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ABSTRACT

MULTILEVEL CLUSTER ENSEMBLING FOR
HISTOPATHOLOGICAL IMAGE SEGMENTATION

Ahmet Çağrı Şimşek

M.S. in Computer Engineering

Supervisors: Prof. Dr. Cevdet Aykanat and

Assist. Prof. Dr. Çiğdem Gündüz Demir

August, 2011

In cancer diagnosis and grading, histopathological examination of tissues by

pathologists is accepted as the gold standard. However, this procedure has ob-

server variability and leads to subjectivity in diagnosis. In order to overcome such

problems, computational methods which use quantitative measures are proposed.

These methods extract mathematical features from tissue images assuming they

are composed of homogeneous regions and classify images. This assumption is

not always true and segmentation of images before classification is necessary.

There are methods to segment images but most of them are proposed for generic

images and work on the pixel-level. Recently few algorithms incorporated medi-

cal background knowledge into segmentation. Their high level feature definitions

are very promising. However, in the segmentation step, they use region growing

approaches which are not very stable and may lead to local optima.

In this thesis, we present an efficient and stable method for the segmentation

of histopathological images which produces high quality results. We use existing

high level feature definitions to segment tissue images. Our segmentation method

significantly improves the segmentation accuracy and stability, compared to ex-

isting methods which use the same feature definition. We tackle image segmen-

tation problem as a clustering problem. To improve the quality and the stability

of the clustering results, we combine different clustering solutions. This approach

is also known as cluster ensembles. We formulate the clustering problem as a

graph partitioning problem. In order to obtain diverse and high quality cluster-

ing results quickly, we made modifications and improvements on the well-known

multilevel graph partitioning scheme. Our method clusters medically meaningful

components in tissue images into regions and obtains the final segmentation.
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Experiments showed that our multilevel cluster ensembling approach per-

formed significantly better than existing segmentation algorithms used for generic

and tissue images. Although most of the images used in experiments, contain

noise and artifacts, the proposed algorithm produced high quality results.

Keywords: Histopathological image segmentation, cluster ensembles, multilevel

graph partitioning, unsupervised segmentation.



ÖZET

HİSTOPATOLOJİK GÖRÜNTÜ BÖLÜTLEMESİ İÇİN

ÇOK SEVİYELİ KÜMELEME BİLEŞİMİ

Ahmet Çağrı Şimşek

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Cevdet Aykanat ve

Yrd. Doç. Dr. Çiğdem Gündüz Demir

Ağustos, 2011

Dokuların patologlar tarafından histopatolojik incelemesinin yapılması, kanser

tanı ve derecelendirmesinde altın standart olarak kabul edilir. Bu işlemde

gözlemcilerin değişkenlik göstermesi, tanı sonuçlarında öznelliğe sebep olur. Bu

tarz sorunların üstesinden gelebilmek için, nicel veriler kullanan hesaplamasal

teknikler ileri sürülmüştür. Bu teknikler, doku resimlerinin homojen bölgelerden

oluştuğunu varsayarak bu resimlerden matematiksel özellikler çıkarır ve resimleri

sınıflandırır. Fakat bu varsayım her zaman doğru değildir ve sınıflandırmadan

önce resimlerin bölütlenmesi gerekir. Resimleri bölütlemek için çeşitli teknikler

ileri sürülmüştür, fakat bu tekniklerin çoğu imgecikler üzerinde çalışır ve genel

resimler için geliştirilmiştir. Son zamanlarda birkaç algoritma doku resimleri

bölütlemede tıbbi bilgileri kullanmıştır. Bu tekniklerin yüksek seviye özellik

tanımları çok ümit vericidir. Ancak, bu teknikler bölütleme safhalarında, çok

kararlı olmayan ve yerel çözümlere kaçabilen bölge büyütme yaklaşımını kul-

lanmıştır.

Bu tezde, histopatolojik resimlerin bölütlenmesi için yüksek kalite sonuçlar

üreten, verimli ve kararlı bir yöntem sunuyoruz. Doku resimlerini bölütlemek

için var olan yüksek seviye özellik tanımlarını kullandık. Bölütleme yöntemimiz,

bizimle aynı özellik tanımını kullanan diğer yöntemlerin bölütleme başarısını ve

kararlılığını önemli derecede arttırıyor. Resim bölütleme problemini bir kümeleme

problemi olarak kabul ettik. Kümeleme sonuçlarının kalitesini ve kararlılığını

arttırmak için farklı kümeleme sonuçlarını bir araya getirip birleştirdik. Bu

teknik, kümeleme bileşimi olarak da bilinir. Biz ayrıca kümeleme problemini

çizge bölümleme problemine dönüştürdük. Birbirinden farklı ve yüksek kaliteli

kümeleme sonuçları elde etmek için, iyi bilinen çok seviyeli çizge bölümleme
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tekniği üzerinde değişiklikler ve iyileştirmeler yaptık. Yöntemimiz tıbbi olarak

bir anlamı olan nesneleri ayrı bölgelere toplayarak sonuç bölütlemeyi elde eder.

Yaptığımız deneyler, önerdiğimiz çok seviyeli kümeleme bileşimi tekniğinin,

genel resimler ve doku resimleri için daha önceden önerilmiş bölütleme

tekniklerinden çok daha iyi sonuçlar ürettiğini gösterdi. Deneylerde kullandığımız

doku resimlerinin çoğu resim elde etme aşamasında ortaya çıkan bozulmalar

içermesine rağmen, önerdiğimiz yöntem yüksek kaliteli sonuçlar üretti.

Anahtar sözcükler : Histopatolojik görüntü bölütleme, kümeleme bileşimi, çok

seviyeli çizge bölümleme, güdümsüz bölütleme .
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Chapter 1

Introduction

Cancer is a type of disease described by uncontrolled growth of abnormal cells.

Damaged and abnormal cells reproduce uncontrollably and create masses of a

tissue called tumors. Tumors can grow, distort, and change the cellular and or-

ganizational structure of tissues from which they originate [1, 34, 45]. Metastasis

occurs when a tumor spreads to different parts of the body, grows, invades, and

destroys other healthy tissues. The result of metastasis is a serious condition

which is very difficult to treat.

There are many types of cancer depending on the tissue it originates. Colon

cancer is one of the most common cancers in the world [60]. Huge portion of

cancer deaths are caused by colon cancer in the western world and in the coun-

tries which adapted western diets. Although colon cancer has a high prevalence,

the survival rate is high if it is diagnosed early and treated correctly. For the

diagnosis of colon cancer, there are various types of screening tests such as dig-

ital rectal exam, MRI, endoscopy, and colonoscopy. These tests mainly look for

symptoms and polyps. If they locate polyps or find any other indicative symp-

toms, histopathological examination should be conducted to confirm the cancer

and its grade [31, 54]. In this examination, a small part of a tissue is extracted

from a patient by surgery and examined under a microscope by pathologists.
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CHAPTER 1. INTRODUCTION 2

Early detection and correct grading of cancer affect the success of the se-

lected treatment method and increase the chance of survival [2]. Hence, using

procedures that provide reliable information is very crucial. Histopathological

examination is the most reliable procedure and considered as the gold standard

for diagnosis and grading. In this examination, pathologists should be able to

identify the changes in cellular structures and the deformations in tissue distribu-

tion. This relies on visual interpretation of a tissue, and hence, is affected by the

experience and expertise of pathologists [20, 77]. Moreover, tissue preparation

procedures such as staining and sectioning operations may introduce noise and

artifacts to the image, which makes the image hard to interpret [35]. Therefore,

histopathological examination is subject to a considerable amount of intra- and

inter-observer variability [43, 46, 12, 15]. In order to reduce the effect of observer

variability, it is very important to standardize diagnosis and grading processes

based on quantitative measures. One of the most reliable ways of doing this is to

develop computational methods and build tools and programs.

1.1 Motivation

There are plenty of computational studies developed for histopathological image

analysis. Most of these studies quantify histopathological images extracting their

mathematical features and classify them based on the extracted features. These

features include textural [21, 25, 26, 44, 66, 87], morphological [72, 73, 88], and

structural [4, 86, 75, 22, 37, 38, 6] descriptors of the images. Although these de-

scriptors are more or less successful to quantify homogeneous tissue images, they

may fail to characterize heterogeneous tissue images, which consist of different

homogeneous regions. As shown in Figure 1.1, colon tissue images may contain

such regions that show very different characteristics in shape, color, and texture.

Heterogeneity affects the representation power of the feature descriptors, and

thus, the performance of classifiers. Segmenting heterogeneous tissue images into

their homogeneous regions and then extracting the descriptors of these regions

greatly improve the classification performance.
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(a) (b)

Figure 1.1: A colon tissue may consist of different types of regions: (a) a colon
tissue image and (b) its manual segmentation.

In histopathological images, regions are characterized with the organization of

their components. A colon tissue is composed of glands. In a normal tissue, these

glands follow a regular structure and colon cancer causes deformations in these

structures. In addition to the regions containing normal and cancerous glands,

there may also exist regions that do not contain any glandular structure. These

types of regions are shown in Figure 1.2. In literature, there are many techniques

for unsupervised segmentation of generic images. However, there are only few

studies that have been proposed for histopathological image segmentation [71, 85].

These studies segment images dividing them into grids and classifying each grid

based on its feature descriptors. These features are commonly extracted making

use of pixel-level information, without considering the domain specific knowledge.

Recently Tosun et al. [82, 81] introduced new sets of high level feature de-

scriptors, which take medically meaningful objects into account. For that, they

identify the approximate locations of cytological components in a tissue and de-

fine the texture descriptors on these components instead of defining them on

pixel values. Using these new descriptors, they achieve segmentation by a region

growing algorithm. These studies [82, 81] aim to improve the segmentation per-

formance by mainly focusing on the feature extraction part. On the other hand,

there is a room of improvement in its segmentation part. Indeed, like all of its

kinds, a region growing algorithm has a risk of obtaining a local optimal solution,
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Figure 1.2: Heterogeneous histopathological images are composed of different
regions.

especially when initial regions (seeds) are not carefully selected [90]. In this the-

sis, we focus on improving the segmentation part. To this end, we propose a new

algorithm that ensembles multiple segmentations. The experiments indicate that

the proposed method is more effective to reduce the negative effects of finding

local optimal solutions.

