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July 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Haldun M. Özaktaş(Supervisor)
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ABSTRACT

FINITE REPRESENTATION OF FINITE ENERGY

SIGNALS

Talha Cihad Gülcü

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Haldun M. Özaktaş

July 2011

In this thesis, we study how to encode finite energy signals by finitely many bits.

Since such an encoding is bound to be lossy, there is an inevitable reconstruction

error in the recovery of the original signal. We also analyze this reconstruction

error. In our work, we not only verify the intuition that finiteness of the energy

for a signal implies finite degree of freedom, but also optimize the reconstruction

parameters to get the minimum possible reconstruction error by using a given

number of bits and to achieve a given reconstruction error by using minimum

number of bits. This optimization leads to a number of bits vs reconstruction

error curve consisting of the best achievable points, which reminds us the rate

distortion curve in information theory. However, the rate distortion theorem are

not concerned with sampling, whereas we need to take sampling into consider-

ation in order to reduce the finite energy signal we deal with to finitely many

variables to be quantized. Therefore, we first propose a finite sample representa-

tion scheme and question the optimality of it. Then, after representing the signal

of interest by finite number of samples at the expense of a certain error, we dis-

cuss several quantization methods for these finitely many samples and compare

their performances.
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ÖZET

SONLU ENERJİLİ SİNYALLERİN SONLU GÖSTERİMİ

Talha Cihad Gülcü

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Haldun M. Özaktaş

Temmuz 2011

Bu tezde, sonlu enerjili sinyallerin sonlu sayıda ikil(bit) ile nasıl kodlanılacağı

çalışılmaktadır. Böyle bir kodlama kayıpsız olamayacağı için, asıl sinyalin

yeniden elde edilmesinde kaçınılmaz bir yeniden kurma hatası olmaktadır. Bu

yeniden kurma hatası da burada analiz edilmektedir. Bu çalışmada, sadece bir

sinyal için enerji sonluluğunun sonlu erkinlik derecesine işaret edeceği sezgisi

doğrulanmamakta, ayrıca belli sayıda ikil kullanarak mümkün olan en az yeniden

kurma hatasını elde etmek ve en az ikil kullanarak belli bir yeniden kurma

hatasını başarmak için yeniden kurma değiştirgeleri de eniyileştirilmektedir. Bu

en iyileme, bilgi kuramındaki oran bozulma eğrisini anımsatan, en iyi elde

edilebilir noktalardan oluşan bir ikil sayısına karşı yeniden kurma hatası eğrisi

getirmektedir. Ancak, oran bozulma teoremi örneklemeyi konu edinmemektedir,

oysa ki bu çalışmada sözkonusu sonlu enerjili sinyalin nicemlenecek sonlu sayıda

değişkene indirgenmesi adına örneklemenin dikkate alınması gerekmektedir. Bu

nedenle, ilk olarak, bir sonlu örnek gösterim tasarısı önerilmekte ve bunun eniy-

iliği sorgulanmaktadır. Belli bir hata karşılığında, sözkonusu sinyali sonlu sayıda

örnek ile temsil ettikten sonra, bu sonlu sayıda örnek için, değişik nicemleme

yöntemleri tartışılmakta ve performansları karşılaştırılmaktadır.
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Tekbiçimli Nicemleme, Yöney Nicemlemesi, Nicemleme Hatası, Oran Bozulma

Kuramı

vi



ACKNOWLEDGMENTS

I would like to thank Prof. Dr. Haldun M. Özaktaş for his valuable guidance
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Chapter 1

INTRODUCTION

In this thesis, we are concerned with the problem of encoding finite energy signals

by finite number of bits, which was originated from [1,2]. This problem has two

main parts: Sampling and quantization.

Sampling is a well established topic of signal processing. Nyquist [3] and Shan-

non [4] set the foundations of sampling by proving the classic well-known uniform

sampling theorem for bandlimited signals. Actually, this theorem was previously

introduced in several works [5,6]. Sampling theorem for bandlimited processes is

considered in [7]. Various extensions of Shannon-Nyquist sampling theorem, such

as sampling for functions of more than one variable, random processes, nonuni-

form sampling, nonbandlimited signals, are presented in [8]. Sampling theory

of nonbandlimited signals is reviewed in [9]. An error analysis for nonuniform

sampling of nonbandlimited signals is provided in [10]. Reconstruction error for

the uniform sampling of nonbandlimited signals is considered in [11].

More recent review articles on sampling are [12, 13]. The main focus of [12]

is uniform(regular) sampling. In [13], the topics such as reconstruction of non-

bandlimited signals and stability of reconstruction are reviewed.
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[14–32] are some of the works in which nonuniform(irregular) sampling is

taken into account. Instead of sinc function in reconstrunction, wavelets [33–46]

and splines [47–59] are considered in numerous works. We use regular sampling

and the usual sinc interpolation of samples in this work, because the expression of

the resultant reconstruction error provides us useful interpretations in this case.

An error analysis for the reconstruction method we cover is given in [60]. The

formulation of bandlimited signal interpolation as a linear estimation problem is

given in [61].

Quantization is a fundamental subject of signal processing as well. In earlier

works, fixed rate scalar quantization [62–66] and scalar quantization with mem-

ory [67–71] are considered. Shannon’s well known 1948 paper [72] paved the way

for variable rate quantization. Later on, in his landmark paper [73] published

in 1959, Shannon introduced rate distortion theory and motivated vector quan-

tization. After Shannon’s 1959 paper, different kinds of vector quantizers are

proposed [74–79]. Lattice quantizers [79–82], product quantizers [83–85], tree

structured quantization [86,87], multistage vector quantization [88,89] and feed-

back vector quantization [90–92] are some of the quantization methods available

in the literature. [93–96] are some of the more recent works on quantization.

The whole history of quantization is reviewed in [97] in detail. We employ both

uniform scalar quantization and vector quantization in this work.

Before encoding finite energy signals, we represent them with finitely many

samples as an intermediate step. The finite sample representation subject we

cover here is closely related to the concepts such as degree of freedom (DOF) and

space-bandwidth product. The number-of-degrees-of-freedom concept is consid-

ered in different contexts in the literature [98–108].

Actually, signal encoding is covered in a couple of books [109, 110]. In [109],

time-continuous stationary source encoding is considered. But, we focus on finite

energy time-continuous sources in this thesis, and a finite energy signal cannot
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be stationary. Autoregressive nonstationary source encoding is also discussed

in [109]. However, for signal encoding, the units of rate and distortion are always

taken as per second in [109], whereas in this work, we aim to encode time-

continuous sources by finitely many bits at the expense of a finite overall error.

On the other hand, in [110], different waveform coding techniques, such as delayed

decision coding, subband coding, transform coding, are treated. However, similar

to [109], in [110], rate is always taken as bits per second or bits per sample, and

error variance or SNR is considered as the quantity to be minimized . In this

work, we are not interested in the error variance at a certain sample or the

number of bits used per sample. What we are interested in is the number of bits

used to encode the whole signal, and the associated error in reconstructing it.

Thus, our problem formulation is quite different from [109,110].

Throughout our work, we will first consider a single deterministic complex

function(signal) having finite energy, i.e.,∫ ∞
−∞
|f(u)|2 du <∞ (1.1)

and extend our results wherever applicable to a class of signals which will be

denoted by F . Once the signal to be represented by finitely many samples

or bits is known, there is no point in representing it. Therefore, we need to

generalize our results to the case when there is more than one signal possible to

be encountered.

By assigning a probability to each member of a signal class F , we can model

F as a random process. Some of our results will require the energy of the signals

in F to be upperbounded. Whereas our other results will simply require that

the expectation of energy (average energy), namely

E

[∫ ∞
−∞
|f(u)|2 du

]
=

∫ ∞
−∞

E [|f(u)|2] du (1.2)

is finite. Note that we are able to change the order of the integration and ex-

pectation in (1.2) thanks to Fubini’s theorem [111], since the integrand |f(u)|2
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is nonnegative. In this work, we have changed the order of the integration and

expectation several times, and this justification is applicable to all those changes

of order.

In Chapter 2, we first propose a method based on ∆u truncation in space

domain and ∆µ truncation in frequency domain to reconstruct any finite energy

signal by using only finitely many samples of it and analyze the corresponding

finite sample reconstruction error. Then, we simplify the finite sample recon-

struction error expression and choose the finite sample reconstruction parameters

∆u and ∆µ optimally to minimize it and to obtain the number of samples vs

finite sample reconstruction error Pareto optimal curve. Moreover, the form that

error takes when antialiasing filter is not used is also investigated. Lastly, the

connections between our work and the results on prolate spheroidal functions in

the literature are discussed.

In Chapter 3, different quantization techniques on the finitely many samples

that the finite energy signal is reduced to are considered. Firstly, the scalar

K level uniform quantization of as many as ∆u∆µ samples is discussed, and a

vector quantization method is proposed to improve the quantization performance.

Then, for the vector quantization, the parameters that the number of bits and

finite bit reconstruction error depend on, namely ∆u, ∆µ and K, are optimized,

which makes it possible to get the number of bits vs error Pareto optimal curve.

Another quantization technique outperforming this vector quantization is also

considered in Chapter 3. Finally, rate distortion theorem is adapted to our setup

to obtain the best achievable performance. The conclusions and future works are

listed in Chapter 4.

In this thesis, the domain of the signals can be taken as space or time. In

other words, for the signals f(u) considered throughout this work, the unit of

u can be taken as second or meter. We will denote the unit of u as s wherever

needed. Throughout our work, the terminology of space domain (the words such
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as space limited, space-bandwidth product, spatial truncation, spatial width etc.)

is preferred instead of that of time domain. Moreover, the unit of the values that

signals take can be volts or volts per meter. We will denote the unit of f(u) as

Φ wherever needed.

Integrals whose limits are not given will signify integrals from minus to plus

infinity. Throughout this work, signals will be denoted by f and their Fourier

transforms will be denoted by F . Moreover, vectors and matrices will be denoted

by boldface letters.

List of symbols is given in Table 1.1 and list of operator and function notations

is given in Table 1.2.

Symbol Explanation

Z the set of integers
R the set of real numbers
R+ the set of nonnegative real numbers
C the set of complex numbers
f : A→ B f is a function with domain A, range B
A×B the set of pairs (a, b) such that a ∈ A, b ∈ B
[a, b] the set of real numbers r satisfying a ≤ r ≤ b
j the imaginary number

√
−1

e the natural number 2.7183 . . .
π the pi number 3.14159 . . .
δmn Kronecker delta
n! n factorial, i.e., 1× 2× · · · × n
min{a, b} the smaller one of the real numbers a and b
minS g the minimum value that g takes on the set S
diag{a1, . . . , an} diagonal matrix having {a1, . . . , an} on its diagonal

Table 1.1: List of symbols
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Operator&Function Explanation

Re{.} real part of
Im{.} imaginary part of
|.| absolute value
E [.] expectation value
brc largest integer less than or equal to r
〈., .〉 inner product
(.)∗ conjugate
(.)T matrix transpose
tr(.) trace of the matrix
||.||22 square of the Euclidean norm of the vector
ln natural logarithm
log2 base 2 logarithm
sinc(x) sin(πx)/(πx)
rect(x) rectangle function

Q(x) 1√
2π

∫∞
x
e−t

2/2 dt

Table 1.2: List of operator and function notations
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Chapter 2

FINITE SAMPLE

REPRESENTATION

In this chapter, we present a method to represent any finite energy signal by finite

number of samples. Then, we show that the reconstruction error can be made

arbitrarily small by choosing the number of samples large enough. After proving

that the finite sample reconstruction error can be made as small as desired,

we approximate this error by a suitable term, and optimize the spatial width

∆u and the spectral width ∆µ so that the number of bits vs reconstruction error

curve consisting of Pareto optimal points is obtained. The Pareto optimal curves

corresponding to certain autocorrelation functions are also provided. Moreover,

the reconstruction error for the case when antialiasing filter is not used is analyzed

as well. Finally, some topics about our finite sample reconstruction error are

discussed in the light of the works on prolate spheroidal functions.

We begin our discussion by analyzing the spatial and spectral truncation error

for a finite energy signal. In this analysis, the only assumption we have is that

the energy of the signal of interest is finite. The results we obtain will be used
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later to show that the reconstruction error corresponding to the finite sample

representation we suggest can be made arbitrarily small.

2.1 Spatial and Spectral Truncation Error

Let f(u) be a single finite energy signal, i.e. a signal satisfying (1.1). Although

it is very natural to say “Let the spatial width of f(u) be ∆u and the fre-

quency(spectral) width of f(u) be ∆µ”, there is something hidden in this state-

ment: Truncation error. A signal cannot be both space limited and frequency

limited at the same time. Therefore, in either spatial or spectral truncation,

there is a deviation from the original signal. However, both spatial and spec-

tral truncation errors can be made arbitrarily small by selecting the truncation

interval sufficiently large, as we will show.

Let f̃∆u(u) denote the result of spatial truncation to the interval

[−∆u/2, ∆u/2], namely

f̃∆u(u) =

 f(u) if |u| ≤ ∆u/2,

0 else .
(2.1)

Then, the spatial truncation error
∫
|f(u)− f̃∆u(u)|2 du can be expressed as∫

|f(u)− f̃∆u(u)|2 du =

∫ −∆u/2

−∞
|f(u)|2 du+

∫ ∞
∆u/2

|f(u)|2 du (2.2)

=

∫
|f(u)|2 du−

∫ ∆u/2

−∆u/2

|f(u)|2 du (2.3)

=

∫
|f(u)|2 du−

∫
|f̃∆u(u)|2 du (2.4)

From Lebesgue monotone convergence theorem [111], we have

lim
∆u→∞

∫
|f̃∆u(u)|2 du =

∫
|f(u)|2 du (2.5)

Using (2.5) with (2.4), we obtain

lim
∆u→∞

∫
|f(u)− f̃∆u(u)|2 du = 0 (2.6)
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Therefore, the spatial truncation error can be made as small as desired by select-

ing ∆u large enough. A similar fact is also valid for spectral truncation error, as

we will explain.

If the original function f(u) is truncated to the frequency band

[−∆µ/2, ∆µ/2], denoting the output of bandlimiting operation as f̆∆µ(u), from

Parseval’s theorem, we have∫
|f(u)− f̆∆µ(u)|2 du =

∫
|F (µ)− F̆∆µ(µ)|2 dµ (2.7)

where F and F̆∆µ refer to the Fourier transforms of f and f̆∆µ, respectively.

Then, we obtain∫
|f(u)− f̆∆µ(u)|2 du =

∫
|F (µ)|2 dµ−

∫ ∆µ/2

−∆µ/2

|F (µ)|2 dµ (2.8)

=

∫
|F (µ)|2 dµ−

∫
|F̆∆µ(µ)|2 dµ (2.9)

Using Lebesgue monotone convergence theorem once again, we get

lim
∆µ→∞

∫
|F̆∆µ(µ)|2 dµ =

∫
|F (µ)|2 dµ (2.10)

From (2.9) and (2.10), similar to spatial truncation case considered above, we

conclude

lim
∆µ→∞

∫
|f(u)− f̆∆µ(u)|2 du = 0 (2.11)

Hence the spectral truncation error
∫
|f(u)− f̆∆µ(u)|2 du can be made arbitrarily

small by choosing ∆µ sufficiently large.

Now, if f(u) is a random process having finite expectation of energy, similarly

we have

lim
∆u→∞

E

[∫
|f(u)− f̃∆u(u)|2 du

]
= lim

∆u→∞

[∫
E [|f(u)|2] du−

∫
E [|f̃∆u(u)|2] du

]
= 0 (2.12)

and

lim
∆µ→∞

E

[∫
|f(u)− f̆∆µ(u)|2 du

]
= lim

∆µ→∞

[∫
E [|F (µ)|2] dµ−

∫
E [|F̆∆µ(µ)|2] dµ

]
= 0 (2.13)

9



as the stochastic counterparts of (2.6) and (2.11), respectively. Thus, in this case,

the spatial truncation error E [
∫
|f(u)− f̃∆u(u)|2 du] and the spectral truncation

error E [
∫
|f(u)− f̆∆µ(u)|2 du] can be made arbitrarily small by choosing ∆u and

∆µ large enough, respectively.

