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ABSTRACT

IMPROVING VISUAL SLAM BY FILTERING
OUTLIERS WITH THE AID OF OPTICAL FLOW

Tolga Özaslan

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Uluç Saranlı

July, 2011

Simultaneous Localization and Mapping (SLAM) for mobile robots has been one

of the challenging problems for the robotics community. Extensive study of this

problem in recent years has somewhat saturated the theoretical and practical

background on this topic. Within last few years, researches on SLAM have been

headed towards Visual SLAM, in which camera is used as the primary sensor.

Superior to many SLAM application run with planar robots, VSLAM allows us to

estimate the 3D model of the environment and 6-DOF pose of the robot. Being

applied to robotics only recently, VSLAM still has a lot of room for improvement.

In particular, a common issue both in normal and Visual SLAM algorithms is

the data association problem. Wrong data association either disturbs stability or

result in divergence of the SLAM process. In this study, we propose two outlier

elimination methods which use predicted feature location error and optical flow

field. The former method asserts estimated landmark projection and its mea-

surement locations to be close. The latter accepts optical flow field as a reference

and compares the vector formed by consecutive matched feature locations; elim-

inates matches contradicting with the local optical flow vector field. We have

shown these two methods to be saving VSLAM from divergence and improving

its overall performance. We have also described our new modular SLAM library,

SLAM++.

Keywords: Visual Simultaneous Localization and Mapping (SLAM), optical flow,

outlier elimination.
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ÖZET

GÖRSEL EŞZAMANLI HARITALAMA VE
KONUMLANDIRMA PROBLEMININ

PERFORMANSINI AYKIRI GOZLEMLERI OPTIK AKI
YARDIMIYLA ELEYEREK ARTIRMA

Tolga Özaslan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Uluç Saranlı

Temmuz, 2011

Mobil robotlarla Eşzamanlı Haritalama ve Konumlandırma (EHK), robotik

camiasının en zorlu problemlerinden biridir. Geçtiğimiz birkaç yılda, üzerine

yapılan yoğun çalışmalar neticesinde, bu konu teorik ve pratik açılardan doyuma

ulaşmıştır. Geçtiğimiz birkaç sene içerisinde, araştırmaların yönelimi EHK’den,

ölçüm aygıtı olarak kameraların kullanıldığı Görsel EHK’ye doğru olmuştur.

Düzlemsel uzayda çalışan birçok EHK uygulamasına kıyasen daha üstün olarak,

GEHK, ortamın 3 boyutlu modelini ve robotun 6 serbestlik dereceli duru-

munu da kestirebilmektedir. Robotik çalışmalarına henüz uygulanmakla beraber,

GEHK’nin geliştirilmesi gereken çok yönleri bulunmaktadır. Özellikle, EHK ve

GEHK algoritmalarının ortak problemi bilgi eşlemesidir. Hatalı bilgi eşlemesi

EHK’nin kararlığını olumsuz yönde etkileyebilir ya da tamamen ıraksamasına

neden olabilir. Bu çalışmada, aykırı gözlemleri elemek için, tahmini izdüşüm

hatasını ve optik akı bilgisini kullanan iki yöntem öneriyoruz. İlk yöntem, harita

öğelerinin tahmini izdüşüm ve onlarla eşlenen ölçüm yerlerinin yakın olması

gerektiği mantığını kullanmaktadır. İkinci yöntem ise, optik akı vektor alanını

referans kabul edip, ardışık iki ölçüm ile belirlenen vektör ile, bölgesel optik akı

alanını kıyas ediyor; ve optik akı alanı ile çelişen ölçümleri eliyor. Çalışmamızda,

bu iki yöntemin, GEHK’nin ıraksamasını engellediğini ve genel performansını

artırdığını gösteriyoruz. Ayrıca, modüler bir EKH kütüphanesi olan SLAM++

yazılımımızı açıklıyoruz.

Anahtar sözcükler : Görsel Eşzamanlı Haritalama ve Konumlandırma, optik akı,

aykırı gözlem eleme.
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Chapter 1

Introduction

1.1 Motivation

Simultaneous Localization and Mapping has been one the most studied topics

in mobile robotics [31, 41]. This problem involves estimating the location of the

robot in the map while generating the map at the same time. The need for

mapping an environment comes from the need for automating robots. Robots are

designed so that they can achieve their tasks by themselves. Without knowledge

of how the environment is, autonomy cannot be achieved. However, real maps

are usually not available but even when they are, e.g. in the format of blueprints,

what an object means to the robot can change. For this reason, it is advantageous

for a robot to make its own map.

Due to this need, a large academic literature has grown in the last two decades

on the SLAM topic [12, 13, 19, 26, 28, 32, 39]. Most studies are concerned with

generating 2D maps using onboard sensors. In the last decade, these studies

continued to generate 3D maps as well. Consumer level cameras became one of

the commonly used sensors for building 3D maps of the environment. This type

of SLAM is named Visual-SLAM, or shortly VSLAM. Nowadays there are studies

in the literature which can do VSLAM in real time, i.e. at 30 fps [11, 25].

In SLAM, data association is one of the most common points of failure resulting

in wrong maps and even divergence of the algorithm. In the context of Visual

1



CHAPTER 1. INTRODUCTION 2

SLAM, data is a set of features extracted from image frames. Consequently, in

VSLAM, good data association means correct matching of these image features.

Matching these features with existing map components can be done in a controlled

way. In the literature, model based methods like RANSAC are used for outlier

elimination [10], presuming that a model is available for how feature points are

located. In our study, we use optical flow for eliminating false feature matches.

This way feature matches are eliminated up to a certain level, increasing the

overall performance of mapping and localization.

These goals also need a good VSLAM library and this has driven us to also

implement a modular VSLAM library. This gives us the chance of testing our

contributions both in simulated and real data sets.

1.2 Contributions

The two main contributions of this thesis are:

1. A new method to eliminate false interest point matches using optical flow.

2. Design and implement a C++ library for Visual SLAM tasks and applica-

tions.

We have performed outlier elimination using optical flow information and projec-

tion accuracy. In this study, we have also implemented a C++ library for Visual

SLAM. This library includes EKF-SLAM, FastSLAM 1.0 and FastSLAM 2.0. For

different purposes one of the SLAM versions can be run.

1.3 Organization of the Thesis

Chapter 2 starts the thesis with background on related topics. These topics

include optical flow calculation, interest point extraction and Simultaneous Lo-

calization and Mapping (SLAM). In Chapter 3, we describe several interest point

matching algorithms and introduce our two outlier elimination methods, optical

flow aided and prediction error based outlier eliminators. Chapter 4 gives results
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of several test scenarios on which the proposed outlier elimination methods are

applied. In Chapter 5, we briefly describe software architecture of our modular

SLAM library, SLAM++. Finally, we proceed with conclusion of our study and

discussion on the proposed methods.



Chapter 2

Background and Related Work

Visual SLAM uses cameras as primary sensors for localization and mapping.

Camera supplies color, texture and shape information from the environment.

However, this raw data should be processed in order to obtain useful information

in the form of ’local features’. Local features can be summarized as the set of

distinctive image regions of an image. These are often tracked for estimating their

3D location in space. Then, these local features can also be transformed into map

elements. For this reason, feature extraction and matching are important steps

in VSLAM. In the following chapters, brief descriptions about some of the mostly

used feature extraction and matching algorithms are given.

Optical flow calculation is another subtask within this thesis. The calculation of

optical flow, which in itself is a huge research area, gives pixel displacements in a

sequence of frames. Even though optical flow information is not used in existing

Visual SLAM studies, it can be useful in eliminating false feature matches. In

this thesis we use optical flow for this purpose. This chapter also gives brief

descriptions of a number of optical flow calculation algorithms.

The nature of the SLAM problem does not change according to which sensors are

used, so once they are modeled correctly, different types of sensors can be used. In

this study, we implement Visual SLAM (VSLAM), which uses monocular vision.

In Section 2.3 brief mathematical derivations of VSLAM are given as well.

4



CHAPTER 2. BACKGROUND AND RELATED WORK 5

2.1 Optical Flow

The calculation of optical flow is one of the fundamental problems in image pro-

cessing [2]. The aim of optical flow calculation is to compute 2D projections of 3D

velocities in the scene [22]. In other words, optical flow is the observed velocities of

intensity patterns on an image. There are various areas of application for optical

flow information such as motion estimation and surface reconstruction [1, 3, 21].

Depending on the application, dense or sparse flow fields may be needed. For

instance, for surface reconstruction, dense flow is required. However, for object

tracking, sparse flow may be adequate. Optical flow can also be used for extract-

ing spatial arrangements of objects in the scene by inspecting flow discontinuities.

In this study, we use flow vectors for eliminating false feature matches. As such,

we aim to increase the ratio of true matches to the total number of matches and

as a result, improve VSLAM performance.

Optical flow calculation techniques can be investigated under four main groups [2]:

differential methods, region-based methods, energy-based methods and phase-

based methods. Since in this study, we will only use differential methods, back-

ground on other methods will not be included.

Differential methods compute optical flow vectors using spatio temporal deriva-

tives of image sequences. Image intensity constancy is the main idea behind these

methods, with

I(x, t) = I(x− vt, 0), (2.1)

where x is the image pixel location, t is time and v is linear velocity [23]. Some

methods use the first order derivatives of the image sequence. Applying Taylor’s

expansion rule on (2.1) we obtain

∇I(x, t) · v + It(x, t) = 0, (2.2)

where It(x, t) denotes derivative of I(x, t) with respect to time, and ∇I(x, t) =

(Ix(v, t), Iy(v, t))
T where Ix and Iy are derivatives of I w.r.t. vx and vy respec-

tively.

Some other methods use the second order Taylor’s expansion of (2.1) to constrain
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velocities [5]. In other words, the Hessian of the image is used, with[
Ixx(x, t) Iyx(x, t)

Ixy(x, t) Iyy(x, t)

][
vx

vy

]
+

[
Itx(x, t)

Ity(x, t)

]
=

[
0

0

]
. (2.3)

Equation (2.3) can be derived from (2.1). This coincides with the conservation

of ∇I(x, t) with d∇I(x, t)/dt = 0. The above equations presume that I(x, t) is

differentiable. For this reason, numerical differentiation should be done carefully.

