (Please see the appendix for the detailed derivation.) It 

can be noted from the above equation that the electric field is zero over the 

entire 0   plane. This plane can be steered into any angular direction by either 

changing the feeding location or simply rotating the linear birdcage coil. The 

same task can also be performed by controlling the amplitudes of the currents 

fed into the two ports of a quadrature birdcage coil. For example, if port-1 and 

port-2 are set in such a way as to make the corresponding electric fields zero at 

the 0   and / 2  planes, respectively, then the excitation currents with 

relative amplitudes of 0cos  and 0sin  at ports 1 and 2 would generate a zero 

electric field plane at 0  .Note that 0  plane covers both 0   and 

0     half planes. If an implant lead lies on the zero electric field plane, 

there will be no induced currents on the lead. Because setting the electric field to 

zero makes the perpendicular component of the magnetic field vanish at the 

same plane, this method also intrinsically prevents the H-field coupling.

Using a linear birdcage coil solves the heating problem for an arbitrarily shaped 

implant lead when the lead is located in the zero electric field plane. Despite this 

modification of the electric field distribution, the transmit sensitivity is not 

significantly disturbed. However, as previously shown [33], linear birdcage coils 

are not efficient for RF transmission when the volume average SAR is 

considered. For linear excitation, a reverse polarized field component co-exists 

with the forward polarized component, and the whole-volume average SAR per 

unit flip angle is doubled.

0 sin , 0, 0z fE H j E E      
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3.3.2) Transmit Field Optimization

To alleviate the doubling problem of the whole-volume average SAR, a general 

formulation was developed. Because transmit sensitivity is determined by the 

forward polarized component of the magnetic field and SAR is determined by 

the electric field distribution, the above-mentioned problem can be solved by 

optimizing the electromagnetic field of the coil [6]. In this study, we 

successfully demonstrated the feasibility of such a strategy by obtaining the 

desired electromagnetic field distribution in the body. Although the work is not 

trivial, once an optimum electromagnetic field is identified, it is possible to

design a coil that produces the desired field. The design of such an optimum 

implant-friendly coil is left for a future study.  

First, we assumed that the optimization would be conducted in a uniform 

cylindrical object. This assumption simplified the formulation but could also be 

used with the other geometries. Because a cylindrical object is assumed, the 

cylindrical basis functions were used to expand the optimum field solution that 

minimized the whole volume average SAR [34,35]:

(14)

                                                                  

where  and z are the angular and z coordinates in the cylindrical coordinate 

system, respectively, and m and n respectively denote the index of the 

circumferential and longitudinal modes used in the basis expansion. mnE is a 3x2 

matrix that contains the electric field basis functions for the  ,  and z 

components as shown below:

 (15)
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mnE is a function of  , the radial coordinate, but not of  or z. mn


is a 2x1 

vector whose elements are the constants that multiply the basis functions and 

[ ]T
mn mn mnA B 


. 

The transmit coil sensitivity can be expressed by evaluating the forward 

polarized field, which can be written in the summation form as

                                                                                              (16)     

Each separate mode for fH can be expressed as follows:

                                                       (17)                                             

where
2

zn n
L

  , 2 2 2
n zn     and ' j     [35]. Here, ' denotes the 

complex conductivity of the medium, and zn and n are the wave numbers 

along the radial and longitudinal directions, respectively, which can be 

calculated as 2
0 0[ ]j j       . L is the length of the cylinder.

For k points of interest, the whole summation in the fH expression can be 

written in the following matrix form:

                                                                              (18)

where c, the desired transmit sensitivity profile, is represented by a kx1 vector 

whose elements are equal to the desired fH values at each point of interest.   is 

a column vector that contains the weighting coefficients ( mnA mnB ) for each 

separate mode. H is the transmit sensitivity matrix whose elements are equal to 

the basis functions of fH evaluated at the desired points of interest. H is a 

(2 )k M N    matrix, where M and N denote the total number of 
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circumferential (m) and longitudinal (n) modes that are used in the basis 

expansion. Implementing different field variations would require using different 

combinations of the cylindrical modes. To express a field exhibiting a rapid 

spatial change in the circumferential or the longitudinal direction, one must use 

higher-order modes in that particular direction. Therefore, to characterize an 

arbitrary EM field with this expansion, an infinite number of modes is required. 

For practical purposes, the number of modes is truncated in our study

The desired target transmit sensitivity is one of the linear constraints for 

minimizing the average SAR. A separate constraint also exists on the electric 

field to reduce the implant heating. 

To achieve the zero-implant-heating condition, the components of the electric 

field that are parallel to the lead should be set to zero. Therefore, the induced 

current on the lead wire will be zero. This condition can also be expressed as a 

linear constraint, similar to fH , as shown below:

                                                                                (19)

where 0


is a px1 vector with all of its elements equal to zero, and p denotes the 

number of sample points where the electric field is set to zero. E is a 

(2 )k M N    matrix, where M and N denote the total number of 

circumferential (m) and longitudinal (n) modes that are used in the basis 

expansion. E matrix contains the basis functions for zE , E and E evaluated at 

the desired zero electric field locations. 

The constraints on fH  and the components of the electric field can be combined 

into a single matrix equation: F e  , where F and e are formed by 

concatenating the matrices B, E and the vectors c and 0


, respectively. 

While it is desirable to set the magnetic and electric field to certain values at 

points of interest, the specific absorption rate (SAR) needs to be under control. 

The expression for the average SAR is:

                                                                                  

0E 
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2
/

body
SAR M E dv  (20)

where  the conductivity, M is the total body mass and dv is the differential 

volume element . With the cylindrical mode expansion for a homogeneous body 

model, the resulting relation can be written as:

 (20)

                                                                      

where mnR is a Hermitian matrix and can be computed using the following 

expression [35]:

 (21)

where r denotes the radius of the homogeneous model. The average SAR can be 

expressed in a more compact form as R  , where R is the electric field cross 

correlation matrix whose block diagonals are equal to mnR .

Among the infinite number of solutions satisfying F e  , the solution with the 

minimum volume average SAR can be found by minimizing R  . The 

solution for  can then be defined as: 

                                                                                (22)

The minimum whole body SAR value can be computed as:

                                                           (23)

These equations give the minimum possible SAR under the conditions of the 

desired transmit sensitivity and zero electric field near the implant. They also 

( / )
H

mn mnmn
mn

SAR M R     
 

0
2

r H
mn mn mnR L E E d       

1 1 1( )opt R F FR F e     

1 1
min ( )SAR e FR F e   



29

give the corresponding weights for the cylindrical expansion modes. Although 

this solution does not directly specify the type of coil to be used, opt  uniquely 

determines the EM field of the optimum coil. The significance of this result can 

be appreciated by experiments and simulations as explained in the next section. 

3.4 Experiments and Simulations

3.4.1) Implant-Friendly RF Coil

To demonstrate the proposed theory, heating of metallic wires with both linear 

and quadrature excitation was tested. A phantom head model of 16 cm in 

diameter and 25 cm in length was prepared with commercially available gel (Dr 

Oetker Jello, Izmir, Turkey). To measure conductivity and relative permittivity, 

a cylindrical transmission line setup was used. By measuring the impedance at 

the end of the line and using the lossy transmission line impedance equations, 

the conductivity and relative permittivity were calculated [36]. A conductivity of 

0.51 S/m and relative permittivity of 70 were obtained with 2.4 g/l of salt in the 

gel solution.

Heating experiments were performed with a straight wire and a curved wire, as 

shown in Figure 3.1. Both of the wires were tested with quadrature and linear 

excitation.
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Figure 3.1 Gel phantoms with straight and curved wires. Fiber-optic temperature 

measurements were performed near the tips of the lead wires. (a) and (b), quadrature 

excitation; (c) and (d), linear excitation under the minimum heating condition; (e) and 

(f), linear excitation under the maximum heating condition.

The body coil of the Siemens 3.0 T Trio system was used in all experiments. A 

gradient echo sequence with a 4-msec TR and a 45-degree flip angle was used to 

scan the phantoms. A peak SAR value of 4.4 W/kg was obtained by finding the 

initial slope of the temperature rise and then multiplying it by the specific heat 

capacity of the gel, which was measured as 4100 J/kg/deg by using the KD2 Pro 

Thermal Properties Analyzer (Decagon Devices Inc, WA, USA). The 

temperature measurement was conducted at a depth of 1 cm from the phantom 

surface.
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When the phantom was scanned with the quadrature excitation, the temperature 

variations near the wire tips were recorded using a Neoptix ReFlex signal 

conditioner equipped with T1 fiber optic temperature sensors (Neoptix Inc, 

Quebec City, Canada). The fiber optic probes were placed in a specific way so 

as to ensure contact with the wire tips. The temperature data for each lead were 

obtained from different scans. To ensure a fair comparison, the gel phantom was 

kept in the refrigerator and allowed to reach the same initial temperature (5.5 

°C). This low initial temperature, rather than the room temperature of 19 °C, 

was chosen to prevent the gel from melting because it would be exposed to high 

heat during the experiment. The rate of temperature increase caused by heat 

conduction from the surface was approximately 2 °C/hour, which was 

significantly lower than that caused by the applied electric field.  