It is known for many years now that ensembles of different classifiers per-

form better than a single classifier. Each classifier recognizes a different aspect

of data and combining those multiple different points of views yields better ac-

curacy. More recently, ensembling algorithms have been started to be used for

clustering as well [74]. Single runs of clusterings may not be stable and may not

yield accurate results for algorithms that require initialization points or that are

randomized. Moreover, there may be cases, in which algorithms that can capture

global optimum do not perform well under the conditions of noise and insufficient

data representation. In such cases, the use of cluster ensembling has a potential

to improve the results.

In ensembling, two most important factors that affect the final clustering



CHAPTER 1. INTRODUCTION 5

result are the diversity and quality of individual clusterings [28, 52, 53]. In order

to get an accurate and stable final clustering, each clusterer should yield an at

least slightly different result to increase the diversity. There are several techniques

to introduce diversity to clusterers. For that, it is possible to use a randomized

version of the same algorithm. Alternatively, random subsets of data points or

random subsets of features can be used to obtain each clusterer.

The quality of each clustering result should also be acceptably high. To this

end, effective clustering algorithms should be used. Spectral methods are the

examples of such algorithms [70, 57, 89]. In these methods, data points are con-

sidered as graph vertices and similarity of these points correspond to weights

of the graph edges defined between these data objects. The objective is to di-

vide the graph into a predefined number of parts by minimizing the sum of the

weights of the cut edges. This directly corresponds to the goal of the clustering

problem where ”inter-cluster distance is maximized and intra-cluster distance is

minimized”. These spectral methods perform considerably well in finding global

optimum. However, as these algorithms need eigen decomposition, they are very

demanding in both CPU time and memory space. Moreover cluster ensembling

requires running these algorithms multiple times, which further increases the com-

putational costs. To overcome the computational burdens of spectral methods,

Dhillon et al. propose to use multilevel graph partitioning. They show that sim-

ilar results can be obtained with multilevel graph partitioning by breaking the

balance criterion [18, 47]. However their proposed algorithm is not a good choice

for cluster ensembling since it usually yields lower diversity.

1.2 Contribution

In this thesis, our main contribution is as follows: We present a new multilevel

cluster ensembling algorithm to be used in histopathological image segmentation.

The proposed method is efficient and stable. It yields accurate segmentations

avoiding local optimum and over-segmentation. It achieves this by producing
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diverse and high quality clusterings and combining them efficiently. In this algo-

rithm, we work on the objects described in [81] and use a set of features defined

on these objects. After defining the objects and their features, the algorithm con-

siders each object as a data point in a clustering problem and clusters the objects

into the desired number of clusters. It runs a predefined number of iterations to

get different clustering results and combines them into a final clustering solution.

In each iteration, it takes a random subset of objects and clusters them using

a multilevel graph clustering algorithm whose refinement phase is redesigned to

obtain diverse and high quality clustering solutions. The algorithm combines

these clustering solutions with a consensus function. The consensus function

constructs a bipartite graph, making clusters and objects two groups of vertices

and connecting each cluster to the objects it contains by a unit weight edge [29].

This bipartite graph actually holds the objects’ frequency of being together in

the same cluster. After that, it partitions the bipartite graph to get the final

clustering solution. Our experiments showed that the proposed multilevel cluster

ensembling provides an effective image segmentation tool for histopathological

tissue images and significantly increases segmentation accuracies of the previous

approaches.

1.3 Outline of Thesis

The outline of this thesis is as follows. Chapter 2 summarizes previous compu-

tational methods for generic and histopathological image segmentation. Chapter

3 provides detailed description of the proposed multilevel cluster ensembling al-

gorithm. Chapter 4 gives the experimental setup and reports the segmentation

results of the proposed algorithm. It also gives the comparison of the proposed

algorithm with other algorithms. Chapter 5 includes concluding remarks and

discussions.



Chapter 2

Background

This chapter presents previous studies on image segmentation and its applications

to histopathological images. In the first section, we explain previous studies

on generic and histopathological image segmentation. In the second one, we

explain multilevel framework. In the last section, we explain clustering and cluster

ensembling.

2.1 Image Segmentation

Image segmentation is described as the operation of dividing an image into non-

overlapping and connected pixel groups or regions that are semantically coherent

in a particular context. Image segmentation aims to transform the representa-

tion of images and make them more meaningful and easier to analyze [68]. Pixels

sharing certain visual characteristics are classified into regions. Pixels in each

region are similar in an attribute or a computed feature, like intensity, color,

and texture. Bordering regions are quite different according to the same char-

acteristics [68]. Image segmentation is a well studied subject in computer vision

and attracted a great deal of attention by many researchers. As a result, there

are lots of different algorithms and approaches for image segmentation. These

7
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can be grouped into four: pixel-based methods, graph-based methods, region-

based methods, and statistical methods. In the following subsections, we briefly

mention these methods.

2.1.1 Pixel-based Methods

Pixel-based methods consider pixels as the smallest informative part of the image

and groups the pixels according to their intensity or color values using different

techniques.

2.1.1.1 Thresholding

Thresholding is the oldest and simplest segmentation method. It classifies pixels

as foreground and background according to their intensities. For example, for

detecting lighter foreground objects in darker background, a pixel is labeled as

foreground object if its pixel value is greater than some threshold and as back-

ground otherwise. Thresholding methods are generally the most efficient methods

in terms of computational requirements. Otsu [58] has a seminal work, in which

he proposed a statistical threshold determination method for grayscale images.

Thresholding can also be used for color images. A separate threshold can be

defined for every RGB component and then the thresholding result of each com-

ponent can be combined with an AND operation. The HSL, HSV, and CMYK

color models can also be used [61].

2.1.1.2 Edge Detection

Another method that works on pixel values is edge detection. Here segmentation

is achieved by finding the region boundaries with an edge detection algorithm.

In order to locate edges, changes in gray-level pixel values can be detected using

first order derivative operators like Sobel and Prewitt and second order derivative

operators like Laplacian [36]. As these operators are more sensitive to noise, it
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is also possible to use operators such as Laplacian of Gaussian and difference

of Gaussians. For example, the Laplacian of Gaussian operator first smooths

an image with a Gaussian filter to reduce noise and then applies the Laplacian

operator [55]. Another way is to use the Canny edge detector [10], which is a

multi stage algorithm for edge detection.

2.1.1.3 Clustering Methods

Image segmentation is very similar to clustering in a sense that both try to group

similar pixels or data points into groups according to a distance criterion. The

simplest and the well known clustering technique is the k-means algorithm [32].

K-means first initializes the centroids of k clusters, randomly or using a heuristic.

It then updates these centroids iteratively, until there is no significant change

in the centroids. In each iteration, every data point is assigned to its nearest

centroid and the new centroids are computed by averaging the data points that

are assigned to those centroids. The k-means algorithm does not guarantee global

optimum but good centroid initializations may lead to good results. An image can

be segmented into regions by extracting intensity, color, and texture descriptors

for each of its pixels and using the k-means algorithm [14, 9].

Fuzzy c-means [24] is another clustering algorithm used for image segmenta-

tion [65, 13]. The fuzzy c-means algorithm introduces fuzziness to memberships

of data points. Each data point belongs to every cluster with a weight coefficient,

which gives the degree of that object being in a cluster. The fuzzy c-means al-

gorithm is a slightly modified version of the k-means algorithm with fuzziness.

Just like in k-means, initial c cluster centroids are selected and then updated

iteratively. In each iteration c weight coefficients are computed for each point.

The coefficients are defined using a function of the distance between the point

and the corresponding centroid. Once coefficients are found, cluster centroids are

updated averaging the data points according to their weight coefficients.

The mixture of Gaussian model can also be used for clustering. In that case,

maximum likelihood estimations of the covariances, means, and coefficients of
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the model are computed iteratively. This model is more sensitive to initialization

[16]. Clustering algorithms can be sensitive to noise and intensity heterogeneities,

because they do not incorporate spatial information.

2.1.2 Region-based Methods

Region-based methods group image pixels into regions preserving spatial connec-

tivity among the pixels in the same region.

2.1.2.1 Watersheds

Gray level intensity images can be segmented by watershed algorithms [5, 84].

These algorithms consider a gray level image as a topographic map and a pixel’s

intensity value as its altitude in the map. A local minimum is the place where

a drop of water falling on the topography flows down and finally reaches. A

local minimum is the base for a catchment basin. Watersheds are the meeting

points for the waters of adjacent catchment basins. In image segmentation, wa-

tershed lines correspond to the region boundaries. There are several approaches

to segment images using watershed representation. In one of them, a downstream

path is first found from each image pixel to a local minimum point of surface al-

titude of image. The set of pixels whose downstream paths meet in the same

minimum altitude, is then defined as a catchment basin. Another approach uses

flooding, in which the catchment basins are filled from the bottom, instead of

characterizing the downstream paths. The barriers where water from different

catchment basins meet are the watershed boundaries. Watershed methods are

usually applied to gray level images and they suffer from the over-segmentation

problem, which occurs when the number of regions in segmentation is higher

than expected. Marker controlled watersheds are effective to alleviate the over-

segmentation problem. These watersheds determine markers (flooding points),

which correspond to local minima,at the beginning and allow rising the water

only from these points.



CHAPTER 2. BACKGROUND 11

2.1.2.2 Region Growing

Region growing methods extract regions that are composed of connected prim-

itives with respect to some criteria [50, 17, 78, 3, 67, 79]. It is based on the

assumption that neighbouring pixels have similar values. Seeded region grow-

ing [3] is a common form of region growing methods. Seeded region growing is

a semi-supervised method because it takes a group of initial seeds as an input.

The seeds determine different regions to be segmented. Each region (seed) is

grown iteratively by checking unlabeled neighboring pixels. Decision to include

a neighbor pixel in the growing region is made on the similarity between the

feature value of the neighbor pixel and the average of pixels in the region. The

most similar pixel is included in the region in each iteration. Iterations continue

until all pixels are labeled. One disadvantage of the method is the requirement

of supervised inputs for the seed points. Therefore, for every region that is to be

segmented, a seed point is necessary. There are also methods, in which seeds are

automatically determined. The JSEG algorithm [17] is one of them. It defines J

value for image pixels and identifies pixel groups with smaller J values as seeds.

It is also possible to use approaches start with a single seed and add new seeds

if necessary. These approaches apply the same operations on the neighboring

pixels with the seeded region growing approaches. Differently, they include the

neighboring pixel into the region if the similarity is above a threshold. If not, a

new region is created with this neighboring pixel being a seed. Region growing

techniques are similar to greedy algorithms that consider the best local choices

at a given time. For this reason, they may lead to local optima. Region growing

techniques are also computationally expensive.