2.1.1 Horn and Schunck

Horn and Schunck [23] use gradient constancy of (2.2) with a global smoothness

term. For each pixel, we have only one known which is the intensity; but two

unknowns which are the vx and vy velocities. Due to this fact, optical flow

cannot be computed only using (2.2). For this reason, more constraints should be

introduced into problem. Horn and Schunck assumes smoothness of flow almost

everywhere in the image. The problem is handled as an energy minimization

problem. The closed form equation of the problem is as follows:∫
D

(∇I(x, t) · v + It(x, t))
2 + λ2(||∇vx||2 + ||∇vy||2)dx (2.4)

where D is the domain, in this case the image, and λ is the importance weight of

smoothness. They give an iterative solution to this energy minimization problem

as

vk+1
x = v̄kx −

Ix(Ixv̄
k
x + Iyv̄

k
y) + It

λ2 + I2
x + I2

y

(2.5)

vk+1
y = v̄ky −

Iy(Ixv̄
k
x + Iyv̄

k
y) + It

λ2 + I2
x + I2

y

, (2.6)

where k denotes the iteration number, v̄x and v̄y are weighted averages of velocity

component of the neighboring pixels and initial values are v0
x = 0 and v0

y = 0.
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2.1.2 Lucas and Kanade

Lucas and Kanade [30] assume constancy of flow in a local neighborhood of the

pixel under consideration. Using a least squares criterion, they solve (2.1) for all

the pixels in that neighborhood. Lucas and Kanade minimize the energy function

∑
x∈Ω

W 2(x)[∇I(x, t) · v + It(x, t)]
2, (2.7)

where W (x) is a windowing function. This function has higher coefficients in the

center of the window and smaller in peripherals. Solution to (2.7) is

ATW2Av = ATW2b, (2.8)

where

A = [∇I(x1), ..., I(xn)]T (2.9)

W = diag[W (x1), ...,W (xn)] (2.10)

b = −(It(x1), ..., It(xn))T . (2.11)

As a result, the solution is found as

v = [ATW2A]−1ATW2b. (2.12)

Since this is a local method, it may not give correct estimates for interiors of

uniform regions. There are implementations of this algorithm which assume

W (x) = 1. In this case the solution is the common least squares of (2.7). In

other cases, it becomes a weighted least squares problem.

2.1.3 General Variational Methods

In image processing, variational methods have attracted the attention of re-

searcher in recent years. These methods provide good and clear formalization

of flow model assumptions [44]. Once the mathematical model is formalized, the
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problem boils down to an energy minimization problem, which gives the best

result for the given model assumptions.

One of the earliest and pioneering methods, which uses variational methods for

computation of optical flow, is the study of Horn and Schunk [23] In this method,

the problem is minimizing the energy function which consists of data and smooth-

ness terms. Data term includes flow constraints such as gray value constancy; and

smoothness term constraints the flow to vary smoothly in space. The resultant

energy function to be minimized yields to be of the form

E(v) =

∫
(I(x + v)− I(x))2 + α(∇I(x + v)−∇I(x))dx. (2.13)

Data term can be edited to include more constraints, such as Hessian and Lapla-

cian constancy, which makes the problem harder but increases the accuracy in

the resultant flow field.

E(v) =

∫
(I(x + v)− I(x))2 + (H(I(x + v))−H(I(x)))2+ (2.14)

(∆(I(x + v))−∆(I(x)))2 + α(∇I(x + v)−∇I(x))dx. (2.15)

2.2 Feature Detectors

Local features are pieces of images, such as points, edgels or image patches, which

differ from their immediate neighborhood [43]. In the literature, there are many

feature extraction algorithms [14, 20, 37, 38, 40] some of which attach descriptors

to these features. These descriptors can be obtained by using image properties

such as gradients, curvatures, color, texture etc. Once a descriptor is associated

to a feature, it can be used for a wide range if applications. To illustrate, edges

can be interpreted as roads in a satellite image; blobs can be used as features in

cancer cell detections; corners are usually good for tracking with algorithms like

KLT [30]. Image mosaicking, camera calibration, pose estimation are some of the

other areas of applications for features detectors.

In some applications, such as tracking or calibration, good localization of features



CHAPTER 2. BACKGROUND AND RELATED WORK 9

becomes important. In contrast, in some other problems, exact location is not

so important but descriptors have more importance. Object recognition may be

a good example for this case. In recognition problems, rather than individual

features, statistics of a set of features becomes meaningful. As can be seen from

the above statements, every application has its distinct constraints. According

to these constraints, the best type of the feature and its descriptor differs.

Ideally a feature should be a point. However images are discrete signals with

smallest elements as pixels. For this reason, sometimes subpixel localization is

needed. In order to do subpixel localization pixels around a point should also be

investigated. Furthermore, for attaching descriptors to features, an image region

around the location of the feature is analyzed. As a result, the assumption of

’point feature’ is confuted with the above facts. In some applications like camera

calibration, 3D reconstruction descriptors are not needed. But in applications

like object recognition, VSLAM such extended descriptors are a must.

In [43], properties of an ideal local feature are listed as follows:

� Repeatability : Similar results should be obtained from different images

of a single scene. These images could be taken from different angles and

locations and there may also be lighting changes.

� Distinctiveness : Patterns at feature locations should be distinguishable for

better matching.

� Locality : The features should be local. A feature should not be defined

with a region, but a point.

� Quantity : Enough number of features should be extracted from a single

image. Too many and too few number of features are not desired.

� Accuracy : Location of features should be accurate both in image coordi-

nates and scale. Subpixel and subscale localizations should be done.

� Efficiency : Time needed for extracting features should allow time-critical

applications.

� Invariance : Under large deformations and intensity changes, description of

the feature should not change significantly.
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� Robustness : Accuracy of the extractor should not degrade under relatively

small image deformations.

The importance of these properties differs according to the application. In the

VSLAM literature, blobs, edgels, corners are among the mostly commonly used

types. FAST features [37] and Harris corners [20] with patches as descriptors

[25], SIFT [29] and SURF [4] features are among the most often used algorithms

for the VSLAM problem [34]. Repeatability, invariance are two of the most

important properties of a feature detector in a VSLAM application [16–18, 33],

since a feature should be detected several times while the camera is moving. Also,

features detected in different frames should be matched correctly. Efficiency is

again an important property if real time applications are to be developed. With an

increase of quantity, performance of VSLAM can degrade but this would increase

number of map components. This way, dense maps can be obtained and with

more features, localization performance also increases.

2.3 Simultaneous Localization and Mapping

In [31], the authors observe that “Simultaneous Localization and Mapping

(SLAM) addresses the problem of acquiring an environment map with a rov-

ing robot, while simultaneously localizing the robot relative to this map”. This

problem has attracted enormous attention from many robotics researchers in re-

cent years. In this context, the robot knows neither the map of the environment

nor its own pose. However, the robot is fed with a series of commands and

measurements, using which it should extract a map and estimate its own pose.

Compared to its two siblings, ’mapping’ in which the pose of the robot is given

and ’localization’ in which a map of the environment is given, it is obvious that

SLAM is a significantly harder problem. Fortunately, large body of literature

exists [8, 11, 15, 24, 35, 36, 42], as a result of which many difficulties in SLAM are

solved. Nevertheless, there is much room for development, since robots still can-

not be put out to a completely unknown environment and wander around.

In the SLAM problem, the pose of the robot at time t is denoted by st. In Visual
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SLAM, this pose includes 3D position and orientation, as well as translational

and rotational velocities. The state vector can change according to the type of

motion model. In this thesis, a constant velocity motion model is used. This

implies that, both rotational and translational velocities are assumed to remain

constant between consecutive frames. The complete trajectory of the robot, which

consists of the set of poses at each frame, is denoted with

st = {s1, s2, ..., st} . (2.16)

The environment of the robot is modeled as a set of N landmarks. These land-

marks may be the output of a SIFT feature detector. The set of N landmarks

represents a map Θ, denoted as

Θ = {θ1, θ2, ..., θN} . (2.17)

In this thesis, we assume that the robot and camera have equal meanings from

which one should understand a system with full state vector. The set of control

inputs are denoted as

ut = {u1, u2, ..., ut} . (2.18)

These inputs can be obtained from odometry, inertial navigation units or the

given commands may already be known.

While the robot moves, it takes measurements from its environment. Various

types of sensors can be used for this purposes, such as laser scanners, sonars

and cameras. In this thesis, a single camera is used as the primary sensor. The

observation at time t is denoted by zt and all of the measurements up to time t

are written as

zt = {z1, z2, ..., zt} . (2.19)

Using the notations up to now, the pose distribution of the robot in probabilistic

terms is denoted as

p(st,Θ|zt,ut). (2.20)
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Figure 2.1: SLAM as a dynamic Bayes network

The SLAM problem can be best described as a probabilistic Markov chain [41].

Figure 2.1 visualizes this chain. The pose st of the robot is a function of its

previous state st−1 and the control executed ut. This function can be named as

the motion model of the robot. The motion model not only applies control inputs

to the robot but also integrates process noise which exists in control inputs. This

model can be written as

p(st|st−1,ut). (2.21)

As can be seen from Figure 2.1, sensor measurements gathered by the robot are

included in this Markov chain. Each measurement is a function of the visible set

of landmarks and state of the robot. This function is named as the measurement

model and represented with the probability distribution

p(zt|st,Θ). (2.22)

Using a Bayes filter and these two functions, namely motion and measurement

models, the SLAM posterior at time t can be recursively estimated. This filter

can be shown as

p(st,Θ|zt,ut). (2.23)

Unfortunately, we cannot represent (2.23) in closed form. Some assumptions

should be made about the motion and measurement models, as well as the type of

noise in the system. The Extended Kalman Filter (EKF) represents this posterior

as a multivariate Gaussian random variable with a mean µ and a covariance Σ.
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µt =
{
µst , µθ1,t , ..., µθN,t

}
(2.24)

Σt =


Σst,t Σstθ1,t . . . . . . ΣstθN ,t

Σθ1st,t Σθ1,t Σθ1θ2,t . . . Σθ1θN ,t

. . .
. . . . . . . . .

