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ABSTRACT

FREE ACTIONS ON CW-COMPLEXES AND
VARIETIES OF SQUARE ZERO MATRICES

Berrin Şentürk

M.S. in Mathematics

Supervisor: Assist. Prof. Dr. Özgün Ünlü

September, 2011

Gunnar Carlsson stated a conjecture which gives a lower bound on the rank of a

differential graded module over a polynomial ring with coefficients in algebraically

closed field k when it has a finite dimensional homology over k. Carlsson showed

that this conjecture implies the rank conjecture about free actions on product

of spheres. In this paper, to understand the Carlsson’s conjecture about differ-

ential graded modules, we study the structure of the variety of upper triangular

square zero matrices and the techniques which were investigated by Rothbach to

determine its irreducible components . We hope these varieties could help prove

Carlsson’s conjecture.

Keywords: differential graded module, free action, variety.
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ÖZET

CW-KOMPLEKSLERİ ÜZERİNE SERBEST ETKİLER
VE KARESİ SIFIR OLAN MATRİSLERİN

ÇEŞİTLEMELERİ

Berrin Şentürk

Matematik, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Özgün Ünlü

Eylül, 2011

Gunnar Carlsson, katsayıları cebirsel kapalı cisim k’dan olan bir polinom halkası

üzerinde bulunan ve homolojisi k üzerinde sonlu boyutlu olan, diferansiyel

dereceli modülün mertebesine alt sınır veren bir sanı ortaya attı. Carls-

son bu sanının kürelerin çarpımı üzerine serbest etkimeler ile ilgili olan mer-

tebe sanısını gerektirdiğini gösterdi. Bu tezde, Carlsson’ın diferansiyel dereceli

modüllerle ilgili olan sanısını anlamak için, üst üçgensel karesi sıfır olan ma-

trislerin çeşitlemesinin yapısını ve bu çeşitlemenin indirgenemez parçalarını be-

lirleyen, Rothbach tarafından bulunan teknikleri çalışmaktayız. Bu çeşitlemelerin

Carlsson’ın sanısını kanıtlamada yardımcı olabileceğini umuyoruz.

Anahtar sözcükler : diferansiyel dereceli modül, serbest etki, çeşitleme.
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Chapter 1

Preliminaries

1.1 Introduction

In algebraic topology, there is a conjecture which states that if a finite group

(Z/p)r acts freely (see Section 1.2) on a finite complex X ' Sn1 × . . . × Snl ,

then r ≤ l. The equidimensional cases (n = ni) are verified with some ad-

ditional conditions; with the induced action on integral homology is trivial by

Carlsson [5], with the induced action on integral homology is unrestricted, but if

p = 2, then n 6= 1, 3, 7 by Adem-Browder [1], with p = 2 and n = 1 by Yalçın

[22]. Hanke [12] shows that the conjecture is true if p is large compared to the

dimension of the product of spheres. Moreover, Carlsson generalizes the conjec-

ture which asserts that if (Z/p)r acts freely on a finite CW -complex X, then∑
i rkZ/pHi(X;Z/p) ≥ 2r. Carlsson proved it for p = 2 and r ≤ 3 by using some

facts about upper triangular square zero matrix corresponding to a differential

graded module over a polynomial ring [4]. He achieved this by associating a chain

complex with a differential graded module over a polynomial ring by a functor,

he called it β (see Chapter 2). Carlsson showed that these differential graded

modules can be taken solvable (see Definition 2.0.17) so they can be represented

by upper triangular square zero matrices. Then he noticed that the rank of an

upper triangular square zero matrices which represents module with nontrivial

1



CHAPTER 1. PRELIMINARIES 2

homology, over a polynomial ring must have submaximal rank. Earlier, Rothbach

[19] studied the structure of the variety of upper triangular square zero matrices

and its irreducible components.

In this paper, we examine Carlsson’s conjecture and the algebraic analogue

of the conjecture for p = 2 and how the algebraic analogue implies Carlsson’s

conjecture. We explain the method proposed by Karagueuzian, Oliver and Ven-

tura [9] to understand Carlsson’s conjecture. Karagueuzian, Oliver and Ventura

relate this conjecture to square zero matrices. We use permutation matrices to

calculate some varieties of matrices corresponding to differential graded module

by following an idea of Rothbach.

The thesis is organized as follows:

In Chapter 1, we review some facts about free group action on spheres and

introduce some definitions which we will use later.

In Chapter 2, we discuss Carlsson’s conjecture about differential graded mod-

ules over a polynomial ring and its relation with conjectures mentioned in this

section. We also give definitions and notations about varieties over algebraically

closed field. Special attention is given to the particular irreducible component of

variety of square zero matrices and its coordinate ring.

In Chapter 3, we examine the relation between Borel orbits in variety of

square zero matrices and valid X2 words. We also determine the order of valid

X2 words with moves which was investigated by Rothbach. Then we use bracket

word to determine maximal valid X2 words. Our ultimate goal, in this chapter

is to show that the relation between permutation matrix and differential module

corresponding to maximal valid X2 word.

In Chapter 4, we show that Karagueuzian, Oliver, and Ventura’s conjecture

is true for n = 2 and prove a theorem related to their conjecture.

1.2 Free Group Actions on Spheres

In this section, we introduce the preliminary results about free group action on

products of spheres after we give some basic definitions. We follow the notations

of [2].
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Definition 1.2.1. [2] An action of a topological group G on a topological space X

is a map from G×X to X written as Θ(g, x) such that, Θ(g,Θ(h, x)) = Θ(gh, x)

for all g, h ∈ G, x ∈ X and Θ(e, x) = x for all x ∈ X, where e is the identity of

G. The space X, together with a given action Θ of G, is called a G-space.

We often use gx for Θ(g, x) when Θ is understood from the context. The

action Θ is called free if for all x ∈ X, gx = x implies g is identity.

Definition 1.2.2. [2] If X is a G-space and x ∈ X, then the subspace

G(x) = {gx ∈ X | g ∈ G}

is called the orbit of x (under G). Note that if gx = hy for some g, h ∈ G

and x, y ∈ X, then for any f ∈ G, f(x) = fg−1gx = fg−1hy ∈ G(y) so that

G(x) ⊂ G(y); conversely G(y) ⊂ G(x). Thus the orbits G(x) and G(y) of any

two points x, y ∈ X are either equal or disjoint.

The set Gx = {g ∈ G | gx = x} is called the isotropy or stability subgroup of

G at x.

Definition 1.2.3. Let G be a finite group. A relative G-CW-complex (X,A)

is a pair of G-spaces together with a filtration A = X−1 ⊂ X0 ⊂ X1 ⊂ . . . of⋃
n≥−1Xn = X such that A is a Hausdorff space, X carries the colimit topology

with respect to this filtration and for each n ≥ 0, the space Xn is obtained from

Xn−1 by attaching equivariant n-dimensional cells, i.e., there exists a G-pushout

diagram for each n ≥ 0, ∐
i∈I G/Hi × Sn−1 //

� _

��

Xn−1

��∐
i∈I G/Hi × Dn // Xn

such that In is an index set and Hi is a subgroup of G for i ∈ In. If A is

empty, then X is called a G-CW-complex. Elements of In are called equivariant

n-cells and the map G/Hi × Sn−1 → Xn−1 is called the attaching map and the

map (G/Hi × (Dn,Sn−1)) → (Xn, Xn−1) is called the characteristic map of the

corresponding n-cell. Here, we set S−1 = ∅ and consider D0 as a point space. The
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spaces Sn−1 and Dn have the trivial G-action. The G-subspace Xn is called the

n-skeleton of (X,A).

