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ABSTRACT

PLANE SEXTICS WITH A TYPE E7 SINGULAR
POINT

Mehmet Emin Aktaş

M.S. in Mathematics

Supervisor: Assoc. Prof. Dr. Alexander Degtyarev

August, 2011

The computation of the fundamental grup of a plane sextic (i.e., curves B ⊂ P 2)

still remain unanswered problem. There is an huge effort on this subject. In this

thesis, we study plane sextic curves with a type E7 singular point, try to state

a geometric approach to compute the fundamental groups of plane sextics with

that type of singular points and develop a trick to find the commutant of these

groups.

Keywords: trigonal curve, dessin, j-invariant, fundamental group.
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ÖZET

E7 TİPİ TEKİL NOKTASI OLAN ALTINCI DERECE
YÜZEY DENKLEMLERİ

Mehmet Emin Aktaş

Matematik, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Alexander Degtyarev

Aǧustos, 2011

Altıncı dereceden denklemlerin temel gruplarının hesaplanması hala çözümü bu-

lunamamış bir problemdir. Bu konuda büyük bir çaba sarfedilmektedir. Bu

tezde E7 tipi tekil noktası olan altıncı dereceden denklemlerin temel gruplarının

hesaplanması ile alakalı geometrik bir çözüm yolu ifade etmeye ve bu grupların

komutantlarını bulmak için kullanılabilecek bir yöntem geliştirmeye çalıştık.

Anahtar sözcükler : trigonal eğriler, dessin, j-değişmezi, temel grup.

iv



Acknowledgement

I would like to express my deepest gratitude to my supervisor Assoc. Prof.

Dr. Alexander Degtyarev for his excellent guidance, valuable suggestions and

infinite patience to my endless questions.

I would like to thank to Assist. Prof. Dr. Özgün Ünlü and Assist. Prof. Dr.
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Chapter 1

Introduction

The subject of this thesis is singular complex plane projective algebraic curves

of degree six (sextics). We try to compute the fundamental group of the plane

sextics with an E7 type singular point. By the fundamental group of a curve, we

mean the group of its complement. Here, we consider a sextic B satisfying the

following conditions:

1. B has simple (i.e. A−D− E) singularities only,

2. B has a distinguished singular point P of type E7 and has no singular point

of type E6 and E8.

3. B has a linear component through P .

4. B is amaximizing sextics, which means that the total Milnor number µ(B)

of the singular points of B takes the maximal possible value, which is 19

(see U. Persson [11], where the term was introduced).

(Sextics with a type E6 point are considered in [5] and sextics with a type

E8 point are considered in [4].) We confine ourself to maximizing sextics because

they are most singular sextics and we show that maximal sextics correspond to

maximal trigonal curves in Chapter 3.

1



CHAPTER 1. INTRODUCTION 2

When we have tried to compute the fundamental group of a plane sextic by

using geometric approach and direct calculation, in most cases we have been

inconclusive. It is really very big deal to compute it directly because it needs

very huge calculations to do. Hence, an easy way was discovered by A. Degtyarev.

Below, we outline the algorithm roughly that is used to compute the fundamental

group.

1. We transform the sextics to a trigonal curve by elementary transformations.

2. We consider the (functional) j-invariant of the trigonal curve.

3. We reach the dessin of the trigonal curve by using its j-invariant.

4. The braid monodromy can easily be computed using the dessin.

5. Finally, by using the braid relations and van Kampen method, we compute

the fundamental group.

1.1 Content of the thesis

In Chapter 2, we introduce trigonal curves in rational ruled surface, discuss their

relations with the plane sextics and say something about (functional) j-invariant

of the trigonal curve. In Chapter 3, we discuss the dessins of a trigonal curve. In

Chapter 4, we speak about the braid monodromy and van Kampen method to

find the fundamental group. Finally, we follow the outline and state a particular

trick for a particular situation about the commutant of the fundamental group

of plane sextics in Chapter 5.



Chapter 2

Trigonal Curves

In order to understand what a trigonal curve is, we need some terminology and

definitions. Principal references are [3] and [2].

2.1 Hirzebruch surfaces

The Hirzebruch surface Σk, k ≥ 0, is a rational geometrically ruled surface with

a section E of self-intersection −k. If k > 0, the ruling is unique and there is a

unique section E of self-intersection −k; it is called the exceptional section.

Let Σk, k ≥ 1 be a Hirzebruch surface. Denote by p: Σk → P1 the ruling.

