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ABSTRACT

TWO-MACHINE FLOWSHOP SCHEDULING WITH
FLEXIBLE OPERATIONS AND CONTROLLABLE

PROCESSING TIMES

Zeynep Uruk

M.S. in Industrial Engineering

Advisor: Prof. Dr. Selim Aktürk

Co-Advisor: Asst. Prof. Dr. Hakan Gültekin

August, 2011

In this study, we consider a two-machine flowshop scheduling problem with iden-

tical jobs. Each of these jobs has three operations, where the first operation must

be performed on the first machine, the second operation must be performed on

the second machine, and the third operation (named as flexible operation) can

be performed on either machine but cannot be preempted. Highly flexible CNC

machines are capable of performing different operations as long as the required

cutting tools are loaded on these machines. The processing times on these ma-

chines can be changed easily in albeit of higher manufacturing cost by adjusting

the machining parameters like the speed of the machine, feed rate, and/or the

depth of cut. The overall problem is to determine the assignment of the flexi-

ble operations to the machines and processing times for each job simultaneously,

with the bicriteria objective of minimizing the manufacturing cost and minimiz-

ing makespan. For such a bicriteria problem, there is no unique optimum but a

set of nondominated solutions. Using ǫ constraint approach, the problem could

be transformed to be minimizing total manufacturing cost objective for a given

upper limit on the makespan objective. The resulting single criteria problem

is a nonlinear mixed integer formulation. For the cases where the exact algo-

rithm may not be efficient in terms of computation time, we propose an efficient

approximation algorithm.

Keywords: Flexible manufacturing system, controllable processing times, manu-

facturing cost, makespan, flowshop, scheduling.
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ÖZET

ESNEK OPERASYONLAR VE KONTROL EDİLEBİLİR
İŞLEM ZAMANLARI İLE İKİ-MAKİNALI AKIŞ TİPİ

ÇİZELGELEME

Zeynep Uruk

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Selim Aktürk

Yardımcı Tez Yöneticisi: Yrd. Doç. Dr. Hakan Gültekin

Ağustos, 2011

Bu çalışmada iki makinalı akış tipi çizelgeleme problemi ele alınmıştır. Bu

işlerin her biri için üç operasyon vardır, ve ilk operasyon sadece birinci maki-

nada işlenebilir, ikinci operasyon sadece ikinci makinada işlenebilir, üçüncü op-

erasyon (esnek operasyon olarak adlandırılır) her iki makinada da işlenebilir fakat

işler bölünemez. Büyük ölçüde esnek olan CNC makinaları gerekli kesici uçlar

yüklendiği sürece farklı operasyonları işleme kapasitesine sahiptir. Bu makinalar-

daki işlem zamanları yüksek maliyete rağmen, makina hızı, besleme oranı, ve

kesme derinliği gibi makina parametreleri ayarlanarak, kolayca değiştirilebilir.

Problemimiz imalat maliyetini ve tamamlanma süresini en aza indiren çift kriterli

amaç fonksiyonu ile her bir iş için esnek işlemin makinalara atanmasını ve işlem

zamanlarını belirlemektir. Bu şekilde çift kriterli bir problem için, tek bir optimal

çözüm yoktur, fakat etkin bir çözüm kümesi vardır. ǫ kısıtı yaklaşımı kullanılarak,

problem tamamlanma süresi amaç fonksiyonu üzerinde bir üst limit için imalat

maliyetini en aza indiren bir probleme dönüştürülebilir. Ortaya çıkan tek kriterli

problem doğrusal olmayan karışık tamsayılı matematiksel bir modeldir. Kesin

sonuç veren algoritmanın hesaplama zamanı açısından verimli olmadığı durumlar

için, verimli bir yaklaşık algoritma öneriyoruz.

Anahtar sözcükler : Esnek imalat sistemi, kontrol edilebilir işlem zamanları,

üretim maliyeti, tamamlanma zamanı, akış tipi, çizelgeleme.
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Chapter 1

Introduction

In many manufacturing systems each job undergoes a series of operations in

a given processing order. If all jobs have to follow the same route, then this

environment is referred to as a flowshop since the machines are assumed to be set

up in series. In this study, we consider a two-machine flowshop environment in

which identical jobs are processed. The machines can process at most one job at a

time and a job can be processed by at most one machine at a time. For each job,

three operations must be performed by the machines. The first operation can only

be performed by the first machine, the second operation can only be performed

by the second machine. The third operation is called the flexible operation which

can be performed by either one of the machines. Different assignments of these

operations yield different scheduling performances. Therefore, the problem is to

decide on the assignment of these flexible operations to the machines for each job

to be processed along with the processing time of each job.

The scheduling environment in this study is nonpreemptive meaning that after

the processing of a job is started, it must stay on the machine until it is completed.

When the jobs to be precessed are physically large (e.g., television sets,

copiers), storing large quantities in between the machines may not be possi-

ble. For such production systems the buffer space in between the two machines

assumed to have a limited capacity. This limited storage capacity may cause

1



CHAPTER 1. INTRODUCTION 2

blocking of the former machine since it cannot release a job into the buffer after

completing its processing when the buffer becomes full. However, when the jobs

are physically small (e.g., printed circuit boards, integrated circuits), it is rela-

tively easy to store large quantities between machines. In such cases the buffer

capacities in between machines may be assumed unlimited. In this study, we will

assume unlimited buffer capacity between machines.

In most of the deterministic scheduling problems in the literature, job pro-

cessing times are considered as constant parameters. However, various real-life

systems allow us to control the processing times by allocating extra resources,

such as energy, money, or additional manpower. When job processing times are a

function of the amount of resource allocated to an operation, the amount of each

resource dedicated to each machine in the system becomes a decision variable

that varies over time. Under controllable processing times setting, the processing

times of the jobs are not fixed in advance but chosen from a given interval. There

exists upper and lower bounds for the processing time of each job. The processes

on the CNC machines are well known examples of how the processing times can

be controlled. By adjusting the speed, feed rate, and/or the depth of cut, the

processing times on these machines can be controlled easily. Although reducing

the processing times may lead to an increase in throughput rate, it incurs ex-

tra costs. Controllable processing times may also provide additional flexibility in

finding solutions to the scheduling problem, which in turn can improve the overall

performance of the production system. Therefore, in such systems we need to

consider the trade-off between job scheduling and resource allocation decisions

carefully to achieve the best scheduling performance. In this study, we assume

processing times to be controllable and we will show the effectiveness of using

controllable processing times.

Most of the studies with controllable processing times in scheduling literature

assume that the processing time is a bounded linear function of the amount of

resource allocated to the processing of the job. The manufacturing cost is also

assumed to increase linearly with decreasing processing time. However, a linear

resource consumption function fails to reflect the law that productivity increases

at a decreasing rate with the amount of resource allocated. A better approach
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to this problem is to assume that the job processing time is a convex decreasing

function of the amount of resource allocated to the processing of the job. We will

use a convex cost function to reflect the cost of resource consumption.

In some scheduling environments, resources are fundamentally flexible, or they

can be made flexible, which means the resources can be dynamically reallocated

in a production process. When job processing times are a function of the amount

of resource dedicated to an operation, resource flexibility can enhance system

effectiveness and efficiency. Labor is a common example to flexibility. Labor flex-

ibility can be achieved by cross-training workers. Cross-trained workers develop

the skills required to perform different tasks associated with multiple processing

centers. A line of automated CNC machines is also highly flexible manufacturing

systems. CNC machines can perform different operations as long as the cutting

tools required for these operations are loaded in the tool magazine of the ma-

chine. However, because of the limited capacity of tool magazines it may not be

possible to accommodate all the tools required to process one job. Additionally,

because of the high costs of the tools, having multiple copies of tools may not be

economically justifiable. Therefore, some of the tools are loaded on a single ma-

chine and the corresponding operations can only be performed by that machine,

or some other tools existing in multiple copies are loaded on several machines and

the corresponding operations can be performed by any of these machines.

In real life applications, scheduling problems usually involve optimization of

more than one criterion. An optimal solution with respect to a given criterion

might be a poor solution for some other criterion. Thus considering the trade-offs

involved in several different criteria problems may be necessary in real life schedul-

ing problems. In this study, we consider a bicriteria objective which consists of

minimizing the manufacturing cost (comprised of machining and tooling costs)

and the makespan with the problem of assigning the flexible operations to one

of the machines for each job and the processing time values for each operation.

Note that, in order to minimize the makespan, the processing times must be set

to their lower bounds. However, such a choice maximizes the manufacturing cost.

Hence, the makespan and the manufacturing cost are two challenging objectives

and they cannot be minimized at the same time. Therefore, the optimal solution



CHAPTER 1. INTRODUCTION 4

will not be unique. We will determine a set of nondominated (efficient) discrete

points of makespan and manufacturing cost objectives. A solution is said to be

a nondominated one if there exists no other solution with a smaller cost and a

smaller makespan value. There are some approaches to solve bicriteria problems

in literature. One method is to optimize both criteria simultaneously by using

suitable weights for each criterion. Another method, called the ǫ-constraint ap-

proach, optimizes one criterion subject to the other criterion represented as a

constraint and upper bounded by ǫ. By using different ǫ values, different points

on the efficient frontier can be generated. We will use this approach to solve

our bicriteria problem where the single criterion will be minimizing the total

manufacturing cost subject to an upper limit on the makespan value.

The rest of the thesis is organized as follows. In the next chapter, we present

an overview of the current literature. It covers a review of studies on flowshop

scheduling, controllability of processing times, selection of machining parameters

and flexibility in manufacturing systems. In Chapter 3, we state the problem

definition and formulate the problem as a nonlinear mixed integer problem to

determine a set of efficient discrete points of makespan and manufacturing cost

objectives. In Chapter 4, we demonstrate some basic properties for the problem

which will be used in the development of the approximation algorithm and in

Chapter 5 the approximation algorithm will be presented. We perform a compu-

tational study in Chapter 6 to test the performance of our proposed approxima-

tion algorithm by comparing it with the mathematical formulation. Chapter 7 is

devoted to concluding remarks and possible future research directions.



Chapter 2

Literature Review

As introduced in the previous chapter, we consider a two-machine flowshop envi-

ronment where the machines are flexible. They have the capability of performing

different operations as long as the required cutting tools are loaded on these

machines. Additionally, the machining parameters can be adjusted to alter the

processing times. Hence, we assume the processing times to be controllable.

Then, the problem is to determine the assignment of flexible operations to the

machines as well as the processing time values of each operation for each job in

order to both minimize the makespan and the total manufacturing cost.

In scheduling literature, flowshop scheduling problems are one of the most

well known problems and studied extensively since 1950s. After the use of flexible

manufacturing systems is emerged and their use in different industries became

widespread, number of studies considering the problems arising in such systems

increased. The main directions of research in this area include quantifying the

benefits of flexibility in manufacturing and the controllability of processing times.

Additionally, the dynamic assignment of operations or the workforce from one

station to other is another research direction in this area.

In the following sections, we review the relevant literature to identify the

position of the current study with respect to the related ones. We place the

studies into one of the following subcategories: Classical flowshop scheduling,

5
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controllable processing times, flexibility in manufacturing and scheduling with

flexible operations.

2.1 Flow-Shop Scheduling

Scheduling of jobs on a flowshop to optimize the measures such as the total

completion time or the completion time of the last job on the last machine (i.e.,

makespan) have received considerable attention in the literature. This extensive

literature can be reviewed from the recent surveys by Hejazi and Saghafianz [33]

and Gupta and Stafford [29]. On the other hand, this study considers a flowshop

with two machines and unlimited buffer capacity in between the machines. There

are a great number of studies considering the limited buffer capacity case and

the no-wait case. These studies can be reviewed from the papers by Hall and

Sriskandarajah [32], Smutnicki [62], Brucker et al. [7], Wang et al. [70], and Liu

et al. [46].

This area of research is started in year 1954 after the seminal paper by Johnson

[37] who studied two- and three-machine flowshops. The processing time and

setup time for each item for each machine was known in advance. He derived an

exact polynomial algorithm to minimize the makespan in two-machine flowshop

environment, which is known as Johnson’s rule. The three-machine version of the

problem was also discussed in the paper and an optimizing technique was offered

for a restricted case.

There are many studies on two-machine n-job flowshop scheduling problems

with unlimited storage. Gupta and Darrow [27] considered the two-machine flow-

shop scheduling problem with makespan criterion where the setup times of the

jobs depended on immediately preceding jobs. They showed that the problem

was NP-complete. They specified conditions for the optimality of a permutation

schedule and proposed four efficient approximate algorithms to find approximate

schedules for the problem. Glass et al. [20] discussed the problem of scheduling
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and batching in two-machine flowshop and open-shop environment. They con-

sidered minimizing makespan by making batching and sequencing decisions and

a processing order of the batches on each machine. A heuristic approach was

developed to solve the problem. Allaoui et al. [3] studied the problem of jointly

scheduling n available jobs and the preventive maintenance in a two-machine

flowshop with the objective of minimizing the makespan. They focused on the

particularity of this problem and presented some properties of the optimal solu-

tion. The problem was shown to be NP-hard and the optimal solutions under

some conditions were presented. T’kindt et al. [66] proposed an ant colony op-

timization algorithm to solve a two-machine bicriteria flowshop scheduling prob-

lem with the objective of minimizing both the makespan and the total completion

time. They compared the proposed algorithm with the existing heuristics to show

its effectiveness.

