
MODELING 3D OBJECTS WITH
FREE-FORM SURFACES USING 2D

SKETCHES

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Emre Akatürk

September, 2011

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Tolga Çapın(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ahmet Oğuz Akyüz

Approved for the Graduate School of Engineering and

Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

MODELING 3D OBJECTS WITH FREE-FORM
SURFACES USING 2D SKETCHES

Emre Akatürk

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Tolga Çapın

September, 2011

Using sketches for 3D modelling is a popular research area, which is expected since

using 2D sketches feels natural to most of the artists. Many techniques have been

proposed to enable an intuitive and competent tool for 3D object creation. In

the light of the previous research in this area, we designed a system that enables

creation of 3D free-form objects with details. Our system aims to enable users

to easily create simple free-form objects using strokes and perturb their surfaces

using sketches that provide contours of details and shading information. We

provide the user with the ability to create a 3D simple object just by drawing

its silhouette. We take this stroke input and create a simple 3D object. Then

we allow the user to shade the parts of the 2D silhouette drawn before. We

take the shading information and use shape from shading techniques to create a

height map and apply the height map on the surface of the object to construct a

perturbed surface for the previously created mesh. With our system, it is possible

to create and modify 3D meshes easily and intuitively.

Keywords: 3D modeling, sketching, shape from shading.

iii

ÖZET

2 BOYUTLU ESKİZLERDEN 3 BOYUTLU DÜZENSİZ
YÜZEYLİ NESNELER MODELLEME

Emre Akatürk

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Y. Doç. Dr. Tolga Çapın

Eylül, 2011

İki boyutlu eskizlerin kullanımının, pek çok sanatçının kendisini doğal his-

setmesini sağladığını düşünürsek, üç boyutlu modellemelerde eskiz kullanımının

neden bu kadar rağbet gören bir araştırma alanı olduğunu anlayabiliriz. Üç

boyutlu nesne yaratabilmek için; kullanımı kolay, aynı zamanda yetkin bir

araca olanak sağlaması amacıyla pek çok teknik sunulmuştur. Bu tez de, bu

alanda daha önce yapılmış olan araştırmaların ışığında, detaylı üç boyutlu nesne

tasarımına olanak sağlayacak bir sistem geliştirmeyi amaçlamaktadır. Tezde

kullanılan sistemin amacı, kullanıcıların bazı çizgilerle pürüzsüz basit nesneler

yaratabilmesini ve gölgelendirme bilgisi taşıyan eskizler aracılığıyla, yaratılan nes-

nenin yüzeyini pürüzlü hale dönüştürebilmesini sağlamaktır. Böylelikle, sadece

basit bir silüet çizimiyle kullanıcılara, üç boyutlu pürüzsüz basit bir nesne

yaratma olanağı yaratılmıştır. Sistemin işleyişi şu şekilde özetlenebilir: Sis-

tem, çizgi girdisini alır ve basit üç boyutlu bir nesne yaratır. Ardından, kul-

lanıcının daha önceden çizmiş olduğu iki boyutlu silüetin istediği kısımlarını

gölgelendirmesine olanak sağlanır. Burada, yükseklik haritasının oluşumunda

kullanılan gölgelendirme bilgisini ve gölgelendirmenin şeklini alır ve daha önceden

oluşturulmuş örgü üzerinde pürüzlü bir yüzey oluşturmak için pürüzsüz nesnenin

yüzeyine gölgelendirme haritasını uygular. Tezde kullanlan sistem sayesinde, ko-

layca üç boyutlu örgüler yaratılabilir ve üzerinde değişikler yapılabilir.

Anahtar sözcükler : 3 boyutlu modelleme, eskiz, tonlama kullanarak şekil çıkarma.

iv

Acknowledgement

I would like to express my gratitude to Dr. Tolga Çapın, from whom I have

learned a lot, due to his supervision, suggestions, and support during this re-

search.

I am also indebted to Dr. Uğur Güdükbay and Dr. Ahmet Oğuz Akyüz for

showing keen interest to the subject matter and accepting to read and review this

thesis.

I would like to thank to my colleagues from office, for their comments and

reviews.

I am grateful to Denizhan Güçer, for his continuous support and patience.

I want to express my gratitude to my grandfather, Erol Karapınar who has

encouraged and supported me during my education.

I am also grateful to my father for his guidance and I would like to thank him

for the faith he put in me.

My mother has provided assistance in numerous ways during my work in this

thesis. I am grateful for her help and support in my worst days.

Finally, I would like to express my gratitude to Elif Erdoğan for her endless

support, her help and understanding during my work on this thesis.

v

Contents

1 Introduction 1

2 Background and Related Work 5

2.1 Sketch Input . 5

2.2 Sketch based Modeling Methods 9

2.2.1 Primitives Created using Gestures 9

2.2.2 Reconstruction . 11

2.2.3 Height Fields and SFS . 13

2.2.4 Deformation and Sculpture 14

2.2.5 Blobby Inflation . 17

2.2.6 Contour Curves and Drawing Surfaces 19

2.2.7 Stroke Based Constructions 20

3 Method Description 24

3.1 Overall System Description . 24

3.2 System Description . 25

vi

CONTENTS vii

3.2.1 Receiving and Resampling the Silhouette Input 25

3.2.2 3D Object Creation . 27

3.2.3 Construction of the Heightfield 34

3.2.4 Application of the Heightfield on the 3D Mesh 35

4 Results and Discussion 37

4.1 3D Object Types . 37

4.2 Parameters . 40

4.2.1 Resampling . 40

4.2.2 Sweep Line Spacing . 41

4.3 Shading Effects . 41

4.4 System Comparison . 49

5 Conclusion 52

Bibliography . 54

List of Figures

3.1 The Proposed Framework . 25

3.2 Overall procedure . 26

3.3 Input Resampling Algorithm . 26

3.4 Different steps of our 2D silhouette processing algorithm. 27

3.5 3D Object Creation Procedure . 27

3.6 Silhouette Edge Creation Algorithm 28

3.7 Sweep Line Generation and Intersection Finding Algorithm 29

3.8 Slab Triangulation . 30

3.9 Point Finding Algorithm . 31

3.10 3D Slab . 32

3.11 Wireframe 3D mesh . 33

3.12 Triangulation Algorithm . 33

3.13 Brush sizes . 34

3.14 Shape-from-shading method. Courtesy of Tsai et al. [32] 35

viii

LIST OF FIGURES ix

4.1 Sketches of 3D objects constructed with convex polygon inputs . . 38

4.2 Different wireframe examples of 3D objects constructed with rect-

angular convex polygon inputs . 38

4.3 Different wireframe examples of 3D objects constructed with con-

vex polygon inputs . 38

4.4 Sketches of 3D objects constructed with concave polygon inputs . 39

4.5 Different wireframe examples of 3D objects constructed with con-

cave polygon inputs . 39

4.6 Different wireframe examples of 3D objects constructed with com-

plex polygon inputs . 40

4.7 Resampling examples for different values of Input Point Resam-

pling Constant (IRC). IRC is selected 20 for the input on the left

and IRC is 10 for the input on the right. 40

4.8 Sketches of 3D objects constructed for SLS Testing 41

4.9 Wireframe examples of 3D objects with different SLS values . . . 41

4.10 Dress sketch . 42

4.11 Wireframe model of a dress created with our system 42

4.12 Textured model of a dress created with our system 43

4.13 Almond sketch . 43

4.14 Wireframe model of an almond created with our system 44

4.15 Textured model of an almond created with our system 44

4.16 Fish sketch . 45

4.17 Wireframe model of a fish created with our system 45

LIST OF FIGURES x

4.18 Textured model of a fish created with our system 46

4.19 Leaf sketch . 47

4.20 Wireframe model of a leaf created with our system 47

4.21 Textured model of a leaf created with our system 48

4.22 Wall sketch . 48

4.23 Wireframe model of a wall created with our system 49

4.24 Textured model of a wall created with our system 49

4.25 Textured model of a wall created with ZBrush. (b) is the smoothed

version of (a) . 50

4.26 Textured model of a leaf created with ZBrush 50

Chapter 1

Introduction

3D object modeling is a major research area in the computer graphics. As the

powerful commercial modeling tools such as Maya [52] and 3D Studio Max [53]

has been available to everyone and the power of the computer aided design tools

have been discovered, many design related professionals such as engineers and

architects utilize 3D modeling tools. The 3D modeling is also very popular (as

expected) in its inevitable usage in gaming and 3D animation film industry. Most

of the commercial and powerful 3D design tools today employ window, icon,

menu, pointer (WIMP) interface [13]. This kind of interaction proved to be

useful, and 3D modeling tools that employ such an interaction method are able

to construct very detailed and realistic 3D models.

The 3D design tools that utilize the WIMP interface are very powerful but

creation of 3D meshes with these systems require tedious work and much experi-

ence. In order to remedy this, researchers have proposed a different interface, one

that comes most natural to artists and designers, a sketch based interface. The

idea that leads researchers to employ such an interface is that the traditional way

to design and express ideas is done through sketching and one might extract ideas

and understand the mental process under the sketch. Extending this idea to 3D

modeling interfaces, researchers aimed to reconstruct 3D models by mimicking

the cognitive process of human visual recognition system and by trying to under-

stand the clues about the designer’s mental process that the designer provides to

1

CHAPTER 1. INTRODUCTION 2

the system when designing an object by sketching it.

The ultimate goal of sketch based modeling interfaces is briefly to provide

an easy and intuitive modeling method that uses sketch input and to provide

an interface that is as powerful as the WIMP interfaces. This goal is far from

becoming true due to the complex nature of the 3D shape recognition process,

however. This complexity arises mostly because of the lack of the depth infor-

mation in sketches and in most of the interfaces that allow the user to provide

sketch input to the computer.

Research in sketch based modeling interfaces today consists of systems that

are scattered among different approaches to the sketch interpretation problem.

Many different approaches have been proposed and none of these approaches

proved nor aimed to be a final and complete method for sketch based modeling

systems, which is only normal since the field is relatively new. The results of

research are promising, however. Many incomplete but useful methods that pro-

vide satisfactory results have been proposed. The current state of the research

seems to become a collection of methods that employ different approaches that

are able to address specific problems that sketch based modeling interfaces try to

solve.

Observing the current state of the research, we try to address such a specific

problem that has not been completely solved. The modeling of 3D objects is

a problem of not only describing the overall structure of the object, but also a

problem of depicting the detailed surface structure of the object. This is required

in some systems more than others, especially in applications where the details

are important such as modeling of 3D characters and objects in gaming and 3D

animation film industry. The details of an object are especially important when

modeling objects with perturbed free-form surfaces such as an almond or fish.

These kind of objects have patterned or randomly placed perturbations on their

surfaces.

