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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Seyit Koçberber
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ABSTRACT

A NEW APPROACH TO SEARCH RESULT
CLUSTERING AND LABELING

Anıl Türel

M.S. in Computer Engineering

Supervisor: Prof. Dr. Fazlı Can

August, 2011

Search engines present query results as a long ordered list of web snippets divided

into several pages. Post-processing of information retrieval results for easier access

to the desired information is an important research problem. A post-processing

technique is clustering search results by topics and labeling these groups to reflect

the topic of each cluster. In this thesis, we present a novel search result clustering

approach to split the long list of documents returned by search engines into

meaningfully grouped and labeled clusters. Our method emphasizes clustering

quality by using cover coefficient and sequential k-means clustering algorithms.

Cluster labeling is crucial because meaningless or confusing labels may mislead

users to check wrong clusters for the query and lose extra time. Additionally,

labels should reflect the contents of documents within the cluster accurately. To

be able to label clusters effectively, a new cluster labeling method based on term

weighting is introduced. We also present a new metric that employs precision and

recall to assess the success of cluster labeling. We adopt a comparative evaluation

strategy to derive the relative performance of the proposed method with respect

to the two prominent search result clustering methods: Suffix Tree Clustering

and Lingo. Moreover, we perform the experiments using the publicly available

Ambient and ODP-239 datasets. Experimental results show that the proposed

method can successfully achieve both clustering and labeling tasks.

Keywords: Search result clustering, cluster labeling, web information retrieval,

clustering evaluation, labeling evaluation.
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ÖZET

ARAMA SONUCU KÜMELEME VE ETİKETLEMEYE
YENİ BİR YAKLAŞIM

Anıl Türel

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Fazlı Can

Ağustos, 2011

Arama motorları sorgu sonuçlarını sayfalara ayrılmış uzun web doküman lis-

tesi halinde sunmaktadır. Bilgi erişim sonuçlarının istenen bilgiye daha kolay

ulaşmayı sağlamak amacıyla tekrar işlenmesi önemli bir araştırma konusudur.

Bir tekrar işleme yöntemi de arama sonuçlarını konularına göre gruplamak ve bu

grupları konularını yansıtacak şekilde etiketlemektir. Bu tezde, arama motorları

tarafından oluşturulan uzun doküman listesini anlamlı bir şekilde gruplanmış ve

etiketlenmiş kümelere ayıran yeni bir arama sonucu kümeleme yaklaşımı sunuy-

oruz. Metodumuz kapsama katsayısına dayalı kümeleme ve sıralı k-ortalamalar

algoritmalarını kullanarak kümeleme kalitesine önem vermektedir. Diğer bir yan-

dan, kümelerin etiketlemesi, anlamsız ya da kafa karıştıran etiketlerin kullanıcıları

yanlış kümelere yönlendirerek zaman kaybettirmesi nedeniyle önemlidir. Bunlara

ek olarak, bir kümenin etiketi, kümede bulunan dokümanların içeriklerini doğru

bir biçimde yansıtmalıdır. Kümeleri etiketleme görevini etkin bir şekilde yer-

ine getirebilmek için, terim ağırlıklandırmaya dayalı yeni bir küme etiketleme

yöntemi sunulmaktadır. Ayrıca küme etiketlemenin başarısını değerlendirmek

amacıyla hassasiyet ve kesinlik ölçütlerini kullanan yeni bir etiketleme metriği

sunulmaktadır. Metodumuzun Sonek Ağacıyla Kümeleme ve Lingo gibi önde ge-

len arama sonucu kümeleme algoritmalarına göreceli performansını saptayabilmek

amacıyla karşılaştırmalı bir değerlendirme yöntemi uygulanmaktadır. Diğer

taraftan, herkesin kullanımına açık olan Ambient ve ODP-239 veri setlerinde

testler gerçekleştirilmiştir. Test sonuçları önerilen metodun hem kümeleme hem

de etiketleme görevini başarıyla yerine getirdiğini göstermektedir.

Anahtar sözcükler : Arama sonuçlarını kümeleme, küme etiketlemesi, web bilgi

erişim, kümeleme değerlendirmesi, etiketleme değerlendirmesi.
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Chapter 1

Introduction

During information search, Internet users utilize web search engines. When a

query is entered to a conventional search engine, relevant web sources are pre-

sented as a ranked list. Each result is shown as a snippet consisting of a title,

URL and small text excerpt from the source website as shown in Figure 1.1. This

figure demonstrates conventional presentation of search results as a ranked list

returned for query “Turkey” by widely used search engine Google [1]. Clustering

of search results is offered by Information Retrieval Community to enhance users

search experience and decrease time needed for search. After then, search result

clustering (SRC) task has been a popular research area of information retrieval

[11, 43, 44, 46, 31].

Concisely, the SRC problem is based on dividing search results according to

their subtopics and labeling these divisions to reflect the subtopic. Figure 1.2

demonstrates an open source search result clustering engine called Carrot2 [42],

which runs Lingo algorithm [31] in the background. It does not deal with indexing

of web sources but gathers search results from different search engines and applies

clustering and labeling onto these results before presenting to the user. On the

left of the image, ten labels are provided that represent the clusters. Users look

through cluster labels and select the one that is related to their information need.

Then, search result clustering engine presents the results of that cluster. Users

examine the snippets within that cluster. If users find the information they are

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Screenshot is taken from widely used search engine Google where
query “Turkey” is entered. Conventional search engine presents the search results
as a list. The terminology used in this thesis is demonstrated. We use search
result, result, document and snippet interchangeably in this thesis.

Figure 1.2: A search result clustering engine, Carrot2 presents the cluster labels
on the left for query “Turkey”. Each label is followed by a number in parenthesis,
for showing the number of snippets in that cluster.



CHAPTER 1. INTRODUCTION 3

looking for in a cluster, the number of search results to be reviewed diminishes in

a logarithmic manner. Note that, conventional ranked list of all results are also

reachable from the interface.

When a user enters a query to a clustering based search engine, query is firstly

transmitted to a search engine. It employs its indexing structure and retrieves

relevant results for the query. Then, it provides these results to the search result

clustering system. Then, post-retrieval clustering mechanism starts to operate.

SRC system filters the text data and extracts important features. It clusters and

labels the input documents according to its algorithm and outputs labeled groups

of results. Finally, clustered search results are presented from a web interface to

be reviewed by users.

As the result of an entered query, SRC engine respond to users with all relevant

search results and named groups of documents as shown in Figure 1.2. Users can

also benefit from the ranked list with a conventional search behavior. They

can also scan the labels of clusters. If one of them is connected to the subject

of the question in their mind, they can click on that label. Clustering engine

presents the documents in that cluster, and users go through these documents.

They can change the cluster selection and explore the content of other clusters

too. And hopefully, the clustered presentation helps the users during information

exploration.

The goal of search result clustering task can be described as follows. An

optimum search result clustering output is composed of thematic grouping related

to the given query with meaningful and representative labels of the groups. Users

read each label at a glance and naturally estimate the coverage of snippets inside

that cluster. They decide whether results in each cluster is in accordance with the

information need without looking inside the cluster. If they explore the cluster

contents by clicking on the label, the snippets inside should satisfy the information

need or at least increase the knowledge of users about the query.
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1.1 Motivation

As information grows rapidly over the Internet, it gets harder for users to find the

information they are looking for. After providing a query to a conventional search

engine, a long list of search results divided into a lot of pages is presented. Similar

results are scattered in the list, appearing in different pages. Without a proper

arrangement of search results, finding the desired query result among ranked list

of document snippets is usually difficult for most users. This problem is further

aggravated when the query belongs to a general topic which contains documents

from a variety of subtopics. At this point, the burden of solving interrelations

among documents and extracting the relevant ones are left to the user.

In order to help web users during information exploration, post-processing

of retrieval results are proposed to decrease time needed for search and enhance

search experience of users. Search result clustering as being one of these enhance-

ment attempts, presents labeled groups of search results in addition to the ranked

list. Clusters contain documents about a subtopic of the query and each cluster

is labeled to give information about the subtopic. If users select the cluster that

contain results they are looking for, number of search results to be examined di-

minish logarithmically. Briefly, clusters and their labels guide users during their

search experiences.

Now we consider the advantages of search result clustering. It provides an

overlook of the search results. It also enables interaction with the user. Users

could benefit from the clusters of search results by getting an overview of the

query, selecting the cluster that is related to the question in mind or possibly

changing the query according to the direction of a label. The results related to one

subtopic are shown to the user in a compact view. In other words, interrelations

between documents are revealed and results are presented by subtopics to the

users. To summarize, advantages of SRC can be regarded as follows. Search

result clustering:

• guides the user,
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Figure 1.3: Main page of Bilkent news portal [7].

Figure 1.4: Bilkent news portal [7] shows the news related to query “Turkey” as
a list. It also presents cluster labels on the left. (The image is tentative)
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• gives an overlook of the results,

• provides an overview of the subtopics,

• improves interaction with user,

• helps user to reformulate the query, when needed,

• organizes search results by subtopics,

• decreases size of search results and search time in a logarithmic manner,

when relevant results are found within a cluster.

According to the advantages described above, SRC especially suits to some

type of search needs. It is beneficial, when users:

• enter a general query with diverse results, e.g. “computer science”,

• enter an ambiguous query with a lot of meanings, e.g. “panther”, exist

in ambiguous entries provided by Wikipedia [3], possesses meanings from

variety of subtopics like large cats, automotive, media, etc.,

• do not have sufficient information about the query,

• want to make a deep search about a topic. For instance, when a student is

studying on a subject.

In fact, finding the underlying subtopics of search results returned for a query

is a hard task. Even for people, manually clustering and labeling is a complex

and time consuming work, so automatic solution of this problem is still open for

improvement. Even though there exist a lot of search result clustering algorithms,

embedding these methods into search engines is not a common practice. There

are three main reasons behind this problem:

• Existing algorithms are not able to capture the relationships among docu-

ments successfully since the snippets are too short to convey enough infor-

mation about query subtopics,
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• Finding descriptive and meaningful labels for clusters is a difficult problem

[28],

• The evaluation methodology is not well-defined for SRC task.