 To obtain a linearly polarized excitation, one of the ports was disconnected. The 

orientation of the phantom was adjusted to make the location of the lead 

coincide with the zero electric field plane. Once the temperature data under this 

condition (minimum heating condition) was collected, the phantom was rotated 

90 degrees to position the lead in the maximum electric field plane. Similar 

steps were taken for the measurement of curved wires. 

In all of the experiments, a single temperature probe was used to eliminate probe 

calibration errors and measurement errors caused by improper probe placement. 

3.4.2) Transmit Field Optimization

The linearly polarized birdcage coils may solve the RF heating problem of the 

implant leads. As previously mentioned, a linear birdcage coil can generate a 

whole-volume averaged SAR that is twice that generated by a quadrature 

birdcage coil, which may be unacceptable for certain applications. Therefore, 

alternative implant-friendly strategies that can guarantee similar or better MR 

image homogeneity need to be identified.

As previously mentioned, instead of designing novel coils, we tried to optimize 

the electric field distributions of currently available coils via simulation. 
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The optimization was conducted on a cylindrical head model with a conductivity 

of 0.5 S/m, relative permittivity of 70, diameter of 16 cm and length of 25 cm. 

Four separate optimum field solutions were computed under four different sets 

of conditions, as given below. 

3.4.2.1) Quadrature birdcage coil

The field distribution of an ideal quadrature coil was obtained using the above-

mentioned optimization algorithm but with no constraint on the electric field. In

this calculation, only a single point at the center of the object was chosen as the 

point of interest. Due to angular symmetry, the solution contained a single 

circumferential mode that corresponded to the field of a forward polarized 

birdcage coil. The whole-head averaged SAR calculated using this method can 

be considered as the minimum SAR one can obtain with a birdcage coil. 

3.4.2.2) Linear birdcage coil

The field of the linearly polarized birdcage coil was directly constructed from 

the previous solution by introducing a reverse circular polarization mode. The 

conjugates of the field expansion coefficients calculated for the quadrature coil 

were used for the reverse polarized mode. According to our theory, this solution 

should contain a zero electric-field plane. If this field coincides with the plane of 

the implant lead, no implant heating will be observed. Although this linearly 

polarized coil may be regarded as an implant-friendly coil, the whole-head 

average SAR obtained using this solution is twice as large as that of the quadrate 

birdcage coil. Therefore, a better solution is needed.

3.4.2.3) Implant-friendly coil

To minimize the electric field around the implant, the exact location of the 

implant lead needs to be known. For demonstration purposes, a 20-cm straight 

implant lead is assumed to be placed 1 cm away from the surface in the 

longitudinal direction (Figure 3.2).
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(a) (b)

L = 20 cm

L = 25 cm

Figure 3.2 To ensure homogeneous excitation, the coil transmit sensitivity was 

constrained to unity at 45 sample points, forming a circular region with a 

diameter of 15 cm on the transverse plane (Panel a ). The electric field was 

constrained to zero at seven sample points on a straight line whose distances to 

the phantom surface were 1 cm (Panel b ).

Coil transmit sensitivities were chosen to be exactly the same as those for the 

linear birdcage coil. The optimization problem is solved by applying these 

transmit sensitivity values at sample points shown in Figure 3.2. The tangential 

component of the electric field was set to zero at sample points on a lead, as 

shown in Figure 3.2. This strategy guaranteed that the whole head average SAR 

would be either less than or at most  equal to the SAR of a linear birdcage coil 

because the transmit sensitivity was preserved, but the electric field constraints 

were relaxed. 

3.4.2.4) Implant-friendly homogeneous coil

In an MRI scan, it is usually desirable to obtain a homogeneous transmit 

sensitivity in the region of interest. To achieve this goal, the transmit coil 

sensitivity is constrained to unity at points in the transverse plane (Figure 3.2). 

The tangential component of the electric field was set to zero at sample points 



34

on a lead (Figure 3.2). Results obtained from the above-mentioned experiments 

and simulations are given in the next section.

3.5 Results

3.5.1) Implant-Friendly RF Coil

Figure 3.3 shows the time course of the temperature increase near the tip of a 

straight wire in three different modes: the quadrature mode, the linear mode 

(maximum heating case) and the linear mode (minimum heating case). A 

temperature increase of 12.1 °C was observed at the tip of the wire for the 

quadrature case. For the maximum heating case of the linear mode, an increase 

of 24.7 °C was observed, For the minimum heating case of the linear mode, only 

a 0.8 °C difference was observed, which was significantly smaller than the 

difference observed for the quadrature case. For the curved wires, similar trends 

were observed, with temperature increases of 9.2, 19.1 and 0.3 °C observed for 

the three cases (Figure 3.4) Again the temperature change for the minimum 

heating case was significantly smaller than for the other two cases. 
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Figure 3.3 Temperature rise as a function of time measured for a straight wire with 

three modes: the minimum heating linear mode, the maximum heating linear mode and 

the quadrature mode. Final temperature increases of 0.8°C, 24.7°C, 12.1°C were 

observed with the minimum heating linear mode, the maximum heating linear mode 

and the quadrature mode, respectively. 



36

Figure 3.4. Temperature rise as a function of time measured for a curved wire with 

three modes: the minimum heating linear mode, the maximum heating linear mode and 

the quadrature mode. Final temperature increases of 0.3°C, 19.1°C and 9.2°C were 

observed with the minimum heating mode, the maximum heating linear mode and the 

quadrature mode, respectively.

3.5.2) Transmit Field Optimization

 In order to alleviate the whole body SAR problem due to a linearly polarized 

birdcage coil, the problem can be solved in its most general form by minimizing 

the whole body SAR. The ranges of cylindrical mode index integers, m and n, 

were chosen as [-8, 8] and [10, 10], respectively. These ranges were determined 

by running a convergence analysis on the average SAR value. It was 

numerically found that increasing the range of m and n further, does not change 

the solution more than 5%. For transmit field optimization, four different 

optimum field solutions were simulated under four different conditions as 

described earlier. The transmit sensitivity of the mid-point is set to unity for all 
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simulations.  A homogeneity coefficient was calculated for each field solution 

by averaging the difference between the sensitivity of each pixel and the mid 

point in the transverse plane. Note that a zero homogeneity coefficient 

represented a perfectly homogeneous transmit sensitivity profile

3.5.2.1) Quadrature birdcage coil 

Figure 3.5 a shows the transmit sensitivity of the birdcage coil. The longitudinal 

components of the electric field on the trans-axial plane and on the “ 0  ”half-

plane are shown in Figures 3.5b and 3.5c. The resulting minimum whole-head 

average SAR was also calculated. Due to angular symmetry, this solution 

imposed a single circumferential mode that corresponded to a perfectly forward 

circular polarized field distribution. The whole-head average SAR value was 

defined as 1 au (arbitrary unit) in this case, which actually set the lower bound 

for the whole-head average SAR because fH is constrained only to the origin. 

SAR values of the rest of the coils were defined accordingly. The homogeneity 

coefficient of this solution was found to be 0.41. As can be seen from Figure 

3.5a, there is an approximately two-fold difference between the sensitivity at the 

center and at the periphery. This variation is due to the conductive losses in the 

sample and to the wavelength effects.

3.5.2.2) Linear birdcage coil

A linearly polarized field was obtained from the previous solution as explained 

earlier. Figure 3.5d shows the transmit sensitivity of the linear birdcage coil. The 

longitudinal components of the electric field on the trans-axial plane and on the 

“ 0  ” half-plane are shown in Figures 3.5e and 3.5f. This field solution 

featured a zero electric field plane, which made it a safer choice in terms of RF 

implant heating for implants in this plane. The sensitivity was equal to 1 at the 

origin. The SAR value obtained by this field configuration was twice as much as 

that of the quadrature birdcage coil. The linear coil did not have the same 

transmit sensitivity as the quadrature coil, but its homogeneity coefficient, 

calculated as 0.46, was similar to that of the quadrature coil. 
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3.5.2.3) Implant-friendly coil

Figure 3.6a shows the sensitivity of the implant-friendly coil. The longitudinal 

components of the electric field on the trans-axial plane and on the “ 0  ”half-

plane are shown in Figures 3.6b and 3.6c. The longitudinal component of the 

electric field was forced to be equal to zero only around the implant lead.

However, as can be seen from the figures, the electric field was zero on the lead 

and close to zero at the rest of the 0   plane. The relaxed constraints on the 

electric field caused a decrease in the whole-head average SAR down to 1.49 au. 

