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Ziyaattin Hüsrev Aksüt

July, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Hande Yaman(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Osman Oğuz
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ABSTRACT

VALID INEQUALITIES FOR THE PROBLEM OF
OPTIMIZING A NONSEPARABLE PIECEWISE

LINEAR FUNCTION ON 0-1 VARIABLES

Ziyaattin Hüsrev Aksüt

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Hande Yaman

July, 2011

In many procurement and transportation applications, the unit prices depend

on the amount purchased or transported. This results in piecewise linear cost

functions. Our aim is to study the structure that arises due to a piecewise linear

objective function and to propose valid inequalities that can be used to solve large

procurement and transportation problems. We consider the problem of optimiz-

ing a nonseparable piecewise linear function on 0-1 variables. We linearize this

problem using a multiple-choice model and investigate properties of facet defining

inequalities. We propose valid inequalities and lifting results.

Keywords: Piecewise linear functions, valid inequalities, facet defining inequali-

ties, sequential lifting, simultaneous lifting.

iii



ÖZET

0-1 DEĞİŞKENLİ AYRIŞMAYAN PARÇALI
DOĞRUSAL BİR FONKSİYONUN ENİYİLENMESİ

PROBLEMİ İÇİN GEÇERLİ EŞİTSİZLİKLER

Ziyaattin Hüsrev Aksüt

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Hande Yaman

Temmuz, 2011

Birçok satın alma ve ulaşım uygulamasında, birim fiyatlar satın alınan ya da

ulaşımı gerçekleştirilen ürün miktarına bağlıdır. Bu durum, parçalı doğrusal

fonksiyonların kullanılmasına yol açmaktadır. Bizim bu çalışmadaki başlıca

amacımız, parçalı doğrusal fonksiyonların kullanılmasıyla ortaya çıkan yapıyı in-

celemek ve büyük satın alma ve ulaşım problemlerinin çözümünde faydalı ola-

bilecek geçerli eşitsizlikler üretmektir. Bu çalışmada, 0-1 değişkenli ayrışmayan

parçalı doğrusal bir fonksiyonun eniyilenmesi problemi ele alınmaktadır. Bu

problem, çok seçenekli model kullanarak doğrusallaştırılıp, yüzey tanımlayan

eşitsizliklerin özellikleri incelenmektedir. Ayrıca, geçerli eşitsizlikler üretilip,

kaldırma sonuçları sunulmaktadır.

Anahtar sözcükler : Parçalı doğrusal fonksiyonlar, geçerli eşitsizlikler, yüzey

tanımlayan eşitsizlikler, sıralı kaldırma, eşzamanlı kaldırma.
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Chapter 1

Introduction

Piecewise linear functions are widely used in optimization problems in many

applications, including transportation, telecommunications, and production plan-

ning. Any nonlinear function can be approximated to an arbitrary degree of ac-

curacy as a piecewise linear function. The degree of accuracy is controlled by the

number of the linear segments in the piecewise linear function.

Piecewise linear approximation is used in various specific applications, such

as portfolio selection, network loading, merge-in-transit, minimum cost network

flow with nonconvex piecewise linear costs, electronic circuit design, facility loca-

tion with staircase costs, and optimization of gas network. Besides, procurement

auctions with piecewise linear costs are common in industry. Cost functions in

many supply chain problems are piecewise linear. Transportation costs in a net-

work are mostly concave and piecewise linear, possibly with fixed costs.

In addition, piecewise linear optimization is an area of interest on its own.

Piecewise linear functions that are convex can be minimized by linear program-

ming since the slope of the segments are increasing. However, it is necessary to

introduce nonlinearities in the model if the piecewise linear function is not convex.

1



CHAPTER 1. INTRODUCTION 2

This chapter consists of four sections. In the first section, the nonlinear prob-

lem with piecewise linear cost function that is studied throughout this thesis is

defined. In the second section, research contributions are stated. Three formula-

tions on linearization of the piecewise linear function are introduced in the third

section. In the last section, outline of the thesis is provided.

1.1 Problem Definition

In this section, we first define the parameters of the problem and give the

specifications of the piecewise linear cost function. After stating the objective of

the problem, we introduce the nonlinear model.

We are given a set of items N = {1, . . . , n}. For item k ∈ N , pk ≥ 0 is the

revenue of selecting item k, and wk ≥ 0 is the weight of the item. We are also

given a lower semicontinuous piecewise linear cost function f with t segments.

Let T = {1, . . . , t}. For segment j ∈ T , bj denotes the variable cost, sj denotes

the fixed cost, and aj denotes the right breakpoint of the segment. Without loss

of generality, we assume that a0 = 0.

Our problem, called Nonseparable Piecewise Linear Optimization (NPLO), is

to select a subset of items in order to maximize the total profit. Since the cost

function is a piecewise linear function, this problem is nonlinear.

For k ∈ N , xk is 1 if item k is selected and 0 otherwise. Nonlinear model is

the following formulation called NLM .

max
∑
k∈N

pkxk − f

(∑
k∈N

wkxk

)
s.t. xk ∈ {0, 1} ∀k ∈ N

The special case with a single piece with a1 <
∑

k∈N wk and f(y) = 0 for
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Figure 1.1: Piecewise linear cost function.

y ∈ [0, a1] is a knapsack problem.

1.2 Contribution

This thesis presents a nonlinear optimization problem with a piecewise linear

cost function. Three formulations on linearization of the mathematical model,

which are called multiple choice model, incremental cost formulation, and convex

combination model, are provided for the given problem.

Since the knapsack problem is a special case of our problem, our problem is

NP-hard. Therefore, deriving strong valid inequalities and facet defining inequal-

ities is crucial for the solution of the problem. The aim of this research is to

provide such inequalities for the proposed model.
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In this study, a valid inequality in general form is presented and properties

of facet defining inequalities are analyzed. Under some special conditions of the

parameters in the valid inequality of the general form, strong valid inequalities

are obtained.

In addition, some of the existing valid inequalities are lifted by sequential and

simultaneous lifting techniques in order to achieve new strong valid inequalities.

Lifting the existing inequalities are beneficial since they may lead to facet defining

inequalities. Uplifting technique is used while determining the coefficients of the

variables.

For each one of the two models, the multiple choice model with equality con-

straint and the relaxed version of it, an example with two segments and four items

is analyzed. Using PORTA [21], all facet defining inequalities for the examples

are obtained. All of the facets for the multiple choice model with equality con-

straint are explained either by the proposed valid inequalities and facet defining

inequalities or lifting those inequalities. On the other hand, most of the facets

for the relaxed version of the initial model are explained either by the proposed

valid inequalities and facet defining inequalities or lifting those inequalities.

Ultimately, this research provides a problem with piecewise linear cost func-

tion and analysis on valid and facet defining inequalities. Lifting techniques are

also used in order to obtain valid and facet defining inequalities. Lastly, strength

of the proposed valid inequalities are shown on two examples in Appendix.
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1.3 Linear Formulations

Piecewise linear functions that are convex can be minimized by linear pro-

gramming since the slope of the segments are increasing. However, it is necessary

to introduce nonlinearities in the model if the piecewise linear function is not

convex. Since our piecewise linear cost function is not necessarily convex, we

choose mixed integer programming approach (MIP) to solve our problem. In this

MIP approach, the nonlinearities are formulated using binary variables. Besides,

additional constraints are needed to relate those binary and continuous variables.

Three fundamental MIP formulations are presented in this section.

This section consists of three subsections. Initially, we introduce the multi-

ple choice model with the equality constraint, called MCM=. Then, the relaxed

version of it, MCM≥, is stated. In the second subsection, incremental cost for-

mulation is presented. Finally, convex combination and alternative convex com-

bination models are described in the last subsection.

1.3.1 Multiple Choice Model

Multiple choice model is first used by Balakrishnan and Graves [1]. In the

multiple choice model, we use the following decision variables. For k ∈ N , xk is

1 if item k is selected and 0 otherwise. For j ∈ T , zj is 1 if segment j is selected

and 0 otherwise, and hj is the amount of load on segment j.

The multiple choice model is the following formulation called MCM=.

max
∑
k∈N

pkxk −
∑
j∈T

(bjhj + sjzj) (1.1)

s.t.
∑
j∈T

hj =
∑
k∈N

wkxk (1.2)

aj−1zj ≤ hj ≤ ajzj ∀j ∈ T (1.3)
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∑
j∈T

zj ≤ 1 (1.4)

xk ∈ {0, 1} ∀k ∈ N (1.5)

zj ∈ {0, 1} ∀j ∈ T (1.6)

hj ≥ 0 ∀j ∈ T (1.7)

The objective function (1.1) is the total revenue of selected items minus the

total cost of the selected segment.

Constraints (1.2), (1.5), and (1.7) states that the total weight of the selected

items is equal to the amount of load on the selected segment.

Constraints (1.3), (1.6), and (1.7) ensure that the amount of load on the se-

lected segment is within the left and right breakpoints of that segment and that

the amount of load on a segment that is not selected is zero.

Due to constraints (1.4) and (1.6) at most one segment is selected.

If the function f is nondecreasing, then we can relax constraints (1.2) to∑
j∈T

hj ≥
∑
k∈N

wkxk (1.8)

without changing the optimal value. We call the resulting model MCM≥.

1.3.2 Incremental Cost Formulation

Incremental cost formulation is introduced by Manne and Markowitz [2]. De-

cision variables for this formulation are as follows. For k ∈ N , xk is 1 if item

k is selected and 0 otherwise. For j ∈ T , rj is 1 if segment j is selected and 0
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otherwise. For j ∈ T , yj is the amount of load on segment j.

The incremental cost formulation is the following formulation.

max
∑
k∈N

pkxk −

(
f(a0) +

∑
j∈T

(gjyj)/uj

)
(1.9)

s.t. a0 +
∑
j∈T

yj =
∑
k∈N

wkxk (1.10)

u1r1 ≤ y1 ≤ u1 (1.11)

ujrj ≤ yj ≤ ujrj−1 ∀j = 2, 3, .., t− 1 (1.12)

0 ≤ yt ≤ utrt−1 (1.13)

xk ∈ {0, 1} ∀k ∈ N (1.14)

rj ∈ {0, 1} ∀j = 1, 2, .., t− 1 (1.15)

The objective function (1.9) is the total profit of selected items minus the

total cost of the selected segment.

Constraints (1.10), (1.13) and (1.14) ensure that total weight of the selected

items cannot exceed the total amount of load on selected segments.

Constraints (1.11), (1.12), (1.13) and (1.15) ensure that the amount of load

on a selected segment should be less than the difference between left and right

breakpoint of that segment. If a segment is not selected, then the amount of load

on that segment must be zero.

If the function f is nondecreasing, then we can relax constraints (1.10) to

a0 +
∑
j∈T

yj ≥
∑
k∈N

wkxk (1.16)

without changing the optimal value.
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1.3.3 Convex Combination Model

Convex combination model is first used by Dantzig [3]. In this model, we use

the following decision variables. For k ∈ N , xk is 1 if item k is selected and 0

otherwise. For j ∈ T , zj is 1 if segment j is selected and 0 otherwise, and λj−1

and λj are the weights of the breakpoints on segment j.