Motivated by these observations, we decide to work on this problem. We

aim to enlighten this task a little more both from implementation and evaluation

aspects Additionally, another motivation for this task is to embed the resultant

search result clustering system into information retrieval service of Bilkent news

portal. Main page of this portal is shown in Figure 1.3, that is constructed for

research purposes. It employs the implementations of contemporary research top-

ics like new event detection and tracking, duplicate detection, novelty detection,

information retrieval and news categorization. After query “Turkey” is entered

to the system, the portal outputs relevant news for the query, as shown in Figure

1.4. More information about Bilkent news portal can be obtained from [30].

1.2 Methodology

We present a new search result clustering method based on cover coefficient (C3M)

[8] and sequential k-means clustering algorithms [21]. We aim to cluster search

results accurately by employing the powers of two linear time clustering algo-

rithms. Most of the time, a combination of words, which is referred to phrase,

is necessary to reflect the cluster content by conveying detailed information. We

extract phrases using suffix tree data structure. Finally, we label clusters using a

new method called “labeling via term weighting.” This labeling scheme is based

on term weighting as the name suggests and it prioritizes phrases found during

the assignment of labels.

In addition, to evaluate the performance of the proposed method, we employ

a comparative strategy. We estimate that such an approach for performance

measurement can speed up the improvement of SRC task. We use two significant

methods of SRC, namely suffix tree clustering (STC) and Lingo for comparative
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performance evaluation of our method. In STC paper, it is proposed that clus-

tering and labeling can be efficiently implemented through suffix trees. Lingo

emphasizes the importance of labeling by firstly determining labels and then

applying clustering using singular value decomposition. We have used implemen-

tations of these algorithms from Carrot2 API [42].

We utilize some clustering evaluation metrics used in literature. The imple-

mentations of these evaluation metrics, namely, weighted f-measure, normalized

mutual information, and contamination are also adapted from Carrot2 API. On

the other hand, for labeling evaluation, a new metric called similarity F-measure

is presented which employ four different similarity metrics, namely, exact, partial,

overlap and semantic similarity. For this part, we aim to give a new approach

to automatic labeling evaluation, in addition to apply user based evaluations.

Because the result of user assessments vary from person to person and hard to

repeat for different parameters. It also prevents comparison of different methods.

1.3 Contributions

In this thesis, we

• design a new approach to search result clustering method, C3M+K-means,

based on C3M and sequential k-means clustering algorithms. We adapt

these two methods to the search result clustering problem with additional

supportive steps: preprocessing, phrase extraction, and labeling.

• present a new labeling approach “labeling via term weighting” for assigning

labels to clusters.

• introduce a new metric, simF-measure, by employing precision and recall, to

assess the effectiveness of cluster labeling.

• propose to employ semantic similarity which is a research area of artificial

intelligence for assessing the success of a label with respect to the ground

truth label.
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• present intuitive ways for determining similarity between ground truth label

and label assigned by algorithm (in addition to semantic similarity metric):

exact, partial, and overlap match strategies (i.e. similarity metrics).

• provide experimental results by systematically evaluating the performance

of our method in the Ambient [12] and ODP-239 [13] test collections. We

show that our method can successfully achieve both clustering and labeling

tasks.

• adopt a comparative strategy for performance evaluation, using two promi-

nent search result clustering algorithms: suffix tree clustering and Lingo.

1.4 Organization of Thesis

This thesis is arranged as follows:

• Chapter 1 introduces the search result clustering task. Also gives the mo-

tivation, methodology and contributions of this thesis.

• Chapter 2 presents the related background employed in the proposed

method, specifically, generalized suffix tree and k-means clustering algo-

rithm. In addition, related works about search result clustering task pre-

sented with special emphasis on suffix tree clustering and Lingo algorithms.

• Chapter 3 explains the proposed method, C3M+K-means in detail.

• Chapter 4 focuses on performance measures used for clustering and labeling

tasks.

• Chapter 5 introduces the Ambient and ODP-239 datasets. Additionally, it

presents the performance results of the proposed method.

• Chapter 6 concludes this thesis with possible future pointers.



Chapter 2

Background and Related Work

In this chapter, firstly background about the methods that are used in our ap-

proach are presented. Afterwards, related works about SRC task are discussed

with special emphasis on suffix tree clustering and Lingo algorithms that are used

during comparative evaluation in Chapter 5.

2.1 Background

As background information, suffix tree is introduced, which is used for phrase

extraction in Section 3.2. K-means is discussed because its modified version,

sequential k-means is used for clustering in Section 3.5.2.

2.1.1 Generalized Suffix Tree

Suffix tree introduced by [18, 40] is a rooted, directed, compact tree data struc-

ture, holding all suffixes of a string. This data structure is used in a variety of

research areas. For example, it enables very fast and memory-efficient comparison

of the genomes [15], so that it is employed in bioinformatics applications.

10
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Generalized suffix tree, is a type of suffix tree structure with multiple strings

instead of one inserted into the tree. In this thesis, we will use the terms ‘suf-

fix tree’ and generalized suffix tree interchangeably. Instead of character-level

insertion to the suffix tree, word-level suffixes of texts are added. It is similar

to inverted index [47] and can be used as an indexing structure. In addition, It

is used during clustering and phrase exploration processes, firstly by Zamir et

al. [43]. It can be constructed in linear time with number of documents using

Ukkonen’s algorithm [39]. In our method, we use suffix tree for finding phrases

existing in the snippets, similar to [43].

There are four types of nodes in a suffix tree:

1. Root node is the only node with no parents and called as the root of the

tree.

2. Edge nodes are invisible nodes on the edges and they hold a label.

3. Internal nodes are the nodes with more than one children.

4. Suffix nodes are the nodes that contain at most one child node. They

designate the information about the suffix. In detail, the information about

suffix, sentence and document.

An edge is labeled using an edge node and each suffix can be regenerated by

labels of edge nodes from the root to a leaf. Each node represents a label and

documents that contain its label. The information about documents are gathered

from the children suffix nodes of the node. And the information about its label

is obtained from the combination of labels of edge nodes starting from root to

itself.

Phrases are more informative than single-words, so they are better candidates

for labeling. Phrase discovery is a crucial phase for SRC task, which aim to

generate meaningful cluster labels. Suffix tree structure indexes the sequence

of words in the nodes and stores number of occurrences of them. The inner

nodes with sufficient occurrences are considered as frequent phrases. For phrase
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1,1 2,1

1,2 2,2 1,3

1,4

2,3

2,4

curiosity

killed
the

cat $ dog $

cat $ dog $ cat $ dog $

cat $ dog $thekilled
the

a

b

c d

1,5 2,5

$

Figure 2.1: Generalized suffix tree example for two documents (without stopword
elimination and stemming): 1) Curiosity killed the cat. 2) Curiosity killed the
dog. The $ sign is added to the end of sentences, to mark the end of the sentence.

extraction, we use the labels of internal nodes with more than two documents.

More information about phrase extraction (discovery) can be found in Section

3.2.

Figure 2.1 demonstrates a suffix tree obtained from two documents. The

nodes that appear in at least two documents are labeled from a to d. The suffix

nodes contain at least one rectangle box that store the suffix information. For

instance the leftmost suffix is “curiosity killed the cat”, which exists only in the

first document’s first suffix (itself), so it is attached to the box named as “1.1”.

2.1.2 K-means Clustering Algorithm

K-means is a linear-time and widely used clustering algorithm which groups given

inputs into partitions. It is introduced in the works of Forgy and Rocchio [17, 35]

circa 1965. It operates in an iterative manner to refine clustering structure, until

it reaches the criteria defined for stability. This is generally the convergence to a

total minimum squared error (also named as total within-cluster variation).
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General working principle of k-means is provided in Algorithm 1. As seen

from the algorithm, k-means starts after the initial centroids are provided, or it

can also start without centroids using randomly selected documents as centroids.

Each data is assigned to the cluster with closest centroid using euclidean distance.

The disadvantage of k-means is that it requires spherical cluster structures.

Algorithm 1 K-means Algorithm

if Input: Number of clusters (nc) and initial centroids of clusters then
Assign input centroids as the centroids of empty clusters

end if
if Input: Number of clusters then
Select nc documents randomly from document collection
Set selected documents as centroids of empty clusters

end if
for Total minimum squared error is greater than threshold do
for Each document in the collection do
Assign document to the cluster whose centroid is closest to the document

end for
for Each cluster do
Update the cluster centroid using documents of the cluster

end for
end for
Output: clustered documents

2.2 Related Work

In this section, the related works on SRC are presented via the two prominent

algorithms: Lingo [31] and Suffix Tree Clustering [43]. These are the two meth-

ods which we use during comparative evaluation of our algorithm. Additionally,

some of the significant works on search result clustering are covered. In this the-

sis we use post-retrieval clustering, web document clustering, and search result

clustering interchangeably.
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2.2.1 Suffix Tree Clustering (STC)

Suffix tree clustering is proposed by Zamir and Etzioni in [43] for web document

clustering. It employs phrases obtained from suffix tree for clustering and labeling

tasks. According to Zamir et al. search result clustering problem is suggested to

have the features presented below:

1. Relevance: Each cluster should contain relevant documents with each

other.

2. Browsable Summaries: Cluster labels should be concise and descriptive,

so that they are easy to understand at a glance.

3. Overlap: Documents which contain multiple topics could appear in more

than one cluster

4. Snippet-tolerance: Due to the time limit, search result clustering should

depend on snippets.

5. Speed: The method should be fast enough not to delay the search operation

of users. It is preferred to be a linear time algorithm.

6. Incrementality: The method should incrementally process results as they

are provided by the search engine.

In this list, the first item relevance corresponds to clustering quality and

second browsable summaries represents labeling quality throughout the thesis.

STC is a linear time clustering algorithm based on identifying common phrases

to all documents. A phrase is defined as an ordered sequence of one or more words.

Its difference from other clustering algorithms is that STC considers a sentence

as a sequence of connected words instead of common bag of words usage. It

makes clustering and labeling using common phrases between documents using

suffix tree data structure, that we present in Section 2.1.1. STC consists of three

main steps: document cleaning, base cluster identification using a suffix tree, and

constructing final clusters through combining base clusters.
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First of all, noisy data is filtered out from text documents for a successful clus-

tering process. Therefore, the first step is preprocessing which includes sentence

boundary identification, text cleaning (to remove non-word tokens like numbers,

HTML tags, etc.), and lastly stemming.