The implant-friendly coil had a field solution that was very similar to the linear 

birdcage coil. The homogeneity coefficient of this solution, calculated to be 

0.46, equaled that of the linear coil. 

3.5.2.4) Implant-friendly homogeneous coil 

Figure 3.6d shows the sensitivity of the implant-friendly homogeneous coil. The 

longitudinal components of the electric field on the trans-axial plane and on the 

“ 0  ” half-plane are shown in Figures 3.6e and 3.6f. The whole-head SAR 

value obtained for this case was 2.96 au, which was significantly larger than 

those obtained from previous cases. On the other hand, the homogeneity 

coefficient of this solution was 0.0233, which implied the possibility of building 

an implant-friendly coil with close to perfect homogeneity. However, under this 

circumstance, an increase in the average SAR became unavoidable. 
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(a) (b) (c)

(d) (e) (f)

QUADRATURE 
COIL

LINEAR COIL

COIL SENSITIVITY ELECTRIC FIELD IN 
TRANSAXIAL PLANE

ELECTRIC FIELD IN 

0  HALF-PLANE

A.U.

A.U.

A.U.

A.U.

A.U.

A.U.

Figure 3.5 Transmit sensitivity (a, d), electric field in the trans-axial plane (b, e) and the 

longitudinal component of the electric field in the 0   half-plane (c, f) generated by 

quadrature and linear coils. Note that all field solutions are in arbitrary units.
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Figure 3.6 Transmit sensitivity (a, d), electric field in the trans-axial plane (b, e) and the 

longitudinal component of the electric field in the 0   half-plane (c, f) generated by 

implant-friendly coils and implant-friendly homogeneous coils. Locations of the 

implant lead are denoted by arrows in the figures. Note that all field solutions are in 

arbitrary units.

3.6 Discussion

It was shown in this study that a linear birdcage coil can be used as a transmitter 

coil in MRI and enable safe scanning of patients with implants. A linear 

birdcage coil has a transmit sensitivity similar to that of a quadrature birdcage 

coil. Moreover, the electric field distribution of the linear coil is zero at an 

angular plane, and any metallic implants placed at this plane will experience 

zero heating. The angle of this plane can be adjusted to any angle 0   by 
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supplying appropriate excitation currents weighted as 0cos  and 0sin  in two 

ports of the linear birdcage coil. This task can be performed with a two-channel 

transmit array system, which is commercially available for some MRI scanners.

In all the experiments and simulations, homogeneous cylindrical head models 

were used. For real-life situations, variations in tissue conductivity may 

introduce some errors into the field calculations. To prevent implant RF heating, 

regions free of electric fields need to be created around the implant. In this 

study, we successfully generated such regions using special implant-friendly 

coils such as a linear birdcage coil; however, the performance of these designs 

needs to be further tested in patients. 

In this work, it was theoretically shown that it is possible to find a field 

distribution that minimizes RF heating of implant leads. This was 

experimentally shown for two specific lead geometries that was confined in a 

cylindrical plane. For arbitrary lead geometries, the applicability of the method 

should also be investigated experimentally

In a previous study [32], the electric field distribution of a linearly polarized coil 

was calculated for a head model, and the existence of the zero electric field 

region was demonstrated for field strengths up to 7.0 T. It was also shown that 

in the head model the linear excitation had a homogeneous transmit sensitivity 

in a 3.0-T scanner. However, when larger parts of the body such as the torso 

were imaged, this homogeneity could be reduced. To solve this problem, multi-

channel excitation and RF shimming methods were proposed and investigated

[37]. Although linear coils could solve the RF heating problem of implant leads 

in MRI, they caused twice as much average SAR as the quadrature coils. To 

reduce the SAR, computer simulations were performed. Instead of making a 

novel coil design, we calculated and optimized the field distributions of the 

coils, which provided us with important clues regarding the RF coil design. As 

can be seen from Figures 3.6 a, b, and c, the electric field of an implant-friendly 

coil is actually a slightly distorted version of the field of a linear birdcage coil. 

This finding indicates that a slight modification of the geometry of a linear coil 

can significantly reduce the whole-volume average SAR without sacrificing 
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homogeneity. An actual coil that has such field distribution characteristics needs 

to be built and further investigated. 

The calculated field distributions can also be obtained using multi-channel 

transmit arrays. By controlling the currents in separate channels of a transmit 

array, the optimum field distributions can be approximated. As the number of 

the channels increases, the approximation will become more accurate. It is a 

new concept to use transmit arrays to reduce RF heating in implants. In the 

current study, we verified a similar concept using a linear birdcage coil, which 

can be directly applied to a two-channel transmit array system. However, the 

effectiveness of this multi-channel transmit array system remains to be 

investigated experimentally.

Knowing the location of the implant helps to reduce the average SAR. To locate 

the lead, the electric field near the implant can be set to zero, and low SAR 

scans can be performed prior to the examination. The obtained information can 

be further used to calculate the optimum excitation currents of a transmit phased 

array. 

In this work the transmit field was optimized in order to reduce the RF heating 

of implants, and to obtain a uniform transmit sensitivity in the phantom. It 

should be noted that the transmit and receive problems are decoupled from each 

other. The receive chain can be optimized separately in order to achieve SNR 

enhancement, if necessary.

3.7 Conclusion

In this chapter, we showed that it is possible to modify the electric field 

distribution of a radio-frequency (RF) coil to generate electric field-free zones in 

the body without significantly altering the transmit sensitivity. As supported by 

our experimental data, a linearly polarized birdcage coil can be safely used to 

scan patients with implants. To further alleviate the problems caused by the 

doubling of the whole-volume average SAR, implant-friendly electromagnetic 

field solutions with the desired transmit sensitivity and minimum SAR were 

simulated.
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4. REDUCTION OF RF HEATING OF 

METALLIC DEVICES USING A TWO

CHANNEL TRANSMIT ARRAY SYSTEM

4.1 Introduction

The advent of interventional MRI made it possible to perform catheterization 

and biopsy procedures on patients under MRI guidance [14-16]. However, the 

risks related to the excessive heating of metallic devices have become a major 

safety concern in interventional MRI [17].  

In general, for both diagnostic and interventional MRI procedures involving 

wire-shaped long conductor devices (catheters, biopsy needles, pacemakers, 

deep brain stimulators (DBS)), amplification of the specific absorption rate 

(SAR) at the device tip poses a potential risk for patients [13]. SAR 

amplification can cause excessive tissue burns if it is not reduced with 

appropriate methods. Many different methods have been reported for modifying 

the device geometry or adding lump circuit elements to the device to reduce the 

tip SAR amplification [18-21]. However, such modifications of the device 

geometry or circuitry could reduce mechanical robustness. In addition, for 

certain applications such as biopsy procedures, it is not convenient to modify the 

metallic needles with the above methods. Furthermore, for patients who carry 

MR incompatible devices, replacing the unsafe devices with the safer ones may 

not always be feasible.

In a previous study, we proposed a method based on the use of linearly polarized 

birdcage coils [24] to minimize RF heating at the wire tips. Because the electric 

field of the linear birdcage coil is equal to zero on an entire plane, the location of 

the metallic device was coincided with this plane, and the RF heating was 

reduced. Using this approach, it was shown that the homogenous transmit 

sensitivity characteristics were preserved. This method required steering the coil 

around the patient to coincide the implant with the zero-electric-field plane. At 
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3.0 Tesla, this technique worked well in uniform phantoms. However, tissue 

inhomogeneities can alter the electric field distribution in the body. In this case, 

knowing the coil geometry and the conductor currents in the coil may not be 

sufficient to estimate the location of the zero-electric-field plane. The shape of 

the zero-electric-field plane can be distorted, or its position can be shifted in a 

manner that is difficult to estimate. In general, when scanning patients with 

metallic devices using linear polarized excitation, monitoring the local electric 

field experienced by the metallic device is crucial. By doing so, the metallic 

device can be coincided with the zero-electric-field zone of the linear coil, and 

the patient can be scanned safely. 

In the literature, many methods exist that are based on measuring RF-induced 

currents directly by attaching optoelectronic circuits to the conductor leads [29]. 

Although accurate measurements can be performed using these methods, when 

the modification of the metallic device is not possible, these approaches cannot 

be used non-invasively. There also exist other methods, in which the magnitudes 

of the RF currents on the metallic wires are calculated from their artifacts in MR 

images [38]. These artifacts can be used to monitor the level of RF-induced 

currents on the leads as well.

In another study [39], transmit arrays were used to control the induced currents 

on a guide-wire conductor; the relationship between the excitation voltages and 

the induced currents on the lead was modeled as a linear system, and the null 

space of the excitation matrix was computed. This approach enabled the induced 

current to be set to zero on the lead. However, in that work the flip angle 

distribution in the body due to transmit array excitation was not considered. The 

excitation that minimizes the induced current on a lead should also be 

convenient to perform imaging with a homogenous sensitivity pattern. 