Fibers of a Σ are those of the projections p. Given a point b in the base P1, the

fiber Fb is the fiber p−1(b). We can think of the fibers as ”vertical” lines in Σk

2.2 Trigonal Curves

Definition 2.2.1. A generalized trigonal curve on a Hirzebruch surface is a

reduced curve C not containing the exceptional section E and intersects each

generic fiber at three points.

3



CHAPTER 2. TRIGONAL CURVES 4

Definition 2.2.2. A singular fiber of a generalized trigonal curve C ⊂ Σk is a

fiber F of Σk intersecting C + E geometrically at less than four points.

Thus F is singular if either C passes through E ∩ F (in Figure 2.1b), or C is

tangent to F (in Figure 2.1a), or C has a singular point in F (in Figure 2.1c).

Definition 2.2.3. A singular fiber F is called proper if C does not pass through

E ∩ F (in Figure 2.1a and Figure 2.1c).

Figure 2.1: Three singular fibers

Definition 2.2.4. A trigonal curve is a generalized trigonal curve disjoint from

the exceptional section.

For a trigonal curve C ⊂ Σk, we have |C| = |3E+ 3kF|; conversely, any curve

C ∈ |3E+ 3kF| not containing E as a component is a trigonal curve.

The topological type of a proper singular fiber F is shown as T̃, where T says

the type of the singular point of C in F . When just T is not enough, a number

of ∗’s, showing the extra tangency of the fiber and the curve is used. We use the

following notation for the topological types of proper fibers:



CHAPTER 2. TRIGONAL CURVES 5

• Ã0 : a nonsingular fiber;

• Ã∗
0: a simple vertical tangent;

• Ã∗∗
0 : a vertical inflection tangent;

• Ã∗
1: a node of C with one of the branches vertical;

• Ã∗
2: a cusp of C with vertical tangent;

• Ãp, D̃q, Ẽ6, Ẽ7, Ẽ8: a simple singular point of C̄ of the same type with

minimal possible local intersection index with the fiber.

2.3 Elementary transformations

Definition 2.3.1. An elementary transformation of Σk is a birational transfor-

mation Σk 99K Σk+1 consisting in blowing up a point P in the exceptional section

of Σk followed by blowing down the fiber F through P .

The inverse transformation Σk+1 99K Σk blows up a point P ′ not in the excep-

tional section of Σk+1 and blows down the fiber F ′ through P ′. The result of an

elementary transformation is a ruled surface Σ′ over the same base B and with

an exceptional section E ′ (the proper transform of E) of self-intersection E2 ± 1.

Let C̄ ⊂ Σk be a generalized triganol curve. Then, by a sequence of elemen-

tary transformations, one can resolve the points of intersection of C̄ and E and

obtain a true trigonal curve C̄ ′ ⊂ Σk′ , k
′ ≥ k, birationally equivalent to C̄. Alter-

natively, given a trigonal curve C̄ ⊂ Σk with triple singular points, one can apply

a sequence of elementary transformations to obtain a trigonal curve C̄ ′ ⊂ Σk′ ,

k′ ≥ k, birationally equivalent to C̄ and with Ã type singular fibers only.

Let B be a sextic which satisfies the conditions (1)-(3) in Chapter 1. Then

when we blow up the type E7 point of the sextic, we get a Hirzebruch surface Σ1

with the exceptional section E (the exceptional divisor), a trigonal curve C ⊂ Σ1

(the proper transform of B), and a fiber F of Σ1 (the proper transform of the
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linear component of B). Later, we apply two elementary transformations i.e. we

blow up the point of C ∩ E ∩ F and blow down the fiber through this point.

Finally, we get Σ3 with a trigonal curve C ′′ and a fiber F ′′, which passes through

the singular point of C ′′. The fiber F ′′ is called the distinguished fiber, it is of

type Ãp, p ≥ 3. Conversely, starting from a pair (C ′′, F ′′), where C ′′ ⊂ Σ3 is a

trigonal curve, we can apply inverse of the transformation as it was done above

to get a plane sextic B satisfies (1)-(3) in Chapter 1.

Since B has a linear component through P , the birational transformation

used establishes a diffeomorphism between P2 \B and Σ3 \ (C ′′ ∪ F ′′ ∪E) hence,

the fundamental group of P2 \ B can be computed as the fundamental group of

Σ3 \ (C ′′ ∪ F ′′ ∪ E) Thus, in the rest of the paper, instead of plane sextics as in

Chapter 1, we speak about pairs Σ3 \ (C ′′ ∪ F ′′ ∪ E) as above and compute the

fundamental group of Σ3 \ (C ′′ ∪ F ′′ ∪E) instead of computing the fundamental

group of P2 \B.