...

ΣθNst,t ΣθNθ1,t . . . . . . ΣθN ,t

 . (2.25)

The size of the state vector and the covariance matrix depends on the type of

motion model and measurement model. For a robot with a constant velocity

motion model and landmarks parametrized with inverse depth [9] µ is a 6N + 13

vector where robot state µst and landmark state µθi are

µst =


xW

qWR

vW

wR

 (2.26)

µθi =
(
x, y, z, θ, φ, ρ

)T
. (2.27)

Given the above state representations, the covariance becomes a 6N+13 square

matrix. Thus, the representation of the SLAM posterior with the EKF has

quadratic size complexity in the number of landmarks.

The EKF is, as its name suggests, an extension to the Kalman Filter, which

linearizes the nonlinear functions at their most likely value. For this reason, in

order for this linearization to give good performance, nonlinear functions should

be approximately linear at the mean point. In this thesis, both motion and mea-

surement models are nonlinear functions. Due to the quaternion multiplication

in motion model, it needs linearization. Inverse depth parametrization is used

as the measurement model and it includes trigonometric terms in which makes

it a nonlinear function too. As described in [9], parameterizing the landmarks

with inverse depth, better linearization is possible which improves the SLAM

performance.



Chapter 3

Data Association in Visual

SLAM

The data association problem is one of the most important problems in SLAM

applications. Although the SLAM framework models the probabilistic nature of

localization and mapping problems well, data association is not directly addressed

within this framework. Associating new data with existing data needs special

treatment. In the context of Visual SLAM, this process is handled under the

topic of feature matching. Data association should be handled carefully for good

performance.

In some studies, maximum-likelihood is used for feature matching [41], in which

the probabilistic framework of SLAM is utilized for associating new information

with an existing map. This subtype of SLAM problem is specifically named as

’SLAM with unknown data association’ whose success rate is open for criticizing.

This method for matching features is generally used in cases where no well defined

or significant cues for identifying features exist. However, in many SLAM appli-

cations, rather that using unprocessed data, researchers try to fit descriptions

and use them for feature matching.

As in many SLAM applications, Visual SLAM does not rely on maximum likeli-

hood. Rather than this, VSLAM uses image features with patches or descriptors

14
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for data association. In the Visual SLAM case, raw information is supplied as im-

age frames and interest points are extracted from these images. Once an interest

point is determined, a descriptor is fit to identify it. SIFT and SURF descriptors,

FAST and Harris corners with warped image patches are among the mostly used

alternatives. In this thesis, SIFT features are used.

3.1 Matching Features

SIFT and SURF features have their own descriptors that can be used. FAST and

Harris corners do not come with descriptors and are usually used together with

image patches. As mentioned above, we have used SIFT features as landmarks

in this study. For each frame, new features are extracted from the image and

these features are compared with all of the map elements that are estimated to

be visible from the current pose. There are various metrics and algorithms for

comparing and matching these features. Usually, pairwise distance between two

SIFT features, which is simply the Euclidean distance between their descriptors,

is used. Usually, from a 640 × 480 image about 1000 SIFT features can be

extracted. Matching two such feature sets can be accomplished in various ways.

In this study, we will mention three different algorithms for this task:

1. SIFT Matching

2. Married Matching

3. Minimum Distance Matching

3.1.1 SIFT Matching

This algorithm calculates all pairwise distances between elements of both descrip-

tor sets S1 and S2. In order for a feature in S1 to be matched with another in S2,

the ratio of distances between two closest features in set S2 to the feature in S1

should be greater than the given threshold Tmatch. Using this heuristic, features

which have more than one similar feature are prevented from being matched. In

other words, since such features can be easily mismatched, even though distance
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between these features’ descriptors might be very small, rather than making mis-

matches, these features are simply rejected. Algorithm 1 describes this method.

Algorithm 1 Algorithm SIFT Matching(S1, S2, Thr)

for all s1 ∈ S1 do
minDist1 ←∞
minDist2 ←∞
minFeat← NULL
for all s2 ∈ S2 do
dist← |s1 − s2|
if dist < minDist1 then
minFeat← s2

minDist1 ← dist
else
if dist < minDist2 then
minDist2 ← dist

end if
end if

end for
if minDist1/minDist2 < Thr then
M ← {M : [s1,minFeat]}

end if
end for

For nonempty sets of features, this algorithm either matches a feature or rejects

a match if two nearest features are close to each other. For example consider the

case where S1 has N1 > 1 number of features and S2 has N2 = 1 feature. In

this case, all of the features in set S1 will be matched with the only feature in S2

which is a weakness of the above matching algorithm. All of the matches other

than one possibly true match will be all outliers. This analysis can be generalized

as follows : when N1 >> N2, many of the features from S2 will be matched to

more than one feature in S1. In the reverse case, with N2 >> N1, since the

possible choices of features in set S2 is very high, it is unlikely for features in set

S2 to be matched with more than one feature in set S1. From this inspection we

can conclude that the above algorithm is not suitable for cases N1 >> N2 and

N2 << C for C > 0. However it is, by many applications, established that this

algorithm gives good results, usually when the sets include around a few hundreds

of features.
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3.1.2 Married Matching

This algorithm, as in previous section 3.1.1, calculates all pairwise distances be-

tween feature descriptors in both sets. In order for two features to be matched,

both descriptors should be the closest to the other descriptor among all descrip-

tors in the other set. In other words, consider two descriptors s1 ∈ S1 and s2 ∈ S2,

s1 should be the closest descriptor to s2 among all other descriptors in set S1 and

vice versa. So this method checks the distance between descriptors twice before

matching them. In Section 3.1.1 there was the possibility of matching a feature

in S2 with more than one features in S1. However in this algorithm, every feature

in both sets is assigned to one and only one feature in the other set. Algorithm

2 describes this method.

When using Algorithm 1, it was shown above that for N1 >> N2, resulting

matches would include many wrong pairs. However, in this algorithm, since

closest descriptors in both directions are calculated, cases where the number of

features in sets differ much more, are handled better. In other words, for cases

with N1 >> N2 and N2 >> N1, this algorithm will not give as many wrong

matches as the previous algorithm.

3.1.3 Minimum Distance Matching

This algorithm calculates distances between descriptors only in one direction. The

sufficient condition for two features to be matched is that the distance between

that pair is smaller than the given threshold Tmatch and the distance between

all other descriptor pairs. In other words, consider two descriptors s1 ∈ S1 and

s2 ∈ S2; s2 should be the closest descriptor to s1 among all other descriptors in set

S2. One weakness of this method is that matches will be such that many features

from set S2 will be assigned to more than a single feature from set S1. For cases

where N1 >> N2 this result will be more obvious. This method is explained in

Algorithm 3.
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Algorithm 2 Algorithm Married Matching(S1, S2)

N1 ← length(S1)
N2 ← length(S2)
m1 ← vector(N2)
m2 ← vector(N1)
D21 ← vector(N2,∞)
for i = 1 : N1 do
s1 ← S1(i)
minDist←∞
minFeat← −1
for j = 1 : N2 do
s2 ← S2(j)
dist← |s1 − s2|
if dist < minDist then
minFeat← s2

minDist← j
end if

end for
m1(i) = minFeat
if minDist < D21(minFeat) then
D21(minFeat) = minDist
m2(minFeat) = i

end if
end for
for i = 1 : N1 do
if m1(i)! = −1 && m2(m1(i)) == i then
M = {M : [S1(i), S2(m1[i])};

end if
end for
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Algorithm 3 Algorithm Minimum Distance Matching(S1, S2, Thr)

for all s1 ∈ S1 do
minDist←∞
minFeat← NULL
for all s2 ∈ S2 do
dist← |s1 − s2|
if dist < minDist1 then
minFeat← s2

minDist← dist
end if

end for
if minDist < Thr then
M ← {M : [s1,minFeat]}

end if
end for

3.2 Estimating Feasible Features

In this study, the map of the environment consists of sparse landmarks encoded as

SIFT features. Each feature represents a landmark in 3D space through an inverse

depth parametrization [9]. These features are used as identifiers of landmarks for

data association. In addition to using feature descriptors for matching task, we

utilize projected positions of landmarks as well. By projecting landmarks, we ob-

tain estimates of pixel coordinates of these landmarks. Subsequently, landmarks

whose projected positions lie inside the image plane are marked as visible and

only these features are used in matching with the features extracted from the

new frames. Using one of the feature matching algorithms given in Section 3.1,

new features are matched with existing landmarks. There are two potential prob-

lems in this process : There may be errors in pose estimation which would result

in wrong estimation of landmark visibility and there may be erroneous matches

between new features and landmarks. Marking some of the visible features as

not visible will result in degrading of localization performance. In particular,

visibilities of features close to image boundaries might be estimated wrongly.

Mismatches in the feature matching task will result in wrong EKF updates and

that will affect both mapping and localization performances. Such mismatches

are expected to be minimized through optical flow aided outlier elimination.
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Algorithm 4 describes the visibility determination process.

Algorithm 4 Check Visibility(yi)

xyz ← idp2xyz(yi){Convert from inverse depth rep. to Cartesian rep.}
hd ← camProj(xyz){Project landmark to image plane}
hu ← distort(hd){Apply distortion to projected point}
if inImage(hu) then
visible = true

else
visible = false

end if

3.3 Outlier Elimination

In this thesis, we use SIFT features, with their own descriptors as interest points.

In the literature, especially in object recognition, identification is done using only

descriptor information but not using feature locations. However, in the context

of VSLAM, features seen in the previous frame are usually searched in the next

frame and this introduces a new constraint in matching these features which is

the optical flow between these consecutive frames. Ignoring this constraint and

using only descriptors for matching means discarding existing information. We

actually do the matching using one of the methods described in the section 3.1;

but after that, since these algorithms only consider descriptors but not feature

locations, we try to eliminate outliers with the help of optical flow information.