The results given up to here will be used to analyze the reconstruction error

of the finite sample representation scheme we will cover now.

2.2 Finite Sample Reconstruction and

its Error Analysis

In this section, we will propose an approach to represent a finite energy sig-

nal f(u) by finite number of samples and analyze the associated finite sample

reconstruction error.

As commonly known, R and any interval [a, b] in it consists of uncountably

many elements. Therefore, even if the signal f(u) can be truncated in spatial or

spectral domain, still there will be uncountably many number of points belonging

to the support of the signal. We cannot use all of the uncountable number of

data if we want to eventually get a finite sample representation. Thus, sampling

is a required part of the job. Sampling can be performed either in spatial or

spectral domain.

Secondly, there is no assumption on (spatial or spectral) bandwidth of f(u).

Therefore, sampling is expected to result in aliasing problem, which may cause

extra error. Hence, we may need an antialiasing filter to have a more accurate

reconstruction. Thus, we have two options:

1. Filtering in spectral domain first, then taking samples in spatial domain.

2. Filtering in spatial domain first, then taking samples in spectral domain.

10



The second option for finite sample representation can be analyzed similar to

the first option and will be mentioned briefly wherever applicable throughout

our work. Moreover, the finite sample representation without antialiasing filter

is analyzed in Section 2.4.

Now, we begin to explain our finite sample representation (will be abbrevi-

ated as FSR from now on) scheme by taking the first option described above

into consideration. After truncating f(u) to a two-sided bandwidth of ∆µ in

spectral domain, from Nyquist and Shannon’s sampling theorem, the resultant

bandlimited signal can be expressed as

f̆∆µ(u) =
∞∑

n=−∞

f̆∆µ

(
n

∆µ

)
sinc(∆µu− n) (2.14)

To have a FSR, we discard all the samples except for the ones lying in the interval

[−∆u/2, ∆u/2] and obtain the signal

f̂∆u,∆µ(u) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

f̆∆µ

(
n

∆µ

)
sinc(∆µu− n) (2.15)

which can be characterized completely by

2

⌊
∆u∆µ

2

⌋
+ 1 ≈ ∆u∆µ (2.16)

number of samples. These samples constitute the vector

f =

(
f̆∆µ

(
n

∆µ

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(2.17)

denoting the FSR of f(u).

The finite sample reconstruction signal f̂∆u,∆µ(u) has a bandwidth ∆µ and an

approximate spatial width ∆u. Note that we have ∆u∆µ� 1 in practice, thus

the approximation made in (2.16) is reasonable. Thus, the degree-of-freedom

(will be abbreviated as DOF from now on) for f̂∆u,∆µ(u) is approximately its

space-bandwidth product ∆u∆µ.

Now, we analyze the error in reconstructing f(u) as f̂∆u,∆µ(u). As an interme-

diate step, we first calculate the truncation error etr(∆u,∆µ) made by discarding
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all but 2b∆u∆µ/2c+ 1 samples to get f̂∆u,∆µ(u) from f̆∆µ(u). Since the set

{sinc(∆µu− n) |n ∈ Z} (2.18)

consists of orthogonal functions each having an energy of 1/∆µ (can be seen very

easily using the fact that Fourier transform preserves the inner product, that is

〈sinc(∆µu− n), sinc(∆µu−m)〉

=

〈
1

∆µ
rect

(
µ

∆µ

)
e−j 2π n

∆µ
µ,

1

∆µ
rect

(
µ

∆µ

)
e−j 2π m

∆µ
µ

〉
=

1

∆µ
δmn (2.19)

and the result follows.), we have

etr(∆u,∆µ) =

∫
|f̆∆µ(u)− f̂∆u,∆µ(u)|2 du =

1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2
(2.20)

Note that the energy of f̆∆µ cannot exceed that of f , which is finite by

assumption. Thus, using the orthogonality of the sincs again, we conclude∫
|f̆∆µ(u)|2 du =

1

∆µ

∞∑
n=−∞

∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2 <∞ (2.21)

Then, from (2.20) and (2.21), we get

lim
∆u→∞

etr(∆u,∆µ) = 0 (2.22)

On the other hand, in order to express the finite sample reconstruction error in

a more explicit form, we first write

|f(u)− f̂∆u,∆µ(u)|2 = |(f(u)− f̆∆µ(u)) + (f̆∆µ(u)− f̂∆u,∆µ(u))|2

= |f(u)− f̆∆µ(u)|2

+ 2 Re{(f(u)− f̆∆µ(u))(f̆∆µ(u)− f̂∆u,∆µ(u))∗}

+ |f̆∆µ(u)− f̂∆u,∆µ(u)|2 (2.23)

12



Then, from (2.23), the finite sample reconstruction error can be expressed as∫
|f(u)− f̂∆u,∆µ(u)|2 du =

∫
|f(u)− f̆∆µ(u)|2 du

+ 2 Re{〈f(u)− f̆∆µ(u), f̆∆µ(u)− f̂∆u,∆µ(u)〉}

+

∫
|f̆∆µ(u)− f̂∆u,∆µ(u)|2 du (2.24)

Since Fourier transform preserves inner product, we have

〈f(u)− f̆∆µ(u), f̆∆µ(u)− f̂∆u,∆µ(u)〉 = 〈F (µ)− F̆∆µ(µ), F̆∆µ(µ)− F̂∆u,∆µ(µ)〉

(2.25)

By definition, F̆∆µ(µ) is identical to F (µ) at [−∆µ/2,∆µ/2], thus F (µ)− F̆∆µ(µ)

is zero in this frequency band. On the other hand, as (2.15) implies, F̂∆u,∆µ(µ)

is zero outside [−∆µ/2,∆µ/2] as well as F̆∆µ(µ). Hence, F̆∆µ(µ)− F̂∆u,∆µ(µ) is

nonzero only at [−∆µ/2,∆µ/2]. Then, we conclude

〈F (µ)− F̆∆µ(µ), F̆∆µ(µ)− F̂∆u,∆µ(µ)〉

=

∫ ∆µ/2

−∆µ/2

(F (µ)− F̆∆µ(µ))(F̆∆µ(µ)− F̂∆u,∆µ(µ))∗ dµ

+

∫
|µ|>∆µ/2

(F (µ)− F̆∆µ(µ))(F̆∆µ(µ)− F̂∆u,∆µ(µ))∗ dµ

= 0 + 0 = 0 (2.26)

Therefore, (2.24) can be simplified as∫
|f(u)− f̂∆u,∆µ(u)|2 du =

∫
|f(u)− f̆∆µ(u)|2 du

+

∫
|f̆∆µ(u)− f̂∆u,∆µ(u)|2 du (2.27)

=

∫
|f(u)− f̆∆µ(u)|2 du+ etr(∆u,∆µ) (2.28)

Then, combining (2.28) with (2.11) and (2.22), we conclude

lim
∆u,∆µ→∞

∫
|f(u)− f̂∆u,∆µ(u)|2 du = 0 (2.29)

Therefore, the reconstruction error of the FSR we propose can be made as small

as desired by selecting ∆u and ∆µ, namely the two parameters product of which

give the number of DOF for the reconstruction signal f̂∆u,∆µ(u), large enough.

13



To obtain an alternative FSR, one can consider confining f̂∆u,∆µ(u) to the

interval [−∆u/2,∆u/2] in space domain. However, the analysis of the finite

sample reconstruction error as carried out here seems to be difficult to handle in

this case.

On the other hand, as mentioned at the beginning of this section, there is a

second option to obtain a FSR. In this option, we first truncate f(u) to the space

interval [−∆u/2,∆u/2], and from Nyquist and Shannon’s sampling theorem, we

express the Fourier transform of the resultant spacelimited signal f̃∆u(u) as

F̃∆u(µ) =
∞∑

n=−∞

F̃∆u

( n

∆u

)
sinc(∆uµ− n) (2.30)

Then, we only keep the samples in the frequency band [−∆µ/2,∆µ/2] and obtain

the signal

F̂∆u,∆µ(µ) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

F̃∆u

( n

∆u

)
sinc(∆uµ− n) (2.31)

the inverse Fourier transform f̂∆u,∆µ(u) of which is the FSR signal of the second

option, having a spatial width ∆u, an approximate bandwidth ∆µ, an approx-

imate space-bandwidth product and the number of DOF ∆u∆µ. Here, please

note that f̂∆u,∆µ(u) we mention here is different from f̂∆u,∆µ(u) defined in (2.15)

and used up to this point. f̂∆u,∆µ(u) of the second option is spacelimited, whereas

f̂∆u,∆µ(u) of the first option is bandlimited. On the other hand, these two func-

tions are close to each other as much as Uncertainty Principle permits, and the

samples used to construct them are not the exact DFT of each other.

For this second option, we define etr(∆u,∆µ) as

etr(∆u,∆µ) =

∫
|f̃∆u(u)− f̂∆u,∆µ(u)|2 du =

∫
|F̃∆u(µ)− F̂∆u,∆µ(µ)|2 dµ (2.32)

By following the same argument that leads to (2.20), one can show that

etr(∆u,∆µ) =
1

∆u

∑
|n|>b∆u∆µ/2c

∣∣∣F̃∆u

( n

∆u

)∣∣∣2 (2.33)
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and conclude

lim
∆µ→∞

etr(∆u,∆µ) = 0 (2.34)

Moreover, the counterpart of (2.28), namely the equation∫
|f(u)− f̂∆u,∆µ(u)|2 du =

∫
|f(u)− f̃∆u(u)|2 du+ etr(∆u,∆µ) (2.35)

can be derived similarly. Then, from (2.6), (2.34), and (2.35), we find that (2.29)

is also valid for the second option. Therefore, this option makes it possible as

well to obtain arbitrarily small finite sample reconstruction errors by choosing

∆u and ∆µ sufficiently large.

Now, consider a class of signals F each member of which has finite energy.

Then, as (2.11) implies, for any fixed ε1 > 0, and for any chosen f(u) ∈ F ,

there exists some bandwidth ∆µ depending on the chosen signal f(u) such that∫
|f(u) − f̆∆µ(u)|2 du < ε1. If the maximum of all these ∆µ values exist, then

for all f(u) ∈ F , and for this maximum ∆µ, we have
∫
|f(u)− f̆∆µ(u)|2 du < ε1.

Similarly, as (2.22) implies, for any fixed ε2 > 0 and ∆µ (in particular for the

maximum ∆µ we defined), for any chosen f(u) ∈ F , there exists another ∆u

depending on the chosen signal f(u) such that etr(∆u,∆µ) < ε2. If the maximum

of all these ∆u values exist, then for all f(u) ∈ F , and for this maximum ∆u,

we have etr(∆u,∆µ) < ε2. Hence, from (2.28), we see that the worst case finite

sample reconstruction error for F is ε1 + ε2, and thus can be made arbitrarily

small, provided that the maximum ∆µ and ∆u described above exists for all

ε1, ε2 > 0. A similar argument is obviously valid for the FSR of the second

option. However, the condition that we require here to make sure that worst

case error can be made as small as desired is difficult to be satisfied. Because,

even if either the maximum ∆u or maximum ∆µ does not exist for a single

nonzero ε1 and ε2, the condition is violated.

There is no need to make any assumptions on the existence of the maximum

∆u or ∆µ if average error is considered instead of worst case error, as we will

show. Now, we define the signal class F we deal with as a random process f(u),
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and instead of requiring all the signals in F (all the realizations of f(u), in the

language of random processes) to have finite energy, we only assume that the

average energy as given in (1.2) is finite. Then, taking the expectation of both

sides in (2.28) and using (2.20), we get

E

[∫
|f(u)− f̂∆u,∆µ(u)|2 du

]
= E

[∫
|f(u)− f̆∆µ(u)|2 du

]
+

1

∆µ

∑
|n|>b∆u∆µ/2c

E

[∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2
]

(2.36)

Since the average energy of f̆∆µ(u) cannot exceed that of f(u), which we assume

to be finite, similar to (2.21), we have

E

[∫
|f̆∆µ(u)|2 du

]
=

1

∆µ

∞∑
n=−∞

E

[∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2
]
<∞ (2.37)

From (2.37), we obtain

lim
∆u→∞

 1

∆µ

∑
|n|>b∆u∆µ/2c

E

[∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2
] = 0 (2.38)

Using (2.13) and (2.38) in (2.36), we conclude

lim
∆u,∆µ→∞

E

[∫
|f(u)− f̂∆u,∆µ(u)|2 du

]
= 0 (2.39)

which completes the proof of the fact that the average finite sample reconstruc-

tion error E [
∫
|f(u)− f̂∆u,∆µ(u)|2 du] can be made arbitrarily small by choosing

∆u and ∆µ sufficiently large.

Now, if the second option is considered for FSR, similar to (2.36) and (2.38),

we have

E

[∫
|f(u)− f̂∆u,∆µ(u)|2 du

]
= E

[∫
|f(u)− f̃∆u(u)|2 du

]
+

1

∆u

∑
|n|>b∆u∆µ/2c

E

[∣∣∣F̃∆u

( n

∆u

)∣∣∣2] (2.40)

and

lim
∆µ→∞

 1

∆u

∑
|n|>b∆u∆µ/2c

E

[∣∣∣F̃∆u

( n

∆u

)∣∣∣2]
 = 0 (2.41)
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respectively. Using (2.12) and (2.41) in (2.40), we conclude that (2.39) is also

true for this option. Therefore, the second option for FSR makes it possible as

well to obtain arbitrarily small average finite sample reconstruction errors by

choosing ∆u and ∆µ large enough.

2.3 A Useful Approximation of Finite Sample

Reconstruction Error

In Section 2.2, we found that finite sample reconstruction error can be written as

(2.28) for the first FSR option and as (2.35) for the second FSR option. In this

section, we will focus on the term etr(∆u,∆µ) which denotes the error made by

discarding all the samples except for finitely many of them. At the end, we will

show that, for both of the FSR options, finite sample reconstruction error can be

approximated as the sum of the spatial truncation error (2.3) and the spectral

truncation error (2.8).

As given in (2.20), for the first FSR option, the error made by ignoring the

samples outside the interval [−∆u/2,∆u/2] can be expressed as

etr(∆u,∆µ) =

∫
|f̆∆µ(u)− f̂∆u,∆µ(u)|2 du =

1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2
(2.42)

Since f̆∆µ(u) is bandlimited to [−∆µ/2,∆µ/2], it does not increase or decrease

significantly during a length of 1/∆µ. Thus, we have

1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2 ≈ ∫
|u|> b∆u∆µ/2c

∆µ

|f̆∆µ(u)|2 du (2.43)

≈
∫
|u|>∆u/2

|f̆∆µ(u)|2 du (2.44)

The approximation (2.44) can also be justified as follows: In practice, ∆u is

expected to be large enough so that |f̆∆µ(u)|2 is decreasing when u > b∆u∆µ/2c
∆µ
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and increasing when u < − b∆u∆µ/2c
∆µ

. Thus, we can write∫
|u|> b∆u∆µ/2c+1

∆µ

|f̆∆µ(u)|2 du < etr(∆u,∆µ) <

∫
|u|> b∆u∆µ/2c

∆µ

|f̆∆µ(u)|2 du (2.45)

Moreover, since ∆u∆µ� 1 in practice, we have

b∆u∆µ/2c+ 1

∆µ
≈ b∆u∆µ/2c

∆µ
≈ ∆u

2
(2.46)

and the result follows. Actually, it is proven in [117] that there exists some

functions for which the approximation (2.44) is not valid. Nevertheless, (2.44) is

a plausible approximation. For more details about this topic, see the discussion

after Theorem 5 in Section 2.6.