2.4 The j-invariant of a trigonal curve

Definition 2.4.1. The (functional) j-invariant jC :P
1 → P 1 of a generalized

trigonal curve C ⊂ Σ2 is defined as the analytic continuation of the function

sending a point b in the base P 1 of Σ2 representing a nonsingular fiber Fb of C

to the j-invariant (divided by 123) of the elliptic curve covering Fb and ramified

at the four points of intersection of Fb and C + E.

The curve B is called isotrivial if jC is constant. Since jC is defined via

affine charts and analytic continuation, it is obvious that it is invariant under

elementary transformations.

The function j:P 1 → P 1 has three special values: 0, 1 and ∞. The corre-

spondence between the type of a fiber Fz and the value j(z) is shown in Table

2.1.
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Type of Fz j(z) Vertex Valency

Ãp (D̃p+5), p ≥ 1 ∞ × p+ 1

Ã∗
0 (D̃5) ∞ × 1

Ã∗∗
0 (Ẽ6) 0 • 1 mod 3

Ã∗
1 (Ẽ7) 1 ◦ 1 mod 2

Ã∗
2 (Ẽ8) 0 • 2 mod 3

Table 2.1: The values of j(z) at singular fibers Fz



Chapter 3

Dessins and Skeletons

In mathematics, a dessin d’enfants, means children’s drawing, is a type of graph

drawing, which has first been introduced by Felix Klein [9]. After a century, it

was rediscovered and named by A. Grothendieck [7] for studying rational maps

with three critical points. Later, S. Orevkov [10] used it to study the case for the

j-invariant of a trigonal curve or elliptic surfaces.

We have mentioned in the previous chapter that a trigonal curve is (almost)

determined by its j-invariant, whereas the latter, is adequately described by its

dessin.

3.1 Dessin of a trigonal curve

Definition 3.1.1. The dessin ΓC̄ of a non-isotrivial trigonal curve C̄ ⊂ Σk is

defined as the planar map jC̄
−1(Rp−1) ⊂ S2 = P1, enhanced with the following

decorations: the pull-backs of 0, 1, and ∞ are called, respectively, •-, ◦- and ×-

vertices of ΓC̄ , and the connected components of the pull-backs of (0, 1), (1,∞)

and (−∞, 0) are called, respectively, bold, dotted and solid edges of ΓB̄.

Clearly, the dessin is ivariant under elementary transformations of the curve.

8
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Definition 3.1.2. The skeleton SkC̄ of a trigonal curve C̄ is the planar map

obtained from the dessin ΓC̄ by removing all ×-vertices and solid and dotted

edges.

Thus, SkC̄ is Grothendieck’s dessin d’enfant jC̄
−1([0, 1]). The pull-backs of 0

are called •- vertices, and the pull-backs of 1 are called ◦- vertices.

The •-vertices of valency 1 mod 3 or 2 mod 3 and ◦- vertices of valency 1 mod

2 are called singular. All other •- and ◦- vertices are called nonsingular.

A skeleton is a bipartite graph. For this reason, in the drawings, we omit

bivalent ◦- vertices, assuming that such a vertex is to be inserted in the middle

of each edge connecting two •- vertices. For example, in Figure 3.1., there are

6 ◦- vertices where they are omitted. In particular, for a skeleton, only singular

monovalent ◦- vertices are drawn.

A region of a skeleton Sk ⊂ P1 is a connected component of the complement

P1\Sk. Closed regions are connected components of the manifold theoretical cut

of P1 along Sk. We say that a region R is an m-gon (or an m-gonal region) if

the boundary of the corresponding closed region R̄ contains m •-vertices. For

example, in Figure 3.1., the dessin has one monogone, one bigone, one 3 − gon,

one 4− gon and one 8− gon.

We use skeletons especially in the study of maximal trigonal curves. Let us

firstly define what a maximal trigonal curve is:

Definition 3.1.3. A non-isotrivial trigonal curve C̄ is called maximal if it has

the following properties:

1. C̄ has no singular fibers of type D̃4;

2. j = jC̄ has no critical values other than 0, 1, and ∞;

3. each point in the pull-back j−1(0) has ramification index at most 3;

4. each point in the pull-back j−1(1) has ramification index at most 2.
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The skeleton SkC of any maximal curve C has the following properties:

1. SkC is connected.

2. each •-vertex of SkC has valency 1,2, or 3; each ◦-vertex has valency 1 or 2

and is connected to a •-vertex.

We can think vice versa; any SkC ∈ S2 satisfying (1) and (2) above extends to

a unique, up to orientation preserving diffeomorphism of S2, dessin of maximal

trigonal curve. We insert a ◦-vertex in the middle of each edge connecting two

•-vertices, place a ×-vertex inside each region R of SkC and connect the ×-vertex

by disjoint solid (dotted) edges to all •- (respectively, ◦-) vertices in the boundary

of R.