The necessary and sufficient condition for a finite group G to act freely on a

finite CW-complex the homotopy type of a sphere is that all abelian subgroups

should be cyclic [20]. We know that Z2 is the only group that can acts freely on

even dimensional spheres. It is more difficult to determine which finite groups

act freely on an odd dimensional spheres.

Proposition 1.2.4. Zn is the only finite group that can act freely on S1.

Proposition 1.2.5. The group Zp × Zp, where p is prime, cannot act freely on

any sphere.

Proof. See [7], page 262.

It is natural to look for analogous conditions for finite groups to act freely

on finite CW complexes having the homotopy type
∏r

i=1 S
n. As we mention in

Section 1, Carlsson generalizes the main conjecture as follows:

Conjecture 1.2.6 (Conjecture 1.3 in [6]). Suppose that G = (Z/p)r acts

freely on a finite CW-complex X. Then
∑

i rkZ/pHi(X;Z/p) ≥ 2r.

Carlsson proved this conjecture for p = 2 and r ≤ 3 by using facts about

differential graded module over a polynomial ring [4].

1.3 Differential Modules

Let R be a commutative ring with identity. A differential module (F, ∂) is an

R-module F with an endomorphism ∂ such that ∂2 = 0. The endomorphism ∂ is

called the differential.

A differential graded module (DG-module) is a graded module that has a dif-

ferential compatible with the graded structure (that is, the differential is of degree
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r for some r). Given a graded ring R, Carlsson defines a differential graded R-

module F as a free, graded R-module with a graded R-module homomorphism

∂ : F → F of degree −1 so that ∂2 = 0. A graded module F is called bounded

above when Fi = 0 for sufficiently large i. For a graded ring R, let D(R) denote

the category of finitely generated DG-R-modules, and if R is bounded above, we

let D∞(R) denote the category of bounded above DG-R-modules. Clearly, D(R)

is a subcategory of D∞(R).

A complex of modules over a ring R is a sequence of R-modules and homo-

morphisms

F : . . . −→ Fi+1
∂i+1−→ Fi

∂i−→ Fi−1−→ . . .

where the degree-i component of complex F is Fi such that ∂i∂i+1 = 0 for each

i. In other words, a complex F is a differential graded R-module in which the

differential is of degree −1.

Definition 1.3.1. Let F be a differential module with differential ∂. Then the

homology module of F is defined to be H(F ) = Ker∂/Im∂. If F is differential

graded module, then the i-th homology of F is

Hi(F ) = Ker∂i/Im∂i+1.

We write H(F ) for the direct sum
⊕

iHi(F ) of all the homology modules.

Similarly, if F is a complex as above, then the homology module of F is

H(F ) = Ker∂/Im∂.

We say that the differential module (or a complex) F is exact if H(F ) = 0.

Definition 1.3.2. [11] If (F, ∂) and (G, ∂) are differential modules, then a map

of differential modules is a map of modules α : F → G such that α∂ = ∂α.

If F and G are complexes, then we insist that α preserve the grading as well.

Explicitly, if

F : . . . −→ Fi+1
∂i+1−→ Fi

∂i−→ Fi−1−→ . . .

and

G : . . . −→ Gi+1
∂i+1−→ Gi

∂i−→ Gi−1−→ . . .
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are complexes of modules, then a map of complexes α : F → G is a collection of

maps

αi : Fi → Gi

of modules making the diagrams

Fi
∂i //

αi

��

Fi−1

αi−1

��
Gi ∂i

// Gi−1

commutative.

If α : (F, ∂) → (G, ∂) is a map of differential modules, then α carries kernel

of differential of F to kernel of differential of G and image of differential of F

to image of differential of G. Thus α gives rise to an induced map on homology,

which we also call α:

α : H(F )→ H(G).

Definition 1.3.3. [11] If α, β: (F, ∂) → (G, ∂) are two maps of differential

modules, then α is homotopy equivalent to β ( or simply homotopic to β) if there

is a map of modules h : F → G such that α− β = ∂h + h∂. In this case, F and

G have the same homotopy type. If F and G are complexes (so that F and G

are graded modules and ∂ have degree −1), then we insist that h have degree 1.

Fi

��

∂i // Fi−1

��

h

}}
Gi ∂i

// Gi−1

Note that α is homotopy equivalent to β if and only if α− β is equivalent to 0.

The homotopy terminology comes from topology. If α and β are continuous

maps from a space X to a space Y , then they induce maps of complexes from the

singular chain complex (see definitions in [21], page 160−161) of X to that of Y .

A homotopy H : X×I → Y from α to β determines a chain map h(x) := H(x×I)

that raises dimensions by 1.
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Let C be a chain complex. We mostly consider that Cq = 0 for q < 0. A

free chain complex is a chain complex in which Cq is a free abelian group for

every q. For an arbitrary discrete group G, there is a close connection between

G-CW-complexes and ordinary CW-complexes.

Let X be a G-space and an ordinary CW-complex. We say that G acts cellu-

larly on X if the following holds:

(i) For each g ∈ G and each open cell E of X, the left translation gE is again an

open cell of X.

(ii) If gE = E, then the induced map E → E, x 7→ gx is the identity.

Proposition 1.3.4 (Proposition 1.15 in [8]). Let X be a CW-complex with

cellular action of G. Then X is a G-CW-complex.

Proposition 1.3.5 (Proposition 1.16 in [8]). Let G be a discrete group. Let

X be a G-complex and H be a subgroup of G. Then X, considered as an H-space,

is an H-CW-complex with the same skeleta.

Hence, if G is discrete and X is a G-CW-complex, then X is a CW-complex

with cellular G-action. Consequently, for discrete groups, we have two equivalent

definitions of G-CW-complexes.

Let G be a finite group. Given a G-CW-complex, its cellular chain complex

with R coefficients is defined by

C̃∗ : . . .
∆n+1−→ Hn(Xn, Xn−1;R)

∆n−→ Hn−1(Xn−1, Xn−2;R)
∆n−1−→ . . .

where ∆ is the connecting homomorphism of the triple (Xn, Xn−1, Xn−2). Then

there is a functor which takes free G-CW-complex to free RG-chain complex and

there is a natural isomorphism H∗(X) ∼= H∗(C̃∗(X)) [15].

Let R be a unital commutative ring and M,N be R-modules. The tensor

product (see [10], page 359) M ⊗RN is an R-module spanned by symbols m⊗ n
(simple tensor) satisfying distributive laws:

(m+m′)⊗ n = m⊗ n+m′ ⊗ n, m⊗ (n+ n′) = m⊗ n+m⊗ n′.

Also multiplication by any r ∈ R is associative with ⊗ on both sides:

r(m⊗ n) = (rm)⊗ n = m⊗ (rn).
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Let f : R → S be a homomorphism of commutative rings with f(1R) = 1S.

We use f to consider any S-module N as an R-module by rn := f(r)n. In

particular, S itself is an R-module by rs := f(r)s. Passing from N as an S-

module to N as an R-module in this way is called restriction of scalars.

We can also reverse the process of restriction of scalars.

Proposition 1.3.6. The additive group M⊗RS has a unique S-module structure

satisfying s′(m⊗s) = m⊗s′s, and this is compatible with the R-module structure

in the sense that rt = f(r)t for all r ∈ R and t ∈ M ⊗R S. Notice that any

t ∈M ⊗R S is a finite sum of elementary tensors, say

t = m1 ⊗ s1 + . . .+mk ⊗ sk.