2.1.2.3 Split-and-merge

Split-and-merge methods segment an image by recursive partitioning. The image

is represented as a quadtree and each segment is partitioned into four equally

sized squares. Split-and-merge methods start from the root of the tree. If it finds

a heterogeneous region, it splits that region into four equal squares. If four equal

squares are homogeneous, it can merge them as a connected component. This
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operation is carried out recursively until no further splits or merges are possible.

2.1.3 Graph-based Methods

Graph-based methods construct a graph from a given image, where vertices rep-

resent pixels and the edge weights represent the similarity between two connected

vertices. They then consider the image segmentation as graph partitioning. There

are algorithms solving this problem using different similarity measures, different

cost functions, and different optimization methods.

Graph partitioning, clustering, and image segmentation are all similar prob-

lems; they all partition the data into uniform groups. The first step to consider

in solving these kind of problems is to define a criterion to optimize. The second

step is to find an algorithm to carry out the optimization. Most of the time, the

second step is more challenging and many attractive criteria suffer from the lack

of an effective algorithm that finds the global optimum. Greedy or gradient de-

scent based approaches usually fail to find global optimum for high-dimensional,

non-linear problems. Therefore, algorithms that guarantee the global optimum

are important as well as optimization criterion.

In graph-based approaches, the constructed graph can be divided into two

separate parts by removing edges that connect the two parts. The distance be-

tween these two parts is defined as the sum of the edge weights that are to be

removed. This is called the cut in graph theory literature. The optimal bisec-

tion of a graph, minimizes the cut value. Graph partitioning schemes partition

the graphs into a predefined number of vertex groups by optimizing the mini-

mum cut criterion. This can be achieved by recursively computing the minimum

cuts bisecting the current regions. The minimum cut criterion may produce very

small sized sets of vertices in the partition. This situation is expected, because

the cut value increases with the increasing number of edges of boundary vertices.

To avoid the unnatural bias for dividing small groups of points, Shi and Malik

[70] propose a new measure. They find the cut as a ratio of the total edge con-

nections to all graph vertices, instead of looking at the value of the sum of the
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edge weights that connect the two parts. This is called the normalized cut. With

their definition of the association between the different parts, the cut that divides

small isolated points will not have a low normalized cut value. Because the cut

will be a large fraction of the total edge connections from that little group to

all other vertices. Minimizing normalized cut exactly is NP-complete. However,

Shi and Malik propose an approximate discrete solution, which uses eigenvector

decomposition. They construct the affinity matrix, which is the adjacency ma-

trix of the graph, and solve the generalized eigenvalue problem for the normalized

Laplacian of the affinity matrix. They partition the graph into two parts by using

the eigenvector with the second smallest eigenvalue. They recursively bipartition

the graph in this way. The normalized cut yields results that are very close to the

global optimum because the normalized cut criterion measures ”both the total

dissimilarity between the different groups as well as the total similarity within

the groups”.

Although its high quality results, its computational requirements are very high

both in memory and CPU usage. These computational burdens make normalized

cuts impractical and prohibitive in the case of large graphs and high resolu-

tion images. Felzenszwalb and Huttenlocher [27], propose a faster algorithm, for

which segmentations satisfy global properties although it makes greedy choices.

Its region comparison criterion uses the minimum spanning tree approach. The

algorithm iterates through the graph edges deciding whether or not to merge

components. Although the measures for under- and over-segmentation are de-

fined, the algorithm cannot fully optimize these measures and often results in

over-segmentation. Boykov and Funka-Lea [7] also propose a faster graph-based

segmentation algorithm, in which they formulate the problem as a min-cut/max-

flow problem and solve it using a fast graph cut algorithm. They report high

quality results but the process is not fully unsupervised and requires supervised

user inputs.
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2.1.4 Statistical Methods

Statistical methods consider image segmentation as a probabilistic optimization

problem. They model the image probability distributions directly, using para-

metric and non-parametric estimation or by using graphical models.

Markov random field modeling is a statistical model, which is used in image

segmentation. Markov random fields model spatial relationships between adjacent

or nearby pixels. They have the assumption that most of the pixels tend to be

together in the same cluster with their adjacent pixels. This means that any

region containing only one pixel has a very low probability of occurring under a

Markov random field assumption. Panjwani and Healy [59] use Markov random

fields to characterize a texture by interaction between different color planes and

spatial interaction within each color plane. They then perform agglomerative

hierarchical clustering on these models.

2.1.5 Histopathological Image Segmentation

A large portion of the available image segmentation methods are proposed for

generic images for object or scene segmentation. There are very few methods

specifically proposed for histopathological image segmentation. There are studies

[71, 85] that use color and texture features to segment tissue images. These studies

perform grid analysis on the images. For that, they divide the images into fixed

sized square grids and extract color and texture features from the pixels of the

grids. Then they classify each grid in a supervised way. These studies use the

features defined on pixels but they do not consider the background knowledge of

tissue organization to define them. Actually, it is difficult to express background

knowledge in terms of pixels.

Most recent segmentation algorithms have proposed to incorporate medical

knowledge of a pathologist into the feature definition [82, 81]. These studies

approximately locate tissue components and define texture descriptors on these

components. Such representations provide good descriptors for histopathological
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tissue images. However their segmentation parts, which use seeded region growing

algorithms need improvement.

2.2 Multilevel Framework

Multilevel framework was introduced to be used in the graph partitioning prob-

lem. Graph partitioning problem shows its significancy in a variety of subjects

such as VLSI design, scientific computing, and task scheduling. Graph partition-

ing divides the vertices in graphs into p approximately equal parts by minimizing

the sum of weights of edges between vertices in different parts. To solve linear

equations like Ax = b, using iterative techniques using parallel processing, one

has to deal with the graph partitioning problem. In these kind of techniques, mul-

tiplying a sparse matrix with a dense vector is an important step. If the related

matrix A is partitioned well, then a considerable amount of decrease in the com-

munication volume in sparse matrix-vector multiplication for parallel processing.

Graph partitioning is an NP-complete problem. However, there are algo-

rithms that can produce fairly good partitions. It is known that spectral graph

partitioning techniques produce good quality results for a wide range of problems

[41, 63, 62]. However, these techniques are computationally inefficient, because

they need to compute the eigenvector corresponding to the second smallest eigen-

value, also known as Fiedler vector. In order to overcome the computational

burdens of spectral graph partitioning methods, multilevel graph partitioning al-

gorithms are proposed [42, 40, 48, 11, 76]. It is seen that multilevel algorithms

produced high quality partitions extremely fast compared to the spectral meth-

ods.

Multilevel graph partitioning algorithms consist of three phases called coars-

ening, partitioning, and uncoarsening. They basically decreases the size of the

original graph before partitioning. Partitioning the small sized graph takes very

little time. They then uncoarsen the small graph by refining the partition at each

level. In the coarsening phase, vertices of the graph are visited and merged with
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their neighbors to form multinodes. The original graph is repeatedly coarsened

level by level until a small number of multinodes remain. An initial division of the

coarsest graph is performed. Then, this partition is improved as the small graph

is uncoarsened level by level. They make use of iterative improvement heuristics

[49, 30] to refine the coarse graph in the uncoarsening phase. In the Kernighan-

Lin [49] heuristic, pairs of vertices from the adjacent parts are swapped in each

step whereas in the Fiduccia-Mattheyses [30] heuristic, a single vertex is moved

from one part to another.

The objective is to minimize the sum of the edge weights that are incident

to vertices on the boundary of the partition. It is an expected situation that

the method put a single vertex with the minimum sum of edge weights into one

part and other vertices to the other part to minimize the cut value. For this

reason, these heuristics compute the gain of each vertex move, to the cut value

considering the balance of the parts. This balance constraint can be limiting

and lead to poor results in specific areas of applications like clustering and image

segmentation.

2.3 Cluster Ensembling

Clustering is the process of grouping unlabeled data objects into clusters with

respect to a similarity definition to ”maximize the intra-cluster similarity and

to minimize the inter-cluster similarity” at the same time [23]. Clustering is

an important subject in the machine learning research. Ensemble learning also

became very popular and attracted more attention recently. Ensemble learning

combines the results of different methods or the same method with different

parameters settings to obtain a superior result than the single runs of other

learners [56]. Ensemble learners have a better generalization ability. They are

more robust and produce high quality results. Ensemble learning was extensively

used with supervised methods in the past [8, 64, 51, 83, 69] . Recently, ensemble

learning is started to be used with unsupervised methods. Strehl and Ghosh [74]

proposed to use ensembles of different clustering algorithms. Topchy et al. [80]
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showed that cluster ensembles can do better than the typical single clustering

algorithms in terms of robustness, stability, and scalability.

A certain clustering method which has a specific view of the data is defined as

a clusterer. Each clusterer produces cluster labels for some or all data objects.

Cluster ensembling is the problem of combining many different clustering of data

objects using only cluster labels without accessing the original features. Each

clusterer can use different feature descriptions and different grouping techniques.

Cluster ensembling is a good way of using different feature spaces together to get

a better view of the data.

Previous studies showed that, in classification or regression problems, perfor-

mance improvements from using ensemble techniques are directly related to the

amount of diversity among the individual component models [51, 83]. The ideal

ensemble should contain models that are powerful and have different inductive

biases to be able to make distinct generalizations [19]. Therefore, ensembles are

mostly used for integrating relatively unstable models such as decision trees and

multi-layered perceptrons. Recent studies [28, 52] showed that diversity and qual-

ity of individual clustering results increase the cluster ensemble performance as

in supervised ensembling.

To increase the diversity of individual clustering results, different clustering

algorithms can be used. Also a single clustering algorithm can be modified to

produce diverse results by means of randomization and other techniques. Random

sub-sampling is a way of increasing the diversity of a single algorithm. For each

clustering run, actual dataset is sub-sampled with a predefined percentage of sub-

sampling. Then clustering is performed with the sub-sampled data objects and

each data object omitted from the current sub-sample is assigned to its nearest

cluster center to ensure that all the data objects are clustered. Another way of

increasing the diversity is to use random projection. In random projection, for

each clustering run, data objects are projected to a lower dimension feature space

randomly. Then clustering is performed on the low-dimensional data set. This

is actually effective in the case of high-dimensional data sets. Different runs of

diverse clusterings recover different parts of the structure of the data and the
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increased number of diverse clustering solutions approach to capturing almost

perfect structure of the data.