It is known and also shown in this work that outliers degrade the performance of

SLAM algorithms. At the end, by eliminating outliers, we hope to see VSLAM

performance will increase compared to the base case.

There is a second problem that should be handled separately, that cannot be

solved by only optical flow aided outlier elimination. Suppose that two landmarks

resemble each other. While matching, assigning the feature corresponding to the

first landmark to the second landmark is very likely to happen. In this case, the

match vector may not violate the constraint induced by the optical flow and, even

though it is a wrong match, this fault may not be detected. In such situations,

we have further information that is still not used. This is the estimated projected



CHAPTER 3. DATA ASSOCIATION IN VISUAL SLAM 21

locations of landmarks. If the distance between the projected locations of a

landmark and the matched feature is higher than a threshold, we can conclude

that this match is wrong.

The first method for eliminating outliers needs only features and the optical flow

between consecutive frames. However, the second method requires the knowledge

of the map. This relation is summarized in Figure 3.1, showing whether the

elimination methods are applicable in absence or existence of a map.

Table 3.1: Applicable outlier eliminators to with and without maps
Outlier Elimination Method

Optical Flow Aided Prediction Error
No Map X Ö

Map Available X X

In subsequent sections we will explain both of these elimination methods in detail.

3.3.1 Outlier Elimination Using Optical Flow

In Section 3.1, three different methods for matching features were explained. As

can be seen from each of these algorithms, matching heuristics do not consider

feature locations and only use their descriptors in identification. However, fea-

ture locations can also be used for either matching or eliminating outliers. In

this thesis, we first match features using one of the algorithms given in Section

3.1, and filter out matches which are in contradiction with the optical flow field

information. This way we utilize the unused available optical flow information.

The probabilistic framework of SLAM algorithms do not handle wrong data asso-

ciation but directly integrate any information with the current belief. Wrong data

association will either result in catastrophic failures and divergence or degrade

the certainty of its belief.

In order to accomplish outlier elimination, we track features observed in the

previous frames, find optical flow vectors and compare this vector with the dis-

placement vector determined by one of the feature matching algorithms. Using
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Optical Flow Field

Optical Flow Vector

Feature Match

f

m

Figure 3.1: Possible optical flow vs feature match vector pairs, f and m resp. -
inlier case. In this sample, f and m have similar orientations and magnitudes.
This agreement results in marking the match as an inlier.

carefully designed metrics, we eliminate matches which contradict with the flow

vector.

For outlier elimination, we compare the flow vector
−→
f and the feature displace-

ment vector obtained as the result of the match algorithm, −→m, both in magnitude

and orientation. For analysis, we should look at the magnitude ratio and the angle

between these two vectors. These quantities can be found using the formulae

θ = cos−1

−→
f · −→m
|
−→
f ||−→m|

(3.1)

r =

∣∣∣∣∣ |
−→
f | − |−→m|

|
−→
f |+ |−→m|+ c

∣∣∣∣∣ , (3.2)

where
−→
f · −→m is the dot product of the two vectors and |

−→
f | is the length of the

vector.

In Figure 3.1, the two parameters for vector similarity are θ ∼= 0 and r ∼= 0.

Looking at these values we can conclude that the flow vector and the vector

obtained by feature matching coincide well with each other. Such kind of flow

and matched vector pairs are marked as inliers.

In the second case, illustrated in Figure 3.2, vectors have similar orientations but
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Optical Flow Field

Optical Flow Vector

Feature Match

f

m

Figure 3.2: Possible optical flow vs feature match vector pairs, f and m resp.
- outlier case 1. In this sample, f and m have similar orientations but their
magnitudes differ too much. Such matches should be marked as outlier.

their magnitudes differ too much. In other words, we can still say that θ ∼= 0 but

r >> 0. Vector pairs like these should be marked as outliers.

In the last case, illustrated in Figure 3.3, even though r ∼= 1, the orientation

difference is very high being a sufficient reason for marking this pair as an outlier.

Different cost functions can be used for determining whether the match is an

outlier. One of the possible functions is a weighted sum of θ and r formulated as

C = w1θ + w2r. (3.3)

Feature pairs which have a total cost greater than a threshold can be marked as

outliers and those with smaller costs can be accepted as inliers.

A second alternative for outlier determination can be the function

C = max(w0θ,
r

π
). (3.4)

.

In (3.4), if one of the parameters takes a large value, in other words either the

magnitude difference or the orientation difference is high, match is marked as an

outlier.
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Optical Flow Field

Optical Flow Vector

Feature Match

f

m

Figure 3.3: Possible optical flow vs feature match vector pairs, f and m resp. -
outlier case 2. In this sample, f and m have their magnitudes and orientation
different from each other. So such matches should be marked as outlier.

The above functions, (3.4) and (3.3) will give correct estimations in many flow

field - feature match pairs. These situations include cases where either |f | >> 1,

|m| >> 1 or both hold. But we try to eliminate outliers depending on the knowl-

edge of optical flow information which might also have errors in it. Furthermore,

it is a well known fact that since images are discrete signals, feature localization

cannot be realized with perfect accuracy, which is also the case for SIFT extrac-

tors. So, these two sources of errors should be considered in order to make the

elimination process handle inaccuracies in flow field estimation and feature local-

ization. For situations with |f | << C and |m| << C, where C is a real positive

scalar, although the ratio of norms might be close to each other, due to errors in

feature localization and flow field estimation, θ >> 0 might be the case. Such a

high θ value obviously dominates in both of the above functions resulting in the

elimination of a correct match. In order to solve this problem, we propose the

following method for checking matches.

Firstly, we have to determine error models for both the flow vector estimation and

feature match vectors. For both of these, there are two independent dimensions in

which errors can exist, namely their norms and orientations. These error models

are plotted in Figures 3.4 and 3.5.

In these figures, |
−→
f | is the norm of the estimated flow vector and |−→m| is the norm
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(a) Norm error model for flow vector estimation. |f | is the norm of the
calculated flow vector. Variance of error is the expected error in the norm
of the flow vector. This plots says, up to a certain flow norm, tflow, there
is constant error. After that threshold, expected error in the norm increases
with the increase in the calculated flow norm. The relation between error
and the flow norm is assumed to be a constant multiplier, Pflow
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(b) Norm error model for feature localization. |m| is the norm of the match
vector connecting the two matched features. Variance of error is the expected
error in the norm of the flow vector. The origin of error is the sub-pixel
localization while extracting features. So the norm of match vector, whose
end points are the two matched features, can miscalculated at most as much
as the feature localization error. For this reason, error variance has been
taken to be constant independent from the match vector norm.

Figure 3.4: Norm error models for flow vector estimation and feature localization
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(a) Orientation error model for flow vector estimation
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(b) Orientation error model for feature match vector

Figure 3.5: Orientation error models for flow vector estimation and feature match
vector. These figures show that for both of flow and match vectors, when they
are below a threshold (tflow and tmatch resp.) expected error in the orientation
peaks. This is due to that if their norms are very small compared to the expected
error values, small errors in one of the end point locations of these vectors, result
in great changes in their orientations.
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of the vector connecting matched pairs of features. Since many of the optical flow

algorithms [6] [2] [23] [22] [30] use differential methods which utilize linearization

of nonlinear functions and iteratively estimate the flow vector, there is a higher

possibility of faulty norm estimation for larger displacements, hence more error

for larger flow vectors. This behavior is depicted in Figure 3.4. However, the

proposed error model for feature match vector asserts that the error in the norm

of the match has constant variance, i.e. it does not change with how far the

matched pairs of features are. Closed form definitions for the these error models

are

σ|−→f | =

{
Pflow ∗ |

−→
f | if |

−→
f | > tflow

Pflow ∗ tflow otherwise

}
(3.5)

σ|−→m| = Pmatch. (3.6)

In contrast to the increase in the norm of the error with |
−→
f |, for orientation, the

error variance becomes smaller with increasing norm of the flow vector. However,

since for short flow vectors a small change in the Cartesian position of endpoint

of the flow vector will cause great change in its orientation, and expected error

amount spans the whole [−π, π] range. Similar considerations are applicable

to error variance in orientation of feature match vectors. These models can be

formulated as

σ
∠
−−−→
flow

=

 π
(
tflow

|
−→
f |

)kflow
if |
−→
f | > tflow

π otherwise
(3.7)

σ
∠
−−−−→
match

=

 π
(
tmatch

|−→m|

)kmatch

if |−→m| > tmatch

π otherwise.
(3.8)

Having the error models for flow and match vectors, we can define distributions

representing the probability of these vectors’ actual head positions and orienta-

tions in the image plane. Sample distributions are shown in Figure 3.6. In the

perfect match case, both flow and match vectors should have the same means and

uncertainties. As their means get separated from each other, their likelihood to

be correct becomes less. Obtaining such a perfect match is obviously not likely
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(a) In this sample, two distributions have their means close to each each
other and their uncertainty regions overlap. When Equation 3.11 is applied,
their distance yields to be dKLD=2.48.

(b) In this sample, two distributions’ means are distant and their uncer-
tainty regions do not overlap much which result in a large KL distance of
dKLD=16.53

Figure 3.6: Sample distributions for norms and orientations of flow and match
vectors. In this figure, among many possibilities, two cases are given and these
show the result of Equation 3.11 applied to close and distant Gaussian distribu-
tions.
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to happen. But, although their means fall away from each other, their uncer-

tainty regions may overlap. For this reason, when comparing the two vectors, we

include their variances into the calculation too. In comparing two distributions,

Kullback-Leibler divergence [27] has been used, which is a non-symmetric mea-

sure of the difference between two probability distributions. For distributions P

and Q of a continuous random variable, KL-divergence is defined as

DKL(P ||Q) =

∫ ∞
−∞

p(x)log
p(x)

q(x)
dx. (3.9)

For discrete P and Q distributions, KL-divergence is

DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)
. (3.10)

As can be seen from the Equations (3.9) and (3.10), KL-divergence is not sym-

metric. In other words, the KL-divergence from P to Q is not necessarily the

same as the KL-divergence from Q to P . In order to eliminate this asymmetry,

we used a modified KL-divergence metric which is

DKL(P,Q) =
1

2
(DKL(P ||Q) +DKL(P ||Q)). (3.11)

Since optical flow gives displacements between the previous frame and the current

frame, we can only apply this filter to features those were observed in the previous

frame. Features, which were not visible in the previous frame, but whose matches

are outliers, cannot be filtered with this method. One way of extending this

method to include such features might be tracking features in the last N frames.