Kohler and Steiglitz [41] considered exact and approximate algorithms for the

n-job two-machine mean completion time flowshop problem. They demonstrated

the computational effectiveness of coupling approximate methods for suboptimal

solutions and branch-and-bound algorithms to generate solutions with a guaran-

teed accuracy. Croce et al. [13] studied the scheduling problem of minimizing

total completion time in a two-machine flowshop. They discussed five known

lower bounds and presented two new ones. A new dominance criterion was also

proposed. They derived several versions of a branch and bound method by ap-

plying these lower bounds and also presented a heuristic procedure. Ng et al. [51]

discussed a two-machine flowshop scheduling problem with deteriorating jobs (e.g.

job’s processing time is an increasing function of its starting time) to minimize

the total completion time of the jobs. Several dominance properties, some lower

bounds, and an initial upper bound by using a heuristic algorithm were derived.

They were applied to a branch-and-bound algorithm developed to speed up the

elimination process.

Lee [44] explained that the common assumption that machines are available all

the time may not be true in real industry settings and considered the two-machine

flowshop problem with availability constraints under the assumption that the

unavailable time is known in advance. Cheng and Wang [10] extended the study
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of Lee by proposing a heuristic for the two-machine flowshop scheduling problem

with an availability constraint on the first machine. They gave worst-case error

bounds of the heuristic proposed by Lee and their heuristic. Blazewicz et al. [5]

studied the two-machine flowshop scheduling problem where machines were not

available in given time intervals with an objective of minimizing the makespan.

They analyzed constructive and local search based heuristic algorithms.

Sen et al. [57] studied the problem of minimizing total job tardiness in the two-

machine flowshop environment. They developed a branch-and-bound solution

procedure and a computationally efficient heuristic. Pan et al. [53] also considered

a two-machine flowshop scheduling problem with the objective of minimizing

total tardiness. They showed that previously developed dominance conditions

and a lower bound for this problem could be improved and proposed a new

dominance condition. A branch-and-bound algorithm was also developed that

used the improvements and new dominance condition.

The general m-machine n-job problem with unlimited buffer case is studied

extensively. This problem is known to be NP-Complete. Different mathematical

programming formulations and heuristics are developed by Rajendran [55], Wid-

mer and Hertz [74], Nawaz et al. [49], and Sarin and Lefoka [56]. Garey et al.

[38] proved results about the computational complexity of flowshop and job-shop

scheduling problems.

2.2 Controllable Processing Times

Study of the controllable processing times in scheduling was initialized by Vickson

[77] in 1980. He pointed out that controllable processing times has been studied

in the area of project management where project cost/duration curves have been

widely used in critical path planning. He drew attention to the problems of

least cost scheduling on a single machine in which processing times of jobs were

controllable. Vickson considered total weighted completion time and the total

processing cost. He assumed that the cost of performing each job is a linear
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function of its processing time and the cost of the schedule is the sum of the total

processing cost and the cost associated with the job completion times. Therefore,

the problem was reduced to find the schedule of the jobs and their processing times

while minimizing cost.

Shabtay and Steiner [59] explained in the survey of scheduling with control-

lable processing times that processing times may be controllable by allocating

resources, such as additional money, overtime, energy, fuel, catalysts, subcon-

tracting, or additional manpower, to the job operations. In a production facility

with CNC machines, processing times may be controlled by adjusting machine

parameters, such as cutting speed and/or feed rate (Akturk and Ilhan [1], Gul-

tekin et al. [24], Kayan and Akturk [40]). In labor-intensive systems, number

and training of the workers are effective parameters changing the processing times

(Daniels and Mazzola [16] and Daniels et al. [17]).

Nowicki and Zdrzalka [52] extended Vickson’s initial research in the area of

two-machine flowshop scheduling problem. The problem was to find a job se-

quence and processing times on each machine minimizing the total processing

cost plus the maximum completion time cost. They showed that the problem

is NP-complete. Shabtay et. al. [58] studied two-machine flowshop scheduling

problem with controllable job-processing times under the objective of determining

the sequence of the jobs and the resource allocation for each job on both machines

in order to minimize the makespan. They used equivalent load method to obtain

the optimal resource allocation on a series-parallel graph and reduced the prob-

lem to a sequencing one. They also showed that this problem is equivalent to a

new special case of the Traveling Salesman Problem.

Karabati and Kouvelis [39] discussed simultaneous scheduling and optimal

processing time decision problem for a multi-product, deterministic flow line op-

erated under a cyclic scheduling approach. Gultekin et al. [24] studied a two- and

three-machine manufacturing cells with a material handling robot configured in

a flowshop producing identical parts. They determined the robot move sequence

as well as the processing times of the parts on each machine to minimize the

cycle time and the manufacturing cost. Gultekin et al. [23] considered a cyclic
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scheduling environment through a flowshop type setting in which identical parts

were processed. The parts were processed with two identical CNC machines and

transportation of the parts between the machines was performed by a robot. Both

the allocations of the operations to the two machines and the processing time of

an operation on a machine were assumed to be controllable. Hence the problem

was to determine the allocation of the operations to the machines, the process-

ing times of the operations on the machines, and the robot move sequence with

a bicriteria objective of minimizing the cycle time and the total manufacturing

cost.

Van Wassenhove and Baker [76] studied a single machine scheduling problem

under the objective of minimizing the maximum completion penalty. Their prob-

lem was a bicriteria problem with time/cost trade-offs which produces an efficient

frontier of the possible schedules. Daniels and Sarin [14] considered single ma-

chine scheduling problem and provided a tradeoff curve between the number of

tardy jobs and the total amount of allocated resource. Zdrzalka [78] considered

single machine scheduling problem in which each job has a release date, a deliv-

ery time and a controllable processing time, having its own associated linearly

varying cost. He gave an approximation algorithm for minimizing the overall

schedule cost and associated worst-case performance analysis. Panwalkar and

Rajagopalan [54] studied the common due date assignment and single machine

scheduling problem with an objective of minimizing a cost function containing

earliness cost, tardiness cost, and total processing cost. Cheng et al. [9] stud-

ied a due date assignment and single machine scheduling in which the jobs have

compressible processing times and the objective function includes the penalties

for earliness, tardiness, processing time compressions. Hoogeveen and Woeginger

[35] discussed scheduling on a single machine with controllable job processing

times and presented several polynomial time results for the maximum job cost

criterion. They also proved NP-hardness for the total weighted job completion

time criterion. Ng et al. [50] considered the single machine problem with a vari-

able common due date under the objective of minimizing a linear combination of

scheduling, due date assignment and resource consumption costs. Job processing

times are assumed non-increasing linear functions of an equal amount of a resource
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allocated to the jobs. Wang and Xia [71] modeled a single machine scheduling

problem in which job processing times are controllable variables with linear costs

as an assignment problem and concentrated on two goals, namely, minimizing a

cost function containing total completion time, total absolute differences in com-

pletion times and total compression cost; minimizing a cost function containing

total waiting time, total absolute differences in waiting times and total compres-

sion cost. Akturk and Ilhan [1] considered a single CNC machine scheduling to

minimize the sum of total weighted tardiness, tooling and machining costs. They

formulated a nonlinear mixed integer program and proposed an heuristic to solve

the problem for a given sequence and designed a local search algorithm that uses

it as a base heuristic.

Wan et al. [69] considered two-agent scheduling problems where agents share

either a single machine or two identical machines in parallel. The processing times

of the jobs of one agent are compressible; and total completion time plus compres-

sion cost, the maximum tardiness plus compression cost, the maximum lateness

plus compression cost and the total compression cost are considered as objec-

tive functions for this agent. Mastrolilli [47] studied the problem of minimizing

maximum flow time subject to processing cost constraint on identical parallel ma-

chines with release dates given for each job. Jansen and Mastrolilli [36] discussed

controllable processing times and gave polynomial time approximation schemes

for the problems of minimizing sum of processing cost and makespan, minimizing

processing cost subject to makespan constraint and minimizing makespan subject

to processing cost constraint for the identical parallel machines case.

Alidaee and Ahmadian [2] studied the problem of scheduling n single-

operation jobs on m non-identical machines. Processing times were assumed

to be controllable and the cost of performing a job was a linear function of its

processing time. They considered two different scheduling cost objectives to be

minimized, which were the total processing cost plus total flow time and the to-

tal processing cost plus total weighted earliness and weighted tardiness. They

proposed a polynomial time algorithm to solve the problem. Another paper that

deals with the tradeoff between operating costs and scheduling objectives on non-

identical parallel machines is by Trick [68]. He considered controllable processing
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times where each job has a linear processing cost function. Gurel and Akturk

[30] dealt with making optimal machine-job assignments and processing time de-

cisions on non-identical parallel machines to minimize total manufacturing cost,

which is a nonlinear cost function, while the makespan being upper bounded by a

known value. Optimality properties and methods to compute cost lower bounds

for partial schedules, which are used in developing an exact branch and bound al-

gorithm, were given. Furthermore, a recovering beam search algorithm equipped

with an improvement search procedure was presented for the cases where the exact

algorithm is not efficient in terms of computation time. Gurel et al. [31] showed

that an anticipative approach can be used to form an initial schedule to utilize

resources more effectively in a non-identical parallel machining environment if the

processing times are controllable. Leyvand et al. [45] studied scheduling problems

with controllable processing times on parallel machines. The objective function

is bicreterion which maximizes the weighted number of jobs that are completed

exactly at their due date and minimizes the total resource allocation cost. Four

different models are presented for treating the bicriteria problem.

A well known example of controlling processing times is the turning operation

on CNC turning machines. Processing time of an operation can be controlled on

a CNC turning machine by setting the machining parameters. Trade-offs between

cutting parameters and manufacturing cost for the turning operation problem has

been widely studied in the literature. Hitomi [34] studied mathematical mod-

els and solution methods for different objectives of machine parameter selection

problem. Lamond and Sodhi [42] considered the cutting speed selection and tool

loading decisions on a single cutting machine so as to minimize total processing

time. Sodhi et al. [64] studied determining the optimal processing speeds, tool

loading and part allocations on several flexible machines with finite capacity tool

magazines under the objective of minimizing the makespan. Kayan and Akturk

[40] provided a mechanism to determine upper and lower bounds for the process-

ing time of a turning operation. They also showed that manufacturing cost of a

turning operation can be expressed as a nonlinear function of its processing time.
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2.3 Flexibility in Manufacturing

When job processing times are assumed to be controllable and to be a function of

the amount of resources allocated to an operation, scheduling performance may

be affected by the resource flexibility. Project management is one of the subjects

that controllability of processing times through resource allocation has appeared

in the literature ([48], [75], [72], [60], [73], [61], and [43]).

Daniels [15] presented two extensions to the joint sequencing/resource allo-

cation scheduling model for single-stage production initially proposed by Van

Wassenhove and Baker [76]. He disscussed impact of specified limits on individ-

ual job tardiness on optimal sequencing and single resource allocation. Daniels

also considered the existence of multiple resources available for processing time

control.

Dobson and Karmarkar [18] studied a simultaneous sequencing and resource

allocation problem that processing times and multiple resource requirements were

specified for each job. They gave two formulations for the problem. They de-

veloped a Lagrangian relaxation and a surrogate relaxation which provide lower

bounds on the optimal solution. An enumeration procedure to determine the

optimal solution was also described. They concluded that the Lagrangian relax-

ation performed better on problems with a low degree of simultaneity and the

surrogate relaxation did better with a high degree of simultaneity.

In 1994, Daniels and Mazzola [16] considered a flowshop setting when re-

sources have complete flexibility, which means the resources can be allocated to

any stage of the production process. They considered labor flexibility and cross-

trained workers to perform all of the required operations. They formulated the

flexible-resource scheduling problem with the objective of determining the per-

mutation job sequence, resource allocation policy, and operation start times to

optimize system performance. They discussed problem complexity, established

lower bounds for optimal schedules, developed optimal and heuristic solution ap-

proaches. They concluded that the performance improvements associated with

flexible-resource scheduling are significant according to computational results. In
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2004, Daniels et al. [17] discussed partial resource (labor) flexibility, where each

worker can only perform a subset of the required operations. The workers were

cross-trained to perform a subset of the tasks occurring on the assembly line.

They provided a mathematical formulation for flowshop scheduling with partial

resource flexibility. They suggested that a relatively small investment in cross-

training provided a large portion of the available benefit associated with labor

flexibility.

Assembly line balancing problems were surveyed by Becker and Scholl [4] and

Boysen et al. [6]. Line balancing models assign the tasks to workstations with

an objective of minimizing the cycle time or minimizing the number of stations

needed to achieve a predetermined cycle time.