In this study, we used a birdcage coil as a two-channel TX array system to 

reduce the local SAR near the tip of metallic leads. By changing the magnitude 

of the excitation currents on two separate channels of the TX array, the electric 

field pattern was modified inside the body in order to find a safe excitation 

pattern that minimizes RF current artifacts near the lead tip. To monitor the 



45

current, the image artifacts in the vicinity of the lead tips were measured. 

Phantom experiments were performed with copper wires and DBS leads. For 

convenience, an animal experiment was performed with copper wire only. By 

performing temperature measurements with fiber optic probes, it was shown that 

the device tip temperatures were reduced substantially with respect to standard 

quadrature excitation. It was shown that, for some lead geometries, linear 

polarized excitation can be used to reduce the local SAR. With linear excitation, 

the flip angle distribution and the overall image quality can be preserved 

compared to quadrature excitation. Finally, for some other lead geometries, 

elliptical polarization could be required to reduce the local SAR at the tip. 

4.2 Theory

The electric field distribution in an infinitely long cylindrical object due to linear 

excitation can be expressed as follows [24]:

(24)

In the above equation, fH  is the transmit sensitivity of the coil; zE , E  and E

are the longitudinal, angular and radial components of the electric field, 

respectively;   is the Larmor frequency;   and 0 are the permittivity and the 

permeability, respectively;  and  are the angular and radial coordinates in the 

cylindrical coordinate system, respectively; and j is the imaginary number 

defined by 1 . 

For this field distribution, the electric field is equal to zero on the entire 

0  plane. This field can be generated by a linear birdcage coil that has a feed 

point at the / 2  plane. Similarly, a linear birdcage coil with a feed point at 

0  and a zero-electric-field plane at / 2  would have a field distribution 

as in the following expression:

(25)

0 sin , 0, 0z fE H j E E      

0 cos , 0, 0z fE H j E E      
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To obtain a zero-electric-field plane at 0  , the electric field distribution 

should be equal to the following:

(26)  

Using simple trigonometric identities, it can be shown that the above 

distribution can be expressed as the weighted sum of the two distributions in 

Equations 1 and 2.

To physically realize this field, a standard birdcage body coil should be used as 

a two-channel transmit array system. Let the fields generated by channel 1 and 

channel 2 be expressed by Equations 1 and 2, respectively. Then, the field 

distribution shown in Equation 3 can be realized by weighting the excitation 

currents of channel 1 and channel 2 with 0cos  and 0sin . In this case, a 

metallic lead with a shape that is confined inside the 0   plane will 

experience zero electric field (Figure 1a). Therefore, no current will flow on the 

lead conductor. Similarly, for leads that extend slightly out of the zero-electric-

field plane, the induced current on the lead can be made very small (Figure 1b).

This result can also be viewed from a different perspective by exploiting the 

linearity between the induced current and the transmit array excitation voltages. 

Let the currents induced on the lead due to the excitations of channel 1 and 

channel 2 be 1I and 2I , respectively. Then, the total current due to a linear 

excitation using angle   would be equal to 1 2cos sinI I I     . In this case, 

by choosing 1
1 2tan ( / )I I   , the current near the lead tip can be set to zero. 

Note that this solution requires that 1I and 2I have the same phase. The phase 

difference between 1I  and 2I  depends on many things, including the medium 

EM parameters and the orientation and the position of the lead with respect to 

the coil. A field due to a linear excitation has a constant phase and magnitude in 

an angular plane. Therefore, for a lead that is confined in a cylindrical plane, 

0 0sin( ), 0, 0z fE H j E E        
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E=0

0 

(a) (b)

1I and 2I  have the same phase. For the case in which 1I and 2I have different 

phases, the value of   would be complex.

Figure 4.1 A metallic lead with a shape that is confined inside the 0   plane 

experiences zero electric field. Therefore, no current flows on the lead conductor (Panel 

a). Similarly, for leads that extend slightly out of the zero-electric-field plane, the 

induced current on the lead can be made very small (Panel b).

When the leads are not confined in cylindrical planes but in large cylindrical 

volumes, as shown in Figure 2, 1I and 2I may have different phases. Therefore, 

linearly polarized excitation may be insufficient to completely reduce the tip 

current. In that case, the value of   would be complex, and it would require 

using a different polarization to cancel the tip current. From an EM field 

distribution perspective, if a lead is not confined to the zero-electric-field plane, 

it could experience electric fields that are high enough to induce currents in the 

lead tip. In that case, a linear excitation may not be sufficient to completely 

cancel the lead tip current. Under all conditions, the induced current near the tip 

of a metallic lead can be made to be zero by using a two-channel excitation. 
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E=0

0 

Figure 4.2 A metallic lead may have a shape that is confined in a large cylindrical 

volume. In that case linearly polarized excitation may be insufficient to completely 

reduce the tip current.

4.2.1) Monitoring Induced RF Current Artifacts

To reduce the currents induced by metallic devices, a method based on 

monitoring the signal intensity of the RF-induced artifacts is proposed. The 

relationship between the magnitudes of the RF-induced current and the artifact 

signal intensity is derived.

For a gradient echo sequence, the signal intensity due to a given flip angle 

can be written as follows [38]:

                                                                  (27)  

In this equation, T1 and TR are the longitudinal relaxation parameter of the 

tissue and the repetition time of the GRE sequence, respectively. c is a factor 

that represents the local spin density and the sensitivity of the receiver coil. 

To obtain linear excitation, the currents on the two channels of the transmit 

array should be weighted with cos and sin , where   is an arbitrary angle in 

/ 1

/ 1

sin( ) (1 )

1 cos( )

TR T

TR T

c e
S

e
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the interval [0, ] . Let 0[ , ]I    denote the relationship between   and the tip 

current of the metallic lead located in the 0   plane. If the nominal flip angle 

in the body due to the RF coil excitation is small, then the flip angle near the 

lead tip will be linearly dependant on the induced current; hence 0[ , ]A I    . 

If the flip angle  due to the RF-induced current is also small, by substituting 

sin  and cos 1  in Equation 4, the signal intensity can be approximated 

with the following expression: 

                                                                     (28)                                                                

Equation 5 shows that, to minimize the RF current at the tip of a lead located in 

the 0  half plane, its artifact should be minimized by choosing the 

appropriate TX array excitation angle  . By monitoring the magnitude of the 

RF current artifact near the lead tip, the excitation pattern that satisfies the above 

condition can be determined.

4.2.2) Finding a Safe Excitation Pattern 

The magnitude of the artifact signal intensity due to a linear excitation can be 

written as follows:

(29)

In this equation, 1 2,S S  are the magnitudes of the induced current artifact signals 

due to the excitations of channel 1 and channel 2, respectively.   is the phase 

difference between induced currents 1I and 2I . To find a safe excitation pattern, 

the total signal intensity S should be set to zero. For this purpose, 1 2,S S and 

 should be estimated by measuring S for different   values. The 1 2,S S and 

values that minimize the mean square error between the theoretical and 

measured signal intensities can be found for this purpose. Once 1 2,S S and   are 

0[ , ]S c A I    

1 2cos sin jS S S e    
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known, the channel 1 and channel 2 excitation currents can be weighted with 

0cos  and 0sin je    to achieve safe excitation, where 1
0 1 2tan ( / )S S   . 

Note that for the case in which  =0, the safest excitation pattern is a linear 

excitation. In that case, by examining the measured signal intensity data, the safe 

excitation pattern angle can be found as the point where 0S  .  

Using a linear polarized excitation guarantees that the flip angle distribution in 

the center is preserved. For leads that are confined in cylindrical angular planes, 

the safest two-channel excitation pattern is a linear excitation. However, for 

leads that are confined in large cylindrical volumes, the solution may have a 

different polarization. 

4.3 Experiments

4.3.1) Phantom Experiments

To demonstrate the proposed theory, phantom experiments with copper wires 

and a commercial DBS lead (Medtronic 33877 DBS electrode, Medtronic Inc, 

Minneapolis, MN) were performed. A phantom body model of 20 cm in 

diameter and 30 cm in length was prepared with commercially available gel (Dr. 

Oetker Jello, Izmir, Turkey). To measure the conductivity and relative 

permittivity, a method based on cylindrical transmission line setup 

measurements was used. A conductivity of 0.5 S/m and a relative permittivity of 

70 were obtained with 2.5 g/l of salt in the gel solution [36].

Copper wires and the DBS lead were placed in the phantoms, as shown in 

Figure 3. As demonstrated in the figures, the copper wire and the DBS lead had 

a shape that slightly extended out of the cylindrical angular plane. In Figure 3c, 

a copper wire with a helical geometry was used, which was confined in a larger 

cylindrical volume.   
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(b)

(c)

(a)

Figure 4.3 Copper wire and DBS lead in in Panel a and Panel b have a shape that 

slightly extends out of the cylindrical angular plane. The copper wire in Panel c is 

confined in a larger cylindrical volume.   