The convex combination model is the following formulation.

max
∑
k∈N

pkxk −
t∑

j=0

λjf(aj) (1.17)

s.t.
T∑

j=0

ajλj =
∑
k∈N

wkxk (1.18)

T∑
j=0

λj = 1 (1.19)

λ0 ≤ z0 (1.20)

λj ≤ zj−1 + zj ∀j = 1, 2, .., t− 1 (1.21)

λt ≤ zt−1 (1.22)

t∑
j=0

zj = 1 (1.23)

xk ∈ {0, 1} ∀k ∈ N (1.24)

zj ∈ {0, 1} ∀j = 0, 1, .., t (1.25)

λj ≥ 0 ∀j = 0, 1, .., t (1.26)

The objective function (1.17) is the total profit of selected items minus the

total cost of the selected segment.

Constraints (1.18), (1.24), and (1.26) ensure that total weight of the selected

items cannot exceed the total amount of load on selected segments.

Constraints (1.19) and (1.26) ensure that the total weight of the breakpoints
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should be equal to 1.

Constraints (1.20), (1.21), (1.22), (1.25), and (1.26) ensure that the weight

of a breakpoint should be zero, unless the corresponding segment or segments to

that breakpoint is selected.

Constraints (1.23) and (1.25) ensure that at most one segment can be selected.

If the function f is nondecreasing, then we can relax constraints (1.18) to

T∑
j=0

ajλj ≥
∑
k∈N

wkxk (1.27)

without changing the optimal value.

Sherali [4] introduced an alternative formulation for the convex combination

model. When we adjust that formulation to our problem, we get the alternative

convex combination model. In this new formulation, following decision variables

are used. For k ∈ N , xk is 1 if item k is selected and 0 otherwise. For j ∈ T , zj

is 1 if segment j is selected and 0 otherwise, and λLj and λRj are the weights of

the left and right breakpoints on segment j, respectively.

Alternative convex combination formulation is the following formulation.

max
∑
k∈N

pkxk −
T∑

j=1

(λLj f(aj−1) + λRj f(aj)) (1.28)

s.t.
T∑

j=1

(aj−1λ
L
j + ajλ

R
j ) =

∑
k∈N

wkxk (1.29)

T∑
j=0

(
λLj + λRj

)
= zj (1.30)

T∑
j=0

zj = 1 (1.31)
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xk ∈ {0, 1} ∀k ∈ N (1.32)

zj ∈ {0, 1} ∀j = 0, 1, .., T (1.33)

λLj , λ
R
j ≥ 0 ∀j = 0, 1, .., T (1.34)

The objective function (1.28) is the total profit of selected items minus the

total cost of the selected segment.

Constraints (1.29), (1.32), and (1.34) ensure that total weight of the selected

items cannot exceed the total amount of load on selected segments.

Constraints (1.30), (1.33), and (1.34) ensure that the weights of both left and

right breakpoints of a segment should be zero, unless that segment is selected.

Constraints (1.31) and (1.33) ensure that at most one segment can be selected.

If the function f is nondecreasing, then we can relax constraints (1.29) to

T∑
j=1

(aj−1λ
L
j + ajλ

R
j ) ≥

∑
k∈N

wkxk (1.35)

without changing the optimal value.

Croxton, Gendron, and Magnanti [5] propose that any feasible solution of the

LP relaxation of multiple choice model, incremental cost formulation, and alter-

native convex combination model corresponds to a feasible solution to the other

two with the same cost. Consequently, the LP relaxations of the three formula-

tions are equivalent.
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1.4 Contents

The rest of this thesis is organized as follows. A review of the piecewise linear

functions in the literature is presented in Chapter 2. Chapter 3 introduces a

set of valid inequalities in general form and analyzes properties of facet defining

inequalities. Besides, valid inequalities for the problem and information about

lifting valid inequalities in order to strengthen them are provided in Chapter

3. Chapter 4 contains any conclusions drawn from this research and possible

discussions about possible future work. Finally, examples for both MCM≥ and

MCM=, and facet defining inequalities obtained by PORTA are presented in Ap-

pendix. In addition, those facet defining inequalities are explained by the valid

inequalities proposed in Chapter 3 and lifting.



Chapter 2

Literature Review

In this chapter, a review of literature related to our study is presented. In our

study, we have conducted a literature research on two distinct areas. Hence, this

chapter consists of two sections; piecewise linear functions, and lifting, respec-

tively. In the first section, a literature review about piecewise linear functions,

their characteristics and linearization methods is presented. Second section con-

sists of a review of the literature that is related to sequential, simultaneous, and

sequence independent lifting techniques for valid inequalities.

2.1 Piecewise Linear Functions

Piecewise linear functions are commonly used in optimization problems in

many real life applications such as transportation, telecommunication, and pro-

duction planning problems. It is possible to approximate any nonlinear function

to a piecewise linear function. The accuracy of the approximation is simply based

on the size of the linear segments in the corresponding piecewise linear function.

There exist three fundamental formulations on linearization of the piecewise

12
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linear functions in the literature; namely the multiple choice model, the incre-

mental cost formulation, and the convex combination model. Optimization of

these three basic formulations is an area of interest in itself. There exist numer-

ous studies on linearization and optimization of piecewise linear functions in the

literature. In this section, we provide a review of the literature that is related

with piecewise linear functions, their specifications and linearizations.

Croxton et al. [5] study a generic minimization problem with separable non-

convex piecewise linear costs. They state three basic formulations; incremental

model, multiple choice model, and convex combination model. Then, they prove

that the LP relaxations of the incremental, multiple choice, and convex combina-

tion formulations are equivalent. Moreover, they prove that the LP relaxation of

any one of these three formulations approximates the cost function with its lower

convex envelope.

In the work of de Farias et al. [6] special ordered set of type 2 (SOS2) ap-

proach is proposed for the optimization of a discontinuous separable piecewise

linear function. A set of variables are said to be SOS2, when at most two vari-

ables are nonzero, and two nonzero variables are adjacent. They show that the

given SOS2 approach can be used even when a mixed integer programming (MIP)

model is not available for the given problem. They also prove that the LP re-

laxation bound of their SOS2 formulation is as good as the MIPs, when a MIP

formulation is available. Besides, they state the advantages of SOS2 approach

over the MIP model.

Keha et al. [7] study incremental model and convex combination model with

and without additional binary variables. They show that both formulations with-

out additional binary variables have the same LP bounds with the corresponding

formulations with additional binary variables. When there are no additional bi-

nary variables, they enforce the nonlinearities algorithmically, by branching on
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SOS2 variables in the branch and bound algorithm. They prove that SOS2 for-

mulation, as well as incremental and convex combination models, is also locally

ideal, which means that the binary variables are integer in every vertex of the set.

They conclude that the formulations without binary variables should be better

models for piecewise linear functions than the MIP models, since they are more

compact.

In the study of Vielma et al. [8] the branch-and-cut algorithm for LPs with

piecewise linear continuous costs are extended to the lower semicontinuous case.

They also extend the SOS2 formulation for LPs with piecewise linear continuous

costs to the lower semicontinuous case. Then, they adapt valid inequalities devel-

oped by Kehaet al. [9] to the new model. The discontinuous case caused by a fixed

charge is also studied and two new valid inequalities are developed. According to

the computational results, adding SOS2 based cuts can significantly increase the

performance of the branch-and-cut procedure for one class of problems. For the

other class of problems, adding SOS2 based cuts can significantly increase the

performance regarding the number of nodes and best gaps obtained.

Vielma et al. [10] study the modeling of piecewise linear functions as MIPs.

They review several existing and new formulations for continuous functions and

study on their extension to the multivariate nonseparable case. Then, they com-

pare these formulations both with respect to their theoretical properties and their

computational performance. In addition, extensions of these formulations con-

sidering lower semicontinuous functions are studied.

Keha [11] studies the polyhedral structure of piecewise linear optimization

problems and derived strong valid inequalities. Then, a polyhedral study of the

one row relaxation of a separable piecewise linear optimization problem is pre-

sented. In addition, several classes of valid inequalities are derived for this prob-

lem, and a branch-and-cut algorithm is presented. He also derives some valid

inequalities via lifting procedure. He shows that most of the valid inequalities
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that he derived are facet defining for a lower dimensional polytope.

2.2 Lifting

One of the most commonly used techniques to obtain strong valid inequalities

is lifting. Lifting procedure aims at generating a strong valid inequality from

an existing valid inequality by adjusting coefficients of one or more variables in

the initial inequality. Lifting of a valid inequality may result in a facet defining

inequality in some cases. Lifting techniques can be discussed in three categories;

sequential or simultaneous, exact or approximate, and up or down lifting.

Since lifting is an important tool for generating strong valid inequalities, it

is very useful for optimizing mixed integer programming problems. Therefore,

there are plenty of studies on lifting techniques in the literature. In this section,

we provide a review of the literature that is related with lifting valid inequalities.

Gu et al. [12] study lifting flow cover inequalities for mixed 0-1 integer pro-

grams. They discuss sequential and sequence independent lifting, and compare

them. Since sequential lifting of flow cover inequalities is computationally chal-

lenging, they present a computationally efficient way to lift them using sequence

independent lifting technique which can be classified under simultaneous lifting.

Finally, they show the effectiveness of their lifting techniques by giving compu-

tational results.

In the study of Gu et al. [13] sequence independent lifting techniques are

presented for both flow cover and knapsack cover inequalities. They discuss the

relation between superadditive functions and sequence independent lifting tech-

niques. Then, they show that the lifting coefficients are sequence independent if
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that lifting function is superadditive. In addition, they obtain good approxima-

tions to maximum lifting by introducing the idea of valid superadditive lifting

functions.

Easton and Hooker [14] study simultaneously lifting sets of binary variables

into cover inequalities for knapsack polytopes. They introduce a polynomial time

algorithm that finds valid and facet defining inequalities using simultaneously

lifting techniques. They show that the resulting simultaneously lifted cover in-

equality cannot be derived by lifting any cover inequality sequentially in many

instances.

Atamturk [15] studies sequence independent lifting for mixed integer program-

ming. He shows that superadditive lifting functions lead to sequence independent

lifting of inequalities for general mixed integer programming. He also discusses

that mixed integer rounding can be viewed as an application of sequence inde-

pendent lifting. Besides, he analyzes facet defining conditions for mixed integer

rounding inequalities for mixed integer knapsacks.

In the work of Shebalov and Klabjan [16] convex hull of a set defined by a

single inequality with continuous and binary variables is analyzed. Flow cover

inequality is extended and shown that it is valid when the set is restricted by

fixing some variables. In addition, conditions under which that inequality is facet

defining are presented. Furthermore, the way to lift that inequality in order to

obtain valid inequalities for the original set using sequence independent lifting

techniques is shown.

Sharma [17] presents a new algorithm called the Maximal Simultaneous Lifting

Algorithm which basicly produces a cover inequality using sequence independent

uplifting techniques over a set of binary variables. Then, he shows that under

some assumptions, this algorithm results in strong inequalities that are facet
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defining. Their computational studies show that this algorithm can find numer-

ous strong valid inequalities for knapsack problems in negligible time.

Bolton [18] introduces a new lifting method called synchronized simultaneous

lifting. Then, he shows that some of the inequalities obtained by this method can-

not be produced by any previous lifting methods. He also presents an algorithm

called the Synchronized Simultaneous Lifting Algorithm which runs in quadratic

time. This algorithm produces synchronized simultaneous lifting inequalities. His

computational study shows that the proposed algorithm is significantly helpful

in solving integer programs.