If a feature was not observed in the previous frame, but observed in one of the

older frames, by this extension, such features can be included in the filtering

process too.
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3.3.2 Outlier Elimination Using Prediction Error

As explained in Section 3.1, matching algorithms do not use spatial information

of interest points; but only use their descriptors in identification. In Section

3.3.1, we proposed a method which utilizes spatial information together with the

optical flow information for outlier elimination. However, there is another case

which may result in a wrong feature match, and cannot be detected with the aid

of optical flow information.

Consider two landmarks L1 and L2, which are distant from each other; but their

corresponding interest points, fL1 and fL2 , have similar descriptors. Using only

descriptors, it is very likely to mismatch these two interest points. Since it may

be the case that optical flow vector calculated at the projected pixel location

(pLi
) of a landmark may be similar, in magnitude and orientation, to its match

vector; but their pixel locations may be distant from each other, optical flow

aided outlier eliminator will not be able to filter out this false match. In order to

eliminate such a false match, we should consider the expected projected location

of the landmark together with the extracted feature’s location. This scenario

is depicted in Figure 3.7. Looking at the Euclidean distance of these two points

might be intuitive, but although extracted feature’s location has little uncertainty,

projected landmark location may have a large uncertainty. This comes from the

nature of EKF-SLAM that every landmark state has its mean and uncertainty (in

our case an ellipsoidal volume). When current landmark estimate is projected to

the image plane, together with its mean, this uncertainty region is also projected

as an elliptical region. This uncertainty is represented with a 2 × 2 covariance

matrix which intuitively guides us to use Mahalanobis distance. The projected

covariance matrix is found as

Si =
∂u

∂xv
Σxx

∂u

∂xv

T

+
∂u

∂xv
Σxyi

∂u

∂yi

T

+
∂u

∂yi
Σyix

∂u

∂xv

T

+
∂u

∂yi
Σyiyi

∂u

∂yi

T

+R. (3.12)

The Mahalanobis distance between projected landmark location, pLi
, and

matched feature location fLi
is

dMah = (pLi
− fLi

)S−1(pLi
− fLi

)T . (3.13)
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We expect dMah to be smaller that a threshold in order to accept the match. It

is obvious that, with landmarks already initialized, S will be larger allowing for

more error in matching.

In this chapter, we have introduced three methods for matching features, which

are SIFT Matching, Married Matching and Minimum Distance Matching. All of

these methods use the descriptors attached to feature points, but do not used

spatial information. But in VSLAM context we have further constraints to de-

cide whether a feature pair is correctly matched or not. One of these constraints

is optical flow field information, which says a feature seen in consecutive frames

should follow the optical flow field. The second one asserts that when a map

exists, a feature matched to an already initialized landmark should not fall apart

from its expected projected location. These two principles can be used to elim-

inate outliers in VSLAM applications to improve its performance and prevent

catastrophic failures.
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L1 L2

P1

P2

Descriptors of L1 and L2 are similar

x1

x2

Mahalanobis Distance

fi

Figure 3.7: Outlier elimination using prediction error. In the figure, robot moves
from pose x1 to x2. In both poses, robot sees landmark L1, and at x2 it also sees
L2 with both of the landmarks having uncertainties. If the two landmarks have
similar feature descriptors, it is very likely to make a mismatch at x2. Suppose
the case that at x2, extracted feature fi is matched with L1 which is a wrong
match. When Mahalanobis distance between fi and P1 is calculated, distance
will probably be greater than the eliminator threshold. But if fi matches with
L2, which is a correct match, Mahalanobis distance between fi and P2 will be
smaller than the threshold. This way, when fi is matched with the wrong one of
the similar L1 and L2 landmarks, match is marked as an outlier.



Chapter 4

Evaluation

In Chapter 4, two methods for eliminating outliers were introduced. One of them

was using optical flow information as reference and relying on mismatches between

predicted and observed displacements to detect whether they are correct or false

matches. The second one utilizes the knowledge of the map in order to filter

out erroneous data associations. In this chapter, we will show results of several

experiments, testing both of these methods. These experiments realize different

scenarios, including simulated and real image sequences, with and without maps.

Our implementation was based on an existing VSLAM library [10].

Table 4.1 shows a list of test scenarios, elimination algorithms and data types

used.

Table 4.1: Summary of outlier eliminator test scenarios and associated sections
Outlier Elimination Methods Data Type

Section No Elim. OF Aided Pred. Error Based Real Synthetic

4.1.1 X X X
4.1.2 X X X
4.2.1 X X
4.2.2 X X
4.2.3 X X X

Throughout all experiments with real data, SIFT features were used as interest

points [29, 45]. In computing the optical flow, the method described in [7] was

33
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used. Maps were computed using available Matlab sources for the algorithm pre-

sented in [10]. Figure 4.1 shows a layout of the complete system, i.e. the VSLAM

process with prediction error based and optical flow aided outlier elimination.

In base case tests, optical flow calculation and outlier elimination processes are

omitted; and when outlier elimination is done only with prediction based outlier

eliminator, optical flow is not calculated.

Figure 4.1: A layout of VSLAM with prediction error based and optical flow
aided outlier elimination process

4.1 Outlier Elimination without a Map

In the following sections, test scenarios will be explained and their results will

be presented. In order to save space, abbreviations were used for results. In

Table 4.2, these abbreviations and their descriptions are given (all values are

percentages). Also, the relation between these terms are depicted in Figure 4.2.

4.1.1 Synthetic Data

For synthetic data experiments, artificial data consisting of feature matches and

a flow vector field have been generated in a simulation environment. A sample

screenshot of the simulation environment is shown in Figure 4.3. In this simula-

tion, the robot follows a manually defined path in 3D space, navigating through
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Table 4.2: Abbreviations, descriptions and mathematical relations for metrics
used in performance evaluation of Optical Flow Aided Outlier Elimination

Abbreviation Description Mathematical Relation

GTCM Ground truth correct matches GTCM + GTWM = 1
GTWM Ground truth wrong matches

TN Unfiltered correct matches (true negatives) FP + TN = GTCM
FP Wrong outlier eliminations (false positives)

TP Correct outlier eliminations (true positives) TP + FN = GTWM
FN Unfiltered wrong matches (false negatives)

IL Information lost IL = FP / GTCM

ES Elimination success ES = TP / GTWM

All matches

GTCM

GTWM

Remaining matches 
after elimination

FP
TN

FN
TP

Figure 4.2: Confusion diagram showing the relation between outlier elimination
performance metrics described in Table 4.2



CHAPTER 4. EVALUATION 36

Figure 4.3: Simulation environment used in synthetic data generation

a set of landmarks, also defined manually. A camera model with mustache distor-

tion was used for projecting landmarks. Since this test was done in a simulation

environment, ground truth matches and flow vectors were known. However, in

order to make the scenario more realistic, matches were disturbed with three

different noise models, and optical flow vectors are approximated with a simple

spherical environment assumption. We have disturbed the feature matches with

three different noise models, which are

1. Swapping match pairs,

2. Modifying the location of the matched features,

3. Matching with non-existing features.

The first case simulates mismatches which can occur when descriptors of two

features are very similar to each other. For example assume that in the nth

frame we have two features, f1, f2, which should be matched to f ′1, f ′2 in the

(n+ 1)st frame. But assume that, since the descriptors of f1 and f2 are similar to
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each other, their corresponding features in the (n + 1)st frame will have similar

descriptors too. In such a case, there is the possibility of matching f ′1 to f2 and

f ′2 to f1.

The second noise model simulates errors in feature localization. It is a known fact

that, due to noise, intensity and viewpoint changes, the pixel location of a feature

can be slightly different than what it should be. By adding noise to the position

of the matched feature, we aim to simulate this type of error. Finally, for the

third type of noise, non-existing features were generated and some features were

matched with these artificial features. In real scenarios, sometimes the descriptor

of an unrelated feature may be closer to a feature than its correct match. Usually,

such false matches are completely random in terms of their pixel locations.

Since we work in a simulation environment, we could extract the exact optical

flow vector field for each feature location, but this would be very unrealistic.

For this reason, we propose the following simple method for approximating the

flow vectors. Assume that the camera travels from pose x1 to x2. Through its

movement, it observes a landmark L at pixel locations p1 and p2. The vector

from p1 to p2 is the exact optical flow vector. Rather than this, we back project

p1 onto a sphere centered at Psph with a radius Rsph to give L′. In the next frame,

we project L′ and obtain p′2, then use p1 and p′2 to approximate the flow vector

for landmark L. Psph is taken to be the current position of the robot, and Rsph

to be the mean depth of the visible landmarks from the current robot state. This

method is depicted in Figure 4.4.

We tested our optical flow aided outlier elimination method in a single dataset

with three different parameter sets. Table 4.3 shows the results for these three

tests. As can be seen in Table 4.3, all erroneous data has been eliminated, meaning

that, after applying the filter, we no longer have feature mismatches. However,

due to our approximate optical flow, some correct matches (approximately 15%)

were eliminated as well. In order to improve this situation, we have modified

eliminator parameters, decreasing false alarms.
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Figure 4.4: Method used in optical flow approximation for synthetic data

Table 4.3: Results of optical flow aided outlier elimination applied on synthetic
data

Average Values(%) 1stTest 2ndTest 3rdTest

GTCM 50.96 50.96 51.38
GTWM 49.04 49.04 48.62

TP 49.04 49.04 48.62
FP 6.6 4.34 1.24
FN 0 0 0
TN 44.36 46.62 50.14
IL 13.02 8.55 2.36
ES 100 100 100
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4.1.2 Real Data

These experiments test optical flow aided outlier elimination with real image

sequences. Dataset were collected at 30 fps using a FLEA2 camera with a wide

angle lens mounted on top a car driven in urban area. Sample frames from the

dataset and optical flow images between these frames are shown in Figure 4.5.