Second step is the identification of base clusters. During this process, firstly

suffix tree structure is constructed. Precisely, suffixes of each sentence in the

document snippets are fed to the suffix tree. This operation is similar to creating

an inverted index of terms for the document collection. We discuss suffix tree

broadly in Section 2.1.1. In this step, all nodes of suffix tree are treated as cluster

candidates. Then, internal nodes whose labels appear in at least two documents

are chosen to be the base clusters of the document collection. At the end of this

step, each base cluster is assigned a score which is a function of the number of

documents it appears and number of words that make up the phrase.

Finally, the third step is final cluster formation where the base clusters are

combined according to their documents to avoid nearly identical clusters. This

step begins with determining the similarities between base clusters. Two base

clusters are assumed to be similar if they share at least half of their documents

with each other. Then, similar base clusters are combined into a single larger

cluster to form a final cluster. The number of final clusters is generally high.

Therefore, final clusters are assigned scores based on their base clusters and their

overlap. Then, the topmost 10 clusters are selected to be presented to the user.

Each cluster’s label is set to the concatenation of its base clusters’ labels. Note

that, as the post-retrieval clustering evolves, it is accepted that each label con-

tains only one term (single-word or phrase) instead of several terms presented

consecutively. The reason for this approach is to enable readability of labels at a

glance.

2.2.2 Lingo: Search Result Clustering Algorithm

Lingo is a search result clustering algorithm based on singular value decomposi-

tion (SVD) [31]. The algorithm emphasizes cluster description quality (labeling
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quality) which is an important factor for human-friendly search engines. To in-

crease the labeling performance, Lingo reverses the current search result cluster-

ing procedure where clustering is followed by labeling. Lingo first reveals cluster

labels and then assigns documents to these labels. The Lingo method is currently

being used in Carrot2 Open Source Search Results Clustering Engine [42].

Lingo algorithm consists of the following steps preprocessing, frequent phrase

extraction, cluster label induction and cluster content discovery. The following

parts explain these steps briefly [31].

Preprocessing: The aim of the preprocessing phase is to clean the input

documents from all characters and terms that can possibly effect the quality of

cluster descriptions. Although Lingo uses SVD, which is capable of dealing with

noisy data, the preprocessing phase is still required to avoid meaningless frequent

terms in the cluster labels. There are three main steps in preprocessing phase;

text filtering to remove HTML tags, entities and non-letter characters, language

identification and finally stemming and stopword removal.

Frequent phrase extraction: The frequent phrases are defined as the recur-

ring ordered sequences of terms in document snippets. These phrases are chosen

as candidate cluster labels if they:

1. appear in document snippets more than term frequency threshold

2. stay in sentence boundaries

3. are a complete phrase (definition can be found in [31])

4. do not begin nor end with a stopword.

Cluster label induction: The cluster label induction step is based on the

extraction of frequent terms (including single word terms) and consists of three

main steps; term-document matrix construction, abstract concept discovery and

label pruning.

In the first phase, the term-document matrix is constructed with the single

word terms that exceed the term frequency threshold. Then, weight of each term
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is calculated by using the term frequency, inverse document frequency (tfidf)

formula [36].

Once the term-document matrix is constructed, the abstract concept discov-

ery phase begins. In this step, singular value decomposition is used to find the

orthogonal basis of the term-document matrix. In the paper, it is claimed that

these orthogonal basis, at least hypothetically, corresponds to abstract concepts

appearing in the original term-document matrix. SVD breaks the vector space

matrix A with t terms and d documents into three matrices,

A = U Σ V T (2.1)

where U and V are left and right singular vectors of matrix A and Σ contains

singular values diagonally. The important thing here is to notice that, only the

first k vectors of the U matrix are used, meaning that only the first k abstract

concepts will be investigated for cluster label candidacy.

Finally, label pruning steps begins to determine the cluster labels. The im-

portant thing to notice in this step is that both the abstract concepts and the

frequent phrases are expressed in the same vector space-the column space of the

original term-document matrix A. Thus, the classic cosine distance is sufficient

to determine the closeness of phrases to abstract concepts. Currently, we have t

frequent single word terms and p frequent phrases as the candidate cluster labels

and k abstract concepts which require a human readable cluster label. To match

the abstract concepts with the frequent phrases, we first build a t × (t + p) P

matrix by treating the phrases and keywords as pseudo-documents. Then, the

closeness is to ith abstract concept is calculated as mi = UT
i P where Ui is the i

th

column of the U matrix. After that, the phrase that corresponds to the maximum

component of the vector mi is selected as the human-readable description of the

ith abstract concept. To extend this methodology to complete Uk matrix, they

generate an M matrix as M = UT
k P which yields the results of all abstract con-

cept, frequent phrase pairs. Finally, a label pruning is used to prune overlapping

label descriptions whose details can be found in [31].

Cluster content discovery: In this phase, all the documents are re-queried

to be assigned into previously determined cluster labels. This assignment is
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achieved with the classic Vector Space Model. First each cluster label is rep-

resented as a column vector forming a matrix of labels, Q. Then, C = QTA

indicates the strength of membership of the documents to the cluster labels. A

document is assigned to a cluster if cij exceeds the snippet assignment threshold.

The documents not assigned to any cluster end up in an artificial cluster called

Others.

2.2.3 Other Works on Search Result Clustering

The utility of search result clustering and associated cluster labeling algorithms

for easy access to the query results has been widely investigated [11]. The back-

ground of the research dates back until 1990s [14] [4] [20] [25]. More recently;

however, there are continuous research and commercial efforts for developing on-

line search result clustering and labeling methods [11].

Prior to this method, there has been an extensive research on search result

clustering but the very first results were introduced in the Scatter-Gather system

[20]. Consecutively, Suffix Tree Clustering and Lingo [31] are prominent works

about SRC task. Apart from those, MSEEC [19] and SHOC [45] also contribute

the use of words proximity in the input documents. A comprehensive review of

research done about search result clustering is presented in a survey paper by

Carpineto et al. [11].

Kural et al. [23] employ cover coefficient clustering for search result clustering

in 2001. They do not use k-means clustering for the refinement of clusters after

C3M and they show each cluster with three representative documents and ten

terms (with nearly all of them are single-word terms). User studies show that

the users are not satisfied with the cluster based presentation of search results.

In parallel with this study, nowadays, the inclination is towards using only one

term to represent a cluster, as in our study, not to distract users with a lot of

information.

Moreover, clustering web results is also essential for mobile devices since it
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decreases the amount of information transmitted, provides a more effective and

informative user interface. Therefore this type of interface requires less interac-

tions in terms of page scroll or query reformulation [10] [11].

Furthermore, there exists another approach to enhance users’ search expe-

rience called search result diversification. This research topic aims to re-rank

search results for presenting documents from different subtopics at the beginning

of search results [9]. This research area is also based on post-processing of search

results like SRC.



Chapter 3

Search Result Clustering and

Labeling

The methodology we use in this study is to extract the relationships among doc-

uments with C3M method and to construct the final clusters through feeding the

results of C3M to the sequential k-means algorithm. Then we use term weighting-

based approach to label the generated clusters. In this chapter, we describe the

details of the proposed method, which is composed of the following steps:

• Preprocessing and vocabulary construction

• Phrase discovery

• Term weighting

• Indexing

• Cover coefficient clustering

• Sequential k-means clustering

• Labeling via term weighting

Figure 3.1 illustrates the processes we adopt in this study for our SRC method.

As shown in the figure, user enters query “EOS” to the clustering based search

20
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engine and results are presented to the user as labeled clusters: “Wolkswagen

EOS”, “EOS Electronic” and “Digital Camera”. This example query is taken

from the Ambient dataset, and the labels are suggested by the proposed method

for this query.

3.1 Preprocessing and Vocabulary Construc-

tion

Our method starts with preprocessing which is a common phase in all IR prob-

lems. Preprocessing is applied to eliminate the redundant data in document snip-

pets and convey informative features for the clustering and labeling processes. For

a query, the search results are provided to the proposed method, where each re-

sult consists of a URL, title and a very short text. We form the document text by

concatenating title and short text. Then, these document texts are cleaned from

non-letter characters and uppercase letters are converted to lowercase. Words

that contain punctuation mark within their boundaries, are converted into sepa-

rated words. To illustrate, “cluster-based” is converted into two words: “cluster”

and “based”.

At this point, tokenization starts, which aims to separate text into words.

For this purpose spaces within text are used to determine words. Afterwards,

words that occur in stopwords list are eliminated. Stopword removal is impor-

tant because these words can appear in any text and they are not informative

for clustering and labeling (e.g. and, after, we). And stemming is applied by

the Porter Stemmer [33] to treat words which have common stem as the same

feature. Finally, all document texts are combined for selection of terms which are

estimated to convey information for differentiating documents from each other.

In addition, selection process increase the performance by decreasing the size of

vocabulary. Precisely, the terms whose number of occurrences are between 3-30%

of the number of snippets are selected to construct the vocabulary of document

collection. Note that, after we determine the phrases in the subsequent section,

these phrases are also inserted into the vocabulary.
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Figure 3.1: Search result clustering processes of the proposed method
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Note that for the construction of suffix tree in Section 3.2, we perform a

different preprocessing phase where we also keep the punctuation marks (dot,

exclamation mark, question mark, semicolon, colon) which define the sentence

boundaries. Semicolon and colon are also used as sentence boundaries because

they are generally used for the combination of two sentences. By this way, sen-

tences are separated from text and inserted into the suffix tree. In general, stop-

words are kept for suffix tree construction [43]. But, we remove stopwords to

obtain more generic phrases.

In order to regenerate original labels from preprocessed versions, mappings

of each preprocessed term’s position in preprocessed text to its corresponding

position in original text are stored.

3.2 Phrase Discovery

For descriptive cluster labels, the phrases are more informative than words, as

we have discussed in Section 2.2. Therefore, we find the common phrases that

are good candidates for labels. In addition, phrases possess more discriminative

value for clustering of documents than single-word terms. Therefore, we treat the

extracted phrases similar to single terms found in Section 3.1 by adding them to

the vocabulary.