Normally, if we have a sextic with simple singularities, we transform it to a

trigonal curve, consider the j-invariant of the corresponding trigonal curve, get the

dessin of the trigonal curve by using its j-inavriant. However, from the previous

paragraph, if the curve is maximal, we can move in the opposite direction; the

trigonal curve can be computed by using its skeleton. It can be effectively studied

using skeletons. In the rest of the paper, we will try to use this strategy.

Figure 3.1: A dessin
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3.2 The case of maximal trigonal curves with A

type singularities

The type Ã∗∗
0 , Ã∗

1, Ã
∗
2 singular fibers of a trigonal curve are called unstable, and

all other singular fibers are called stable. A trigonal curve is called stable if all its

singular fibers are stable. In the dessins of stable maximal trigonal curves with

A type singularities, all ◦- vertices are bivalent and all •- vertices are trivalent.

For example, in Figure 3.2., the dessin of the trigonal curve that has A8 ⊕ A5

singular points has no monovalent ◦- vertex and six trivalent •- vertices.

In order to be able to get the trigonal curve with A type singularities by using

its skeleton, the trigonal curve should be maximal. A maximal trigonal curve C

with A type singularities only can be characterized in terms of its total Milnor

number µ(C) which is the sum of the Milnor numbers of all singular points of B.

The following theorem is proved in [3].

Theorem 3.2.1. For a non-isotrivial genuine trigonal curve C ∈ Σk with simple

singularities only one has

µ(C) ≤ 5k − 2−#{unstable fibers of C},

the equality holds if and only if C is maximal.

Proposition 3.2.2. Under the construction of the section 2.3., a maximal trig-

onal curve C corresponds to a maximizing sextic.

Proof : We will use the Theorem 3.2.1. In our situation, C has no unstable

singularities. Moreover, since the trigonal curve is in the Hirzebruch surface Σ3,

k is equal to 3. Hence, µ(C) = 13. In the maximal case, the distinguished fiber

of C boils down to a distinguished region in the skeleton SkC , which has to have

at least four vertices. To obtain the sextic B, we apply two inverse elementary

transformations to the singularity of the related distinguished region to get the

corresponding singular point of the sextic B. By doing this, we add 6 to µ(C)

and we get µ(B) = 19, which means that the sextic B is maximizing.
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Indeed, if the singular point corresponding to the distinguished region is A3,

we get E7 ⊕ 2A1 after the inverse elementary transformations. If it is A4, the

sextic has E7 ⊕A3 and if it is Ap where p > 4, the sextic has E7 ⊕Dp−1. Hence,

in three cases, we add to the Milnor number 6, and we get µ(B) = 13 + 6 = 19.

This means a maximal trigonal curves with A type singularities corresponds a

maximizing sextic and vice versa.

�

For example, in Figure 3.2., the dessin has five regions whose dimensions are

9,6,1,1,1. Hence it has type of A8 and A5 singular points. If we choose the

distinguished region as the region that has nine edges, the sextic has E7 ⊕ D7

singularity, i.e. the sextic is E7 ⊕ D7 ⊕ A5 The sum of corresponding indices

is 7 + 7 + 5 = 19 which is equal to the maximum value of the Milnor number

and the sextic is maximizing. We can also choose the distinguished region as the

region that has six edges. Hence the sextic has E7⊕D4 singularity, i.e. the sextic

is E7 ⊕D4 ⊕A8. The sum of corresponding indices is 7 + 4 + 8 = 19 again.

Figure 3.2: Dessin of the trigonal curve that has A8 ⊕A5 singular points



Chapter 4

The Braid Monodromy

After we get the skeletons of a trigonal curve, in order to compute the fundamental

group, we will use the braid monodromy. Hence, let us try to understand how

to use the braid monodromy to find the fundamental group. Firstly, we should

know what the braid group is.

4.1 The Braid Group

A geometric braid on n strands, where n ∈ N, is an injective map β : I ×
{1, ..., n} → R3 with the following properties:

• the x-coordinate of β(x, k) equals x for all x ∈ I and k ∈ {1, ..., n};

• one has β(0, k) = (0, k) and for each k ∈ {1, ..., n} there is a k′ ∈ {1, ..., n}
such that β(1, k) = (1, k′) .