Good quality partitionings are also necessary to increase the performance

of cluster ensembles. Using k-means with random initializations is not very

effective. Because algorithms like k-means are based on the convex spherical

sample space and most of the time the sample space is not convex trapping the

algorithms into local minimum.

The last step is to combine the clustering solutions using a consensus function

to get the final cluster labels. Creating a similarty matrix based on the frequency

of being in the same cluster for pairs of data and applying agglomerative clustering

on the new similarity matrix yields good results. However such an approach is

computationally inefficient. Strehl and Ghosh [74] propose two approaches that

use graph partitioning techniques in cluster ensembling. The first technique they

propose is an instance based technique. In this technique, a similarity matrix,

which contains the pairwise information of instances’ frequency of being clustered

together is constructed. This similarity matrix is considered as the adjacency

matrix of the graph and the graph is partitioned. The second technique they

propose is a cluster based technique, in which clusters are modeled as vertices.

The weights of edges are defined as the ratio of instances that the incident clusters

share. The original cluster ensemble cannot be reconstructed from a graph that

is constructed by the instance based or the cluster based technique. Therefore,

both techniques lead to information loss from an ensemble. Fern and Brodley

[29] propose a graph formulation which represents both instances and clusters as

vertices in a bipartite graph. This kind of graph preserves all of the information

of an ensemble. It allows both the similarity among clusters and the instance

to be taken into account collectively to produce the final clusters. The resulting

graph partitioning problem can be solved efficiently.



Chapter 3

Methodology

In this thesis, we propose a segmentation algorithm to achieve high quality and

stable results. The proposed method relies on obtaining several clusterings each

of which produces diverse and high quality results, and effectively combining the

results of these clusterings by a consensus function. In order to obtain high quality

and diverse clusterings at the same time, we proposed a modified version of the

multilevel graph partitioning scheme. For that, we first removed the balance

constraint because the segments in tissue images can be in any arbitrary shape.

We then removed the initial partitioning phase and randomized the boundary

refinement step in the uncoarsening phase of the multilevel graph partitioning

scheme.

The proposed method consists of the following three steps: (1) feature extrac-

tion and graph construction, (2) clustering, and (3) ensembling with a consensus

function. In the feature extraction and graph construction step, the object graph

of image is constructed by detecting medically meaningful objects as vertices and

Delaunay triangulation is applied on these objects to define edges between the

vertices. Then, a set of features is defined and the distance between the features

of two adjacent vertices is assigned as the weight of the graph edge between these

two vertices [81]. Once the input object graph is constructed, it is clustered by

the clustering algorithm which uses multilevel graph partitioning several times

to produce different clusterings. Produced clusterings are then combined using a

19
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Figure 3.1: Overview of the proposed method

consensus function. The consensus function constructs a bipartite graph between

the clusterings and the objects and obtains the final cluster labels of the objects

using a graph partitioning algorithm.

3.1 Graph Construction and Feature Extraction

To segment histopathological images, Tosun et al. proposed a method that incor-

porates domain specific knowledge of a pathologist into segmentation [81]. In this

method, they represented histopathological objects as object graphs and defined

high-level textural features on these graphs. This gives a powerful representation
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(a) Components (b) Edges

Figure 3.2: Detected tissue components(a). A close up view of some of the edges
found by Delaunay triangulation (b).

method that yields promising segmentation results. However, the segmentation

part of their method uses a standard region growing algorithm, which has a risk of

obtaining local optimal results. Therefore it may lead to inaccurate and unstable

results.

In this thesis, our main focus is to design and implement a new segmentation

algorithm that yields more accurate and stable results. For this purpose, we use

the features previously defined by Tosun et al. [81] and focus on the segmen-

tation part rather than the feature extraction part. In this section, we briefly

mention the feature extraction. The reader is referred to the previous work [81]

for comprehensive explanation.

Image pixels are clustered into three clusters using k-means algorithm on

their color information. Because after the staining procedure, tissue images get

three colors and their variations. These colors are purple, pink, and white, which

typically correspond to nuclear, stromal, and luminal components, respectively.

After clustering, circle fitting heuristic [82, 39] is applied on the clustered pixels

to locate different type of tissue components. Each detected tissue component is

considered as a vertex of the graph. Connectivity of vertices is determined by the

Delaunay edges that are found on the cartesian coordinates of the centers of the

tissue components. After producing the graph representation of the image, edge
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weights are defined by the feature extraction process. The tissue components

or the graph vertices are considered as primitive objects instead of pixels. A

modified version of the gray level run-length features [33] which are proposed for

pixels are defined on the image graph vertices [81] . For each vertex (component)

a 16 dimensional feature vector is computed. The weights of the edges between

two tissue components are computed as the euclidean similarity between the

feature vectors of the components. The resultant graph is an undirected graph

with weights on its edges.

3.2 Clustering

We solve image segmentation problem through clustering. In both problems,

there is a similar objective in which primitive elements are clustered into uniform

groups. Our clustering scheme utilizes the cluster ensembling technique. By

ensembling multiple different clustering solutions of the same data, much better

and stable clusterings can be obtained. The performance of cluster ensembles are

affected by two criteria which are diversity and quality. Each clustering solution

in the ensemble should be different than other solutions to improve the ensemble

performance. Each clustering solution should contribute to the final solution by

capturing a different aspect of the structure of the data. Also individual clustering

solutions should be of high quality. One should not sacrifice quality for the sake

of diversity. There should be a balance between the two criteria. So we proposed

an efficient algorithm that satisfies diversity and quality constraints.

Partitioning of a graph also corresponds to clustering the vertices of that

graph. For that reason, we solve the clustering problem by graph partitioning.

We use the terms clustering and partitioning interchangeably in this work. Graph

partitioning problem is described as follows: Given a graphG = (V,E) with |V | =

n, partition V into k subsets, V1, V2, ..., Vk such that
⋃

i Vi = V and Vi ∩ Vj = ∅

for i 6= j, the partitioning objective is to minimize the number of edges whose

incident vertices are in different parts. The partitioning constraint is to maintain

a given balance on the part weights, where the weight of a part, is defined as



CHAPTER 3. METHODOLOGY 23

the number of vertices in that part. For edge weighted graphs, the partitioning

objective becomes minimizing the sum of weights of the edges whose connected

vertices are in different parts. A partition result of vertex set V is shown by a

vector Π of length n. All vertices v ∈ V , Π[v] is a number between 1 and k. This

number indicates the partition of the vertex v. The edge cut of a partition Π is

the number of edges whose connected vertices are in different parts.

Algorithm 1 Segmentation Algorithm

Input: image I, integer K, integer K ′, float prc, integer nCls

Output: image R

1: V = {< x1, y1 >,< x2, y2 >, ..., < xn, yn >} ← ObjDetect(I)
2: E = {ea,b = (va, vb) | va ∈ V and vb ∈ V } ← DelTriEdges(V )
3: V = {< v1, x1, y1 >,< v2, x2, y2 >, ..., < vn, xn, yn >} ← FeatExt(V,E)
4: W = {wa,b = sim(va, vb) | ea,b ∈ E and va ∈ V and vb ∈ V }
5: G = (V,E,W )
6: Ψ = ∅
7: for i = 1→ nCls do

8: V s
0 = {vs1, v

s
2, ..., v

s
p} ← RandSubSample(V, prc)

9: Gs
0 ← ConstructObjectGraph(V s

0 )
10: Π′ ←MultilevelGraphPartition(Gs

0, K
′)

11: Π← Fill(Π′, G)
12: Ψ = Ψ ∪ {Π}
13: end for

14: R← ClusterEnsembling(Ψ, K)

Algorithm 2 Multilevel Graph Partitioning

Input: graph Gs
0, integer K

′

Output: set Π′

1: [Gs, numLvls]← Coarsening(Gs
0, K

′)
2: Π′ ← Refinement(Gs, numLvls)

Algorithm 3 Construct Object Graph
Input: set V
Output: graph G

1: E = {ea,b = (va, vb) | va ∈ V and vb ∈ V } ← DelTriEdges(V )
2: W = {wa,b = sim(va, vb) | ea,b ∈ E and va ∈ V and vb ∈ V }
3: G = (V,E,W )

Multilevel graph partitioning algorithms produce good partitionings of graphs

efficiently. Our method partitions the input graph using a multilevel scheme
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which produces high quality results efficiently. In order to obtain different par-

titionings each time the algorithm is run, we made some modifications in the

multilevel scheme. Multilevel graph partitioning algorithms coarsen the original

graph by clustering its vertices. They partition the resultant smaller graph much

more faster than the original graph. They then uncoarsen the smaller graph by

refining the partitions level by level. The partitioning of the smaller graph has

an important effect on the final partitioning result. In our method, we omit the

initial partitioning of the smaller graph for diversity. We also randomize the coars-

ening and the uncoarsening steps. But, we do not fully randomize everything, we

still optimize some local criteria. Multilevel graph partitioning algorithms stop

the coarsening step when approximately a hundred vertices remain, they then

perform initial partitioning on the coarsest graph. In our case in which the initial

partitioning step is omitted, the coarsening of the original graph stops when a

few vertices remain.

Our segmentation method is described in Algorithm 1. The first five lines of

the algorithm show the component detection, graph construction and the feature

extraction steps as described in [81] . In each iteration of the for loop between

the lines 7 and 13, a different clustering solution is produced to be used in the

ensemble. In the last line of the algorithm, multiple clustering results produced

in the for loop are combined using a consensus function to get the final clustering

result.

Our multilevel method is composed of two main phases which are the coars-

ening and the refinement phases as described in Algorithm 2, while traditional

multilevel schemes also have an initial partitioning step between those two. Other

parts in the for loop are just pre-processing and post-processing steps that im-

prove the performance of the ensemble. In line 8, a random subset of the vertices

is selected from the input graph with a predefined percentage. In line 9, a new

Delaunay triangulation is computed and the new edges between the vertices of

the selected subset is defined as the computed Delaunay edges (Algorithm 3) .

This is necessary because the selected subset of the vertices have different spatial

relationships with each other. After defining the connectivity of the selected ver-

tices, edge weights are computed as the euclidean similarity between the feature
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(a) with Initial partitioning

(b) without Initial partitioning

Figure 3.3: Multilevel Graph Bipartitioning with Initial partitioning (a). Multi-
level Graph Partitioning without Initial partitioning (b).
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vectors of adjacent vertices.