However, the discovery of such phrases from plain text is a difficult task

since they should contain meaningful word combinations to be a good cluster

label. In this study, we use suffix tree structure [43] to extract frequent phrases

from document snippets. Suffix tree indexes sequence of words in the nodes and

stores number of occurrences. We describe suffix tree as background knowledge in

Section 2.1.1. The inner nodes with sufficient appearances in different documents

are considered as phrases and added to the vocabulary. Precisely, labels of nodes

that occur in more than %2 of the documents are selected.
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3.3 Term Weighting

Term weighting is employed for determining the importance of a term for a doc-

ument. Weight increases as term occurs more in document, but decreases as it

appears more in collection. The term weights are computed by using the log

entropy formula in [16]. This weighting scheme is commonly used for latent se-

mantic indexing (LSI) based methods [24]. It can be described as:

Fij = LijGj (3.1)

which defines the weight of jth term in ith document where Lij and Gj represents

respectively the local and global weights of jth term. Local weight represents the

importance of term within the document, and global weight reflects the affect of

term’s occurrences in the collection. These weights are computed by using the

following formulas.

Lij = log2(tfij + 1) (3.2)

Gj = 1 +
Hj

log2(m)
(3.3)

Hj = −
m
∑

i=1

pij log2(pij) (3.4)

pij =
tfij

∑m

i=1 tfij
(3.5)

where m is the number of documents and tfij is the term frequency (how many

times term occurs in document).

As seen in the formula, local weight is calculated using the log function, where

adding one provides nonnegative output. Using logarithm of term frequency

reduces the affect of high differences between term occurrences. Global weight is

calculated by normalized entropy, where normalization is obtained by the division

in global weight. This equation includes one added to normalized entropy, to

obtain nonnegative output. pij represents the term frequency normalized by the

total number of occurrences of term in collection.
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Entropy is a concept of information theory, shows the deviation from uniform

distribution. Hj denotes the entropy of jth term. Entropy based global weighting

is one of the most sophisticated global weight calculation methods which con-

siders the distribution of term over documents. This scheme gives lower weight

to frequent terms and higher weight to infrequent terms. Entropy measures the

uncertainty, so smallest entropy is obtained when all values are equal. If en-

tropy is high, this means the weights of term in different documents shows high

fluctuation, and such a term is informative with high global weight.

Finally, we increase the weight of phrases with respect to single-word terms,

by multiplying phrases with a constant value θ and single-word terms with 1− θ

as shown in equation 3.6. In our experiments, the best results are acquired when

θ is 0.7. Due to the re-weighting operation, normalization of term weights in each

document is required.

Fij =

{

Fij × (1− θ) if |j| = 1

Fij × θ otherwise
(3.6)

3.4 Indexing

Before passing to the clustering phase, we index each document using the terms it

contains. Weights of terms are calculated using term weighting scheme provided

in Section 3.3. Only the terms in vocabulary are kept in the indexing data

structure. We employ forward indexing approach for document representation

where each document holds the terms it contains [26]. In Figure 3.1, a simple

representation of forward indexing is demonstrated.

Using forward indexing is advantageous for SRC task and datasets we use,

because we have about 100 documents for each query and few number of terms

for each document. We prefer forward indexing because, clustering and other

operations of the proposed method requires the comparison of two documents,

or document based information. These operations are efficiently handled using
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Table 3.1: Forward indexing example for three documents (without stopword
elimination and stemming): 1) Curiosity killed the cat. 2) Dog killed the cat too.
3) Curiosity killed the dog too.

Document Index

Document 1 cat, curiosity, killed, the
Document 2 cat, dog, killed, the, too
Document 3 curiosity, dog, killed, the, too

forward indexing.

Other indexing methods are inverted index and vector space indexing as shown

in Figure 3.1 and Figure 3.3 for comparison. Vector space model stores the

documents as a sparse matrix with most of the indexes are empty. Inverted

index is more space-efficient than vector space indexing. It stores mappings of

terms to the documents that each term appears. While inverted index employs

term-based storage, forward indexing uses document-based storage. In addition,

inverted index is more compact than forward index, so it is appropriate for large

document collections. Search engines firstly create the forward index of a new

document and transform it to be inserted into the inverted index.

We do not employ inverted index, which is a widely used indexing structure

in IR. It applies indexing according to terms of collection instead of documents

in forward index. Inverted index is useful for information retrieval task that

finds relevant documents for query terms. In fact, forward indexing combines the

features of inverted index and vector space indexing as being space-efficient and

document-based storage. We use forward index instead of inverted index because

it is more suitable for comparison of documents in small datasets.
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Table 3.2: Inverted indexing example for three documents (without stopword
elimination and stemming): 1) Curiosity killed the cat. 2) Dog killed the cat too.
3) Curiosity killed the dog too.

Document Index

cat Document 1, Document 2
curiosity Document 1, Document 3
dog Document 2, Document 3
killed Document 1, Document 2, Document 3
the Document 1, Document 2, Document 3
too Document 2, Document 3

Table 3.3: Vector space indexing example for three documents (without stopword
elimination and stemming): 1) Curiosity killed the cat. 2) Dog killed the cat too.
3) Curiosity killed the dog too.

Term Document 1 Document 2 Document 3

cat
√ √

curiosity
√ √

dog
√ √

killed
√ √ √

the
√ √ √

too
√ √
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3.5 Clustering

3.5.1 Cover Coefficient Clustering (C3M)

Cover coefficient clustering is a seed oriented, partitioning, single-pass, linear-time

clustering algorithm introduced in [8]. The main goal of C3M is to convey the

relationships among documents using a two-stage probability experiment. This

experiment is used for computation of similarity between di and dj , which is the

probability of obtaining dj from di as illustrated in figure 3.2. The efficiency and

effectiveness of C3M in texts is experimentally demonstrated in [6] for information

retrieval. Cover coefficient concept is mainly used for:

• Identifying relationships among documents,

• Deciding number of clusters to be generated,

• Selecting seed documents,

• Forming clusters through grouping non-seed documents around seed docu-

ments.

We first initialize the C matrix which conveys the document to document

relations with size mxm, where m is the number of documents in the collection.

Index at ith row and jth column of C matrix; cij represents the extent to which

document i is covered by document j, in other words coupling or similarity of di

with dj (where di represents the ithdocument). Each element of the C matrix is

calculated as

cij = αi ×
n

∑

k=1

(Fik × βk × Fjk) 1 ≤ i, j ≤ m (3.7)

where αi and βk represent the reciprocals of the term weight sum in ith document

and in collection, respectively. They are used for normalization and formulated

below, where n represents number of terms:
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Figure 3.2: C3M described: D matrix (document-term matrix with m=4, n=6),
two stage probability experiment for the first document in the middle and C
Matrix shown

αi = [
n

∑

j=1

Fij]

−1

1 ≤ i ≤ m (3.8)

βk = [
m
∑

j=1

Fjk]

−1

1 ≤ k ≤ n (3.9)

In Figure 3.2, C3M is described with the computation of C Matrix. Note that,

the C matrix does not need to be constructed completely but only the required

indexes are computed. Besides, the original C3M algorithm also computes the

number of clusters to be generated [8], however, we assign the documents into 10

clusters with an additional Others cluster to store the outlier documents.

The next step in our modified C3M algorithm is to find the seed documents

of the clusters. Seed documents must be well separated from each other and

must have the capability of attracting the non-seed documents around themselves.

Therefore, the concept of seed power is introduced in [8] to satisfy such conditions

where seed power of the ith document can be calculated as follows:

Pi = δi × ψi

n
∑

j=1

(Fij × δ′j × ψ′

j) (3.10)

δi = cii (3.11)

ψi = 1− δi (3.12)

In these equations δi represents the decoupling which we define as the uniqueness

of the document from the rest and ψi represents the coupling which is the measure
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of how much the document is related to other documents in collection. Finally,

the summation part in Equation 3.10 ensures the normalization. Now the only

unknowns in Equation 3.10 are δ′j and ψ
′

i which define the concepts for terms and

they are the counterparts of the metrics δj and ψi we define above for documents.

c′ij denotes the relationship of ith term with jth term. They can be computed by

combining the below equations.

c′ij = βi ×
m
∑

k=1

Fki × αk × Fkj (3.13)

δ′i = c′ii, (3.14)

ψ′

i = 1− δ′i, (3.15)

Then, we choose 10 documents with the topmost seed powers as the seed doc-

uments for our clusters. We apply a special case if seed powers of two documents

in the top 10 documents are very close to each other to eliminate false (similar)

seeds. In such cases, we ignore one of the documents and choose another seed

document from the collection according to the seed power.

The final part of C3M document clustering is to form final clusters by assigning

the nonseed documents to the clusters which are defined by a seed. To accomplish

this task, for each nonseed document we check the coverage of the document with

the seed documents (from C matrix) and select the seed that has the highest

coverage over the nonseed. If none of the seeds cover the nonseed document, then,

this document is directly added to the Others cluster. More detailed information

about C3M can be found in [8].

3.5.2 Modified Sequential K-means Algorithm

We introduce k-means algorithm as background information in Section 2.1.2. It is

a linear-time and widely used clustering algorithm which groups given documents

after the initial centroids are provided. The success rate of the k-means algorithm

depends on the initial cluster centroids. Therefore, we use the results of C3M

clustering to derive the centroids as accurately as possible. The input centroids
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are the vectorial averages of the documents in each C3M cluster. For convergence,

we expect the total minimum squared error (total within-cluster variation) is

below a threshold.

We use a variation of k-means, called sequential k-means algorithm [21, 27]

that updates the cluster centroid after each document assignment to the cluster

instead of after all documents are distributed in original k-means [17, 35]. We use

a modified version of the sequential k-means algorithm where we assign documents

to the centroids as in original k-means in the first iteration. And, centroids are

re-calculated according to the new distribution of documents. At the beginning

of the following passes, we empty the cluster contents. Then, we assign each

document to the nearest cluster and update that cluster’s centroid again after

this assignment using the formulation below.

centroidi =

∑

jǫclusteri
docj + centroidi

|clusteri|+ 1
(3.16)

where |clusteri| is the number of documents in the cluster and 1 is added to the

denominator for the centroid vector in numerator. Other properties of sequential

k-means are same as original k-means defined in Section 2.1.2. Algorithm 2

describes the working principle of sequential k-means.

The first iteration is the same as original k-means iterations. This approach

increases effectiveness by firstly stabilizing the centroids to some extent. For

instance, sometimes the centroids may be given randomly to sequential k-means,

so computation of centroids at the beginning is advantageous.