Two geometric braids are said to be equivalent if they are isotopic in the class

of geometric braids. An equivalence class of geometric braids is called braid. The

product β1 · β2 of two geometric braids β1, β2 is defined as:

13
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β1 · β2(x, k) =

{
β1(2x, k), if x ≤ 1/2

β2(2x− 1, k), if x ≥ 1/2

and the inverse β−1 of a geometric braid is defined as:

β−1(x, k) = β(1− x, k).

An intuitive description of the geometric braid on n strands, where n ∈ N is

as follows; assume there are two sets of n items lying on a table, where the items

are ordered on two vertical and parallel lines and the sets are sitting together.

We connect each items of the first set with an item of the second set having

one-to-one correspondence. This connection is called a braid. We can see three

examples of braids for n = 4 in Figure 4.1. The first braid in Figure 4.1. is

different from the second braid and equivalent with the third braid.

Figure 4.1: Three braids

We can compose two braids by drawing the first braid next to second and

erasing items in the middle as in Figure 4.2.
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Figure 4.2: Composition of braids

Moreover, the composition of braids is a group operation. The inverse element

is the mirror image of the first braid. We call this group as Braid group on n

strands and denote this group as Bn.

4.1.1 Generators and Relations of Bn

Every braid in Bn can be written as a composition of the so called Artin

generators σi , i = 1, ..., n − 1, where σi twists the i-th and i+1-st strands

through an angle of π in the counterclockwise direction while leaving the other

strands intact. In this basis, the defining relations for Bn are

[σi, σj] = 1 if |i− j| > 1, and σiσi+1σi = σi+1σiσi+1

4.1.2 Relation between B3 and the modular group

From the previous section one has



CHAPTER 4. THE BRAID MONODROMY 16

B3 = ⟨σ1, σ2|σ1σ2σ1 = σ2σ1σ2⟩

Let a = σ1σ2σ1 and b = σ1σ2. If we apply the braid relations, we get a2 = b3 and

let c = a2 = b3. If we again apply the relations, we see that

σ1cσ1
−1 = σ2cσ2

−1 = c.

Hence we find that c is in the center of B3. The subgroup generated by c is normal

subgroup of B3. Therefore, take the quotient group B3 /⟨c⟩ and get the quotient

group is isomorphic to the modular group, (the modular group Γ = ⟨x, y|x2 =

y3 = 1⟩.) i.e. Γ ≃ B3 /⟨c⟩.

4.1.3 B3 as the group of automorphisms

We have also that the braid group B3 can be defined as the group of automor-

phisms of the free group G = ⟨α1, α2, α3⟩. There is a theorem about this:

Theorem 4.1.1 (Artin[1]). An automorphism φ of the free group Fn =

⟨α1, ..., αn⟩ is a braid if and only if each image αi
′ := φ(αi) is a conjugate of

one of the generators and one has α1
′...αn

′ = α1...αn.

This automorphism sends each generator of G to the conjugate of another

generator and finally, the product α1α2α3 stays same. We define the generators

σ1, σ2 as

σ1 : (α1, α2, α3) → (α1α2α1
−1, α1, α3), σ2 : (α1, α2, α3) → (α1, α2α3α2

−1, α2).

We introduce also σ3 = σ1
−1σ2σ1 and τ = σ2σ1 = σ3σ2 = σ1σ3. The center of

B3 is the infinite cyclic group generated by τ 3

4.2 The Braid Monodromy

We will use van Kampen’s method to find the fundamental group. Let, firstly

state van Kampen theorem;
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Theorem 4.2.1 (Van Kampen). Let U1 and U2 be open subsets of a space X

such that:

• U1 ∪ U2 = X and

• U1 ∩ U2 is path connected.

Then,

π1(X) = π1(U1) ∗π(U1∩U2) π1(U2).

Let C be a generalized trigonal curve. Let F1, F2, ..., Fr be the singular fibers

of C and E be the exceptional section. Pick a nonsingular fiber F and let F ♯ =

F \ (C ∪ E). Clearly, F ♯ is equal to F \ E with three punctures. (As in Figure

4.3) Let U1 = Σd \ (E ∪ C ∪
∑

Fi) as the same notation in the van Kampen

theorem. Let B♯ = P1 \ {p1, p2, ..., pr} where pi is the image under the ruling of

the corresponding singular fiber Fi. Since the singular fibers have been removed,

we have a locally trivial fibration, F ♯ ↪→ U1 → B♯. Hence, from the Serre theorem,

we get a Serre exact sequence [8] as follows;

... → π2(B
♯) → π1(F

♯) → π1(U1) → π1(B
♯) → π0(F

♯) → ...

We know that π2(B
♯) = 0 and π0(F

♯) = 0, hence we get a short exact sequence.