Another example to flexibility in manufacturing is the automated CNC ma-

chines which can perform different operations. Crama et al. [11] surveyed cyclic

scheduling problems in robotic flowshops, models and complexity of these prob-

lems. They claimed that the most basic and important problems are well under-

stood, at least from a complexity viewpoint.

Sodhi et al. [63] showed that the decision of tool loading to maximize routing

flexibility is shown to be a minimum cost network flow problem when routing

flexibility is a function of the average workload per tool aggregated over tool

types, or of the number of possible routes through the system. They developed

a linear programming model to plan a set of routes for each part type with

an objective of either minimizing either the material handling requirement or

the maximum workload on any machine. They investigated the impact of these

tool addition strategies on the material handling and workload equalization and

presented computational results. They concluded that the overall approach was

favorable in terms of computational simplicity at each step and the ability to

react to dynamic changes.

Stecke [65] defined a set of five production planning problems that must be

solved for efficient use of a flexible manufacturing system, and addressed the ma-

chine grouping and tool loading problems. They formulated nonlinear 0-1 mixed

integer programs for the problems. They examined several linearization methods
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and reduced the constraint size of the linearized integer problems according to

various methods to decrease computational time.

2.4 Scheduling with Flexible Operations

There are several researches on decision rules for the assignment of the flexible

operations. Gupta et al. [28] studied two-machine flowshop processing noniden-

tical jobs that the buffer has infinite capacity. Each job had three operations, one

of which was a flexible operation. They analyzed two algorithms. One algorithm

used arbitrary assignment of the flexible operations and an arbitrary processing

order, and the other, improved algorithm, constructed four schedules and selected

the best which were polynomial time approximation schemes.

Burdett and Kozan [8] considered a scheduling environment that station tasks

or operations could be shifted or redistributed to adjacent stations. In this case,

the stations should have appropriate equipment and the workers should be cross-

trained. Mathematical models, recurrence equations and solution techniques were

provided for the intermediate storage, no-intermediate storage and no-wait flow-

shop problem cases.

Gultekin et al. [21] studied the problem of two-machine robotic cell scheduling

with operational flexibility. They assumed that the parts to be processed were

identical and had a number of operations to be completed. The machines were

also assumed to be capable of performing all of the operations. They determined

the optimal robot move cycle and the corresponding optimal allocation of oper-

ations with an objective of minimizing the cycle time. Gultekin et al. [22] dealt

with the robotic cell scheduling problem with two machines and identical parts.

They discussed that the assumption of CNC machines being capable of perform-

ing all the required operations as long as the required tools are stored in their

tool magazines may be unrealistic because of the limited tool magazines capacity.

Hence, they assumed that some operations could only be processed on the first
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machine while some others on the second machine due to tooling constraints. Al-

location of the remaining operations (which can be processed on either machine)

to the machines and the optimal robot move cycle that minimized the cycle time

were determined. A sensitivity analysis on the results was also conducted.

Guo et al. [25] considered a scheduling problem in the flexible assembly line

with the objectives of balancing the production flow, which considers assignment

of flexible operations, and minimizing the weighted sum of tardiness and earli-

ness penalties. They presented a mathematical model for the problem. A bi-level

genetic algorithm, a heuristic initialization process and modified genetic opera-

tors were proposed. Guo et al. investigated a production control problem on

a flexible assembly line with flexible operation assignment and variable opera-

tive efficiencies. They formulated a mathematical model. They also developed

an intelligent production control decision support system, a production control

decision support model comprising a bi-level genetic optimization process and a

heuristic operation routing rule.

Crama and Gultekin [12] considered a production line consisting of two ma-

chines operating as a flowshop and a buffer located between the machines. The

jobs processed were identical and each job had three operations, one of which was

a flexible operation. The assignment of the flexible operations to the machines

for each job was determined under the objective of maximizing the throughput

rate. Several cases were considered regarding the number of parts to be produced

and the capacity of the buffer.

2.5 Summary

In this chapter, classical flowshop scheduling, controllable processing times, flex-

ibility in manufacturing and scheduling with flexible operations literatures were

reviewed. The study by Crama and Gultekin [12] considering processing of iden-

tical jobs and assignment of flexible operations is the most relevant one to our

study. Gupta et al. [28] also study two-machine flowshop with assignment of
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flexible operations but the jobs are assumed to be nonidentical. However, both

studies consider fixed processing times and a single objective function criterion.

Current literature ignores a bicriteria problem that considers the allocation

of flexible operations and controllability of processing times at the same time.

A bicriteria model provides useful insights to the decision maker. For example,

a solution which minimizes the makespan can be a worse solution in terms of

the manufacturing cost. This study is much more realistic than the existing

ones and can present better results, so this thesis considers the deficiencies of the

current literature. We study a bicriteria problem in which the processing times of

each operation and the assignments of flexible operations to one of the machines

for each job should be determined optimally. The objective is to minimize the

manufacturing cost and the makespan value.

In the next chapter, we will present the definition and modeling of the prob-

lem.



Chapter 3

Problem Definition and Modeling

In this chapter, we present the definition of the problem and two mathemati-

cal formulations. We discuss some characteristics of the problem and present

numerical examples.

3.1 Problem Definition

In this study, we have n identical jobs to be processed on two machines in a

flowshop environment. For each job, three operations must be performed by

the machines. The first (second) operation can only be performed by the first

(second) machine and its processing time is equal to f 1

j (f 2

j ) for job j. The

third operation is flexible so can be performed by either one of the machines and

the processing time of this operation is sj for job j. The assignment of flexible

operations to the machines for each job is a decision that should be made. All

jobs are first processed by the first machine and then by the second machine.

Preemption is not allowed. Different than most of the studies in the machine

scheduling literature, we assume the processing times to be controllable within

an upper and a lower bound. As a consequence of the controllability of the

processing times and the dynamic assignment of the flexible operations from one

part to the other, although the jobs are assumed to be identical they may have

18
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different processing times on the machines. Hence, they are identical in the sense

that, they all require the same set of operations. Because of this reasoning, the

job index, j, denotes the job in the jth position. Our objective is to determine

the processing times of operations for each job and the assignment of flexible

operations of each job to one of the machines under the bicriteria objective of

minimizing the manufacturing cost and the makespan.

3.2 Mathematical Model Formulation

In this study, we assume the machines to be CNC machines. For these machines,

the manufacturing cost of an operation can be expressed as the sum of the oper-

ating and the tooling costs. Operating cost of a machine is the cost of running

this machine. Tooling cost for CNC operation can be calculated by the cost of

the tools used times tool usage rate of the operation. Kayan and Akturk [40]

showed that manufacturing cost of a CNC operation can be expressed as a func-

tion of processing time. Although we consider the manufacturing cost incurred

for a CNC machine, our analysis is valid for any convex cost function.

The notation used throughout the thesis is as follows:

Decision variables

f 1

j processing time for the 1st operation of job j on machine 1

f 2

j processing time for the 2nd operation of job j on machine 2

sj processing time for flexible operation of job j on the assigned machine

xj decision variable, that controls if flexible operation of job j is assigned

to machine 1

Tj,m starting time of the jth job on machine m
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Parameters

n number of jobs to be processed

C operating cost of machines

F 1

j (f
1

j ) manufacturing cost function of processing time for the 1st operation

of job j on machine 1

F 2

j (f
2

j ) manufacturing cost function of processing time for the 2nd operation

of job j on machine 2

Sj(sj) manufacturing cost function of processing time for flexible operation

of job j on the assigned machine

f 1

l , f
1

u processing time lower and upper bounds for the 1st operation on

machine 1, respectively

f 2

l , f
2

u processing time lower and upper bounds for the 2nd operation on

machine 2, respectively

sl, su processing time lower and upper bounds for flexible operation,

respectively

b tooling cost exponent, (note that, b < 0)

A1, A2, As tooling cost multipliers for the 1st, 2nd, and flexible operations,

respectively.

In this study, the following nonlinear form of the manufacturing cost function

will be used.

For the first and second operations:

F i
j (f

i
j) = C · f i

j + Ai · (f i
j)

b for i = 1, 2 and j = 1, ..., n.

For the flexible operation:

Sj(sj) = C · sj + As · (sj)
b for j = 1, ..., n.
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Note that these cost functions are strictly convex and have unique minimizers.

Kayan and Akturk [40] stated that a value of processing time greater than the

minimizer of the cost function is inferior both in terms of the manufacturing cost

and a regular scheduling performance measure. Therefore, the optimal processing

time value will never exceed the minimizers of these functions. As a consequence,

these values can be named as upper bounds of processing times and denoted by

f i
u and su. They showed that F i

j (f
i
j) and Sj(sj) are minimized at processing time

levels f i
u and su, respectively. They proposed that since the cost functions are

convex, the values of f i
u and su can be determined by taking derivatives of the

objective function with respect to f i
j and sj and solving them by equating to zero.

Then, we have f 1

u = b−1

√

−C
A1

·b
, f 2

u = b−1

√

−C
A2

·b
and su = b−1

√

−C
As

·b
as upper bounds

for f 1

j , f
2

j , and sj . Moreover, there exists a processing time lower bound f i
l and sl

which is determined by the manufacturing properties of job j and the maximum

applicable power of CNC machine.

We can formulate the bicriteria problem as a nonlinear mixed integer program

as follows:

Min. Z1 = (
n

∑

j=1

2
∑

i=1

f i
j +

n
∑

j=1

sj) · C +
n

∑

j=1

2
∑

i=1

(f i
j)

b · Ai +
n

∑

j=1

(sj)
b · As (3.1)

Min. Z2 = Tn,2 + f 2

n + sn · (1− xn) (3.2)

s.t. Tj,1 ≥ Tj−1,1 + f 1

j−1
+ sj−1 · xj−1 j ≥ 2 (3.3)

Tj,2 ≥ Tj−1,2 + f 2

j−1
+ sj−1 · (1− xj−1) j ≥ 2 (3.4)

Tj,2 ≥ Tj,1 + f 1

j + sj · xj ∀j (3.5)

T1,1 ≥ 0 (3.6)

f i
l ≤ f i

j ≤ f i
u ∀i and ∀j (3.7)

sl ≤ sj ≤ su ∀j (3.8)

xj ∈ {0, 1} ∀j (3.9)
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Equation (3.1) represents one of the objective functions which minimizes to-

tal manufacturing cost. Equation (3.2) represents the second objective function

which minimizes makespan. Constraints (3.3) and (3.4) express the condition

that the jth job can start on the first (resp., second) machine only after the

previous job is completed on this machine. Constraint (3.5) also explains the

condition that the processing of a job on the second machine can be started only

after the processing of this job is completed on the first machine. Constraint (3.6)

is the nonnegativity constraint of the variable T1,1. Upper and lower bounds of

the processing time of the first operation, second operation, and flexible oper-

ation are represented by the constraints (3.7) and (3.8), respectively. Finally,

constraint (3.9) expresses the assignment of flexible operation to only one of the

two machines for each job.

One of the methods used for bicriteria problems in the literature is the so

called ǫ-constraint approach discussed by T′kindt and Billaut [67]. This method

represents one of the objectives as a constraint with an auxilary upper bound

and optimizes over the second objective. By searching over different values for

the upper bound one can generate a set of discrete nondominated points; points

on the efficient frontier. We will use ǫ-constraint approach to solve our bicriteria

problem. For this purpose, we will represent makespan objective as a constraint

and optimize over the manufacturing cost objective. Therefore, our problem turns

out to be minimizing total manufacturing cost objective for a given upper limit

ǫ on the makespan objective and let us name this mathematical programming

formulation as Model 1.

Model 1: Min. Z1

s.t. Z2 ≤ ǫ (3.10)

Constraints (3.3)− (3.9)

The constraints (3.3), (3.4), (3.5), and (3.10) of Model 1 are nonlinear be-

cause of multiplication of two variables. Using auxiliary variables, these can be

linearized. As we mentioned before, manufacturing cost function consists of op-

erating cost and tooling cost functions. Since tooling cost function is nonlinear
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because of the exponent term, it cannot be linearized. Hence, the objective func-

tion remains nonlinear. After replacing sj · xj with q1j and sj · (1 − xj) with q2j ,

constraints (3.3), (3.4), (3.5), and (3.10) are linearized and we have the following

model with nonlinear objective function but linear constraints. The formulation

with linear constraints named as Model 2 is as follows:

Model 2: Min. Z1

s.t. Tn,2 + f 2

n + q2n ≤ ǫ (3.11)

Tj,1 ≥ Tj−1,1 + f 1

j−1
+ q1j−1

j ≥ 2 (3.12)

Tj,2 ≥ Tj−1,2 + f 2

j−1
+ q2j−1

j ≥ 2 (3.13)

Tj,2 ≥ Tj,1 + f 1

j + q1j ∀j (3.14)

T1,1 ≥ 0 (3.15)

sj −M · (1− xj) ≤ q1j ≤ sj +M · (1− xj) ∀j (3.16)

−M · xj ≤ q1j ≤ M · xj ∀j (3.17)

q2j = sj − q1j ∀j (3.18)

f i
l ≤ f i

j ≤ f i
u ∀i and ∀j (3.19)

sl ≤ sj ≤ su ∀j (3.20)

xj ∈ {0, 1} ∀j (3.21)

In the above formulation, qmj is an artificial variable, where m and j are the

machine index and job index, respectively. This variable represents the processing

time for flexible operation of job j on machine m. Moreover, M represents a large

number associated with this artificial variable.