The contribution of this thesis to the literature is as follows: A problem of

optimizing a nonseparable piecewise linear function is introduced. Out of three

most commonly used linearization models in the literature, multiple choice model

is studied. The task is to find valid and facet defining inequalities for the given

problem. First, some properties of facet defining inequalities are presented. Be-

sides, several strong valid inequalities are proposed for the problem. Moreover,

lifting techniques are used to obtain strong valid inequalities. Exact methods are

applied while determining the coefficients of the lifting variables. In addition,

both sequential and simultaneous lifting techniques are applied. Furthermore,

since we find out that there is no study on finding valid inequalities and providing

properties of facet defining inequalities for this problem, our study is innovative

for the piecewise linear optimization literature.



Chapter 3

Valid and Facet Defining

Inequalities

NPLO is NP-hard. Therefore, the computational time for an instance may be

too long, or even it may not be solved by a solver, especially if that instance is

a big one. In order to reduce the computational time, one may think of several

techniques. The most two common techniques are decomposition methods and

the cutting plane algorithm. In this paper, we are interested in the latter one.

Aim of the cutting plane technique is to generate valid inequalities that elimi-

nate some portion of feasible region of the linear relaxation without cutting any

feasible solutions of the original problem. The most useful cutting planes are the

facet defining inequalities.

One way to create valid and facet defining inequalities is the lifting technique.

Lifting technique aims at strengthening an existing valid inequality by adjusting

coefficients of some of the variables in the inequality.

This chapter consists of three sections. In the first section, a valid inequality

in general form for our problem is introduced. Then, four properties of facet

defining inequalities are presented. In the second section, first, a valid inequality

18
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for the general problem is proposed. Then, the valid inequality in general form

is analyzed in four specific cases when the piecewise linear function consists of

two segments. For each case, at least one valid inequality is proposed. In the last

section, sequential and simultaneous lifting techniques that are used to obtain

valid and facet defining inequalities are discussed.

Before we proceed to the first section, we discuss the dimension of the multiple

choice model given in the first chapter.

Let P≥ be the set of points that satisfy all the constraints of the modelMCM≥.

Define exk, ehj and ezj such that exk is the unit vector of size n such that the kth

entry is 1 and others are zero, ehj is the unit vector of size t such that the jth entry

is 1 and others are zero, ezj is the unit vector of size t such that the jth entry is 1

and others are zero.

Define P≥ = {(x, z, h) : (1.3)− (1.8)} and P conv
≥ is the convex hull of P≥. De-

fine also, P= = {(x, z, h) : (1.2)− (1.7)} and P conv
= is the convex hull of P=. We

assume that wk ≤ at for all k ∈ N .

Proposition 1 dim(P conv
≥ ) = n+ 2t.

Proof. Suppose that every solution (x, z, h) in P conv
≥ satisfies

∑
j∈T δjhj +∑t−1

j=1 µjzj +
∑

k∈N σkxk = ρ. Since (0, 0, 0) ∈ P conv
≥ , ρ = 0. As (0, ez1, 0) ∈ P conv

≥ ,

µ1 = 0. Let 1 > ε > 0 be a small number. Since (0, ez1, εe
h
1) ∈ P conv

≥ , δ1 = 0.

Both solutions (0, ez2, a1e
h
2), (0, ez2, a2e

h
2) are in P conv

≥ . Therefore, δ2 = 0, µ2 = 0.

Similarly, (0, ezm, am−1e
h
m), (0, ezm, ame

h
m) ∈ P conv

≥ . Hence, δm = 0, µm = 0 for

every m ∈ {2, 3, .., t}. Since (ex1 , e
z
t , ate

h
t ) ∈ P conv

≥ , σ1 = 0. σ2 is also 0 since

(ex2 , e
z
t , ate

h
t ) ∈ P conv

≥ . Similarly, σk = 0 for every k ∈ N . Hence, there is no

equation satisfied by all points (x, z, h) ∈ P conv
≥ and dim(P conv

≥ ) = n+ 2t. �
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3.1 Properties of Facet Defining Inequalities

In this section, we first present a valid inequality in general form. Then, we

propose four propositions on the properties of some of the coefficients in the given

inequality.

Suppose that inequality

ρ+
∑
k∈N

αkxk +
∑
j∈T

βjzj ≤
∑
j∈T

γjhj (3.1)

is a valid inequality for P conv
≥ .

Proposition 2 If (3.1) is facet defining for P conv
≥ and is different from

∑
j∈T zj ≤

1, then ρ = 0.

Proof. Let F≥ =
{

(x, z, h) ∈ P conv
≥ : ρ+

∑
k∈N αkxk +

∑
j∈T βjzj =

∑
j∈T γjhj

}
.

There exists (x, z, h) ∈ F≥ such that
∑

j∈T zj = 0. Since otherwise, all

(x, z, h) ∈ F≥ satisfy
∑

j∈T zj = 1. When
∑

j∈T zj = 0, x = 0 and h = 0.

Hence, ρ must be equal to zero. �

Proposition 3 Let l ∈ T . If (3.1) is facet defining for P conv
≥ and is different

from hl ≤ alzl, then γl ≥ 0.

Proof. Let F≥ =
{

(x, z, h) ∈ P conv : ρ+
∑

k∈N αkxk +
∑

j∈T βjzj =
∑

j∈T γjhj

}
and l ∈ T . There exists (x, z, h) ∈ F≥ such that hl < alzl. Since otherwise, all

(x, z, h) ∈ F≥ satisfy hl = alzl. Consider solution (x, z, h̄) where h̄j = hj for

every j ∈ T \ {l} and h̄l = hl + ε for very small ε > 0. As (x, z, h̄) is a feasible

solution, we need ρ+
∑

k∈N αkxk +
∑

j∈T βjzj ≤
∑

j∈T γjh̄j as inequality (3.1) is

valid. Hence, γl must be greater than or equal to zero. �
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Proposition 4 Let m ∈ N . If (3.1) is facet defining for P conv
≥ and is different

from xm ≥ 0, then αm ≥ 0.

Proof. Let F≥ =
{

(x, z, h) ∈ P conv : ρ+
∑

k∈N αkxk +
∑

j∈T βjzj =
∑

j∈T γjhj

}
and m ∈ N . There exists (x, z, h) ∈ F≥ such that xm > 0. Consider solution

(x̄, z, h) where x̄k = xk for every k ∈ N \ {m} and x̄m = 0. As this solution is

feasible, we need αm ≥ 0. �

Proposition 5 If (3.1) is facet defining for P conv
≥ and is different from

∑
j∈T zj ≤

1 and hl ≤ alzl for all l ∈ T , then define

β̂i = min
∑
k∈N

(γiwk − αk)xk

s.t. ai−1 ≤
∑
k∈N

wkxk ≤ ai

xk ∈ {0, 1} ∀k ∈ N

and

β̃i = min γiai−1 −
∑
k∈N

αkxk

s.t.
∑
k∈N

wkxk ≤ ai−1

xk ∈ {0, 1} ∀k ∈ N

for all i ∈ T . Then, βi = min
{
β̂i, β̃i

}
.

Proof. Suppose that (3.1) is facet defining for P conv
≥ and is different from∑

j∈T zj ≤ 1 and hl ≤ alzl for all l ∈ T . Let i ∈ T . By Proposition 2, we know

that ρ = 0 and by Proposition 3, we know that γi ≥ 0. If zi = 1, then the inequal-

ity becomes
∑

k∈N αkxk + βi ≤ γihi. Hence, βi ≤ γihi −
∑

k∈N αkxk should be

satisfied by all feasible points (x, z, h) with zi = 1. Given x, if
∑

k∈N wkxk ≥ ai−1,

then best value for hi is
∑

k∈N wkxk, since γi ≥ 0. Otherwise, best value for hi

is ai−1. For these hi values, β̂i and β̃i are the upper bounds for βi, respectively.

Then, the best value for βi is the minimum of these two bounds. �
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3.2 Valid Inequalities

In this section, we first present a valid inequality for arbitrary number of seg-

ments. Then, we analyze four cases on an instance when the piecewise linear

function has two segments and introduce strong valid inequalities for each case.

Besides, an example for each valid inequality that defines a facet for the given

problem is presented.

For S ⊆ N , let w(S) =
∑

k∈S wk. Let j ∈ T . We define

w̄j(S) = max
∑
k∈S

wkxk

s.t.
∑
k∈S

wkxk ≤ aj

xk ∈ {0, 1} ∀k ∈ S

and λ = w(S)− w̄j(S).

Proposition 6 Let j ∈ T , S ⊆ N , and C ⊆ {k ∈ S : wk > λ}. The inequality

∑
k∈C

λxk +
∑

k∈S\C

wkxk + βjzj ≤
∑

i∈T\{j}

hi (3.2)

is a valid inequality for P conv
≥ .

Proof. If zj = 0, then hj = 0 and inequality (3.2) becomes
∑

k∈C λxk +∑
k∈S\C wkxk ≤

∑
i∈T\{j} hi. This is satisfied as λ ≤ wk for all k ∈ C and wk and

xk are nonnegative for all k ∈ N .

If zj = 1, then as
∑

i∈T\{j} hi = 0, inequality (3.2) becomes∑
k∈C

λxk +
∑

k∈S\C

wkxk + βj ≤ 0

By definitons of λ and βj, (3.2) is again satisfied. �
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3.2.1 The case of two segments

Now, we will focus on the piecewise linear cost function with two segments. When

there are two segments in the piecewise linear cost function, inequality (3.1) be-

comes;

∑
k∈N

αkxk + β1z1 + β2z2 ≤ γ1h1 + γ2h2 (3.3)

Define β1 and β2 as Proposition 5 proposes.

Now, we will analyze four cases and propose five valid inequalities for them.

First two inequalities are special cases of (3.2). Last three inequalities are basicly

influenced from Proposition 5. Each of them contains the βi structure. Besides,

γj’s are either zero or one in these three inequalities. αk values are formed as the

facet defining inequalities that are obtained by PORTA are analyzed thoroughly.

After proving the validity of every inequality, an example of the corresponding

inequality that defines a facet for the following instance will be shown.

h1 + h2 ≥ 17x1 + 17x2 + 18x3 + 2x4

0 ≤ h1 ≤ 24z1

24z2 ≤ h2 ≤ 53z2

z1 + z2 ≤ 1

x1, x2, x3, x4, z1, z2 ∈ {0, 1}

First case is for inequalities on z2 and h1 as follows.

Case 1 β1 = 0, γ2 = 0, γ1 = 1

For this case, we have inequality (3.2) in the following form;

∑
k∈C

λxk +
∑

k∈S\C

wkxk + β2z2 ≤ h1 (3.4)
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Figure 3.1: An example with two segments.

As an example, let S = {1, 2, 3, 4} and C = {1, 3}. Then, as w(S) = 54 and

w̄2(S) = 52, λ is 2. Hence, α1 = 2, α2 = 17, α3 = 2, and α4 = 2. Since β2 = −21,

inequality (3.4) becomes 2x1 + 17x2 + 2x3 + 2x4− 21z2 ≤ h1 which defines a facet

for the problem as PORTA points out.

Next case is for inequalities on z1 and h2 as follows.