Some of the current sketch based systems provide functionalities that allow

such perturbations to be applied to the surface of an object such as Mudbox

and ZBrush [54] [51]. These systems employ a depth painting method, which

CHAPTER 1. INTRODUCTION 3

allows the user to paint depth values on vertices using a brush. Some systems

proposed to use shaded images [9] to construct shape of an object or to employ

2D painting interfaces to deform or manually correct mistakes on a pre existing

3D mesh [8]. The approach that is used in such systems inspired us to use

shading data provided by the user to serve our purpose. Since these image based

techniques are inadequate for fully 3D object creation purposes, we propose using

such a technique as a modifier to a 3D object that is created by a purely sketch

based 3D object creation method.

The main idea behind our work is that the perturbations and free-form struc-

ture of a surface can be easily described by sketch input, with a traditional method

named shading which is used for describing the depth values of a surface. We

have observed that an artist provides shading input to depict the depth values

of a surface, and this input can prove to be most valuable when reconstructing

the surface of an object. We combine this idea with a 3D free-form object cre-

ation approach that only requires 2D silhouette information provided by the user.

Our 3D object creation method uses sweep lines to construct surfaces which are

similar to the rotational sweep surfaces used in Cherlin et al.’s work [3] which is

explained in more detail in Chapter 2. The 3D object creation method employed

in our system, when combined with a depth modification system, provides an

intuitive and simple interface based solely on 2D sketch input.

The contributions of the thesis are summarized as follows:

1. We present a novel approach for creating fully 3D objects with free-form

surfaces by only utilizing sketch input. We combine a 3D mesh creation sys-

tem that is similar to the the rotational sweep surface technique proposed

by Cherlin et al. [3] and combine it with a image based depth modifica-

tion technique. This combination provides an object with desired geomet-

ric perturbations applied to its surface. The overall shape of the object

is determined by the object creation technique and the surface geometry

is determined by the height field that our image based system constructs

according to the shading input.

CHAPTER 1. INTRODUCTION 4

2. We test regular triangular mesh structure for our image based technique.

We use a regular triangular mesh to represent the geometry of the objects.

The triangles of our mesh have a predefined edge length and are formed to

fit inside vertices that are distributed uniformly through the area inside the

borders of the mesh. In order to apply the appropriate perturbation value

to a vertex in the mesh, we simply find the appropriate height value from

the height map. When we calculate the perturbation value, we also add

height values of adjacent elements in the height map which is constructed

using user’s shading input. Then we apply the perturbation value to that

vertex. When all vertices are perturbed in this manner, we obtain the

desired surface geometry on the 3D final mesh.

We have observed that the usage of our system is easy and intuitive and users

are able to model simple meshes with randomly placed or patterned perturbations

with it. The limited scope of objects that can be modeled with our 3D object

creation algorithm is a limitation, however. Also, the image based method we

employ creates a fidelity problem when a curve is to be drawn on a 3D object

such as the curves of a basketball. Thus our system is suitable for fast creation

of 3D objects with detailed free-form surfaces.

The organization of the thesis is as follows: In Chapter 2 we briefly explain

several different methods that discuss solutions to mesh creation problem and

provide the background of the subject. Then in Chapter 3, we divide our system

into sub-systems and explain each one in detail. In Chapter 4, we discuss differ-

ent aspects and show results to the reader and finally in Chapter 5 we present

conclusion for our work.

Chapter 2

Background and Related Work

There has been a lot of research in sketch based modeling systems. In this chap-

ter, we explore different attempts that have been made in this research area.

Most of the sketch based modeling systems include different sketch input acqui-

sition methods [13]. Therefore, sketch input acquisition techniques is explained

in Section 2.1. In the rest of the chapter, we explain different sketch based mod-

eling methods. We used in this chapter a division that is proposed by Cook et

al. [14]. The research and different sketch-based modeling techniques are divided

into 7 different parts and explained in the rest of this chapter in the following

order: Gesture Created Primitives, Reconstruction, Height Fields and Shape-

from-shading, Deformation and Sculpture, Blobby Inflation, Contour Curves and

Drawing Surfaces and Stroke Based Constructions.

2.1 Sketch Input

One of the several concerns of sketch based modeling interfaces is sketch acqui-

sition. Since user interaction is a fundamental issue for sketch based systems

and many contemporary systems aim for easier user interaction, there is a lot of

research in this area. There are several problems faced when user interacts with

the system, and so there have been several different approaches to each of these

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

problems.

A major aspect about user input is the sketch acquisition device that users

utilize to interact with the system. Several hardware choices are available, start-

ing with the mouse and extending all the way to more recently proposed devices

such as haptic devices [41]. Among all the computer interaction devices, espe-

cially those that are used in sketch based systems, one of the most ubiquitous

devices is the mouse. Although the mouse is a familiar device for many users,

it is hard for most users to successfully draw accurate shapes with the mouse.

Tablet devices provide easier interaction to which most artists are used to, due to

its similarity with the traditional pen and paper sketching. Some tablet devices

employ the pressure data and orientation of the pen to amplify the expressiveness

of the interaction device. There have also been different solutions to this problem,

such as virtual reality devices or haptic devices [42] [41].

Another concern is sampling of the input data. In most cases when the user

input is received, it is sampled. Since the real input provided by the user is

continuous and sketch based systems receive the input in a discrete manner, the

sampling process can be problematic. One problem this restriction creates is that

the spatial distance between the consecutive sampled input points provided by the

user varies. Users tend to draw some part of the sketch faster than others. This

causes the faster drawn parts to have adjacent input points with larger spacing

between them.

The sampled input is sometimes stored in structures called strokes. A stroke

is defined as a sequence of sampled point input that the user provides to the

system. A stroke starts with the user putting down his pen and ends when the

pen is up. All points sampled between these two actions are used to construct

the stroke.

Some of the contemporary systems use image based inputs. This approach is

mostly used in systems that utilize image based approaches such as shape from

shading (SFS) [8] [9].

Using the sampled input points with varying spacing may produce undesired

CHAPTER 2. BACKGROUND AND RELATED WORK 7

results. Contemporary sketch based systems resample the input data for the sake

of constructing the proper input desired by the user. There are several approaches

to this problem.

One of the approaches proposed to solve the problem mentioned above is the

minimax method [11]. This method minimizes the maximum distance between

the approximating line and the points that represent the polygonal curve. Saykol

et al. use another approach to approximate polygons [12]. In their work, they

take polygon points as input and find importance level of these points, importance

being determined by vertex velocity and acceleration, where vertex velocity is the

rate of change of distance per angle and vertex acceleration is the rate of change

of velocity per angle. Then using these vertex velocity and acceleration values,

vertices with the highest importance level are found and used in the resulting

polygon.

There are other approaches to this problem which produces rough approxi-

mations. For example, Igarashi et al. proposed a simpler solution in their system

Teddy [1]. In Teddy, the first and the last input point provided by the user is

connected, and the result is checked. If the resulting shape is a 2D closed polygon,

the system resamples the input points so that the adjacent points are equidistant.

This approach aims the resampled points to form vertices of a 2D polygon that

has edges with equal length, but it does not guarantee the result to be precise

approximation.

Fitting the input provided by the user to other forms such as curves or lines

has been employed by many researchers in their work. Some systems benefit from

line or curve fitting techniques since lines or curves are simpler to analyse in some

cases. There are also systems that use curves or lines to construct the object to

be modelled.

There are several systems that use curve fitting to input strokes. For example

in their work, Kara et al. use curve fitting to construct B-splines using a least

squares curve fitting algorithm [7]. These curves are used in the model creation

process where the user draws a wireframe model of the intended object. There

are also other approaches to this problem. For example, Eggli et al. used least

CHAPTER 2. BACKGROUND AND RELATED WORK 8

squares curve fitting algorithms to construct B-splines [4] and Cherlin et al. used

a reverse Chaikin subdivision technique to construct B-spline curves [3].

Some methods use both linear and curve representations. Such a work is pro-

posed by Sezgin et al [10]. In their work, they propose a system that distinguishes

line segments from curves from a drawing. The system finds straight line seg-

ments in the stroke and then it discretely approximates Bezier curves from the

curvy portions of the drawing. The resulting image consists of curves and line

segments.

Line and curve fitting is mostly used in applications where details and preci-

sion is most important such as engineering design systems. On the other hand,

free form sketches have gained increased attention in the past decades. These

differ from engineering design applications in that they provide more freedom to

the user but lack the precision the engineering design applications offer. It is

generally observed that people tend to draw several strokes before they get the

final shape of the sketched object [14]. These lines depict the shape of the drawn

object together. Pointing this issue, a sketching technique allows the user to draw

many lines to describe the overall shape of an object and then use all of them to

get a final result. This method of interaction is generally known as oversketching

[14].

A number of systems use the idea of oversketching to allow the user to edit a

line created before. For example, Fleisch et al. have proposed a system where the

user draws an editing curve and the previously drawn curve is modified according

to this curve [6]. Additionally they allow the user to provide several parameters.

One parameter defines the effect of the overdrawn curve. The user is able to select

how much the replacement curve will affect the original one. This parameter

allows the user to completely change the original curve into the editing curve

when it is 1, not to change it at all when it is 0. Thus, any value between 0

and 1 produces a curve between the original and the editing curve. In order to

avoid breaks where the editing starts and ends on the original curve, the system

smooths the curve around the starting and ending areas in order to make the

transition. This transition interval size is also changeable by the user, where the

CHAPTER 2. BACKGROUND AND RELATED WORK 9

number of points is the parameter provided by the user.

Several approaches use techniques to find one curve that depicts the shape of

the oversketched curve drawn by the user. One such system is proposed by Pusch

et al. where the overall sketch is subdivided into boxes [5]. The subdivision ends

when all boxes contain strokes that has roughly the same direction. These boxes

are ordered so that internal strokes compose a complete curve. Then the points

are fitted to a B-spline curve with the utilization of the ordering found using a

reverse Chaikin subdivision technique.

Another method that uses oversketching input to form curves is proposed by

Henzen et al. [2]. In their work, they proposed a system where the user is able

to overdraw a line and the lines begin to fade in time. The final shape of the

curve is formed by taking into account the most intensely coloured part of the

overdrawn curves. This system allows the user to draw many lines and the final

curve is constructed according to the part which is more saturated.

2.2 Sketch based Modeling Methods

After the the sketch input acquisition and re sampling is done, the next step is

to interpret the sketch input and create 3D models.

2.2.1 Primitives Created using Gestures

An early approach to sketch based modeling was the creation of simple objects

such as cubes or cylinders using gestures. The motivation behind some of these

systems was to create complex objects by combining or applying other boolean

operations with several simple objects. Several methods were proposed to create

an unambiguous interface that allows the user to easily create simple objects with

gestures.

One early system named SKETCH that uses gestures to create simple objects

CHAPTER 2. BACKGROUND AND RELATED WORK 10

was proposed by Zeleznik et al. [15] In SKETCH, users are able to draw several

lines that combine into gestures. These gestures are recognized by the system

and the recognized 3D object is created. For example, drawing an edge and

two lines that are perpendicular to the edge and that end at any point on the

drawn edge results in a 3D cuboid object and lengths of its sides are determined

by the lengths of the drawn lines. There are also other objects that are not

defined by their edges. An object of revolution, for example, can be created

by drawing its profile and axis. There are several objects that can be created

by SKETCH system, which are: cones, cylinders, spheres, objects of revolution,

prisms, extrusions, ducts and superquadrics.