As mentioned in Section 2.4, Gupta et al. [28] studied the problem of minimiz-

ing makespan in a two-machine flowshop environment with flexible operations.

They claimed that when all operations, except the flexible ones, had zero process-

ing times, then each job had just one operation that should be processed on either

one of the machines. Thus, the problem turned out to be scheduling jobs on two

identical parallel machines to minimize the makespan. This problem was known

to be NP-hard in the ordinary sense, so they claimed that their problem was
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also NP-hard at least in the ordinary sense. Although we have identical parts

requiring the same set of operations, similar to Gupta et al. [28], these parts

may have different processing time values. Additionally, the objective function

is a nonlinear one. As a consequence, we conjecture that our problem could be

NP-Hard as well.

3.3 Characteristics of the Problem

Crama and Gultekin [12] showed that the optimal schedule in fixed processing

times case can actually be found more efficiently than a mathematical program-

ming formulation. They proved that the optimal assignment of the flexible oper-

ation for each job can be found by the following formula:

r =
(n− 1) · (f 2 + s− f 1) + s

2 · s
(3.22)

Here, r represents the total number of jobs for which the flexible operation

is assigned to the first machine. f 1, f 2, and s are the processing times of first

operation, second operation, and flexible operation, respectively. Then using the

same idea as with the Johnson’s algorithm, the first n − r flexible operations

should be assigned to the second machine and the remaining ones to the first

machine.

By definition, r must be an integer but this formula may yield noninteger

values. If the resulting value is non-integer, then the optimal makespan can be

found using either the largest integer smaller than r, ⌊r⌋, or the smallest integer

larger than r, ⌈r⌉, and the following formula.

Cmax = min{(f 1 + n · f 2 + (n− ⌊r⌋) · s), (n · f 1 + f 2 + ⌈r⌉ · s)} (3.23)

Figure 3.1 represents an efficient frontier of makespan and total manufacturing

cost objectives. In this figure, Z1 denotes the manufacturing cost and Z2 denotes
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Figure 3.1: Efficient frontier of makespan and total manufacturing cost objectives

the makespan value. [67] discussed that a point (Zb
1
,Zb

2
) is said to be efficient with

respect to cost and makespan criteria if there does not exist another point (Zd
1
,Zd

2
)

such that Zd
1
≤ Zb

1
and Zd

2
≤ Zb

2
with at least one holding as a strict inequality.

In literature, the processing time upper bounds are mostly preferred in terms of

manufacturing cost objective because processing the jobs at their upper bounds

allows to achieve minimum manufacturing cost. At point C on Figure 3.1, Z1 is

at the minimum value (Zmin
1

) while Z2 is at the maximum value (Zmax
2

). This

point is reached when the processing times are set to their upper bounds.

On the other hand, we would prefer using processing time lower bounds for

any regular scheduling measure. When the processing times are set to their lower

bounds, we get the point, A, on the Figure 3.1. However, for this particular

case r value may not be an integer, so the machines may sometimes become

idle which is unavoidable in fixed processing time. This may incur extra cost.

However controllability allows us to prevent idleness by increasing some of the the

processing times of jobs and changing the assignment of the flexible operations,

which yields a reduction in manufacturing cost without increasing the makespan.

Hence, a schedule can be obtained with the same makespan value but at a lower

cost. This idea will be highlighted via examples in the next section. The old point
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A becomes a dominated point in this case. The new point is a nondominated

point, which is represented by B in Figure 3.1. This means the optimal solution

with fixed processing times is dominated by a nondominated optimal solution with

controllable processing times. At point B, Z1 has its maximum value (Zmax
1

) and

Z2 has its minimum (Zmin
2

).

3.4 Numerical Examples

In this section, we present two examples to demonstrate the benefits of control-

lable processing times over fixed processing times case.

Example 1 Let us consider two cases, one of which assumes fixed processing

times and the other has controllable processing times.

Case 1: Fixed processing time case

In this problem, number of jobs is selected to be 5. Let the processing times be

f 1

j = 1.2, f 2

j = 2, and sj = 1.8 ∀j. Let the operation cost of machines, tooling cost

multiplier, and tooling cost exponent be C = 4, A = 8, and b = −2, respectively.

Using the solution procedure developed by [12], the optimal makespan value is

found to be 14.8 time units. The Gantt chart of the optimal solution is depicted

in Figure 3.2a, in which the flexible operations of jobs 3, 4, and 5 are assigned to

the first and the remaining ones are assigned to the second machine. With given

parameters, the associated cost of this solution is 62.62.

Case 2: Controllable processing time case

Let the number of jobs to be the same as in Case 1 and the processing time

ranges be 1.2 ≤ f 1

j ≤ 4.7, 2 ≤ f 2

j ≤ 2.8, and 1.8 ≤ sj ≤ 5.6 ∀j. Lower

bound processing time values, tooling cost multiplier and tooling cost exponent

are selected to be the same as in Case 1. Let the upper limit of makespan in

Constraint 3.10 be set to same as Case 1 (14.8).

The problem is solved using BARON MINLP solver of GAMS and because
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Figure 3.2: Optimal schedule of Example 1

of the convex nature of the problem the solver guarantees an optimal solution.

The solution is found to be f 1

1
= 1.2, f 1

j = 1.55 for j=2 to 5, f 2

j = 2 ∀j, and

sj = 1.8 ∀j. In Figure 3.2b, the optimal solution of the problem with cost 54.42

and makespan 14.8 time units is depicted.

As can be seen from Figures 3.2a and 3.2b, while there is an idle time in the

schedule of Case 1, there is no idle time on the machines just after they start

processing jobs until they complete the processing of the last job in the schedule

of Case 2. By means of controllability of processing times, the durations of f 1

j for

jobs j=2 to 5 are increased, which in this case decreased the manufacturing cost

by 15.1%. Therefore, a new schedule is obtained with the same makespan at a

lower cost and the optimal solution with fixed processing times is dominated by

a nondominated optimal solution with controllable processing times.
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Controllability of the processing times is not the only factor affecting the

idle times (manufacturing cost) on the machines. The assignment of flexible

operations also affect the manufacturing cost. The following example is given to

highlight this idea.

Example 2 Let us consider another two cases, one of which again assumes fixed

processing times and the other has controllable processing times.

Case 1: Fixed processing time case

Let the number of jobs be the same as in Example 1 and the processing times

be f 1

j = 1.8, f 2

j = 2.4, and sj = 4.5 ∀j. Let tooling cost multiplier and tooling

cost exponent also be the same as in Example 1. In Figure 3.3a, the optimal

solution of the problem with makespan 24.9 time units is depicted. With given

parameters, the corresponding cost of this solution is 43.01.

Case 2: Controllable processing time case

Let the processing time values, tooling cost multiplier, and tooling cost expo-

nent be the same as in Case 2 of Example 1. Let the upper limit of makespan in

Constraint 3.10 be set to same as Case 1 (24.9).

The solution is found to be f 1

1
= 2.77, f 1

j = 3.17 for j=2 to 5, f 2

j = 2.77 for

jobs j=1 to 5, sj = 2.77 for j=1,2,3, and sj = 3.17 for jobs j=4,5. In Figure

3.3b, the optimal solution of the problem with cost 36.14 and makespan 24.9 time

units is depicted.

As can be seen from the Figures 3.3a and 3.3b, while there is an idle time

in the schedule of Case 1 there is no idle time in the schedule of Case 2. In the

optimal schedule of Case 1, the flexible operations of jobs 3, 4, and 5 are assigned

to the first machine and the other two to the second machine. However, in the

optimal schedule of Case 2, the flexible operations of jobs 4 and 5 are processed

on the first machine and the other three on the second machine. The processing

times of operations are also different than the fixed processing time case. While

f i
j for i=1,2 and j=1 to 5 are increased, sj for j= 1 to 5, are decreased. This is
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Figure 3.3: Optimal schedule of Example 2

by means of controllability of processing times which in this case decreased the

manufacturing cost by 19.0%. Therefore, a new schedule is obtained with the

same makespan at a lower cost.

As highlighted in the examples, the solution procedures proposed by [12] and

[28], which present optimal solutions for fixed processing time, may not be op-

timal for controllable processing time. Also, although the jobs are assumed to

be identical in this study, the flexible operations, sj, can have different values

at different machines. Therefore, we need to develop a new algorithm for the

problem.
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3.5 Summary

In this chapter, we presented the definition of the problem. We built two math-

ematical formulations to determine the optimal processing time values and the

assignment of flexible operations giving the minimum manufacturing cost. We

discussed some properties of the problem and presented two numerical examples.

In the next chapter, we will discuss some basic properties of the problem and

characteristics of the approximation algorithm that will be presented in Chapter

5.



Chapter 4

Theoretical Results

In this chapter, we demonstrate some optimally properties for the problem which

will be used in the development of the approximation algorithm and characteris-

tics of the approximation algorithm that will be presented in the next chapter.

4.1 Optimality Properties of the Problem

The first lemma considers the property of the second objective function repre-

sented as a constraint in Model 1 and Model 2.

Lemma 1 In an optimal solution to the problem, either constraint (3.10) is sat-

isfied as equality or the processing times for all parts are set to their upper bounds.

Proof. Let Z⋆
1
=

∑n

j=1

∑

2

i=1
(F i

j (f
i⋆

j ) +Sj(s
⋆
j )) be the optimal objective function

value with optimal processing time vectors f ⋆ and s⋆. Assume to the contrary

that Cmax = Tn,2 + f 2

n + sn · (1 − xn) < ǫ and there exists ĵ such that f i

ĵ
< f i

u.

Consider another solution with f̂ i⋆

j = f i⋆

j , ∀j 6= ĵ. Let f̂ i⋆

ĵ
= f i⋆

ĵ
+ β for some

β, 0 < β ≤ min{f i
u − f i⋆

ĵ
, ǫ − (Tn,2 + f 2

n + sn · (1 − xn))}. Note that, if all

processing times are on their upper bounds, there is no such β. Processing times

for all operations except ĵ is identical with the previous solution and note that

31
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f̂ i⋆

ĵ
> f i⋆

ĵ
. The objective function value of the new solution, Ẑ⋆

1
, satisfies Ẑ⋆

1
< Z⋆

1
,

because the cost function is decreasing with respect to processing times. However,

this contradicts with f ⋆ being the optimal solution. 2

As a consequence of the above lemma, we know that makespan value (Cmax)

is equal to the upper bound ǫ in an optimal solution which will be used in the

proof of the Lemma 3.

Lemma 2 is about machine idle times and helpful in characterizing the optimal

solution. In any schedule, both of the machines are initially idle. Then, while

the first job is being processed on the first machine, the second machine is still

idle waiting for the job during the interval [0, T1,2]. This idle time on the second

machine cannot be avoided and its length is at least equal to f 1

1
. Similarly,

some idle time of length at least f 2

n cannot be avoided on the first machine

while the second machine processes the last job. The idle times except these are

denoted as unforced idle times. If there is an unforced idle time on machine 1,

it could only happen after the last job on the first machine has been completed.

Unlike machine 1, there may be unforced idle times at machine 2 during the time

interval [T1,2, Tn,2] because of precedence constraint (3.5). As we mentioned in the

numerical examples, these unforced idle times are not desirable and elimination

of them decreases manufacturing cost. In the following lemma, Cj,m represents

the completion time of the jth job on machine m.

Lemma 2 In an optimal solution to the problem, the following conditions hold.

1. Either Cn−1,2 ≤ Cn,1 or f 1

j = f 1

u ∀j = 1, 2, ..., n

2. Either Ck,1 ≤ Ck−1,2 or f 2

j = f 2

u ∀k = 1, 2, ..., n and ∀j = 1, 2, ..., k − 1

Proof. Let Z⋆
1
=

∑n

j=1

∑

2

i=1
(F i

j (f
i⋆

j )+Sj(s
⋆
j)) be the optimal objective func-

tion value with optimal processing time vectors f ⋆ and s⋆.

Assume to the contrary Cn−1,2 > Cn,1 and there exists ĵ such that f 1

ĵ
<

f 1

u . Hence, consider another solution with f̂ 1
⋆

j = f 1
⋆

j ∀j 6= ĵ and f̂ 1
⋆

ĵ
= f 1

⋆

ĵ
+
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min{f 1

u − f 1
⋆

ĵ
, Cn−1,2 − Cn,1}. This new solution has identical processing times

for all operations except ĵ and f̂ 1
⋆

ĵ
> f 1

⋆

ĵ
. Since the cost function is decreasing

with respect to processing times, the objective function of the new solution, Ẑ⋆
1
,

satisfies Ẑ⋆
1
< Z⋆

1
. However, this contradicts with f ⋆ being the optimal solution.