Case 2 β2 = 0, γ1 = 0, γ2 = 1;

For this case, we have inequality (3.2) in the following form;

∑
k∈C

λxk +
∑

k∈S\C

wkxk + β1z1 ≤ h2 (3.5)

As an example, let S = {1, 2, 3} and C = ∅. Then, as w(S) = 52 and

w̄1(S) = 18, λ is 34. Besides, β1 = −18. Hence, inequality (3.5) becomes

17x1 + 17x2 + 18x3 − 18z1 ≤ h2. This inequality is also facet defining for the

problem according to PORTA.
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For the above two cases, all facet defining inequalities for the given instance

can be described by (3.4) and (3.5) (See Appendix A).

Next case is for inequalities on z2, h1, and h2 as follows.

Case 3 β1 = 0, γ1 = 1, γ2 = 1;

Proposition 7 Let S ⊆ N and C ⊆ S such that w(C) ≥ a1. Define

w′(S) = min
k∈S:w(S\{k})>a1

w(S \ {k})− a1

Let αk = w(C)− a1 if k ∈ C, and αk = w′(S) if k ∈ S \ C. The inequality

∑
k∈S

min {αk, wk}xk +
∑

k∈N\S

wkxk + β2z2 ≤ h1 + h2 (3.6)

is a valid inequality.

Proof. If z2 = 0, then h2 = 0 and inequality (3.6) becomes∑
k∈S min {αk, wk}xk +

∑
k∈N\S wkxk ≤ h1. This is satisfied as min {αk, wk} ≤

wk for all k ∈ S and h1 ≥
∑

k∈N wkxk.

If z2 = 1, then h1 = 0 and inequality (3.6) becomes
∑

k∈S min {αk, wk}xk +∑
k∈N\S wkxk + β2 ≤ h2. By definition of β2 from Proposition 5,∑
k∈S min {αk, wk}xk + β2 ≤

∑
k∈S wkxk. Since h2 ≥

∑
k∈N wkxk, inequality

(3.6) is again satisfied. �

As an example, let S = {1, 2, 3, 4} and C = {1, 3, 4}. Then, as w(C) = 37

and w′(S) = 12; α1 = 13, α2 = 12, α3 = 13, and α4 = 2. Besides, β2 is 9.

Hence, inequality (3.6) becomes 13x1 + 12x2 + 13x3 + 2x4 + 9z2 ≤ h1 + h2 which
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is also a facet defining inequality for the problem as PORTA shows.

Proposition 8 For the same case define α′ = a1 − w̄1(S). For k ∈ S; let

αk = wk − α′ if wk > α′, and αk = wk, otherwise. Then;

∑
k∈S

αkxk + β2z2 ≤ h1 + h2 (3.7)

is a valid inequality.

Proof. The validity follows from the definition of β2 and the fact that αk ≤ wk

for all k ∈ N . �

As an example, let S = {1, 2, 3, 4}. Then, as w̄1(S) = 20; α′ = 4. Accordingly,

α1 = 13, α2 = 13, α3 = 14, and α4 = 2. Besides, β2 is 8. Hence, inequality (3.7)

becomes 13x1 + 13x2 + 14x3 + 2x4 + 8z2 ≤ h1 + h2 which also defines a facet for

the problem as PORTA indicates.

For the above case, four out of ten facet defining inequalities for the given

instance can be described by (3.6) and (3.7). Remaining six facets are described

by sequential lifting procedure.

Next case is for inequalities on z1, z2, and h2 as follows.

Case 4 γ1 = 0, γ2 = 1, β2 6= 0;

Proposition 9 Let S ⊆ N and C ⊆ S such that w(C) ≥ a1. Let also αk =

w(C)− a1 if k ∈ C, and αk = w′(S) if k ∈ S \ C. Then∑
k∈S

min {αk, wk}xk + β1z1 + β2z2 ≤ h2 (3.8)
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is a valid inequality.

Proof. If z1 = 1, then h2 = 0 and inequality (3.8) becomes
∑

k∈S min {αk, wk}xk+

β1 ≤ 0. By definition of β1 this is satisfied.

If z2 = 1, then h1 = 0 and inequality (3.8) becomes
∑

k∈S min {αk, wk}xk + β2 ≤
h2. By definition of β2,

∑
k∈S min {αk, wk}xk + β2 ≤

∑
k∈S wkxk. Since

h2 ≥
∑

k∈N wkxk, inequality (3.8) is again satisfied. �

As an example, let S = {1, 2, 3} and C = {1, 2}. Then, since w(C) = 34 and

w′(S) = 10, α1 = 10, α2 = 10, and α3 = 10. Besides, β1 is -10 and β2 is 14.

Hence, inequality (3.8) becomes 10x1 + 10x2 + 10x3 − 10z1 + 14z2 ≤ h2 which is

also a facet defining inequality for the problem as PORTA shows.

For the above case, seven out of fifteen facet defining inequalities for the given

instance can be described by (3.8). Besides, seven facets are described by sequen-

tial lifting procedure.

3.3 Lifting

Lifting was first proposed by Gomory [19] and is one of the most widely used

techniques to generate strong valid inequalities. Main purpose of lifting is to start

with a valid inequality and obtain a strong valid inequality by changing the coef-

ficients of one or more variables in the initial inequality. In some cases, lifting of

a valid inequality results in a facet defining inequality. Lifting techniques can be

categorized in three parts; sequential or simultaneous, exact or approximate, and

up or down lifting. In our study, we applied both sequential and simultaneous

lifting in order to obtain valid and facet defining inequalities. We used uplifting

technique while determining the exact coefficients of the variables to be lifted.
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This section consists of two subsections; sequential lifting, and simultane-

ous lifting, respectively. In each one, corresponding lifting technique is briefly

explained. Then, strength of the lifting techniques are shown by providing exam-

ples from the problem that is given in the previous section.

3.3.1 Sequential Lifting

Sequential lifting is the most commonly used lifting technique in the literature.

In most cases, it is very helpful on deriving facet defining inequalities. There are

two types of sequential lifting; uplifting and downlifting.

Sequential lifting adjusts the coefficients of the variables one at a time. At

each time a variable is to be lifted, an optimization problem is required to be

solved. Typically, the lifting process is done iteratively until all of the possible

variables are lifted. Besides, the order of the variables that are to be lifted can

vary. The coefficients of the lifted variables can also vary, since they depend on

the lifting order.

The sequential lifting algorithm for an x variable, xl, assumes that∑
k∈N\{l} αkxk +

∑
j∈T βjzj ≤

∑
j∈T γjhj is a valid inequality for P conv

≥ when

xl = 0, and seeks to generate a valid inequality αlxl+
∑

k∈N\{l} αkxk+
∑

j∈T βjzj ≤∑
j∈T γjhj for P conv

≥ .

The methodology to perform sequential lifting of an x variable, xl, starts with

setting xl to 1. Then, inequality αlxl +
∑

k∈N\{l} αkxk +
∑

j∈T βjzj ≤
∑

j∈T γjhj

is obtained. This inequality, together with our original constraints constitute the

constraint set. Our aim is to solve the optimization problem which tries to max-

imize αl while satisfying the constraint set. In addition, one or more zj’s may

have to be equal to zero after setting xl to 1. Setting those variables can help

solving the problem.
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The sequential lifting algorithm for a z variable, zr, assumes that
∑

k∈N αkxk+∑
j∈T\{r} βjzj ≤

∑
j∈T γjhj is a valid inequality for P conv

≥ when zr = 0, and seeks

to generate a valid inequality
∑

k∈N αkxk +
∑

j∈T\{r} βjzj + βrzr ≤
∑

j∈T γjhj for

P conv
≥ .

The methodology to perform sequential lifting of a z variable, zr, starts with

setting zr to 1. Then, inequality
∑

k∈N αkxk +βr ≤ γrhr is obtained. In addition,

one or more xk’s may have to be equal to zero after setting zr to 1. Adjusting

values of those variables can help solving the optimization problem which is to

be solved in order to find the maximum value for βr.

As an example, let 12x2 + 13x3 + 2x4 ≤ h1 + h2 be the inequality to be lifted

for MCM≥ model. Obviously, this inequality is valid when x1 = 0 and z2 = 0,

since 17x1 + 17x2 + 18x3 + 2x4 ≤ h1 + h2. Assume that x1 is the variable to be

uplifted. Let x1 = 1, then z1 = 1. Thus, we get the following inequality:

α1 + 12x2 + 13x3 + 2x4 ≤ h1. Maximum value that α1 can take is 17, since

otherwise the inequality 17x1 + 17x2 + 18x3 + 2x4 ≤ h1 would not be valid. Now,

we lift the inequality with z2. We set z2 to 1, and get the following inequality:

17x1 + 12x2 + 13x3 + 2x4 + β2 ≤ h2. β̂2 = 5 and β̃2 = 5, so maximum value that

β2 can take is 5, which are obtained as the following optimization problems are

solved:

β̂2 = min (5x2 + 5x3)

s.t. 24 ≤ 17x1 + 17x2 + 18x3 + 2x4 ≤ 53

xk ∈ {0, 1} ∀k ∈ N

and

β̃2 = min {24− (17x1 + 12x2 + 13x3 + 2x4)}

s.t. 17x1 + 17x2 + 18x3 + 2x4 ≤ 24

xk ∈ {0, 1} ∀k ∈ N
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Then, β2 = min
{
β̂2, β̃2

}
.

After finding β2, we get the valid inequality 17x1 + 12x2 + 13x3 + 2x4 + 5z2 ≤
h1 + h2 which is a facet defining inequality for this example.

3.3.2 Simultaneous Lifting

Simultaneous lifting is another lifting method for generating valid inequali-

ties. Its main difference from sequential lifting is that it allows for more than one

variable to be lifted at the same time. Simultaneous lifting technique for binary

variables is first proposed by Zemel [20]. He used an exact method to lift multiple

variables simultaneously. Although his method is technically precise, it is very

demanding, computationally.

Main advantage of simultaneous lifting is that it requires less number of op-

timization problems to be solved by lifting a set of variables at once. Moreover,

the inequalities generated by simultaneous lifting tend to be stronger [17].

The simultaneous lifting algorithm for a pair of z and h variables, zr and

hr, assumes that
∑

k∈N αkxk +
∑

j∈T\{r} βjzj ≤
∑

j∈T\{r} γjhj is a valid inequal-

ity for P conv
≥ when zr = 0, and seeks to create a valid inequality

∑
k∈N αkxk +∑

j∈T\{r} βjzj + βrzr ≤
∑

j∈T\{r} γjhj + γrhr for P conv
≥ .

The methodology to perform simultaneous lifting of a pair of z and h vari-

ables, zr and hr, starts with setting zr to 1, and consequently
∑

k∈N wkxk ≤ hr

and ar−1 ≤ hr ≤ ar. Then, inequality
∑

k∈N αkxk + βr ≤ γrhr is obtained. In

addition, one or more xk’s may have to be equal to zero or one after setting zr

to 1. Adjusting values of those variables can be useful while finding the proper

coefficients of zr and hr. In order to find these coefficients, the set of inequalities
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ar−1 ≤
∑

k∈N wkxk ≤ ar and
∑

k∈N αkxk + βr ≤ γr
∑

k∈N wkxk ≤ γrhr are ana-

lyzed. Out of the feasible pairs, the pair of β∗r and γ∗r that satisfy two of these

inequalities as equality are the proper lifting coefficients.