A similar system that uses gestural recognition is CIGRO which is proposed

by Contero et al. [43]. CIGRO is capable of creating 3D objects using a small

instruction set which includes gestures like adding/removing an edge, adding

auxiliary edges and gestural commands such as move copy and delete. In CIGRO,

user first draws a number of auxiliary lines that depicts the overall shape of the

object. Then the user draws the real edges of the 3D object within the auxiliary

lines. The real lines are differentiated with the auxiliary lines with the pressure

information retrieved by the tablet device. The recognizer used in CIGRO is able

to recognize elemental geometric forms such as triangles, rectangles, circles and

ellipses.

Although SKETCH and SKETCH like systems shows that objects can be cre-

ated using gestures with ease, the scope of such systems is very limited. Although

more gestures can be added to overcome this, recognition of gestures gets harder

as gesture library gets larger. Several researchers have designed suggestive sys-

tems. The key idea of these systems is to inform the user of the possible results

and allow him to select one, eliminating the ambiguity of the interpretation of the

drawn shape. Such systems called GIDES and GIDES++, have been designed

by Pereira et al. [16] [17]. In these systems, the user draws gestures and when

the reconstruction process is complete, the system interactively suggests several

options in a small window. When the suggestions (called expectation lists by

author) are viewed, the user may or may not choose one. In the latter option, the

user continues drawing in order to create a different and maybe a more complex

CHAPTER 2. BACKGROUND AND RELATED WORK 11

object. In these systems, the users are also able to apply editing operations using

gestures, which also has suggestive feedback to the user.

Although these systems prove successful creation of some objects, their scope

is limited even with the utilization of expectation lists. Moreover, a gesture based

system restricts the user by forcing their input to predefined shapes and does not

provide the freedom and expressiveness of traditional sketching.

2.2.2 Reconstruction

There are a number of studies that aim to interpret the users’ intention without

using gestures. These systems evolved in order to remedy the limited scope and

indirect interaction style of gesture based systems and to build systems that do

not interrupt the sketching experience of the user. These systems also have to

deal with the ambiguity of the 2D sketches.

Early researchers have tried to solve the ambiguity problem by identifying

lines. Identifying a line here means differentiating lines so that when a 3D object

is formed, the effect of the line is determined. This may be a tedious or even

impossible job if the scope of objects that the system tries to identify is large.

There are some methods that are used to differentiate (or label) lines this way.A

number of solutions use a method called Huffman-Clowes line labelling [18] [19].

The key point in Huffman-Clowes line labelling system is that the scope of the

system is limited to trihedral planar objects. The system labels every line in

the 2D object. There are three different labels. Each line, being an edge of the

3D object to be created are either a convex, concave or occlusion edge. These

labels mean that when the 3D object is constructed, from the viewers perspective,

convex edges will be closer to the screen than its adjacent edges and concave edges

will be farther away. Occlusion edges are edges that form the silhouette of the

3D object from the user’s perspective.

One system that uses Huffman-Clowes line labelling is proposed by Grimstead

and Martin. [20] In their system, an incremental line labeller finds possible line

CHAPTER 2. BACKGROUND AND RELATED WORK 12

labellings that can be produced as the user draws. If the result is not what it is

intended to be, then results derived from alternative labellings are shown. Then

the system produces the 3D object with the selected line labelling by producing

both visible and hidden faces from the labelled edges. Although this approach is

capable of producing 3D objects and deal with the ambiguity, the system is very

complex and its scope is limited to trihedral objects. The intervention of the user

is also still required to resolve the ambiguity of the sketch.

In their system, Stilson et al. [21] have proposed a system that reconstructs

a 3D object from line drawings that are drawn onto a 3D model. The motivation

behind this system is to provide a system for architectural design by combining

2D sketching and 3D environments. The perspective information and pre-existing

geometry of the 3D environment is used to interpret the 2D line drawings.

Another approach for reconstruction systems is proposed by Lipson et al. [22].

The main motivation behind their work is to emulate the human interpretation

of 2D sketches. They claim that humans’ interpretation of 2D objects is based on

their visual experience. Building a system based on this claim, they have tried

to emulate the 2D-3D correlation by employing the correspondence information

between 3D objects and their 2D projections. Using this information, they pro-

duce a probability function for the candidate 3D objects that is later used to find

a resulting 3D object. As the system produces correct 3D objects, the results are

mostly rough objects as Lipson et al. indicates, which makes the system unusable

for applications that require precision.

A different reconstruction approach is proposed by Piquer et al. which recon-

structs 3D polyhedral objects using their symmetric properties [45]. To create

an object, the user draws a 3D polyhedral object from straight lines. Then the

system fins a symmetry plane from the sketch and creates a new coordinate sys-

tem that the authors call the symmetry system according to the symmetry plane

found previously. Using the symmetry axis, the symmetry conditions are found

and the 3D object is formed according to these conditions.

Since sketching systems based on reconstruction are suitable for engineering

design and some objects that are constructed for engineering purposes may need

CHAPTER 2. BACKGROUND AND RELATED WORK 13

analysis of their physical properties, a system that incorporates these two features

would be practical. With this motivation, Masry et al. developed a system that

incorporates reconstruction based systems with analysers that provides analysis

of the structural properties of the created objects [44]. Their approach has two

parts: The first part is the reconstruction. The system allows reconstruction of

an object that is composed of straight lines and planar curves. The second part

is the analysis. In order to analyse the physical properties of the object created,

the authors use finite element analysis technique.

One recent work, that reconstructs shapes from 2D silhouettes is proposed

by Rivers et al [48]. In their work, the authors proposed a system where the

user draws 2D silhouettes of a 3D object from top, side and front views. The

system automatically constructs 3D shape of an object whenever the user draws

different silhouette sketches of an object interactively. For example if the user

draws triangles for the front and side views and a square for the top view, the

system generates a 3D pyramid object. The creation of the models is achieved by

boolean operations that are applied on the silhouette cylinders of the 2D sketches

where the silhouette cylinder is defined by the infinite extension of a silhouette

in the view direction. The resulting object is defined by the intersection of these

silhouette cylinders.

2.2.3 Height Fields and SFS

One key feature of traditional pen and paper sketching is shading. Artists use

the shading information to describe the shape of the object they are drawing. A

number of researchers have proposed methods that utilize the shading information

provided by the user to extract depth information.

Rushmeier et al. have proposed a system where users can edit the 3D geometry

of an object by modifying images rendered from the 3D object with a 2D paint

program or by using images from a photo or another model [8]. Using their

system, the user is able to edit the surface of a 3D object by manipulating an

image of the object with 2D paint operations such as cut, paste, paint, sharpen

CHAPTER 2. BACKGROUND AND RELATED WORK 14

and blur. Then the user is asked to edit the diffuse reflectance map in order to

finalize the editing operation. The system also provides a solution for making

major changes to a 3D model. In this editing scheme, the user provides an image

of another 3D model or a real photograph and fits the image to the area to be

edited. The grayscale changes are applied to the mesh after the grayscale image

is inputted to a shape-from-shading algorithm. Then the resulting depth map is

applied to the 3D object.

Another approach that uses shading to extract depth information is proposed

by Kerautret et al. [9]. The authors mention that the current shape from shading

approaches are not robust and are not able to provide a unique solution. In order

to remedy this, they use several shaded images of the same object each provided

by the user to construct a unique interpretation of the input. The images provided

by the user contain the contour of the drawn object as well as the shading of

the object under different lighting conditions. Although this system provides an

intuitive method for creation of objects, the resulting objects are 21
2
D, which

means their depth extends in one direction.

The methods based on solely height fields and shape-from-shading provide

intuitive model creation and modification but creation of fully 3D, complex ob-

jects from scratch is still not possible with these methods. A commercial product

named ZBrush allows creation of fully 3D detailed objects, by using a depth

painting interface incorporated with modeling methods [51]. Using ZBrush, the

users can interactively alter the surface geometry of an object by painting the

surface of an object. The results of the ZBrush shows that incorporating the

depth information with another technique provides better results.

2.2.4 Deformation and Sculpture

A number of studies utilize a more general form of editing in the sense that the

whole object or a part of it is deformed in a more direct manner. In these systems,

rather than using images to edit objects, the user deforms the object directly.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Most of these deformation techniques use interfaces that allow the user to

sculpt or carve minor details onto the surface of an object. One such system pro-

posed by Frisken et al. [34] utilizes Adaptively Sampled Distance Fields (ADFs)

to allow local deformations. Their implementation of ADF provides a represen-

tation for volumetric data and allows carving fine details. A distance field is

basically a scalar field that specifies the minimum distance to a shape. The moti-

vation behind the employment of such a representation is that the storage method

is adaptive and sampling of the distance field is less where the local detail is low.

The system allows fine carving of the object with efficient sampling rates since

the method is adaptive. The user carves an object by moving the carving tool on

the object’s surface.

Other surface representations are used for the deformation of the objects.

For example, Bærentzen et al. proposed using the level set method for such

purposes [35]. Using the level set method, the authors aimed to provide a generic

technique for volumetric deformation. The level set method is briefly used to

compute the evolution of surfaces that may expand or contract [35]. In their

system, authors provide sculpting operations such as addition or removing of

volumes and smoothing.

There are other attempts that have used global deformations on the objects.

Wyvill et al. have proposed a system where models are defined by skeletal im-

plicit surfaces [33]. The authors propose a structure called Blob tree, which is

a hierarchical structure that consists of models on which warping, blending and

boolean operations can be applied. The users are able to apply boolean oper-

ations globally to implicit surface models and the hierarchical structure allows

arbitrary compositions of these deformed objects.

Some proposed different techniques for modeling systems using deformation.

One such attempt was made by Lawrence et al. where the user is able to deform

and model an object with painting on its surface [36]. The work aims to provide

a direct modeling and deformation interface. To deform a surface, the user paints

over the surface and the system interactively provides a volumetric addition on

the surface that is painted. The system also allows the user to select different

CHAPTER 2. BACKGROUND AND RELATED WORK 16

paints, changing the effect of the deformation, where the surface is propagated

towards the surface normals in one selection and in other the surface is propagated

in a constant direction.

One other approach was proposed by Singh et al. which allows the user

to employ a structure called wires in order to deform an object [37]. Their

deformation technique is similar to armatures used by sculptures, where wires

define the shape of the object. Their system briefly defines a number of wires

on an object and allows the user to manipulate the wires in order to deform the

object.

These deformation and sculpture techniques are mostly intuitive mostly be-

cause of its resemblance to sculpture techniques used by artists, but most of these

systems are not practical when it comes to create an object from scratch. These

techniques are better used as a supporting tool for model creation techniques.