The drawback of sequential k-means is that it is order-dependent. The docu-

ments are assigned to clusters one by one and after each assignment the cluster’s

centroid is updated using the newly added document. The order-dependency

comes from the order of documents separated into clusters. This disadvantage

is weakened by using the centroid itself in Formula 3.16 during the update of

centroid.
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Algorithm 2 Sequential K-means Algorithm

Input: number of clusters and initial centroids of clusters
First iteration:
for Each document in the collection do
Assign document to the cluster whose centroid is closest to the document

end for
for Each cluster do
Update the cluster centroid using documents in the clusters

end for
Next iterations:
for Total minimum squared error is greater than threshold do
Empty the clusters
for Each document in the collection do
Assign document to the cluster whose centroid is closest to the document
Update the centroid to which document is assigned using Formula 3.16

end for
end for
Output: clustered documents

3.6 Labeling via Term Weighting

The final step of our method is the labeling phase. We aim to assign descriptive

labels to clusters in order to reflect the content of the cluster.

There are two cluster labeling strategies [28]:

• Cluster-internal labeling: It labels the cluster by considering terms in

the cluster.

• Differential cluster labeling: In this labeling strategy, both the terms

in the cluster and their behavior in the collection are considered.

If a term occurs frequently in the cluster and also a common term in the

collection, then it is not suggested by the second strategy. In literature, fea-

ture selection methods such as information gain, mutual information and X2 are

offered for employing differential cluster labeling.

We present a novel labeling strategy called labeling via term weighting which
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adopts the approach of differential cluster labeling. It is based on term weighting

approach used in information retrieval. Term weighting is used to determine

the importance of term form the document. Therefore, we can also use term

weighting for calculating the significance of term for cluster.

Firstly, the terms of all documents in a cluster are merged. For this aim, we

combine the number of occurrences of terms that appear in documents of the

cluster, to make the effect of combining original texts of documents in the cluster

and assuming the cluster as a document with the combined text. Then, term

weighting is applied to the clusters, by assuming them as documents. The same

term weighting formula is used as in Section 3.3. A single-word label generally

lacks expressiveness, so we give more weight to phrases than single-word terms

during cluster labeling as in Section 3.3. Now, each term occurring in cluster has

term weight assigned to it, denoting the importance of term for the cluster.

For each cluster, we select the highest weighted terms into the candidate labels

list. In our experiments, we add topmost five terms to the list. While we are

assigning the final label of the cluster from this list, we follow the criteria below:

• Clusters are labeled in descending order of cluster size,

• Label should not be one of the previously given labels to another cluster,

• Phrase label candidate with less than five words is preferred (if exists),

• Terms that are in higher ranks of the list (have higher weights) are preferred.

In this step we select labels for these clusters. However, these labels are

preprocessed, particularly, cleaned, stopwords removed and words are stemmed.

Therefore, we obtain the original versions of the preprocessed labels using po-

sitions of preprocessed text and respective positions in original text that are

recorded during preprocessing step in Section 3.1.

The research presented in this thesis is submitted for publication [38].



Chapter 4

Performance Measures

In this chapter, the evaluation metrics that are employed for assessing the success

of clustering and labeling tasks are described. The datasets used during evalua-

tion provide the ground truth (gold standard) clusters and their labels for each

query. Ground truth cluster is mentioned as “class” throughout the thesis. We

use the ground truth information to assess the success of the proposed method.

The more proposed method’s output resembles to the ground truth from cluster-

ing and labeling aspects, the better performance is reached. We use a comparative

strategy to derive the relative performance of our algorithm with respect to the

two state-of-the-art algorithms: Lingo and suffix tree clustering. Implementation

of these methods are available in Carrot2 API [42].

4.1 Clustering Evaluation

To be able to quantify the performance of the algorithms in a common way,

we first need to define success measures which reflect the actual performance of

clustering results as fairly as possible, regardless of the clustering method we

choose.

34
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4.1.1 Evaluation with Random Clustering

The first step of the clustering evaluation is to prove that the algorithm shows

significant difference from random clustering. For this goal, we firstly use the

Monte Carlo method [21]. If the cluster sizes are preserved and documents are

distributed to the clusters randomly, we obtain a random clustering. The defini-

tion of target cluster for a class, is the cluster that contains at least one common

document with the class. Figure 4.1 demonstrates the target clusters for each

class for an example clustering structure. As a rule, in a meaningful clustering

structure, the average number of target clusters of the clustering method (repre-

sented as nt) should be less than the average number of target clusters of random

clusterings (represented as ntr) [8]. For each query, 1000 random clusterings are

generated to stabilize the random behavior of ntr value.

We also use t-test for proving the statistical significance of the difference be-

tween random and proposed method. T-test is a way of statistical hypothesis

testing, which determines whether a result is statistically significant, meaning

that it does not occur with chance according to a threshold probability. We com-

pare two distributions of samples obtained from queries of dataset for random

clusterings and algorithm generated outputs. One sample for each distribution

is nt and ntr values for a query. The data is provided in Table A.1 (for the Am-

bient dataset) and Table A.2 (for the ODP-239 dataset) in Appendix. Our aim

for applying t-test is to prove that the proposed algorithm performs significantly

different than random. Therefore, we use paired difference test to compare two

sets of measurements to determine whether the sets’ population means are differ-

ent. Paired t-test is used for proving the statistical significance with respect to

a threshold value, 0.01 in our tests. If the significance value calculated between

distributions are below the threshold, then statistical significance is assured.

Additionally, we use t-test experiments to convey the significance of one

method with another to prove that the success of the first method is unlikely

to occur by chance. During these experiments, we use the same type of t-test

throughout the thesis with significance threshold set to 0.01.
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Figure 4.1: Demonstration of target clusters for the ground truth classes. For
class1 target clusters are clusterA, clusterC , clusterD , because the documents in
this class are separated into these clusters. Average number of target clusters for
the algorithm generated clustering structure, nt, is 2.33. This value is calculated
by summing up the target clusters of all classes and diving by the number of
classes (average number of target clusters is calculated as follows: 3 + 2 + 2 = 7.
Then, we take the average of this sum: 7/3 = 2.33).
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4.1.2 Main Evaluation Measure: wF-measure

Now, we continue with the main evaluation measure we use for assessing the

success of clustering with respect to the ground truth. In this thesis, we use the

weighted average F-measure (in short weighted F-measure or wF-measure) defined

in [41] which is the average of total weighted F-measure of each class.

This evaluation measure is based on measuring how successfully a class is

represented by a cluster. This is achieved by precision and recall metrics between

a class and a cluster. Intuitively, precision reflects to what extend presented

cluster includes documents of ground truth class and recall reflects to what extend

ground truth class is presented to the user.

For calculating the success between a class and a cluster, we need to match

the class with one of the clusters that give the highest F-measure with the class.

Hence, we find the representative of class from the clusters generated. In Figure

4.2, matching classes and clusters are provided as an example.

The similarity between a ground truth class i and represented (matching)

cluster j are calculated as follows.

precision(i, j) =
classi ∩ clusterj

|clusterj|
(4.1)

recall(i, j) =
classi ∩ clusterj

|classi|
(4.2)

F -measure(i, j) =
2× recall(i, j)× precision(i, j)

recall(i, j) + precision(i, j)
(4.3)

We find the precision and recall values as shown in Equations 4.1 and 4.2 to

obtain F-measure in Equation 4.3 related to the class i and matching cluster j.

F-measure is the harmonic mean of precision and recall. F-measure is used for

the calculation of wF-measure described in Equation 4.4. It is also employed for

labeling evaluation in Equations 4.5 and 4.6 to match classes and clusters. It

shows the partial success of clustering, by measuring how successfully a class is

represented in clustering.
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Figure 4.2: Demonstration of matching classes and clusters for the calculation of
wF-measure using Equation 4.4 for example clustering structures. A representative
cluster is found for each class, which gives the highest F-measure among all
clusters. (For instance, class1 shares common documents with clusterA, clusterC ,
and clusterD . But, F-measure between this class and clusterA is higher than other
cases. With precision 3/4, recall 3/6 and their harmonic mean, F-measure is 0.6.)
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Now, we have the success scores of class representations on the algorithm gen-

erated side. We combine these success scores of class representations by weighting

with class size, summing up and taking the average. And we obtain the weighted

average F-measure, wF-measure, overall success of clustering. Being composed of

the harmonic mean of precision and recall, wF-measure evens up the affect of num-

ber of clusters. Overall clustering performance is computed as follows.

wF -measure =
1

∑nclass

i=1 |classi|

nclass
∑

i=1

(max
j

{F -measure(i, j)} |classi|) (4.4)

where nclass and ncluster are respectively the number of classes and clusters. If we

summarize, we compute the success score, F-measure, between each ground truth

and represented cluster with Equation 4.3. Then, for each class in the ground

truth we find the best matching cluster (that has the maximum F-measure among

all clusters) is selected. The maximum F-measure for each class is multiplied with

class size to add weight. And lastly, the values obtained are summed up and the

average is the resultant success of the generated clustering.

4.1.3 Evaluation with Supportive Measures

Additionally, we use purity, contamination [31] and normalized mutual infor-

mation (NMI) evaluation metrics during the evaluation of algorithm generated

clusters with ground truth.

• Contamination: Cluster contamination measure described in [31], aims to

assess how much clusters are contaminated by containing documents from

different classes. A pure cluster contains only documents from only one

ground truth cluster. Cluster contamination measure of a pure cluster is 0.

In contrast, if a cluster contains documents from more than one partition,

it is contaminated within 0-1 range. Different than other measures, lower

contamination means better clustering.
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• Purity: Cluster purity, on the other hand, expose the purity of a cluster,

by assigning it to the class most frequent in it, and summing up number

of common documents and dividing by number of documents gives us the

purity of algorithm generated clusters. Disadvantage of purity is that it

increases as number of clusters increase. More information can be found in

[28].

• Normalized mutual information (NMI): It measures the amount of

information we obtain about classes if we know the clusters. It computes

and sums up mutual information between each class and cluster to calculate

the overall success. Afterwards, normalization is obtained by considering

the entropy of clusters and classes. More information can be found in

[28]. Due to the normalization of mutual information, it can be used for

evaluating methods with varying number of clusters.

We use the implementations of wF-measure, contamination and normalized mu-

tual information directly from Carrot2 API [42]. This approach allows the com-

parison of the proposed method’s result with the methods that will be developed

in the future, using the same datasets and metrics.