As an example, let 204x1 + 204x2 + 204x3 + 34x4 + 170z2 ≤ 17h2 be

the inequality to be lifted for MCM≥ model. This inequality is valid, since

170 ≤ 17h2 − 204x1 − 204x2 − 204x3 − 34x4 is satisfied by all feasible points

(x, z, h) when z1 = 0. Also, 170 is the maximum value for β2 for these αk and γj

values as Proposition 5 proposes. Assume that z1 and h1 are the variables to be

lifted simultaneously. Let z1 = 1, then z2 = 0 and h1 ≤ 24. Consequently, we get

the following inequality:

204x1 + 204x2 + 204x3 + 34x4 + β1 ≤ γ1h1.

Find the set of feasible solutions that satisfy following constraints:

17x1 + 17x2 + 18x3 + 2x4 ≤ 24

204x1 + 204x2 + 204x3 + 34x4 + β1 ≤ γ1
∑

k∈N wkxk ≤ γ1h1

Feasible solutions and corresponding inequalities can be listed as follows:

If x1 = 1 and x4 = 0, then: 204 + β1 ≤ 17γ1 ≤ γ1h1 (i)

If x1 = 1 and x4 = 1, then: 238 + β1 ≤ 19γ1 ≤ γ1h1 (ii)

If x1 = 0, x3 = 0, and x4 = 1, then: 34 + β1 ≤ 2γ1 ≤ γ1h1 (iii)

If x3 = 1 and x4 = 0, then: 204 + β1 ≤ 18γ1 ≤ γ1h1 (iv)

If x3 = 1 and x4 = 1, then: 238 + β1 ≤ 20γ1 ≤ γ1h1 (v)

When the above five cases are analyzed, it can be seen that (iv) is dominated

by (i), and (v) is dominated by (ii). Besides, at most two of (i), (ii), and (iii) can

be binding. Either if (i) and (ii) or (i) and (iii) are binding, the remaining one

would not be valid. If (ii) and (iii) are binding, then β1 = −10 and γ1 = 12. Then,

we get the inequality 204x1 + 204x2 + 204x3 + 34x4− 10z1 + 170z2 ≤ 12h1 + 17h2

which is also a facet defining inequality for this example.



Chapter 4

Conclusion and Future Research

In this thesis, we first presented a nonlinear optimization problem with a

piecewise linear cost function. After introducing four linearizations of the math-

ematical model, we showed that we can relax a set of constraints if the piecewise

linear function f is nondecreasing. Relaxing that set of constraints lead us to

other versions of the models. We picked multiple choice model, MCM≥ and

MCM=, as the scope of our study.

In Chapter 2, we provided a review of the literature that contains specifica-

tions of piecewise linear functions, their linearization methods and formulations,

and piecewise linear optimization.

We introduced a valid inequality in general form in Chapter 3. Then, we ana-

lyzed that inequality and discussed properties of facet defining inequalities for our

formulation. After deriving valid inequalities from the valid inequality in general

form, we studied on how to strengthen them. Moreover, we used both sequential

and simultaneous lifting in order to obtain new strong valid inequalities and facet

defining inequalities. While determining the coefficients of the variables, we used

uplifting technique.

32
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In addition, we analyzed two examples with two segments and four items, one

for MCM≥ and one for MCM=. We obtained all facet defining inequalities for

both problems, using PORTA. For MCM= formulation, we managed to explain

all the facet defining inequalities either by the valid and facet defining inequali-

ties that we proposed, or lifting those inequalities. For MCM≥ formulation, we

explained most of the facet defining inequalities either by the valid and facet

defining inequalities that we proposed, or lifting those inequalities. Analysis on

those examples can be found in Appendix.

This study can be extended in many ways. In this study, we picked multiple

choice model out of three fundamental formulations on linearization of piecewise

linear cost functions. One can study remaining two basic formulations, which

are incremental cost formulation and convex combination model. An alternative

way could be to convert valid and facet defining inequalities that we obtained to

these two formulations. Besides, new valid and facet defining inequalities can be

derived as a future research. We studied a relaxed version of the initial model,

MCM≥, for which the piecewise linear cost function needs to be nondecreasing.

One may be interested in dealing with different special cases of the piecewise

linear cost function. In addition, we clarified strengths of our valid and facet

defining inequalities by explaining the facets of our small sized instances with

them. One can write an algorithm to produce and introduce valid inequalities to

large sized instances and test their strength as a future work.
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Appendix A

An example for MCM≥

Using PORTA, we generated all facet defining inequalities for the convex hull of

the set Q defined by:

h1 + h2 ≥ 17x1 + 17x2 + 18x3 + 2x4

0 ≤ h1 ≤ 24z1

24z2 ≤ h2 ≤ 53z2

z1 + z2 ≤ 1

x1, x2, x3, x4, z1, z2 ∈ {0, 1}

Trivial inequalities:

h1 ≤ 24z1 (15)

h2 ≤ 53z2 (16)

0 ≤ x1 (17)

0 ≤ x2 (18)

0 ≤ x3 (19)

0 ≤ x4 (20)

0 ≤ h1 (21)

24z2 ≤ h2 (22)

z1 + z2 ≤ 1 (83)

37
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17x1 + 17x2 + 18x3 + 2x4 ≤ h1 + h2 (58)

Upper bounds on xk’s (xk ≤
∑

j∈T :wk≤aj zj dominates xk ≤ 1):

x4 − z1 − z2 ≤ 0 (64)

x3 − z1 − z2 ≤ 0 (65)

x2 − z1 − z2 ≤ 0 (66)

x1 − z1 − z2 ≤ 0 (67)

Inequalities on z1 and z2 (cover inequalities):

x2 + x3 − z1 − 2z2 ≤ 0 (71)

x1 + x3 − z1 − 2z2 ≤ 0 (72)

x1 + x2 − z1 − 2z2 ≤ 0 (73)

x1 + x2 + x3 − z1 − 3z2 ≤ 0 (74)

x1 + x2 + x3 + x4 − 2z1 − 3z2 ≤ 0 (77)

Inequalities on h1 and z2 (these are inequalities (3.4): from (23) to (69), λ = 0

and C = ∅, from (44) to (51), S = {1, 2, 3, 4} and λ = 2.):

18x3 − 18z2 ≤ h1 S = {3} (23)

17x2 − 17z2 ≤ h1 S = {2} (24)

17x2 + 18x3 − 35z2 ≤ h1 S = {2, 3} (25)

17x1 − 17z2 ≤ h1 S = {1} (30)

17x1 + 18x3 − 35z2 ≤ h1 S = {1, 3} (31)

17x1 + 17x2 − 34z2 ≤ h1 S = {1, 2} (32)

18x3 + 2x4 − 20z2 ≤ h1 S = {3, 4} (36)

17x2 + 2x4 − 19z2 ≤ h1 S = {2, 4} (37)

17x1 + 2x4 − 19z2 ≤ h1 S = {1, 4} (42)

2x4 − 2z2 ≤ h1 S = {4} (69)
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17x1 + 17x2 + 18x3 + 2x4 − 52z2 ≤ h1 C = ∅ (44)

2x1 + 17x2 + 18x3 + 2x4 − 37z2 ≤ h1 C = {1} (45)

17x1 + 2x2 + 18x3 + 2x4 − 37z2 ≤ h1 C = {2} (46)

17x1 + 17x2 + 2x3 + 2x4 − 36z2 ≤ h1 C = {3} (47)

2x1 + 2x2 + 18x3 + 2x4 − 22z2 ≤ h1 C = {1, 2} (48)

2x1 + 17x2 + 2x3 + 2x4 − 21z2 ≤ h1 C = {1, 3} (49)

17x1 + 2x2 + 2x3 + 2x4 − 21z2 ≤ h1 C = {2, 3} (50)

2x1 + 2x2 + 2x3 + 2x4 − 6z2 ≤ h1 C = {1, 2, 3} (51)

Inequalities on h2 and z1 (these are inequalities (3.5)):

17x1 + 17x2 + 18x3 − 18z1 ≤ h2 S = {1, 2, 3}, λ = 34, C = ∅ (34)

17x1 + 17x2 + 18x3 + 2x4 − 20z1 ≤ h2 S = {1, 2, 3, 4}, λ = 34, C = ∅ (43)

Inequalities on h1, h2 and z2:

Following three inequalities can be described with sequential lifting procedure.

170x1 + 170x2 + 170x3 + 238z2 ≤ 10h1 + 17h2 (1)

170x1 + 170x2 + 170x3 + 238z2 ≤ 17h2 is a valid inequality for Qconv when z1 = 0.

Assume that h1 is the variable to be lifted. Let z1 = 1 and above inequality

becomes 170x1 +170x2 +170x3 ≤ γ1h1. Then, minimum value for γ1 is 10. Then,

we get

170x1 + 170x2 + 170x3 + 238z2 ≤ 10h1 + 17h2 (1)

170x1 + 187x2 + 187x3 + 221z2 ≤ 11h1 + 17h2 (2)

170x1 + 187x2 + 187x3 + 221z2 ≤ 17h2 is a valid inequality for Qconv when z1 = 0.

Assume that h1 is the variable to be lifted. Let z1 = 1 and above inequality

becomes 170x1 +187x2 +187x3 ≤ γ1h1. Then, minimum value for γ1 is 11. Then,

we get

170x1 + 187x2 + 187x3 + 221z2 ≤ 11h1 + 17h2 (2)
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187x1 + 170x2 + 187x3 + 221z2 ≤ 11h1 + 17h2 (6)

187x1 + 170x2 + 187x3 + 221z2 ≤ 17h2 is a valid inequality for Qconv when z1 = 0.

Assume that h1 is the variable to be lifted. Let z1 = 1 and above inequality

becomes 187x1 +170x2 +187x3 ≤ γ1h1. Then, minimum value for γ1 is 11. Then,

we get

187x1 + 170x2 + 187x3 + 221z2 ≤ 11h1 + 17h2 (6)

Following three inequalities can be described with the valid inequality (3.6).

12x1 + 12x2 + 12x3 + 2x4 + 10z2 ≤ h1 + h2 (54)

S = {1, 2, 3, 4} , C = {1, 2, 4} , w′(S) = 12, β2 = 10

12x1 + 13x2 + 13x3 + 2x4 + 9z2 ≤ h1 + h2 (55)

S = {1, 2, 3, 4} , C = {2, 3, 4} , w′(S) = 12, β2 = 9

13x1 + 12x2 + 13x3 + 2x4 + 9z2 ≤ h1 + h2 (56)

S = {1, 2, 3, 4} , C = {1, 3, 4} , w′(S) = 12, β2 = 9

Following inequality can be described with the valid inequality (3.7).

13x1 + 13x2 + 14x3 + 2x4 + 8z2 ≤ h1 + h2 (57)

S = {1, 2, 3, 4} , w̄1(S) = 4, α′ = 20, β2 = 8

Following three inequalities can be described with sequential lifting procedure.

12x1 + 17x2 + 13x3 + 2x4 + 5z2 ≤ h1 + h2 (61)

12x1 + 13x3 + 2x4 ≤ h1 + h2 is a valid inequality when x2 = 0 and z2 = 0, since

17x1 +17x2 +18x3 +2x4 ≤ h1 +h2. Assume that x2 is the variable to be uplifted.