One such approach is proposed by Draper et al. in their system Freddy [46].

The authors proposed utilization of gesture recognized free-form-deformations on

objects that are created using the 3D object creation employed in Teddy [1]. To

deform an object, the user provides the system with gestural inputs. Then the

gesture is recognized and the FFD lattice is displaced according to the input.

The user can bend, twist, stretch or squash an object with different gestures.

Kho et al. also proposed a system where the user deforms the object using a few

curves [47]. In their system, the user provides two curves in order to deform a 3D

object. The user first draws a reference curve as it was the skeletal description

of the part of the 3D object to be deformed. The curve is projected onto the 3D

space and the surface to be deformed according to the curve is calculated. Then

the user draws a second curve and the surfaces of the object that is previously

associated with the reference curve are displaced according to the second curve.

The final deformed object provides a result such that the two curves are the bone

structure of the object and the object is bent according to it.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

2.2.5 Blobby Inflation

While there is a lot of research on sketch based modeling systems which try to

increase the user’s control over the resulting mesh, there are also some researchers

that have proposed solutions for creation of smaller set of objects by decreasing

the user’s control over the resulting object.

Igarashi et al. has proposed such a system named Teddy, where the user’s

sketch input is taken and a final 3D object is created [1]. The 3D object cre-

ation method used by Teddy is called inflation, and as its name indicates the 2D

silhouette provided to the system produces a resulting object so that it seems

like it has been inflated. In to create an object in Teddy, the user provides the

system with 2D free form strokes, which the system interprets as the silhouette

for a object and then the system constructs a 3D polygonal object based on the

given data. From the 2D strokes, the system creates a closed planar polygon by

connecting the start and end points of the stroke. Then the system creates a

spine for the 2D polygon. Here, spine is defined as the structure that describes

the skeleton of the mesh and every point in the spine is equidistant from the

edges. The spine is created by finding the chordal axis of the 2D polygon [24].

In order to find the chordal axis, the system triangulates the 2D closed polygon

using constrained delaunay triangulation. After the triangulation, midpoints of

internal edges of the triangulated 2D polygon are connected to create the cordial

axis. Then the cordial axis is pruned to construct the final shape of the spine.

After the spine is created, the triangles of the 2D polygon are divided by the

spine and resulting polygons are triangulated. Then the vertices of the spine are

elevated proportional to their distance between the vertex and edges. After the

spine is elevated, a 3D mesh that covers the elevated spine edges and the external

edges is formed. The final shape of the 3D mesh is constructed so that they form

a quarter ovals between spine vertices and external edge vertices.

The inflation method that is employed by Teddy has its benefits. Although

Teddy provides little control to the user on the final shape and the system is

only able to produce rotund objects, Teddy provides a well defined, intuitive and

easy to use technique to create 3D meshes. Although this system has benefits,

CHAPTER 2. BACKGROUND AND RELATED WORK 18

its aim is to construct approximate objects without precise details and is unable

to create complex meshes.

The idea of using 2D sketch silhouettes to from 3D rotund objects has been

used by other researchers who have been inspired by the approach used in Teddy.

Karpenko et al., for example, have proposed using variational implicit surfaces

in their work [25]. The variational implicit surfaces are proposed by Turk and

O’Brien [26]. In their system, they allow the user to draw the silhouette of an

object and the system inflates the outline of the object drawn and a 3D object

is created. They also support drawing of additional shapes which overlap with

the previously inflated objects. The inflation algorithm produces 3D objects so

that the shape varies according to the width of the 2D shape drawn by the user,

meaning that thin shapes produce cylindrical objects whereas circular shapes

produces fatter 3D shapes. They also support creation of hierarchical shapes.

The hierarchy is constructed according to the overlapping regions of the 3D object

that each drawn shape produces and the previously created objects.

Tai et al. have noted that the technique used by Karpenko et al. requires

high computational cost and proposed a technique that constructs 3D rotund

objects from 2D shapes using convolution surfaces [27]. Their method extracts

the skeleton of the 2D shape and a rotund generic convolution surface is created

for each skeletal line segment. Their skeleton finding algorithm aims to find an

approximate medial axis which is defined as the locus of the center of maximal

circles inside the 2D shape. The 3D mesh is obtained by convolving the skeleton.

Schmidt et al. have proposed a free form modeling system that provides many

features in order to create a fully capable free form modeling system [28]. There

are several modeling operations that the system provides. The system provides

blobby inflation from 2D shapes, sweep surfaces that are created with linear

sweeps and surfaces of revolution, cutting, blending operations. The system also

provides surface drawings to be applied to a created 3D object, where the strokes

are used to modify the surface of the 3D object.

The skeletal structure that is employed by some of the systems that use blobby

inflation can be used for other purposes as well. In their recent work, Yang et al.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

proposed a system called Life-Sketch that constructs 3D models from 2D sketches

and extracts its skeleton to be used for animation purposes [50]. The authors used

Teddy’s method of inflation to create 3D objects from 2D silhouettes. Then a

skeleton extraction algorithm finds the skeleton of the object using the chordal

axis which is created as a middle step of Teddy’s inflation algorithm. When the

skeleton is found, the user can animate the object by rotating the object’s bones

around its skeletal joints using a keyboard.

Most of the systems that utilize blobby inflation techniques are powerful tools

in the sense that they allow creating simple objects with ease. Blobby inflation

techniques provide an intuitive way of 3D simple object creation. Furthermore,

inflation methods achieved what most sketch based systems aimed, creating 3D

object from 2D sketches directly. The shortcomings of these techniques are the

limited scope of objects that these systems are capable of creating and the lack

of fine details.

2.2.6 Contour Curves and Drawing Surfaces

Sketching activity mostly involves drawing of curves to depict the overall shape.

Since the contour of the object depicts much about the object to be designed,

some researchers proposed modeling methods that is based on drawing curves.

Although, since drawing 2D curves on a 2D plane is not enough to describe 3D

surfaces, some sketch based systems evolved to use 2D curves to construct 3D

curves or to create 3D curves directly.

An early work that is proposed by Cohen et al. proposes a technique that

allows the user to draw 3D curves using 2D sketches [38]. After drawing 2D

curves, the user provides a second curve that the authors call the shadow curve.

As its name indicates, the shadow curve is the projection of the initial curve on a

plane. The depth information and the 3D structure of the final curve is extracted

from the shadow curve.

Some researchers used this modeling with 3D curves idea to enhance specific

CHAPTER 2. BACKGROUND AND RELATED WORK 20

methods of 3D object modeling. Grossman et al., for example, proposed a method

that is inspired by a design method called ”tape drawing” [39]. Tape drawing

technique is used in automobile industry, where the artist draws the concept

sketches of a car to large, 1 to 1 scale black photographic tapes. The system also

uses large displays to provide a similar environment. The user interacts with the

system by drawing 2D profile curves and these curves are then used in creation of

3D models. The 2D profile curves, drawn by user are constructed on 2D planes.

The view of the system is a cuboid that includes the 2D drawing planes. These

planes are shown to the user within the cuboid that contains these 2D planes

as parallel surfaces. This display method is employed in order to help the user

understand the relation between the drawn 2D curves and the underlying 3D

object.

Some approaches have used similar techniques that allow creation of 3D ob-

jects with 2D curves with a suggestive interface. The work proposed by Tsang et

al., for example, uses image guided sketching on 2D planes on a 3D environment

[40]. In the system, the user draws curves on 2D planes that has 2D images of an

object that is similar to the one which is being created. The user draws curves on

these 2D planes, and the system guides the user by attracting the drawn curves

to the curves in the image. Suggestions of pre-existing and user created shapes

is also available when the system matches the user input with one that is held at

a database of shapes. The user is able to draw on orthographic 2D planes from

three different viewpoints: top, side and front. All the 2D planes and 2D curves

drawn on these planes are shown within a 3D cuboid volume.

2.2.7 Stroke Based Constructions

There have been attempts to construct 3D objects from 2D strokes by fitting sur-

faces to input curves. For example, Wesche and Seidel have proposed FreeDrawer,

a system where the user is required to provide the system with several strokes

that describe the object [29]. The user needs to provide the overall description

of the object as a network of curves. The system works in a 3D environment

in which the user is able to construct 3D shapes by drawing 2D/3D curves and

CHAPTER 2. BACKGROUND AND RELATED WORK 21

creating surfaces between closed loops of curves. The system is best used by

users with drawing skills, as it is also noted by the authors [29]. Michalik et al.

have proposed another system that allows modification of B-spline surfaces by

drawing 3D curves on the surface [30]. In their work, to create a new 3D ob-

ject, the user draws curves which are projected onto planes. Using these curves,

B-spline surfaces are created using a constraint based approach. This system is

powerful but has high computation cost and the run time increases rapidly with

large examples, as its authors note [30].

Although curve sketching is a powerful design tool, the need for drawing

skills and the complexity of the object creation make these systems hard to use

especially for users without an artistic background. A number of approaches have

constrained the scope of the objects by sacrificing the freedom of the user but

increasing the intuitiveness and expressiveness of the method. Levet et al. have

proposed such an object creation method that uses a similar approach to inflation

employed in Teddy [31]. The system requires the silhouette of the object and a

profile curve. The silhouette is used to inflate the shape with a method similar

to Teddy but the shape of the object depends on a profile curve which is also

proposed by the user. The system elevates the vertices of the 2D shape according

to the profile curve provided by the user which is in contrast to Teddy where the

system inflates the 2D shape according to a circular profile curve.

Another approach, proposed by Cherlin et al. aims users to design 3D objects

with a few strokes [3]. Their approach is based on a method used in traditional

pen and paper drawing, which the authors call the spiral method, in which the

artist draws the silhouette of the shape and then draws spiral curves to describe

the shape of the object. In the system, creation of the 3D objects is done in a

similar manner: The user first draws the silhouette of the object using two or

more strokes, which are called the constructive curves. Then the midpoints of

these two constructive curves are used to form another curve, which is used as

a center curve to construct the surface of the object. Finally, for all points of

the center curve, a circle that has a center at the center curve and is passing

through the two constructive curves is created to form the final shape of the

object. A surface that is created by this method is called a rotational blending

CHAPTER 2. BACKGROUND AND RELATED WORK 22

surface. Using this method, the system offers an easy to use, intuitive method

for creating 3D objects which requires users to use only a few strokes to depict

the object they want to create. Another creation method used by the system

proposed by Cherlin et al. is called the cross sectional blending surfaces. In

this method, which is similar to the rotational blending surface method, the user

again draws two constructive curves. Then he draws a curve between these two

constructive curves. The resulting surface between the two constructive curves is

generated by using this curve rather than a circle. This method allows users to

create thin, non circular objects with an arbitrary cross section.

A recent work has been proposed by Stiver et al. [49] where the system uses a

stroke based construction system that is similar to what is used by Cherlin et al.