In Figure 4.6, color codes for optical flows are shown. As can be noted from this

figure, rather than using consecutive pairs of images, images separated by five

frames were used to compute optical flow and feature matches. The reason for

this is that at 30 fps, there is little movement and correctly matched features

are very close to each other. In such cases, the performance of the elimination

algorithm would not be tested with moderate length flow and match vectors, and

majority of the these vectors would be very small in length, easily passing the

elimination test.

In the elimination process, we take the optical flow field as a reference and com-

pare match vectors to it. However, images with repetitive textures do not give

good results when fed to the optical flow calculation algorithm. An example can

be seen in the second row of Figure 4.5. The corresponding flow image, shows how

the flow field estimation diverges from the expected field in the regions occupied

by trees.

In this dataset, there are two phases, differing with accuracy of optical flow calcu-

lation. From the start to the 250th frame, the flow field was more accurate than it

was for frames 252nd to the end. The reason behind this was, the clear texture in

the first phase and repetitive texture in the second phase due to trees. Since we

compare the match vectors with flow vectors, errors in the flow calculation would

yield wrong results in the elimination process. Consequently, in these two phases

we expect slightly different success rates. Table 4.4 show some global statistics

on average values and separate statistics for the two different phases phases.

Ideally, the eliminator should detect all wrong matches and should not elim-

inate any correct match as outliers. In other words, we expect “FP=0” and

“TP=GTWM”. As can be seen from Table 4.4 these two constraints are approx-

imately satisfied.



CHAPTER 4. EVALUATION 40

(a) 26th Frame (b) 31st Frame (c) Flow field between 26th−
31st frames

(d) 396th Frame (e) 401st Frame (f) Flow field between
396th − 401st frames

Figure 4.5: Several frames and optical flows fields from car dataset1

Figure 4.6: Optical flow vector color codes. Direction of the flow is coded with
colors, and the magnitude is coded with intensities.

Table 4.4: Optical flow aided outlier elimination results without map applied on
real data

Average Values(%) Whole Sequence 1st Phase 2nd Phase

GTCM 96.77 97.66 96.16
GTWM 3.23 2.34 3.84

TP 3.12 2.16 3.79
FP 4.37 1.17 6.59
FN 0.11 0.18 0.06
TN 92.4 96.49 89.56
IL 5.16 1.21 9.50
ES 94.84 91.22 97.37
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4.2 Outlier Elimination with a Map

In Section 3.3.1, outlier elimination was carried using only optical flow informa-

tion and no map. In this section, we apply the two different outlier elimination

algorithms to the VSLAM problem and investigate the chances in performance.

Since VSLAM, also estimates camera pose and landmark locations, we now have

additional information to use in the elimination process. As described in Section

3.3.2, when the pose of the robot and location of the landmarks are available, we

can also make estimates of pixel locations on which landmarks should be reob-

served. If matched features lie far from their estimated locations, we can conclude

that these matches are outliers.

In the following tests, we apply prediction error based and optical flow aided out-

lier elimination algorithms to four different datasets. The sequence of application

of these algorithms is as:

1. Performance of VSLAM in absence of any outlier filters

2. Prediction error based outlier elimination applied

3. Optical flow aided outlier filter applied together with the previous filter

Name of the datasets used the following tests are

1. car dataset1 (Figure 4.7),

2. lab dataset1,

3. lab dataset2 (Figure 4.8),

4. lab dataset3 (Figure 4.8).

4.2.1 VSLAM without Outlier Elimination

In these tests, we did not use any outlier eliminators and used only Married

Matcher for data association. All of the tests resulted in divergence of the VSLAM

algorithm due to successive data association errors for large percentages of the

features. In Figures 4.9(a), 4.10(a), 4.11(a) and 4.12(a), estimated robot paths
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Figure 4.7: Google Earth image showing the path followed in car dataset1

Figure 4.8: Google Earth image showing the path followed in lab dataset2 and
lab dataset3

are plotted. When compared to Figures 4.7 and 4.8, it is obvious that VSLAM’s

path estimates, and the maps, are far from what they should be. If we look at

sample screenshots in Figures 4.9, 4.10, 4.11 and 4.12, it can be seen why such

catastrophic fails occurred. In these screenshots, lines connecting image pixels

are match vectors, showing that very large errors in conflicting directions occur,

destroying stability.
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(a) Path estimate for car dataset1 zoomed for base case

(b) Frame 199 (c) Frame 176

Figure 4.9: Estimated path and several frames and feature match vectors from
car dataset1 for base case. Circles and diamonds, connected with lines, are es-
timated landmark projection positions and their corresponding measurements
respectively.
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(a) Path estimate for lab dataset1 zoomed for base case

(b) Frame 847 (c) Frame 767

Figure 4.10: Estimated path and several frames and feature match vectors from
lab dataset1 for base case. Circles and diamonds, connected with lines, are es-
timated landmark projection positions and their corresponding measurements
respectively.
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(a) Path estimate for lab dataset2 zoomed for base case

(b) Frame 3098 (c) Frame 3138

Figure 4.11: Estimated path and several frames and feature match vectors from
lab dataset2 for base case. Circles and diamonds, connected with lines, are es-
timated landmark projection positions and their corresponding measurements
respectively.
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(a) Path estimate for lab dataset3 zoomed for base case

(b) Frame 4038 (c) Frame 4168

Figure 4.12: Estimated path and several frames and feature match vectors from
lab dataset3 for base case. Circles and diamonds, connected with lines, are es-
timated landmark projection positions and their corresponding measurements
respectively.
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4.2.2 VSLAM with Prediction Error Based Outlier Elim-

ination

In this section, we consider an outlier eliminator based on feature location pre-

diction error. As can be seen from Figures 4.13(a), 4.16(a), 4.19(a) and 4.22(a),

estimated robot paths are closer to ground truth paths depicted in Figures 4.7

and 4.8. Looking at these figures, we can roughly conclude that the prediction

error based outlier eliminator works well. However, as can be seen from Figures

4.13, 4.16, 4.19 and 4.22, showing instances with largest average projection er-

rors, there are still some outliers that were not eliminated. As in previous tests,

effect of these outliers on the update stage of SLAM is deteriorating the belief of

the robot rather than improving it. However, since the number of outliers is a

low percentage of all matches, these effects are very small compared to those of

Section 4.2.1.

The estimated path for car dataset1 obviously resembles more to its ground truth

path (Figure 4.7) than the paths of other datasets which include sharper discon-

tinuities. There may be various reasons for such a performance difference. One

reason for that may be that car dataset1 includes less repetitive textures, result-

ing in less descriptor similarity between features extracted throughout the whole

sequence. Frames in this dataset include a number of different regions such as

pavement, tarmac, trees, creepers, clouds and park which result in richer texture

variety. However, the other three datasets do not have frames with that much

texture variety. For example, lab dataset1 has been collected in a laboratory with

walls and furnitures which have little texture variety. Also, frames in lab dataset2

and lab dataset3 contain repetitive textures of faculty building, tarmac and clear

sky resulting in poor data association and worse path estimates.

Another reason for the quality of estimated paths may also be average depth of

visible regions, rather than data association problems. For example, landmarks

on clouds give almost no information about the translational motion. To ex-

press generally, if distant landmarks dominate close-to-middle range landmarks

in number, position estimation fails. In lab dataset2 and lab dataset3, both se-

quences consist almost only of such scenes. Also, landmarks that are too close
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are usually not visible for long periods, and cannot contribute to the belief before

their position estimations get sufficiently certain. So, after traversing short paths

through the test area, such landmarks disappear and new ones are added to the

map with high uncertainty, which cannot contribute to pose estimation much.

One reason for the performance degradation in lab dataset1 may be that such

situations occur very often.

Figures 4.13, 4.16, 4.19 and 4.22 are example frames with largest projection errors

throughout all sequences. Compared to the base case (Figures 4.9, 4.10, 4.11

and 4.12), the improvement from using projection error based outlier eliminator

is clear. In these tests, false matches are usually done with landmarks that

are recently initialized. To eliminate a match, Mahalanobis distance between

the landmark’s estimated projected location and the feature’s location should

be greater than a threshold. However, recently detected landmarks have large

uncertainties, so the projected uncertainty of such landmarks cover a larger image

area. So the Mahalanobis distance between matched pairs may be very low, even

though distance between their pixel locations may be large.

Figures 4.14, 4.17, 4.20 and 4.23 show average projection errors in pixels versus

frame numbers. Ideally, these errors should be very close to zero. However,

outliers and rapid camera movements cause larger projection errors. For example,

car dataset1 was collected with a camera mounted on top of a car, which is not

affected much by irregularities in the road. But lab dataset2 and lab dataset3

were collected with a two wheeled trolley, magnifying the effect of even small

pebbles. These disturbances change the orientation of the camera significantly,

so projection errors come up to be large.

Figures 4.15, 4.18, 4.21 and 4.24 show the ratio of outliers to all matches. Ground

truth rates for correct matches were manually extracted from each frame. These

figures show strong relation, to their corresponding projection error plots from

which we can conclude that average error is mainly due to outliers. In the absence

of outliers, we can expect 2-6 pixel errors, which is acceptable for a camera not

moving rapidly and capturing at 30fps. Why outliers diminish in certain ranges

of frames may be, through these frames camera sees landmarks which have been

tracked enough frames to make their estimates certain, so that for smaller match

vector norms, Mahalanobis distance yields to be higher than the threshold.
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(a) Path estimate for car dataset1 zoomed with prediction error based outlier elimina-
tion. Triangle represents the robot with its sharp corner indicating its heading. Plus
markers indicate landmark locations with associated uncertainty ellipses.