In the subsequent coarsening and refinement phases, the sample graph is par-

titioned. The resulting partition vector in line 10 only reports the cluster labels

of the vertices that were in the selected subset. In order to obtain a complete

labeling for all vertices in the graph, a filling operation is performed in line 11.

What is done in this operation is to assign the vertices, that are absent in the

selected subset, the label of the closest vertex in the selected subset in terms of

spatial proximity.

3.2.1 Random Subsampling

We mentioned that diversity and the quality of the individual clusterings affect

the ensemble performance. Increasing the diversity helps improving the clus-

tering performance. There are various techniques to increase the diversity of a

clustering algorithm such as randomization of clustering steps, randomization of

the data and the randomization of features. Random projection is the process of

randomizing the features. In random projection, in each clustering run, a random

projection of the features are used to cluster data. This technique is especially

useful in the case of high dimensional data and act as a dimensionality reduction

scheme. But in our case, the feature definition we use is not very high dimensional

(there are 16 dimensions) and no significant improvement can be obtained by ran-

dom projection. Another technique is to randomize the steps of the clustering

algorithm. We randomized some key steps in our clustering algorithm.

There is also the random sub-sampling technique. In random sub-sampling,

in each clustering run, a random subset of the data objects are selected and only

these objects are used in the clustering process. This technique also provides

different views of the data to the clustering algorithm and is immune to the noise

and variations in the data. In our method, each clustering solution is produced

using a different random subset of vertices. Before the multilevel graph parti-

tioning step, we select the sample vertices with a uniform random distribution.
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Then we redefine the edges between the selected vertices by Delaunay triangu-

lation and computing the euclidean similarity of adjacent vertices. We call this

resultant graph the sample graph. Multilevel graph partitioning is performed on

this sample graph.

3.2.2 Multilevel Graph Partitioning

3.2.2.1 Coarsening

Aim of the coarsening phase is to produce a smaller version of the input graph.

The input graph G0 is transformed into a number of small graphs G1, G2, ..., Gm

such that |V0| > |V1| > |V2| > ... > |Vm|. In the coarsening step, a combination

of smaller graphs each having lesser number of vertices, is constructed. In most

multilevel schemes, a group of vertices of Gi are merged to create a coarser graph’s

single super-vertex for the next level Gi+1. In traditional multilevel schemes, to

retain the connectivity in the next level graph, the edges incident to a super-vertex

are the union of the edges of its constituent vertices.

Figure 3.4: Coarsening a graph

A coarser version of a graph Gi can be produced by merging its adjacent

vertices. A super-vertex composed of these two adjacent vertices is produced by

collapsing the edge between them. The formal definition of collapsing of edges can

be made using matchings. A subset, where no two edges are incident to a common

vertex, is amatching of a graph. Gi+1 which is a coarser version of the graphGi, is
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constructed by computing a matching of Gi and merging each pair of vertices into

super-vertices. There will be unmatched vertices and those are preserved in the

Gi+1. The matching should be composed of many edges. Because the objective

of merging vertices using matchings is to construct a smaller version of the graph

Gi. To obtain each next level coarser graph, Maximal matchings are used. In a

maximal matching, any edge in the graph that is not in the matching has one of its

endpoints matched. Based on the type of method used for finding matchings, the

number of edges in maximal matchings can be different. Maximum matching

is the maximal matching with the maximum number of edges. But maximal

matching is preferred because of its computational complexity. Using matchings

in the coarsening phase, conserves many features of the original graph which is

desirable.

Algorithm 4 Coarsening

Input: graph Gs
0, integer K

′

Output: set Gs, integer numLvls

1: numLvls← 1
2: currNumObjs← n

3: r ← 0
4: while currNumObjs > K ′ do

5: for each randomly visited vertex v in V s
r do

6: if v is not merged with any other vertex then

7: T = {t | et,v = (t, v) ∈ E and v ∈ V and t ∈ V }
8: t← argmax

t∈T

sim(t, v)

9: merge vertices v and t

10: update Es
r and W s

r

11: mark v and t as merged

12: currNumObjs = currNumObjs− 1
13: end if

14: end for

15: Gs
r+1 = Gs

r

16: Gs = Gs ∪ {Gs
r}

17: numLvls = numLvls + 1
18: r = r + 1
19: end while

There are different ways to generate a matching of a graph to coarsen it.

Using a randomized algorithm, a maximal matching can be found. In the random
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maximal matching, vertices of a graph are randomly visited. If there is a vertex u

which is not matched, then one of its unmatched neighboring vertices is randomly

selected. Two vertices are said to be adjacent if there exists an edge that is

incident to those two vertices. If there exists such a vertex v, the edge (u, v) is

included in the matching and the vertices u and v are marked as matched. Vertex

u remains unmatched in the random matching if there is no unmatched adjacent

vertex v.

The goal in the graph partitioning is to minimize the sum of the weights of

the edges between the vertices on the boundary of the parts of the graph. So

a randomized matching method may not always produce satisfactory results for

every graph. In order to decrease the edge cut value, heavy edge matching [48]

can be used. In heavy edge matching, vertices are again visited randomly but the

visited vertex is matched with its adjacent vertex with the greatest edge weight.

This helps decreasing the final edge cut value.

The coarsening phase of our algorithm which is invoked in line 1 of Algorithm

2 is described in Algorithm 4. There are two inputs to the algorithm. First

one is the sample graph which is a random sub-sample of the original image

graph. Second one is the number of parts. In traditional multilevel schemes, the

graph is partitioned after the coarsening phase. Partitioning is required before

the refinement phase because it will refine the boundaries of the parts. The

coarsening phase of our algorithm continues until a few vertices remain. The

resultant coarsest graph is considered as an initial partitioning for the refinement

phase.

The while loop between lines 4 and 19 shows the steps of a single level coars-

ening operation. After each level of coarsening a smaller graph in the size of

vertices is produced. This phase goes on by further coarsening the output of the

previous level coarsened graph. The coarsest graph is obtained after the final

level of coarsening. Number of levels of coarsening depends on the desired num-

ber of vertices of the coarsest graph. As described between lines 4 and 19, a level

of coarsening is as follows. Each vertex of the graph is randomly visited. This

corresponds to the for each loop between lines 5 and 14. The visited vertex is
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checked if it is already merged with another vertex or super-vertex in this level.

If it is not merged with any other vertex or super-vertex, then the vertices or the

super-vertices which are incident to the visited vertex are considered. The one

with the greatest edge weight is merged with the visited vertex.

The merging process in our coarsening phase is different from traditional coars-

enings. First of all we keep the feature vectors of the vertices. When we produce

a super-vertex consisting of many vertices, the feature vector for the produced

super-vertex is computed as the average of the vertices it contains. Keeping

the feature information of the vertices also affects the edge collapsing process.

The weight of a collapsed edge between two super-vertices, is computed as the

Euclidean similarity of the super-vertices considering the finest level vertices con-

stituting these two super-vertices. In line 10 connectivity of the vertices and the

edge weights are updated. In line 11, merged vertices are marked to prevent them

merging again in the current level. In lines 15 and 16 every coarse graph produced

in each level are saved to be used in the refinement phase. The resultant coarsest

graph is a smaller version of the sample graph which preserves its properties.

3.2.2.2 Refinement

The refinement phase uncoarsens the small graph to its original size by improving

the partition. The partition Πm of the coarser graph Gm is uncoarsened into the

input graph. Original graph is obtained by using the graphs Gm−1, Gm−2, ..., G1.

Obtaining Πi from Πi+1 is done by putting the vertex group V v
i merged into

v ∈ Gi+1 to the partition Πi+1[v]. Because each vertex of Gi+1 is composed of a

different group of vertices of Gi.

Πi+1 is a local optimum partition of Gi+1. But the uncoarsened partition Πi

may not be at a local optimum according to Gi. Because Gi is finer than Gi+1, Gi

has more degrees of freedom which can be utilized to refine Πi, and reduce the cut

value. Uncoarsened partition of Gi−1 can also be improved by local improvement

heuristics. Therefore, after uncoarsening a partition, a refinement heuristic is

used. Partition refinement heuristics aim to find two vertex subsets, a set from
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each different part which minimizes the edge cut when swapped. If X and Y are

the two parts of a partition, a refinement heuristic selects X ′ ⊂ X and Y ′ ⊂ Y

such that X \X ′ ∪ Y ′ and Y \ Y ′ ∪X ′ is a partitioning with a smaller edge cut.

There are algorithms producing high quality results based on Kernighan-Lin

[49] and Fiduccia-Mattheyses [30] heuristics. Kernighan-Lin heuristic swaps pairs

of vertices from the adjacent parts in each step whereas in Fiduccia-Mattheyses

heuristic, a single vertex is moved from one part to another part. This kind of

algorithms compute the best possible swap that decreases the edge cut the most,

before moving any vertex. They also consider the balance of the parts of the

graph. They prevent making swaps that will distort the balance of the parts of

the graph. In our algorithm we use a similar heuristic but modify some steps.

We remove the balance criterion and we make greedy vertex moves, instead of

best gain swaps.

Algorithm 5 Refinement

Input: set Gs, integer numLvls

Output: set Π′

1: for r = numLvls− 1→ 1 do

2: Br ← boundary vertices of V s
r

3: repeat

4: {This foreach loop is called a pass}
5: for each randomly visited vertex b in Br do

6: if b is not moved in this pass then

7: move vertex b into the most similar region
8: update Π′, Br

9: end if

10: end for

11: find newly emerged regions

12: until numRegions is not changing
13: end for

The refinement phase of our algorithm which is invoked in line 2 of the Algo-

rithm 2 is described in Algorithm 5. The input to the algorithm is a set of graphs

that are produced by the coarsening phase. This set contains a coarser graph

for each level. The for loop between the lines 1 and 13 uncoarsens the coarsest

graph level by level. Refinement starts from the coarsest graph. Each vertex in a

coarser level contains vertices of the next finer level. In our algorithm we omitted



CHAPTER 3. METHODOLOGY 32

the initial partitioning phase and our coarsening phase produces a graph with few

vertices where in the refinement step each super-vertex of the coarsest graph is

treated as a part. First, super-vertices of the coarsest graph are uncoarsened and

the vertex sets coming from different super-vertices are considered as parts. Then

boundary refinement heuristic is run on the vertices that are on the boundaries.

This process goes on level by level until the original graph is obtained.