[3]. The authors proposed a method for cloud modeling, where the user models

the general form of clouds by strokes. Then using rotational or cross sectional

blending surface techniques, an initial mesh is created. Then the mesh is filled

with volumetric particles. These particles provide a noisy look on the boundaries

of the cloud and makes it seem like one.

Stroke based systems are powerful and provide easy and intuitive way of 3D

object creation methods, where the user is able to express the shape of the object

with simple curves. Whereas some of these systems can be used to construct

complex objects in detail and provide freedom to the user, some can be used to

construct simpler objects by limiting the scope. In both cases, since the strokes

are used directly to form objects, these systems are very intuitive.

Most of the approaches explained in this chapter have both strong and weak

aspects and by merging two different methods, better solutions can be produced.

Our system combines two of the above mentioned approaches, to provide a solu-

tion for a very specific problem. Our system is inspired by two different limita-

tions that we observed in the contemporary sketch based modeling solutions. We

observed that blobby inflation methods are capable of producing 3D free-form

objects from simple 2D silhouettes but they are mostly incapable for addition of

surface texture details. We also observed that the shape from shading methods

are incapable of creating 3D objects from scratch but can be utilized to form

CHAPTER 2. BACKGROUND AND RELATED WORK 23

detailed surfaces. In our work, we combine these two approaches and create 3D

objects with detailed free-form surfaces.

Chapter 3

Method Description

3.1 Overall System Description

Our system takes two separate sketch inputs from the user. The first input is the

silhouette, which is used in creating of the 3D object mesh; and the second input

is the shading, which is used to create the height field. The two results are then

combined by applying the height field on the 3D mesh to obtain the final result.

The overall framework of the system is shown in Figure 3.1.

The system briefly operates in the following order: First, the user provides

the system with a drawing of the 2D silhouette of the 3D object to be created.

The silhouette input is resampled in order to create a smaller set of input points

that carries roughly the same information. Then the 3D object creation step

constructs a 3D object from the silhouette input. Then user provides the system

with shading strokes that depicts the surface of the final 3D object. The user

inputs the shading data by drawing strokes inside the 2D silhouette that was

previously drawn. Therefore, the user sees every line and shading that is drawn

as it were in pen and paper sketching. Then a height field is constructed using this

shading data and finally the height field is applied to the 3D object to produce

the final mesh. The overall procedure can be seen in Figure 3.2.

24

CHAPTER 3. METHOD DESCRIPTION 25

Figure 3.1: The Proposed Framework

3.2 System Description

This section aims to provide further explanation of the different parts of the sys-

tem. In Section 3.2.1, storage and resampling of the silhouette input is discussed.

The creation of the 3D object is explained in Section 3.2.2 in detail. In Section

3.2.3, creation of the height field is discussed and finally in Section 3.2.3, we

describe the application of the height field on the 3D object.

3.2.1 Receiving and Resampling the Silhouette Input

Our system is compatible with 2D input devices. Using a 2D input device such as

a mouse or a tablet device, a user without drawing skills is able to use our system

to its full extent. When the user starts to draw the silhouette of the object, the

input is sampled and is stored as dense points. The points are stored in a list

structure. The list’s order is important; it is ordered according to the time the

sampled point is received by the system. After the sampling of the silhouette

input is finished, the input is resampled. The aim of the resampling is to find a

rough estimate of the strokes provided by the user with fewer point samples, since

CHAPTER 3. METHOD DESCRIPTION 26

1. The user draws the silhouette of the object to be created

2. The 2D silhouette input is resampled

3. The 3D object is created

4. The user provides the shading strokes by drawing strokes inside the silhouette

5. A height field is constructed according to the shading input

6. The height field is applied to the mesh of the 3D object

Figure 3.2: Overall procedure

the future calculations will require edge intersection test between sweep lines and

the planar input polygon (Section 3.2.2). We employ a resampling method that is

similar to the technique that was used in Teddy [1]. The ordered list of sampled

input points are held in P = {p0, p1, p2,, pn} where P denotes the list structure

and pi are the individual points where i = 0, 1, ..., n. The resampling algorithm

is given in Figure 3.3.

Input: P = {p1, p2, ..., pn}, input points
Output: R = {r1, r2, ..., rm}, resampled points

[1] R← p1
[2] for pi, i = 1 to n− 1, do
[3] if distance(pi, pi+1) is bigger than or equal to IRC
[4] R← R + pi+1

Figure 3.3: Input Resampling Algorithm

R stands for the list of resampled points and IRC is the Input Point Resam-

pling Constant. After the resampling is over, a smaller number of input points is

kept and the distances between adjacent points are close to IRC.

CHAPTER 3. METHOD DESCRIPTION 27

(a) Raw input (b) Resampled in-
put

(c) Sweep lines (d) Slabs

Figure 3.4: Different steps of our 2D silhouette processing algorithm.

3.2.2 3D Object Creation

After the input is resampled, a 2D closed polygon that represents the resampled

input is constructed. Once we have the 2D closed polygon, we aim to create

the 3D object’s triangular mesh structure. During the triangulation, we elevate

each of the vertices according to our vector elevation equation. The steps of this

procedure can be seen in Figure 3.5.

1. Construct a 2D closed polygon from resampled points.

2. Determine whether the sweep lines should be parallel to x or y axis

3. Find the intersection points of each sweep line and edges of the polygon

4. Construct slabs by combining every two consecutive slab edge

6. Triangulate slabs to create the triangular mesh structure.

7. Elevate the resulting triangle points’ z value so that each slab edge becomes an arc.

Figure 3.5: 3D Object Creation Procedure

In order to form the edges of the 2D closed polygon, adjacent vertices of

the resampled input points are connected. Since the resampled input points are

CHAPTER 3. METHOD DESCRIPTION 28

ordered according to the time they were received, by connecting each point with

the next one we are able to create the closed 2D polygon. The edge creation

algorithm is given in Figure 3.6.

Input: R = {r1, r2,, rm}, resampled input
Output: E = {(r1, r2),, (rm−1, rm), (rm, r1)}, polygon edges

[1] for ri, i = 1 to m, do
[2] if i is equal to m
[3] E ← E+(ri, r1)
[4] else
[5] E ← E+(ri, ri+1)

Figure 3.6: Silhouette Edge Creation Algorithm

When the 2D polygon is formed by connecting the resampled vertices, we

determine whether the sweep lines are parallel to the x or y axis. To achieve this,

we first find the largest and the smallest x and y values among the input points.

After these points are found, we calculate the distance between the largest and

smallest x and y values. We will call these calculated values dmax,x and dmax,y

from now on. Then we compare the dmax,x and dmax,y. If dmax,x is bigger, we use

sweep lines that are parallel to y axis. If dmax,y is bigger, we use sweep lines that

are parallel to x axis.

After the sweep axis is selected, we generate sweep lines and for each sweep

line we find the intersection points between the sweep lines and polygon edges. If

the lines are selected to be parallel to the y axis, the first sweep line starts with the

same x value with the point within the resampled input that has the smallest x

value. If the sweep lines are selected to be parallel to x axis, it intersects the point

with the smallest y value. The sweep lines are generated so that each consecutive

sweep line has a predefined spacing in between. This predefined length is called

Sweep Line Spacing (SLS) . The equations of each sweep line are shown in the

below equations:

y = ymin + i× SLS (3.1)

CHAPTER 3. METHOD DESCRIPTION 29

is used if sweep lines are selected to be parallel to x axis,

x = xmin + i× SLS (3.2)

is used if sweep lines are selected to be parallel to y axis.

In both equations SLS is the predefined measure that determines the resolu-

tion of the mesh to be created since there will be no more subdivision between

the sweep lines and i = 0, 1,, n where n makes the result of the equation equal

to ymax or xmax. The next step is to find the intersection points between the

polygon edges and the sweep lines (Figure 3.4c) and to create slab edges which

are formed by connecting the two intersection points that are found for each

sweep line (Figure 3.4d). The complete line generation and intersection finding

algorithm is given in Figure 3.7.

Input: E = {(r1, r2),, (rm−1, rm), (rm, r1)}, polygon edges
Output: S = {(s1, t1), (s2, t2),, (sk, tk)}, slab edges

[1] if sweep lines are parallel to the y axis
[2] for y = ymin to ymax, increment y by SLS
[3] a← 0
[4] for e starts with first element in E, until the last element of E
[5] if y is between the y values of e
[6] t← intersection point of e and the current sweep line
[7] a← a + 1
[8] if a is 1
[9] s← t
[10] else if a is 2
[11] S ← S+(s, t)

Figure 3.7: Sweep Line Generation and Intersection Finding Algorithm

This algorithm gives us slab edges. Any two consecutive slab edges form a slab

with a predefined length (SLS) between them. Slabs are basically the polygons

that are formed by connecting the two consecutive and parallel slab edges. They

can be considered as thin plates that are constructed by dividing the polygon

CHAPTER 3. METHOD DESCRIPTION 30

Figure 3.8: Slab Triangulation

with parallel lines, therefore when all slabs are considered, they form the polygon

itself.

The rest of the 3D object creation process can be explained briefly with the

following steps: When we have the slabs defined, we triangulate each slab. During

the triangulation, we create points that are on the slab edges. When creating

these points, an elevation offset for each point is calculated and applied to the

point so that each slab forms an arc. The result of the triangulation with the

elevated of vertices, is the triangular 3D object’s mesh.

The aim of the triangulation algorithm we employed is to construct triangles

with one of their edges, which we will call base edge from now on, on one of the

slab edges and one point on the other slab edge. Each triangles base edge’s length

is determined by a predefined constant, Triangulation Edge Constant (TEC).

The triangles are formed so that they fill the whole area inside a slab. The

triangulation process is shown in Figure 3.8. In order to triangulate the slab

edges, we first find equidistant points for the two slab edges that form the slab to

be triangulated. The point finding algorithm for a slab edge is shown in Figure

3.9.

z =
√
l2 − ((x−mx)2 + (y −my)2)× IC (3.3)

CHAPTER 3. METHOD DESCRIPTION 31

Input: (s, t), a slab edge
Output: K = {(x1, y1, z1), (x2, y2, z2), ..., (xu, yu, zu), }, equidistant points found

[1] if s.x− t.x is 0
[2] dx← 0
[3] dy ← TEC
[4] if s.y − t.y is equal to 0
[5] dx← TEC
[6] dy ← 0
[7] for x = t.x to s.x and

y = s.y to t.y
increment x by dx, increment y by dy

[8] if x is bigger than s.x
[9] x← s.x
[10] if y is bigger than s.y
[11] y ← s.y
[12] calculate corresponding z value according to Equation 3.3
[13] K ← (x, y, z)
[14] if x is equal to s.x and y is equal to s.y
[15] break

Figure 3.9: Point Finding Algorithm

In Equation 3.3, l is the distance between the midpoint of the slab edge, x and

y are x, y coordinates of the point and mx, my are midpoint’s x and y coordinates.