We are mostly interested in DG-modules over a polynomial ring. Let A =

k[x1, . . . , xn] where k is a field and each xi assigned grading −1. Note that if F is

DG-A-module and E is a graded A-module, then H∗(F,E) denotes the homology

of the DG-module F ⊗A E.

Let B be a graded ring and augmented over a field k with augmentation

ε : B → k.

Definition 1.3.7. Let F be finitely generated DG-B-module. We say that (F, ∂)

is minimal if the map ∂ ⊗ id : F ⊗B k → F ⊗B k is the zero map.

Definition 1.3.8. [4] We say a DG-A-module F is totally finite if dimkH∗(F )

is positive integer where k is the ground field.



Chapter 2

Variety of Square Zero Matrices

In this section, we focus on the algebraic formulations of Carlsson’s conjecture

about DG modules over a polynomial ring and discuss the relation between con-

jectures mentioned in the introduction. For more details about conjectures, see

[6]. We also give the reason why we study square zero matrices. Then we give

definitions and notations about varieties corresponding to these matrices over an

algebraically closed field.

First we recall Carlsson’s conjecture;

Conjecture 2.0.9. Let G = (Z/p)r and X be a finite free G-CW-complex. Then∑
i rkZ/pHi(X;Z/p) ≥ 2r.

Carlsson constructs the algebraic analogue of this conjecture by letting Λr =

k[G] where G = (Z/2)r and k be a field of characteristic two. As an algebra Λr

is isomorphic to the exterior algebra E(y1, . . . , yr), by considering yi = Ti + 1,

where {T1, . . . , Tr} is a basis for (Z/2)r. Λr can be considered as a graded ring by

assuming the grading 0 to all elements of Λr. Then D(Λr) denotes the category

of finitely generated DG-Λr-modules. As we mentioned in Section 1.3, DG-Λr-

module is a free, graded Λr-modules with a differential ∂. Then an algebraic

analogue of Conjecture 2.0.9 is the following conjecture;

Conjecture 2.0.10. [6, Conjecture 2.2] Let F ∈ D(Λr) and H∗(F ) 6= 0. Then

rkkH∗(F ) ≥ 2r.

9
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Let X be a free, finite G-CW-complex. The cellular chain complex C̃∗(X; k)

is a finitely generated chain complex of free Λr-modules. Hence it is in obD(Λr)

and H∗(X; k) = H∗(C̃∗(X; k)). Therefore, Conjecture 2.0.10 implies Conjecture

2.0.9 for p = 2.

Let Ar denote the polynomial ring k[x1, . . . , xr] which we grade by assigning

each variable the grading (−1). Carlsson shows in [3] that there is a functor

β : D(Λr) → D(Ar) defined as follows. The functor β takes a DG-Λr-module

(F, ∂) to F ⊗k Ar and the differential ∂ on β(F ) is defined by

∂(f ⊗ h) = ∂f ⊗ h+
r∑
i=1

yif ⊗ xih.

Proposition 2.0.11 (Propositions 2.1 and 2.2 in [3]). There are natural

isomorphisms H∗(F )→ H∗(βF, k) and H∗(F, k) = H∗(F ⊗k[G] k)→ H∗(βF )

Corollary 2.0.12 (Corollary 2.3 in [3]). For any F ∈ obD(Λr), H∗(βF ) is

finitely generated as a k-vector space. In other words, if F is finitely generated

DG Λr-module, then βF is totally finite (see Definition 1.3.8).

We also have following proposition:

Proposition 2.0.13 (Proposition 2.6 in [6]). For every (F, ∂) ∈ obD∞(A),

there exists (F̄ , ∂̄) ∈ obD∞(A), where (F̄ , ∂̄) is minimal and is chain equivalent

to (F, ∂).

Let D0(Ar) and D0
∞(Ar) denote the full subcategories of D(Ar) and D∞(Ar),

respectively, whose objects are the DG-Ar-modules (F, ∂) for which H∗(F ) is

nontrivial and finite dimensional k-vector space. Let D0
∞(Λr) denote the full

subcategories of D∞(Λr) whose objects are chain equivalent to object in D0(Λr).

We also let hD(Λr) and hD(Ar) denote the homotopy categories of D(Λr), D(Ar)

and hβ : hD(Λr) → hD(Ar) be the induced map on homotopy categories. By

Corollary 2.0.12, hβ can be extended to a functor H : hD0
∞(Λr)→ hD0

∞(Ar).

Theorem 2.0.14 (Theorem 2.7 in [6]). H : hD0
∞(Λr) → hD0

∞(Ar) is an

equivalence of categories.



CHAPTER 2. VARIETY OF SQUARE ZERO MATRICES 11

Conjecture 2.0.15 (Conjecture 2.8 in [6]). Let F ∈ obD0(Ar). Then

rkAr F ≥ 2r.

This conjecture is equivalent to the following conjecture.

Conjecture 2.0.16. Let F̄ ∈ obD0(Ar) and F̄ is minimal. Then rkAr F̄ ≥ 2r.

Finally, we are ready to show that Conjecture 2.0.15 is equivalent to Con-

jecture 2.0.10. By Theorem 2.0.14 and Proposition 2.0.11, Conjecture 2.0.10 is

equivalent to the conjecture that for all F ∈ obD0(Ar), rkkH∗(F, k) ≥ 2r. By

Proposition 2.0.13, F is equivalent to a minimal DG-Ar-module F̄ with augmen-

tation ε : Ar → k given by ε(f(x1, . . . , xr)) = a0 where f is a polynomial with

constant term a0. Then rkAr F ≥ rkAr F̄ = rkk(F̄ ⊗Ar k) = rkkH∗(F̄ , k) ≥ 2r.

As a summary, we start with a finite G-CW-complex X. Then we get a

finitely generated chain complex of free Λr-modules, say C. By functor β, let

βC = F , we obtain a totally finite DG-Ar-module F . Finally, there exists F̄

which is minimal and chain equivalent to F . Note that rkAr F̄ = rkk(F̄ ⊗Ar k) =

rkkH∗(F̄ , k) = rkkH∗(F, k) = rkkH∗(C) = rkkH∗(X, k). Therefore, rkAr F̄ ≥ 2r

implies rkkH∗(X, k) ≥ 2r.

Definition 2.0.17. Let F be a finitely generated DG-Ar-module. A composition

series for a DG-Ar-module F is a sequence 0 = F0 ⊆ F1 ⊆ . . . ⊆ Fq = F of

DG-submodules so that each quotient Fj/Fj−1 is a free, finitely generated DG-

Ar-module whose differential is identically zero. F is said to be solvable if there is

a chain equivalence f : F̄ → F where F̄ is a free, finitely generated DG-Ar-module

admitting a composition series.

Carlsson shows that every free, finitely generated DG-Ar-module is solvable

[3]. When we choose a basis for F compatible with the composition series, the dif-

ferential ∂ can be represented by the special matrix. Since ∂2 = 0 and the degree

of ∂ is (−1) in composition series, we have strictly upper triangular square zero

matrix. Indeed, the dimension of this matrix is even by the following propositions.
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Proposition 2.0.18 (Proposition 1.8 in [4]). Suppose that F is a totally finite,

free, finitely generated DG-Ar-module and m is any maximal ideal of Ar other

than (x1, . . . , xn). Then, H∗(F,Ar/m) = 0.

Proposition 2.0.19 (Proposition 1.9 in [4]). Let F ′ be any finite dimensional

differential module with differential ∂ over a field k′. Then H∗(F
′) = 0 if and

only if 2 rk ∂ = dimk′ F
′.