4.2 Labeling Evaluation

In most of the SRC methods human judgment is preferred to evaluate the labeling

performance; however, this approach is very expensive and difficult to repeat for

different methods or parameters. Due to such drawbacks, it is difficult to compare

distinct labeling methods based on human judgment. So, we propose a new metric

called simF-measure to automatically evaluate the success of generated labels.
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4.3 Comparison of Ground Truth and Gener-

ated Label

The measure simF-measure is based on the assessment of similarity between two

labels (ground truth and generated label). We use four similarity metrics to au-

tomatically find similarity between generated label and ground truth label and

they are semantic similarity, exact, partial and overlap match. Each similar-

ity metric reflects the labeling performance from different aspects. While exact

match is strict to the ground truth, partial match requires the ground truth struc-

ture (order of words) is preserved partially. Overlap match considers how close

suggested labels are to the ground truth. Lastly, semantic similarity finds the

underlying semantic relationship between labels.

Semantic similarity. Semantic similarity is a research field in artificial

intelligence, that aims to determine the similarity between concepts by mapping

them into an ontology and investigating their relationship within the ontology. In

this thesis, we use semantic similarity to detect the similarity between the ground

truth and proposed label. For the experiments, we use Java WordNet Similarity

Library [32] that exploits WordNet [29] as the ontology source.

The semantic similarity metric outputs a similarity value within the range

of 0 and 1 to quantify the similarity between two labels. Although there are

different formulations of this metric, we are using the algorithm presented in [22]

that works based on the formulation of [34] by using the information content

concept of information theory. For example, in our experiments, ground truth

and generated label pairs “News” - “Broadcasts” and “Sound Files” - “Streaming

Audio” are found to share respectively 0.90 and 0.78 similarity according to the

semantic similarity metric of [22].

During label evaluation, if the ground truth class is Others cluster, and algo-

rithm cluster is not, or vice versa, the similarity score between labels is set to 0.

In addition to the semantic similarity metric, we also use partial, exact and over-

lap match metrics to evaluate the similarities between ground truth and proposed
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labels. Unlike semantic similarity, they give Boolean output; 1 for similarity and

0 for dissimilarity. Before applying these metrics, stopwords are eliminated and

stemming is applied to labels.

Exact match. It suggests similarity if the generated label is the same as the

ground truth or the generated label covers the other. To exemplify, when ground

truth and generated label pair is “Instruments” - “Musical Instrument”, exact

match is ensured.

Partial match. It suggests similarity if the cluster label covers the ground

truth label or vice versa. For instance, the ground truth - extracted label pair

“USS Coral Sea, disambiguation” - “USS Coral Sea” is accepted, where the label

found is the subset of the suggested label. The partial and exact match do not

cover the case when the words in ground truth change order in generated label.

Overlap match. It aims to catch the slightest similarity between labels. If

the intersection between the label and ground truth label is not empty, then the

overlap match accepts the label. As an example; if the ground truth label is

“Editorial Illustration”, the overlap match accepts the generated label “Digital

illustrations”. Overlap match unlike the exact and partial match strategies, do

not require that the order of words in ground truth are preserved in generated

label.

4.4 Labeling Evaluation Measure: simF-measure

We decide to assess similarity between two labels by using similarity metrics, ex-

act, partial, overlap match, and semantic similarity. In order to obtain a robust

labeling evaluation metric for the entire clustering structure, we introduce a new

measure, simF-measure, based on precision and recall. In this formulation, similar-

ity precision (simprecision) represents to what extend labels presented to the user

resemble the ground truth labels and similarity recall (simrecall) defines to what

extend ground truth labels are reflected to the user.
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The methodology for computing the overall similarity can be summarized as

follows. For each class in the ground truth set, we find the matching cluster by

using the highest F-measure principle. Then, we compute the similarity between

the labels by using one of the similarity metrics (represented as similarity function

in Equations 4.5 and 4.6). After that, we sum up the similarity scores for all

classes and normalize by the number of classes to find the simrecall. We find the

simprecision by applying the same method for the clusters. Finally, the simF-measure

is computed as the harmonic mean of simrecall and simprecision. This labeling

measure is stable with respect to number of clusters, because it depends on both

class and cluster perspectives coming from the harmonic mean. The necessary

formulation for this procedure can be derived as follows.

simi = similarity {label(classi), label(clustermaxF -measure(i,j))} (4.5)

simj = similarity {label(clusterj), label(classmaxF -measure(i,j))} (4.6)

simprecision =

∑ncluster

j=1 simj

ncluster

(4.7)

simrecall =

∑nclass

i=1 simi

nclass

(4.8)

simF -measure =
2× simrecall × simprecision

simrecall + simprecision

(4.9)

Equations 4.5 and 4.6 are described in Figure 4.3. Specifically, matching

classes and clusters is shown for the calculation of similarity. To compute Equa-

tion 4.6, the arrows from each class to a cluster is drawn for the cluster with

highest F-measure. To compute Equation 4.6, the dashed arrows from each clus-

ter to a class is drawn for the class which gives the highest F-measure. Afterwards,

the similarity between matched classes and clusters are calculated using similar-

ity metrics; semantic similarity, exact, partial and overlap match. This step is

represented as similarity function in Equations 4.5 and 4.6.
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Figure 4.3: Demonstration of matching classes and clusters (that give maximum
F-measure) for the calculation of similarity using Equations 4.5 and 4.6 for ex-
ample clustering structures. Each class is matched with a cluster, that gives the
highest F-measure among all clusters. The same operation is done for clusters
too. We use each class and cluster match to compute the similarity between
labels of them.



Chapter 5

Experimental Environment and

Results

5.1 Experimental Environment

In order to assess the performance of the proposed algorithm, C3M+K-means,

we perform experiments in two publicly available datasets specific to SRC task:

the Ambient Dataset [12] and ODP-239 Dataset [13]. The Ambient Dataset is

constructed from ambiguous Wikipedia entries [3] and designed for testing with

the ambiguous words that can be used for different meanings (subtopics). It

includes 44 ambiguous queries and 100 snippets for each query that are obtained

from a search engine. Each result in the dataset is represented with a URL, title

and a very short text summarizing the web page. Human judgment is used for

selecting the subtopic of each result from the meanings of the query given in

Wikipedia. Note that the Ambient Dataset also includes some results that are

not matched to any subtopic. To build a consistent evaluation scheme with our

clustering method, we create Others cluster for these unmatched results and add

this cluster to the ground truth.

The ODP-239 dataset consists of 239 queries, each with 100 snippets and

about 10 subtopics. Each search result consists of a URL, title and a very short

45
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Table 5.1: Statistical information about the Ambient and ODP-239 dataset

Property Ambient ODP-239

No. of query 44 239
Avg. No. of snippets per query 100 107.03
Total no. of snippets 4400 25580
Avg. No. of clusters per query 8.93 9.56
Avg. No. of snippets per cluster 12.45 11.38
Avg. No. of words per ground truth label 8.6 1.63
Avg. No. of words per snippet 30.02 19

text. The dataset is derived from Open Directory Project (ODP) [2], so human

judgment is not needed for obtaining ground truth clustering. Unlike the Ambient

dataset, no result is left unclustered in the ODP-239 dataset. Ambient focuses

on search result clustering task with results that belong to different subtopics

of an ambiguous query. Additionally, the results are retrieved from a search

engine. Whereas ODP-239 focuses on multi-topic queries and classification task

with results that belong to different categories of ODP.

Table 5.1 shows statistical properties of two datasets. It demonstrates the

differences between datasets. In Section 5.2, the affect of datasets on experimental

results is discussed from the point of view of the statistical information provided

in this table.

5.2 Experimental Results

This section provides the evaluation results of our approach to clustering and

labeling tasks in the datasets described in Section 5.1. We present both the results

of C3M and C3M+K-means methods to discuss the effect of using sequential k-

means clustering. We also provide the success of suffix tree clustering and Lingo

in the datasets to compare the performance our algorithm with these prominent

methods.
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5.2.1 Clustering Results

In this part, we aim to measure the success of the generated partitioning (flat)

clusterings of methods. First step is to prove that the proposed method performs

statistically different than random clustering. Afterwards, we address the perfor-

mance of the proposed method using mainly wF-measure measure. We also provide

supportive measurements for clustering evaluation.

5.2.1.1 Clustering Performance versus Random Clustering

The first step of the clustering evaluation is to prove that the algorithm shows sig-

nificant difference from random clustering according to the Monte Carlo method

[21] as described in Section 4.1.1. Figures 5.1 and 5.2 present the histograms of

the first queries random clusterings average target clusters for 1000 random clus-

terings and the proposed method’s average number of target cluster (nt) is shown

with dashed line. According to these plots, the proposed algorithm’s performance

is better than all of the random clusterings in each dataset. We use Monte Carlo

% term, to represent the percentage of random clusterings outperformed by the

proposed method, which is %100 in the figures. For all queries, on the average,

the proposed method outperforms %97.3 (in Ambient) and %98.8 (in ODP-239)

of the 1000 random clusterings. In Table 5.2, comparison of the random cluster-

ings with respect to the proposed method are given (average of ntr and nt values

for all queries). It is observed that, the proposed method performs significantly

different from random with smaller number of target clusters than random.

We apply two-tailed and paired t-test to prove the significant difference for

each query as described in Section 4.1.1. For each query we obtain two distribu-

tions, for the proposed method and average of random clusterings (from ntr and

nt samples of all queries). We use t-test to compare two distributions with each

other. The data for this test is presented in Appendix. In our experiments, we

prove the statistical significance of the proposed method with respect to random

clusterings using t-test, as in the Monte Experiment.
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Figure 5.1: The Monte Carlo experiment for the first query of the Ambient
dataset. Histogram of 1000 randomly generated clusterings’ average number of
target clusters with respect to the proposed method’s nt value (shown as a dashed
line)
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Figure 5.2: The Monte Carlo experiment for the first query of the ODP-239
dataset. Histogram of 1000 randomly generated clusterings’ average number of
target clusters with respect to the proposed method’s nt value (shown as a dashed
line)
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Table 5.2: Clustering analysis with random clustering in terms of nt, ntr and
Monte Carlo % metrics.