The body coil of the Siemens 3.0 T Trio system was used in all experiments in 

the two-channel TX array mode. The phantoms with copper wire and DBS lead 

were scanned using a gradient echo sequence with a TR of 200 msec and a flip 

angle of 2 degrees. To monitor the magnitude of the artifact due to the RF 

current in the vicinity of the lead tip, a transverse image was obtained. For all 

cases, a small flip angle and a large TR were chosen so that the SAR value of 

the sequence was kept at a low level and no significant heating was expected 

near the lead tips.

The sequence was run using different linear excitation patterns with the TX 

array. The amplitudes of the currents in channel 1 and channel 2 were weighted 

with cos  and sin  to control the electric field distribution inside the phantom. 
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The value of   was varied within the interval [0, ]  with a step size of 
36


.A 

total of 37 images were obtained for each experiment. In every image, a region 

of interest (ROI) of 2 cm in diameter was selected around the lead tip to measure 

the maximum magnitude of the RF current artifact. Measurements were repeated 

for copper wire and DBS leads as explained above. 

For all experiments, the safest two-channel excitation pattern was found. This 

pattern was used to scan the phantom with a high SAR sequence. A GRE 

sequence with a 4-msec TR was used for this purpose. 

To calculate the peak SAR, the initial slope of the temperature rise at a depth of 

a 1 cm from the phantom surface was measured and then multiplied by the 

specific heat capacity of the gel. The heat capacity of the gel was determined to 

be 4100 J/kg/deg using the KD2 Pro Thermal Properties Analyzer (Decagon 

Devices Inc, WA, USA). The peak SAR was calculated as 4.4 W/kg. 

For temperature measurements, a signal conditioner (Neoptix ReFlex) with fiber 

optic temperature sensors (Neoptix Inc, Quebec City, Canada) was used. The 

temperature variations at the wire/needle tips were recorded.

After the scan, the gel phantom was kept in the refrigerator for 10 minutes to 

ensure that the temperature reached a steady state of 5.5 °C. All phantom 

experiments started at a low initial temperature to prevent the gel from melting 

due to high temperatures near the lead tips. Afterward, the phantom was placed 

in the scanner, and the channel currents were adjusted to obtain standard 

quadrature excitation. For this purpose, the magnitude of the currents on channel 

1 and channel 2 were weighted with unity, and the phases were set to 0 and 

/ 2 , respectively. Then, the phantom was scanned once more with the 

quadrature excitation pattern. The temperature variations near the lead/needle 

tips were recorded similarly. The experiments were repeated with the copper 

wire and DBS leads with the configurations shown in Figure 3.
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4.3.2) Animal Experiments

To demonstrate the effectiveness of the method, an ex vivo swine experiment 

was performed. A copper wire was placed under the skin and muscle tissue of a 

pig. The dimensions of the wire were chosen to be the same as those of the wire 

used in the phantom experiment. First, a rectangular region approximately 1 cm 

deep was cut from the abdominal wall of the animal. Then, the copper wire and 

the temperature probe were placed under the cut section, as shown in Figure 4. 

Figure 4.4 A rectangular region approximately 1 cm deep was cut below the chest of 

the animal. Then, the copper wire and the temperature probe were placed under the cut 

section, Finally, the muscle and the skin layer were sewn back in place to cover all parts 

of the copper wire with living tissue.

Then, the muscle and the skin layer were sewn back in place to cover all parts of 

the copper wire with living tissue. 
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The same procedures used for the copper wire-phantom experiments were 

repeated for the animal experiments.

4.3.3) Patient Experiments

In order to prove that the method can be used to obtain clinical images, the safe 

excitation patterns found in phantom and animal experiments in section 3.2 and 

3.3 are used to scan volunteers. For this purpose the channel 1 and channel 2 

excitation currents were weighted with 0cos  and 0sin je    by using the 0

and  values obtained from the phantom experiments. 

GRE sequence with TR of 100 msec and a flip angle of 25 degrees.is used to 

obtain brain images of a 30 year old male volunteer. The resulting images are 

compared to an image obtained with a standard quadrature pattern. 

4.4 Results

4.4.1) Phantom Experiments

MR images of the phantoms with copper wires and DBS leads were obtained as 

explained in the previous section. Thirty-seven images were obtained for each 

experiment using   values of [0, ,...., ]
36

  . The maximum value of the artifact 

in a circular ROI around the lead was measured for each excitation pattern. 

Then, the 1 2,S S and   parameters were estimated, and the theoretical artifact 

signal intensity curve that best fit the measured data was drawn. Figure 5 and 

Figure 6 shows the theoretical and measured signal intensity curves with respect 

to   for copper wire and DBS leads. 
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Figure 4.5 Theoretical and measured signal intensity curves of copper wire and DBS 

lead which was shown in Figure 4.3, Panel a and Panel b. 

Figure 4.6 Theoretical and measured signal intensity curves of copper wire which 

was shown in Figure 4.3, Panel c
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The calculated  values for the DBS lead, copper wire, and helical DBS lead 

were found to be -100,160 and 850, respectively. Notably,  the   values for 

copper wire and DBS lead were close to zero, which shows that practically the 

safest two-channel excitation is the linear excitation for these lead geometries.

Furthermore, the minimum point for the artifact intensity curves for these 

experiments was close to zero. However, for the helical lead experiment, the 

value was much different than 0, showing that the safest two-channel excitation 

is elliptically polarized for this lead geometry. After 1 2,S S and   were found for 

each experiment, the channel 1 and channel 2 excitation currents were weighted 

with 0cos  and 0sin je    to achieve safe excitation, where 

1
0 1 2tan ( / )S S   . The 0  values for copper wire, DBS leads and helical 

copper wire experiments are obtained as 5, 20 and 600 respectively. 

Using these safe excitation patterns, each phantom was scanned using a high 

SAR sequence, as mentioned in Section 3.1. Then, each phantom was also 

scanned by using a quadrature excitation pattern. The temperature variations 

near the lead tips were recorded using a signal conditioner with fiber optic 

temperature sensors. The maximum tip temperature for each phantom 

experiment is shown in Table 1. Notably, using the safest excitation pattern 

reduced the tip temperature substantially with respect to that of the quadrature 

excitation.
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5.50.2Copper Wire

(Animal 
Experiment)

4.90.3Helical Copper 
Wire

12.70.2DBS Lead

13.80.2Copper Wire

(Phantom)

Quadrature
Excitation

Safest 2 Channel 
Excitation

Maximum   
Lead Tip 
Temperature (C)

Table 2 Maximum tip temperature is shown for each experiment. Notably, using the 

safest excitation pattern reduced the tip temperature substantially with respect to that of 

the quadrature excitation. 

4.4.2) Animal Experiments

Animal experiments were performed on a pig, as explained in Section 3.2. 

Similarly, the maximum magnitude of the RF current artifact inside the ROI was 

plotted with respect to   in Figure 7. The   value was calculated to be -100 for 

this experiment. Because   is almost zero, linear excitation can be used as the 

safest excitation pattern in this condition. The minimum current artifact was 

obtained with the value of o15  . The pig was scanned using the safest 

excitation pattern and with the quadrature excitation pattern using the same high 

SAR sequences that were used in the phantom experiments. Table 1 shows the 

maximum temperature increase in the lead tip for both the quadrature and safe 

excitation patterns for both the phantom and the animal experiments. The tip 

temperature was reduced substantially with safest excitation patterns when 

compared to quadrature excitation. 
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Figure 4.7 Theoretical and measured signal intensity curves of copper wire used in 

animal experiment.

4.4.3) Patient Experiments

GRE images obtained with the quadrature and the safe excitation patterns are 

shown in Figure 8. The sequence parameters were chosen as; Flip Angle=25 deg, 

TR=350 msec, TE=4 msec.  Panel a shows the image obtained by a quadrature 

excitation. By using the safe excitation patterns, RF field homogeneity was not 

disturbed significantly. By visual inspection it can be seen that all images have 

similar image homogeneity. The flip angle at the center of the images were 

preserved with the safe excitation patterns using 5  , o10    (Panel b)and 

20  , o16   (Panel c). For 60  , o85  case (Panel d) the flip angle at the 

center of the image was reduced slightly as it can be seen from the image. 
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Figure 4.8 Brain images obtained with the quadrature (Panel a) and the safe excitation 

patterns (Panel b,c,d), using GRE sequence. 5  , o10    was used in Panel b, 

20  , o16   was used in Panel c, 60  , o85  was used in  Panel d. The 

sequence parameters are; Flip Angle=25 deg, TR=350 msec, TE=4 msec. By visual 

inspection it can be seen that all images have similar image homogeneity.