Now, inserting (2.8) and (2.44) in (2.28), we get∫
|f(u)− f̂∆u,∆µ(u)|2 du ≈

∫
|µ|>∆µ/2

|F (µ)|2 dµ+

∫
|u|>∆u/2

|f̆∆µ(u)|2 du (2.47)

For the FSR of the second option, similarly we have

etr(∆u,∆µ) =
1

∆u

∑
|n|>b∆u∆µ/2c

∣∣∣F̃∆u

( n

∆u

)∣∣∣2 ≈ ∫
|µ|>∆µ/2

|F̃∆u(µ)|2 dµ (2.48)

Then, combining (2.3) and (2.48) with (2.35), we obtain∫
|f(u)− f̂∆u,∆µ(u)|2 du ≈

∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F̃∆u(µ)|2 dµ (2.49)

For large enough ∆u and ∆µ, we have∫
|u|>∆u/2

|f̆∆µ(u)|2 du ≈
∫
|u|>∆u/2

|f(u)|2 du (2.50)∫
|µ|>∆µ/2

|F̃∆u(µ)|2 dµ ≈
∫
|µ|>∆µ/2

|F (µ)|2 dµ (2.51)

Using (2.50) in (2.47) and using (2.51) in (2.49), for FSR of both first and second

options, we obtain the following approximation∫
|f(u)− f̂∆u,∆µ(u)|2 du ≈

∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ (2.52)

the right hand side (will be abbreviated as RHS from now on) of which is simply

the sum of spatial and spectral truncation errors covered in the beginning of our

work.
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It is important to observe that the truncation made in the space and frequency

domain directly appear in the approximate error expression (2.52) without any

cross terms or amplification. This result is similar to the one obtined in [112],

in which it was shown that the approximation error for the linear canonical

transform computation algorithms proposed is basically determined by the error

in approximating continuous Fourier transform by discrete Fourier transform

(DFT), namely the error coming from the amount of energy contained outside

the time-frequency region corresponding to the DFT applied.

From (2.52), we also conclude that, although f̂∆u,∆µ(u) of first and second

options are different as explained previously, the finite sample reconstruction

errors they result in are approximately the same and equal to the sum of spatial

and spectral truncation errors if the FSR parameters ∆u and ∆µ are taken large

enough.

For a random process f(u), taking the expectation of both sides of (2.52), we

get

E

[∫
|f(u)− f̂∆u,∆µ(u)|2 du

]
≈
∫
|u|>∆u/2

E [|f(u)|2] du+

∫
|µ|>∆µ/2

E [|F (µ)|2] dµ

(2.53)

In terms of the autocorrelation function of f(u)

R(u1, u2) = E [f(u1)f ∗(u2)] (2.54)

and the autocorrelation of the Fourier transform of f(u)

S(µ1, µ2) =

∫∫
R(u1, u2)e−j2πµ1u1ej2πµ2u2 du1 du2 = E [F (µ1)F ∗(µ2)] (2.55)

(2.53) can be rewritten as

E

[∫
|f(u)− f̂∆u,∆µ(u)|2 du

]
≈
∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆µ/2

S(µ, µ) dµ (2.56)

Therefore, for a random process f(u), the average finite sample reconstruction

error can be approximated by the sum of the truncation errors of the diagonal of
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its autocorrelation function and the diagonal of the autocorrelation of its Fourier

transform.

2.4 Error Analysis for the Reconstruction

Without Prefiltering

In this section, we will consider the case when the antialiasing filter is not used

and the signal f(u) is directly sampled and sinc interpolated. We will analyze

the associated finite sample reconstruction error as done in Section 2.2 and derive

an upperbound for it. This upperbound will be larger than (2.52). Note that, as

found in Section 2.3, (2.52) is the form that reconstruction error for FSR with

prefiltering takes when ∆u and ∆µ are large enough. The remaining part of this

section is devoted to the details of the error upperbound derivation and can be

omitted without loss of continuity.

Here, f(u) is to be reconstructed as

f̂∆u,∆µ(u) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

f

(
n

∆µ

)
sinc(∆µu− n) (2.57)

Note that, contrary to (2.15), the samples of the original signal f(u) is used

for sinc interpolation in (2.57) because prefiltering is not carried out for the

reconstruction considered here.

The “second option” counterpart of this reconstruction signal would be the

inverse Fourier transform of

F̂∆u,∆µ(µ) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

F
( n

∆u

)
sinc(∆uµ− n) (2.58)

The analysis of the reconstructions described by (2.57) and (2.58) are nearly

identical, therefore we continue our discussion from (2.57). Before proceeding,
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we define another signal f̌(u) as

f̌∆µ(u) =
∞∑

n=−∞

f

(
n

∆µ

)
sinc(∆µu− n) (2.59)

Note that, unlike F̆∆µ(µ), the Fourier transform F̌∆µ(µ) of f̌∆µ(u) does not agree

with F (µ) on the interval [−∆µ/2,∆µ/2] because of aliasing. Hence, unlike

(2.26) and (2.27), we have

〈F (µ)− F̌∆µ(µ), F̌∆µ(µ)− F̂∆u,∆µ(µ)〉 6= 0 (2.60)∫
|f(u)− f̂∆u,∆µ(u)|2 du 6=

∫
|f(u)− f̌∆µ(u)|2 du

+

∫
|f̌∆µ(u)− f̂∆u,∆µ(u)|2 du (2.61)

Therefore, we need another approach to analyze the finite sample reconstruction

error
∫
|f(u)− f̂∆u,∆µ(u)|2 du. Here, we opt for the triangle inequality(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|f(u)− f̌∆µ(u)|2 du

) 1
2

+

(∫
|f̌∆µ(u)− f̂∆u,∆µ(u)|2 du

) 1
2

(2.62)

as the starting point of our error analysis.

Similar to (2.20), the equality∫
|f̌∆µ(u)− f̂∆u,∆µ(u)|2 du =

1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f ( n

∆µ

)∣∣∣∣2 (2.63)

is valid, and then (2.62) becomes(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|f(u)− f̌∆µ(u)|2 du

) 1
2

+

 1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f ( n

∆µ

)∣∣∣∣2
 1

2

(2.64)

By using Parseval’s equality, (2.64) can be rewritten as(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|F (µ)− F̌∆µ(µ)|2 dµ

) 1
2

+

 1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f ( n

∆µ

)∣∣∣∣2
 1

2

(2.65)
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In order to analyze the term
∫
|F (µ)−F̌∆µ(µ)|2 dµ apperaring in (2.65), we make

use of Nyquist’s sampling theorem to express F̌∆µ(µ) as

F̌∆µ(µ) = rect

(
µ

∆µ

) ∞∑
n=−∞

F (µ−∆µn) (2.66)

Then, we get∫
|F (µ)− F̌∆µ(µ)|2 dµ =

∫
|µ|>∆µ/2

|F (µ)|2 dµ+

∫ ∆µ/2

−∆µ/2

∣∣∣∣∣∑
n6=0

F (µ−∆µn)

∣∣∣∣∣
2

dµ

(2.67)

The term
∫ ∆µ/2

−∆µ/2
|
∑

n6=0 F (µ−∆µn)|2 dµ can be upperbounded as

∫ ∆µ/2

−∆µ/2

∣∣∣∣∣∑
n6=0

F (µ−∆µn)

∣∣∣∣∣
2

dµ =
∑
m 6=0

∑
n6=0

∫ ∆µ/2

−∆µ/2

F (µ−∆µn)F ∗(µ−∆µm) dµ

≤
∑
m 6=0

∑
n6=0

∣∣∣∣∣
∫ ∆µ/2

−∆µ/2

F (µ−∆µn)F ∗(µ−∆µm) dµ

∣∣∣∣∣
(2.68)

From the Cauchy-Schwarz inequality for function spaces, we have∣∣∣∣∣
∫ ∆µ/2

−∆µ/2

F (µ−∆µn)F ∗(µ−∆µm) dµ

∣∣∣∣∣
2

≤∫ ∆µ/2

−∆µ/2

|F (µ−∆µn)|2 dµ
∫ ∆µ/2

−∆µ/2

|F (µ−∆µm)|2 dµ (2.69)

Then, combining this result with (2.68), we get

∫ ∆µ/2

−∆µ/2

∣∣∣∣∣∑
n6=0

F (µ−∆µn)

∣∣∣∣∣
2

dµ ≤

∑
n6=0

(∫ ∆µ/2

−∆µ/2

|F (µ−∆µn)|2 dµ

) 1
2

2

(2.70)

Thus, from (2.67), we obtain∫
|F (µ)− F̌∆µ(µ)|2 dµ ≤

∫
|µ|>∆µ/2

|F (µ)|2 dµ

+

∑
n6=0

(∫ ∆µ/2

−∆µ/2

|F (µ−∆µn)|2 dµ

) 1
2

2

(2.71)
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At this point, we can loose the upperbound here, and write(∫
|F (µ)− F̌∆µ(µ)|2 dµ

) 1
2

≤
(∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

+
∑
n 6=0

(∫ ∆µ/2

−∆µ/2

|F (µ−∆µn)|2 dµ

) 1
2

(2.72)

=

(∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

+
∑
n 6=0

(∫ (n+ 1
2

)∆µ

(n− 1
2

)∆µ

|F (µ)|2 dµ

) 1
2

(2.73)

Then, we use (2.65) to obtain(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

+
∑
n6=0

(∫ (n+ 1
2

)∆µ

(n− 1
2

)∆µ

|F (µ)|2 dµ

) 1
2

+

 1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f ( n

∆µ

)∣∣∣∣2
 1

2

(2.74)

as the upperbound for the square root of the finite sample reconstruction error.

Similar to (2.44) and (2.48), provided that the function |f(u)| is decreasing

in the region |u| > b∆u∆µ/2c
∆µ

and ∆u∆µ� 1, we have

1

∆µ

∑
|n|>b∆u∆µ/2c

∣∣∣∣f ( n

∆µ

)∣∣∣∣2 ≈ ∫
|u|>∆u/2

|f(u)|2 du (2.75)

After this approximation, we can rewrite (2.74) as(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|u|>∆u/2

|f(u)|2 du
) 1

2

+

(∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

+
∑
n6=0

(∫ (n+ 1
2

)∆µ

(n− 1
2

)∆µ

|F (µ)|2 dµ

) 1
2

(2.76)

Since (2.52) is equal to the sum of squares of the first and second terms of

the summation in the RHS of (2.76), we conclude that the upperbound we have

obtained here for the finite sample reconstruction error
∫
|f(u)− f̂∆u,∆µ(u)|2 du
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is larger than (2.52), as we stated in the beginning of this section. For a random

process f(u), since this argument works for all realizations, the upperbound

we obtain here for the average finite sample reconstruction error E [
∫
|f(u) −

f̂∆u,∆µ(u)|2 du] is larger than (2.53).

Now, we want to say a few words on the third term contributing to the RHS

of (2.76). For any a, b ∈ R, from Cauchy-Schwarz inequality, we have

(b− a)

∫ b

a

|F (µ)|2 dµ =

∫ b

a

12 dµ

∫ b

a

|F (µ)|2 dµ

≥
(∫ b

a

|F (µ)| dµ
)2

(2.77)

Thus, inserting a = (n− 1/2)∆µ and b = (n+ 1/2)∆µ in (2.77), we conclude(∫ (n+ 1
2

)∆µ

(n− 1
2

)∆µ

|F (µ)|2 dµ

) 1
2

≥ 1√
∆µ

∫ (n+ 1
2

)∆µ

(n− 1
2

)∆µ

|F (µ)| dµ (2.78)

∑
n6=0

(∫ (n+ 1
2

)∆µ

(n− 1
2

)∆µ

|F (µ)|2 dµ

) 1
2

≥ 1√
∆µ

∫
|µ|>∆µ/2

|F (µ)| dµ (2.79)

Therefore, the third term of RHS of (2.76) is larger than the ∆µ truncation

error of the 1-norm of F (µ). Thus, in order to make our error upperbound (2.76)

as small as desired, we first have to take ∆µ truncation error of the 1-norm of

F (µ) under control.

For a random process f(u), taking the expectation of both sides in (2.76),

and using the inequalities

E

(∫
|u|>∆u/2

|f(u)|2 du
) 1

2

≤
(

E

[∫
|u|>∆u/2

|f(u)|2 du
]) 1

2

=

(∫
|u|>∆u/2

R(u, u) du

) 1
2

(2.80)

E

(∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

≤
(

E

[∫
|µ|>∆µ/2

|F (µ)|2 dµ
]) 1

2

=

(∫
|µ|>∆µ/2

S(µ, µ) dµ

) 1
2

(2.81)

stemming from the inequality (E [X])2 ≤ E [X2] where X is a real random vari-

able, which can be rewritten as E [X] ≤
√

E [X2] when X does not take negative
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values, we have

E

(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|u|>∆u/2

R(u, u) du

) 1
2

+

(∫
|µ|>∆µ/2

S(µ, µ) dµ

) 1
2

+
∑
n6=0

E

(∫ (n+ 1
2

)∆µ

(n− 1
2

)∆µ

|F (µ)|2 dµ

) 1
2

(2.82)

Similarly, from (2.79), we see that the average ∆µ truncation error of the 1-norm

of F (µ) should be made small enough first to make the error upperbound (2.82)

sufficiently small.

2.5 Optimal ∆u, ∆µ and the Corresponding

Best Achievable Finite Sample Reconstruc-

tion Error

Naturally, we want to use the smallest number of samples to achieve a specified

finite sample reconstruction error and we desire to obtain the smallest possible

finite sample reconstruction error for a given number of samples. This section is

devoted to the application of the method of Lagrange multipliers to solve these

two optimization problems. The parameters we need to optimize are ∆u and

∆µ.

In Section 2.2, we have shown that the reconstruction error of FSR can be

written as in (2.28) and (2.35) for the first and second options, respectively. In

Section 2.3, we demonstrated that, under reasonable conditions, both (2.28) and

(2.35) can be approximated as simply the sum of spatial and spectral truncation

errors, namely (2.52). Thus, (2.52) is the ultimate form that the finite sample

reconstruction error takes for both of the FSR options after some approximations.

On the other hand, as given in (2.16), the number of samples, namely the number

of DOF for the reconstruction signal, can be taken as ∆u∆µ. Based on these

remarks, we can formulate these two optimization problems as
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• Minimizing n(∆u,∆µ) subject to the constraint e(∆u,∆µ) is a specified

constant.

• Minimizing e(∆u,∆µ) subject to the constraint n(∆u,∆µ) is a specified

constant.

where

n(∆u,∆µ) = ∆u∆µ (2.83)

e(∆u,∆µ) =

∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ (2.84)

In order to be more precise, one can alternatively define e(∆u,∆µ) as the

RHS of (2.47) and the RHS of (2.49) for the first and second FSR options,

respectively. In this case, the details of the derivation would be quite similar.

Thus, we continue our development by taking e(∆u,∆µ) as in (2.84).

For both of the two problems we have explained, the method of Lagrange

multipliers indicates that ∃λ ∈ R, the optimal (∆u,∆µ) point should satisfy

∂ e(∆u,∆µ)

∂∆u
+ λ∆µ = 0 (2.85)

∂ e(∆u,∆µ)

∂∆µ
+ λ∆u = 0 (2.86)

Note that e(∆u,∆µ) can be expressed as

e(∆u,∆µ) = e1(∆u) + e2(∆µ) (2.87)

where

e1(x) = E0 −
∫ x/2

−x/2
|f(x′)|2 dx′ (2.88)

e2(y) = E0 −
∫ y/2

−y/2
|F (y′)|2 dy′ (2.89)

E0 =

∫
|f(x′)|2 dx′ =

∫
|F (y′)|2 dy′ (2.90)
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Now, we can rewrite (2.85) and (2.86) as

e′1(∆u) + λ∆µ = 0 (2.91)

e′2(∆µ) + λ∆u = 0 (2.92)

resulting in the equality

e′1(∆u)∆u = e′2(∆µ)∆µ (2.93)

The derivative of (2.88) can be calculated as

e′1(x) = −1

2

(∣∣∣f (x
2

)∣∣∣2 +
∣∣∣f (−x

2

)∣∣∣2) (2.94)

Similarly we have

e′2(y) = −1

2

(∣∣∣F (y
2

)∣∣∣2 +
∣∣∣F (−y

2

)∣∣∣2) (2.95)

Then, (2.93) can be rewritten as

∆µ

∆u
=

∣∣f (∆u
2

)∣∣2 +
∣∣f (−∆u

2

)∣∣2∣∣F (∆µ
2

)∣∣2 +
∣∣F (−∆µ

2

)∣∣2 (2.96)

In order to find the optimal (∆u,∆µ) pair, (2.96) and the constraint equa-

tion need to be solved together. In this way, we can find the smallest possible

e(∆u,∆µ) for the constraint n(∆u,∆µ) is a given constant, and vice versa.