Moreover, pick a generic section S which is disjoint from E and intersecting all

fibers F, F1, ..., Fr outside of C. We know that π1(F
♯) = ⟨α1, α2, α3⟩ where αi

is the loop which covers i-th intersection point of fiber F ♯ and the generalized

trigonal curve C and π1(B
♯) = ⟨γ1, ..., γr⟩ where γi is the loop which covers pi.

For each j = 1, ..., r dragging the fiber F along γj and keeping the base point

in S results in a certain automorphism mj : π1(F
♯) → π1(F

♯), called the braid

monodromy along γj. It has the property that the imagemj(αi) of each generator

αi, i = 1, 2, 3, is a conjugate of another generator αi′ . According to van Kampen,

we get:

π1(U1) = ⟨α1, α2, α3, γ1, ..., γr|γj−1αiγj = mj(αi), i = 1, 2, 3, j = 1, ..., r⟩.
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Moreover, let U2, in the notation of the Van Kampen theorem, be an open

cylinder around a singular fiber Fj. Patching back a fiber Fj makes γj contractible

and this gives an additional relation γj = 1. Hence, by using Van Kampen theo-

rem, in this notation, we reach van Kampen method which is actually equivalent

to the Zariski van Kampen theorem:

Theorem 4.2.2 (Zariski – van Kampen). One has,

π1(Σd \ (E ∪ C)), F ∩ S) = ⟨α1, α2, α3|αi = mj(αi), i = 1, 2, 3, j = 1, ..., r⟩.
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Figure 4.3: Van Kampen Method



Chapter 5

The Fundamental Group

After we get dessins of sextics, we can use the strategy mentioned in Chapter 4

(Van Kampen method) and find the fundamental group. In order to be able to

use this strategy, we should find the braid monodromy.

5.1 Computation of the braid monodromy

We know that the skeleton of a trigonal curves with A type singular point has five

regions and one of the region, the distinguished region, does not provide relations.

We can use the other four regions to find the braid monodromies.

Given a base point in an edge e, there is a standard basis {α1, α2, α3}, which
is well defined up to simultaneous conjugation of the generators by a power of

α1α2α3 for F3, related to this edge. The two regions adjacent to a given edge are

distinguishable: one is to the right, and the other one is to the left. The braid

relations arising from the right region adjacent to e are very simple. They are

calculated in the coming paragraph. On the other hand, in order to compute

the group, we should fix one common base point c and write all relations in one

common basis, {α1, α2, α3}. Hence, we need a way to relate the standard basis

over the common point and the standard basis over an auxiliary point ai next to

20
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a given i-th region. For this sake, we choose a path γi in the skeleton from c to ai

and obtain the relations by conjugating the ’standard’ ones by the monodromy

along γi.

While we move from the common base point c to an auxiliary point ai, if we

pass over a •- vertex and our direction is counterclockwise, we apply the braid

σ1σ2 to the standard base α1, α2, α3. This braid projects to the x in the modular

group Γ. If we pass over a •- vertex and our direction is clockwise, we apply the

inverse of the first braid. This braid projects to the x2 in Γ. If we pass over a ◦-
vertex, we apply the braid σ1σ2σ1. This braid projects to the y in Γ. Hence we

get a series of x and y as defining the path. In order to make some simplification,

we write ’1,-1 and 0’ instead of ’x,x2 and y’. Hence, we get a sequence of number

which only includes −1, 0 and 1. There are four regions in the dessin other than

the distinguished region. This means, we get four paths and by using these paths,

we can find the braid monodromies mj as follows:

mj = (i-th path)σ1
m(i-th path)−1, i = 1, 2, 3, 4,

where m is the size of the region where the corresponding path ends. By using

van Kampen method, we get the fundamental group as follows:

π1(U1) = ⟨α1, α2, α3|αi = mj(αi), i = 1, 2, 3, j = 1, ..., r⟩.

For example, in Figure 5.1, we study on E7 ⊕ A8 ⊕ D4. We choose

the outher region as the distinguished region. It has eight vertices hence it

has more than four vertices. We place the base point on the inner mono-

gone. We move from the base point to the four regions. Hence, we get four

paths corresponding to that four regions as follows; [], [1], [1, 0, 1, 0,−1, 0,−1]

and [1, 0, 1, 0, 1, 0,−1, 0,−1]. Consequently, we get the braid monodromies

as follows; σ1, [1]σ1
6[1]−1, [1, 0, 1, 0,−1, 0,−1]σ1[1, 0, 1, 0,−1, 0,−1]−1 and

[1, 0, 1, 0, 1, 0,−1, 0,−1]σ1[1, 0, 1, 0, 1, 0,−1, 0,−1]−1.
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Figure 5.1: Paths of the dessin of the trigonal curve with A8⊕A5 singular points