Let x2 = 1, then z1 = 1. Thus, we get the following inequality:

12x1 + α2x2 + 13x3 + 2x4 ≤ h1. Maximum value that α2 can take is 17, since
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otherwise the inequality 17x1 + 17x2 + 18x3 + 2x4 ≤ h1 would not be valid. Now,

we lift the inequality with z2. We set z2 to 1, and get the following inequality:

12x1 + 17x2 + 13x3 + 2x4 +β2 ≤ h2. Maximum value that β2 can take is 5, as the

methodology for sequential lifting of a z variable is applied. Then, we get

12x1 + 17x2 + 13x3 + 2x4 + 5z2 ≤ h1 + h2 (61)

17x1 + 12x2 + 13x3 + 2x4 + 5z2 ≤ h1 + h2 (62)

12x2 + 13x3 + 2x4 ≤ h1 + h2 is a valid inequality when x1 = 0 and z2 = 0, since

17x1 + 17x2 + 18x3 + 2x4 ≤ h1 +h2 Assume that x1 is the variable to be uplifted.

Let x1 = 1, then z1 = 1. Thus, we get the following inequality:

α1x1 + 12x2 + 13x3 + 2x4 ≤ h1. Maximum value that α1 can take is 17, since

otherwise the inequality 17x1 + 17x2 + 18x3 + 2x4 ≤ h1 would not be valid. Now,

we lift the inequality with z2. We set z2 to 1, and get the following inequality:

17x1 + 12x2 + 13x3 + 2x4 +β2 ≤ h2. Maximum value that β2 can take is 5, as the

methodology for sequential lifting of a z variable is applied. Then, we get

17x1 + 12x2 + 13x3 + 2x4 + 5z2 ≤ h1 + h2 (62)

13x1 + 13x2 + 18x3 + 2x4 + 4z2 ≤ h1 + h2 (63)

13x1 + 13x2 + 2x4 ≤ h1 + h2 is a valid inequality when x3 = 0 and z2 = 0, since

17x1 + 17x2 + 18x3 + 2x4 ≤ h1 +h2 Assume that x3 is the variable to be uplifted.

Let x3 = 1, then z1 = 1. Thus, we get the following inequality:

13x1 + 13x2 + α3x3 + 2x4 ≤ h1. Maximum value that α3 can take is 18, since

otherwise the inequality 17x1 + 17x2 + 18x3 + 2x4 ≤ h1 would not be valid. Now,

we lift the inequality with z2. We set z2 to 1, and get the following inequality:

13x1 + 13x2 + 18x3 + 2x4 +β2 ≤ h2. Maximum value that β2 can take is 4, as the

methodology for sequential lifting of a z variable is applied. Then, we get

13x1 + 13x2 + 18x3 + 2x4 + 4z2 ≤ h1 + h2 (63)

Inequalities on h2, z1 and z2:

Following seven inequalities can be described with the valid inequality (3.8).
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10x1 + 10x2 + 10x3 − 10z1 + 14z2 ≤ h2 (26)

S = {1, 2, 3} , C = {1, 2} , w(C) = 34, w′(S) = 10, β1 = −10, β2 = 14

10x1 + 11x2 + 11x3 − 11z1 + 13z2 ≤ h2 (27)

S = {1, 2, 3} , C = {2, 3} , w(C) = 35, w′(S) = 10, β1 = −11, β2 = 13

11x1 + 10x2 + 11x3 − 11z1 + 13z2 ≤ h2 (28)

S = {1, 2, 3} , C = {1, 3} , w(C) = 35, w′(S) = 10, β1 = −11, β2 = 13

12x1 + 12x2 + 12x3 + 2x4 − 14z1 + 10z2 ≤ h2 (38)

S = {1, 2, 3, 4} , C = {1, 2, 4} , w(C) = 36, w′(S) = 12, β1 = −14, β2 = 10

12x1 + 13x2 + 13x3 + 2x4 − 15z1 + 9z2 ≤ h2 (39)

S = {1, 2, 3, 4} , C = {2, 3, 4} , w(C) = 37, w′(S) = 12, β1 = −15, β2 = 9

13x1 + 12x2 + 13x3 + 2x4 − 15z1 + 9z2 ≤ h2 (40)

S = {1, 2, 3, 4} , C = {1, 3, 4} , w(C) = 37, w′(S) = 12, β1 = −15, β2 = 9

Following seven inequalities can be described with sequential lifting procedure.

13x1 + 13x2 + 14x3 + 2x4 − 16z1 + 8z2 ≤ h2 (41)

13x1 + 13x2 + 14x3 + 2x4 + 8z2 ≤ h2 is a valid inequality when z1 = 0. Assume

that z1 is the variable to be uplifted. Let z1 = 1, then z2 = 0. Thus, we get the

following inequality:

13x1 + 13x2 + 14x3 + 2x4 + β1 ≤ 0. Maximum value that β1 can take is -16, as

the methodology for sequential lifting of a z variable is applied. Then, we get

13x1 + 13x2 + 14x3 + 2x4 − 16z1 + 8z2 ≤ h2 (41)

17x1 + 18x2 + 18x3 − 18z1 − z2 ≤ h2 (52)

17x1 + 18x3 − 18z1 ≤ h2 is a valid inequality when x2 = 0 and z2 = 0. Assume
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that x2 is the variable to be uplifted. Let x2 = 1, then z1 = 1. Thus, we get the

following inequality:

17x1 + α2x2 + 18x3 ≤ 18. Maximum value that α2 can take is 18, trivially. Now,

we lift the inequality with z2. We set z2 to 1, and get the following inequality:

17x1 + 18x2 + 18x3 + β2z2 ≤ h2. Maximum value that β2 can take is 1, as the

methodology for sequential lifting of a z variable is applied. Then, we get

17x1 + 18x2 + 18x3 − 18z1 − z2 ≤ h2 (52)

18x1 + 17x2 + 18x3 − 18z1 − z2 ≤ h2 (53)

18x1 + 17x2 + 18x3− z2 ≤ h2 is a valid inequality when z1 = 0. Assume that z1 is

the variable to be uplifted. Let z1 = 1, then z2 = 0. Thus, we get the following

inequality:

18x1 + 17x2 + 18x3 + β1 ≤ 0. Maximum value that β1 can take is -18, trivially.

Then, we get

18x1 + 17x2 + 18x3 − 18z1 − z2 ≤ h2 (53)

17x1 + 18x2 + 18x3 + 2x4 − 20z1 − z2 ≤ h2 (59)

17x1+18x2+18x3−z2 ≤ h2 is a valid inequality when x4 = 0 and z1 = 0. Assume

that x4 is the variable to be uplifted. Let x4 = 1. Then, we get the following

inequality:

17x1 + 18x2 + 18x3 +α4x4− z2 ≤ h2. Maximum value that α4 can take is 2. Now,

we lift the inequality with z1. We set z1 to 1, and get the following inequality:

17x1 + 18x2 + 18x3 + 2x4 + β1 ≤ 0. Maximum value that β1 can take is -20, as

the methodology for sequential lifting of a z variable is applied. Then, we get

17x1 + 18x2 + 18x3 + 2x4 − 20z1 − z2 ≤ h2 (59)

18x1 + 17x2 + 18x3 + 2x4 − 20z1 − z2 ≤ h2 (60)

18x1+17x2+18x3−z2 ≤ h2 is a valid inequality when x4 = 0 and z1 = 0. Assume

that x4 is the variable to be uplifted. Let x4 = 1. Then, we get the following

inequality:

18x1 + 17x2 + 18x3 +α4x4− z2 ≤ h2. Maximum value that α4 can take is 2. Now,
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we lift the inequality with z1. We set z1 to 1, and get the following inequality:

18x1 + 17x2 + 18x3 + 2x4 + β1 ≤ 0. Maximum value that β1 can take is -20, as

the methodology for sequential lifting of a z variable is applied. Then, we get

18x1 + 17x2 + 18x3 + 2x4 − 20z1 − z2 ≤ h2 (60)

18x1 + 18x2 + 18x3 − 18z1 − 2z2 ≤ h2 (68)

18x1 + 18x3 − 2z2 ≤ h2 is a valid inequality when x2 = 0 and z1 = 0. Assume

that x2 is the variable to be uplifted. Let x2 = 1. Then, we get the following

inequality:

18x1 + α2x2 + 18x3 − 2z2 ≤ h2. Maximum value that α2 can take is 18. Now, we

lift the inequality with z1. We set z1 to 1, and get the following inequality:

18x1 + 18x2 + 18x3 + β1 ≤ 0. Maximum value that β1 can take is -18, as the

methodology for sequential lifting of a z variable is applied. Then, we get

18x1 + 18x2 + 18x3 − 18z1 − 2z2 ≤ h2 (68)

18x1 + 18x2 + 18x3 + 2x4 − 20z1 − 2z2 ≤ h2 (70)

18x1+18x3+2x4−2z2 ≤ h2 is a valid inequality when x2 = 0 and z1 = 0. Assume

that x2 is the variable to be uplifted. Let x2 = 1. Then, we get the following

inequality:

18x1+α2x2+18x3+2x4−2z2 ≤ h2. Maximum value that α2 can take is 18. Now,

we lift the inequality with z1. We set z1 to 1, and get the following inequality:

18x1 + 18x2 + 18x3 + 2x4 + β1 ≤ 0. Maximum value that β1 can take is -20, as

the methodology for sequential lifting of a z variable is applied. Then, we get

18x1 + 18x2 + 18x3 + 2x4 − 20z1 − 2z2 ≤ h2 (70)

Inequalities on h1, z1 and z2:

17x1 + 17x2 + 17x3 + 17x4 − 15z1 − 51z2 − h1 ≤ 0 (33)

17x1 + 17x2 + 18x3 + 17x4 − 15z1 − 52z2 − h1 ≤ 0 (35)

Above two inequalities can be described with sequential lifting procedure.
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17x1 + 17x2 + 17x3 + 17x4 − 15z1 − 51z2 ≤ h1 (33)

17x1 + 17x2 + 17x3 + 17x4− 15z1 ≤ h1 is a valid inequality when z2 = 0. Assume

that z2 is the variable to be uplifted. Let z2 = 1, then z1 = 0. Thus, we get the

following inequality:

17x1 + 17x2 + 17x3 + 17x4 + β2 ≤ 0. Maximum value that β2 can take is -51,

trivially. Then, we get

17x1 + 17x2 + 17x3 + 17x4 − 15z1 − 51z2 ≤ h1 (33)

17x1 + 17x2 + 18x3 + 17x4 − 15z1 − 52z2 ≤ h1 (35)

17x1 + 17x2 + 18x3 + 17x4− 15z1 ≤ h1 is a valid inequality when z2 = 0. Assume

that z2 is the variable to be uplifted. Let z2 = 1, then z1 = 0. Thus, we get the

following inequality:

17x1 + 17x2 + 18x3 + 17x4 + β2 ≤ 0. Maximum value that β2 can take is -52, as

the methodology for sequential lifting of a z variable is applied. Then, we get

17x1 + 17x2 + 18x3 + 17x4 − 15z1 − 52z2 ≤ h1 (35)

Inequalities on h1, h2, z1 and z2:

Following four inequalities can be described with simultaneous lifting procedure.