Similarly, assume to the contrary that there exists k such that Ck,1 > Ck−1,2

and ĵ = 1, .., k − 1 such that f 2

ĵ
< f 2

u . Hence, consider another solution with

f̂ 2
⋆

j = f 2
⋆

j ∀j 6= ĵ and f̂ 2
⋆

ĵ
= f 2

⋆

ĵ
+min{f 2

u−f 2
⋆

ĵ
, Ck,1−Ck−1,2}. This new solution

has identical processing times for all operations except ĵ and f̂ 2
⋆

ĵ
> f 2

⋆

ĵ
. Since

the cost function is decreasing with respect to processing times, the objective

function of the new solution, Ẑ⋆
1
, satisfies Ẑ⋆

1
< Z⋆

1
. However, this contradicts

with f ⋆ being the optimal solution. 2

Lemma 2 indicates that in an optimal schedule we need to prevent the unforced

idleness of machines till the processing time variables reach to their upper bounds.

We present the following lemma which will play an essential role in the devel-

opment of the solution procedure. It states the relationships between processing

times of jobs on the same machine in an optimal solution with respect to the

derivatives of the cost functions of the jobs. Every operation of jobs are parti-

tioned into two sets with respect to their processing time values in the optimal

solution. For the 1st operation, the jobs which have processing time values greater

than their lower bounds appear in set J1

1
while the jobs which have processing

time values equal to their lower bounds appear in set J1

2
. The assignment of

the jobs to the sets are done similarly for the 2nd operation and the flexible op-

eration. Note that the first job and the last job are excluded from the sets J1

2

and J2

2
, respectively. As mentioned in Lemma 2, there exists no idle times on

both machines unless the processing time variables reach to their upper bounds.

Hence, in some cases the processing time values, except the first operation of the

first job and the second operation of the last job, are increased to eliminate idle

times. The first operation of the first job and the second operation of the last

job cannot be increased to eliminate idle times because they directly affect the

makespan value. Moreover, the jobs are partitioned into two subsets namely M1

and M2 depending on the assignment of their flexible operations. We represented
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∂F 1

j (f
1

j )/∂f
1

j , ∂F
2

j (f
2

j )/∂f
2

j , and ∂Sj(sj)/∂sj as ∂F 1

j (f
1

j ), ∂F
2

j (f
2

j ), and ∂Sj(sj)

for simplicity.

Lemma 3 In an optimal solution to the problem, let f 1
⋆

, f 2
⋆

, and s⋆ be the

optimal processing times vectors of the variables f 1
⋆

j , f 2
⋆

j , and s⋆j , respectively.

Let j be the job index and

J1

1
= {h : f 1

u ≥ f 1
⋆

h > f 1

l } and J1

2
= {h : h 6= 1, f 1

⋆

h = f 1

l }

J2

1
= {j : f 2

u ≥ f 2
⋆

j > f 2

l } and J2

2
= {j : j 6= n, f 2

⋆

j = f 2

l }

Js
1
= {k : su ≥ s⋆k > sl} and Js

2
= {k : s⋆k = sl}

M1 = {set of jobs whose flexible operations are processed on machine 1 }

M2 = {set of jobs whose flexible operations are processed on machine 2 }.

Then the following conditions hold:

1. ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
≤ ∂Sk(sk) |sk=s⋆

k
∀h ∈ J1

1
and ∀k ∈ Js

2
∩M1

2. ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
≤ ∂Sk(sk) |sk=s⋆

k
∀j ∈ J2

1
and ∀k ∈ Js

2
∩M2

3. ∂Sk(sk) |sk=s⋆
k
≤ ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
∀k ∈ Js

1
∩M1 and ∀h ∈ J1

2

4. ∂Sk(sk) |sk=s⋆
k
≤ ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
∀k ∈ Js

1
∩M2 and ∀j ∈ J2

2

5. ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
= ∂Sk(sk) |sk=s⋆

k
∀h ∈ J1

1
and ∀k ∈ Js

1
∩M1

6. ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
= ∂Sk(sk) |sk=s⋆

k
∀j ∈ J2

1
and ∀k ∈ Js

1
∩M2.

Proof. We assume that there exists at least one job such that f 1
⋆

h > f 1

l ,

f 2
⋆

j > f 2

l , and s⋆k > sl, then the optimal processing times vectors f 1
⋆

, f 2
⋆

, and

s⋆ are regular points. In other words, the gradients of the active inequality con-

straints and the gradients of the equality constraints are linearly independent at

that point. Such a point must satisfy the Karush Kuhn Tucker (KKT) condi-

tions. From Lemma 1, constraint (3.10) is satisfied as equality. Moreover, since
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makespan is a regular scheduling measure, increasing the completion time of any

job will not improve the makespan value. Consequently, any processing time

value greater than f 1

u , f
2

u and su will lead to an inferior solution because the

value of objective function will get worse. Therefore, we can replace the con-

straints f 1

l ≤ f 1

h ≤ f 1

u , f
2

l ≤ f 2

j ≤ f 2

u , and sl ≤ sk ≤ su with f 1

l ≤ f 1

h , f
2

l ≤ f 2

j ,

and sl ≤ sk.

1. The Lagrangian function for point f 1
⋆

can be written as follows:

L(f 1
⋆

, λ⋆, µ⋆
1
) =

n
∑

h=1

F 1

h (f
1

h) + λ⋆ · (Cmax − ε) +

n
∑

h=1

µ⋆
1h
· (f 1

l − f 1
⋆

h ).

The term λ⋆ is unrestricted in sign and µ⋆
1h
≥ 0. If we set ∇(L(f 1

⋆

, λ⋆, µ⋆
1
)) =

0, we get ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
+λ⋆ − µ⋆

1h
= 0 ∀h. Since h ∈ J1

1
, then µ⋆

1h
= 0. Thus,

∂F 1

h (f
1

h) |f1

h
=f1⋆

h
= −λ⋆.

The Lagrangian function for point s⋆ can be written as follows:

L(s⋆, λ⋆, µ⋆
s) =

n
∑

k=1

Sk(sk) + λ⋆ · (Cmax − ε) +

n
∑

k=1

µ⋆
sk
· (sl − s⋆k).

Similarly, the term λ⋆ is unrestricted in sign and µ⋆
sk
≥ 0. If we set

∇(L(s⋆, λ⋆, µ⋆
s)) = 0, we get ∂Sk(sk) |sk=sk

⋆ +λ⋆−µ⋆
sk

= 0 ∀k. Since k ∈ (Js
2
∩M1),

then µ⋆
sk
≥ 0. Thus, ∂Sk(sk) |sk=sk

⋆= −λ⋆ + µ⋆
sk
.

We have ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
= −λ⋆ ≤ ∂Sk(sk) |sk=s⋆

k
= −λ⋆ + µ⋆

sk
∀h ∈ J1

1
and

∀k ∈ (M1 ∩ Js
2
) , since µ⋆

sk
≥ 0. This proves Case 1 of the lemma.

2. The Lagrangian function for point f 2
⋆

can be written as follows:



CHAPTER 4. THEORETICAL RESULTS 36

L(f 2
⋆

, λ⋆, µ⋆
2
) =

n
∑

j=1

F 2

j (f
2

j ) + λ⋆ · (Cmax − ε) +
n

∑

j=1

µ⋆
2j
· (f 2

l − f 2
⋆

j ).

The term λ⋆ is unrestricted in sign and µ⋆
2j
≥ 0. If we set ∇(L(f 2

⋆

, λ⋆, µ⋆
2
)) =

0, we get ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
+λ⋆ − µ⋆

2j
= 0 ∀j. Since j ∈ J2

1
, then µ⋆

2j
= 0. Thus,

∂F 2

j (f
2

j ) |f2

j =f2⋆

j
= −λ⋆.

The Lagrangian function for point s⋆ can be written as follows:

L(s⋆, λ⋆, µ⋆
s) =

n
∑

k=1

Sk(sk) + λ⋆ · (Cmax − ε) +
n

∑

k=1

µ⋆
sk
· (sl − s⋆k).

Similarly, the term λ⋆ is unrestricted in sign and µ⋆
sk
≥ 0. If we set

∇(L(s⋆, λ⋆, µ⋆
s)) = 0, we get ∂Sk(sk) |sk=sk

⋆ +λ⋆−µ⋆
sk

= 0 ∀k. Since k ∈ (Js
2
∩M2),

then µ⋆
sk
≥ 0. Thus, ∂Sk(sk) |sk=sk

⋆= −λ⋆ + µ⋆
sk
.

We have ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
= −λ⋆ ≤ ∂Sk(sk) |sk=s⋆

k
= −λ⋆ + µ⋆

sk
∀j ∈ J2

1
and

∀k ∈ (M2 ∩ Js
2
) , since µ⋆

sk
≥ 0. This proves Case 2 of the lemma.

3. The Lagrangian function for point f 1
⋆

can be written as follows:

L(f 1
⋆

, λ⋆, µ⋆
1
) =

n
∑

h=1

F 1

h (f
1

h) + λ⋆ · (Cmax − ε) +
n

∑

h=1

µ⋆
1h
· (f 1

l − f 1
⋆

h ).

The term λ⋆ is unrestricted in sign and µ⋆
1h
≥ 0. If we set ∇(L(f 1

⋆

, λ⋆, µ⋆
1
)) =

0, we get ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
+λ⋆ − µ⋆

1h
= 0 ∀h. Since h ∈ J1

2
, then µ⋆

1h
≥ 0. Thus,

∂F 1

h (f
1

h) |f1

h
=f1⋆

h
= −λ⋆ + µ⋆

1h
.

The Lagrangian function for point s⋆ can be written as follows:
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L(s⋆, λ⋆, µ⋆
s) =

n
∑

k=1

Sk(sk) + λ⋆ · (Cmax − ε) +

n
∑

k=1

µ⋆
sk
· (sl − s⋆k).

Similarly, the term λ⋆ is unrestricted in sign and µ⋆
sk
≥ 0. If we set

∇(L(s⋆, λ⋆, µ⋆
s)) = 0, we get ∂Sk(sk) |sk=sk

⋆ +λ⋆−µ⋆
sk

= 0 ∀k. Since k ∈ (Js
1
∩M1),

then µ⋆
sk

= 0. Thus, ∂Sk(sk) |sk=sk
⋆= −λ⋆.

We have ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
= −λ⋆ + µ⋆

1h
≥ ∂Sk(sk) |sk=s⋆

k
= −λ⋆ ∀h ∈ J1

2
and

∀k ∈ (M1 ∩ Js
1
) , since µ⋆

1h
≥ 0. This proves Case 3 of the lemma.

4. The Lagrangian function for point f 2
⋆

can be written as follows:

L(f 2
⋆

, λ⋆, µ⋆
2
) =

n
∑

j=1

F 2

j (f
2

j ) + λ⋆ · (Cmax − ε) +

n
∑

j=1

µ⋆
2j
· (f 2

l − f 2
⋆

j ).

The term λ⋆ is unrestricted in sign and µ⋆
2j
≥ 0. If we set ∇(L(f 2

⋆

, λ⋆, µ⋆
2
)) =

0, we get ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
+λ⋆ − µ⋆

2j
= 0 ∀j. Since j ∈ J2

2
, then µ⋆

2j
≥ 0. Thus,

∂F 2

j (f
2

j ) |f2

j =f2⋆

j
= −λ⋆ + µ⋆

2j
.

The Lagrangian function for point s⋆ can be written as follows:

L(s⋆, λ⋆, µ⋆
s) =

n
∑

k=1

Sk(sk) + λ⋆ · (Cmax − ε) +

n
∑

k=1

µ⋆
sk
· (sl − s⋆k).

Similarly, the term λ⋆ is unrestricted in sign and µ⋆
sk
≥ 0. If we set

∇(L(s⋆, λ⋆, µ⋆
s)) = 0, we get ∂Sk(sk) |sk=sk

⋆ +λ⋆−µ⋆
sk

= 0 ∀k. Since k ∈ (Js
1
∩M2),

then µ⋆
sk

= 0. Thus, ∂Sk(sk) |sk=sk
⋆= −λ⋆.

We have ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
= −λ⋆ + µ⋆

2j
≥ ∂Sk(sk) |sk=s⋆

k
= −λ⋆ ∀j ∈ J2

2
and

∀k ∈ (M2 ∩ Js
1
) , since µ⋆

2j
≥ 0. This proves Case 4 of the lemma.
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5. The Lagrangian function for point f 1
⋆

can be written as follows:

L(f 1
⋆

, λ⋆, µ⋆
1
) =

n
∑

h=1

F 1

h (f
1

h) + λ⋆ · (Cmax − ε) +
n

∑

h=1

µ⋆
1h
· (f 1

l − f 1
⋆

h ).

The term λ⋆ is unrestricted in sign and µ⋆
1h
≥ 0. If we set ∇(L(f 1

⋆

, λ⋆, µ⋆
1
)) =

0, we get ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
+λ⋆ − µ⋆

1h
= 0 ∀h. Since h ∈ J1

1
, then µ⋆

1h
= 0. Thus,

∂F 1

h (f
1

h) |f1

h
=f1⋆

h
= −λ⋆.