Proof. Assume H∗(F
′) = 0. Then Ker∂n = Im∂n+1. Consider the homomor-

phism ∂ : F ′ → F ′. By 1-st Isomorphism Theorem, F ′/Ker∂ ∼= Im∂, so

dimF ′−dim (Ker∂) = dim (Im∂) over a field k′. Then dimk′ F
′ = 2 dim(Im∂) =

2 rk ∂. Conversely, assume 2 rk ∂ = dimk′ F
′, to the contrary H∗(F

′) 6= 0. By

again 1-st Isomorphism Theorem, we have dimk′ F
′ = dim(Ker∂) + dim(Im∂).

Since, H∗(F
′) 6= 0, dim (Ker∂) > dim (Im∂). Then we have dimk′ F

′ > 2(Im∂),

that is dimk′ F
′ > 2 rk ∂ which is a contradiction.

Let F̄ ′ = F̄ ⊗Ar (Ar/m) where F̄ is minimal and m is any maximal ideal of Ar

other than (x1, . . . , xr). Then dimk′ F̄ ′ is even for a field k′ by Proposition 2.0.19.

We also let ∂̄′ denote the differential of DG-Ar-module F̄ ′ and M denote the

matrix which represents ∂̄′. Then dimk′M is also even and rkM = (dimk′M)/2 =

(dimk′ F̄ ′)/2.

Consequently, following conjecture implies Conjecture 2.0.9 for p = 2.

Conjecture 2.0.20. Let M be a upper triangular matrix in Mat2n(Ar). If

(A2n
r ,M) is a totally finite, minimal DG-Ar-module, then 2n ≥ 2r.

Therefore, in this paper, we focus on the varieties of upper triangular square

zero 2n× 2n matrices over a field k.
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2.1 Notations

In algebraic geometry, the n-dimensional affine space An (or An(k)) over the field

k is the set of n-tuples of elements of k. An element p = (p1, . . . , pn) ∈ An

is called a point, pi’s are (affine) coordinates of p. Indeed, a subset V ⊆ An

is an affine algebraic variety, if it is a zero set of a finite set of polynomials in

k[x1, . . . , xn] and let f1, . . . , fk ∈ k[x1, . . . , xn] , then

V = Z(f1, . . . , fk) = {p ∈ An | fi(p) = 0 ∀ i}.

Given a variety V in the n-dimensional space kn, the coordinate ring of V is the

quotient ring

k[V ] = k[x1, . . . , xn]/I(V )

where I(V ) = {f ∈ k[x1, . . . , xn] | f(x) = 0 for all x ∈ V }.

Definition 2.1.1. A variety V ⊂ kn is irreducible if it is nonempty and not the

union of two proper subvarieties; that is, if V = V1 ∪ V2 for varieties V1, V2 then

V = V1 or V2.

As we mentioned at the beginning of this chapter, we are concerned with the

varieties of the even dimensional matrices (see Proposition 2.0.19).

In this section, we give definitions and notations about varieties over k which

is an algebraically closed field and we follow the terminology in [9]. All the vari-

eties we consider are over k.

Notation 2.1.1. [9] We will use the following notations in the rest of the thesis:

• Let U2n be the variety of strictly upper-triangular 2n× 2n matrices over k.

In other words U2n = kl where l = 2n2 − n. Then we can define U2n by the

following matrix;
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U2n =





0 P12 P13 P14 . . . P1(2n)

0 0 P23 P24 . . . P2(2n)

0 0 0 P34 . . . P3(2n)

...
...

...
. . .

...
...

...
...

... . . . 0 P(2n−1)(2n)

0 0 0 . . . 0 0


where Pij ∈ k and i < j


.

Note that i < j makes the matrix strictly upper triangular.

• Let V2n be the variety of square zero matrices in U2n. In other words;

V2n = {X ∈ U2n|X2 = 0}.

• The coordinate ring of U2n is R(U2n) = k[xij | i < j]. For instance R(U4) =

k[x12, x13, x14, x23, x24, x34] for n = 2.

• For V2n, R(V2n) = R(U2n)/I(V (J)) where J is corresponding ideal for V2n.

By Hilbert’s Nullstellensatz [18], I(V (J)) =
√
J . For instance, for n = 2,

R(V4) = k[x12, x13, x14, x23, x24, x34]/
√

(x12x23, x12x24 + x13x34, x23x34).

• Let Z be a particular irreducible component of V2n. So, we have Z ⊆ V2n ⊆
U2n. By recalling Definition 2.1.1, Z cannot be written as the union of two

proper varieties.

• Let R be the coordinate ring of Z.

• Let M be a 2n × 2n upper triangular matrix over ring R such that the

(i, j)-entry of M is the image in R of xij. Note that the coordinate ring of

U2n is R(U2n) = k[xij | i < j]. There are surjections of coordinate rings

ϕ : R(U2n)→ R(V2n)→ R
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corresponding to the inclusions Z ↪→ V2n ↪→ U2n. Using these surjections,

we can regard the images of the xij as elements of R. Then we also define the

(i, j)-entry of M ; Mij = ϕ(xij). Moreover, since R(V2n) is a ring of variety of

square zero matrices of U2n and M follow the map R(U2n)→ R(V2n)→ R,

M2 = 0 and we regard M as a differential on the R-module R2n. The

differential M can be represented by the special matrix when we choose a

proper basis for differential R-module.

M =



0 M12 M13 M14 . . . M1(2n)

0 0 M23 M24 . . . M2(2n)

0 0 0 M34 . . . M3(2n)

...
...

...
. . .

...
...

...
...

... . . . 0 M(2n−1)(2n)

0 0 0 . . . 0 0


with M2 = 0.

In the rest of the paper, R/m = k where m is maximal ideal of R.

• Let Y be the subvariety of matrices of rank less than n.

• Let I denote the ideal of R corresponding to Y . Note that I is the ideal

generated by all n×n minors of the universal matrix M . So I is generated

by the determinant of all n×n matrix obtained from M by deleting n rows

and n columns.

We have a differential R-module with a differential M : R2n → R2n where R

is same as above and M2 = 0.

Notice that, the homology of differential module F is generally denoted by

H(F ), but in the rest of paper, by following the idea of Karagueuzian, Oliver

and Ventura, we take the homology of matrix M corresponding to differential of

module F . It is more reasonable since we concern with the changes of the rank

of the matrix corresponding to differential M . Then, we can set the homology of

R2n is the quotient module H(M) = Im(M)/Ker(M).



Chapter 3

Valid X2 Words and Bracket

Words

The main purpose of this chapter is to examine the relation between Borel orbits

in V2n and valid X2 words. In this chapter, most of definitions are taken from [9]

and [19]. We clarify these definitions with an example. In Section 3.2, we show

that how some part of M can be calculated by using a permutation matrix.

3.1 Valid X2 Words

Let V2n be same as in previous chapter and B2n be the 2n × 2n Borel group of

invertible upper triangular matrices. B2n acts on V2n by b(X) = b−1Xb for all

b ∈ B, X ∈ V .

Definition 3.1.1. The Borel orbits in V2n are the orbits of the conjugation action

of the Borel group of all invertible upper-triangular matrices on V2n.

There is a one-to-one correspondence between the Borel orbits and valid X2

words (see Definition 3.1.3); an ordering of valid X2 words can be described by

moves. A move is a function from the set of valid X2 words to itself; the ordering

16
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is describes by moves in the sense that if w < w′ then there is a sequence of moves

which transforms w′ into w.

Definition 3.1.2. A matrix P is said to be a partial permutation matrix if it has

at most one nonzero entry in each row and column, and these nonzero entries (if

any) are all 1.