Therefore, we can plot number of samples vs finite sample reconstruction error

curve consisting of the best achievable points.

For a random process f(u), we define e(∆u,∆µ) similarly as

e(∆u,∆µ) =

∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆µ/2

S(µ, µ) dµ (2.97)

based on the approximation (2.56). Then, for both of the optimization problems

we defined, using the method of Lagrange multipliers, we obtain

∆µ

∆u
=
R(∆u

2
, ∆u

2
) +R(−∆u

2
,−∆u

2
)

S(∆µ
2
, ∆µ

2
) + S(−∆µ

2
,−∆µ

2
)

(2.98)
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similar to (2.96). From both (2.96) and (2.98), we see that on the curve ∆u∆µ =

N , the optimum (∆u,∆µ) point is the one moving from which in upward or

downward direction does not decrease e(∆u,∆µ). On the other hand, although

it turns out that
∫
|u|>∆u/2

R(u, u) du and
∫
|µ|>∆µ/2

S(µ, µ) dµ are equal to each

other for optimal ∆u and ∆µ in the examples we consider in our work, we do not

think that (2.98) necessarily imply
∫
|u|>∆u/2

R(u, u) du =
∫
|µ|>∆µ/2

S(µ, µ) dµ.

In order to find the optimal (∆u,∆µ) pair, (2.98) and the constraint equa-

tion need to be solved together. Then, for a random process f(u), we can plot

number of samples vs the expectation of finite sample reconstruction error curve

consisting of the best achievable points, i.e., we can plot number of samples vs

the average finite sample reconstruction error Pareto optimal curve.

We will now provide a numerical example for the special case when the ran-

dom process f(u) of interest has an autocorrelation function of the form

R(u1, u2) = ψn(u1)ψn(u2) (2.99)

where ψn(u) is the nth order Hermite-Gaussian function. Since Hermite-Gaussian

functions are the eigenfunctions of the Fourier transform having eigenvalues of

unit magnitude [113], autocorrelation and autocorrelation of the Fourier trans-

form are exactly the same in this case. Therefore (2.98) simply reduces to

∆u = ∆µ × 1 s2. Then, under the constraint that the number of samples to

be used is a constant N , (2.97) can be simplified as

2

∫
|u|>
√
N/2

ψ2
n(u) du (2.100)

From (2.100), n(∆u,∆µ) vs e(∆u,∆µ) Pareto optimal curves are obtained for

several n values, as given in Figure 2.1.

As the order of the Hermite polynomial increases, both the spatial and the

spectral width of the corresponding Hermite-Gaussian function increases as well.

Therefore, in Figure 2.1, it is natural to observe that larger n results in usage of

more samples to achieve the same error performance.

28



Figure 2.1: Number of samples vs finite sample reconstruction error Pareto opti-
mal curves for the random processes having autocorrelation function R(u1, u2) =
ψn(u1)ψn(u2), where ψn(u) refers to the nth order Hermite-Gaussian function.

As another example, we consider a random process f(u) having a Gaussian

Schell-model(GSM) type autocorrelation function

R(u1, u2) = Ae−(u2
1+u2

2)/4σ2
I e−(u1−u2)2/2σ2

µ (2.101)

In [114], it is proven that (2.101) can be decomposed as

R(u1, u2) =
∞∑

n=−∞

λn

√
c

π
ψn

(√
c

π
u1

)
ψn

(√
c

π
u2

)
(2.102)

where ψn(u) is the the nth order Hermite-Gaussian function, λn is a positive

number depending on σI , σµ and n, which is explicitly given in [114], and

c =

((
1

4σ2
I

)2

+
1

4σ2
Iσ

2
µ

)1/2

(2.103)

Then, using the fact that the functions ψn(u) are the eigenfunctions of Fourier

transform all having unit magnitude eigenvalues, and using the scaling property

of Fourier transform, we get

S(µ1, µ2) =
∞∑

n=−∞

λn

√
π

c
ψn

(√
π

c
µ1

)
ψn

(√
π

c
µ2

)
(2.104)

=
π

c
R
(π
c
µ1,

π

c
µ2

)
(2.105)
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Then, from (2.105), we can write

R
(

∆u
2
, ∆u

2

)
+R

(
−∆u

2
,−∆u

2

)
S
(
c∆u
2π
, c∆u

2π

)
+ S

(
− c∆u

2π
,− c∆u

2π

) =
∆u c/π

∆u
(2.106)

(2.106) implies that (2.98) simply reduces to ∆µ = ∆u c/π for a GSM type

autocorrelation function. In this case, under the constraint ∆u∆µ = N , we

obtain the optimal ∆u and ∆µ as
√
Nπ/c and

√
Nc/π, respectively. Then,

using (2.105), (2.97) can be rewritten as

e(∆u,∆µ) =

∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆u c/2π

π

c
R
(π
c
µ,
π

c
µ
)
dµ (2.107)

= 2

∫
|u|>∆u/2

R(u, u) du (2.108)

= 2A2

∫
|u|>
√
Nπ/4c

e−u
2/2σ2

I du (2.109)

= 4A2
√

2πσI Q

(√
Nπ

4 c σ2
I

)
(2.110)

Setting the insignificant amplitude factor A aside, the two parameters that

determine a GSM type R(u1, u2) are σI and σµ. If both of these two parameters

are increased κ times, then c decreases κ2 times. Therefore, c σ2
I does not change,

and thus the ratio of the minimum achievable average finite sample reconstruction

error to the average energy of f(u), namely

e(∆u,∆µ)∫
R(u, u) du

=
e(∆u,∆µ)∫
A2 e−u

2/2σ2
I du

(2.111)

=
e(∆u,∆µ)

A2
√

2π σI
(2.112)

= 4Q

(√
Nπ

4 c σ2
I

)
(2.113)

does not change, either. Hence, we conclude that the normalized best achievable

finite sample reconstruction error depends only on the ratio of σI to σµ.

Figure 2.2 illustrates n(∆u,∆µ) vs percentage e(∆u,∆µ) (100 times (2.113))

Pareto optimal curves for a couple of σI/σµ values. As the intensity width σI

increases and the correlation width σµ decreases, the number of independent
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samples having nonnegligible variance increases. Therefore, it is natural to ob-

serve that higher σI/σµ ratios result in the usage of more samples to achieve the

same error.

Figure 2.2: Number of samples vs finite sample reconstruction error Pareto op-
timal curves for random processes having GSM type autocorrelation function.

The variations of optimum ∆u =
√
Nπ/c and optimum ∆µ =

√
Nc/π with

respect to the number of samples N are shown in Figure 2.3 and 2.4, respectively.

From these figures, we conclude that optimum ∆u increases as σI or σµ increases.

Whereas, optimum ∆µ is inversely proportional to σI and σµ. Since the number

of samples is equal to the product of ∆u and ∆µ, comparing Figure 2.3 with

Figure 2.4, we see that the (σI , σµ) pair having the largest optimal ∆u has the

smallest optimal ∆µ, and vice versa. In other words, the ordering of the curves

in Figure 2.3 is reversed in Figure 2.4.

Moreover, comparing the curves of the (σI , σµ) pair (1s, 0.5s) with (2s, 1s), or

comparing the curves corresponding to (0.5s, 1s) with the curves corresponding

to (1s, 2s), we verify the fact that if both σI and σµ are increased κ times, then c

decreases κ2 times, resulting in a κ times increase in optimum ∆u and a κ times

decrease in optimum ∆µ.
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Figure 2.3: Number of samples vs optimum ∆u curves for random processes
having GSM type autocorrelation function.

Figure 2.4: Number of samples vs optimum ∆µ curves for random processes
having GSM type autocorrelation function.

32



2.6 The Consequences of Prolate Spheroidal

Functions on Our Work

In this section, we will discuss how the works on prolate spheroidal functions

are related to our development. Prolate spheroidal functions are described in

Slepian’s well known paper [115] first, and some important properties of these

functions are covered in Landau and Pollak papers [116,117]. Here, we will first

consider the results found in [116] with their consequences on the approximation

of finite sample reconstruction error made in (2.52). Then, we will proceed to

the results of [117] which are about the performance of the family of sincs (2.18)

we used in reconstruction and prolate spheroidal functions in approximating

bandlimited functions.

Except for Theorem 3, all the theorems given in this section are taken

from [118], which includes the results of both [116] and [117]. However, all the

remaining parts are our original work unless otherwise stated. For convenience,

throughout this section, the signals considered have unit energy. Extending the

results to the generic case when there is no restriction on the energy of signals

is straightforward, as we did in the statement of Theorem 3.

Now, before starting our discussion, we give the following definitions which

will be used throughout this section.

Definition 1. The norm ||f || of a function f(u) is defined as

||f || =
(∫
|f(u)|2 du

) 1
2

(2.114)

Definition 2. The projection operator A confines the function to the interval

[−∆u/2,∆u/2].

Af(u) =

 f(u) if |u| ≤ ∆u/2,

0 else .
(2.115)
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Definition 3. The projection operator B confines the Fourier transform of the

function to the interval [−∆µ/2,∆µ/2].

Bf(u) =

∫ ∆µ/2

−∆µ/2

F (µ)ej2πµu dµ (2.116)

Then, the operator BA can be expressed as

BAf(u) =

∫ ∆u/2

−∆u/2

∆µ sinc[∆µ(u− u′)] f(u′) du′ (2.117)

The eigenfunctions of BA operator are named as prolate spheroidal functions

[115–117, 119]. Some of the properties of these functions and their eigenvalues

are given in Theorem 4.

After giving the required definitions, we begin our discussion. Recall that, in

Section 2.3, we have concluded that the reconstruction error for FSR of both the

first and second options can be approximated as∫
|f(u)− f̂∆u,∆µ(u)|2 ≈

∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ (2.118)

as written in (2.52). Since no signal f(u) can be fully concentrated in both

space and frequency domains, for fixed ∆u and ∆µ, we cannot make both∫
|u|>∆u/2

|f(u)|2 du and
∫
|µ|>∆µ/2

|F (µ)|2 dµ as small as we desire by choosing

f(u) conveniently. In other words, we cannot make both

α2 =

∫ ∆u/2

−∆u/2

|f(u)|2 du (2.119)

and

β2 =

∫ ∆µ/2

−∆µ/2

|F (µ)|2 dµ (2.120)

as close to
∫
|f(u)|2 du =

∫
|F (µ)|2 dµ as we like, and consequently we cannot

make (2.118) arbitrarily small. Therefore, once ∆u and ∆µ is fixed, irrespective

of the function f(u) to be represented by finite number of samples, we have to

consent to a certain nonzero finite sample reconstruction error. Here, we aim to

find this minimum finite sample reconstruction error in terms of ∆u and ∆µ.
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As an extension of Uncertainty Principle, there are some works in the litera-

ture about the spatial truncation error (2.119) and the spectral truncation error

(2.120) which are concerned with the problem of finding the tightest bound on

the (α, β) pairs achievable by a function f(u). This problem is firstly considered

and solved in [116]. Then, it is covered in [118, 119]. The solution of this prob-

lem will be useful in finding the minimum value that finite sample reconstruction

error takes.

We begin stating our theorems with a simple and brief one.

Theorem 1. A bandlimited signal cannot be identically 0 on any interval. Sim-

ilarly, the Fourier transform of a spacelimited signal cannot be identically 0 on

any interval.

From this theorem, we easily conclude that the (α, β) pairs (0, 1), (1, 0) and

(1, 1) are not achievable. The next question is that whether there are any other

(α, β) pairs which cannot be achieved by any unit energy function f(u). The

following theorem answers this question.

Theorem 2. Inside the unit square [0, 1] × [0, 1], the set of achievable (α, β)

pairs are the region defined by

cos−1 α + cos−1 β ≥ cos−1√γ (2.121)

excluding the points (0, 1) and (1, 0), where 0 ≤ γ ≤ 1 is the largest eigenvalue of

the operator BA, and a concave and increasing function of the product ∆u∆µ.

Moreover, γ
∣∣
∆u∆µ=0

= 0 and lim∆u∆µ→∞ γ = 1. For α >
√
γ, the functions

achieving the bound of the region described by (2.121) are

f(u) =
α
√
γ
Ae1(u) +

(
1− α2

1− γ

) 1
2

(e1(u)− Ae1(u)) (2.122)

where e1(u) is the prolate spheroidal function having the largest eigenvalue γ.
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Actually, in none of the works [116, 118, 119], the function γ(∆u∆µ) is ex-

plicitly given. In these works, ∆u∆µ vs γ plot similar to Figure 2.5 is provided

instead.

Figure 2.5: ∆u∆µ vs γ curve obtained by reading off from Figure 2 of [116].

It is interesting that, for a given ∆u and ∆µ, the set of the achievable points

depends only on the product ∆u∆µ, as Theorem 2 implies.

Note that, if α2 + β2 ≤ 1, we have

α ≤
√

1− β2 = sin(cos−1 β) = cos(π/2− cos−1 β) (2.123)

Since cos−1 is a decreasing function, taking cos−1 of each side, we get

cos−1α + cos−1β ≥ π/2 = cos−1 0 ≥ cos−1√γ (2.124)

Hence, from Theorem 2, we conclude that, inside the unit square [0, 1]× [0, 1],

all the (α, β) pairs lying inside the unit circle centered at the origin is achievable,

irrespective of ∆u > 0 and ∆µ > 0.

Another implication of Theorem 2 is that if α ≤ √γ, then there is no restric-

tion on β, namely ∀β ∈ [0, 1] is achievable. (Naturally, we also equivalently have

if β ≤ √γ, then ∀α ∈ [0, 1] is achievable.) Note that since cos−1 is a decreasing

function, if α ≤ √γ, then we have

cos−1 α ≥ cos−1√γ (2.125)
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Then, since cos−1 β is always nonnegative, we immediately conclude

cos−1 α + cos−1 β ≥ cos−1√γ, ∀β ∈ (0, 1] (2.126)

(2.121) also implies that for the class of unit energy functions bandlimited to

[−∆µ/2,∆µ/2], α2 cannot exceed γ. (Equivalently, for the class of unit energy

functions space limited to the interval [−∆u/2,∆u/2], β2 cannot exceed γ.)

Actually, before proving Theorem 2, in [118], γ is defined as supremum of (2.119)

taken over the class of bandlimited functions.

On the other hand, if α ≤ √γ does not hold, we first rewrite (2.121) as

cos−1 β ≥ cos−1√γ − cos−1 α (2.127)

Since we consider the case α >
√
γ here, we have

cos−1√γ − cos−1 α > 0 (2.128)

Then, using the fact that the cosine function is decreasing on the interval [0, π/2],

(2.127) can be expressed as

β ≤ cos(cos−1√γ − cos−1 α) (2.129)

β ≤ α
√
γ + sin(cos−1 α) sin(cos−1√γ) (2.130)

β ≤ α
√
γ +
√

1− α2
√

1− γ (2.131)

Therefore, if α >
√
γ, (2.131) and (2.121) can be used interchangeably to

express the region of achievable (α, β) pairs.

In (2.131), taking the square of both sides, we get

β2 ≤ α2(2γ − 1) + 2α
√

1− α2
√
γ − γ2 + 1− γ (2.132)

Then, from (2.132), we obtain the inequality

2− α2 − β2 ≥ (1− γ) + 2γ(1− α2)− 2α
√

1− α2
√
γ − γ2 (2.133)
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the left hand side of which is nothing but

2− α2 − β2 = (1− α2) + (1− β2)

=

∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ

≈
∫
|f(u)− f̂∆u,∆µ(u)|2 du (2.134)

That is why we are interested in lowerbounding 2 − α2 − β2. As explained at

the beginning of this section, for fixed ∆u and ∆µ, there is an inevitable finite

sample reconstruction error and our aim is to find this error which we cannot

avoid independent of the function f(u) to be reconstructed.