204x1 + 204x2 + 204x3 + 34x4 − 10z1 + 170z2 ≤ 12h1 + 17h2 (10)

204x1 + 204x2 + 204x3 + 34x4 + 170z2 ≤ 17h2 is valid, since 170 ≤ 17h2− 204x1−
204x2−204x3−34x4 is satisfied by all feasible points (x, z, h) when z1 = 0. Also,

170 is the maximum value for β2 for these αk and γj values as Proposition 5 pro-

poses. Assume that z1 and h1 are the variables to be lifted simultaneously. Let

z1 = 1, then z2 = 0 and h1 ≤ 24. Consequently, we get the following inequality:

204x1 + 204x2 + 204x3 + 34x4 + β1 ≤ γ1h1.

Find the set of feasible solutions that satisfy following constraints:

17x1 + 17x2 + 18x3 + 2x4 ≤ 24

204x1 + 204x2 + 204x3 + 34x4 + β1 ≤ γ1
∑

k∈N wkxk ≤ γ1h1
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Feasible solutions and corresponding inequalities can be listed as follows:

If x1 = 1 and x4 = 0, then: 204 + β1 ≤ 17γ1 ≤ γ1h1 (i)

If x1 = 1 and x4 = 1, then: 238 + β1 ≤ 19γ1 ≤ γ1h1 (ii)

If x1 = 0, x3 = 0, and x4 = 1, then: 34 + β1 ≤ 2γ1 ≤ γ1h1 (iii)

If x3 = 1 and x4 = 0, then: 204 + β1 ≤ 18γ1 ≤ γ1h1 (iv)

If x3 = 1 and x4 = 1, then: 238 + β1 ≤ 20γ1 ≤ γ1h1 (v)

When the above five cases are analyzed, it can be seen that (iv) is dominated

by (i), and (v) is dominated by (ii). Besides, at most two of (i), (ii), and (iii)

can be binding. Either if (i) and (ii) or (i) and (iii) are binding, the remaining

one would not be valid. If (ii) and (iii) are binding, then β1 = −10 and γ1 = 12.

Then, we get

204x1 + 204x2 + 204x3 + 34x4 − 10z1 + 170z2 ≤ 12h1 + 17h2

204x1 + 221x2 + 221x3 + 34x4 − 8z1 + 153z2 ≤ 13h1 + 17h2 (11)

204x1 + 221x2 + 221x3 + 34x4 + 153z2 ≤ 17h2 is valid, since 153 ≤ 17h2− 204x1−
221x2−221x3−34x4 is satisfied by all feasible points (x, z, h) when z1 = 0. Also,

153 is the maximum value for β2 for these αk and γj values as Proposition 5 pro-

poses. Assume that z1 and h1 are the variables to be lifted simultaneously. Let

z1 = 1, then z2 = 0 and h1 ≤ 24. Consequently, we get the following inequality:

204x1 + 221x2 + 221x3 + 34x4 + β1 ≤ γ1h1.

Find the set of feasible solutions that satisfy following constraints:

17x1 + 17x2 + 18x3 + 2x4 ≤ 24

204x1 + 221x2 + 221x3 + 34x4 + β1 ≤ γ1
∑

k∈N wkxk ≤ γ1h1

Feasible solutions and corresponding inequalities can be listed as follows:

If x1 = 1 and x4 = 0, then: 204 + β1 ≤ 17γ1 ≤ γ1h1 (i)

If x1 = 1 and x4 = 1, then: 238 + β1 ≤ 19γ1 ≤ γ1h1 (ii)

If x1 = 0, x3 = 0, and x4 = 1, then: 34 + β1 ≤ 2γ1 ≤ γ1h1 (iii)

If x2 = 1 and x4 = 0, then: 221 + β1 ≤ 17γ1 ≤ γ1h1 (iv)
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If x2 = 1 and x4 = 1, then: 255 + β1 ≤ 19γ1 ≤ γ1h1 (v)

When the above five cases are analyzed, it can be seen that (i) is dominated

by (iv), and (ii) is dominated by (iv). Besides, at most two of (iii), (iv), and (v)

can be binding. Either if (iii) and (iv) or (iv) and (v) are binding, the remaining

one would not be valid. If (iii) and (v) are binding, then β1 = −8 and γ1 = 13.

Then, we get

204x1 + 221x2 + 221x3 + 34x4 − 8z1 + 153z2 ≤ 13h1 + 17h2 (11)

221x1 + 204x2 + 221x3 + 34x4 − 8z1 + 153z2 ≤ 13h1 + 17h2 (13)

221x1 + 204x2 + 221x3 + 34x4 + 153z2 ≤ 17h2 is valid, since 153 ≤ 17h2− 221x1−
204x2−221x3−34x4 is satisfied by all feasible points (x, z, h) when z1 = 0. Also,

153 is the maximum value for β2 for these αk and γj values as Proposition 5 pro-

poses. Assume that z1 and h1 are the variables to be lifted simultaneously. Let

z1 = 1, then z2 = 0 and h1 ≤ 24. Consequently, we get the following inequality:

221x1 + 204x2 + 221x3 + 34x4 + β1 ≤ γ1h1.

Find the set of feasible solutions that satisfy following constraints:

17x1 + 17x2 + 18x3 + 2x4 ≤ 24

221x1 + 204x2 + 221x3 + 34x4 + β1 ≤ γ1
∑

k∈N wkxk ≤ γ1h1

Feasible solutions and corresponding inequalities can be listed as follows:

If x1 = 1 and x4 = 0, then: 221 + β1 ≤ 17γ1 ≤ γ1h1 (i)

If x1 = 1 and x4 = 1, then: 255 + β1 ≤ 19γ1 ≤ γ1h1 (ii)

If x1 = 0, x3 = 0, and x4 = 1, then: 34 + β1 ≤ 2γ1 ≤ γ1h1 (iii)

If x3 = 1 and x4 = 0, then: 221 + β1 ≤ 18γ1 ≤ γ1h1 (iv)

If x3 = 1 and x4 = 1, then: 255 + β1 ≤ 20γ1 ≤ γ1h1 (v)

When the above five cases are analyzed, it can be seen that (iv) is dominated

by (i), and (v) is dominated by (ii). Besides, at most two of (i), (ii), and (iii)
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can be binding. Either if (i) and (ii) or (i) and (iii) are binding, the remaining

one would not be valid. If (ii) and (iii) are binding, then β1 = −8 and γ1 = 13.

Then, we get

221x1 + 204x2 + 221x3 + 34x4 + 153z2 ≤ 8z1 + 13h1 + 17h2 (13)

117x1 + 117x2 + 126x3 + 18x4 − 4z1 + 72z2 ≤ 7h1 + 9h2 (78)

117x1 + 117x2 + 126x3 + 18x4 + 72z2 ≤ 9h2 is valid, since 72 ≤ 9h2 − 117x1 −
117x2−126x3−18x4 is satisfied by all feasible points (x, z, h) when z1 = 0. Also,

72 is the maximum value for β2 for these αk and γj values as Proposition 5 pro-

poses. Assume that z1 and h1 are the variables to be lifted simultaneously. Let

z1 = 1, then z2 = 0 and h1 ≤ 24. Consequently, we get the following inequality:

117x1 + 117x2 + 126x3 + 18x4 + β1 ≤ γ1h1.

Find the set of feasible solutions that satisfy following constraints:

17x1 + 17x2 + 18x3 + 2x4 ≤ 24

117x1 + 117x2 + 126x3 + 18x4 + β1 ≤ γ1
∑

k∈N wkxk ≤ γ1h1

Feasible solutions and corresponding inequalities can be listed as follows:

If x1 = 1 and x4 = 0, then: 117 + β1 ≤ 17γ1 ≤ γ1h1 (i)

If x1 = 1 and x4 = 1, then: 135 + β1 ≤ 19γ1 ≤ γ1h1 (ii)

If x1 = 0, x3 = 0, and x4 = 1, then: 18 + β1 ≤ 2γ1 ≤ γ1h1 (iii)

If x3 = 1 and x4 = 0, then: 126 + β1 ≤ 18γ1 ≤ γ1h1 (iv)

If x3 = 1 and x4 = 1, then: 144 + β1 ≤ 20γ1 ≤ γ1h1 (v)

When the above five cases are analyzed, it can be seen that (i) is dominated

by (iv), (iv) is dominated by (ii), and (ii) is dominated by (v). If (iii) and (v) are

binding, then β1 = −4 and γ1 = 7. Then, we get

117x1 + 117x2 + 126x3 + 18x4 − 4z1 + 72z2 ≤ 7h1 + 9h2 (78)
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Finally, following is the set of facets that we could not explain with our pro-

posed valid inequalities or lifting techniques.

51x1 + 51x2 + 54x3 + 8x4 − 2z1 + 34z2 ≤ 3h1 + 4h2 (80)

172x1 + 187x2 + 187x3 + 22x4 + 151z2 ≤ 11h1 + 15h2 (3)

181x1 + 187x2 + 198x3 + 210z2 ≤ 11h1 + 17h2 (4)

183x1 + 187x2 + 198x3 + 22x4 + 140z2 ≤ 11h1 + 15h2 (5)

187x1 + 172x2 + 187x3 + 22x4 + 151z2 ≤ 11h1 + 15h2 (7)

187x1 + 181x2 + 198x3 + 210z2 ≤ 11h1 + 17h2 (8)

187x1 + 183x2 + 198x3 + 22x4 + 140z2 ≤ 11h1 + 15h2 (9)

33x1 + 33x2 + 36x3 + 36z2 ≤ 2h1 + 3h2 (75)

34x1 + 34x2 + 34x3 + 4x4 + 34z2 ≤ 2h1 + 3h2 (76)

50x1 + 50x2 + 54x3 + 6x4 + 36z2 ≤ 3h1 + 4h2 (79)

85x1 + 85x2 + 90x3 + 102z2 ≤ 5h1 + 8h2 (81)

85x1 + 85x2 + 90x3 + 10x4 + 68z2 ≤ 5h1 + 7h2 (82)

11x1 + 11x2 + 12x3 − 12z1 + 12z2 ≤ h2 (29)

217x1 + 221x2 + 234x3 + 34x4 − 8z1 + 140z2 ≤ 13h1 + 17h2 (12)

221x1 + 217x2 + 234x3 + 34x4 − 8z1 + 140z2 ≤ 13h1 + 17h2 (14)
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An example for MCM=

Using PORTA, we generated all facet defining inequalities for the convex hull of

the set Q′ defined by:

h1 + h2 = 17x1 + 17x2 + 18x3 + 2x4

0 ≤ h1 ≤ 24z1

24z2 ≤ h2 ≤ 53z2

z1 + z2 ≤ 1

x1, x2, x3, x4, z1, z2 ∈ {0, 1}

Following inequalities are trivial inequalities.

z1 + z2 ≤ 1 (50)

x2 ≥ 0 (11)

x3 ≥ 0 (12)

x4 ≥ 0 (13)

h1 ≥ 0 (14)

h2 ≥ 0 (15)

x1 ≥ 0 (28)

Upper bounds on xk’s:

50
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x4 ≤ z1 + z2 (30)

x3 ≤ z1 + z2 (31)

x2 ≤ z1 + z2 (32)

x1 ≤ z1 + z2 (43)

Following inequalities are cover inequalities.

x1 + x2 + x3 + x4 ≤ 2z1 + 3z2 (24)

z2 ≤ x1 + x2 (27)

z2 ≤ x2 + x3 (29)

2z2 ≤ x1 + x2 + x3 (33)

z2 ≤ x1 + x3 (34)

Following inequalities can be described with the valid inequality (3.2).