IC stands for inflation constant and is used to control the flatness of the object

created. If IC is 0, then the object is a flat surface, if IC is 1 then the resulting

object has circular cross sections. This equation is used in order to create semi

elliptic lines from slab edges, when the vertices are elevated. The z values of

vertices of the slabs are calculated according to this equation, so that when the

slabs will be constructed, they are shaped as a thin plate that is bent so that it

forms an arc. A graphical description that shows the 3D form of a slab after the

triangulation of slab edges with the height values of its vertices calculated using

Equation 3.3 is given in Figure 3.10.

After points to be used in triangulation are created from both slab edges, we

find the slab edge with the minimum number of points between the two edges that

CHAPTER 3. METHOD DESCRIPTION 32

Figure 3.10: 3D Slab

form the slab. When we determine the edge with the smaller number of points, we

use the algorithm shown in Figure 3.12 to create the triangles as shown in Figure

3.8. Note that for simplicity, Figure 3.8 does not show the result of the elevation

of vertices. Figure 3.11 shows a wireframe model of a 3D mesh generated by our

algorithm.

As a result of this procedure, we finish triangulating the slabs. When all

slabs are triangulated, we have the half of the triangular mesh representing the

3D object. To create the other half, we just create a mirror image of the first

half of the mesh. For simplicity, we build our mesh on z = 0 plane, so that the

mirror image of any vertex with coordinates x, y, z in the mesh is a point with

coordinates x, y, -z.

CHAPTER 3. METHOD DESCRIPTION 33

Figure 3.11: Wireframe 3D mesh

Input: A = {(x1, y1, z1), (x2, y2, z2), ..., (xi, yi, zi)}, finite point set
Input: B = {(x̀1, ỳ1, z̀1), (x̀2, ỳ2, z̀2), ..., (x̀j, ỳj, z̀j)}, finite point set
Assume i < j

[1] p1 ← B.first
[2] for p0 ← A.first to A.last
[3] if p1 is B.end
[3] break
[3] createTriangle(p0, p1, p1.next)
[4] if p0 is not A.last
[5] createTriangle(p0, p0.next, p1.next)
[6] p1 ← p1.next
[7] if p0 is A.last
[8] while p1 is not B.end
[9] createTriangle(p0, p1, p1.next)
[10] p1 ← p1.next

Figure 3.12: Triangulation Algorithm

CHAPTER 3. METHOD DESCRIPTION 34

Figure 3.13: Brush sizes

3.2.3 Construction of the Heightfield

The shading strokes are stored as image pixels in order to make the transition

of shading input to SFS input easier. Since the SFS input is image based, we

use the shading data directly as an input to the SFS algorithm. We define a

sketchpad, which is the area on the screen that user is able to draw onto. We

get the input as it is drawn to the screen, meaning that whenever the pen of the

tablet device touches the tablet or mouse’s first button is pressed, we get the pixel

coordinate information of the cursor whenever the input event is received. If the

stroke input is continuous, then each time the stroke is sampled, each sampled

pixel coordinate information is received. We store the shading information in a

2D array, where each element corresponds to a pixel on the screen. When the

corresponding pixel in the screen is drawn the corresponding element in the 2D

array is set.

In order to provide an easier form of interaction, we provide different brush

sizes for the user. As the brush size gets bigger, the pixels that are set are

increased. The three different sizes for the brush are shown in Figure 3.13. As

it can be seen in the figure, the brushes are designed so that they draw circular

points.

Once the shading input is done, our system requires the user to inform the

system that the shading is over. When user finishes shading and notifies the

system, the image based shading data is used as input to the SFS step. We use

Tsai et al.’s SFS algorithm [32] for this step. Since the input is already a 2D

array of pixels, it can be utilized as an image. We input the image data directly

into the SFS algorithm and obtain the result as a height field.

CHAPTER 3. METHOD DESCRIPTION 35

Tsai et al.’s SFS algorithm employs a linear approach, meaning to find a sur-

face shape from shading, the authors linearly approximate the reflectance func-

tion. In order to achieve this, the authors approximate the surface normal in a

discrete manner. Then the authors linearize the reflectance function in depth.

The overall procedure of Tsai et al.’s method is given in Figure 3.14. Refer to

[32] for details of this algorithm.

1. The surface normal is approximated in a discrete manner.

2. Using these approximations with the reflectance function, the authors
are able to linearly approximate a depth map using a Taylor series
expansion for a fixed point.

3. Then for each point, the authors form a linear system.

4. Using the Jacobi iterative method, the linear system is solved.

Figure 3.14: Shape-from-shading method. Courtesy of Tsai et al. [32]

As a result of this process, we obtain a height field that contains depth per-

turbation values that are calculated from the shaded pixels. Since the user input

is image based, each element in the height field contains depth information cor-

responding to the pixel that has its indices as coordinates. In other words, we

can obtain the depth perturbation value of a point in the 3D mesh by giving its x

and y coordinates to the height field as indices and obtaining the corresponding

depth value.

3.2.4 Application of the Heightfield on the 3D Mesh

After the 3D object mesh is constructed, as the next step, we apply the height

field. Each element in the height field has values between 0 and 1, indicating the

CHAPTER 3. METHOD DESCRIPTION 36

height value to be applied. In order to apply the height values to the mesh ver-

tices, we calculate a depth elevation value from the information we acquire from

the height field. For each vertex, we first find the nearest 9 depth perturbation

values from the height field. We use 9 values, one of them being the height value

that corresponds to the vertex itself and 8 other height values that belongs to

the adjacent elements in the height field. In order to get the depth perturbation

values, we simply floor the x and y coordinates of the vertex and we employ

the following equation to calculate the depth perturbation value where ∆z is the

depth perturbation value of the vertex with coordinates x, y.

∆z =
1∑

i=−1

1∑
j=−1

heightF ield(x + i, y + j)

9
(3.4)

Chapter 4

Results and Discussion

4.1 3D Object Types

Here we provide 3D free-form object meshes that are constructed using our 3D

object creation system. The input is represented as a 2D closed polygon after

resampling, so we evaluate different input examples which form different types

of polygons after resampling. Our system is able to construct 3D objects from

monotone polygons, which means the input polygon P has exactly two intersec-

tion points with every line orthogonal to a line L [55]. This obvious limitation

origins from the sweep method we employ for the creation of 3D shapes.

We will provide several example meshes that are created using our object cre-

ation method. We present several wireframe object meshes that are constructed

from 2D convex and concave polygon inputs. Note that these objects have been

created using silhouette input only: The meshes presented here are only 3D ob-

jects without any height fields applied. In all of the examples presented here,

Sweep Line Spacing (SLS) is 1, Inflation Constant (IC) is 0.2 and Input Resam-

pling Constant (IRC) is 10. Only half of each object is visible in these images

to provide clearer images of the objects. The other half of the objects can be

predicted easily since it is the mirror image of the part shown.

37

CHAPTER 4. RESULTS AND DISCUSSION 38

(a) (b) (c) (d)

Figure 4.1: Sketches of 3D objects constructed with convex polygon inputs

(a) Rectangular object (b) Diamond shaped object

Figure 4.2: Different wireframe examples of 3D objects constructed with rectan-
gular convex polygon inputs

(a) Triangle shaped object (b) Circular object

Figure 4.3: Different wireframe examples of 3D objects constructed with convex
polygon inputs

CHAPTER 4. RESULTS AND DISCUSSION 39

All of the examples in Figures 4.2 and 4.3 are created by providing simple

silhouette strokes. All of these objects are created using sketches of convex poly-

gons. The objects are fairly simple and the results are intuitive. The small

inflation constant makes objects flat while a higher value would make them more

round.

(a) (b) (c) (d)

Figure 4.4: Sketches of 3D objects constructed with concave polygon inputs

(a) Peanut shaped object (b) Arbitrary shaped object

Figure 4.5: Different wireframe examples of 3D objects constructed with concave
polygon inputs

In Figure 4.5, we see several wireframe models of different objects. All these

objects are constructed using 2D concave polygonal inputs. Our system’s limita-

tion can be seen here, all these concave objects are monotone. Thus, for example,

an input that resembles the outline of a ”c” letter can not be processed by our

system.

Our system also supports self intersecting inputs as long as they are monotone.

Several objects that are constructed from complex polygon inputs are presented

in Figure 4.6.

CHAPTER 4. RESULTS AND DISCUSSION 40

(a) Butterfly shaped object (b) Candy wrapper shaped object

Figure 4.6: Different wireframe examples of 3D objects constructed with complex
polygon inputs

4.2 Parameters

4.2.1 Resampling

The resampling is achieved with the employment of Input Point Resampling Con-

stant (IRC). The effect of this parameter is described formally in Section 3.2.1. In

this section, we discuss resulting polygons that are created using different values

of IRC. In Figure 4.7 different polygons created using different IRC values are

shown. Notice that with a large IRC the resulting polygon does not resemble the

input. We selected IRC to be 10 in all our experiments, which generally produces

good results.

Figure 4.7: Resampling examples for different values of Input Point Resampling
Constant (IRC). IRC is selected 20 for the input on the left and IRC is 10 for the
input on the right.

CHAPTER 4. RESULTS AND DISCUSSION 41

4.2.2 Sweep Line Spacing

The Sweep Line Spacing (SLS) is the distance between adjacent sweep lines. This

constant is effective both in the resulting 3D mesh and also affects the final, height

field applied mesh. Since the SLS directly affects the vertex density of the mesh

and the discrete values in the height field are applied to the nearest vertices,

unwanted results such as jagged perturbations on the mesh surface may occur

if SLS is too large after the application of the height map. In both examples,

Inflation Constant (IC) is 0.2 and Inflation Resampling Constant (IRC) is 10.

(a) (b)

Figure 4.8: Sketches of 3D objects constructed for SLS Testing

(a) SLS = 1 (b) SLS = 5

Figure 4.9: Wireframe examples of 3D objects with different SLS values

4.3 Shading Effects

In this section, we provide several objects created with our system. In these

examples, we used complete input from the user, which involves both silhouette

and shading and discuss several aspects of these results, such as the overall shape,

the effects of the shading and the final image of the object. We show wireframe

CHAPTER 4. RESULTS AND DISCUSSION 42

models and textured images of the resulting objects. All of the meshes here are

constructed with our method on a regular PC in 1 or 2 minutes after the user

finishes sketching. The bottleneck is the creation of triangles. In order to provide

satisfying results, our system requires a dense field of triangles representing the

object; this lowers the performance. All the objects created here is resampled with

IRC equal to 10. Other constants that affect the resulting mesh is mentioned for

each of the meshes.