We made some modifications on the refinement phase and in the boundary

refinement step. In each level, we first uncoarsen the vertices of super-vertices of

the coarser graph. Then, in line 2, vertices on the boundaries of the parts are

detected. A vertex is a boundary vertex if one of its incident vertices are on a

different part. Our boundary refinement method can cut off vertices from other

parts and create new parts. In each level, we repeat the boundary refinement

pass until it converges to a constant number of parts. This step is described in

the repeat until loop between lines 3 and 12. We call the for each loop between

the lines 5 and 10 a pass.

In a pass, boundary vertices are randomly visited. The visited vertex is

checked if it is already moved in this pass. This is important because we may

get stuck in some local minimum and end up moving the same vertex repeatedly.

In order to prevent this thrashing process, moved vertices are locked. There are

two things to do if a vertex is not moved in that pass. Move the vertex to the

adjacent part, or leave it in its current part. Since we construct our input graphs

from images by Delaunay triangulation, our graphs are planar and the boundary

vertices can only be moved to one adjacent region. Decision to move the vertex

is made as follows. The visited vertex is considered as a single part. Then its

euclidean similarity to the adjacent region and its own region without the visited

vertex, is computed. If it is more similar to the adjacent region then it is moved

to that region otherwise it is left in its own region. If the vertex is moved, feature

values of the regions are recalculated incrementally. After each vertex move, some

vertices can loose their property of being a boundary vertex and some vertices

can become a boundary vertex. We take this issue into account and update the

boundary vertices incrementally after each vertex move. A pass stops when a

number of vertices are visited. We take it as the number of boundary vertices at
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the start of the pass.

Our experiments showed that, in this kind of a refinement environment, some

vertices can loose their connectivity with the region they belong to. It means that

they are different from the region they are currently in and also different from

the adjacent region. In such a case, they should be considered as new regions.

When this kind of vertices are allowed to form new regions, we observed that

they are cut off and merged with some other vertices from their neighbouring

regions. So after each pass, we check the connectivity of the vertices with their

regions. If we detect any loss of connectivity, we take those vertex groups as new

parts or regions. We do this at the end of each pass because of computational

requirements. Forming new regions or parts in the refinement step is actually

useful in two ways. First, it helps produce better partitions by capturing the

structure of the data. Second, it improves the cluster ensembling performance

providing a finer grain information about the object pairs’ frequency of being

clustered together.

With our refinement heuristic, number of regions or parts of the graph,

changes after a pass forming new regions. Experiments also showed that, af-

ter a number of passes, the number of parts of the graph stays the same. Number

of regions in the image actually converges to a constant number. So in each level,

the number of refinement passes are not static in our method. We stop the re-

finement passes in a level, when there is no change in the number of parts of the

graph happens.

3.2.3 Filling

As mentioned before, we use random sub-sampling to improve the ensemble per-

formance. In cluster ensembling, the data objects’ frequency of being in the same

cluster defines a new feature over the data objects. Then the final clustering

result is obtained from these features. To increase the diversity of the individ-

ual clustering solutions, we used random sub-sampling. We generated a sample

graph from the original input graph and performed the clustering on this sample
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graph. After the clustering, we only have the labels of the vertices that were in

the random subset. But in order to define a new similarity between every pair

of data object, we need the cluster labels for all objects. For this reason, we

estimate the cluster labels of the vertices that were not in the random subset as

shown in line 11 of Algorithm 1. We label every unlabeled vertex with its most

similar and spatially close labeled vertex.

3.3 Consensus Function

After producing multiple clustering solutions, we should solve the problem of

combining these results into a final clustering. This is a difficult problem since

clustering is an unsupervised process where the number of classes in the data

is unknown. Different clustering solutions can be coming from different feature

space based clustering algorithms. So the final clustering should be obtained

independent of the individual feature definitions of different clustering algorithms

that are in the ensemble. Only the cluster labels should be used to combine

different clusterings.

Approaches like majority voting in supervised ensembling can be used. One

approach is to define a new similarity based on the cluster labels of objects in

different clusterings. This approach considers the objects’ frequency of being

clustered together. The assumption is, if an object tends to be in the same

cluster with another object in most of the different clustering results, then they

will most likely be in the same cluster in the final clustering solution. With

this assumption a new similarity matrix is defined. The similarity between two

objects in this matrix is their frequency of being clustered together. After the

construction of a new feature of the objects, clustering can be performed on the

new similarity matrix.

Using agglomerative clustering on the new similarity matrix, yields good re-

sults. But agglomerative clustering is not an efficient way of partitioning the

data when the data set is large. To solve this problem efficiently, clustering the
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Figure 3.5: Bipartite graph representation of vertices and clusters

similarity matrix can be reduced to partitioning the graph constructed from the

similarity matrix. We construct a weighted undirected graph and partition it

efficiently using the state-of-the-art graph partitioning techniques.

There are techniques that use graph partitioning in cluster ensembling. First

one is an instance based technique. This is actually the graph version of the

similarity matrix which is constructed with the cluster labels from the ensemble.

Each edge weight is the similarity between the pair of vertices it is incident to.

The second one is a cluster based technique. It represents clusters as vertices

of a graph and computes the edge weights as the ratio of instances they share.

These approaches can cause information loss. The actual graph based cluster

ensemble, constructed by an instance based or a cluster based technique, cannot

be reconstructed. Fern and Brodley [29] proposed a new hybrid method that

models both clusters and instances as vertices of a bipartite graph. This kind

of bipartite graph preserves all of the information in the ensemble. It allows

both the similarity among clusters and the instances to be taken into account

collectively in the construction of the final clusters.

A cluster ensemble contains multiple different clustering solutions and is de-

fined as C = {C1, C2, ..., Ct}. A bipartite graph G = (V,E) is constructed where

V = V C∪V I . There are t vertices in V C and each vertex represents a cluster from

the ensemble. V I consists of n vertices and each of them represents an instance
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of the data set. E(i, j) is equal to zero, if the vertices j and i are both instances

or both clusters. Otherwise if instance j is in to cluster i, both E(i, j) and E(j, i)

are equal to 1. If not, they are equal to 0. Figure 3.5 shows the constructed

bipartite graph where diamond vertices are for clusters and round vertices are

for instances. A vertex is connected with an edge to the cluster it is contained.

All weights of the edges of the graph are unit weights. Instance vertices are only

connected to the cluster vertices. The first advantage of this kind of representa-

tion is that the actual cluster ensemble can be easily recovered from the bipartite

graph. The second advantage is that, it does not treat similarity of clusters and

similarity of instances independently. Further justifications can be found in [29].

After the bipartite graph is constructed, it is partitioned. We can use numer-

ous graph partitioning algorithms here. We do not use the graph partitioning

algorithms with the balance constraint because of the sizes of the expected clus-

ters. The Normalized Cut [70] produces good results here but its computational

requirements are very high. So we use the multilevel graph partitioning algorithm

proposed by Dhillon et al. [18]. This algorithms produces very close results to

the Normalized Cut algorithm by removing the computational requirements and

the balance constraint on the cluster sizes. The partition includes both cluster

vertices and instance vertices. We only take instance vertices into account and

we get the final cluster labels of the data objects.

Algorithm 6 Cluster Ensembling
Input: set Ψ, integer K
Output: partition R

1: bg ← ConstructBipartiteGraph(Ψ)
2: R← GraphPartition(K, bg)

3.4 Post processing

We detected medically meaningful tissue components in the input tissue image

and generated a graph representation of it. Then we partitioned the graph and

obtained the cluster label of each component. We also need the cluster label of
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each pixel of the image. For this reason, the Voronoi diagram of the components

is computed. There is a component at the center of each Voronoi cell. Finally

the pixels in each Voronoi cell are labeled with the label of the component at

the center of that Voronoi cell. By this the final segmentation of the image is

obtained.



Chapter 4

Experiments and Results

In this chapter, we describe our dataset, explain our experimental setup, and

present the results of the proposed segmentation algorithm. We also describe

the validation method we used in the experiments and provide comparisons with

other existing segmentation algorithms proposed for generic and tissue images.

4.1 Experimental Setup

This section provides information about the images used in the experiments and

the method that we use to validate segmentation results.

4.1.1 Dataset

Our dataset is composed of 200 images. These images are obtained from the

colon biopsy samples that are selected randomly from the Pathology Department

archives of Hacettepe School of Medicine. The samples are 5-6 µm thick tissue

sections and they are stained with the routine hematoxylin and eosin technique.

A Nikon Coolscope Digital Microscope is used to obtain images from biopsy

samples with 5× microscope objective lens and 1920 × 2560 image resolution.

38
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Fifty of the images are used in the training set to estimate the parameters of

the algorithm. The remaining 150 images, which are not used in parameter

estimation, are used in the test set to measure the performance of the algorithm.

The experimental system is developed in MATLAB 7.11, then deployed on

a 64 bit UNIX-based server with four 2.1 GHz 6-core AMD Opteron processors

and 128 GB of memory. The segmentation of an image containing approximately

5500 medically meaningful components (a graph with 5500 vertices), takes ap-

proximately 60 seconds when the ensemble size is 100 and 125 seconds when the

ensemble size is 250.

4.1.2 Validation

Segmentation performance can be evaluated visually by examining the result of

our algorithm with manual segmentations (gold standards) provided by a domain

expert. However, the validation based on quantitative measures is also necessary,

especially for comparisons. Our algorithm and those that we use in comparisons,

are all unsupervised methods. Therefore, they do not report the class labels of

regions; they just define the separate pixel groups as regions or clusters. How-

ever, we need to assign a label to each region (cluster) since we use the true

positive(TP), true negative(TN), false positive(FP), and false negative(FN) pix-

els for computing sensitivity, specificity, and accuracy. For this purpose, each

segmented region is compared with the gold standard and labeled with the class

of the region in the gold standard that this segmented region overlaps the most

(i.e., with the class of the dominant region in the gold standard). With this def-

inition, the pixels that are in the non-overlapping parts, are considered as false

negative or false positive, depending on the class of their dominant regions.

In this thesis, our objective is to separate regions that contain cancerous and

non-cancerous glands. Therefore, we do not consider non-glandular regions in the

validation scheme. In other words, the pixels in these regions are not considered

in TP, FP, TN, and FN computations.
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Figure 4.1: Segmentation performance increases as the number of regions in-
creases

For the evaluation, in addition to accuracy, we use sensitivity and specificity.

Sensitivity measures the rate of actual cancerous pixels that are correctly iden-

tified as cancerous pixels. Specificity measures the rate of non-cancerous pixels

that are correctly identified as non-cancerous pixels. In our experiments, we

observe that accuracy for some images could be very high although either sensi-

tivity or specificity is quite low. These images usually correspond to ones that

have larger normal regions and smaller cancerous smaller regions, or vice versa.