To an upper-triangular partial permutation matrix we can associate a se-

quence of nonnegative integers (a1, a2, . . . , a2n) by setting

ai =

{
j if Pei = ej

0 if Pei = 0

Definition 3.1.3. Given a partial permutation matrix P , define the word w =

a1 . . . a2n where ai’s satisfy the condition above. Then a word is said to be valid

X2 word if it is of the form w for some P ∈ V2n with P 2 = 0. In other words,

there are three conditions to be a valid X2 word w where ai are letters of w;

• aj < j for all j (which makes the matrix strictly upper triangular)

• aj 6= ak for all j 6= k (which makes the matrix a partial permutation matrix)

• aj = i implies ai = 0 (else P 2ej = Pei is nonzero.)

Rothbach proved that each Borel orbit contains a unique partial permutation

matrix [19]. Therefore, each Borel orbit is associated a unique valid X2 word.

If w is a valid X2 word, rk(w) is the number of nonzero integers ai in w, i.e.,

the rank of the partial permutation matrix associated to w.

The closure of a Borel orbit is the closure of an image of the Borel group, which

is an irreducible variety, so these closures are themselves irreducible varieties

[17]. Then, the closure of a Borel orbit is itself a union of Borel orbits. Rothbach

defined moves to give an order relation on the valid X2 words. This order relation

help us to determine which Borel orbits are contained in the closure of a given

Borel orbit, in terms of the corresponding valid X2 words. Then we need to

introduce the following terminology to explain this.
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Definition 3.1.4. A letter ai of a valid X2 word a1 . . . a2n is a bound zero (or

simply bound) if ai = 0 and there exists a j such that aj = i. A letter ai is free

if it is not bound.

We regard valid X2 words as partial permutations of the set {1, . . . , 2n}.
Then, the word (a1, . . . , a2n) is regarded as the partial permutation with domain

{i | ai 6= 0}, which sends i to ai. We also know that X2 = 0. Therefore,

the domain and range of the permutation are disjoint. These can be illustrated

by diagrams with arrows. For instance, the word 002105 is illustrated by the

following diagram and arrows:

( 1 uu 2
vv

3 4 5
vv

6 ).

Then the three moves are the following:

• A move of type 1 takes a nonzero letter ak and replaces it with ak
∗ which

is the largest integer less than ak so that the replacement yields a new valid

X2 word. Since replacement with 0 always yields a valid X2 word, ak
∗

always exists. If we set j = ak and i = ak
∗ that makes i < j < k, then this

move sends

( i j
vv

k ) to ( i
xx

j k ).

or

( j
~~

k ) to ( j k )

when i 6= 0 or i = 0, respectively.

• A move of type 2 takes two free letters ak, al where k < l and ak > al, and

swaps their locations. In other words, if we set ak = j and al = i where i is

nonzero so i < j < k < l, then this move sends

( i vv j
vv

k l ) to ( i
xx

j
xx

k l )

or if we set ak = j and al = 0 that gives j < k < l, then it sends

( j
vv

k l ) to ( j
xx

k l ).
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• A move of type 3 is defined if i < j < k < l such that i = aj and k = al

(so ai = ak = 0) and replaces al by j, ak by i and aj by 0. Schematically,

it sends

( i ww j k
vv

l ) to ( i
xx

j
xx

k l ).

Notice that a move of type 2 or 3 preserves the rank of words. Actually, the

only way of getting a word of smaller rank is to replace a letter by zero which

can be done by applying move 1 one or more times. A sequence of moves of type

1 which results in a letter being replaced by zero will be called a move of type 1′.

For two valid X2 words w,w′, the order relation is defined by letting w ≥ w′ if

and only if w can be transformed into w′ by a finite sequence of moves. Therefore,

the maximal valid X2 words are not the result of any of the three types of moves.

Example 3.1.5. The word (0, 1, 0, 3) is transformed to (0, 1, 0, 0) by a move of

type 1, so (0, 1, 0, 0) < (0, 1, 0, 3). The word (0, 1, 0, 0) is transformed to (0, 0, 1, 0)

by a move of type 2, so (0, 0, 1, 0) < (0, 1, 0, 0). In addition, the word (0, 1, 0, 3)

is transformed to (0, 0, 1, 2) by a move of type 3, hence we have (0, 0, 1, 2) <

(0, 1, 0, 3). We are determined three words smaller than (0, 1, 0, 3). Actually, it

is a maximal valid X2 word.

Theorem 3.1.6 (Rothbach, [19]). For any pair of valid X2 words v, w,the Borel

orbit Ov associated to v is contained in the closure of the Borel orbit Ow associated

to w if and only if v ≤ w. The irreducible components of V2n are thus the closures

of the Borel orbits associated to the maximal valid X2 words; and the irreducible

component of V2n associated to a maximal valid X2 word w is the union of the

Borel orbits associated to the valid X2 words which are less than or equal to w.

A brief sketch of Rothbach’s techniques is as follows: Let ki ⊆ k2n be the sub-

space of elements (x1, . . . , xi, 0, . . . , 0) for x1, . . . , xi ∈ k. These are the subspaces

of k2n which are invariant under the action of all elements in the Borel group.

For any P ∈ V2n and 0 ≤ j < i, define r(i, j, P ) = dimk(P (ki) + kj), i.e., these

dimensions are invariants of the Borel orbits. For any valid X2 word v, associated

to a partial permutation matrix P , set vij = r(i, j, P ). Using these, Rothbach

shows:
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• Two matrices P,Q ∈ V2n are in the same Borel orbit if and only if

r(i, j, P ) = r(i, j, Q) for all i, j. The Borel orbit associated to v is thus

the set {P ∈ V2n | r(i, j, P ) = vij ∀i, j}.

• For any two valid X2 words v, w, we have v ≤ w if and only if vij ≤ wij for

all i, j.

• If v is obtained from w by a move of one of the the above types, then the

Borel orbit Ov is in the closure of the Borel orbit Ow.

For any valid X2 word w, the union of the Borel orbits associated to words

v ≤ w is the set

{P ∈ V2n | r(i, j, P ) ≤ wij ∀i, j}.

The maximal valid X2 words are also called bracket words because there is

a one-to-one correspondence between maximal valid X2 words and sequences of

left and right parentheses of length 2n. A bracket word corresponds to the valid

X2 word (a1, . . . , a2n) where ai = 0 if the i-th parenthesis in the bracket word is

a left parenthesis, and ai = j if the i-th parenthesis is a right parenthesis which

closes the j-th parenthesis.

Remark 3.1.7. For a bracket word w of length 2n, we have rank(w) = n.

Note that the number of bracket words is Cn well known Catalan numbers

are given by

Cn =
(2n)!

(n+ 1)!n!
.

Definition 3.1.8. We say that a bracket word is irreducible if it cannot be ex-

pressed as the concatenation of bracket words of smaller length.

Example 3.1.9. For n = 3, we have C3 = 5, then ((())) and (()()) are irreducible

bracket words, but ()(()), (())() and ()()() are reducible bracket words.
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3.1.1 Some calculations for n = 2

Example 3.1.10. For n = 2, we have 4× 4 matrices over k. Then

• U4 is the variety of strictly upper-triangular 4× 4 matrices over k,

U4 = k6 =

{
0 a b c

0 0 d e

0 0 0 f

0 0 0 0


∣∣∣∣ a, b, c, d, e, f ∈ k

}
.

• Then V4 must satisfy the following;
0 a b c

0 0 d e

0 0 0 f

0 0 0 0




0 a b c

0 0 d e

0 0 0 f

0 0 0 0

 =


0 0 ad ae+ bf

0 0 0 df

0 0 0 0

0 0 0 0

 = 0.