(2.133) implies that for the unit energy functions satisfying (2.119) for a

certain α greater than
√
γ, the minimum value that 2− α2 − β2 can take is

(1− γ) + 2γ(1− α2)− 2α
√

1− α2
√
γ − γ2 (2.135)

However, note that (2.133) is valid when α >
√
γ. On the other hand, if

α ≤ √γ, then

2− α2 − β2 ≥ 2− γ − β2 ≥ 2− γ − 1 = 1− γ (2.136)

where the inequality is achieved by equality for (α, β) = (
√
γ, 1). But, when

α >
√
γ, we will also achieve 2− α2 − β2 = 1− γ by the point (α, β) = (1,

√
γ).

Thus, denoting the indispensible finite sample reconstruction error we aim to

find as emin, we have

emin = min

{
min
α>
√
γ
{(1− γ) + 2γ(1− α2)− 2α

√
1− α2

√
γ − γ2}, 1− γ

}
= min

α>
√
γ
{(1− γ) + 2γ(1− α2)− 2α

√
1− α2

√
γ − γ2} (2.137)

Since α
√

1− α2 is increasing when α ≤ 1/
√

2, (2.135) is decreasing for the

case α ≤ 1/
√

2. Indeed, we have

d

dα

[
(1− γ) + 2γ(1− α2)− 2α

√
1− α2

√
γ − γ2

]
= −2

(
2αγ +

√
γ − γ2

1− 2α2

√
1− α2

)
≤ 0 (2.138)
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for α ∈ [0, 1/
√

2]. Now, in order to compute (2.137), we want to see whether

there exists a number α0 greater than both 1/
√

2 and
√
γ until which (2.135)

continues to decrease, or equivalently

2αγ +
√
γ − γ2

1− 2α2

√
1− α2

≥ 0 (2.139)

continues to be true. (2.139) can be rewritten as

2αγ ≥
√
γ − γ2

2α2 − 1√
1− α2

(2.140)

Since we consider the case α2 > 1/2, both sides of (2.140) are positive. Thus,

taking the square of both sides, (2.140) can also be expressed as

4α2γ2 ≥ (γ − γ2)
4α4 − 4α2 + 1

1− α2
(2.141)

After arranging the terms accordingly, from (2.141), we get

4γα4 − 4γα2 + γ − γ2 ≤ 0 (2.142)

4γ

(
α2 −

1−√γ
2

)(
α2 −

1 +
√
γ

2

)
≤ 0 (2.143)

From (2.143), we conclude that (2.135) is decreasing when 1/2 ≤ α2 ≤ (1+
√
γ)/2

as well as the case α2 ≤ 1/2. Moreover, (2.143) implies that (2.135) no longer

becomes a decreasing function of α after α2 exceeds the threshold (1 +
√
γ)/2.

Therefore, noting that

α0 =

√
1 +
√
γ

2
≥
√
γ + γ

2
=
√
γ (2.144)

we find emin as

emin =
[
(1− γ) + 2γ(1− α2)− 2α

√
1− α2

√
γ − γ2

] ∣∣∣∣∣
α2=(1+

√
γ)/2

(2.145)

= 1− γ + 2γ
1−√γ

2
− 2

√
1 +
√
γ

2

√
1−√γ

2

√
γ − γ2 (2.146)

= 1− γ√γ −√γ(1− γ) (2.147)

= 1−√γ (2.148)

which is achieved only when α2 = (1 +
√
γ)/2 and

β2 = 2−
1 +
√
γ

2
− emin =

1 +
√
γ

2
= α2 (2.149)
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Moreover, from Theorem 2, we see that the minimum finite sample reconstruction

error emin is achieved by the function

f(u) =

[
α
√
γ
Ae1(u) +

(
1− α2

1− γ

) 1
2

(e1(u)− Ae1(u))

] ∣∣∣∣∣
α2=(1+

√
γ)/2

(2.150)

=

(
1 +
√
γ

2γ

) 1
2
[
Ae1(u) +

√
γ

1 +
√
γ

(e1(u)− Ae1(u))

]
(2.151)

We summarize these results in the following theorem.

Theorem 3. For any signal f(u), the finite sample reconstruction error ex-

pressed in (2.118) is at least 1−√γ fraction of its energy. The minimum finite

sample reconstruction error

(1−√γ)

∫
|f(u)|2 du (2.152)

is achieved by the function

f(u) = C

[
Ae1(u) +

√
γ

1 +
√
γ

(e1(u)− Ae1(u))

]
(2.153)

where C is any nonzero number. Moreover, the minimum finite sam-

ple reconstruction error is achieved only when the spatial truncation error∫
|u|>∆u/2

|f(u)|2 du and the spectral truncation error
∫
|µ|>∆µ/2

|F (µ)|2 du are the

same and equal to
1−√γ

2

∫
|f(u)|2 du.

Theorem 3 implies that for the extreme cases ∆u = 0 and ∆µ = 0, namely

for the case ∆u∆µ = 0, the finite sample reconstruction error will be as large

as the whole energy of the signal to be reconstructed, which is a trivial result.

Moreover, according to Theorem 3, for the other extreme case ∆u∆µ =∞, there

exists signals for which the finite sample reconstruction error is zero. To verify

this, we can simply consider the signals space limited to [−∆u/2,∆u/2] and the

signals bandlimited to [−∆µ/2,∆µ/2] for the cases when ∆µ =∞ and ∆u =∞,

respectively. Therefore, this is an expected result as well.

By plotting ∆u∆µ vs 1−√γ graph, we can demonstrate how the minimum

finite sample reconstruction error we have to accept changes depending on the
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number of samples. On the other hand, the problem of minimizing finite sample

reconstruction error for a specific signal f(u) under the constraint ∆u∆µ is

constant is solved in Section 2.5, where we adjusted ∆u and ∆µ accordingly

so that the error is minimized. Whereas, as we see in this section, changing

∆u and ∆µ do not have any effect on the minimum achievable finite sample

reconstruction error as long as ∆u∆µ is kept constant.

Figure 2.6 illustrates the comparison of the ∆u∆µ vs 1−√γ curve with the

Pareto optimal ∆u∆µ vs finite sample reconstruction error curve given in Figure

2.1 for n = 0.

Figure 2.6: Comparison of the theoretical 1 − √γ limit and space-bandwidth
product vs finite sample reconstruction error Pareto optimal curve for f(u) =
ψ0(u) = 21/4e−πu

2
.

From the point of view of Uncertainty Principle [113,118], e−πu
2

is the function

which is most concentrated in both space and frequency domain. However, if the

measure of being concentrated in both domains is taken as the sum of spatial

and spectral truncation errors, from Theorem 3, we know that the function most

concentrated in both domains is the one given in (2.153). Nevertheless, we

conclude from Figure 2.6 that the difference between theoretical limit achieved
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by (2.153) and e−πu
2

becomes negligible when ∆u∆µ > 1, consistent with the

result of Uncertainty Principle.

Now, we give some of the properties of prolate spheroidal functions and their

eigenvalues in the following theorem.

Theorem 4. The operator BA has countably many eigenvalues

1 > γ = γ1 ≥ γ2 ≥ γ3 · · · → 0

The eigenvalue sequence γn satisfies

•
∑∞

n=1 γ
2
n ≤ ∆u∆µ

•
∑∞

n=1 γn = ∆u∆µ

Moreover the associated eigenfunctions en, namely prolate spheroidal functions,

have the following properties:

• {en|n ≥ 1} is an orthonormal basis of the class of functions bandlimited to

[−∆µ/2,∆µ/2].

•
{
γ
−1/2
n Aen|n ≥ 1

}
is an orthonormal basis of the class of functions space

limited to [−∆u/2,∆u/2].

• The functions en, suitably truncated and scaled, equal their Fourier trans-

forms [119].

At this point, we are ready to present our theorem on approximating a

unit energy function f bandlimited to [−∆µ/2,∆µ/2] with an orthonormal set

{fk|k = 1, 2, . . . , n} and discuss its consequences on our work.

Theorem 5. Define ∆[f1, ...fn] as the least upper bound of∣∣∣∣∣
∣∣∣∣∣f −

n∑
k=1

〈f, fk〉 fk

∣∣∣∣∣
∣∣∣∣∣ (2.154)
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over the unit energy functions bandlimited to [−∆µ/2,∆µ/2] satisfying ||Af || =

α for a constant α.

a) ∆[f1, ..., fn] is least for f1 = e1, ..., fn = en, and this is the case ∀n ≥ 1.

b) ∆2[e1, ..., en] ≤ 12(1− α2),∀n > ∆u∆µ.

c) ∆2[e1, ..., e[∆u∆µ+1]+n] ≥ (0.916)−1(1−α2−2
√

2e−π∆u∆µ/4), if 1−α2 < 0.916,

n is fixed and ∆u∆µ is sufficiently large.

d) ∆2[e1, ..., en] ≤ (1 + δ)(1− α2), for n = ∆u∆µ+C(δ) log(∆u∆µ+ 1), where

δ is any positive number and C(δ) is a constant which depends only on δ.

Although Theorem 5 is taken from [118], except for d), this theorem is firstly

stated and proven in [117]. Theorem 5-d) is due to Shannon. To be more precise,

Theorem 5-a),b),c) and d) is nothing but Theorem 1, Theorem 3, Theorem 8,

and Theorem 4 in [117], respectively.

As given in (2.15), recall that the reconstruction signal for the first option is

f̂∆u,∆µ(u) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

f̆∆µ

(
n

∆µ

)
sinc(∆µu− n) (2.155)

Actually, this equation can be rewritten as

f̂∆u,∆µ(u) =

b∆u∆µ/2c∑
k=−b∆u∆µ/2c

〈f̆∆µ, fk〉 fk(u) (2.156)

where

fk(u) =
√

∆µ sinc(∆µu− k) (2.157)

From the Theorem 5-a), we see that, in terms of the worst case value of

∫
|f̆∆µ(u)− f̂∆u,∆µ(u)|2 du =

∣∣∣∣∣∣
∣∣∣∣∣∣f̆∆µ −

b∆u∆µ/2c∑
k=−b∆u∆µ/2c

〈f̆∆µ, fk〉 fk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2.158)

choosing the family of sincs as the orthonormal set {fk}, as we actually did in

our work, is suboptimal. Actually, according to Theorem 10 and 11 of [117], the
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contrary of Theorem 5-b) and d) are valid for the family of sincs. But this does

not mean that for every bandlimited function f̆∆µ satisfying ||Af̆∆µ|| = α for a

constant α, the reconstruction performance of the orthonormal set{
ek

∣∣∣∣∣k = 1, 2, ..., 2

⌊
∆u∆µ

2

⌋
+ 1

}
(2.159)

is better than that of{√
∆µ sinc(∆µu− k)

∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ k ≤

⌊
∆u∆µ

2

⌋}
(2.160)

On the other hand, there is another result given in [118] which makes us opti-

mistic about the reconstruction performance of our set given in (2.160). Defining

e(δ) as the square of the error in approximating f̆∆µ(u + δ) by the function set

(2.160), namely expressing e(δ) as

e(δ) =

∣∣∣∣∣∣
∣∣∣∣∣∣f̆∆µ(u+ δ)−

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

f̆∆µ

(
n

∆µ
+ δ

)
sinc (∆µu− n)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2.161)

we have ∫ 1/∆µ

0

e(δ) dδ ≤ 1

∆µ

∫
|u|>∆u/2

|f̆∆µ(u)|2 du =
1− α2

∆µ
(2.162)

as calculated in [118]. Thus, there exists a lag 0 ≤ δ′ ≤ 1/∆µ such that

e(δ′) ≤ 1− α2 (2.163)

On the other hand, provided that 1−α2 < 0.916 and ∆u∆µ is sufficiently large,

from Theorem 5-c), we get

∆2[e1, ..., e2b∆u∆µ/2c+1] ≥ (0.916)−1(1− α2 − 2
√

2e−π∆u∆µ/4) (2.164)

For large ∆u∆µ, it is also the case that RHS of (2.164) is larger than 1−α2.

Therefore, comparing this fact with (2.163), we conclude that, for large ∆u∆µ,

there exists some functions for which the error in approximating them with the set

(2.159) of prolate spheroidal functions is larger than the error in approximating

a delayed version of them with the set (2.160) of family of sincs. However,
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in [118], it is stated that the relation between the optimal lag δ and f̆∆µ is very

complicated and nonlinear.

Lastly, we remind that the reconstruction signal for the second option is the

inverse Fourier transform of

F̂∆u,∆µ(µ) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

F̃∆u

( n

∆u

)
sinc(∆uµ− n) (2.165)

as given in (2.31). Comparing this equation with (2.15), we conclude that all the

arguments and results we gave after Theorem 5 is valid for the second option as

well, if we simply replace f̂∆u,∆µ(u) by F̂∆u,∆µ(µ), f̆∆µ(u) by F̃∆u(µ), ∆u by ∆µ

and ∆µ by ∆u.
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Chapter 3

ENCODING OF THE

SAMPLES

In Chapter 2, for a random or deterministic finite energy signal f(u), we proposed

f̂∆u,∆µ(u) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

f̆∆µ

(
n

∆µ

)
sinc(∆µu− n) (3.1)

as the reconstruction signal, and

f =

(
f̆∆µ

(
n

∆µ

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(3.2)

as the FSR. A dual approach, namely the second option for FSR, is also discussed.

In this chapter, we will consider the quantization of the samples forming

f to encode f(u) by finitely many bits at the expense of the associated finite

bit reconstruction error. Here, we analyze and compare the performances of

scalar uniform quantization, vector quantization of uniformly quantized samples,

spatial non-uniform quantization depending on the sample variances, and the

optimal quantization induced by rate distortion theory. Moreover, for the vector

quantization covered, the parameters (∆u, ∆µ and number of levels K) that

number of bits and overall reconstruction error depend on are optimized, and
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consequently number of bits vs overall reconstruction error Pareto optimal curve

is obtained.

3.1 Uniform Quantization of Samples

In this section, we uniformly quantize the samples f̆∆µ( n
∆µ

) as f̆ q∆µ( n
∆µ

) and obtain

the reconstruction signal

f q∆u,∆µ(u) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

f̆ q∆µ

(
n

∆µ

)
sinc(∆µu− n) (3.3)

Finite number of bits are sufficient to determine f q∆u,∆µ(u). Therefore, we

name f q∆u,∆µ(u) as finite bit reconstruction signal.

As written in (2.90), let the energy of the signal f(u) be denoted by E0.

Then, since the energy of f̆∆µ(u) cannot exceed that of f(u), from (2.21), we

conclude |f̆∆µ( n
∆µ

)| ≤
√
E0∆µ, ∀n ∈ Z. Therefore, both real and imaginary

parts of the samples f̆∆µ( n
∆µ

) are confined to the interval [−
√
E0∆µ,

√
E0∆µ].

Thus, the uniform quantization is to be done in this interval. If both real and

imaginary parts of the samples are to be quantized by K number of levels, then

the amplitude step between consecutive levels is

√
E0∆µ− (−

√
E0∆µ)

K
=

2
√
E0∆µ

K
(3.4)

and the maximum quantization error that can be made for a real or imaginary

part of a sample f̆∆µ( n
∆µ

) is one half of (3.4), namely
√
E0∆µ
K

. Hence, we have∣∣∣∣f̆∆µ

(
n

∆µ

)
− f̆ q∆µ

(
n

∆µ

)∣∣∣∣2 =

(
Re

{
f̆∆µ

(
n

∆µ

)
− f̆ q∆µ

(
n

∆µ

)})2

+

(
Im

{
f̆∆µ

(
n

∆µ

)
− f̆ q∆µ

(
n

∆µ

)})2

≤
(√

E0∆µ

K

)2

+

(√
E0∆µ

K

)2

(3.5)

=
2E0∆µ

K2
(3.6)
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Then, defining the quantization error as

eq(∆u,∆µ) =

∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du (3.7)

and using the orthogonality of sincs, we get

eq(∆u,∆µ) =
1

∆µ

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

∣∣∣∣f̆∆µ

(
n

∆µ

)
− f̆ q∆µ

(
n

∆µ

)∣∣∣∣2 (3.8)

≤ 1

∆µ

(
2

⌊
∆u∆µ

2

⌋
+ 1

)
2E0∆µ

K2
(3.9)

≈ 2E0∆u∆µ

K2
(3.10)

where 2E0∆µ
K2 in (3.9) comes from (3.6).