(b) Frame 45 (c) Frame 194

Figure 4.13: Estimated path and several frames and feature match vectors from
car dataset1 with prediction error based outlier elimination. Circles and dia-
monds, connected with lines, are estimated landmark projection positions and
their corresponding measurements respectively.
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Figure 4.14: Average projection errors vs frames for car dataset1 with prediction
error based outlier elimination

Figure 4.15: Percentage of residual outliers to visible and matched features vs
frames for car dataset1 with prediction error based outlier elimination
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(a) Path estimate for lab dataset1 zoomed with prediction error based outlier elimina-
tion. Triangle represents the robot with its sharp corner indicating its heading. Plus
markers indicate landmark locations with associated uncertainty ellipses.

(b) Frame 570 (c) Frame 551

Figure 4.16: Estimated path and several frames and feature match vectors from
lab dataset1 with prediction error based outlier elimination. Circles and dia-
monds, connected with lines, are estimated landmark projection positions and
their corresponding measurements respectively.
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Figure 4.17: Average projection errors vs frames for lab dataset1 with prediction
error based outlier elimination

Figure 4.18: Percentage of residual outliers to visible and matched features vs
frames for lab dataset1 with prediction error based outlier elimination
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(a) Path estimate for lab dataset2 zoomed with prediction error based outlier
elimination. Triangle represents the robot with its sharp corner indicating
its heading. Plus markers indicate landmark locations with associated uncer-
tainty ellipses.

(b) Frame 3306 (c) Frame 3298

Figure 4.19: Estimated path and several frames and feature match vectors from
lab dataset2 with prediction error based outlier elimination. Circles and dia-
monds, connected with lines, are estimated landmark projection positions and
their corresponding measurements respectively.
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Figure 4.20: Average projection errors vs frames for lab dataset2 with prediction
error based outlier elimination

Figure 4.21: Percentage of residual outliers to visible and matched features vs
frames for lab dataset2 with prediction error based outlier elimination
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(a) Path estimate for lab dataset3 zoomed with prediction error based outlier elimina-
tion. Triangle represents the robot with its sharp corner indicating its heading. Plus
markers indicate landmark locations with associated uncertainty ellipses.

(b) Frame 4297 (c) Frame 4238

Figure 4.22: Estimated path and several frames and feature match vectors from
lab dataset3 with prediction error based outlier elimination. Circles and dia-
monds, connected with lines, are estimated landmark projection positions and
their corresponding measurements respectively.
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Figure 4.23: Average projection errors vs frames for lab dataset3 with prediction
error based outlier elimination

Figure 4.24: Percentage of residual outliers to visible and matched features vs
frames for lab dataset3 with prediction error based outlier elimination
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4.2.3 VSLAM with Optical Flow Aided and Prediction

Error Based Outlier Elimination

In this section, we report performance results with our second filter, the Opti-

cal Flow Aided Outlier Eliminator, used together with Prediction Error Based

Outlier Eliminator. As we will shortly explain, we observe improvements in path

estimates, average projection errors and outlier percentages. When estimated

paths are compared to those in Section 4.2.2, the smoothness of the paths for

these last tests, can be seen from Figures 4.28(a), 4.31(a) and 4.34(a). Since the

estimated path of car dataset1 in Section 4.2.2 was already free of glitches, there

is little improvement for this dataset (Figure 4.25(a)). Local irregularities for

lab dataset1 were eliminated with the second filter, but there is still too much

curvature towards the end of path (Figure 4.10(a)). Although the ground truth

path (Figure 4.8) follows a line, a curved path was estimated for lab dataset2 (Fig-

ure 4.11(a)). After adding the second outlier eliminator, we obtained a smoother

path (Figure 4.31(a)), which fits better to the actual path. Better improvements

were observed for lab dataset3. In the previous section, there were local loops,

turn backs and glitches (Figure 4.22(a)). After applying our second filter, even

though the end result is different than the ground truth path, many irregularities

were fixed; with an erroneous curvature towards left still persist.

Example frames with largest projection errors are shown in Figures 4.25, 4.28,

4.31 and 4.34. Compared to the previous case (Figures 4.13, 4.16, 4.19 and 4.22),

the number of outliers is halved together with the total effect on noise approx-

imately halved as well. One weakness of the Optical Aided Outlier Eliminator

was that if the predicted location of a landmark, pL, and its matches features

location drift apart from each other, but the flow vector at pL has similar ori-

entation and norm with the match vector, although that match is an outlier, it

cannot be detected. In fact, the Prediction Error Based Outlier was designed to

eliminate such outliers, but as it was described in Section 4.2.2, it may fail, and

the Optical Flow Aided Outlier Eliminator may also allow this match, resulting

in elimination failure.

Average projection errors, in pixels versus frame numbers, are plotted in Figures
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4.26, 4.29, 4.32 and 4.35. In Section 4.2.2, reasons for projection errors were

described, which were rapid camera movements and false matches. The only

source of such errors that can be eliminated on those were that come from false

matches. When we compare Figures 4.27, 4.30, 4.33 and 4.36 with Figures 4.15,

4.18, 4.21 and 4.24 respectively, adding the second filter reduces the percentage

of false matches. The effect of this reduction on the projection error is twofold:

firstly, the outliers are themselves are eliminated; secondly effect of false matches

on the robot pose, such as disturbing its orientation which can cause large errors

even with small changes, are prevented.
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(a) Path estimate for car dataset1 zoomed with prediction error based and optical flow
aided outlier elimination. Triangle represents the robot with its sharp corner indicating
its heading. Plus markers indicate landmark locations with associated uncertainty
ellipses.

(b) Frame 142 (c) Frame 34

Figure 4.25: Estimated path and several frames and feature match vectors from
car dataset1 with prediction error based and optical flow aided outlier elimi-
nation. Circles and diamonds, connected with lines, are estimated landmark
projection positions and their corresponding measurements respectively.
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Figure 4.26: Average projection errors vs frames for car dataset1 with prediction
error based and optical flow aided outlier elimination

Figure 4.27: Percentage of residual outliers to visible and matched features vs
frames for car dataset1 with prediction error based and optical flow aided outlier
elimination
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(a) Path estimate for lab dataset1 zoomed with prediction error based and optical flow
aided outlier elimination. Triangle represents the robot with its sharp corner indicating
its heading. Plus markers indicate landmark locations with associated uncertainty
ellipses.

(b) Frame 677 (c) Frame 678

Figure 4.28: Estimated path and several frames and feature match vectors from
lab dataset1 with prediction error based and optical flow aided outlier elimi-
nation. Circles and diamonds, connected with lines, are estimated landmark
projection positions and their corresponding measurements respectively.
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Figure 4.29: Average projection errors vs frames for lab dataset1 with prediction
error based and optical flow aided outlier elimination

Figure 4.30: Percentage of residual outliers to visible and matched features vs
frames for lab dataset1 with prediction error based and optical flow aided outlier
elimination
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(a) Path estimate for lab dataset2 zoomed with prediction error based and
optical flow aided outlier elimination. Triangle represents the robot with its
sharp corner indicating its heading. Plus markers indicate landmark locations
with associated uncertainty ellipses.

(b) Frame 3250 (c) Frame 3251

Figure 4.31: Estimated path and several frames and feature match vectors from
lab dataset2 with prediction error based and optical flow aided outlier elimi-
nation. Circles and diamonds, connected with lines, are estimated landmark
projection positions and their corresponding measurements respectively.
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Figure 4.32: Average projection errors vs frames for lab dataset2 with prediction
error based and optical flow aided outlier elimination

Figure 4.33: Percentage of residual outliers to visible and matched features vs
frames for lab dataset2 with prediction error based and optical flow aided outlier
elimination
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(a) Path estimate for lab dataset3 zoomed with prediction error based and optical flow
aided outlier elimination. Triangle represents the robot with its sharp corner indicating
its heading. Plus markers indicate landmark locations with associated uncertainty
ellipses.

(b) Frame 4254 (c) Frame 4297

Figure 4.34: Estimated path and several frames and feature match vectors from
lab dataset3 with prediction error based and optical flow aided outlier elimi-
nation. Circles and diamonds, connected with lines, are estimated landmark
projection positions and their corresponding measurements respectively.
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Figure 4.35: Average projection errors vs frames for lab dataset3 with prediction
error based and optical flow aided outlier elimination

Figure 4.36: Percentage of residual outliers to visible and matched features vs
frames for lab dataset3 with prediction error based and optical flow aided outlier
elimination
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In table 4.5, a summary of all tests with their performance metrics are given.

In this table, eliminators that are used were abbreviated with letters B, P and

O corresponding to BaseCase, PredictionErrorBasedOutlierEliminator and

OpticalF lowAidedOutlierEliminator respectively. For all datasets, the base

case failed to converge, so no further statistics were given. When we look at

the tests with eliminators used, we observe a decrease in average projection er-

rors and the ratio of outliers. The average projection error was found as the mean

of all projection errors, and the ratio of outliers was the percentage of outliers to

all feature matches throughout the whole sequence. More importantly perhaps,

using eliminators, VSLAM’s behavior changes to convergence. Looking at these

results, we can conclude that prediction based outlier eliminator saves SLAM

from divergence, and optical flow aided outlier eliminator improves performance

when applied with the former eliminator.
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Chapter 5

SLAM++ Software Architecture

In this chapter, the modular C++ library, SLAM++, which implements basic

requirements of Visual SLAM algorithm will be explained. SLAM++ provides

application developers the ability to implement several SLAM algorithms which

may use different types of robots and sensors. Using the built-in interfaces, users

can implement THEIR own drivers for sensors, new motion models and embed

these into a SLAM algorithm. These scenarios may include EKF-SLAM of a

robot moving in plane, equipped with a laser sensor; or FastSLAM2.0 with a

camera moving in 3D space equipped with an IMU. SLAM++ is still under

development, but at the moment, some of the commonly used SLAM algorithms,

image processing modules, data containers and simulation tools are completed.