So V4 = {(a, b, c, d, e, f) | ad = 0, ae+ bf = 0, df = 0}.

• The coordinate ring of U4 is R(U4) = k[xa, xb, xc, xd, xe, xf ]. Then the co-

ordinate ring of V4 is

R(V4) = k[xa, xb, xc, xd, xe, xf ]/I(V (xaxd, xaxe + xbxf , xdxf )).

By Hilbert’s Nullstellensatz [18], I(V (J)) =
√
J . Then, R(V4) =

k[xa, xb, xc, xd, xe, xf ]/
√

(〈xaxd, xaxe + xbxf , xdxf〉).

Using bracket words, we have two maximal valid X2 words; (()) = 0021 which

is irreducible and ()() = 0103 which is reducible.

Case(1) For w1 = 0021, the corresponding diagram is

( 1 uu 2
vv

3 4 ).
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We have P.e1 = 0, P.e2 = 0, P.e3 = e2, P.e4 = e1, then

Pw1 =


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 .

We defined wij = r(i, j, Pw) = dimk(P (ki) + kj) at the beginning of section.

Then we have w10 = dim(Pw1(k ⊕ 0 ⊕ 0 ⊕ 0)) = 0 and w20 = dim(Pw1(k ⊕ k ⊕
0 ⊕ 0)) = 0. In addition, w21 = dim(Pw1(k ⊕ k ⊕ 0 ⊕ 0) + (k ⊕ 0 ⊕ 0 ⊕ 0)) = 1

and w42 = dim(Pw1(k ⊕ k ⊕ k ⊕ k) + (k ⊕ k ⊕ 0 ⊕ 0)) = 2. Similarly, w30 = 1,

w31 = 2, w32 = 2, w40 = 2, w41 = 2 and w43 = 3. We can define w as

w =


0 a b c

0 0 d e

0 0 0 f

0 0 0 0



x1

x2

x3

x4

 =


x2a+ x3b+ x4c

x3d+ x4e

x4f

0

where x1, x2, x3, x4∈ k.

We need to find all P such that r(i, j, P ) ≤ wij. We have r10 = 0 which does

not give any result but r20 = 0 certainly implies a = 0. We also have r30 ≤ 1

which implies a + b = 0 or d = 0 and r40 ≤ 2 implies a + b + c = 0 or d + e = 0

or f = 0. The conditions r21 ≤ 1, r31 ≤ 2, r32 ≤ 2 and r43 ≤ 3 are not enough to

get any results, but r41 ≤ 2 implies d + e = 0 or f = 0. Finally, r42 ≤ 2 implies

f = 0. Then we definitely know that a = f = 0. Now, we are ready to find

Z,R, Y and I for n = 2.

• Z = {(a, b, c, d, e, f)|a = 0, f = 0}.

• R = k[xa, . . . , xf ]/
√

(xa, xf ).
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•

Xw1 =


0 0 b c

0 0 d e

0 0 0 0

0 0 0 0

 .

• Since Y is the subvariety of matrices of rank less than 2,

Y = {(a, b, c, d, e, f)|a = 0, f = 0, be− cd = 0}.

• I =
√

(xa, xf , xbxe − xcxd).

Case(2) For w2 = 0103, we have the corresponding diagram

( 1
vv

2 3
vv

4 ).

Then, P.e1 = 0, P.e2 = e1, P.e3 = 0, P.e4 = e3, so

Pw2 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 .

Since wij = r(i, j, Pw) = dimk(P (ki) + kj), w10 = dim(Pw2(k ⊕ 0 ⊕ 0 ⊕ 0)) = 0.

Similarly, w20 = 1, w21 = 1 and w30 = 1. In addition, w31 = dim(Pw2(k ⊕ k ⊕
k ⊕ 0) + (k ⊕ 0⊕ 0⊕ 0)) = dim(k ⊕ 0⊕ 0⊕ 0) = 1. Similarly, w32 = 2, w40 = 2,

w41 = 2, w42 = 3 and w43 = 3. Then

w =


0 a b c

0 0 d e

0 0 0 f

0 0 0 0



x1

x2

x3

x4

 =


x2a+ x3b+ x4c

x3d+ x4e

x4f

0

 .
Similarly, we have r10 = 0, r21 ≤ 1, r32 ≤ 2 and r43 ≤ 3 which do not give any

results but r20 ≤ 1 implies a 6= 0. We also have r30 ≤ 1 which gives a+ b = 0 or

d = 0 and r40 ≤ 2 gives a + b + c = 0 or d + e = 0 or f = 0. Since r31 ≤ 1, we

have d = 0. The results r41 ≤ 2 implies d + e = 0 or f = 0 and r42 ≤ 3 implies
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f 6= 0. Therefore we definitely know d = 0, but a 6= 0 and f 6= 0.

Then we have

Xw2 =


0 a b c

0 0 0 e

0 0 0 f

0 0 0 0

 .
Since Xw2

2 = 0, we also have ae+ bf = 0.

• So Z = {(a, b, c, d, e, f) | d = 0, ae+ bf = 0}.

• R = k[xa, . . . , xf ]/
√

(xd, xaxe + xbxf ).

• Since Y is the subvariety of matrices of rank < 2,

Y = {(a, b, c, d, e, f) | d = 0, ae = 0, bf = 0, af = 0, be = 0}

• I =
√

(xd, xaxe, xbxf , xaxf , xbxe).

3.2 Bracket Words

In Section 3.1, we already defined that bracket word corresponds to the valid X2

word (a1, . . . , a2n) where ai = 0 if the i-th parenthesis in the bracket word is a left

parenthesis, and ai = j if the i-th parenthesis which closes the j-th parenthesis.

In this section, P denotes the permutation matrix corresponding to a maximal

valid X2 word. So every bracket represented by 1 in P .

Remark 3.2.1. Let pij = 1 where i < j in P . Then j− i is odd. In other words,

for any 1 in P , the distance between 1 and diagonal of P is odd.

By using the definition of bracket word above, we can say the distance between

left and corresponding right parenthesis is odd. So, if aj = i, then j − i is odd.

We have already defined aj as

aj =

{
i if Pej = ei

0 if Pej = 0
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Therefore, if P.ei = 0 and P.ej = ei, then i-th row of P , Pi = ej and j-th row of

P , Pj = 0. So aj = i implies pij = 1. Thus j − i is odd when pij = 1.

Remark 3.2.2. Let pij be coordinates of P . Then at least one pi(i+1) = 1 where

1 ≤ i ≤ 2n. In other words, P has at least one 1 on the line j = i+ 1.

The remark is obvious since the maximal valid X2 word is represented by a

bracket word and every bracket word contains consecutive right, left parenthesis

closes each other which corresponds a 1.

Remark 3.2.3. Let pij be any coordinate of P . If pij = 1 for some i < j,

then there exists a permutation matrix such that its coordinates are pab where

i+ 1 ≤ a, b ≤ j − 1 so it has same diagonal with P .



0
. . .

0 1 P


0

. . .

0


By Remark 3.2.1, when pij = 1, we know that there exists a bracket word such

that j-th parenthesis closes i-th parenthesis with j − i is odd. If j − i > 1,

then there is a bracket word in between i-th parenthesis and j-th parenthesis

corresponds P such that pab are coordinates of P where i+ 1 ≤ a, b ≤ j − 1.

. . . ( a bracket word ) . . .

i j

If j − i = 1, then we have empty bracket word.