From (3.10), we conclude that, for any given εq > 0, if the number of levels

K is selected as
√

2E0∆u∆µ
εq

, then the quantization error eq(∆u,∆µ) becomes less

than or equal to εq. Since each sample consists of real and imaginary parts, there

are two real variables to be quantized for each sample, resulting in a total of

2

(
2

⌊
∆u∆µ

2

⌋
+ 1

)
≈ 2∆u∆µ (3.11)

scalar quantizations, each requiring

log2K =
1

2
log2

(
2E0∆u∆µ

εq

)
(3.12)

bits. Therefore, in this way, which is named as scalar uniform quantization,

2∆u∆µ× 1

2
log2

(
2E0∆u∆µ

εq

)
= ∆u∆µ log2

(
2E0∆u∆µ

εq

)
(3.13)

bits are sufficient to ensure eq(∆u,∆µ) ≤ εq.

Now, consider a class of signals F such that the energy of none of the signals

belonging to it exceeds E0. Since all the arguments we presented so far are valid

for any signal having energy less than or equal to E0, we conclude that as many

as (3.13) bits are sufficient to make eq(∆u,∆µ) ≤ εq, for all f ∈ F . Thus, worst

case quantization error for F cannot exceed εq.
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However, such a quantization is quite inefficient. Because, actually there are

not

K2∆u∆µ =

(
2E0∆u∆µ

εq

)∆u∆µ

(3.14)

different possible quantization points

f̂ =

(
f̆ q∆µ

(
n

∆µ

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(3.15)

due to the limitation coming from

1

∆µ

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2 ≤ 1

∆µ

∞∑
n=−∞

∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2 =

∫
|f̆∆µ(u)|2 du ≤ E0

(3.16)

(3.16) implies that the quantization points f̂ outide the hypersphere of radius
√
E0∆µ are useless. Actually, the number of quantization points staying inside

the hypersphere of radius
√
E0∆µ is much more smaller than (3.14), as we will

show.

Thinking the real and imaginary parts of the samples f̆∆µ( n
∆µ

) seperately,

we can regard the quantization points f̂ as vectors in R2∆u∆µ, by taking the

approximation in (3.11) into account. Inside the hypersphere we mentioned,

each vector

f =

(
f̆∆µ

(
n

∆µ

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(3.17)

will be represented as f̂ after uniform quantization if none of the 2∆u∆µ com-

ponents of f̂ is far away from the corresponding component of f more than one

half of (3.4). Therefore, for all f̂ , the locus of the vectors f represented by f̂ is a

hypercube of edge length

2× 2
√
E0∆µ/K

2
=

2
√
E0∆µ

K
(3.18)

and dimension 2∆u∆µ, having a volume of(
2
√
E0∆µ

K

)2∆u∆µ

=

(
2
√
E0∆µ√

2E0∆u∆µ/εq

)2∆u∆µ

=

(
2εq
∆u

)∆u∆µ

(3.19)
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On the other hand, our hypersphere of radius
√
E0∆µ and dimension 2∆u∆µ

has a volume of

π∆u∆µ

(∆u∆µ)!
(E0∆µ)∆u∆µ (3.20)

Then, dividing (3.20) by (3.19), we find the number of quantization points f̂

inside the hypersphere as

1

(∆u∆µ)!

(π
2

)∆u∆µ
(
E0∆u∆µ

εq

)∆u∆µ

(3.21)

which is only

1

(∆u∆µ)!

(π
4

)∆u∆µ

(3.22)

fraction of (3.14). Instead of scalar quantization, after observing the vector

(3.17), one can detect which one of the different quantization points as many as

(3.21) the vector is mapped to. Thus, by using only

log2

(
1

(∆u∆µ)!

(π
2

)∆u∆µ
(
E0∆u∆µ

εq

)∆u∆µ
)

= ∆u∆µ log2

(
πE0∆u∆µ

2εq

)
− log2(∆u∆µ)! (3.23)

bits, eq(∆u,∆µ) ≤ εq can be achieved. Such kind of quantization is an example

of vector quantization, because all the samples f̆∆µ( n
∆µ

) are encoded together

as a vector instead of applying uniform quantization to them independently.

Since the positions of the quantization points f̂ are inherited from the usual

uniform scalar quantization, we can name this quantization method as uniform

vector quantization. Comparing (3.23) with (3.13), we see that uniform vector

quantization makes it possible to have the same quantization performance by

using

log2(∆u∆µ)! + ∆u∆µ log2

(
4

π

)
(3.24)

bits less. Needless to repeat, as well as scalar uniform quantization case, the

results we presented here for vector quantization is valid not only for a single

function f(u) having a certain energy E0, but also for any signal class F the

signals in which have energy E0 at most.
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Moreover, note that using Stirling’s approximation

lnN ! ≈ N lnN −N +
1

2
ln(2πN) (3.25)

we can approximate (3.23) as

∆u∆µ log2

(
πeE0

2εq

)
− 1

2
log2(2π∆u∆µ) (3.26)

On the other hand, we note that the overall (finite bit) reconstruction error

can be upperbounded as(∫
|f(u)− f q∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

+

(∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du

) 1
2

(3.27)

when f(u) is a deterministic signal. For a class of signals F , or equivalently a

random process f(u), taking the expectation of both sides in (3.27) and changing

the order of expectation and square root as done in (2.80) and (2.81), we get

E

(∫
|f(u)− f q∆u,∆µ(u)|2 du

) 1
2

≤
(

E

[∫
|f(u)− f̂∆u,∆µ(u)|2 du

]) 1
2

+

(
E

[∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du

]) 1
2

(3.28)

as the overall error upperbound for stochastic case. If the two terms on the RHS

of (3.28) can be made arbitrarily small by appropriately choosing ∆u, ∆µ and

K, then the overall reconstruction error can also be made arbitrarily small, as

will be the case for many processes of physical interest. Nevertheless, we suspect

the existence of certain random processes for which this may not be true.

Lastly, we remark that the reconstruction signal for the second option is the

inverse Fourier transform of

F̂∆u,∆µ(µ) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

F̃∆u

( n

∆u

)
sinc(∆uµ− n) (3.29)

as given in (2.31). After uniformly quantizing the samples F̃∆u

(
n

∆u

)
as F̃ q

∆u

(
n

∆u

)
,

we obtain the finite bit reconstruction signal, having the Fourier transform

F q
∆u,∆µ(µ) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

F̃ q
∆u

( n

∆u

)
sinc(∆uµ− n) (3.30)
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Now, comparing (2.31) and (3.30) with (2.15) and (3.3) respectively, we con-

clude that, after replacing f(u) by F (µ), f̂∆u,∆µ(u) by F̂∆u,∆µ(µ), f̆∆µ by F̃∆u,

f̆ q∆µ by F̃ q
∆u, f

q
∆u,∆µ(u) by F q

∆u,∆µ(µ), ∆µ by ∆u, and ∆u by ∆µ, all the work

done in this section is valid for the second FSR option as well.

3.2 Number of Bits vs Error Pareto Optimal

Curve: The Method of Lagrange Multipli-

ers Revisited

In Section 3.1, after covering scalar uniform quantization, we considered a vector

quantization technique based on the fact that the quantization points are enclosed

by a hypersphere. For vector quantization, we have found the sufficient number

of bits in (3.23) in terms of ∆u, ∆µ and K to have a quantization error less

than a specified threshold εq. In this section, we will optimize ∆u, ∆µ and K

by using the method of Lagrange multipliers to solve the problem of finding the

smallest number of bits to achieve a specified reconstruction error and finding

the smallest possible reconstruction error for a given number of bits. Here, we

first consider a single function f(u) having energy E0, then proceed to the case

when f(u) is a random process the realizations of which do not have an energy

larger than E0 (Or equivalently, we will proceed to the case when F is a signal

class such that energy of the signals in it does not exceed E0).

Before proceeding, we first express the number of bits used for the vector

quantization we proposed in terms of K, rather than εq. Without inserting√
2E0∆u∆µ

εq
to K, if we divide (3.20) by (3.19), we get

(E0π∆µ)∆u∆µ/(∆u∆µ)!(
2
√
E0∆µ/K

)2∆u∆µ
=

1

(∆u∆µ)!

(
πK2

4

)∆u∆µ

(3.31)
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Thus, in terms of ∆u,∆µ and K, the number of bits can be written as

∆u∆µ log2

(
πK2

4

)
− log2(∆u∆µ)! (3.32)

Since ∆u∆µ � 1 in practice, we can drop the term 1
2

ln(2πN) in Stirling’s

approximation we stated in (3.25), and write

ln(∆u∆µ)! ≈ ∆u∆µ ln(∆u∆µ)−∆u∆µ (3.33)

Thus, we approximete (3.32) as

b(∆u,∆µ,K) = ∆u∆µ log2

(
πeK2

4∆u∆µ

)
(3.34)

Now, although we are unable to express the overall reconstruction error∫
|f(u) − f q∆u,∆µ(u)|2 du in terms of ∆u, ∆µ and K directly, we can find an

upperbound for the square root of it which can be written as the function of ∆u,

∆µ and K. In order to find such an upperbound, we first combine (3.27) with

(2.52) and get(∫
|f(u)− f q∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

+

(∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du

) 1
2

(3.35)

Then, we use (3.10) to simplify (3.35) as(∫
|f(u)− f q∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

+
√

2E0

√
∆u∆µ

K
(3.36)

RHS of (3.36) is the upperbound we are looking for. Thus, we define

e(∆u,∆µ,K) as

e(∆u,∆µ,K) =

(∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ
) 1

2

+
√

2E0

√
∆u∆µ

K
(3.37)

Here, note that we do not deviate too much from the original reconstruction

error by defining e(∆u,∆µ,K) based on the upperbound coming from (3.27).
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Because, the overall error due to quantization and sampling is typically greater

than the error coming from sampling and the error coming from quantization.

Thus, typically we have(∫
|f(u)− f q∆u,∆µ(u)|2 du

) 1
2

≥

1

2

[(∫
|f(u)− f̂∆u,∆µ(u)|2 du

) 1
2

+

(∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du

) 1
2

]
(3.38)

Therefore, (3.27) is typically tight enough and setting the usage of (3.10)

aside, (3.37) is accurate within a factor of 2 as an approximation of the square

root of
∫
|f(u) − f q∆u,∆µ(u)|2 du. Moreover, assuming that the amplitude step

between consecutive quantization levels is so small that the 2∆u∆µ samples are

evenly distributed to the quantization interval
[
−
√
E0∆µ
K

,
√
E0∆µ
K

]
, we can rewrite

(3.9) as

eq(∆u,∆µ) ≈ 1

∆µ
× 2∆u∆µ× 1

3

(√
E0∆µ

K

)2

=
2E0∆u∆µ

3K2
(3.39)

where 1
3

in (3.39) comes from the fact that variance of a random variable uni-

formly distributed in the interval [−L,L] is 1
3
L2. Thus, comparing (3.10) with

(3.39), we see that (3.10) is accurate within a factor of 3.

Hence, we conclude that the inequalities resulting in (3.37) are reasonably

tight and (3.37) is accurate enough to be used instead of the square root of∫
|f(u)− f q∆u,∆µ(u)|2 du.

Now, similar to Section 2.5, we use Lagrange multipliers method to solve the

problems of minimizing b(∆u,∆µ,K) subject to the constraint e(∆u,∆µ,K)

is a given constant and minimizing e(∆u,∆µ,K) subject to the constraint

b(∆u,∆µ,K) is a given constant. For both of these optimization problems, the

method of Lagrange multipliers indicates that ∃λ ∈ R, the optimal (∆u,∆µ,K)
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triple should satisfy

∂ e(∆u,∆µ,K)

∂∆u
+ λ

∂ b(∆u,∆µ,K)

∂∆u
= 0 (3.40)

∂ e(∆u,∆µ,K)

∂∆µ
+ λ

∂ b(∆u,∆µ,K)

∂∆µ
= 0 (3.41)

∂ e(∆u,∆µ,K)

∂K
+ λ

∂ b(∆u,∆µ,K)

∂K
= 0 (3.42)

From (3.42), we obtain

−
√

2E0

√
∆u∆µ

K2
+ 2 log2 e λ

∆u∆µ

K
= 0 (3.43)

λ =
ln 2

K

√
E0

2∆u∆µ
(3.44)

Now, after some algebraic manipulations, (3.40) and (3.41) can be rewritten as

−
∣∣f (∆u

2

)∣∣2 +
∣∣f (−∆u

2

)∣∣2
4
√
e(∆u,∆µ)

+
1

K

√
E0∆µ

2∆u
ln

(
πeK2

4∆u∆µ

)
= 0 (3.45)

−
∣∣F (∆µ

2

)∣∣2 +
∣∣F (−∆µ

2

)∣∣2
4
√
e(∆u,∆µ)

+
1

K

√
E0∆u

2∆µ
ln

(
πeK2

4∆u∆µ

)
= 0 (3.46)

where e(∆u,∆µ) is equal to (2.52), as defined in (2.84). Multiplying both sides

of (3.45) by ∆u and both sides of (3.46) by ∆µ, we obtain

∆µ

∆u
=

∣∣f (∆u
2

)∣∣2 +
∣∣f (−∆u

2

)∣∣2∣∣F (∆µ
2

)∣∣2 +
∣∣F (−∆µ

2

)∣∣2 (3.47)

This equation is nothing but (2.96) in Section 2.5! It is nice to observe that

the equation that ∆u and ∆µ should satisfy for the optimum performance does

not change when quantization is taken into account.

In order to find the optimal (∆u,∆µ,K) point, one needs to solve (3.45),

(3.46) and the constraint equation together. In this way, we can find the smallest

possible e(∆u,∆µ,K) for the constraint b(∆u,∆µ,K) is a given constant, and

vice versa. Therefore, we can plot number of bits vs reconstruction error curve

consisting of the best achievable points. In other words, we can obtain number

of bits vs reconstruction error Pareto optimal curve.
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Now, as we declared in the beginning of this section, we examine the case when

f(u) is a random process the energy of the realizations of which is upperbounded

by a certain number E0. In order to define e(∆u,∆µ,K), we first use (2.56) in

(3.28) to obtain

E

(∫
|f(u)− f q∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆µ/2

S(µ, µ) dµ

) 1
2

+

(
E

[∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du

]) 1
2

(3.48)

Now, since the inequality (3.10) is valid for all realizations of f(u), it should be

valid for the expectation as well. Therefore, we have

E

[∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du

]
≤ 2E0∆u∆µ

K2
(3.49)

Using (3.49) in (3.48), we get

E

(∫
|f(u)− f q∆u,∆µ(u)|2 du

) 1
2

≤
(∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆µ/2

S(µ, µ) dµ

) 1
2

+
√

2E0

√
∆u∆µ

K
(3.50)

Then, we define e(∆u,∆µ,K) for the random process case as the RHS of (3.50),

namely

e(∆u,∆µ,K) =

(∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆µ/2

S(µ, µ) dµ

) 1
2

+
√

2E0

√
∆u∆µ

K
(3.51)

Because of the same reasons explained before, the inequality (3.50) is consider-

ably tight, as well. Thus, defining e(∆u,∆µ,K) as in (3.51) is plausible.

Now, comparing (3.51) with (3.37), we see that the only difference is usage

of R(u, u) and S(µ, µ) instead of |f(u)|2 and |F (µ)|2, respectively. Thus, after

using the method of Lagrange multipliers, the equations we obtain are

−
R(∆u

2
, ∆u

2
) +R(−∆u

2
,−∆u

2
)

4
√
e(∆u,∆µ)

+
1

K

√
E0∆µ

2∆u
ln

(
πeK2

4∆u∆µ

)
= 0 (3.52)

−
S(∆µ

2
, ∆µ

2
) + S(−∆µ

2
,−∆µ

2
)

4
√
e(∆u,∆µ)

+
1

K

√
E0∆u

2∆µ
ln

(
πeK2

4∆u∆µ

)
= 0 (3.53)
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similar to (3.45) and (3.46), where e(∆u,∆µ) is as defined in (2.97). From (3.52)

and (3.53), we similarly derive

∆µ

∆u
=
R(∆u

2
, ∆u

2
) +R(−∆u

2
,−∆u

2
)

S(∆µ
2
, ∆µ

2
) + S(−∆µ

2
,−∆µ

2
)

(3.54)

which is exactly the same as (2.98). Therefore, the equation that the optimal

∆u and ∆µ satisfy does not change when quantization is taken into account.