4.5 Discussion 

A method is herein proposed to reduce the RF heating of the metallic devices 

using a two-channel transmit array system. The proposed method was tested 

with phantom and animal experiments. In all cases, the tip SAR at the end of the 

metallic devices was reduced substantially without causing a significant image 

quality degredation. 

A GRE sequence was used to measure the RF current artifacts near the 

lead/needle tips. By changing   at intervals of / 36  within the range of [0, ] , 
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a safe transmit array excitation pattern was found. Each sequence lasted for 12.8 

sec, and the total of 36 sequences lasted for 7 min.   can be covered in a 

smaller range or with a larger angular step size, thus reducing the measurement 

time significantly. However, by doing so, the accuracy in finding the safest 

excitation pattern would also be reduced.

After the safest two-channel transmit excitation pattern is found, the same 

pattern can be used in other sequences as long as the position of the metallic 

device is not changed. This condition would be valid for patients with implants, 

given that location of the implant does not change with respect to the coil during 

the scan. For interventional procedures, in which the device is bound in a thin 

cylindrical slice and for which the location is known prior to the scan, a single 

excitation pattern could be adequate. 

A GRE sequence was used to monitor the RF current artifacts because of the 

simplicity it offers in formulation and analysis. Faster sequences with shorter 

TR and multi RF excitations can also be used to monitor RF current artifacts. 

The local SAR at the device tip that can be caused by these sequences should 

always be considered. 

The method was tested in vivo an ex vivo animal experiment, and it was shown 

that the tip temperature can be reduced even in inhomogenous objects. 

However, the effect of motion artifacts should be considered for clinical studies. 

Since the signal intensity of the artifact can be effected from the movements of 

the transmit/receive coil, respiratory gated sequences may be used to solve this 

issue.

In the cases analyzed in this study, the currents induced on the lead generated a 

non-zero transverse magnetic field. In some cases, the magnetic field due to the 

current may be in the longitudinal direction. To measure the variation of the 

artifact with respect to  , an imaging plane should be chosen such that the 

induced magnetic field has a non-zero transverse component in the imaging 

plane. In this study, the imaging plane was always chosen as the transverse 

plane. For different lead orientations, the transverse plane may not always be the 

most appropriate imaging plane. 
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By finding the safest two-channel transmit array excitation pattern, the current 

near the tip of the lead is minimized. At some other location on the lead, the RF 

current may be non-zero. The tip point is the most critical point where the local 

SAR should be minimized. The other end of the lead is either terminated with 

the implant case or simply extends outside the body, as in interventional 

procedures. The local SAR at the shaft of the device/lead is also significantly 

less than the tip SAR, as shown by many studies. Therefore, in this study, the 

effect of minimizing the current and the local SAR near the lead tip was 

investigated.

The use of linear excitation enabled the preservation of the flip angle 

distribution with respect to quadrature excitation in the center of the body. 

However, two-channel excitations other than quadrature or linear excitation may 

cause reductions in flip angle and RF field homogeneity. This effect can be 

more significant in higher field strengths. Multi-channel TX array excitation can 

be used to overcome these problems [25]. An excitation pattern that guarantees 

SAR reduction at the tip of the device and generates a uniform transmit field in 

the body should be calculated for this purpose. The currents on each channel of 

the array should be chosen appropriately to achieve the above-mentioned task. 

However, it should be noted that as the number of channels increases, the pre-

scan time required to calculate a safe excitation pattern increases. The 

contribution of each array element to the transmit field and the tip current on the 

lead should be modeled separately. Then, an optimization problem that takes all 

of these parameters into account should be solved before scanning each patient.   

4.6 Conclusion

We demonstrated a method to reduce the RF heating of metallic devices with 

transmit array systems. The artifacts that result from RF-induced currents on the 

metallic leads and needles were monitored to find the safest excitation pattern 

with a two-channel transmit array system. As a result, heating at the tip of the 

metallic devices was reduced significantly, as shown by both phantom and 

animal experiments.
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5. REDUCTION OF RF HEATING OF 

METALLIC DEVICES THROUGH MULTI-

CHANNEL EXCITATION

5.1 Preface

The content of this chapter has been presented (in part) in a conference 

publication, reference: Eryaman Y., Demir T, Atalar E “Reduction of RF 

Heating of Metallic Devices Using Transmit Arrays” Proc Intl Soc Mag Reson 

Med 18(2010):3883.

5.2 Introduction

In this chapter, the reduction of the RF heating of metallic devices is 

demonstrated by using multi-channel excitation. In the previous chapter, a 

similar problem was solved by using a two-channel transmit array.  

The concept of steering the linear polarized electric field works when there are 

no volume-average SAR and transmit field homogeneity constraints. However, 

for certain applications, these issues can be significant. The two-channel 

excitation, although reducing the RF heating on lead, may not be sufficient to 

obtain a uniform transmit sensitivity during whole body imaging, especially at 

the high field strengths. Furthermore, with linear excitation, the average SAR is 

doubled and the peak SAR is quadrupled with respect to quadrature excitation. 

With multi-channel TX arrays, the phase and magnitude of the currents on 

separate channels of the transmit coil can be chosen to satisfy a given SAR and 

field homogeneity constraint. In addition to those, the local electric field 

distribution can also be controlled for reduction of the heating of metallic 

devices. The main goal of the work presented here was to obtain a homogenous 

transmit field distribution with a minimum average SAR, with the condition that 

the metallic device inside the body experiences zero or minimal electric field. 
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5.3 Theory

By choosing the excitation current pattern similar to the currents in the legs of a 

linear birdcage coil, the RF heating of a metallic device can be reduced. The 

excitation pattern for a linearly polarized field is given as 

0sin(2 / )ia A i N   , where i is the index of the channel carrying the current, 

ia  (1<i<N), and 0  denotes the angular position of the plane on which the 

metallic device is located; N is the number of channels in the transmit array. The 

heating extension of the device can have a shape of arbitrary geometry, 

including loop structures. As long as the shape is bounded in a thin angular 

slice, the heating can be minimized. The main concern with this approach is that 

the average SAR is doubled with respect to a quadrature excitation. To solve 

this issue, the current excitation pattern should be modified in order to minimize 

the average SAR; while doing so, the maximum electric field experienced by the 

metallic device should be kept bounded. Additionally, the transmit field 

homogeneity should be preserved. 

If   is a vector of size, Nx1, whose elements are the complex currents on each 

channel of a TX array, the constraint on an electric field can be expressed by a 

linear equation, as follows:

, (30)

where c, the desired electric field profile, is represented by a kx1 vector whose

elements are equal to the desired electric field value at each point of interest, and 

E  is a k x N matrix. The elements of E  at its ith column and jth row are equal to  

the value of the electric field at the jth sampling point obtained by exciting the ith

array element with a unit current. 

Similarly, the constraint on the transmit sensitivity can be expressed by the 

following linear equation:

E c 
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, (31)

where d, the desired transmit sensitivity profile, is represented by an  r x 1

vector whose elements are equal to the desired transmit sensitivity at each point 

of interest and B  is an r x N matrix. The elements of at its ith column and jth row 

are equal to the value of the transmit sensitivity at the jth sampling point 

obtained by exciting the ith array element with a unit current. 

Average SAR can also be expressed as a function of  , as shown below:   

, (32) 

where R is the electric field cross-correlation matrix with dimensions N x N. The 

element of R at its ith column and jth row is equal to the correlation of electric 

fields generated by an ith and jth coil, being both excited by a unit current. In 

order to minimize the average SAR, R   should be minimized by finding an 

optimum  , while keeping the electric field and sensitivity profile in the body 

under control. This requires solving an optimization problem in which all of 

these parameters are taken into account. The optimization problem can be 

expressed as follows:

. (32)

As the expressions above imply, the elements of d should be bounded at 

approximately 1, with an amount of   that ensures homogeneity. In addition, 

the elements of c should be bounded between 0 and   to reduce the RF heating 

of the metallic device. Lastly, among all of the solutions satisfying these 

constraints, the one with the minimum average SAR should be found. 

B d 

SAR= R 

         min 

     0

1 1

R

E c

B d
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5.4 Simulations

To verify the theory, simulation of an eight-channel transmit coil array (Figure 

5.1) was performed at 123.7 MHz by using a simulation software FEKO 

[Version 9.3.24, Stellenbosch, SA]. 

Figure 5.1 The uniform phantom model and transmit coil array used in the simulations.  

The conductivity, relative permittivity, and relative permeability of the medium is 

chosen as 0.5 S/m, 70, and 1, respectively. 

The body was assumed as a homogenous cylinder with a diameter of 20 cm and 

a height of 30 cm. A straight metallic wire was assumed to exist in the body, 2 

cm away from the boundary (Figure 5.1) located at the / 6   plane. First, the 

quadrature field was used to excite the body model by using the current 

expression, exp(2 / )i j i N    , where j is the imaginary number, 1 . Then, 

a linear field was used to excite the model. The excitation pattern for the coils 

was chosen as 2sin(2 / 8 / 6)i i      to reduce the RF heating of the device. 