Also, in simulation environment, we can run Visual EKF-SLAM stably.

5.1 Motivation

In the open source community, there exists many SLAM libraries written in dif-

ferent languages like C++, Matlab and Java, proven to be working stably. Many

of these libraries focus on scenarios with robots moving in a plane, equipped with

range-bearing sensors; and few of these implement SLAM with robots moving in

3D space and using cameras as measurement devices. Change in the type of the

robot, its degrees of freedom, measurement devices usually requires completely

69
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different mathematical models to which switching needs fundamental modifica-

tions. Furthermore, some existing VSLAM implementations are clumsy to be

used in real-time scenarios or lack of modularity. For this reason, we started

developing SLAM++, aiming it to be modular and run at real-time.

5.2 Software Architecture

Regardless of the type of the SLAM algorithm, robot design and measurement

devices, all SLAM libraries require some basic routines to be implemented. These

include SLAM’s predict-measure-update loop, motion and measurement models,

routines for information extraction from raw data gathered with measurement

devices and data association. For this reason, we have implemented such inter-

faces using which more specific drivers can be coded. To illustrate, inheriting

the SLAM interface class, one can implement any of EKF-SLAM, FastSLAM1.0,

SEIF-SLAM etc. without losing or changing generality of the ’SLAM’ concept.

Furthermore, using motion model interface, modules which implement motion

characteristics of a planar robot, a 6DOF robot or even a snake robot can easily

be generated. Such considerations are applicable to measurement models, data

association routines.

5.2.1 VSLAM Modules

As explained in Section 2.3, what SLAM means does not change with the scenario

applied. All scenarios include the concepts of Map, Trajectory, MotionModel,

Measurement Model either as outputs of this process or as its requirements. Fur-

thermore, SLAM is an iteratively solved problem, which at each time step exe-

cutes a set of processes such as prediction, getting measurements, solving for data

association and updating belief. By providing appropriately derived drivers for

all the above procedures, without losing generality, VSLAM process can be de-

fined with a single, generic interface. In the current release, SLAM++ has Visual

EKF-SLAM, FastSLAM1.0 and FastSLAM2.0 modules derived from the VSLAM

interface class. Figure 5.1 shows the relation of these VSLAM algorithms with the
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interface class. What changes between different SLAM algorithms is the details

in an iteration. For example, if EKF-SLAM is the case, one should implement the

generic Extended Kalman loop which is a series of matrix operations, or for the

case of FastSLAM, a particle filter should be implemented together with voting

heuristics.

Figure 5.1: Relation between VSLAM interface and derived SLAM classes

Some of the VSLAM member functions and their descriptions are as follows:

� VSLAM (MotionModel *mm, CameraModel *cm)

Constructor for VSLAM requires MotionModel and CameraModel as its

inputs. Depending on the type of robot, MotionModel may have several

constraints such as motion in plane or 3D space, constant velocity or accel-

eration etc. Different CameraModels can also have various properties such

as image size, type of distortion etc.

� const Map * getMap (void)

Map is a container class which may consist of different type of map elements

such as image regions, 3D meshes or range readings.

� virtual void step (const InterestPointVector &ipv, double dt)

This function implements the generic predict-measure-update loop. In case

of EKF-SLAM, these are a series of matrix operations and for FastSLAM,

it implements a particle filter.

5.2.2 MotionModel Modules

As explained earlier, according to the type of robot and expected motion charac-

teristics, motion models may vary. For a robot moving in plane, only 3DOF, x-y
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coordinates and heading, is considered; but a robot freely moving in 3D space

has 6DOF, x-y-z coordinates and orientations in the three axes, which demands

a different motion model. When possible SLAM scenarios are considered, the

following functions are found to be common or musts for these scenarios.

� MotionModel (double sigmaTrans, double sigmaRot)

In practice there is always error in motion, and this necessitates the param-

eters σTrans, error in translation, and σRot, error in orientation, to be fed to

any type of motion model.

� virtual void predict (RobotState &robotState, double dt)

virtual void noisyPredict (RobotState &robotState, double dt)

These two functions are implemented considering the two filtering methods,

Kalman filters and particle filters, which requires noise-free and noisy pose

predictions respectively. predict(..) function estimates the next pose and

uncertainty is represented with a covariance matrix separately. However,

when particle filters are used, the set of particles contain the uncertainty

information. So, while drawing new particles, prediction step should also

incorporate uncertainty. This behavior is implemented in noisyPredict(..).

� virtual cv::Mat dfv_dxv (const RobotState &robotState, double dt)

virtual cv::Mat dfv_derr (const RobotState &robotState, double dt)

In EKF-SLAM, since non-linear mathematical models should be linearized,

the functions dfv dxv(), dfv derr(), which calculates the Jacobians of motion

model w.r.t. robot pose and system noise respectively, are included in the

set of interface functions.

For the time being, since requirements do not force us for other models, only

constant velocity motion model has been derived, whose relation with the Mo-

tionModel class is shown in Figure 5.2.
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Figure 5.2: Relation between MotionModel interface and derived ConstantVeloc-
ityMotionModel class

5.2.3 Measurement Modules

The meaning of a landmark changes according to the type of SLAM. For a robot

moving in plane, equipped with a range sensor, a landmark may be a single

range reading, or lines, circles, corners extracted from the raw reading; but for

a robot equipped with a camera, landmarks become image patches or interest

points. Such changes in definition of a landmark, alters the mathematical model

greatly. But, as it was for other interfaces, there are some common requirements

of SLAM algorithms, like retrieving current estimate and its uncertainty for a

landmark, updating its state etc. Also for SLAM algorithms running Extended

Kalman Filter, Jacobians of landmark state with respect to measurement, robot

pose and those of predicted measurement w.r.t. landmark state and robot pose

are needed. Some of these Jacobians are also needed for FastSLAM2.0 and SEIF-

SLAM. Some of the functions considered to be included in Measurement Model

interface are as follows:

� virtual cv::Mat getCovariance (void)

virtual cv::Mat getMean (void)

virtual cv::Mat getCartesianCovariance (void)

virtual cv::Point3f getCartesianPosition (void)

These two set of getter functions are different in terms of in which

parametrization space they return means and covariances. First two getters

are to retrieve exact mean and covariance of a landmark. For example, if

landmark is Inverse Depth Parametrized, then a 6-vector and 6×6 matrix

is returned for mean and covariance respectively. However, in some situa-

tions, like estimating the projected feature location or projected uncertainty
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region onto the image plane, independent from how the landmark is mod-

eled, Cartesian means and covariances are needed. The latter two functions

supply this information.

� virtual void refresh (const RobotState &robotState, CameraModel &cam)

Depending on the type of measurement model, updating the estimate of a

landmark may require a series of operations. Furthermore, within a single

update stage some other miscellaneous operations, like keeping history of

states, may be needed. refresh(..) function packs all such requirements.

� cv::Mat Dy_Dh (void)

cv::Mat Dy_Dxv (void)

cv::Mat Dh_Dy (void)

cv::Mat Dh_Dxv (void)

These functions calculate the Jacobians of landmark state w.r.t. a measure-

ment, robot pose; and Jacobians of predicted measurement w.r.t. landmark

state and robot state respectively.

In the current release of SLAM++, only IDPLandmark was added. This imple-

ments Inverse Depth Parametrization (IDP) explained in [10]. IDP’s alternative

is XYZ parametrization [10] which is more efficient than IDP; but its initializa-

tion step needs special treatment. Also for stages with high uncertainty in depth,

IDP performs better than XYZ parametrization, so in early stage it is preferable

to use IDP. After an IDP landmark is localized, switching to XYZ parametriza-

tion will reduce the calculation. In future releases, such an addition is planned.

Relation between IDPLandmark and Landmark classes is shown in 5.3.

Figure 5.3: Relation between Landmark interface and derived IDPLandmark class
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Conclusion

In this thesis, we presented two methods for minimizing erroneous data associa-

tion in Visual SLAM, in order to both prevent the VSLAM process from diverg-

ing and improving quality of the estimated map and robot pose. One of these

methods uses the consistency assumption between current map estimate and the

measurements. In other words, a feature point that is matched to a landmark,

should be located in the vicinity of the estimated projected location of that land-

mark. When checking this condition, we also consider the uncertainty in the

landmark’s position via using Mahalanobis distance as the metric rather than

comparing pixel locations. The second method utilizes the unused optical flow

information which is intuitive to be used in VSLAM since its inputs are consec-

utive frames between which optical flow field defines a constraint. This method

checks whether the vector defined by the feature locations those are matched to a

landmark in consecutive frames is in agreement with the optical flow field around

the first matched feature. In order to compare these two vectors, we modeled

uncertainties in orientation and norm of these vectors; and than looked for their

resemblance through Kullback-Leibler divergence.

The above methods are explained together with three different feature matching

algorithms. We asserted that these matching algorithms have weaknesses, since

they only use descriptor information for data association; and claimed that the

proposed two outlier elimination methods can be used to resolve this weakness.

On four different datasets, we run VSLAM without any outlier eliminator, with
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map-measurement consistency based outlier eliminator and using the two elimi-

nators together. Results have shown that, in the above given outlier eliminator

application order, performance improved from divergence to more quality maps

and trajectory estimates. Also background on optical flow calculation, image fea-

ture points and SLAM were given. Brief documentation of our modular SLAM

library, SLAM++, was given explaining some of its important aspects. Also, aims

in implementing such a library was given which include modularity and run-time

performance.

Our intent in the near future is to complete the implementation of the SLAM++

library together with the outlier elimination capabilities expecting it to run in

real time and with high accuracy. However, in the long term, we would like to

extract further information from optical flow field to detect moving objects and

remove regions with such objects from input frames in order to further improve

VSLAM performance by rejecting out dynamic objects in the environment and

obtain a map that is a static subset of the environment.

We believe that using optical flow information through the above given methods

will result in better localization and map building in the VSLAM problem and

give a robot the ability to navigate autonomously in environments with poor

texture quality.
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