5.2 The commutant of the fundamental group

Even if we find the braid monodromies, the fundamental groups are infinite and it

is difficult to say something about its structure. Hence, we should find alternative

ways to say something about the fundamental group. There exist a computer

programme GAP (Groups, Algorithm, Programming) which can inform us about

finite groups. Therefore, if we relate the fundamental groups with finite groups,

we can use GAP and say something about the fundamental groups. There is a nice

trick which uses this strategy which uses the following lemma:

Lemma 5.2.1 ([5]). Let H be a group, and let a ∈ H be a central element whose

projection to the abelianization H/[H,H] has infinite order. Then the projection

H → H/a restricts to an isomorphism [H,H] = [H/a,H/a].

Therefore, if we can find central elements of the fundamental group and take
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the quotient of the group with these elements, both of the groups have same

commutants. We know from algebra that if the commutant of a group is trivial,

the group is abelian. Hence, if the quotient group has trivial commutant, it is

abelian and from the lemma, the fundamental group is also abelian.

There is a particular trick to find a central element for a special type of

skeletons. If we can place the base point on a monogone of the skeleton and

this monogone is not adjacent to the distinguished region, we can find a central

element as follows; From the first braid monodromy, we have found thatm1(α1) =

σ1(α2) = α2. This implies α1 = α2. For the second braid monodromy, we move

from base point to the nearest region to the monogone. Hence, we only pass

over a •- vertex and our direction is counterclockwise and our path is [1]. Let

the number of the •- vertices on the boundary of the corresponding region be n.

Therefore, the braid monodromy is

m2 = [1]σ1
n[1]−1

i.e. we have σ1σ2σ1
nσ2

−1σ1
−1. After some easy calculations by using braid rela-

tions, we get σ2
n(α2) = α2. By using these two relations, we get [(α2α3)

n, α2] = 1,

and [(α2α3)
n, α3] = 1 (no need to check α1, since α1 = α2). Namely, (α2α3)

n is a

central element and we can apply the previous lemma.

We use the programming language GAP to do the calculations. In the

corresponding GAP code, there is free group G = F3 and g = π1/a where

π1 = F3/∪(RelsA, ...) from the van Kampen theorem and a is the central element.

Then, the code is as follows:

g := G / Union ([G.2 ∗G.3)n], RelsA ([1st path ],m1), RelsA ([2nd path ],m2),

RelsA ([3rd path ],m3), RelsA ([4th path ],m4));

where mi is the number of the • vertices on the boundary of the region where

the i-th path ends, n is the number of the • vertices on the boundary of the

region that the monogone containing the base point is adjacent and RelsA is the

function which returns the relators in G and it is defined in pi1.txt.
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For example, in figure below, we study on E7 ⊕ A8 ⊕ D4. If we apply the

trick, we get the following code and result:

gap> Read (”braid.txt”)

gap> Read (”common.txt”)

gap> Read (”pi1.txt”)

gap> g := G / Union ([(G.2 G.3)^n, G.1/G.2], RelsA ([1],6), RelsA

([1,0,1,0,-1,0,-1],1), RelsA ([1,0,1,0,1,0,-1,0,-1],1));

<f_p group on the generators [f1, f2, f3]>

gap> Size(g);

12

gap> AbelianInvariants(g);

[ 3 , 4 ]

Abelian invariants [ 3 , 4] means g \ [g, g]= Z3 ⊕ Z4 and the size of the group

g is 12, which means g \ [g, g] = g . This implies that g has a trivial commutant

and finally we get that the fundamental group of the sextic with E7 ⊕A8 ⊕A4

type singular points has also trivial commutant, i.e. it is abelian.

5.3 Computation

We need dessins having six •- vertices. When we look at the dessins coming from

the Miranda-Persson table in [6], we reach lists of all dessins which have eight

trivalent •- vertices. In order to get dessins having six •- vertices, we omit a

monogone and the edge which is adjacent to the monogone. By doing this to

the dessins in the Miranda-Persson table, we reduce number of the vertices by

two and we get lists of all dessins which have six vertices. Secondly, in order to

apply our trick, dessins should satisfy two conditions; firstly, the distinguished

region, which has to have at least four edges, can be chosen. Secondly, there has

to exist a monogone which is not adjacent to the distinguished region. We put

the suitable dessins in the figures below. If we apply the same strategy for these

dessins, write the corresponding GAP codes and finally, we get the following table.
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Figure 5.2: Dessins of E7 singularities
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Figure 5.3: Dessins of E7 singularities
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Figure 5.4: Dessins of E7 singularities
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Num Set of singularities Dessins Size of g Abelian Invariants