Finally, the optimized currents were calculated for the SAR minimization. The 

elements of c  were chosen such that the z component of the electric field was 

sampled at 7 points, separated by 3 cm along the wire. Similarly, the elements of 

d  were chosen such that the transmit sensitivity was sampled at 45 points, 

distributed uniformly in the 0z   plane. The simulations were made for two 
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values of  , 3   and 7  . In order to ensure that the transmit sensitivity did 

not vary more than 20 percent in the imaging plane,   was chosen as 0.2.

In order to solve the optimization problem, a PSO [28] code was written in 

MATLAB (version 7.0, Mathworks Inc., Natick, MA). Because there was no 

closed-form solution of this optimization problem, the PSO method was 

implemented as in Chapter 2 to find the solution. The number of particles, the 

constriction factor, and the cognitive and social rates for velocity updates were 

chosen as explained in a previous work [40]. The fitness function was defined as 

the ratio of the average SAR value and the mean value of the transmit sensitivity 

in the imaging plane. 

5.5 Results

The transmit sensitivity in the transverse plane for quadrature excitation, linear 

excitation and optimized excitations for 3   and 7   were calculated as seen 

in Figure 5.2.

Figure 5.2 The transmit sensitivity solutions in the transverse plane due to the 

quadrature, linear and optimized excitations are shown.
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As shown in Figure 5.2, the linear excitation resulted in a reduced transmit field 

homogeneity in the transverse plane when compared with the quadrature 

excitation. By using the optimum excitation currents, the homogeneity was 

improved with respect to the linear excitation. 

The longitudinal component of the electric field was calculated and is shown in 

Figure 5.3. 

Figure 5.3 The longitudinal component of the electric field due to the quadrature, linear 

and optimized excitations is shown in the transverse plane (the x marks the location of 

the straight metallic wire in the transverse plane).

By applying the optimum current patterns, the magnitude of the electric field 

was reduced significantly compared with quadrature excitation. However, a 

residual electric field whose value was limited by   remained as expected. In 

contrast, the electric field along the metallic wire was completely reduced by 

using a linear excitation. A similar result can also be seen by examining the 

longitudinal electric field distribution in the angular plane, / 6  , shown in 

Figure 5.4. Note that the metallic wire was assumed to be confined in the 

/ 6   angular plane. The linear excitation completely reduced the electric 
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field in the entire / 6   plane, while the optimized solution reduced the field 

only at sample points on the metallic wire.

Figure 5.4 The longitudinal component of the electric field due to the quadrature, linear 

and optimized excitations, is shown in the in the angular plane, / 6   (the location 

of the metallic wire is shown by a black straight line).

In Figure 5.5, the magnitude of the tangential component of the electric field is 

plotted along the metallic wire. The reduction in the electric field with respect to 

the quadrature excitation is clearly visible in the optimum solutions. With these 

solutions, it can also be noted from the same figure that the electric field 

magnitude remained under the   threshold.
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Figure 5.5 The variation of the tangential component of the electric field along the wire 

due to the quadrature, linear and optimized solutions is plotted.

Lastly, to compare the average SAR of the quadrature, linear, and optimum 

excitation currents, the SAR values were normalized by the mean value of 

transmit sensitivity in the imaging plane. As expected, the linear coil had an

average SAR twice as the quadrature coil. The SARs due to the optimum 

excitations were 1.48 and 1.27 times the SAR of the quadrature excitation, 

whereas a reduction of 26% and 37%, with respect to linear excitation, was 

achieved by the optimum excitation currents with 3   and 7  , respectively.  

5.6 Discussions and Conclusions

In this work, it is shown that the electric field on the metallic devices can be 

reduced by modifying the electric field distribution using multi-channel transmit 

arrays. By controlling the currents on separate channels of the array, the local 

SAR around a metallic device can be reduced without sacrificing homogeneity 

or the average SAR. 
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The implementation of the method discussed in this chapter requires knowing 

several variables, including the electric field, transmit sensitivity and electric 

field cross-correlation matrices, namely E, B and R. In this work, they were 

calculated from simulations for a uniform phantom model. In real life, the 

transmit sensitivity for each channel can be measured in vivo by using different 

B1 mapping methods [41,42]. With recently developed techniques, it is possible 

to estimate the local variation of the electric field as well [43]. Another approach 

can also be adopted for this purpose based on measuring the induced current 

artifacts, as explained in Chapter 3. In such a case, a multi-channel excitation 

current pattern, which either cancels or limits the induced current on the metallic 

device, can be calculated. Because the current pattern should also satisfy the 

homogeneity and average SAR constraints, a similar optimization problem 

should be solved, as in the previous chapter. The electric field cross-correlation 

matrices can also be obtained in vivo by using the methods described in a 

previous publication [44].
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6. THE EFFECT OF PHASE VARIATION OF 

THE ELECTRIC FIELD ON THE IMPLANT 

LEAD HEATING

6.1 Preface

A portion of the results that are presented in this chapter were published in a 

conference publication, reference: Eryaman Y. Acikel V, Abaci Turk E, 

Viskusenko N.V., Atalar E “Effect of Linear Phased Electric Field Variation On 

Implant Lead Heating” Proc Intl Soc Mag Reson Med 18(2010):3894.

6.2 Introduction

In the previous chapters, it was shown that the magnitude of the electric field 

can be reduced in the vicinity of the metallic leads. This approach enabled the 

reduction of the RF currents that are induced on metallic devices. As a result, 

the local SAR near the tip of the device was substantially reduced. In this 

chapter, the effect of the phase distribution of the electric field on the RF heating 

is investigated. In a previous study [31], it was shown that the worst-case 

heating in metallic leads occurs when the phase of the electric field varies 

linearly along the lead. In that work, the local SAR at the tip of a metallic lead 

was maximized. In the work presented here, it is shown that the lead tip heating 

can also be reduced by varying the phase distribution along the implant lead. 

First, under quadrature excitation, it is demonstrated that a lead with a helical 

geometry experiences an incident electric field whose phase varies linearly 

along the lead. In that situation, a different amount of local SAR is generated at 

two tips of the helical lead. Due to the linear phase variation, the local SAR at 

one tip was significantly reduced with respect to the other one. Simulations and 

phantom experiments were conducted to demonstrate this effect. Second, it is 

demonstrated that the transmit arrays can be used to generate an incident electric 

field whose phase varies linearly along the lead. Similar to the case of a helical 

lead, a different amount of local SAR was generated at two tips of the lead.
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6.3 Theory

In a previous study, the local SAR at the wire tip that is exposed to a linear 

phased electric field was calculated. [31]. In that study, the wire was divided 

into a number of segments, and the excitation of each segment was assumed to 

have an arbitrary phase. It was shown that a linear phase variation with a slope 

equal to the wave number, k, would cause a maximum constructive interference 

at a single tip, thus causing a maximum charge density at that tip. Because the 

local SAR near the implant tip increased with the square of the tip charge 

density, the heating was maximized. 

As an extension of that result, the tip SAR can also be reduced by applying a 

linear-phased electric field excitation to a lead. As charge is accumulated due to 

constructive interference at one of the tips, destructive interference will cause a 

charge reduction at the other tip. 

In Figure 6.1, a helical lead placed inside a uniform phantom is shown. A 

quadrature birdcage coil is used for the RF excitation. In such a case, a helical 

lead connecting the points A1 and B1 would experience an electric field whose 

phase would vary linearly along the lead. 
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Figure 6.1 A lead with a helical geometry is placed inside a uniform head phantom 

model. The length and radius of the phantom, L and r, are chosen as 22 cm and 7.5 cm, 

respectively. The radius of the helix formed by the lead, d, is chosen as 6 cm.

The phase of the electric field of a quadrature birdcage coil varies linearly with 

respect to the angular direction. For that reason, the electric field along a helical 

lead, which is placed inside a birdcage coil to connect points A1 and B1, will 

also experience a linear phase variation. For a phase variation increasing in a 

counter-clockwise direction and a right-handed helical lead, the tip heating at 

point A1 would be expected to be more than the tip heating at point B1. For a 

left-handed helical lead, B1 would be expected to heat more than A1.

A condition similar to that explained above can also be obtained by using 

transmit arrays and a straight metallic wire, as in Figure 6.2. In such a case, the 

electric field variation along the lead has a phase determined by the phase of the 

excitation currents of the individual array elements. By introducing a phase to 

each array element, a linear phase variation can be obtained along the lead.
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Figure 6.2 A straight lead inside the uniform phantom model is shown. The transmit 

array elements are fed by currents with same magnitudes but varying phases. With this 

method, an incident electric field is obtained whose phase is changing linearly along the 

lead.

With this method, the slope of the phase variation can also be controlled by 

controlling the excitation current phase,  .