Figure 4.10: Dress sketch

Figure 4.11: Wireframe model of a dress created with our system

In the first example, we present a dress modeled with our system. The sketch

of the dress is shown in Figure 4.10 and the resulting object is shown in Figure

4.12. The sketch is very simple and it takes 1 or 2 minutes at most to draw such

a sketch. The silhouette of the sketch is shaped like a sand glass. The straight

lines inside the bottom part of the sketch makes the curves at the skirt part of the

final mesh. The SLS is 1 and IC is 0.7 in this example which causes the object

CHAPTER 4. RESULTS AND DISCUSSION 43

Figure 4.12: Textured model of a dress created with our system

to have elliptic cross sections, therefore creating a 3D shape of a sand glass with

elliptic cross sections which is intuitive since a silhouette of a sand glass was the

input. The curves are a result of the height field calculated from the shading

input combined with the conical shape of the skirt which makes the curves more

obvious. Note the cylindrical shapes of the curves at the bottom end of the skirt.

The curves formed on the surface of the skirt are not perfectly symmetrical, this

is caused by the input error caused by the user. However non symmetrical shapes

provide a more realistic final shape, as a cloth rarely has symmetric folds.

Figure 4.13: Almond sketch

The next example is an almond. The sketch of the almond is shown in Figure

4.13 and the resulting object is shown in Figure 4.15. In the sketch, silhouette of

an almond is drawn from its side. The shading input is arbitrary shaped, noisy

lines drawn inside the almond silhouette. These lines form the detailed surface

CHAPTER 4. RESULTS AND DISCUSSION 44

Figure 4.14: Wireframe model of an almond created with our system

Figure 4.15: Textured model of an almond created with our system

CHAPTER 4. RESULTS AND DISCUSSION 45

of the final mesh. The overall shape of the object is a result of its silhouette

being swept through x axis with elliptic curves. SLS is 1 and IC is 0.6 in this

example, causing the object to be relatively more flat than the dress mesh. The

surface geometry is perturbed in the shape of noisy lines, which provides realistic

results since the surface of an almond is as such. The texture applied to this

example, makes the object more realistic, but the deformations can be seen in

the wireframe model are similar to the ones in a real almond’s surface. In the

final shape, we can see the perturbations make the final mesh look more realistic

and deformations visible.

One final comment on the almond example is about the triangle formation

between the slabs. The triangles on the borders of the mesh are not very uniform

as can be seen in Figure 4.14. This is caused by our triangulation algorithm but

since these triangles cover a small area and are almost never perturbed, they do

not cause any problems as can be seen in this example.

Figure 4.16: Fish sketch

Figure 4.17: Wireframe model of a fish created with our system

We present a fish object as our next example. The sketch of the fish is shown

in Figure 4.16 and the resulting object is shown in Figure 4.18. The sketch is

CHAPTER 4. RESULTS AND DISCUSSION 46

Figure 4.18: Textured model of a fish created with our system

the silhouette of a fish with the scale of the fish drawn inside. The scale drawing

is an example for the effects of the patterned shading input on our system. The

overall shape of the object is the result of the silhouette being swept on the x

axis. The body and the tail is shaped as a fish with elliptic cross sections, as the

IC is 0.6. We selected SLS to be 1 in this example. The surface perturbations

are noisy bumps that are formed by straight line shaped dents with a diamond

shaped pattern around them. The noisy effect is not very desirable in this case

but still the final image is convincing. The diamond shaped deformation on the

final object’s geometry provides a more visible depth to the viewer but it might

be it is a little too noisy.

The next two examples are 21
2
D objects. They are constructed with our

system, but the mesh vertices are not elevated when creating the mesh, therefore

the results are planes in the shape of the silhouette. This is achieved by simply

assigning IC = 0. SLS is 1 in these examples. The first objects is a leaf and

the second one is a wall. The sketch of the leaf is shown in Figure 4.19 and the

resulting object is shown in Figure 4.21. The sketch of the wall is shown in Figure

4.22 and the resulting object is shown in Figure 4.24.

The leaf sketch is composed of a leaf silhouette and the shading of its veins.

CHAPTER 4. RESULTS AND DISCUSSION 47

Figure 4.19: Leaf sketch

Figure 4.20: Wireframe model of a leaf created with our system

CHAPTER 4. RESULTS AND DISCUSSION 48

Figure 4.21: Textured model of a leaf created with our system

The curves in the sketch are applied exactly to the final mesh. As it can be seen

from Figure 4.20, the nature of our image based technique causes some noise in

the curvy perturbations, but they are only visible when camera is very close to

the object.

Figure 4.22: Wall sketch

The wall object is shaped as the sketch exactly, which is problematic since

noise caused by the user prevents the object to be shaped as a perfect rectangle.

As it can be seen from Figure 4.24, using our system, a brick illusion is created

with only a sketch with simple, straight lines. The user inflicted noise of the

straight lines makes the final shape look imperfect, which makes the final shape

more realistic. However, we are aware that user might want bricks or any other

3D shape with a perfectly geometrical shape. Our system is unable to produce

such objects.

CHAPTER 4. RESULTS AND DISCUSSION 49

Figure 4.23: Wireframe model of a wall created with our system

Figure 4.24: Textured model of a wall created with our system

4.4 System Comparison

We compare our results with the state-of-the-art. Contemporary modeling tech-

niques do not provide construction of 3D objects with perturbed free-form sur-

faces that is based solely on sketch input. There are systems that allow 21
2
D object

creation from sketches [9] or only surface geometry modification techniques [8].

There is, however, the renowned ZBrush [51], a commercial modeling tool that

allows depth painting as well as modeling operations. As our system is not a

match to the wide range of tools that is provided by ZBrush and most of these

tools are out of scope for our system, we only compare results that are obtained

with our system and with ZBrush’s depth painting operations. We used objects

that can be modeled with only basic sculpting operations using strokes, rather

than complex modeling operations that are out of our scope.

We compare two of our models that we created in the last section. To compare

the depth modification features, we compare the wall and leaf models with ours.

CHAPTER 4. RESULTS AND DISCUSSION 50

The wall model that is created with ZBrush is presented in Figure 4.25a and a

smoothed version is seen in Figure 4.25b. The time and number of strokes to

create the mesh is nearly same with our system. In order to create this mesh, the

user draws straight lines that form the outer shapes of the bricks.

(a) (b)

Figure 4.25: Textured model of a wall created with ZBrush. (b) is the smoothed
version of (a)

The other example is the leaf model as shown in Figure 4.26. In this model,

a thick plane is carved with a depth painting brush as in the wall example. The

veins of the leaf are easy to create, since they only require a few strokes. The

drawing time of the curves and the number of strokes are the same as our system,

whereas creation of the object takes a little more time in our system.

Figure 4.26: Textured model of a leaf created with ZBrush

The fundamental difference between our system and ZBrush is the creation

method in the sense that we allow the user to draw a sketch on a blank canvas,

CHAPTER 4. RESULTS AND DISCUSSION 51

which is used to create the 3D mesh of the final object after the sketch is over. In

ZBrush, user draws depth modifying strokes on a given object interactively. This

may be desirable in some cases, although our system has its benefits. It is easier

to learn and very easy to use. Compared to the methods used in ZBrush, from

the user’s perspective, our system uses techniques similar to traditional sketching

whereas ZBrush uses sculpturing. The results of our system are in similar quality

with the results that are obtained with ZBrush’s sculpturing techniques. We

suggest that our method of free-form object creation can be used as a part of a

bigger modeling tool, where it can be used for easy, intuitive interaction and can

be incorporated with other modeling techniques to create more complex meshes.

Chapter 5

Conclusion

We have proposed a sketch based modeling system that is used to construct

3D free-form objects with perturbed surfaces by utilizing only sketch input. Our

system requires the user to provide a sketch of an object. The sketch should depict

the silhouette of the object to be created, which is used in the creation of a 3D

mesh. When the user is done with the silhouette input, to apply perturbations

on the surface of the object, the user should draw shading strokes inside the

silhouette. Our system is a hybrid of two methods. We employ a technique that

creates 3D objects from sketches and one that extracts height fields from shading

information. We combine the two methods in order to create a system which

constructs 3D objects with perturbed surfaces using sketch input.

In order to create the 3D mesh, we first get the silhouette input as points

from the user. Then we resample the input points so that we have points that

form a 2D polygon that represents the silhouette’s shape. Then we sweep the

2D polygon with lines that are parallel to either x or y axis. The axis selection

is made according to the largest distance value among the x and y values of the

points of the polygon. We sweep the polygon with sweep lines that are orthogonal

to the axis with the largest distance. During sweeping, we find two intersection

points with each sweep line and the 2D polygon edges. By connecting these two

intersection points, we form slab edges. We define slabs, which are composed

of any two adjacent slab edges. Then, each slab is triangulated. During the

52

CHAPTER 5. CONCLUSION 53

triangulation, we elevate the vertices so that each slab edge forms a semi elliptic

curve. We form a 3D mesh by forming triangular mesh patches for each of the

slabs.

The free-form surface of the mesh is obtained by utilizing the shading input

the user provides. We receive the shading input as an image based input. The

shading input strokes are stored as pixels in an image. When the user finishes

shading, the image based shading input is used to calculate a height field by a

shape from shading algorithm. The height field is then applied to the 3D object

mesh to finalize the free-form 3D object mesh.

Our results show that our system is capable of creating 3D objects with free-

form surfaces using only sketches. Our system is easy to use and intuitive. How-

ever, we can only process silhouette input that forms a monotone polygon when

resampled. This makes objects with a branching skeletal structure out of our

scope. Also, the image based height field modification technique brings a minor

fidelity problem. This causes noise on the perturbations, which is problematic

when using curves. On the other hand, the noise is desired in some cases, such

as the almond or brick wall example in which our system provides better results.

This work can be improved by incorporating a 3D object creation method

that allows creation of more complex object with branching skeletal structures.

We have observed that modification of the surface geometry is possible with a

height field generated from shading input. However, creating an object with much

precision is very hard so using this kind of an approach for engineering design

systems is not feasible. This method can be used as a technique to create simple

objects with free-form surfaces or can be incorporated with other systems in order

to construct more complicated objects.

Bibliography

[1] Igarashi T, Matsuoka S, Tanaka H. Teddy: a sketching interface for 3D

freeform design. In: Proceedings of the SIGGRAPH’99, pp. 173-174, 1999.

[2] Henzen, Alex, Ailenei, Neculai, Fiore, Fabian Di, Reeth, Frank Van, Patter-

son, John, 2005. Sketching with a low-latency electronic ink drawing tablet.

In: Proceedings of the 3rd International Conference on Computer Graphics

and Interactive Techniques in Australasia and South East Asia.

[3] Cherlin JJ, Samavati F, Sousa MC, Jorge JA. Sketch-based modeling with

few strokes. In: Proceedings of Spring Conference on Computer Graphics

(SCCG’05), 2005.

[4] Eggli L, Ching-Yao H, Bruderlin B, Elber G. Inferring 3D models from free-

hand sketches and constraints. Computer-Aided Design, Vol. 29, pp. 101-112,

1997.

[5] Pusch R, Samavati F, Nasri A, Wyvill B. Improving the sketch-based inter-

face: forming curves from many small strokes. In:Proceedings of Computer

Graphics International (CGI’07), Vol. 23, pp. 955-962, 2007.