The Lagrangian function for point s⋆ can be written as follows:

L(s⋆, λ⋆, µ⋆
s) =

n
∑

k=1

Sk(sk) + λ⋆ · (Cmax − ε) +

n
∑

k=1

µ⋆
sk
· (sl − s⋆k).

Similarly, the term λ⋆ is unrestricted in sign and µ⋆
sk
≥ 0. If we set

∇(L(s⋆, λ⋆, µ⋆
s)) = 0, we get ∂Sk(sk) |sk=sk

⋆ ) + λ⋆ − µ⋆
sk

= 0 ∀k. Since

k ∈ (Js
1
∩M1), then µ⋆

sk
= 0. Thus, ∂Sk(sk) |sk=sk

⋆= −λ⋆.

We have ∂F 1

h (f
1

h) |f1

h
=f1⋆

h
= −λ⋆ = ∂Sk(sk) |sk=s⋆

k
= −λ⋆ ∀h ∈ J1

1
and

∀k ∈ (M1 ∩ Js
1
). This proves Case 5 of the lemma.

6. The Lagrangian function for point f 2
⋆

can be written as follows:

L(f 2
⋆

, λ⋆, µ⋆
2
) =

n
∑

j=1

F 2

j (f
2

j ) + λ⋆ · (Cmax − ε) +

n
∑

j=1

µ⋆
2j
· (f 2

l − f 2
⋆

j ).

The term λ⋆ is unrestricted in sign and µ⋆
2j
≥ 0. If we set ∇(L(f 2

⋆

, λ⋆, µ⋆
2
)) =

0, we get ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
+λ⋆ − µ⋆

2j
= 0 ∀j. Since j ∈ J2

1
, then µ⋆

2j
= 0. Thus,

∂F 2

j (f
2

j ) |f2

j =f2⋆

j
= −λ⋆.
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The Lagrangian function for point s⋆ can be written as follows:

L(s⋆, λ⋆, µ⋆
s) =

n
∑

k=1

Sk(sk) + λ⋆ · (Cmax − ε) +

n
∑

k=1

µ⋆
sk
· (sl − s⋆k).

Similarly, the term λ⋆ is unrestricted in sign and µ⋆
sk
≥ 0. If we set

∇(L(s⋆, λ⋆, µ⋆
s)) = 0, we get ∂Sk(sk) |sk=sk

⋆ +λ⋆−µ⋆
sk

= 0 ∀k. Since k ∈ (Js
1
∩M2),

then µ⋆
sk

= 0. Thus, ∂Sk(sk) |sk=sk
⋆= −λ⋆.

We have ∂F 2

j (f
2

j ) |f2

j =f2⋆

j
= −λ⋆ = ∂Sk(sk) |sk=s⋆

k
= −λ⋆ ∀j ∈ J2

1
and ∀k ∈

(M2 ∩ Js
1
). This proves Case 6 of the lemma. 2

Lemma 3 is very important for the development of our proposed approxi-

mation algorithm. As a consequence of this lemma, in order to generate a new

nondominated solution from an existing one by increasing the makespan value

with a predetermined amount, we know which processing times has the greatest

contribution to the cost. As a result of this lemma, an algorithm to generate

a number of approximate nondominated solutions starts with an initial solution

where all processing times are set to their lower bounds. By this way, the lower

bound on the makespan can be attained using the procedure of Crama and Gul-

tekin [12]. Then, by setting epsilon to this lower bound, the cost can be minimized

by eliminating the idle times in the schedule (if any), by reassigning the flexible

operations and increasing the processing times of some operations. This solution

becomes the first nondominated solution. Then, ǫ is increased by a small amount

to generate the next nondominated solution which will have a greater makespan

than the initial one and smaller cost. The new processing times corresponding

to the new value of makespan are calculated using Lemma 3 so that they ap-

proximate the optimal cost. We know by Lemma 1, that the constraint (3.10),

which represents objective function upper bounded by ǫ, is satisfied as equality

in an optimal solution to the problem. The determination of new processing time

values of variables is performed by comparison of derivatives of the cost functions

with respect to the processing times. Since derivatives show the contribution of a

change in the processing time to the manufacturing cost, increasing the variable

which has the smallest derivative of the cost function is beneficial in terms of cost.
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Therefore, we increase the processing time of an operation of job j that has the

smallest derivative value, and compare the new values of the derivatives. If the

derivative of the cost function of increased variable is still smaller than the others

on the same machine, the processing time value of this variable becomes valid.

Otherwise, if the derivative of the cost function of increased variable becomes

larger than any other on the same machine, we rearrange the values of processing

times so that their derivatives become equal.

The following corollary determines the relation among the processing time

values of operations of jobs processed on the same machine.

Corollary 1 In an optimal solution to the problem, the following conditions hold.

1. f 1

1

⋆
≤ f 1

h

⋆
= f 1

j

⋆
∀h, j ∈ {2, 3, ..., n}

2. f 2

n

⋆
≤ f 2

h

⋆
= f 2

j

⋆
∀h, j ∈ {1, 2, ..., n− 1}

3. sh
⋆ = sj

⋆ ∀h, j ∈M1

4. sh
⋆ = sj

⋆ ∀h, j ∈M2

Corollary 1 is a direct consequence of Lemma 3. It tells us that the processing

time values of operation 1 of jobs 2 to n should be equal. Likewise we know that

the processing time values of operation 2 of jobs 1 to n− 1 should be equal. For

the flexible operation, the processing time values of jobs on the same machine

should have the same values. Taking advantage of Corollary 1, we can represent

the processing times of flexible operation for all jobs by two variables, which

are s1 and s2. s1 and s2 stand for the processing time of flexible operations on

machine 1 and machine 2, respectively.
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4.2 Characteristics of the Approximation Algo-

rithm

The following algorithmic rule points out the application of presented lemmas in

the proposed approximation algorithm for elimination of dominated solutions to

get nondominated ones. As mentioned before, a schedule with idle times may

lead to a dominated solution, because a new schedule can be obtained with the

same makespan value at a lower cost via elimination of idle times. This idea was

highlighted in Example 1 in Section 3.4. Rule 1 determines the values of the

new processing times in this nondominated solution found after elimination of

idle times. In the following rule, r represents the number of flexible operations

on machine 1, which is mentioned in Section 3.3. In this case, r can only have

integer values.

Rule 1 Let IdleM1 represents the idle time amount on machine 1 that should

be eliminated. Let, f 1

j

new
and s1

new
be the values of the 1st operation of job j

and flexible operations of jobs processed on machine 1 after elimination of idle

time, respectively. Then one of the following conditions hold:

1. s1
new

= s1 and f 1

j

new
=

IdleM1 + (n− 1) · f 1

n

n− 1
for j=2 to n.

2. s1
new

=
IdleM1 + r · s1

r
and f 1

j

new
= f 1

j for j=2 to n.

3. s1
new

=
IdleM1 + (n− 1) · f 1

n + r · s1

r + (n− 1) · b−1

√

As

A1

and

f 1

j

new
=

IdleM1 + (n− 1) · f 1

n + r · s1

n− 1 + r · b−1

√

A1

As

for j=2 to n.

This algorithmic rule can be justified in following way. We know from Lemma

3 that the processing times values are determined making use of derivatives of cost

functions. Let ∂F 1

j and ∂Sj be the derivatives of cost functions F
1

j (f
1

j ) and Sj(sj)

of job j, respectively. By means of Corollary 1, ∂F 1

j and ∂Sj have the same values
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for the jobs j=2 to n and the jobs processed on machine 1, respectively. Hence,

let ∂S1 represents the derivatives of cost functions Sj(sj) processed on machine

1. Since our aim is to eliminate idle time without increasing the makespan value,

we can not make any change in the value of variable f 1

1
. Such an increase in f 1

1

directly increases the makespan value.

If min {∂F 1

j , ∂S1} is ∂F 1

j , the following procedure is applied. At first, the

new values of f 1

j for j=2 to n are computed assuming s1 remains the same.

The idle time is distributed to these n − 1 variables by the formula f 1

j

new
=

(IdleM1 + (n− 1) · f 1

j )/(n − 1) for j=2 to n. The idle time distributed to the

variables is equal as a consequence of Corollary 1. Then, the new values of

∂F 1

j , ∂F
1

j

new
, are computed and compared with ∂S1. If ∂F 1

j

new
≤ ∂S1, the new

values of f 1

j for j=2 to n is decided to be valid. This means Case 1 holds. If

∂F 1

j

new
≥ ∂S1, the assignment becomes invalid. In this case, the idle time should

be distributed to f 1

j for j=2 to n and s1 by considering the equality of derivatives

by the 5th Item of Lemma 3. Then, we know:

IdleM1 = (n− 1) · (f 1

j

new
− f 1

j ) + r · (s1
new
− s1) for j = 2 to n (4.1)

A1 · b · (f 1

j

new
)
b−1

= As · b · (s1
new

)
b−1

for j = 2 to n (4.2)

Using above relations we get f 1

j

new
and s1

new
as presented below which means

Case 3 holds.

f 1

j

new
=

IdleM1 + (n− 1) · f 1

j + r · s1

n− 1 + r · b−1

√

A1

As

for j = 2 to n (4.3)

s1
new

=
IdleM1 + (n− 1) · f 1

j + r · s1

r + (n− 1) · b−1

√

As

A1

for j = 2 to n (4.4)

If min {∂F 1

j , ∂S1} is ∂S1, the following procedure is applied. At first, the new

value of s1 is computed assuming f 1

j remains the same. Since, s1 represents the

processing time value of jobs whose flexible operations are processed on machine

1 and we have r flexible operations on machine 1, the idle time is distributed

equally as a consequence of Corollary 1 to these r variables by the formula s1
new

=
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(IdleM1 + r · s1)/r. Then, the new derivative of cost function of variable s1
new

,

∂S1new, is computed and compared with ∂F 1

j . If ∂S
1new ≤ ∂F 1

j , the new value of

s1 is decided to be valid. Then Case 2 holds. If ∂S1new ≥ ∂F 1

j , the assignment

becomes invalid. Proceeding similarly as before we again conclude that Case 3

holds. The analysis for elimination of the idle time on machine 2 is similar.

Given a nondominated solution, to determine the next efficient point on the

frontier, the upper limit ǫ of the constraint representing makespan objective func-

tion is increased by “E” and the new processing time values are determined ac-

cordingly. The following rule determines the processing time values for a given

makespan increment “E” to minimize manufacturing cost while satisfying the

makespan constraint, (3.10), as equality.

Rule 2 Let f 1

j

new
and s1

new
be the values of the 1st operation of job j and

flexible operations of jobs processed on machine 1 at the next point on the efficient

frontier, respectively. Similarly, let f 2

j

new
and s2

new
be the values of the 2nd

operation of job j and flexible operations of jobs processed on machine 2 at the

next point on the efficient frontier, respectively. Then,

1. If min {∂F 1

j , ∂F 2

j , ∂S
1, ∂S2} is ∂F 1

j for j=1 to n, then one of the con-

ditions, a and b, hold for the processing time variables on machine 1 and

one of the conditions, c, d and e, hold for the processing time variables on

machine 2 as long as the assignment of flexible operations remains the same.

2. If min {∂F 1

j , ∂F 2

j , ∂S
1, ∂S2} is ∂S1, then one of the conditions, b and f,

hold for the processing time variables on machine 1 and one of the condi-

tions, c, d and e, hold for the processing time variables on machine 2 as

long as the assignment of flexible operations remains the same.

3. If min {∂F 1

j , ∂F 2

j , ∂S
1, ∂S2} is ∂F 2

j for j=1 to n, then one of the condi-

tions, g and h, hold for the processing time variables on machine 2 and one

of conditions, i, j and k, hold for the processing time variables on machine
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1 as long as the assignment of flexible operations remains the same.