2x1 + 2x2 + 18x3 + 2x4 − 22z2 ≤ h1 (1)

S = N, C = {1, 2} , λ = 2, β2 = −22

2x1 + 17x2 + 18x3 + 2x4 − 37z2 ≤ h1 (2)

S = N, C = {1} , λ = 2, β2 = −37

17x1 + 2x2 + 2x3 + 2x4 − 21z2 ≤ h1 (4)

S = N, C = {2, 3} , λ = 2, β2 = −21

17x1 + 2x2 + 18x3 + 2x4 − 37z2 ≤ h1 (5)

S = N, C = {2} , λ = 2, β2 = −37

17x1 + 17x2 + 2x3 + 2x4 − 36z2 ≤ h1 (7)

S = N, C = {3} , λ = 2, β2 = −36
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17x1 + 17x2 + 18x3 + 2x4 − 20z1 ≤ h2 (8)

S = N, C = {} , λ = −34, β1 = −20

17x1 + 17x2 + 18x3 + 2x4 − 52z2 ≤ h1 (9)

S = N, C = {} , λ = 2, β2 = −52

17x2 − 17z2 ≤ h1 (18)

S = {2, 3, 4} , C = {3, 4} , λ = 0, β2 = −17

17x2 + 18x3 − 35z2 ≤ h1 (19)

S = {2, 3, 4} , C = {4} , λ = 0, β2 = −35

2x1 + 2x2 + 2x3 + 2x4 − 6z2 ≤ h1 (35)

S = N, C = {1, 2, 3} , λ = 2, β2 = −6

2x1 + 2x3 + 2x4 − 21z2 ≤ h1 (36)

S = N, C = {1, 3} , λ = 2, β2 = −21

17x1 − 17z2 ≤ h1 (38)

S = {1, 3, 4} , C = {3, 4} , λ = 0, β2 = −17

17x1 + 18x3 − 35z2 ≤ h1 (39)

S = {1, 3, 4} , C = {4} , λ = 0, β2 = −35

17x1 + 17x2 − 34z2 ≤ h1 (41)

S = {1, 2, 4} , C = {4} , λ = 0, β2 = −34

17x1 + 17x2 + 18x3 − 18z1 ≤ h2 (42)
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S = {1, 2, 3} , C = {} , λ = 34, β1 = −18

Following inequalities can be described with sequential lifting.

h1 + x1 ≤ 18z1 + z2 + 2x4 (3)

h1 ≤ 2x4 + 18z1 is a valid inequality when x1 = 0 and z2 = 0. Assume that x1 is

the variable to be uplifted. Let x1 = 1. Then, we get the following inequality:

h1 + α1x1 ≤ 2x4 + 18z1. Maximum value that α1 can take is 1. Now, we lift the

inequality with z2. We set z2 to 1, and get the following inequality:

x1 ≤ 2x4 + β2z2. Minimum value that β2 can take is 1. Then, we get

h1 + x1 ≤ 2x4 + 18z1 + z2 (3)

h1 + x1 + x2 ≤ 18z1 + 2z2 + 2x4 (6)

h1+x1 ≤ 18z1+2x4 is a valid inequality when x2 = 0 and z2 = 0. Assume that x2

is the variable to be uplifted. Let x2 = 1. Then, we get the following inequality:

h1 + x1 + α2x2 ≤ 2x4 + 18z1. Maximum value that α2 can take is 1. Now, we lift

the inequality with z2. We set z2 to 1, and get the following inequality:

h1 + x1 + x2 ≤ 2x4 + 18z1 + β2z2. Minimum value that β2 can take is 1. Then,

we get

h1 + x1 + x2 ≤ 18z1 + 2z2 + 2x4 (6)

h2 + 15x4 ≤ 15z1 + 52z2 (10)

h2 ≤ 52z2 is a valid inequality when x4 = 0 and z1 = 0. Assume that x4 is the

variable to be uplifted. Let x4 = 1. Then, we get the following inequality:

h2 + α4x4 ≤ 52z2. Maximum value that α4 can take is 15. Now, we lift the

inequality with z1. We set z1 to 1, and get the following inequality:

15x4 ≤ β1z1. Minimum value that β1 can take is 15. Then, we get

h2 + 15x4 ≤ 15z1 + 52z2 (10)

18x3 ≤ 18z2 + h1 (16)

18x3 ≤ h1 (14) is a valid inequality when z2 = 0. Assume that z2 is the variable
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to be uplifted. Let z2 = 1. Then, we get the following inequality:

18x3 ≤ β2z2. Minimum value that β2 can take is 18. Then, we get

18x3 ≤ 18z2 + h1 (16)

2x4 + 36z2 ≤ 2z1 + h2 + x1 + x2 (17)

2x4 + 36z2 ≤ h2 + x1 + x2 is a valid inequality when z1 = 0. Assume that z1 is

the variable to be uplifted. Let z1 = 1. Then, we get the following inequality:

2x4 ≤ x1 + x2 + β1z1. Minimum value that β1 can take is 2. Then, we get

2x4 + 36z2 ≤ 2z1 + h2 + x1 + x2 (17)

2x4 + 35z2 ≤ 2z1 + h2 + x1 (20)

2x4 + 35z2 ≤ x1 + h2 is a valid inequality when z1 = 0. Assume that z1 is the

variable to be uplifted. Let z1 = 1. Then, we get the following inequality:

2x4 ≤ x1 + β1z1. Minimum value that β1 can take is 2. Then, we get

2x4 + 35z2 ≤ 2z1 + h2 + x1 (20)

h1 + 36z2 ≤ 18x1 + 18x2 + 18x3 + 2x4 (21)

h1 ≤ 18x1 + 18x2 + 18x3 + 2x4 is a valid inequality when z2 = 0. Assume that z2

is the variable to be uplifted. Let z2 = 1. Then, we get the following inequality:

β2z2 ≤ 18x1 + 18x2 + 18x3 + 2x4. Maximum value that β2 can take is 36. Then,

we get

h1 + 36z2 ≤ 18x1 + 18x2 + 18x3 + 2x4 (21)

h1 + 35z2 ≤ 18x1 + 17x2 + 18x3 + 2x4 (22)

h1 ≤ 18x1 + 17x2 + 18x3 + 2x4 is a valid inequality when z2 = 0. Assume that z2

is the variable to be uplifted. Let z2 = 1. Then, we get the following inequality:

β2z2 ≤ 18x1 + 17x2 + 18x3 + 2x4. Maximum value that β2 can take is 35. Then,

we get

h1 + 35z2 ≤ 18x1 + 17x2 + 18x3 + 2x4 (22)
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h2 + 15x4 ≤ 15z1 + 51z2 + x3 (23)

h2 + 15x4 ≤ x3 + 52z2 is a valid inequality when z1 = 0. Assume that z1 is the

variable to be uplifted. Let z1 = 1. Then, we get the following inequality:

15x4 ≤ x3 + β1z1. Minimum value that β1 can take is 15. Then, we get

h2 + 15x4 ≤ 15z1 + 51z2 + x3 (23)

h1 + x2 ≤ 20z1 + z2 (25)

h1 ≤ 20z1 is a valid inequality when x2 = 0 and z2 = 0. Assume that x2 is the

variable to be uplifted. Let x2 = 1. Then, we get the following inequality:

h1 + α2x2 ≤ 20z2. Maximum value that α2 can take is 1. Now, we lift the in-

equality with z2. We set z2 to 1, and get the following inequality:

x2 ≤ β2z2. Minimum value that β2 can take is 1. Then, we get

h1 + x2 ≤ 20z1 + z2 (25)

h1 + 35z2 ≤ 17x1 + 18x2 + 18x3 + 2x4 (26)

h1 ≤ 17x1 + 18x2 + 18x3 + 2x4 is a valid inequality when z2 = 0. Assume that z2

is the variable to be uplifted. Let z2 = 1. Then, we get the following inequality:

β2z2 ≤ 17x1 + 18x2 + 18x3 + 2x4. Maximum value that β2 can take is 35. Then,

we get

h1 + 35z2 ≤ 17x1 + 18x2 + 18x3 + 2x4 (26)

h1 + x1 ≤ 20z1 + z2 (37)

h1 + x1 ≤ 20z1 is a valid inequality when z2 = 0. Assume that z2 is the variable

to be uplifted. Let z2 = 1. Then, we get the following inequality:

x1 ≤ β2z2. Minimum value that β2 can take is 1. Then, we get

h1 + x1 ≤ 20z1 + z2 (37)

h1 + x1 + x2 ≤ 20z1 + 2z2 (40)

h1 + x1 + x2 ≤ 20z1 is a valid inequality when z2 = 0. Assume that z2 is the

variable to be uplifted. Let z2 = 1. Then, we get the following inequality:

x1 + x2 ≤ β2z2. Minimum value that β2 can take is 2. Then, we get
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h1 + x1 + x2 ≤ 20z1 + 2z2 (40)

x1 + x2 ≤ z1 + 2z2 (44)

x1 + x2 ≤ z1 is a valid inequality when z2 = 0. Assume that z2 is the variable to

be uplifted. Let z2 = 1. Then, we get the following inequality:

x1 + x2 ≤ β2z2. Minimum value that β2 can take is 2. Then, we get

x1 + x2 ≤ z1 + 2z2 (44)

2x4 + 34z2 ≤ h2 + 2z1 (45)

2x4 + 34z2 ≤ h2 is a valid inequality when z1 = 0. Assume that z1 is the variable

to be uplifted. Let z1 = 1. Then, we get the following inequality:

2x4 ≤ β1z1. Minimum value that β1 can take is 2. Then, we get

2x4 + 34z2 ≤ h2 + 2z1 (45)

x1 + x3 ≤ z1 + 2z2 (46)

x1 + x3 ≤ z1 is a valid inequality when z2 = 0. Assume that z2 is the variable to

be uplifted. Let z2 = 1. Then, we get the following inequality:

x1 + x3 ≤ β2z2. Minimum value that β2 can take is 2. Then, we get

x1 + x3 ≤ z1 + 2z2 (46)

h1 + x2 ≤ 18z1 + z2 + 2x4 (47)

h1 + x2 ≤ 18z1 + 2x4 is a valid inequality when z2 = 0. Assume that z2 is the

variable to be uplifted. Let z2 = 1. Then, we get the following inequality:

x2 ≤ β2z2 + 2x4. Minimum value that β2 can take is 1. Then, we get

h1 + x2 ≤ 18z1 + z2 + 2x4 (47)

x2 + x3 ≤ z1 + 2z2 (48)

x2 + x3 ≤ z1 is a valid inequality when z2 = 0. Assume that z2 is the variable to

be uplifted. Let z2 = 1. Then, we get the following inequality:

x2 + x3 ≤ β2z2. Minimum value that β2 can take is 2. Then, we get
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x2 + x3 ≤ z1 + 2z2 (48)

2x4 + 35z2 ≤ 2z1 + h2 + x2 (49)

2x4 + 35z2 ≤ h2 + x2 is a valid inequality when z1 = 0. Assume that z1 is the

variable to be uplifted. Let z1 = 1. Then, we get the following inequality:

2x4 ≤ β1z1. Minimum value that β1 can take is 2. Then, we get

2x4 + 35z2 ≤ 2z1 + h2 + x2 (49)