In order to find the least possible e(∆u,∆µ,K) for the constraint

b(∆u,∆µ,K) is a given constant and vice versa, we solve (3.52), (3.53) and the

constraint together to find the three unknowns ∆u, ∆µ and K. Equivalently, one

can also solve (3.54), the constraint and either (3.52) or (3.53) together. Then,

we can obtain number of bits vs the average reconstruction error curve consisting

of the best achievable points, which is reminiscent of the rate-distortion curve in

information theory.

As an example, similar to Section 2.5, we consider the special case when the

random process f(u) has an autocorrelation function R(u1, u2) of the form

R(u1, u2) = ψn(u1)ψn(u2) (3.55)

where ψn(u) is the nth order Hermite-Gaussian function. As explained in Section

2.5, (3.54) is equivalent to ∆u = ∆µ×1 s2 in this case. Then, under the constraint

that the number of bits to be used is a constant R, (3.52) can be simplified as

ψ2
n

(
∆u
2

)(∫
|u|>∆u/2

ψ2
n(u) du

) 1
2

= ln 2
√
πe

2−R/2(∆u)2
R

(∆u)3
(3.56)

Solving (3.56) numerically, we find the optimal ∆u and ∆µ for a fixed R.

Then, from (3.51), we obtain the least possible, or equivalently the best achiev-

able, e(∆u,∆µ,K) for the constraint b(∆u,∆µ,K) = R. The rate distortion

curves of our development, namely b(∆u,∆µ,K) vs square of e(∆u,∆µ,K)

Pareto optimal curves, are given in Figure 3.1, for several n values.
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Figure 3.1: Rate distortion curves for the random processes having autocorre-
lation function R(u1, u2) = ψn(u1)ψn(u2), where ψn(u) refers to the nth order
Hermite-Gaussian function.

As the order of the Hermite polynomial increases, both the spatial and the

spectral width of the corresponding Hermite-Gaussian function increases as well.

Therefore, similar to Section 2.5, in Figure 3.1, it is natural to observe that larger

n results in usage of more bits to achieve the same error performance.

As another example, similar to Section 2.5, we consider a random process

having an autocorrelation function of the form

R(u1, u2) = Ae−(u2
1+u2

2)/4σ2
I e−(u1−u2)2/2σ2

µ (3.57)

In Section 2.5, it was shown that the solution of (3.54) is ∆µ = ∆u c/π for

a GSM type autocorrelation function, i.e., for an autocorrelation in the form

(3.57). Then, under the constraint that the number of bits is equal to R, from

(3.52), after some algebraic manipulations, we get

e−(∆u)2/8σ2
I√

Q
(

∆u
2σI

) = 2π
√
e σI ln 2

πR

c(∆u)3
2−πR/2c(∆u)2

(3.58)

Solving (3.58) numerically, we compute optimal ∆u and ∆µ corresponding to

R. Then, inserting the optimal ∆u, ∆µ, and K in (3.51), we obtain the best

achievable e(∆u,∆µ,K) under the condition b(∆u,∆µ,K) = R.
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As mentioned in Section 2.5, a κ times increase in σI and σµ results in a κ2

times decrease in c. After rewriting (3.58) as

e−(κ∆u)2/8(κσI)2√
Q
(
κ∆u
2κσI

) = 2π
√
e κσI ln 2

πR

(c/κ2)(κ∆u)3
2−πR/2(c/κ2)(κ∆u)2

(3.59)

we see that if both σI and σµ are increased κ times, the optimal ∆u increases

κ times as well. Thus, the optimal ∆µ = ∆u c/π decreases κ times and ∆u∆µ

does not change. Since b(∆u,∆µ,K) depends only on ∆u∆µ except for K, we

conclude that optimal number of levels K does not change, either.

As shown in the equations (2.107)-(2.108) of Section 2.5, (3.54) implies∫
|u|>∆u/2

R(u, u) du =
∫
|µ|>∆µ/2

S(µ, µ) dµ for optimal ∆u and ∆µ. Moreover,

since E0 ∝ σI as found in (2.112), after the κ times increase in σI and σµ, the

new minimum achievable error enew(∆u,∆µ,K) becomes

enew(∆u,∆µ,K) =

(
2

∫
|u|>κ∆u/2

R
(u
κ
,
u

κ

)
du

) 1
2

+
√

2κE0

√
∆u∆µ

K
(3.60)

=

(
2κ

∫
|u|>∆u/2

R(u, u) du

) 1
2

+
√
κ
√

2E0

√
∆u∆µ

K
(3.61)

=
√
κeold(∆u,∆µ,K) (3.62)

From (3.62), we conclude that if both σI and σµ are increased κ times,

e2(∆u,∆µ,K) increases κ times as well. However, the ratio of the

least achievable e2(∆u,∆µ,K) to the average energy of f(u), that is,

e2(∆u,∆µ,K)/
∫
R(u, u) du, remains constant since

∫
R(u, u) du ∝ σI . There-

fore, the normalized best achievable overall reconstruction error e2(∆u,∆µ,K)

depends only on the ratio of σI to σµ. Recall that a similar fact was proven in

Section 2.5 for finite sample reconstruction error.

b(∆u,∆µ,K) vs percentage e2(∆u,∆µ,K) Pareto optimal curves, namely

our rate distortion curves, are given for a couple of σI/σµ values in Figure 3.2.
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Figure 3.2: Rate distortion curves for random processes having GSM type auto-
correlation function.

From Figure 3.2, we see that if the ratio σI/σµ increases, the required num-

ber of bits to achieve the same percentage error increases as well. This is an

expected result, since the increase in the intensity width σI and the decrease in

the correlation width σµ increases the information content of the random process

f(u), as explained in Section 2.5.

Number of bits vs optimum ∆u and optimum ∆µ plots are provided in Figure

3.3 and 3.4, respectively. In accordance with the corresponding figures of Section

2.5, these plots indicate that the increase in σI and σµ results in an increase in

optimum ∆u and a decrease in optimum ∆µ.
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Figure 3.3: Number of bits vs optimum ∆u curves for random processes having
GSM type autocorrelation function.

Figure 3.4: Number of bits vs optimum ∆µ curves for random processes having
GSM type autocorrelation function.

Moreover, as we did in Section 2.5, comparing the graphs corresponding to

the (σI , σµ) pair (1s, 0.5s) with those of (2s, 1s) or comparing the graphs corre-

sponding to (0.5s, 1s) with those of (1s, 2s), we see that optimal ∆u increases κ

times and optimal ∆µ decreases κ times if both σI and σµ are increased κ times,

the reason of which is explained after (3.59). In the same lines following (3.59),

we have also explained that the optimal space-bandwidth product ∆u∆µ and

61



the optimal number of levels K depends only on the ratio σI/σµ. The optimal

∆u∆µ and K graphs are provided in Figure 3.5 and 3.6, respectively.

Figure 3.5: Number of bits vs optimum space-bandwidth product curves for
random processes having GSM type autocorrelation function.

Figure 3.6: Number of bits vs optimum number of levels curves for random
processes having GSM type autocorrelation function.

From Figure 3.5 and 3.6, we see that larger σI/σµ ratio results in larger

optimal space-bandwidth product and smaller optimum number of levels, after

number of bits exceeds a certain threshold.

62



3.3 Performance Comparison of Spatially

Uniform and Non-Uniform Quantization

The improvement in the quantization performance when the samples having

different variances are quantized differently is illustrated in this section.

From (3.34) and (3.39) in Section 3.2, we conclude that approximately

∆u∆µ log2

(
πeK2

4∆u∆µ

)
number of bits are sufficient to obtain an average quan-

tization error 2E0∆u∆µ
3K2 for a signal class F the energy of the members of which

is upperbounded by E0. In other words, approximately

C(εq) = ∆u∆µ log2

[
πe(2E0∆u∆µ/3εq)

4∆u∆µ

]
(3.63)

= ∆u∆µ log2

(
πeE0

6εq

)
(3.64)

number of bits are sufficient to make average quantization error εq.

Here (3.64) can be interpreted as the cost of making average quantization

error εq. Conversely, if it is not allowed to exceed a specified cost C, then from

(3.64), the minimum achievable average quantization error can be found as

εq(C) =
πeE0

6
2−C/∆u∆µ (3.65)

However, in Section 3.1, we have taken the quantization interval the same for all

the samples and this results in the inefficiency of allocating redundant bits for

the samples having small variances. Now, we will discuss the improvement in

εq(C) if the quantization interval of the samples are chosen differently depending

on the variance they have. To demonstrate this improvement, we will consider

the quantization model formulated in [120]. As we mentioned in the beginning of

this section, here we consider a signal class F (or equivalently, a random process

f(u)) the maximum energy of the members of which is E0.

Imitating the notation of Section 3.1, for each sample f̆∆µ( n
∆µ

), we denote the

result of the new quantization we described as f̆ q∆µ( n
∆µ

). Similarly, we use the
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same notation, namely f q∆u,∆µ(u), for the reconstruction signal. Then, we repeat

(3.8) here, and write

∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du =

1

∆µ

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

∣∣∣∣f̆∆µ

(
n

∆µ

)
− f̆ q∆µ

(
n

∆µ

)∣∣∣∣2
(3.66)

Now, taking the expectation of both sides in (3.66), and defining f and f̂ as

f =

(
f̆∆µ

(
n

∆µ

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(3.67)

f̂ =

(
f̆ q∆µ

(
n

∆µ

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(3.68)

as done in (3.17) and (3.15) respectively, we write

εq = E

[∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du

]
=

E [||f − f̂ ||22]

∆µ
(3.69)

Note that we can consider the real and imaginary parts of the samples seper-

ately and regard f and f̂ as vectors in R2∆u∆µ rather than C∆u∆µ. Here, as done

in [120], we model the quantization as additive zero mean measurement noise

m ∈ R2∆u∆µ independent of f , having independent components, each having

variance σ2
mi
, i = 1, 2, . . . , 2∆u∆µ. Then, we assume that f is recovered as f̂

by using a matrix B ∈ R2∆u∆µ×2∆u∆µ, for example a possible recovery can be

f̂ = B(f +m). Note that f , f̂ , and m are taken as column matrices in R2∆u∆µ×1 in

this section. We also assume that f is zero mean. If there are some samples which

are not zero mean, their mean can be found and subtracted, and can be added

back to f̂ . Therefore, there is no loss of generality in zero mean assumption.

Moreover, in this quantization model, we define the number of bits used as

C =

2∆u∆µ∑
i=1

1

2
log2

(
1 +

σ2
fi

σ2
mi

)
(3.70)

where σ2
fi

is the variance of the ith component of f . This cost function is discussed

in detail in [120].
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The diagonal of the autocorrelation matrix Kf of f is σ2
f1
, σ2

f2
, . . . , σ2

f2∆u∆µ
.

Although the offdiagonal entries of Kf are not necessarily zero, Kf can be diago-

nalized as Kf = QTDQ, where Q is a real 2∆u∆µ×2∆u∆µ unitary matrix and

D is a diagonal matrix having the eigenvalues of Kf , which are nonnegative, on

its diagonal. Note that, in this case, the autocorrelation matrix Kg of the random

vector g = Qf is QKfQ
T = D. Therefore g has uncorrelated components.

Now, we propose to measure g instead of f . In this case, we will recover g as

ĝ = B(g + m). Then, f will be recovered as f̂ = QTĝ. Figure 3.7 is the block

diagram of the approach considered here.

Figure 3.7: Block diagram of measurement system

Here, we also remark that error in approximating f by f̂ is equal to the error

in approximating g by ĝ, since

||f − f̂ ||22 = tr{(f − f̂)(f − f̂)T} (3.71)

= tr{Q(f − f̂)(f − f̂)TQT} (3.72)

= tr{(Qf −Qf̂)(Qf −Qf̂)T} (3.73)

= tr{(g − ĝ)(g − ĝ)T} (3.74)

= ||g − ĝ||22 (3.75)

Therefore, we have reduced the problem of quantizing f to the problem of quantiz-

ing g, which have a diagonal autocorrelation matrix Kg. tr(Kg) can be expressed

as

65



tr(Kg) = tr(QKfQ
T) (3.76)

= tr(Kf ) (3.77)

=

2∆u∆µ∑
i=1

σ2
fi

(3.78)

=

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

E

[∣∣∣∣f̆∆µ

(
n

∆µ

)∣∣∣∣2
]

(3.79)

Then, using (2.37) with (3.79), we get

tr(Kg) ≤ ∆µE

[∫
|f̆∆µ(u)|2 du

]
(3.80)

≤ ∆µE

[∫
|f(u)|2 du

]
(3.81)

≤ ∆µE0 (3.82)

From (3.82), we see that for a number ρ between 0 and 1, we have

tr(Kg) = ρ∆µE0 (3.83)

Now, after expressing tr(Kg) in a convenient form, we turn our attention to

finding B for which (3.69) is minimum. From (3.75), we see that minimizing

(3.69) is fully equivalent to minimizing

E [||g − ĝ||22] = E [(g − ĝ)T(g − ĝ)]

= E [(g − (B(g + m)))T(g − (B(g + m)))] (3.84)

for given measurement variances σ2
m1
, σ2

m2
, . . . , σ2

m2∆u∆µ
and the autocorrelation

matrix Kg = diag{σ2
g1
, σ2

g2
, . . . , σ2

g2∆u∆µ
}. From orthogonality condition, we have

E{(g −B(g + m))(g + m)T} = 0 ∈ R2∆u∆µ×2∆u∆µ, which can be rewritten as

E{((I−B)g −Bm)(gT + mT)} = (I−B)Kg −BKm = 0 (3.85)

since measurement noise and the input f are statistically independent and zero

mean. Then, we find B as B = Kg(Kg + Km)−1, namely

Bik =
σ2
gi

σ2
gi

+ σ2
mi

δik (3.86)

66



Note that (3.84) can also be expressed as

2∆u∆µ∑
i=1

E

(gi − 2∆u∆µ∑
k=1

Bik(gk +mk)

)2
 (3.87)

where gk and mk correspond to the kth entry of the random vectors g and m,

respectively. For B = Kg(Kg + Km)−1, this expression reduces to

2∆u∆µ∑
i=1

[(
σ2
mi

σ2
gi

+ σ2
mi

)2

σ2
gi

+

(
σ2
gi

σ2
gi

+ σ2
mi

)2

σ2
mi

]
=

2∆u∆µ∑
i=1

σ2
gi
σ2
mi

σ2
gi

+ σ2
mi

After finding the error for optimal B, to calculate εq(C), we need to obtain the

measurement variances σ2
m1
, σ2

m2
, . . . , σ2

m2∆u∆µ
which minimize

εq =
E [||f − f̂ ||22]

∆µ
=

1

∆µ

2∆u∆µ∑
i=1

σ2
gi
σ2
mi

σ2
gi

+ σ2
mi

=
1

∆µ

2∆u∆µ∑
i=1

(
1

σ2
gi

+
1

σ2
mi

)−1

(3.88)

subject to the constraint

2∆u∆µ∑
i=1

1

2
log2

(
1 +

σ2
gi

σ2
mi

)
= C (3.89)

coming from (3.70).