4. If min {∂F 1

j , ∂F 2

j , ∂S
1, ∂S2} is ∂S2, then one of the conditions, h and l,

hold for the processing time variables on machine 2 and one of the condi-

tions, i, j and k, hold for the processing time variables on machine 1 as long

as the assignment of flexible operations remains the same.

a. f 1

j

new
=

E +
n

∑

j=1

f 1

j

n
for j=1 to n and s1

new
= s1

b. f 1

j

new
=

E +

n
∑

j=1

f 1

j + r · s1

n+ r · b−1

√

A1

As

for j=1 to n and

s1
new

=

E +
n

∑

j=1

f 1

j + r · s1

r + n · b−1

√

As

A1

c. f 2

j

new
=

E − (f 1

1

new
− f 1

1
) +

n−1
∑

j=1

f 2

j

n− 1
for j=1 to n− 1,

f 2

n

new
= f 2

n and s2
new

= s2

d. f 2

j

new
= f 2

j for j=1 to n and s2
new

=
E − (f 1

1

new
− f 1

1
) + (n− r) · s2

n− r

e. f 2

j

new
=

E − (f 1

1

new
− f 1

1
) +

n−1
∑

j=1

f 2

j + (n− r) · s2

n− 1 + (n− r) · b−1

√

A1

As

for j=1 to n− 1,

f 2

n

new
= f 2

n and s2
new

=

E − (f 1

1

new
− f 1

1
) +

n−1
∑

j=1

f 2

j + (n− r) · s2

n− r + (n− 1) · b−1

√

As

A1
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f. f 1

j

new
= f 1

j for j=1 to n and s1
new

=
E + r · s1

r

g. f 2

j

new
=

E +

n
∑

j=1

f 2

j

n
for j=1 to n and s2

new
= s2

h. f 2

j

new
=

E +
n

∑

j=1

f 2

j + (n− r) · s2

n+ (n− r) · b−1

√

A2

As

for j=1 to n and

s2
new

=

E +
n

∑

j=1

f 2

j + (n− r) · s2

n− r + n · b−1

√

As

A2

i. f 1

j

new
=

E − (f 2

n

new
− f 2

n) +

n
∑

j=2

f 1

j

n− 1
for j=2 to n,

f 1

1

new
= f 1

1
and s1

new
= s1

j. f 1

j

new
= f 1

j for j=1 to n and s1
new

=
E − (f 2

n

new
− f 2

n) + r · s1

r

k. f 1

j

new
=

E − (f 2

n

new
− f 2

n) +

n
∑

j=2

f 1

j + r · s1

n− 1 + r · b−1

√

A2

As

for j=2 to n,

f 1

1

new
= f 1

1
and s1

new
=

E − (f 2

n

new
− f 2

n) +

n
∑

j=2

f 1

j + r · s1

r + (n− 1) · b−1

√

As

A2

l. f 2

j

new
= f 2

j for j=1 to n and s2
new

=
E + (n− r) · s2

n− r
.

This algorithmic rule can be justified in the following way. We know by

Lemma 1 that the makespan constraint should be satisfied as equality. Since we
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increase the makespan value by “E” to determine the next efficient point on the

frontier, we need to increase the processing time variables accordingly.

First, the minimum of ∂F 1

j , ∂F
2

j , ∂S
1, and ∂S2 is selected. If the minimum

is ∂F 1

j , assuming that s1 remains the same, “E” is distributed equally among

variables f 1

j for j=1 to n as a consequence of Corollary 1 by the following formula:

f 1

j

new
=

E +

n
∑

j=1

f 1

j

n
for j = 1 to n (4.5)

Then, the new derivative of cost function of variable f 1

j

new
, ∂F 1

j

new
, is com-

puted and compared with ∂S1. If ∂F 1

j

new
≤ ∂S1, f 1

j

new
for j=1 to n are decided

to be valid. Then, Case a holds. If this is not the case, that is ∂F 1

j

new
> ∂S1,

the assignment becomes invalid. In this case, “E” should be distributed to f 1

j

for j=1 to n and s1 by considering the equality of derivatives by the 5th item of

Lemma 3. Then, we know:

E =

n
∑

j=1

(f 1

j

new
− f 1

j ) + r · (s1
new
− s1) (4.6)

A1 · b · (f 1

j

new
)
b−1

= As · b · (s1
new

)
b−1

for j = 1 to n (4.7)

Using above relations we get f 1

j

new
and s1

new
as presented below:

f 1

j

new
=

E +

n
∑

j=1

f 1

j + r · s1

n+ r · b−1

√

A1

As

for j = 1 to n (4.8)

s1
new

=

E +

n
∑

j=1

f 1

j + r · s1

r + n · b−1

√

As

A1

for j = 1 to n (4.9)

Then, Case b holds. In this rule up to now, we selected the minimum of cost

function derivatives of processing time variables and according to the machine

on which the selected processing time variable is processed, we made necessary
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adjustments on the variables processed on that machine. In this case, we selected

∂F 1

j as minimum and assigned the new processing time values to the operations

on machine 1. According to the Lemma 2, the idle time appeared on machine 2

should be covered. After the elimination of idle time on machine 2, the Cases c,

d, e holds for f 2

j

new
and s2

new
.

The assignment of the new processing time values can be done similarly ac-

cording to the selection of min {∂F 1

j , ∂F 2

j , ∂S
1, ∂S2}.

The proposed approximation algorithm generates a set of nondominated so-

lutions. The following lemma presents this important property of the algorithm.

Lemma 4 Any two solutions generated by the approximation algorithm can not

dominate each other.

Proof. Let Z⋆
1
=

∑n

j=1

∑

2

i=1
(F i

j (f
⋆i
j )+Sj(s

⋆
j)) be the objective function value

with processing time vectors f ⋆ and s⋆ and let Cmax
⋆ = Tn,2 + f ⋆2

n + s⋆n · (1− xn)

be makespan value generated by the algorithm. A new solution is generated

by incrementing the makespan value. Let Ẑ1 =
∑n

j=1

∑

2

i=1
(F i

j (f̂
i
j) + Fj(ŝj))

be the objective function value with processing time vectors f̂ and ŝ and let

ˆCmax = Tn,2 + f̂ 2
n + ŝn · (1 − xn) be makespan value of this new solution. Hence,

ˆCmax > Cmax
⋆, which means at least one of the processing time values has in-

creased in the new solution. Since the cost function is decreasing with respect to

processing times, the objective function of the new solution, Ẑ1, satisfies Ẑ1 < Z⋆
1
.

This proves that the solutions generated by the approximation algorithm can not

dominate each other and a new nondominated solution is generated at each iter-

ation of the algorithm. 2

4.3 Summary

In this chapter, we considered some theoretical properties of the problem that

will be used in the development of approximation algorithm. We also presented
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some rules to demonstrate the application of the presented lemmas. Next chapter

presents the approximation algorithm.



Chapter 5

Approximation Algorithm

In this chapter, we propose a heuristic search algorithm, that will be named as

Main Algorithm throughout the text. Main Algorithm generates a set of approx-

imately efficient solutions which are equally spaced on the efficient frontier that

can be presented to the decision maker quickly. Since we are using a heuristic

approach to find the minimum manufacturing cost value, for a given makespan

value, these solutions do not dominate each other but there can be another solu-

tion generated by an exact algorithm that could dominate any one of them. The

algorithm determines the processing time values of the operations and allocates

the flexible operations to the machines.

Main Algorithm starts with an initial schedule at which the processing times

are at their lower bounds and the optimal assignment of flexible operations to

machines are determined according to the procedure developed by Crama and

Gultekin [12]. As we mentioned before, if there exists idle times in the solution

obtained via the procedure Crama and Gultekin [12] proposed, this solution may

be a dominated point. We extend this proposition by eliminating idle times

making use of controllability as in Example 1. We use Rule 1 to determine the

new processing time values and get a nondominated initial solution.

Starting from a nondominated initial solution, an increment value “E” is se-

lected and then the corresponding allocation of the flexible operations and the

49
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processing time values are decided according to the new makespan value to de-

termine a set of efficient discrete points of makespan and manufacturing cost

objectives. The pseudo-code is displayed as Main Algorithm. Let rl and Cmaxl

represent the number of flexible operations assigned to machine 1 and the value

of makespan, respectively, when the processing time variables are equal to their

lower bounds. Also let ru and Cmaxu represent the number of flexible opera-

tions assigned to machine 1 and the value of makespan, respectively, when the

processing time variables are equal to their upper bounds.

Main algorithm gets the lower bounds of operation processing times as an

input and initially assigns lower bounds to the processing time variables. Then

the algorithm computes rl and Cmaxl. The algorithm assigns the allocation of

flexible operations to the machines to binary variable xj according to rl. xj is

assigned “1” if the flexible operation is assigned to the first machine, and “0”

otherwise. According to the flexible operation allocations, starting times of jobs

on each machine, Tj,m, are computed. At this instant, we get a schedule in

which the processing times of operations of all jobs are at their lower bounds.

However, if there exists an idle time in the schedule, we get a dominated solution

because increasing the processing times of operations of jobs till there exists no

idle time decreases the cost without changing the makespan value as shown in

Example 1. Therefore, algorithm checks out for idle times on machines. If there

exists any, it covers idle times as discussed in Rule 1. After that, the algorithm

computes ru and Cmaxu. In the for loop of approximation algorithm, makespan

value is increased by “E” to determine efficient points on the efficient frontier as

discussed in Rule 2. Allocation of flexible operations and processing time values

are determined using Subroutines M1 or M2 till we reach to Cmaxu.

The Subroutines M1 and M2 start with increasing makespan by “E” on ma-

chines 1 and 2, respectively. Increasing makespan on the selected machine incurs

an idle time on the other machine. ∆(f 1

1
) and ∆(f 2

n) represents (f
1

1

new
- f 1

1
) and

(f 2

n

new
- f 2

n), respectively, where f 1

1

new
and f 2

n

new
are the processing time values

of f 1

1
and f 2

n after increasing the total processing time on machines 1 and 2 by

E. Hence, the subroutines cover the idle time using the idea presented in Rule
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Main Algorithm Approximation Algorithm

Input: f 1

l , f
2

l , sl, f
1

u , f
2

u , su, F
1

j and F 2

j , S
1, S2, E

Output: A number of nondominated (Cmax, Total Cost) pairs with corre-

sponding, r, f 1

j , f
2

j , s
1, s2, Tj,m values for each point

Set processing times to their lower bounds

Compute rl and Cmaxl

Assign the flexible operations to the machines according to rl

Compute starting times of jobs on each machine, Tj,m

if Tn,1 + f 1

n + xn · s1 ≤ Tn,2 then

IdleM1← Tn,2 − (Tn,1 + f 1

n + xn · s
1)

Cover idle time on machine 1 using Rule 1

end if

if Tn−1,2 + f 2

1
+ (1− xn−1) · s

2 ≤ Tn,1 + f 1

n + xn · s
1 then

IdleM2← Tn,1 + f 1

n + xn · s
1 − (Tn−1,2 + f 2

1
+ (1− xn−1) · s

2)

Cover idle time on machine 2 using Rule 1

end if

Compute r, ru and Cmaxu

for j = 1 to (Cmaxu − Cmaxl)/E do

if min{∂F 1

j , ∂F
2

j , ∂S
1, ∂S2} = ∂F 1

j or ∂S1 then

Use Subroutine M1 to determine allocation of flexible operations and

processing time values

else if min{∂F 1

j , ∂F
2

j , ∂S
1, ∂S2} = ∂F 2

j , or ∂S
2 then

Use Subroutine M2 to determine allocation of flexible operations and

processing time values

end if

end for
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Subroutine M1 Increasing the total processing time on machine 1 by E

Increase the total processing time on machine 1 by E using Rule 2

IdleM2 ← E −∆(f 1

1
)

Cover idle time on machine 2 using Rule 1

Check upper bounds of variables for any violation and make necessary correc-

tions

Compute manufacturing cost

if r > ru then

IdleM2← E −∆(f 1

1
)

if sl − IdleM2 ≤ (n− r) · (s2 − sl) + (n− 1) · (f 2

1
− f 2

l ) then

r ← r − 1

IdleM2← IdleM2− s2

Cover idle time on machine 2 using Rule 1

IdleM1← s1

Cover idle time on machine 1 using Rule 1

Check upper and lower bounds of variables for any violation and make

necessary corrections

Compute manufacturing cost

end if

end if

if r < ru then

if sl − E ≤ r · (s1 − sl) + (n− 1) · (f 1

n − f 1

l ) then

r ← r + 1

IdleM1← E − s1

Cover idle time on machine 1 using Rule 1

IdleM2← E + s2

Cover idle time on machine 2 using Rule 1

Check upper and lower bounds of variables for any violation and make

necessary corrections

Compute manufacturing cost

end if

end if

Output: the minimum manufacturing cost and associated processing time

variables
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1. Afterwards, any upper bound violations of processing time variables are in-

vestigated. If there exists an operation processing time which is greater than its

upper bound, it is assigned to its upper bound, and the total reduction in the

value of this variable is distributed to the other operations on the same machine

as an increase. If this operation also becomes greater than its upper bound after

increasing its processing time, it is also assigned to its upper bound. In such a

case all operations on this machine hit their upper bounds, so we cannot make

any increase of processing times on this machine any more and some idle time

remain uncovered. After this correction, manufacturing cost is computed with

the processing time variables using the following formula:

Manufacturing Cost = (f 1

1
+(n−1)·f 1

n+(n−1)·f 2

1
+f 2

n+r ·s1+(n−r)·s2)·C+

((f 1

1
)
b
+(n−1)·(f 1

1
)
b
)·A1+((n−1)·(f 2

1
)
b
+(f 2

n)
b
)·A2+(r ·(s1)

b
+(n−r)·(s2)

b
)·As.

Then Subroutines M1 and M2 compares r value with ru to check whether

changing the assignment of one of the flexible operations reduces the cost or not.