[6] Fleisch T, Rechel F, Santos P, Stork A. Constraint stroke-based oversketch-

ing for 3D curves. In: Proceedings of Eurographics Workshop on Sketch-

based Interfaces and Modeling (SBIM’04), pp. 161-165, 2004.

[7] Kara L, D’Eramo C, Shimada K. Pen-based styling design of 3D geometry

using concept sketches and template models. In:Proceedings of ACM Solid

and Physical Modeling Conference (SPM’06), Vol. 27, pp. 60-71, 2006.

54

BIBLIOGRAPHY 55

[8] Rushmeier, Holly, Gomes, Jose, Balmelli, Laurent, Bernardini, Fausto,

Taubin, Gabriel. Image-based object editing. In: Proceedings of Fourth In-

ternational Conference on 3-D Digital Imaging and Modeling (3DIM’03), pp.

20-27, 2003.

[9] Kerautret, Bertrand, Granier, Xavier, Braquelaire, Achille, 2005. Intuitive

shape modeling by shading design. In: Butz, Andreas, Fisher, Brian, Krger,

Antonio (Eds.), International Symposium on Smart Graphics Lecture Notes

in Computer Science, Vol. 3638, pp. 163-174. Springer-Verlag GmbH.

[10] Sezgin TM, Stahovich T, Davis R. Sketch based interfaces: early processing

for sketch understanding. In:Proceedings of Workshop on Perceptive User

Interfaces (PUI’01), pp. 1-8, 2001.

[11] Kurozumi Y, Davis W, Polygonal approximation by the minimax method.

Computer Graphics and Image Processing, 1982.

[12] Saykol, Gudukbay U, Gulesir G, Ulusoy O. KiMPA: a kinematics-based

method for polygon approximation. Lecture Notes in Computer Science, Vol.

2457, pp. 186-194. Berlin/Heidelberg: Springer; 2002.

[13] Olsen L, Samavati F, Sousa M, Jorge J. Sketch-based modeling: A survey.

Computers and Graphics, Vol. 33, pp. 85-103 (2008).

[14] Cook M. T., Agah A. 2009. A survey of sketch-based 3-D modeling tech-

niques. Interacting with Computers, Vol. 21, pp. 201-211.

[15] Zeleznik, Robert C, Herndon, Kenneth P, Hughes, John F, 1996. SKETCH:

an interface for sketching 3D scenes. In: Rushmeier, Holly (Ed.), SIG-

GRAPH96. Addison Wesley, pp. 163-170.

[16] Pereira, Joo P., Jorge, Joaquim A., Branco, Vasco, Ferreira, F., Nunes, 2000.

Towards Calligraphic Interfaces: Sketching 3D Scenes with Gestures and

Context Icons. In: Proceedings of WSCG’00, 2000.

[17] Pereira, Joo P, Branco, Vasco A, Jorge, Joaquim A, Silva, Nelson F, Cardoso,

Tiago D., Ferreira, F., Nunes. 2004. Cascading recognizers for ambiguous

BIBLIOGRAPHY 56

calligraphic interaction. In: Hughes, John F., Jorge, Joaquim A. (Eds.),

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling.

[18] Huffman, David A, 1971. Impossible objects as nonsense sentences. Machine

Intelligence. Vol 8, pp. 475-492.

[19] Clowes, Maxwell B, 1971. On seeing things. Artificial Intelligence Vol. 2, pp.

79-116.

[20] Grimstead, Ian J, Martin, Ralph R, 1995. Creating solid models from single

2D sketches. In: SMA95: Proceedings of the Third Symposium on Solid

Modeling and Applications. ACM Press.

[21] Turner, Alasdair, Chapman, David, Penn, Alan, 1999. Sketching a virtual

environment: modeling using line-drawing interpretation. In: Proceedings

of the ACM Symposium on Virtual Reality Software and Technology, pp.

155161.

[22] Lipson, Hod, Shpitalni, Moshe, 2002. Correlation-based reconstruction of

a 3D object from a single freehand sketch. In: Davis, Randall, Landay,

James, Stahovich, Tom (Eds.), American Association for Artificial Intel-

ligence Spring Symposium: Sketch Understanding. Stanford University in

Palo Alto, AAAI, California.

[23] Williams, Lance. 3D paint. In: Proceedings of the 1990 Symposium on In-

teractive 3D graphics, Vol. 24, pp. 225-233.

[24] L. Prasad. Morphological analysis of shapes. CNLS Newsletter, Vol. 139, pp.

1-18.

[25] Karpenko, Olga, Hughes, John F, Raskar, Ramesh. Free-form sketching with

variational implicit surfaces. In: Proceedings of Computer Graphics Forum,

Vol. 21, pp. 585-594, 2002.

[26] Turk G, O’Brien, J. Shape Transformation using variational implicit func-

tions. In Proceedings of SIGGRAPH’99 (August 1999), pp. 13.

BIBLIOGRAPHY 57

[27] Tai, Chiew-Lan, Zhang, Hongxin, Fong, Jacky Chun-Kin, 2004. Prototype

Modeling from sketched silhouettes based on convolution surfaces. Computer

Graphics Forum 23 (1), 71-83.

[28] Schmidt, Ryan, Wyvill, Brian, Sousa, Mario Costa, Jorge, Joaquim A, 2005.

ShapeShop: sketch-based solid modeling with the BlobTree. In: 2nd Euro-

graphics Workshop on Sketch-based Interfaces and Modeling.

[29] Wesche, Gerold, Seidel, Hans-Peter, 2001. FreeDrawer: a free-form sketching

system on the responsive workbench. In: Proceedings of the ACM Sympo-

sium on Virtual Reality Software and Technology. ACM Press.

[30] Michalik, Paul, Kim, Dae Hyun, Bruderlin, Beat, D., 2002. Sketch- and

constraintbased design of B-spline surfaces. In: ACM Symposium on Solid

and Physical Modeling Proceedings of the Seventh ACM Symposium on Solid

Modeling and Applications. ACM Press, Saarbrcken, Germany.

[31] Levet, Florian, Granier, Xavier, Schlick, Christophe, 2006. 3D sketching

with profile curves. In: Proceedings of International Symposium on Smart

Graphics, Vol. 4073, pp. 114-125.

[32] P.S. Tsai and M. Shah, Shape from Shading Using Linear Approximation,

Image and Vision Computing J., vol. 12, no. 8, pp. 487-498, 1994.

[33] Wyvill, Brian, Guy, Andrew, 1998. The BlobTree warping, blending and

boolean operations in an implicit surface modeling system. Computer Science

Technical Reports.

[34] Frisken, Sarah F, Perry, Ronald N, Rockwood, Alyn P., Jones, Thouis

R., 2000. Adaptively sampled distance fields: a general representation of

shape for computer graphics. In: Akeley, Kurt (Ed.), Siggraph 2000, Com-

puter Graphics Proceedings. ACM Press/ACM SIGGRAPH/ Addison Wes-

ley Longman.

[35] Bærentzen, J. Andreas, Christensen, Niels Jrgen. 2002. Volume sculpting us-

ing the levelset method. In: Proceedings of the Shape Modeling International

2002 (SMI02). IEEE Computer Society.

BIBLIOGRAPHY 58

[36] Lawrence, Jason, Funkhouser, Thomas. A painting interface for interactive

surface deformations. In: Pacific Graphics, Vol. 66, pp. 418-438, 2003.

[37] Singh, Karan, Fiume, Eugene, 1998. Wires: a geometric deformation tech-

nique, In: Proceedings of the 25th Annual Conference on Computer Graphics

and Interactive Techniques, pp. 405-414.

[38] Cohen, Jonathan M, Markosian, Lee, Zeleznik, Robert C, Hughes, John F.

An interface for sketching 3D curves. In: Proceedings of the ACM Sympo-

sium on Interactive 3D Graphics. ACM Press, Atlanta, Georgia. 1999

[39] Grossman, Tovi, Balakrishnan, Ravin, Kurtenbach, Gordon, Fitzmaurice,

George, Khan, Azam, Buxton, Bill. Interaction techniques for 3D modeling

on large displays. In: SI3D01: Proceedings of the Symposium on Interactive

3D Graphics. ACM Press. 2001

[40] Tsang, Steve, Balakrishnan, Ravin, Singh, Karan, Ranjan, Abhishek. A

suggestive interface for image guided 3D sketching. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. ACM Press,

pp. 591-598, 2004

[41] Hayward V, Oliver R, Cruz-Hernandez M, Grant D, Robles-De-La-Torre G,

2004. Haptic interfaces and devices, Sensor Review, Vol. 24, pp. 16-29.

[42] Burdea G, Coiffet P, Virtual Reality Technology, John Wiley&Sons, New

York, 1994.

[43] Contero M, Naya F, Jorge J, Conesa J. CIGRO: a minimal instruction set

calligraphic interface for sketch-based modeling. Lecture Notes in Computer

Science, Vol. 2669, pp. 549-558.

[44] Masry M, Lipson H. A sketch-based interface for iterative design and analysis

of 3D objects. In: Proceedings of the Eurographics Workshop on Sketch-

based Interfaces and Modeling (SBIM’05), 2005.

[45] Piquer A, Martin R R, Company P. Using skewed mirror symmetry for

optimisation-based 3D line-drawing recognition.In: Proceedings of IAPR In-

ternational Workshop on Graphics Recognition, 2003.

BIBLIOGRAPHY 59

[46] Draper G, Egbert P. A gestural interface to free-form deformation. In: Pro-

ceedings of Graphics Interface 2003.

[47] Kho Y, Garland M. Sketching mesh deformations. In: ACMSI3DG: sympo-

sium on interactive 3D graphics and games 2005, 2005.

[48] Rivers A, Durand F, Igarashi T. 2010. 3D Modeling with Silhouettes. ACM

Trans. Graph. 29, 4, Article 109 (July 2010), 8 pages.

[49] Stiver M, Baker A, Runions A, Samavati F. 2010. Sketch based volumet-

ric clouds. In Proceedings of the 10th International Conference on Smart

Graphics (SG’10). Springer-Verlag, Berlin, Heidelberg.

[50] Yang R., Wunsche B. 2010. Life-sketch: a framework for sketch-based mod-

elling and animation of 3D objects. In Proceedings of the Eleventh Aus-

tralasian Conference on User Interface - Volume 106 (AUIC ’10), Christof

Lutteroth and Paul Calder (Eds.), pp. 61-70.

[51] Pixologic, 2007. ZBrush www.pixologic.com/zbrush.

[52] AutodeskInc.,Maya www.autodesk.com/mayai.

[53] AutodeskInc.,3D Studio Max usa.autodesk.com/3ds-max

[54] AutodeskInc.,Mudbox hwww.mudbox3d.comi.

[55] Franco P. Preparata and Michael Ian Shamos (1985). Computational Geom-

etry - An Introduction. Springer-Verlag.