6.4 Simulations and Experiments

The helical lead in Figure 6.1 was simulated by using the simulation software 

FEKO [Version 9.3.24, Stellenbosch, SA]. The leads were assumed to be placed 

in a cylindrical head model of radius 7.5 cm and length 22 cm. The conductivity 

and relative permittivity of the model were assumed as 0.5 S/m and 70, 

respectively. For excitation, a birdcage coil was simulated by assuming line 

current elements around the head model. The phase of each line current element 

varied linearly with respect to the angular location of the element. 

In order to make a comparison, the phase of the tangential component of the 

electric field along the straight lead shown in Figure 6.3 was also simulated. 

Simulations were made for 1.5 T and 3.0 T. The SAR reduction at the tips of the 

helical leads was calculated with respect to the SAR at the tip of the straight 

lead.
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Figure 6.3 A straight lead inside the uniform head phantom model is shown. The lead is 

exposed to quadrature birdcage coil excitation.

In order to validate the simulation results, the phantoms with helical and straight 

leads shown in Figure 6.1 and Figure 6.3 were prepared by using a 

commercially available gel (Dr. Oetker Jello, Izmir, Turkey). To measure the 

conductivity and relative permittivity, a method based on cylindrical 

transmission line setup measurements was used. A conductivity of 0.5 S/m and a 

relative permittivity of 70 were obtained with 2.5 g/l of salt in the gel solution 

[36].

For 1.5 T, the phantoms were scanned with a GE Signa 1.5 T scanner by using a 

T/R head coil. An SPGR sequence with a flip angle of 90 degrees and TR of 

6.25 msec was applied. For 3.0 T, the phantoms were scanned with a Siemens 

Tim Trio 3.0 T scanner by using the body coil. A GRE sequence with a flip 

angle of 90 degrees and a TR of 4.3 msec was applied. 

For the temperature measurements, a signal conditioner (Neoptix ReFlex) with 

fiber optic temperature sensors (Neoptix Inc, Quebec City, Canada) was used. 

The temperature variations at the lead tips were recorded.

For the TX array, excitation of the straight lead and the phase and magnitude 

variations of the incident electric field along the lead were calculated for 

different  values. Then, the SAR reduction at tip A and the SAR amplification 
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at tip B were calculated with respect to the 0   case. The SAR simulations 

were performed for both 1.5 T and 3.0 T.

6.5 Results

Figure 6.4 The phase variation of the electric field along the helical and straight leads is 

plotted.

The phase variations of the incident electric field along the helical and straight 

leads were calculated from the simulations (Figure 6.4). A quadrature birdcage 

coil model was used for the excitation. As expected, a constant phase was 

obtained for the straight lead, while an approximately linear phase variation was 

obtained for the helical leads. Although the phase was not perfectly linear, its 

effects on the lead tip SARs that were discussed in the theory chapter were 

expected to be present. The slope of the variation were almost identical for 1.5 T 

and 3.0 T. For the helical lead, the phase varied linearly with a slope of 8.8 

rad/m for both of the field strengths.
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The tip temperature measurements obtained from the 1.5 T experiments are 

shown in Figure 6.5. As depicted in the figure, the heating at tips A1 and B1 

were different from each other. This was expected because the local SAR in tip 

A1 was more reduced when compared with tip B1. Furthermore, both tips of the 

helical lead heated less than the tip of the straight lead. 

Figure 6.5 The temperature variation recorded at the lead tips in 1.5 T.

Figure 6.6 The temperature variation recorded at the lead tips in 3.0 T.
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Similar observations can also be made at 3.0 T by examining Figure 6.6. Both 

tips of the helical lead heated less in comparison with the straight lead, while the 

heating at tip A1 was more reduced. A quantitative local SAR comparison can 

be made by measuring the initial slope of the temperature curves. The local SAR 

reduction in the helical lead tips with respect to the straight lead tip was 

calculated. The reductions in the lead tip SAR were also calculated from the 

simulations. Table 1 shows the SAR reduction at tip A1 and tip B1 of the helical 

lead, with respect to straight lead, obtained from both the experimental and the 

simulation methods. 

Table 3 The SAR reduction at the tips of the helical lead with respect to straight lead is 

shown.

As shown in the table, the results obtained from the experiments and simulations 

are in agreement for both 1.5 T and 3.0 T. 

In addition, the TX array in Figure 6.2 was simulated, and the phase variation of 

the incident field along the lead was calculated. The phase of the z component of 

the electric field was calculated for different   values, in a range of 0 to 90 

degrees.
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Figure 6.7 The phase variation of the incident electric field in 3.0 T is shown for 

different   values.

As demonstrated in Figure 6.7, the transmit array excitation generated an 

incident electric field whose phase was approximately linear in the z direction. 

The slope of the variation also depended linearly on  . 

Lastly, the SAR reduction at tip A and the SAR amplification at tip B were

calculated, with respect to the 0   case. The SAR simulations were made for 

both 1.5 T (Figure 6.8) and 3.0 T (Figure 6.9).
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Figure 6.8. The SAR reduction in tip A and the SAR amplification in tip B with respect 

to the 0  case are shown for 1.5 T.

As depicted in Figure 6.8 and Figure 6.9, the transmit array excitation reduced 

the SAR at tip A and amplified the SAR at tip B with respect to the 0 

scenario. For the range from 0 to 90 degrees for  , the larger variation in phase 

resulted in a larger reduction and amplification. 
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Figure 6.9 The SAR reduction in tip A and the SAR enhancement in tip B with respect 

to the 0  case is shown for 3.0 T.

6.6 Conclusion

In this work, the effect of the phase variation of the incident electric field on the 

heating of metallic leads was demonstrated. When the leads were exposed to an 

incident electric field whose phase changed linearly along the lead, the local 

SAR at lead tips were substantially different. This effect was demonstrated with 

two methods. First, a helical lead inside a uniform phantom was exposed to 

quadrature excitation. The local SAR at the two tips of the helical lead was 

found to be different. The reduction in the local SAR with respect to a straight 

wire was also calculated. Second, a transmit array was used to excite a straight 

wire inside a uniform phantom. It was shown that the SAR was reduced at one 

tip and was enhanced at the other tip due to the phase variation of the electric 

field. The reduction and amplification in the SAR was calculated for different 

transmit array excitation patterns with respect to a zero phase excitation. 
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7. CONCLUSIONS

The methods that are proposed in this thesis can be used to improve the RF 

safety of patients during MRI. Modification of the spatial distribution of the 

electric field is the basis for the new methods that can be used to reduce the RF 

heating of human body. These methods can be applied to reduce both the 

average SAR and local SAR in the vicinity of the metallic devices. By realizing 

the optimum field solutions and designing appropriate transmitter coils average 

SAR can be reduced. As a result faster and safer scans can be performed at high 

field strengths. The methods related to the reduction of RF heating of metallic 

devices may improve the RF safety of MR guided interventional procedures and 

the scans performed on patients with implants.
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Derivation of Simplified Field Expressions

Cylindrical mode solutions of Maxwell’s equations (45) can be used to express the EM 

field of birdcage coils. The total electric field is the summation of the cylindrical modes 

that are shown below (34):

                                                                          (33)

                               

  (34)

                                   

  (35)

                    

   (36)

                    

 (37)

where  and mn mnA B  are constants depending on the excitation, ( )mJ x  is the Bessel 

function of order m and ' ( )mJ x denotes the derivative of the mth order Bessel function. 

The forward and reversed polarized magnetic field components for transmission are 

defined as : 

                                               (38)

In the literature B1+ is used to refer to the transmit sensitivity of a coil. B1+ is defıned 

in the rotating frame of reference. In our work we refer fH as the transmit sensitivity. 

We solve our optimization problems by setting constraints on fH  which is defined in 

the phasor domain and proportional to B1+. 
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As a uniform transmit sensitivity is desired in a forward polarized birdcage coil, no 

“phi” and “z” dependences are desired. Therefore, the field can be approximated by 

using the cylindrical expansion mode with m=+1 and n=0. Similarly, m=-1 and n=0 can 

be used to approximate a reverse polarized birdcage coil. The modal expressions can be 

further simplified by using the following Bessel function approximations:

if 1   then,

                                            (39)

The approximate solutions for the forward polarized birdcage coil can be obtained as:

                           (40)

Note that the 1   condition implies that the radius of the object is much smaller 

than the wavelength. As can be seen in the expression of Hf, the transmit sensitivity is 

independent from the position of the coil. The constant B does not have any effects on 

the forward polarized magnetic field and only contributes to the electric field. 

Therefore, for the most efficient excitation (birdcage quadrature excitation), B should 

be equal to zero to minimize SAR, which results in the simplified expression of the 

following form:

                                               (41)

With the same approximations, field expressions of a reverse polarized birdcage coil 

can be expressed as:

(42)

By including the expressions of the forward and reverse polarized fields, one can 

express the approximate field components of a linear coil as:

              (43)
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