Dataset Algorithm nt ntr Monte Carlo %

Ambient
C3M 3.3903 3.9895 91.1409

C3M+K-means 2.4698 3.6064 97.275

ODP-239
C3M 4.2195 5.0446 95.8393

C3M+K-means 3.2096 4.6262 98.7619

Table 5.3: Clustering results in terms of wF-measure

Dataset Algorithm wF-measure

Ambient

C3M 0.444
C3M+K-means 0.603

STC 0.413
Lingo 0.370

ODP-239

C3M 0.386
C3M+K-means 0.464

STC 0.510
Lingo 0.420

5.2.1.2 Clustering Results with Main Evaluation Measure: wF-measure

In this section, we demonstrate the clustering performance of the proposed

method in a comparative manner. We test our algorithm in the same datasets

by using main evaluation measure wF-measure success measure. Table 5.3 details

the average results for all queries in both datasets including the results for suffix

tree clustering and Lingo algorithms.

As seen in Table 5.3, the proposed C3M+K-means method performs the best

among all methods in the Ambient dataset when we look at the wF-measure results.

To prove the statistically significance of our results with respect to the other algo-

rithms, we also run a two-tailed, paired t-test over wF-measure scores of all queries

in Ambient. With a threshold level of 0.01, we achieve statistical significance

in our results with very small p-values (1.28x10−9 and 2.53x10−13 for STC and
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Lingo respectively).

On the other hand, the proposed method ranks second in the ODP-239 dataset

with a %4.6 difference. The experiments show that this difference between STC

and C3M+K-means is not statistically significant, so the proposed algorithm is

also successful in clustering the ODP-239 dataset. Notice that, the usage of

sequential k-means as a secondary clustering mechanism after the C3M method

increases the clustering performance significantly. Obtaining high success rates

in Ambient is more important since it contains ambiguous queries with results

derived from a search engine, is more similar to real life SRC tasks, while ODP-

239 is more suitable for classification tasks.

Now, we criticize our approach for clustering by considering alternative meth-

ods. In order to discuss the importance of C3M algorithm in the proposed method,

we perform randomly started k-means (random k-means). For the stabilization

of random behavior, each query of the datasets is run for 1000 times and the av-

erage of wF-measure scores is set as the result of the query. The results are shown

in Table 5.2.1.2. If we repeat again, random k-means gives on average 0.526 and

0.437 respectively in Ambient and ODP-239. Moreover, we perform the original

k-means instead of sequential k-means after C3M algorithm, resulting 0.481 and

0.457 wF-measure scores in two datasets. If we compare these outputs with respect

to the proposed method C3M+K-means’ success, we observe that the difference

among clustering methods are more obvious in Ambient than the other dataset.

We show that using both C3M and sequential k-means is important because this

association increases the success of clustering in both datasets, especially in the

Ambient dataset.

5.2.1.3 Clustering Results with Supportive Measures

Additionally, we present clustering results for three more metrics: Purity, contam-

ination and NMI in Table 5.5. We discuss important features of these metrics

in Section 4.1. Purity and contamination are reflect counterparts of the same

concept pureness of clustering. NMI measures the success of clustering from an
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Table 5.4: Table shows the wF-measure scores of alternative methods and proposed
method C3M+K-means

Method Ambient ODP-239
Random K-means 0.526 0.437

C3M+Original K-means 0.481 0.457
C3M+K-means 0.603 0.464

Table 5.5: Clustering results in terms of purity, contamination and NMI metrics

Dataset Algorithm Purity Contamination NMI

Ambient

C3M 0.628 0.588 0.262
C3M+K-means 0.738 0.440 0.419

STC 0.768 0.380 0.459
Lingo 0.818 0.332 0.452

ODP-239

C3M 0.507 0.706 0.305
C3M+K-means 0.580 0.605 0.392

STC 0.5941 0.583 0.424
Lingo 0.711 0.470 0.476

information theoretic perspective. As seen in Table 5.5, Lingo shows better per-

formance with respect to these metrics except the higher effectiveness of STC

with NMI evaluation metric in Ambient dataset.

Experimental results for clustering are presented in this Section. If we discuss

affect of the datasets on the success results obtained, we can consult to Table 5.1.

It demonstrates the statistical differences between datasets. For clustering mea-

sures, methods success in the ODP-239 dataset is lower with respect to Ambient

dataset, except for the NMI metric. The gap between them is especially obvious

for wF-measure, which is the main metric we consult for clustering evaluation. The

reason behind this is possibly resulting from the average number of words per

snippet property, Ambient and ODP-239 contains 30 and 19 words per snippet

respectively in Table 5.1. We can conclude that lesser information inherent in

ODP-239 makes the collection harder to cluster.
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Table 5.6: Ground truth labels and matching labels generated by the proposed
method for the “Water Sports” query of ODP-239. Exact (E), partial (P), overlap
(O) match and semantic (S) similarity scores are provided.

Ground Truth Label Generated Label E P O S

Swimming and Diving United States 0 0 0 0.40
Canoeing and Kayaking Photo 0 0 0 0.42
Rowing Row 1 1 1 1.00
Surfing Surf 1 1 1 1.00
Water Skiing and Wakeboarding Wakeboarding 0 1 1 1.00
Water Polo Water Polo 1 1 1 1.00
Dragon Boating Dragon Boat 1 1 1 1.00
Windsurfing Windsurfing 1 1 1 1.00
Kitesurfing Photo 0 0 0 0.00
Surf Life Saving Surf 0 1 1 1.00
- Pictures - - - -
- Build - - - -

5.2.2 Labeling Results

This section discusses the experiments we performed to evaluate the proposed

labeling method. In Table 5.6, example labels of the proposed method are shown

for the “Water Sports” topic of the ODP-239 dataset. Our method can success-

fully determine some of the labels as seen in the table. As seen in this example

“Rowing” and “Row” are determined as similar, due to the stemming performed

before the labeling evaluation as described in Section 4.2 (except the semantic

similarity, which handles this step itself). However, sometimes it sets insignificant

terms as labels. Unfortunately, semantic similarity metric find likeness between

unrelated labels in the first two rows using the WordNet hierarchy.

From now on we will inspect Table 5.7 which details the labeling perfor-

mances. Success rates in the Ambient and ODP-239 datasets are shown based

on the semantic similarity, exact, partial, and overlap match metrics applied on

similarity F-measure (simF-measure) label evaluation measure. In contrast to the

smaller exact match scores by all methods in Ambient relative to ODP-239, we

observe higher scores in the other measures. The reason behind is that the ground
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Table 5.7: Labeling results in terms of simF-measure. Similarity between labels are
decided by Exact (E), Partial (P), Overlap (O) match and semantic similarity
(S) metrics.

Dataset Algorithm E P O S

Ambient

C3M 0.002 0.151 0.481 0.214
C3M+K-means 0.005 0.235 0.488 0.261

STC 0.086 0.335 0.455 0.331
Lingo 0.049 0.209 0.406 0.225

ODP

C3M 0.091 0.112 0.149 0.108
C3M+K-means 0.151 0.185 0.221 0.172

STC 0.119 0.176 0.195 0.172
Lingo 0.112 0.144 0.168 0.137

truth labels, which define the meaning of ambiguous words, are too long in the

Ambient dataset. For example, “Aida, the musical by Elton John and Tim Rice

whose story is based on that of the opera” is one of the subtopics of query “Aida”.

On the other hand, in general, ODP-239 contains one to three-word subtopics,

e.g., “News and Media”. Note that scores are low by all methods. Due to the

labeling evaluation strategy, success of labeling depends on how good clusters are

obtained.

For the Ambient dataset, our algorithm performs best in overlap match, while

ranking second in other measures following the STC algorithm except the exact

match (in exact match case Lingo is the second best). We show the significance

of these results using a t-test as described previously. In contrast, our method

outperforms the other methods in all the success metrics in the ODP-239 dataset

except the semantic similarity match (in semantic similarity match case it is in

tie with STC). However, statistical significance is not observed due to the close

results of the proposed method and STC. In the light of these results, it can be

concluded that, the proposed method shows comparative performance on labeling

clusters.

In fact, the automatically computed similarity metrics are more strict than
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human judgment and they produce smaller similarity scores since they only com-

pare with ground truth label, while human can also consider cluster content. In

addition, automatic evaluation finds the similarity between labels if they share

words or have a relationship in the ontology, but human infers similarity intu-

itively, even such an association do not exists. However, the disadvantage of

such an evaluation method is that the results may vary from person to person.

Therefore, we can say that, using an automatic similarity metric simplifies the

comparison of search result labeling methods. Inserting F-measure into the com-

putation of simF-measure provides that the cluster content should match with the

class content. This ensures that not only the label similarity is enough but also

the documents in the cluster should be common with the ground truth subtopic.

Table 5.1 shows statistical properties of two datasets. From the labeling point

of view, as we state above, the ODP-239 dataset labels are much more shorter

than Ambient. Average number of words per ground truth label property is

8.6 and 1.63 for Ambient and ODP-239 respectively. The success of labeling is

lower in ODP-239 dataset, which is calculated by measuring the similarity be-

tween labels. Therefore, providing more information about the label (in Ambient

dataset), may help the evaluation of labeling. Also, longer descriptions decrease

the strictness of ground truth labels, by allowing different combinations of gen-

erated labels.

5.2.3 Time Performance

Lastly, we measure the average process time for one query for the two datasets.

Results are shown in Table 5.8, where time is presented in milliseconds. The

methods are run in a computer with properties described below:

• Processor: Pentium M 740 Centrino - 1.73 GHz 533 Mhz SpeedStep (2 MB

Cache)

• RAM: 1 GB DDR 333-SDRAM (Max.1 GB)

• Operating system: Ubuntu 10.10
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Table 5.8: Average time performances in terms of millisecond

Dataset Algorithm Average Time Performance

Ambient
C3M+K-means 390.20

STC 32.18
Lingo 307.30

ODP
C3M+K-means 300.34

STC 18.03
Lingo 271.50

While STC is very efficient in terms of time with respect to the other two

methods, the proposed method and Lingo. The proposed method ranks the third

in terms of time performance, but the values for Ambient and Lingo shows that,

our method is still appropriate for search result clustering by presenting results in

0.3 and 0.4 seconds for the two datasets. In addition, our method’s performance

is comparable with Lingo’s performance.



Chapter 6

Conclusion

In this thesis, we propose an approach for solving a key information retrieval

problem: search result clustering which covers both clustering and labeling of

search results. Our study addresses the difficulty of this problem with motivation

and necessity of it. Our main contribution on SRC can be summarized as taking

document relationships into account by using cover coefficient clustering method

and using its results as an initial clustering structure for the well-known sequen-

tial k-means clustering algorithm for improving the SRC performance. Another

contribution of this study is a novel cluster labeling approach called “labeling via

term weighting.” The method observes both the behavior of terms within the

cluster and in the entire search results for the query.