For this reason, we define two more criteria that use sensitivity and specificity.

First one is the multiplication of sensitivity and specificity and the second one

is the minimum of sensitivity and specificity.

The aforementioned criteria consider the quality of a segmentation result.

However, they do not penalize the over-segmented results. Thus, one should keep

in mind that an increase in the number of segmented regions will usually increase

the accuracy (Figure 4.1). In a histopathological image, there typically exist 2-3

regions. Therefore, in our experiments, we focus on the results that yield a small

number of segmented regions.
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4.2 Results

The proposed multilevel cluster ensembling (MLCE) method has three pa-

rameters: sub-sampling ratio (ssRatio), initial K (iK), and ensemble size

(eSize). In our experiments, we select these parameters on the training

set. For that, we consider every combination of the following candidate sets

ssRatio = {0.1, 0.2, ..., 0.9, 1.0}, eSize = {1, 2, 5, 10, 15, ..., 450, 500}, and iK =

{2, 3, ..., 99, 100} and select the one that leads to the best performance on the

training samples. We separately consider accuracy, sensitivity×specificity, and

min(sensitivity,specificity) performance measures. All of them give the same best

parameter set, which is ssRatio = 0.1, iK = 15, and eSize = 250.

Table 4.1: The training results obtained by our multilevel cluster ensembling
(MLCE) algorithm

Accuracy Sensitivity Specifity Sens×Spec min(Sens,Spec) ♯ of regions
91.52 92.43 87.06 80.03 80.97

2
±9.13 ±15.17 ±24.92 ±26.82 ±27.08
92.54 94.36 88.23 82.74 84.12

3
±6.16 ±9.21 ±16.02 ±16.14 ±15.47
93.82 94.92 91.13 85.61 87.45

4
±5.26 ±7.35 ±11.72 ±12.75 ±11.94
94.75 96.15 91.32 87.33 89.25

5
±4.54 ±6.87 ±9.38 ±10.86 ±9.79

Table 4.2: The test results obtained by our multilevel cluster ensembling (MLCE)
algorithm

Accuracy Sensitivity Specifity Sens×Spec min(Sens,Spec) ♯ of regions
91.40 92.34 86.09 79.10 80.64

2
±9.24 ±15.54 ±25.72 ±27.91 ±27.39
92.33 93.72 87.76 81.98 83.54

3
±6.22 ±9.64 ±16.54 ±16.95 ±16.25
93.11 94.21 90.02 84.70 86.73

4
±5.67 ±7.96 ±12.81 ±13.67 ±12.65
93.96 95.26 90.94 86.62 88.67

5
±4.95 ±7.05 ±9.79 ±11.27 ±10.17

In the experiments, since we want to avoid over-segmentation, we focus on

the results where an image is segmented in to less than 5 regions. Therefore,
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we fix the number of the final clusters (segmented regions) as 2, 3, 4, and 5.

When we report the parameter selection for each of these numbers, the same best

parameter set is selected. The training and the test results obtained with this

parameter set are reported in Tables 4.1 and 4.2.

In these tables, we observe that the proposed MLCE algorithm yields greater

than 91% for all number of selected regions. Moreover, it gives high sensitiv-

ity and specificity values at the same time, resulting in high Sens∗Spec and

min(Sens,Spec) values. We will compare these results with other algorithms

in the next subsection.

4.2.1 Parameters

In this section, we investigate the effects of parameter selection to the segmenta-

tion performance. For that, we fix two of the three parameters and observe the

performance as a function of the other.

4.2.1.1 Sub-sampling ratio

In order to generate each clustering result, the proposed method randomly selects

a subset of the objects, cluster them, and project the result onto the whole set

of objects. Random sub-sampling is effective in increasing the diversity of the

ensemble, which improves the final clustering performance. Moreover, it decreases

the computational time since the multilevel clustering algorithm works on a less

number of objects. The ratio of the selected subset to the entire set is considered

as a model parameter.

In the analysis, we consider the ratio from 1 to 100 percent. We also ob-

tain results for different number of segmented regions (for region no: 2, 3, 4,

5) and average those results. Figure 4.2 shows the average of the accuracy,

sensitivity×specificity, and min(sensitivity,specificity). This figure shows that

even very small ratios (10 percent) are sufficient to obtain good segmentation

results. Here we also observe that there is a slight decrease when larger ratios are
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Figure 4.2: The segmentation performance of the test set as a function of the
sub-sampling ratio

selected. This is attributed to the decrease in the diversity. The use of smaller

values of this parameter leads to more diverse results that are to be ensembled.

4.2.1.2 Initial K

Traditional multilevel graph partitioning algorithms coarsen the original graph

until there remain a few hundred vertices and perform an initial partitioning on

the coarsest graph. They then perform the refinement on this coarse partition.

These algorithms partition the smaller version of the graph for efficiency and the

initial partitioning of this small graph should be of good quality. However, in

our algorithm, we require different clustering results which increase the diversity.

Therefore, we omit the initial partitioning phase. The original graph is coarsened

until it has a few vertices instead of few hundred vertices.

The number of vertices until which the coarsening phase partition the graph is

considered as another parameter; we call it the initial K. To understand the effect
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Figure 4.3: The segmentation performance of the test set as a function of the
initial K

of this parameter to the performance, we fix the other parameters and select initial

K ranging from 2 to 100. Likewise, we conduct the experiment for region no: 2, 3,

4, and 5 and average their results. These results are presented in Figure 4.3. This

figure shows that smaller values this parameter yield worse results. We attribute

this to the following property: smaller values decrease the degrees of freedom

of graph vertices in the refinement phase such that the vertices cannot move to

a better part. Larger values of this parameter also decrease the performance,

leading to over-segmented results. They also increase the computational time of

the algorithm because the number of vertices on the boundaries increase greatly.

4.2.1.3 Ensemble size

The ensemble size (eSize) parameter determines the number of clustering results

that are to be combined in an ensembling scheme. Fern and Brodley [28] show

that ensemble performance can be improved by increasing the ensemble size,

provided that individual clusterings are diverse and of high quality. We also see
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Figure 4.4: The segmentation performance of the test set as a function of the
ensemble size

this effect in our experiments. Figure 4.4 reports the average performance results

(avg. of reg. no: 2, 3, 4, 5) of this parameter. In this figure, we observe a

considerable improvement of the segmentation performance up to an ensemble

size of 50. Further increase in the ensemble size improves the performance but it

is not stable.

4.2.2 Comparisons

In the experiments, we compare our results with the GraphRLM algorithm [81]

and those that are used for comparisons in [81]. We use the GraphRLM algorithm

to understand the effect of the proposed segmentation algorithm. Remember

that the proposed algorithm and GraphRLM use the same set of features to

characterize the objects bur they differ in their segmentation parts. Besides

GraphRLM, we make use of four more algorithms. The parameters of these

algorithms are also selected on the training set. The details of these algorithms
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and their parameters are explained in [81].

• GraphRLM is used to understand the effect of the new segmentation al-

gorithm proposed by this thesis. We use the same set of features with

GraphRLM. These are textural features defined on the objects that corre-

spond to tissue components. GraphRLM uses a region growing algorithm

in its segmentation part.

• GrayRLM [33] is the pixel-based counterpart of GraphRLM. Its features

are textural features defined on image pixels. Similarly, it uses a region

growing algorithm in its segmentation.

• objectSEG is the algorithm that also uses texture features defined on ob-

jects [82]. It also employs a region growing algorithm. It is defined for

histopathological images as well.

• JSEG is a well known segmentation algorithm proposed for generic images,

not for histopathological images [17]. It relies on a new texture definition

called J values. It can be considered in a way that it uses a kind of region

growing algorithm.

• GBS is another algorithm also proposed for generic images [27]. It is a

graph-based algorithm that construct a graph from the image pixels for

segmentation.

The parameter selection of these methods does not rely on finding the pa-

rameter combination that gives the best accuracy results. If they consider just

the accuracy, they always favour the over-segmented results since the number of

segmented regions is automatically determined by these algorithms. Therefore,

in the parameter selection, only the parameter combinations that lead to at most

5 segmented regions are considered. The detailed explanation of this parameter

selection is explained in [81]. Tables 4.3 and 4.4 report the results of these five

algorithms for the training and test sets respectively. Moreover, they also report

the number of segmented regions given by these algorithms.
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As opposed to these previous algorithms, our proposed algorithm does not

determine the number of segmented regions but takes this as an input. In Tables

4.3 and 4.4, we present the results obtained when this number is selected as 2,

3, 4, and 5. These tables show that the proposed algorithm improves sensitivity

and specificity results of the other algorithms. The t-test with a significance level

of 0.05 shows that this is a statistically significant improvement. Note that, as

also discussed in [81], the over-segmentation is an issue for these algorithms. For

this reason, in [81], the results are also reported when the maximum number of

segmented regions is allowed to be 10. In that case, the accuracy results are

shown, to be greatly improved.

For more fair comparison, we also change the algorithms, if that is possible,

such that the number of region is given as an input. For the GraphRLM and

GrayRLM algorithms, that is easily implemented whereas for the others simple

modifications is not possible. For those algorithms more complex modification

should be made, which will be considered as future work. Providing the re-

gion number as an input, we run the parameter selection of the GraphRLM and

GrayRLM algorithms; this selection is still done on the training samples. The

training results when the region number is fixed to 2, 3, 4, and 5 are given in

Tables 4.5, 4.6, 4.7, and 4.8 respectively. Similarly the test results for these re-

gion numbers are given in Tables 4.9, 4.10, 4.11, and 4.12 respectively. For better

comparing the algorithms, the test results are also given in bar charts, in Figures

4.5, 4.6, 4.7, and 4.8. The charts indicate that the performance of GraphRLM

and GrayRLM increases when the region number is provided as an input. This

is related to better selection of the parameters according to a particular region

number. These plots also show that the proposed segmentation algorithm im-

proves the results especially for smaller number of regions. We also give the

visual segmentation results of some images in Figures 4.9 and 4.10.



CHAPTER 4. EXPERIMENTS AND RESULTS 48

Table 4.3: Training results obtained by the algorithms. The results of the pro-
posed MLCE algorithm are reported for region no: 2, 3, 4, 5. For other algo-
rithms, the results obtained when maximum 5 regions are selected.