The solution of this optimization problem is

σ2
mi

=


νσ2
gi

σ2
gi
−ν , if σ2

gi
> ν

∞, if σ2
gi
≤ ν

(3.90)

where ν is chosen so that (3.89) holds, i.e.,

∑
i:σ2

gi
>ν

1

2
log2

(
σ2
gi

ν

)
= C (3.91)

Then, εq(C) can be written as

εq(C) =

∑
i:σ2

gi
>ν ν +

∑
i:σ2

gi
≤ν σ

2
gi

∆µ
(3.92)

For the samples at which measurement is performed, namely σ2
mi

is finite, we

have

1

σ2
gi

+
1

σ2
mi

=
1

ν
= constant (3.93)
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This result is also consistent with the method of Lagrange multipliers. If we

define two new class of variables as m′i = 1
σ2
mi

and g′i = 1
σ2
gi

, then the optimization

problem can be restated as minimizing

1

∆µ

2∆u∆µ∑
i=1

1

g′i +m′i
(3.94)

subject to the constraint

2∆u∆µ∑
i=1

1

2
log2

(
1 +

m′i
g′i

)
= C (3.95)

Then, from the equation that the optimal point should satisfy

∂

∂m′i

(
2∆u∆µ∑
i=1

1

2
log2

(
1 +

m′i
g′i

))
+ λ

∂

∂m′i

(
1

∆µ

2∆u∆µ∑
i=1

1

g′i +m′i

)
= 0 (3.96)

we get

1

2 ln 2

1

g′i +m′i
=

λ

∆µ

1

(g′i +m′i)
2

(3.97)

g′i +m′i =
2λ ln 2

∆µ
= constant (3.98)

consistent with (3.93).

Now, we will analyze how εq(C) changes depending on the related parameters

and compare the results with uniform quantization. First we consider the extreme

case ρ = 1, and

σ2
g1

= σ2
g2

= · · · = σ2
g2∆u∆µ

=
∆µE0

2∆µ∆u
=

E0

2∆u
(3.99)

Since all the input variances are equal in this case, ν < σ2
gi
∀i. Then, (3.91)

reduces to

∆u∆µ log2

(
E0

2∆uν

)
= C (3.100)

ν =
E0

2∆u
2−C/∆u∆µ (3.101)

From (3.92), εq(C) is found as

εq(C) = 2∆uν = E0 2−C/∆u∆µ (3.102)
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Comparing this result with (3.65), we see that uniform quantization and

the spatially non-uniform quantization we described in this section have similar

performances if the samples have equal variances. This is an expected result

since the merit of spatially nonuniform quantization is to exploit the imbalance

of variances, which does not exist in this case.

Now we consider the situation when the input variances σ2
g1
> · · · > σ2

g2∆u∆µ

decay as the pdf of a zero mean Gaussian with standart deviation 2∆u∆µ/α.

Here, the parameter α is a measure of how the variances are close to each other.

α = 0 corresponds to the extreme case when all the variances are the same,

therefore spatially nonuniform quantization has the worst performance at α = 0.

On the other hand, if α is sufficiently large, then there are only few samples

having significant variance which worth measuring. In this case, the perfor-

mance of spatially nonuniform quantization becomes much better than uniform

quantization. Figure 3.8 shows how the performance of spatially nonuniform

quantization improves as α increases. The case α = 0 effectively corresponds to

uniform quantization.

Figure 3.8: εq(C) curve for ρ = 1, E0 = 1000 Φ2s, ∆u = 10
√

10 s, ∆µ =
10
√

10 s−1.
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For fixed α and ∆u∆µ, the effects of other parameters such as ρ, E0,∆µ on

εq(C) curve are trivial. If one of the parameters ρ, E0,∆µ are increased κ times,

then the variances σ2
g1
, σ2

g2
, ..., σ2

g2∆u∆µ
increase κ times. From (3.91), we see that

the solution parameter ν also increases κ times. Lastly, from (3.92), we conclude

that the percentage quantization error εq(C)/E0×100 does not depend on E0 and

∆µ, but increases κ times if a κ times increase is performed on ρ. However, if ∆µ

or ∆u is increased independently, ρ and ∆µ∆u automatically increase, resulting

in the increase in the sum of variances tr(Kg) together with the increase in the

samples having significant variance. Thus, εq(C) increases consequently.

Lastly, we remind that all the work we have done in this section is valid for

the second FSR option as well, if f̆∆µ( n
∆µ

), f̆ q∆µ( n
∆µ

), ∆µ and ∆u are replaced by

F̃∆u(
n

∆u
), F̃ q

∆u(
n

∆u
), ∆u and ∆µ respectively.

3.4 The Application of Rate Distortion Theory

Firstly, we state Shannon’s theorem on rate distortion theory. The notation and

definitions are taken from [121].

3.4.1 Shannon’s Rate Distortion Theorem

Let X be an i.i.d. (independent and identically distributed) source with distri-

bution pX(x) and d : X × X̂ → R+ be a mapping, where

• X is the set of values that X can take, called set of source alphabet.

• X̂ is another set, called set of reproduction alphabet.
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The function d is called as distortion function. Now, we extend d to the domain

X n × X̂ n as

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i) (3.103)

Let fn be a function with domain X n and range {1, 2, ..., 2nR} and gn be another

function with domain {1, 2, ..., 2nR} and range X̂ n. Those two functions are called

encoding and decoding functions, respectively. Let distortion of the pair (fn, gn)

be defined as

D(fn, gn) = E [d(Xn, gn(fn(Xn)))] (3.104)

A rate distortion pair (R,D) is called achievable, if there exists (fn, gn) pairs

(having domain/range parameters n, 2nR) satisfying

lim
n→∞

D(fn, gn) ≤ D (3.105)

Then, the rate distortion function R(D) is defined as the infimum of rates R

such that (R,D) is achievable for a given D.

Now, we can state Shannon’s rate distortion theorem.

Theorem 6. R(D) = minS I(X; X̂), where S is the set of conditional distribu-

tions

S = {pX̂|X(x̂|x) : E[d(X, X̂)] ≤ D} (3.106)

and I(X; X̂) is

I(X; X̂) = E

[
log2

(
pX,X̂(X, X̂)

pX(X)pX̂(X̂)

)]
(3.107)

the mutual information of the random variables X and X̂, and X is the random

variable having the distribution (discrete or continuous) p(x) we want to decode

and encode, as defined at the beginning.

3.4.2 Rate Distortion Theory and FSR

In this section, we consider a signal class F (or equivalently a random process

f(u)) the average energy of which is finite. Now, after the FSR induced by the
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signal

f̂∆u,∆µ(u) =

b∆u∆µ/2c∑
n=−b∆u∆µ/2c

f̆∆µ

(
n

∆µ

)
sinc(∆µu− n) (3.108)

as given in (2.15), the random process f(u) is reduced to the random vector

f =

(
f̆∆µ

(
n

∆µ

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(3.109)

as expressed in (3.67), at the expense of an approximate average error of

E

[∫
|f(u)− f̂∆u,∆µ(u)|2 du

]
≈
∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆µ/2

S(µ, µ) dµ (3.110)

as given in (2.56). In Section 3.1, we first considered scalar uniform quantization

of f to represent f(u) by finitely many bits, then used the fact that f is confined

to a hypersphere to improve the quantization performance. In Section 3.3, we

showed that the quantization performance can be improved more by quantizing

the samples belonging to f depending on their variances. In this section, our aim

is to apply rate distortion theory to see the best achievable performance for the

quantization of f .

However, since the samples constituting f are not i.i.d. in general, we cannot

use rate distortion theory directly. To overcome this problem, we assume that

i.i.d. generated realizations of the random process f(u) are available. In other

words, we assume the existence of a source which produces a realization of the

random process f(u) at each instant independent from the past and future real-

izations. In this case, the vectors f we obtain will be i.i.d., since the realizations

from which these vectors are obtained are independently generated.

As an intermediate step, for a fixed n, we may consider joint encod-

ing of i.i.d. vectors f (1), f (2), . . . , f (n) coming from n independent realizations

f (1)(u), f (2)(u), . . . , f (n)(u). But, rate distortion theory allows us to choose n as

large as we desire to achieve an (R,D) pair.
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After encoding and decoding let the vectors f (1), f (2), . . . , f (n) be recovered as

f̂ (1), f̂ (2), . . . , f̂ (n). From (3.69), we see that the arithmetic mean of the expecta-

tions of the quantization error for f (1)(u), f (2)(u), . . . , f (n)(u) is

1

n

n∑
i=1

1

∆µ
E [||f (i) − f̂ (i)||22] = E [d(fn, f̂n)] (3.111)

as (3.103) implies, where

d(f , f̂) =
||f − f̂ ||22

∆µ
(3.112)

fn = (f (1), f (2), . . . , f (n)) (3.113)

f̂n = (f̂ (1), f̂ (2), . . . , f̂ (n)) (3.114)

Therefore, we need to take the distortion function as (3.112) in order to ensure

that the distortion of rate distortion theory corresponds to the expectation of

our quantization error, namely E [
∫
|f̂∆u,∆µ(u)− f q∆u,∆µ(u)|2 du].

Now, from Shannon’s rate distortion theorem given in Section 3.4.1, we con-

clude that to make the arithmetic mean of the expectations of the quantization

error for i.i.d. generated realizations of a random process f(u) equal to D,

R(D) = min
{p(f̂ |f):E [d(f ,f̂)]≤D}

I(f ; f̂) (3.115)

bits/realization are sufficient.

Needless to repeat, all the work done in this section is applicable to the case

when the second option is used to obtain FSR. In this case, the vector F we want

to quantize is

F =

(
F̃∆u

( n

∆u

) ∣∣∣∣∣−
⌊

∆u∆µ

2

⌋
≤ n ≤

⌊
∆u∆µ

2

⌋)
(3.116)

and the distortion function is

d(F, F̂) =
||F− F̂||22

∆u
(3.117)

but the rest is the same. For the first FSR option, the joint distribution of

the samples forming f determines the curve R(D), whereas for the second FSR
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option, it is the joint distribution of the samples forming F that determines

R(D).

In Section 3.1, we have considered scalar uniform quantization first. Then,

based on the observation that f stays inside a hypersphere, we introduced vector

quantization in which the samples constituting f are jointly encoded depending

on the quantization point inside the hypersphere f mapped to. On the other

hand, the encoding technique we discuss in this section differs from those de-

scribed in previous sections, because it is based on joint encoding of the vectors

f (i) coming from consecutive independent realizations of f(u). In other words,

what we consider here is vector quantization of vectors, not vector quantization

of individual samples. Therefore, the complexity of the encoding that we propose

in this section is much more high compared to the ones considered in previous

sections. But, as Shannon’s rate distortion theorem implies, it is impossible to

find any encoding/decoding technique having better performance than the en-

coder/decoder we consider in this section. Figure 3.9 and Figure 3.10 illustrate

the overall finite bit reconstruction system we propose here for the first and

second FSR options respectively, including the sampling part.

On the other hand, Shannon’s rate distortion theorem does not tell us any-

thing about how to reduce f(u) to finitely many samples f consists of. In order

to obtain the optimal finite bit reconstruction, we need to solve as well the prob-

lem of finding optimum ∆u and ∆µ to minimize the overall reconstruction error

E [
∫
|f(u) − f q∆u,∆µ(u)|2 du]. We have solved this problem in Section 3.2 for the

vector quantization covered in Section 3.1 coming from hypersphere restriction,

and thus optimized the sampling part as well. However, finding the optimal ∆u

and ∆µ here is quite complicated and depends on the distribution of f , as (3.115)

implies.
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Chapter 4

CONCLUSIONS

Any deterministic finite energy signal f(u) and any random process f(u) the

average energy of which is finite can be reconstructed by using only finitely

many samples of them with arbitrarily small error, by choosing the parameters

of the reconstruction signal sufficiently large. Moreover, for the finite sample

representation technique we propose, under some reasonable assumptions, the

finite sample reconstruction error can be simplified as∫
|u|>∆u/2

|f(u)|2 du+

∫
|µ|>∆µ/2

|F (µ)|2 dµ (4.1)

for a deterministic signal f(u), and∫
|u|>∆u/2

R(u, u) du+

∫
|µ|>∆µ/2

S(µ, µ) dµ (4.2)

for a random process f(u), where ∆u and ∆µ are the approximate spatial and

spectral width of the finite sample reconstruction signal, respectively, F (µ) is

the Fourier transform of the deterministic signal f(u), R(u1, u2) is the auto-

correlation of the random process f(u), and S(µ1, µ2) is the autocorrelation of

the Fourier transform of the random process f(u). It is important to observe

that the truncation made in space and frequency domain directly appear in the

error expression without any cross terms or amplification. Here, the number
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of samples used in reconstruction signal is ∆u∆µ, which is also equal to the

space-bandwidth product of this signal.

From the method of Lagrange multipliers, we see that to minimize (4.1) for

a given number of samples and to use minimum number of samples to ensure

(4.1) is equal to a given constant, the optimal ∆u and ∆µ needs to satisfy the

equality

∆µ

∆u
=

∣∣f (∆u
2

)∣∣2 +
∣∣f (−∆u

2

)∣∣2∣∣F (∆µ
2

)∣∣2 +
∣∣F (−∆µ

2

)∣∣2 (4.3)

For the random process case, from (4.2), we similarly obtain the equation of the

optimal ∆u and ∆µ as

∆µ

∆u
=
R(∆u

2
, ∆u

2
) +R(−∆u

2
,−∆u

2
)

S(∆µ
2
, ∆µ

2
) + S(−∆µ

2
,−∆µ

2
)

(4.4)

Then, using (4.4) with the constraint equation, we find optimal (∆u,∆µ) points

and then we obtain the number of samples vs finite sample reconstruction error

Pareto optimal curve.

If the antialiasing filter is not used before sampling, the corresponding finite

sample reconstruction error is difficult to analyze. In this case, the error is

upperbounded by a term greater than (4.1) for deterministic f(u) and (4.2) for

stochastic f(u).

For any signal f(u), (4.1) is greater than or equal to 1 − √γ fraction of its

energy, where γ is the largest eigenvalue of the operator

Tf =

∫ ∆u/2

−∆u/2

∆µ sinc[∆µ(u− u′)] f(u′) du′ (4.5)

and the inequality is achieved by equality when
∫
|u|>∆u/2

|f(u)|2 du and∫
|µ|>∆µ/2

|F (µ)|2 dµ are the same and equal to (1−√γ)/2 fraction of the energy

of f(u). As explained in [118], the eigenfunctions of the operator (4.5), namely

the prolate spheroidal functions, form the optimal set for which the worst case

finite sample reconstruction error of bandlimited signals is minimum. However,

the family of sincs overcomes the suboptimality by a convenient shift in the

sampling instants.
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After representing the finite energy signal of interest by finitely many samples,

the next step is quantization of these samples to reduce the signal of interest to

finitely many bits. For a random process f(u) none of the realizations of which

have an energy larger than a certain number E0, or equivalently for a class of

signals the energy of none of the members of which exceeds E0, scalar uniform

quantization of samples makes it possible to have a quantization error less than

εq for all the realizations, by using

∆u∆µ log2

(
2E0∆u∆µ

εq

)
(4.6)

number of bits. But the vector quantization we propose achieves the same per-

formance with

∆u∆µ log2

(
πE0∆u∆µ

2εq

)
− log2(∆u∆µ)! (4.7)

number of bits. Moreover, the performance of vector quantization can be im-

proved more by quantizing the samples differently depending on the variance

they have.

For the vector quantization considered, (4.7) can be approximated as

∆u∆µ log2

(
πeE0

2εq

)
. Then, using the method of Lagrange multipliers again, we

see that to minimize the overall reconstruction error by using a specified number

of bits and to achieve an overall reconstruction error by using minimum number

of bits, the equation of the optimum ∆u and ∆µ becomes nothing but (4.4).

Namely, the equation that optimal ∆u and ∆µ jointly satisfy does not change

when the quantization is taken into account. After optimizing ∆u, ∆µ and the

number of quantization levels, we obtain number of bits vs reconstruction er-

ror Pareto optimal curve consisting of the best achievable points, similar to the

rate-distortion curve in information theory.

Rate distortion theory can be applied to our sample quantization problem

if we assume that there is a source which produces a realization of the same

random process f(u) independent from past and future realizations. In this
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case, we do not jointly encode the individual samples. What we jointly encode

is the i.i.d. vectors consisting of the samples belonging to the same realization.

The vector quantization of rate distortion theory cannot be outperformed by any

other quantization technique as proven by Shannon in [73], therefore we know

that the quantization method we consider based on rate distortion theory is the

optimum one.

We considered uniform sampling with sinc interpolation in finite sample re-

construction of finite energy signals. Moreover, in quantization part, our starting

point was uniform quantization. Therefore, our future work will consist of the

usage of nonuniform sampling, different interpolation functions and nonuniform

quantization to encode finite energy signals.
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