Our approach for the evaluation of SRC is also a contribution of this thesis.

We introduce a new metric to assess the effectiveness of cluster labeling, namely

similarity F-measure (simF-measure). This measure employs traditional precision

and recall metrics. The resemblance between the generated and ground truth la-

bels is determined by exact, partial, and overlap match similarity metrics that we

introduce in this thesis. Also use of semantic similarity research area is suggested

for resemblance determination, during labeling evaluation.

Extensive experimental results for both clustering and labeling show that the

proposed method successfully cluster and label search results. It also maintains a

56



CHAPTER 6. CONCLUSION 57

performance competitive with the two state-of-the-art methods used for clustering

and cluster labeling; namely Lingo and suffix tree clustering. The experiments

run on publicly available two datasets, Ambient and ODP-239, specially created

for SRC task.

Future pointers for enhancing SRC problem are:

1. A new approach for estimating number of clusters can be utilized, instead

of setting number of clusters to a fixed size.

2. A new method for converting flat (partitioning) clustering structures to

overlapping can be utilized.

3. Creation of a Turkish dataset enables the application of search result clus-

tering problem to Turkish. This dataset is useful for solving problems orig-

inating from the structure of Turkish language. Especially, the success of

phrase extraction phase may not be observed for Turkish language. Mea-

suring the success of suffix tree based phrase extraction for Turkish can be

valuable. Hence, proposing new solutions for finding phrases in Turkish

language in limited amount of time can be a future pointer.

4. The success of SRC problem highly depends on the features extracted from

snippets. The features that reveal the differences between snippets are

valuable for clustering. And features that are meaningful, expressive and

natural to human are valuable for labeling. Therefore, utilizing new feature

extraction methods for extracting features for clustering and labeling tasks

could increase the success of SRC methods.

5. An evaluation for the evaluation measures’ stability similar to [5] can be

valuable. By means of this study, standard evaluation metrics for SRC can

be proposed. The approach for dealing with “Others” cluster used in SRC

clustering structure heavily affects the measurement results.
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Appendix A

Data

Table A.1 and Table A.2 present the data used in Section 5.2.1.1 for Ambi-

ent and ODP-239 datasets. The data given is used during t-test experiments

to prove the statistical significance of the proposed method. More information

about these experiments can be found in Sections sec:random:evaluation and

sec:cluster:results:random.
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Table A.1: Comparison of the proposed method’s output and random cluster-
ing with respect to average number of target clusters for each query in Ambi-
ent dataset is presented. ntr is the random clustering’s and nt is the proposed
method’s abbreviation for average number of target clusters. ntr is obtained from
the average of average number of target clusters of 1000 random clusterings.

Query No nt ntr Query No nt ntr

1 1.92 2.92 23 2.33 3.61
2 4.25 7.29 24 2.63 4.09
3 3.40 5.14 25 2.50 3.66
4 3.80 5.49 26 1.93 2.39
5 2.44 3.01 27 2.00 3.01
6 2.86 4.02 28 3.50 5.66
7 3.80 5.72 29 2.10 3.68
8 2.00 3.38 30 2.33 2.61
9 2.11 3.84 31 2.75 4.02
10 2.22 3.01 32 2.11 2.82
11 2.33 4.37 33 3.00 5.49
12 1.92 3.29 34 2.71 4.10
13 2.30 3.29 35 1.77 2.26
14 1.75 2.29 36 3.25 3.65
15 3.25 4.74 37 2.43 3.47
16 2.71 4.36 38 3.00 3.87
17 2.63 4.59 39 2.64 3.36
18 2.43 3.34 40 1.87 2.47
19 1.69 2.29 41 2.00 3.39
20 4.00 4.47 42 2.43 3.48
21 2.88 4.41 43 2.38 3.02
22 2.50 3.76 44 2.09 2.82

Average 2.57 3.77
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Table A.2: Comparison of the proposed method’s output and random cluster-
ing with respect to average number of target clusters for each query in ODP-
239 dataset is presented. ntr is the random clustering’s and nt is the proposed
method’s abbreviation for average number of target clusters. ntr is obtained from
the average of average number of target clusters of 1000 random clusterings.

Query No nt ntr Query No nt ntr Query No nt ntr

1 2.40 4.26 31 2.40 4.54 61 2.90 4.37
2 3.10 4.39 32 3.20 4.73 62 3.20 4.19
3 3.50 4.00 33 4.30 4.45 63 4.33 4.12
4 3.00 4.14 34 3.20 4.72 64 2.78 4.51
5 2.60 5.36 35 4.20 5.19 65 3.30 4.04
6 3.29 4.46 36 3.30 4.97 66 4.17 6.03
7 3.80 5.13 37 3.30 4.88 67 2.70 3.54
8 3.80 4.69 38 3.10 4.69 68 3.20 4.46
9 2.80 3.81 39 3.80 5.27 69 3.40 5.07
10 2.70 5.08 40 3.30 4.56 70 3.40 4.76
11 3.78 5.41 41 2.90 4.48 71 3.40 4.57
12 4.60 5.31 42 2.90 4.39 72 3.30 5.15
13 2.50 4.74 43 2.90 5.13 73 3.50 4.99
14 3.00 4.08 44 2.50 4.43 74 3.67 5.21
15 2.90 4.12 45 2.80 4.69 75 3.40 4.07
16 2.90 3.96 46 4.10 4.84 76 2.80 5.12
17 4.57 5.32 47 3.20 4.43 77 4.00 4.97
18 3.00 5.18 48 2.90 4.63 78 3.00 3.58
19 3.40 4.57 49 2.89 4.84 79 2.80 4.18
20 2.50 3.87 50 3.90 5.35 80 3.70 4.89
21 2.20 4.54 51 3.40 5.07 81 3.10 6.01
22 3.40 4.53 52 3.20 4.64 82 3.00 3.92
23 2.70 5.01 53 3.00 4.20 83 3.38 5.09
24 3.30 4.65 54 3.00 4.29 84 3.20 4.20
25 2.90 4.32 55 4.40 5.28 85 4.00 5.44
26 2.90 4.36 56 3.00 5.21 86 3.30 4.19
27 3.60 4.63 57 3.10 4.63 87 4.10 5.27
28 3.14 5.96 58 3.90 5.20 88 3.10 4.54
29 4.20 5.57 59 3.50 5.82 89 3.40 4.35
30 3.80 5.20 60 3.20 5.42 90 4.40 4.72
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Query No nt ntr Query No nt ntr Query No nt ntr

91 3.50 4.37 121 3.30 3.98 151 3.00 3.50
92 3.70 4.72 122 3.10 3.98 152 3.00 4.62
93 2.50 4.46 123 3.60 4.15 153 2.60 4.06
94 3.00 3.79 124 3.30 4.47 154 3.25 5.15
95 2.86 5.02 125 2.70 4.70 155 2.90 4.33
96 3.38 3.94 126 1.90 3.60 156 2.80 3.75
97 3.20 4.18 127 2.40 3.61 157 3.40 5.68
98 3.00 4.80 128 4.00 4.81 158 2.70 4.59
99 2.90 5.06 129 3.40 4.06 159 3.11 4.80
100 3.30 5.11 130 3.33 5.84 160 2.80 5.34
101 2.70 4.03 131 4.14 5.98 161 3.30 4.58
102 3.30 4.82 132 3.90 4.68 162 2.90 4.72
103 3.75 5.51 133 2.40 4.49 163 3.70 4.46
104 2.70 4.61 134 2.80 4.31 164 3.20 4.72
105 3.50 5.19 135 3.50 4.24 165 4.67 6.72
106 2.60 3.34 136 2.80 3.91 166 3.80 5.62
107 3.30 4.87 137 3.40 5.19 167 3.40 4.76
108 1.90 4.92 138 3.50 4.83 168 3.00 4.23
109 2.90 4.60 139 3.40 4.93 169 2.83 4.67
110 4.20 5.62 140 3.50 4.65 170 4.00 4.86
111 3.56 4.18 141 3.33 4.20 171 3.20 5.49
112 3.10 4.70 142 3.10 3.51 172 5.30 5.88
113 3.30 4.49 143 3.80 4.95 173 3.00 4.95
114 2.90 3.87 144 2.40 4.21 174 2.70 4.43
115 3.83 4.04 145 3.00 5.52 175 3.60 5.33
116 2.90 4.38 146 3.70 4.73 176 3.80 4.86
117 2.80 4.79 147 3.80 4.63 177 3.10 4.88
118 3.33 4.93 148 3.40 5.01 178 2.90 4.56
119 2.90 3.87 149 3.40 4.50 179 4.00 4.84
120 3.30 5.10 150 3.30 5.09 180 2.38 3.89
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Query No nt ntr Query No nt ntr

181 2.70 4.29 211 3.17 4.45
182 2.40 5.80 212 3.60 4.26
183 4.43 5.94 213 3.10 4.10
184 3.20 4.80 214 4.67 5.50
185 2.86 5.70 215 3.60 5.34
186 4.00 5.31 216 3.40 4.80
187 2.70 3.20 217 2.80 3.98
188 2.70 4.83 218 3.10 4.49
189 3.20 5.03 219 3.25 5.04
190 2.60 4.38 220 2.20 3.58
191 3.40 4.57 221 2.90 4.69
192 4.30 5.13 222 2.70 5.05
193 3.10 3.89 223 2.40 3.98
194 2.70 3.65 224 3.60 5.09
195 2.80 4.31 225 2.80 4.29
196 2.40 4.11 226 2.33 4.14
197 2.90 4.79 227 3.70 4.33
198 2.90 4.32 228 3.30 4.30
199 4.29 5.83 229 2.40 3.47
200 3.30 4.23 230 3.10 4.43
201 2.80 4.52 231 3.57 4.24
202 3.10 4.55 232 3.10 4.40
203 2.50 4.27 233 2.80 5.14
204 4.20 4.67 234 3.50 4.71
205 3.40 4.39 235 3.40 4.18
206 3.60 4.76 236 3.10 4.23
207 2.70 4.15 237 2.50 3.66
208 2.60 2.93 238 3.20 4.38
209 2.90 4.74 239 2.30 4.89
210 2.90 4.85

Average 3.22 4.65