1 E7 ⊕A7 ⊕A2 ⊕ 3A1 5.2.a 16 [16]

2 E7 ⊕A7 ⊕A3 ⊕ 2A1 5.2.b ∞ [0,8]

3 E7 ⊕A6 ⊕ 2A2 ⊕ 2A1 5.2.c 14 [2,7]

4 E7 ⊕A5 ⊕A4 ⊕ 3A1 5.2.d ∞ [0,2,3]

5 E7 ⊕A9 ⊕ 3A1 5.2.e 20 [4,5]

6 E7 ⊕D5 ⊕A4 ⊕A2 ⊕A1 5.2.f 10 [2,5]

7 E7 ⊕D7 ⊕A5 5.4.f 12 [3,4]

8 E7 ⊕D8 ⊕A4 5.2.h 10 [2,5]

9 E7 ⊕A7 ⊕A2⊕ 3A1 5.2.i ∞ [0,8]

10 E7 ⊕D7 ⊕A4 ⊕A1 5.3.a 10 [2,5]

11 E7 ⊕D5 ⊕A6 ⊕A1 5.3.b 14 [2,7]

12 E7 ⊕A6 ⊕ 2A2 ⊕ 2A1 5.3.c 14 [2,7]

13 E7 ⊕A7 ⊕A3 ⊕ 2A1 5.3.d ∞ [0,8]

14 E7 ⊕A6 ⊕D4 ⊕A2 5.3.e 12 [3,4]

15 E7 ⊕A5 ⊕A4 ⊕A3 5.3.f 10 [2,5]

16 E7 ⊕A7 ⊕A2⊕ 3A1 5.3.g ∞ [0,8]

17 E7 ⊕D5 ⊕A4 ⊕A2 ⊕A1 5.3.h 10 [2,5]

18 E7 ⊕D4 ⊕A6 ⊕A2 5.3.i 14 [2,7]

19 E7 ⊕D4 ⊕ 2A4 5.4.a 1200 [2,5]

20 E7 ⊕D4 ⊕A5 ⊕A3 5.4.b ∞ [0,2,3]

21 E7 ⊕A7 ⊕A3 ⊕A2 5.4.c ∞ [0,8]

22 E7 ⊕A5 ⊕A4 ⊕ 3A1 5.4.d ∞ [0,2,3]

23 E7 ⊕D5 ⊕A4 ⊕A2 ⊕A1 5.4.e 10 [2,5]

24 E7 ⊕A9 ⊕A3 5.4.g 20 [4,5]

25 E7 ⊕A5 ⊕ 2A3 ⊕A1 5.4.h ∞ [0,2,3]

26 E7 ⊕D4 ⊕A8 5.2.g 16 [16]

27 E7 ⊕D5 ⊕A5 ⊕A2 5.3.e 10 [2,5]

28 E7 ⊕ 2A5 ⊕ 2A1 5.4.b ∞ [0,2,3]

Table 5.1: Maximal sets of singularities with a type E7 point

Normally, a dessin may correspond to more than one sextic. It depends on the
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choice of the distinguished region. As it was mentioned before, the distinguished

region has to have at least four edges. Moreover, in order to use our trick, there

should exist a monogone which is not adjacent to the distinguished region. If we

apply both two conditions, in our figures, there is only one possible sextic that

each skeleton corresponds and we wrote them on the table.

If we look at the table, we can say that the fundamental group of sextics which

of size of g is equal to the product of the components of its abelian invariants

are abelian. i.e. fundamental groups of the sextics with singularities in Table 5.1

line 1,3,5,6,7,8,10,11,12,14,15,16,17,18,23,24,26 and 27 are all abelian. If the size

of the corresponding group g is infinite, GAP fails and we cannot say anything

about the commutant of the fundamental groups of the sextics. Hence, we do not

say anything about the commutant of the fundamental groups of the sextics with

singularities in Table 5.1 line 2,4,9,13,20,21,22,25 and 28. Finally, the size of the

group g corresponding to the fundamental group of the sextic with E7⊕D4⊕2A4

(in Table 5.1 line 19) is 1200 and it has abelian invariants as [2, 5]. Hence, its

commutant q has order 120 = 1200/(2 ∗ 5). Let h = [q, q], then by using GAP,

we have h = [h, h], hence h is a perfect group. The only perfect group of order

120 is SL(2,F5). Hence, the commutant is SL(2,F5). Again, we can say that the

fundamental group is non-abelian.
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