Claim 3.2.1. If pa(a+1) = 1, pb(b+1) = 1 and pi(i+1) = 0 where a + 1 ≤ i ≤ b− 1

in P , then ∀ pij = 0 where a+ 1 ≤ i ≤ b− 1 and a+ 2 ≤ j ≤ b.
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

0
. . .

0 1 0 . . . 0 0


...

0

1

0
. . .

0


Proof. Assume pa(a+1) = 1, pb(b+1) = 1 and pi(i+1) = 0 where a + 1 ≤ i ≤ b − 1

in P , to the contrary pij = 1 for some i, j such that a + 1 ≤ i ≤ b − 1 and

a + 2 ≤ j ≤ b. Then recall Remark 3.2.3, we have another permutation matrix

such that coordinates are pcd where i+1 ≤ c, d ≤ j−1. However, by Remark 3.2.2,

we know that there must be at least one pi(i+1) = 1 where a+1 ≤ i ≤ b−1. Since

all pi(i+1) = 0 for a+ 1 ≤ i ≤ b− 1 in our assumption, it is a contradiction.

Claim 3.2.2. Let a < b and pab be coordinates of 2n × 2n matrix P . Assume

(a = 0 or a ≥ 1 and pa(a+1) = 1), (b = 2n or b ≤ 2n − 1 and pb(b+1) = 1),

(p(j+1)(j+2) = 0 where a ≤ j ≤ b − 2). Then p(j+1)i = 0 and wij = j where

a ≤ j ≤ b− 2, a+ 2 ≤ i ≤ b.

Proof. Suppose a < b and a = 0 or a ≥ 1 and pa(a+1) = 1, b = 2n or b ≤ 2n − 1

and pb(b+1) = 1, p(j+1)(j+2) = 0 where a ≤ j ≤ b − 2. Then by Claim 3.2.1,

p(j+1)i = 0 where a ≤ j ≤ b− 2, a+ 2 ≤ i ≤ b. Recall definition of wij;

wij = dim(P (ki) + kj).

Note that in the first i-th columns there is no 1 below a-th row so there is no 1 at

the j-th row or below j-th row. Therefore, P (ki) ≤ kj and then dim(P (ki)+kj) =

j that is wij = j.

Remark 3.2.4. wij = j ⇒ m(j+1)i = 0 where j − i ≥ 2.



CHAPTER 3. VALID X2 WORDS AND BRACKET WORDS 27

Proposition 3.2.5. ∀P , p(j+1)i which satisfy conditions in Claim 3.2.2 imply

m(j+1)i = 0 where a ≤ j ≤ b− 2, a+ 2 ≤ i ≤ b.

Example 3.2.6. Let w = (0, 0, 2, 0, 4, 1) be our valid X2 word. Then n = 3

and corresponding bracket word is ( ( ) ( ) ). Then corresponding permutation

matrix is

Pw =



0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0


By Proposition 3.2.5, the coordinates of Mw; m11, m12, m22, m33, m34, m44, m55,

m56 and m66 are all equal to zero. So,

Mw =



0 0 m13 m14 m15 m16

0 0 m23 m24 m25 m26

0 0 0 0 m35 m36

0 0 0 0 m45 m46

0 0 0 0 0 0

0 0 0 0 0 0


.



Chapter 4

Conjecture

In this chapter, we will prove Conjecture 4.0.8 for n = 2. Remember that in

Chapter 2, we define the coordinate ring of U2n as R(U2n) = k[xij | i < j] where

1 ≤ i < j ≤ 2n. Since k is a field, so that it is a Unique Factorization Domain, a

polynomial ring in an arbitrary number of variables with coefficient in k is also a

Unique Factorization Domain. Note that because R is a commutative ring, R/I

is commutative for any ideal I in R.

Let R be a ring and M be a left R-module. The ideal

AnnM = {r ∈ R | rm = 0 for all m ∈M}

is called the annihilator of M . The support of M is the subset

SuppM = {P ∈ SpecR |MP 6= 0}

where Spec of ring R is the set of prime ideals of R and MP = S−1M is the

module of fractions with respect to S = R\P .

Proposition 4.0.7 (Proposition 3.1 in [9]). I ⊆ AnnH(M) and Y ⊇
suppH(M).

Conjecture 4.0.8 (Conjecture 3.2 in [9]). I = AnnH(M), or equivalently,

Y = suppH(M).

28
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For the following proof, we modify the notation of M . Remember that ev-

ery M consists of coordinates Mij = ϕ(xij) where ϕ : R(U2n) → R such that

R(U2n) = k[xa, . . .] and R = k[x̄a, . . .]. But we take x̄a = xa in the following

proof.

Proof. (for n = 2) Let n = 2 and suppose x ∈ AnnH(M). Then x.h = 0 for

h ∈ H(M) = Ker(M)/Im(M). We can denote h as

h =


k

l

m

n

where h ∈ KerM.

Using the fact that h ∈ KerM ,

Mh =


0 xa xb xc

0 0 xd xe

0 0 0 xf

0 0 0 0



k

l

m

n

 =


lxa +mxb + nxc

mxd + nxe

nxf

0

 = 0.

We have

lxa +mxb + nxc = 0 (0.1)

mxd + nxe = 0 (0.2)

nxf = 0. (0.3)

Then for all k, l,m, n which satisfy Equations (0.1), (0.2) and (0.3), since

x ∈ AnnH(M) there exists l′,m′, n′ such that

x


k

l

m

n

 =


l′xa +m′xb + n′xc

m′xd + n′xe

n′xf

0

 .
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Firstly, recall Example 3.1.10 Case(2). We need to show x ∈ I =√
(xd, xaxe, xbxf , xaxf , xbxe). We have four equations which are obtained from

above equation;

kx = l′xa +m′xb + n′xc (0.4)

lx = m′xd + n′xe (0.5)

mx = n′xf (0.6)

nx = 0. (0.7)

We know that xd = 0 in R. Thus, we can choose a representative of x which

does not contain the term xd in R(U2n). Let us take n = xd, l = xb and m = −xa.
Then Equations (0.1), (0.2), (0.3) and (0.7) hold.

Consider Equation 0.6 in the polynomial ring R(U2n)/xd which is a UFD.

(−xa)x = n′xf + c(xaxe + xbxf ) where c is coefficient in R(U2n).

Terms which do not contain xa in the right side of equation above must cancel

each other and rest of the terms are divided by xa. So x = xfk1 + xek2 in

R(U2n)/xd and similarly, n′ = xak3 + xbk4 in R(U2n)/xd where k1, k2, k3 and k4

are coefficients in R(U2n)/xd.

Note that k can be chosen as equal to 1 because k does not affect image of h

under M . Then

x = l′xa +m′xb + n′xc.

Then x can be written as

x2 = (xfk1 + xek2)(l′xa +m′xb + (xak3 + xbk4)xc).

Notice that xaxf , xbxf , xaxe, xbxe are minors thus x2 ∈ I. Since I is radical ideal

x ∈ I.
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Similarly, recall Example 3.1.10 Case(1), let us take h′ as

h′ =


p

r

s

t

where h′ ∈ KerM.

Using the fact that h′ ∈ KerM , Mh′ = 0. Then we have

rxa + sxb + txc = 0, (0.8)

sxd + txe = 0, (0.9)

txf = 0 in R. (0.10)

Then for all p, r, s, t which satisfy Equations (0.8), (0.9) and (0.10), since

x ∈ AnnH(M) there exists r′, s′, t′ in R such that

x


p

r

s

t

 =


r′xa + s′xb + t′xc

s′xd + t′xe

t′xf

0

 .
In this case, R is UFD and we need to show x ∈ I =

√
(xa, xf , xbxe − xcxd).