Method AccuracySensitivitySpecifitySens×Specmin(Sens,Spec) ♯ of regions

MLCE
91.52 92.43 87.06 80.03 80.97

2
±9.13 ±15.17 ±24.92 ±26.82 ±27.08

MLCE
92.54 94.36 88.23 82.74 84.12

3
±6.16 ±9.21 ±16.02 ±16.14 ±15.47

MLCE
93.82 94.92 91.13 85.61 87.45

4
±5.26 ±7.35 ±11.72 ±12.75 ±11.94

MLCE
94.75 96.15 91.32 87.33 89.25

5
±4.54 ±6.87 ±9.38 ±10.86 ±9.79

objectSEG 81.43 80.07 76.45 57.18 58.23 3.24
(r < 5) ±14.34 ±30.46 ±32.78 ±33.99 ±34.27 ±0.87

GraphRLM 87.06 90.72 79.21 70.22 71.75 2.75
(r < 5) ±13.62 ±18.69 ±33.66 ±33.89 ±34.41 ±1.09

GrayRLM 77.19 74.37 71.10 45.85 46.49 2.96
(r < 5) ±14.31 ±35.80 ±38.48 ±36.36 ±36.84 ±1.14
GBS 72.61 63.55 74.47 41.91 48.08 3.26

(r < 5) ±8.83 ±34.87 ±22.07 ±24.43 ±27.77 ±0.92
JSEG 69.03 46.75 72.62 19.55 19.55 2.38
(r < 5) ±12.28 ±48.01 ±40.20 ±31.54 ±32.69 ±1.29
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Table 4.4: Test results obtained by the algorithms. The results of the proposed
MLCE algorithm are reported for region no: 2, 3, 4, 5. For other algorithms, the
results obtained when maximum 5 regions are selected.

Method AccuracySensitivitySpecifitySens×Specmin(Sens,Spec) ♯ of regions

MLCE
91.40 92.34 86.09 79.10 80.64

2
±9.24 ±15.54 ±25.72 ±27.91 ±27.39

MLCE
92.33 93.72 87.76 81.98 83.54

3
±6.22 ±9.64 ±16.54 ±16.95 ±16.25

MLCE
93.11 94.21 90.02 84.70 86.73

4
±5.67 ±7.96 ±12.81 ±13.67 ±12.65

MLCE
93.96 95.26 90.94 86.62 88.67

5
±4.95 ±7.05 ±9.79 ±11.27 ±10.17

objectSEG 86.91 90.38 77.19 68.09 69.35 4.06
(r < 5) ±11.44 ±21.79 ±28.52 ±30.42 ±30.67 ±1.31

GraphRLM 84.78 85.83 76.15 62.73 64.41 2.75
(r < 5) ±14.42 ±26.16 ±35.71 ±37.50 ±37.64 ±1.09

GrayRLM 75.67 77.15 62.58 40.22 41.01 3.03
(r < 5) ±14.48 ±35.56 ±40.95 ±36.34 ±36.89 ±1.30
GBS 73.43 64.54 72.20 39.63 44.35 3.67

(r < 5) ±8.96 ±33.81 ±30.33 ±26.14 ±29.20 ±1.25
JSEG 69.40 62.67 62.24 25.16 25.43 2.96
(r < 5) ±12.14 ±45.53 ±39.78 ±29.54 ±29.88 ±1.32
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Figure 4.5: Test results of the algorithms when the number of segmented regions
is fixed to 2
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Figure 4.6: Test results of the algorithms when the number of segmented regions
is fixed to 3
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Figure 4.7: Test results of the algorithms when the number of segmented regions
is fixed to 4
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Figure 4.8: Test results of the algorithms when the number of segmented regions
is fixed to 5
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Table 4.5: Training results of the algorithms when the number of segmented
regions is fixed to 2

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
91.52 92.43 87.06 80.03 80.97

2
±9.13 ±15.17 ±24.92 ±26.82 ±27.08

GraphRLM
82.62 81.09 78.05 59.78 61.17

2
±13.03 ±27.05 ±32.61 ±33.84 ±34.01

GrayRLM
75.48 74.03 67.34 42.55 43.76

2
±14.42 ±34.92 ±40.04 ±36.03 ±35.99

Table 4.6: Training results of the algorithms when the number of segmented
regions is fixed to 3

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
92.54 94.36 88.23 82.74 84.12

3
±6.16 ±9.21 ±16.02 ±16.14 ±15.47

GraphRLM
88.22 93.14 80.38 73.84 74.84

3
±10.60 ±14.67 ±24.98 ±24.02 ±24.51

GrayRLM
83.61 83.38 78.47 62.41 63.50

3
±14.15 ±28.22 ±31.56 ±34.17 ±33.99

Table 4.7: Training results of the algorithms when the number of segmented
regions is fixed to 4

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
93.82 94.92 91.13 85.61 87.45

4
±5.26 ±7.35 ±11.72 ±12.75 ±11.94

GraphRLM
91.34 90.18 91.21 81.74 83.16

4
±6.64 ±13.51 ±13.49 ±15.19 ±14.95

GrayRLM
84.91 88.55 76.89 66.17 67.37

4
±13.54 ±20.62 ±32.57 ±32.63 ±33.08

Table 4.8: Training results of the algorithms when the number of segmented
regions is fixed to 5

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
94.75 96.15 91.32 87.33 89.25

5
±4.54 ±6.87 ±9.38 ±10.86 ±9.79

GraphRLM
92.75 92.55 92.06 84.84 86.06

5
±7.71 ±12.37 ±12.81 ±15.20 ±14.83

GrayRLM
89.22 89.94 84.16 74.59 76.09

5
±11.07 ±18.81 ±26.40 ±28.64 ±28.85
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Table 4.9: Test results of the algorithms when the number of segmented regions
is fixed to 2

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
91.40 92.34 86.09 79.10 80.64

2
±9.24 ±15.54 ±25.72 ±27.91 ±27.39

GraphRLM
83.47 81.12 79.13 61.14 62.79

2
±13.05 ±27.06 ±32.62 ±33.85 ±34.02

GrayRLM
74.17 78.17 57.68 36.67 37.89

2
±13.42 ±32.92 ±42.04 ±34.03 ±34.99

Table 4.10: Test results of the algorithms when the number of segmented regions
is fixed to 3

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
92.33 93.72 87.76 81.98 83.54

3
±6.22 ±9.64 ±16.54 ±16.95 ±16.25

GraphRLM
87.59 90.44 80.11 71.49 73.40

3
±10.60 ±15.67 ±26.98 ±27.02 ±26.51

GrayRLM
79.38 80.18 70.19 51.16 52.78

3
±13.15 ±28.22 ±37.56 ±34.17 ±34.99

Table 4.11: Test results of the algorithms when the number of segmented regions
is fixed to 4

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
93.11 94.21 90.02 84.70 86.73

4
±5.67 ±7.96 ±12.81 ±13.67 ±12.65

GraphRLM
90.34 91.20 85.99 77.67 78.93

4
±9.64 ±14.51 ±25.49 ±26.19 ±25.95

GrayRLM
83.98 84.70 78.41 63.73 65.30

4
±11.54 ±23.62 ±29.57 ±29.63 ±30.08

Table 4.12: Test results of the algorithms when the number of segmented regions
is fixed to 5

Method AccuracySensitivitySpecifitySens∗Specmin(Sens,Spec) ♯ of regions

MLCE
93.96 95.26 90.94 86.62 88.67

5
±4.95 ±7.05 ±9.79 ±11.27 ±10.17

GraphRLM
92.24 93.82 87.67 81.88 83.23

5
±7.71 ±10.37 ±20.81 ±21.20 ±20.83

GrayRLM
88.79 89.13 84.01 73.64 75.15

5
±10.07 ±16.81 ±26.40 ±26.64 ±26.85



CHAPTER 4. EXPERIMENTS AND RESULTS 54

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Visual results for 2 example images: (a) gold standard for the first
image and it is segmented into (b) two, (c) three, (d) four regions. (e) Gold
standard for the second image and it is segmented into (f) two, (g) three, (h) four
regions
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Figure 4.10: Visual results for 2 example images: (a) gold standard for the first
image and it is segmented into (b) two, (c) three, (d) four regions. (e) Gold
standard for the second image and it is segmented into (f) two, (g) three, (h) four
regions



Chapter 5

Conclusion and Discussion

In this thesis, we proposed a new clustering algorithm to be used in segmentation

of histopathological images. We use existing high level feature descriptors de-

signed for histopathological images. These feature descriptors have a good repre-

sentation power because they incorporate the background knowledge of a pathol-

ogist into feature extraction by defining image primitives as medically meaningful

tissue components. The proposed method focuses on the segmentation part rather

than feature extraction. It formulates the image segmentation problem as a clus-

tering problem using the cluster ensembling approach in which different clustering

solutions are combined to obtain the final cluster labels. Cluster ensembles pro-

duce high quality results when the individual clustering solutions in the ensemble

are diverse and accurate. To maximize the diversity and the accuracy of each

clusterer, the proposed algorithm formulates the clustering problem as a graph

partitioning problem. It modifies the well known multilevel graph partitioning

scheme to produce diverse and good quality partitions. Graph partitioning fits

very well to the problem since the high level features used in segmentation are

graph-based features. After producing many different clusterings of image com-

ponents, these results are combined using a consensus function producing the final

cluster labels of tissue components of an image. Computing Voronoi diagram of

components as a post-processing step, it outputs the pixel level segmentation.

56
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We compared our algorithm with five other segmentation algorithms. Some

of them are proposed for generic images and some of them are proposed for

tissue images. The proposed algorithm performed significantly better than all

five algorithms in accuracy, sensitivity, and specificity. Our algorithm used the

same feature definition with the GraphRLM algorithm which performed better

than other four algorithms. Test results showed that our algorithm improves the

segmentation performance significantly even it uses the same features. It also

has the lowest standard deviations in validation criteria indicating its stability

and generalization power. Another advantage of the proposed algorithm is that

it produces high quality segmentations in smaller number of regions overcoming

the over-segmentation problem. Because the segmented regions should be large

enough to be used in classification and grading of cancer.

Our algorithm expects the number of segments from the outside as a param-

eter. Most of the time the number of regions or clusters is unknown since this

is an unsupervised process. Detection of natural number of clusters or regions

in images can be listed as a future work. An increase in the size of ensembles

up to a certain point, increases the clustering performance. But there may not

be a further significant improvement after that point. Another future work is

to develop a method for choosing clustering solutions which will make an actual

contribution to the ensemble to increase the clustering performance.
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