We have four equations which are obtained from above equation

px = r′xa + s′xb + t′xc (0.11)

rx = s′xd + t′xe (0.12)

sx = t′xf (0.13)

tx = 0 in R. (0.14)

We know that xa = 0, xf = 0 in R and xbxe − xcxd ∈ I. Multiply Equation

(0.8) with xd and Equation (0.9) with xb. Then we have

sxdxb + txdxc = 0 and sxdxb + txexb = 0.
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After subtraction, we obtain t(xcxd − xexb) = 0. Since xcxd − xexb 6= 0 in

R, t = 0. Similarly, multiply Equation (0.8) with xe and Equation (0.9) with xc.

Then we have

sxbxe + txexc = 0 and sxcxd + txexc = 0.

After subtraction we have s(xbxe − xcxd) = 0. Again, since xcxd − xexb 6= 0

in R, s = 0.

Notice that p and r can be chosen 1 since they do not affect image of h′ under

M . Then we obtain

x = s′xb + t′xc and x = s′xd + t′xe.

After subtraction, we get

s′(xb − xd) + t′(xc − xe) = 0.

Because xb, xd, xc, xe are nonzero and xb 6= xd, xc 6= xe in R, t′ = k(xb − xd)
and s′ = −k(xc − xe). If we put t′ and s′ in Equation (0.11) or (0.12), then

x = k(xbxe − xcxd) where k ∈ R.

Since x is some power of (xbxe − xcxd), x ∈ I.

As related to Proposition 4.0.7, we will prove the following theorem.

Theorem 4.0.9. Let M be a matrix as above. Then

AnnH(M) ⊆ m⇒ H(M ⊗R R/m) 6= O

where m is maximal ideal of ring R.

Proof of Theorem 4.0.9. Suppose that H(M ⊗R R/m) = 0. Then to show

AnnH(M) * m, we need to find r ∈ AnnH(M), but r /∈ m. Note that we

have I ⊆ AnnH(M) where I is the ideal generated by all n × n minors of the

universal matrix M , proved in [9]. So, the idea is taking r as nonzero n × n

minor of M which is not in m. Since I ⊆ AnnH(M), r must be in AnnH(M).
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Notice that if all n × n minors of M are in m then rk(M ⊗R R/m) ≤ n− 1.

So dimR/m(Im(M ⊗R R/m)) ≤ n− 1 and dimR/m(Ker(M ⊗R R/m)) ≥ n+ 1.

Then dimR/m(H(M ⊗R R/m)) ≥ 2 which contradicts with H(M ⊗R R/m) = 0.

Therefore there exists r ∈ AnnH(M), but r /∈ m.

Before giving an example of Theorem 4.0.9, we should define M as different

from previous one. Now, Mij = ϕij where ϕ : R→ R/m such that xi goes to x̄i.

Notice that in following example the minor r is explicitly determined.

Example 4.0.10. In previous chapter Example 3.1.10, we calculate M for n = 2.

Now, we show that Theorem 4.0.9 holds for n = 2.

Case(1) For w1 = 0021, take M̄ = M ⊗R R/m and consider the minor

M̄23 =


0 x̄b x̄c

0 x̄d x̄e

0 0 0

 .
Assume H(M̄) = 0 and by Proposition 2.0.19, rk M̄ = 2, then x̄bx̄e − x̄cx̄d 6= 0.

Take an element r = xbxe − xcxd, i.e., r /∈ m. Since I ⊆ AnnH(M), r ∈
AnnH(M). So AnnH(M) * m.

Case(2) For w2 = 0103, consider minors in M̄w2 such that;

M̄w2 =


0 x̄a x̄b x̄c

0 0 0 x̄e

0 0 0 x̄f

0 0 0 0

 .

To prove the theorem, it is enough to find r which is in AnnH(M), but not in

m. Since r ∈ AnnH(M),

r


x

y

z

w

 ∈ Im(M) for


x

y

z

w

 ∈ Ker(M).
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Therefore

rx = xay
′ + xbz

′ + xcw
′,

ry = xew
′,

rz = xfw
′,

rw = 0

where xay + xbz + xcw = 0, xew = 0 and xfw = 0.

We assume H(M̄) = 0 and by Proposition 2.0.19, rk(M̄) = 2. Then (x̄e 6= 0

or x̄f 6= 0) and (x̄a 6= 0 or x̄b 6= 0). We also have x̄ax̄e + x̄bx̄f = 0 since

(M̄w2)
2 = 0. Notice that if x̄b = x̄f = 0 then x̄a 6= 0 and x̄e 6= 0. It contradicts

with x̄ax̄e + x̄bx̄f = 0. Hence (x̄b 6= 0 or x̄f 6= 0) and (x̄a 6= 0 or x̄e 6= 0).

Case(2.1) Assume x̄a = 0. Then x̄e 6= 0 and x̄b 6= 0. So we can take r = xbxe

which is in I so in AnnH(M) but not in m. Hence AnnH(M) * m.

Case(2.2) Assume x̄a 6= 0. Then we must consider the cases x̄b = 0 and x̄b 6= 0.

Case(2.2.1) Assume x̄a 6= 0 and x̄b = 0. Since x̄b = 0, x̄f 6= 0. Moreover,

by equation x̄ax̄e + x̄bx̄f = 0, x̄e = 0. Then take r = xaxf . Since r is in I,

by Proposition 4.0.7 r ∈ AnnH(M). Notice that it is also possible to show

r ∈ AnnH(M) without using this proposition. Firstly, r has to satisfy the

following equations;

xaxfx = xay
′ + xcw

′ (0.15)

xaxfy = xew
′ (0.16)

xaxfz = xfw
′ (0.17)

xaxfw = 0 (0.18)

Since xfw = 0, Equation (0.18) holds. Choose w′ = xaz to satisfy Equation

(0.17). Then Equation (0.16) holds. Finally, Equation (0.15) holds when

y′ is chosen properly that is y′ = xfx − xcz. Therefore, there exists r ∈
AnnH(M) which proves AnnH(M) * m.
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Case(2.2.2)Assume x̄a 6= 0 and x̄b 6= 0. Then x̄e 6= 0 and x̄f 6= 0. Take

r = xaxbxexf . Then r is consist of products of two minors. Then by

Proposition 4.0.7, r ∈ AnnH(M) which proves that AnnH(M) * m when

H(M ⊗R/m) = 0.

Remark 4.0.11. Converse of Theorem 4.0.9 is true if Conjecture 4.0.8 is true.

Proof. To show that H(M ⊗ R/m) 6= 0 ⇒ AnnH(M) ⊆ m, assume H(M ⊗
R/m) 6= 0, to the contrary AnnH(M) * m. Then there exists r ∈ AnnH(M),

but r /∈ m. Suppose Conjecture 4.0.8 is true. Then r ∈ I and there exists n× n
minor in M ⊗RR/m with nonzero determinant. Therefore the rank of this minor

is n and by Proposition 2.0.19, H(M ⊗R/m) = 0. This is a contradiction.

Remark 4.0.12. Consider the following commutative diagram

R2n M //

ψ
��

R2n

ψ
��

(R/m)2n

M̄
// (R/m)2n

Assume we have v ∈ Ker(M), v̄ /∈ Im(M̄) where v̄ = ψ(v). Then v /∈ Im(M).

So r ∈ AnnH(M) implies rv ∈ Im(M). Moreover rv̄ ∈ Im(M̄). Then r ∈ m.

Thus, AnnH(M) ⊆ m.
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