If the number of flexible operations on machine 1, represented as r, is equal to

the number of flexible operations on machine 1 when all processing times are

at their upper bounds, represented as ru, the assignment of flexible operations

should not change and remain the same till makespan reaches to Cmaxu. In this

case, the subroutines terminate by returning the value of manufacturing cost and

associated processing time values of operations of jobs. If r is greater than ru, the

last flexible operation on machine 1 is assigned to the machine 2 if possible. This

assignment may not always be possible because of makespan limitation constraint,

so the subroutines investigate whether a flexible operation can fit on the machine

2 while all processing time variables are at their lower bounds by the following if

statements:

IF sl − IdleM2 ≤ (n− r) · (s2 − sl) + (n− 1) · (f 2

1
− f 2

l ).

IF sl −E ≤ (n− r) · (s2 − sl) + (n− 1) · (f 2

1
− f 2

l ).

If it is proved to be feasible, the assignment of flexible operation and the values

of processing times change accordingly. This may cause some of the processing

time variables to decrease or increase. If any processing time value exceeds its
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Subroutine M2 Increasing the total processing time on machine 2 by E

Increase the total processing time on machine 2 by E using Rule 2

IdleM1← E −∆(f 2

n)

Cover idle time on machine 1 using Rule 1

Check upper bounds bounds of variables for any violation and make necessary

corrections

Compute manufacturing cost

if r > ru then

if sl − E ≤ (n− r) · (s2 − sl) + (n− 1) · (f 2

1
− f 2

l ) then

r ← r − 1

IdleM2← E − s2

Cover idle time on machine 2 using Rule 1

IdleM1← E + s1

Cover idle time on machine 1 using Rule 1

Check upper and lower bounds bounds of variables for any violation and

make necessary corrections

Compute manufacturing cost

end if

end if

if r < ru then

IdleM1← E −∆(f 2

n)

if sl − IdleM1 ≤ r · (s1 − sl) + (n− 1) · (f 1

n − f 1

l ) then

r ← r + 1

IdleM1← IdleM1− s1

Cover idle time on machine 1 using Rule 1

IdleM2← s2

Cover idle time on machine 2 using Rule 1

Check upper and lower bounds bounds of variables for any violation and

make necessary corrections

Compute manufacturing cost

end if

end if

Output: the minimum manufacturing cost and associated processing time

variables
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upper bound, the necessary modification is made as already mentioned. On the

other hand, in case of a lower bound violation of an operation processing time,

the variable is assigned to its lower bound, and the total increase in the value

of this variable is distributed to the other operation on the same machine as

a reduction. If this operation also becomes smaller than its lower bound after

reducing its processing time, it is assigned to its lower bound. At the worst case,

all processing times hit their lower bounds. Afterwards, manufacturing cost is

computed. For the case of r being smaller than ru, the first flexible operation on

machine 2 is assigned to the machine 1 if possible. The same procedure is applied

with the former case. Finally the subroutines output the minimum manufacturing

cost and associated processing time variables.

In the next chapter, an experimental design and analysis of the results for the

approximation algorithm will be provided.



Chapter 6

Computational Results

In this chapter, we perform a computational study to test the performance of

our proposed approximation algorithm by comparing it with the mathematical

formulations, Model 1 and 2. Mixed integer nonlinear programs are formulated

in GAMS 22.0. One of the alternatives to solve MINLP formulations is to call

BARON solver. This solver guarantees to provide global optima under fairly

general assumptions using deterministic global optimization algorithms of the

branch-and-bound type. However the CPU time requirement of BARON may be

prohibitive and it may not be possible to solve problems in a reasonable time,

so we run BARON with a time limit of 1000 seconds. Another alternative for

generating good quality solutions in smaller CPU times is to use DICOPT solver.

DICOPT guarantees to converge only under certain convexity assumptions. Al-

though the algorithm has provisions to handle non-convexities, it does not nec-

essarily obtain the global optimum. Due to CPU restrictions, it is not possible

to run the mathematical model till the end by DICOPT. Therefore, we also run

DICOPT with the same time limit as BARON. We observed that at some repli-

cations DICOPT cannot generate integer solutions but presents relaxed solution

with this time limit. On the contrary, no such points exist for BARON.

Approximation algorithm is coded in the C++ language and compiled with

Gnu compiler. The DICOPT is ran on a computer with 3GB memory and dual

56
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core Intel Pentium processor with 2.1 GHz CPU. However, due to licensing limi-

tations, the BARON software is ran on a computer with 1294 MB memory and

Pentium III 1133 MHz CPU with a time limit of 1000 seconds.

6.1 Experimental Settings

There are four experimental factors that can affect the efficiency of the algorithm

as listed in Table 6.1. The experimental design is a 24 full factorial design.

The factors A1, A2 and As are effective on the upper bounds of the processing

times and on the manufacturing cost as presented before. We choose the factors

from two different levels, which allows us to have different upper bounds for the

processing times of operations and different cost functions for the operations.

The Levels 1 and 2 will be represented as L and H, meaning low and high, in the

next tables, respectively. The diversity of upper bounds changes the assignment

of flexible operations which is expected to affect the efficiency of the proposed

approximation algorithm. The reason of A1, A2, and As being selected from the

same intervals at the same level randomly is to enable the processing time variable

upper bounds to get the same values in some cases which allows us to observe

the efficiency of the algorithm in case of equal upper bounds of processing time

variables. The factor n determines the size of the problem. When the problem

size is large, it takes more CPU time to solve the problem, and the resulting cost

and makespan objective values are expected to be high.

Table 6.1: Experimental Factors

Factors Definition Level 1 Level 2
A1 Tool cost multiplier of first operation U[5,8] U[12,15]
A2 Tool cost multiplier of second operation U[5,8] U[12,15]
As Tool cost multiplier of flexible operation U[5,8] U[12,15]
n Number of jobs 20 30

Most of the exact algorithms need huge CPU times in case of large problem

sizes, so our aim is to provide an approximation algorithm that presents qualified

solutions in small CPU times. The other parameters are selected randomly from
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the intervals of C = U[0.4 , 0.8], f 1

l = U[1.2 , 1.7], f 2

l =U[1.4 , 1.9], sl =U[1.6 ,

2.1], b =U[-1.7 , -1.3], where U[a,b] is uniform distribution in interval [a , b].

We took five replications for each factor combination and 25 different efficient

point generation iterations for each replication resulting in 24 · 5 · 25 = 2000 in-

dividual runs for proposed approximation algorithm. The performance measures

used in evaluating the experimental results are the percentage deviations of the

approximation algorithm from the mathematical formulations, Model 1 and 2,

and the run times in CPU seconds.

The percent deviation of each run is calculated as 100 · (A− B)/B, where A

represents the manufacturing cost value delivered by the approximation algorithm

and B represents the solution of mathematical formulation obtained by DICOPT

or BARON solvers for a given makespan value.

The algorithm underlying DICOPT starts by solving the nonlinear program

(NLP) in which the 0-1 conditions on the binary variables are relaxed. If the

solution to this problem yields an integer solution the search stops. Otherwise, it

continues with an alternating sequence of NLP’s called subproblems and mixed-

integer linear programs (MIP) called master problems. The NLP subproblems

are solved for fixed 0-1 variables that are predicted by the MIP master problem

at each (major) iteration. In this algorithm, linearization of the constraints is

thought to be helpful, so we also take runs of Model 2. Since Models 1 and 2

can not be decided to be better than the other and at each iteration there exists

efficient points at which the models improve each other, we present runs of both

models with DICOPT. BARON runs are only taken for Model 1, because overall

percent deviations of approximation algorithm from Model 1 and 2, solved by

DICOPT, show that Model 1 performs better than Model 2.

6.2 Sample Replication Analysis

The points generated by the algorithm and mathematical programming formu-

lations using DICOPT, Model 1 and 2, for one sample replication with a factor
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combination A1= U[12,15] , A2= U[5,8], As= U[5,8], n=20, and the correspond-

ing % deviations are presented in Table 6.2. The best (smallest) manufacturing

cost is written in bold for each makespan value. As can be seen in the table,

while some of the deviations are positive, the others are negative. A positive de-

viation means that DICOPT finds a better solution than our proposed algorithm.

On the other hand, a negative deviation means our approximation algorithm can

find a better solution than DICOPT at that makespan value. This is possible

since DICOPT does not necessarily obtain the global optimum. The minimum

deviation, which is -0.0008, from Model 1 appears at a makespan value 85.2. The

maximum deviation, which is 0.0018, from Model 1 appears at three different

makespan values 60.6, 62.2, and 63.8. The minimum deviation, which is -0.0080,

and the maximum deviation, which is 0.0018, from Model 2 appear at a makespan

value 81.9 and 60.6, respectively. As can be seen in Table 6.2, the deviations are

small for smaller makespan values, then slightly increase through the mid-points

of the efficient frontier. Deviations get smaller through the upper bound of the

makespan.

For the same factor combination given above, % deviations of the approxi-

mation algorithm from Model 1 solved by BARON are presented in Table 6.3.

The minimum deviation, which is 0, appears at the first point and last three

points generated. The maximum deviation of the approximation algorithm from

Model 1 solved by BARON is the same as DICOPT and appears at the same

points. As can be seen in the table, all deviations are nonnegative. This means

solver BARON performs better than both DICOPT and the proposed approx-

imation algorithm. However, even the maximum deviation is very small which

indicates that proposed approximation algorithm generates high quality solutions.

Moreover, the deviations get smaller through the lower and upper bounds of the

makespan.

The minimums of manufacturing costs for Model 1 and 2 generated by DI-

COPT for the sample replication are presented in Table 6.4 to compare them

with the manufacturing costs for Model 1 for the same replication generated

by BARON. The deviations are given as percent deviations and calculated by

100 · (DICOPT − BARON)/BARON . As can be seen in the table, BARON
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Table 6.2: Manufacturing Costs and % Deviations (DICOPT) for One Replication

Manufacturing Cost % Deviation
Makespan Proposed Algorithm Model 1 Model 2 Model 1 Model 2
52.4 312.90 312.90 312.90 0.00 0.00
54.0 296.37 296.21 296.21 0.05 0.05
55.6 284.24 284.02 284.02 0.08 0.08
57.3 274.85 274.55 274.55 0.11 0.11
58.9 268.31 267.87 267.87 0.16 0.16
60.6 262.58 262.11 262.11 0.18 0.18
62.2 257.73 257.27 257.68 0.18 0.02
63.8 253.38 252.93 254.36 0.18 -0.39
65.5 249.24 248.82 250.55 0.17 -0.52
67.1 245.76 245.39 246.71 0.15 -0.38
68.8 242.48 242.23 242.78 0.10 -0.13
70.4 239.73 239.51 240.62 0.09 -0.37
72.0 237.30 237.06 237.48 0.10 -0.08
73.7 235.02 234.82 234.90 0.09 0.05
75.3 233.16 232.99 233.32 0.07 -0.07
77.0 231.43 231.53 231.54 -0.04 -0.05
78.6 230.04 229.94 230.22 0.05 -0.07
80.2 228.86 228.78 228.78 0.04 0.04
81.9 227.82 227.75 229.65 0.03 -0.80
83.5 227.01 226.97 227.79 0.02 -0.34
85.2 226.34 226.51 226.31 -0.08 0.01
86.8 225.87 225.90 226.05 -0.01 -0.08
88.5 225.52 225.51 225.60 0.00 -0.03
90.1 225.33 225.33 225.33 0.00 0.00
91.7 225.27 225.27 225.27 0.00 0.00
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Table 6.3: Manufacturing Costs and % Deviations (BARON) for One Replication

Manufacturing Cost
Makespan Proposed Algorithm Model 1 % Deviation
52.4 312.90 312.90 0.00
54.0 296.37 296.21 0.05
55.6 284.24 284.02 0.08
57.3 274.85 274.55 0.11
58.9 268.31 267.87 0.16
60.6 262.58 262.11 0.18
62.2 257.73 257.27 0.18
63.8 253.38 252.93 0.18
65.5 249.24 248.83 0.17
67.1 245.76 245.39 0.15
68.8 242.48 242.15 0.13
70.4 239.73 239.45 0.12
72.0 237.30 237.06 0.10
73.7 235.02 234.82 0.09
75.3 233.16 232.99 0.07
77.0 231.43 231.30 0.06
78.6 230.04 229.94 0.05
80.2 228.86 228.78 0.04
81.9 227.82 227.75 0.03
83.5 227.01 226.97 0.02
85.2 226.34 226.31 0.01
86.8 225.87 225.85 0.01
88.5 225.52 225.51 0.00
90.1 225.33 225.33 0.00
91.7 225.27 225.27 0.00
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Table 6.4: DICOPT vs BARON for One Replication

Manufacturing Cost
Makespan DICOPT BARON % Deviation
52.4 312.9 312.9 0.00
54 296.21 296.21 0.00
55.6 284.02 284.02 0.00
57.3 274.55 274.55 0.00
58.9 267.87 267.87 0.00
60.6 262.11 262.11 0.00
62.2 257.27 257.27 0.00
63.8 252.93 252.93 0.00
65.5 248.82 248.83 0.00
67.1 245.39 245.39 0.00
68.8 242.23 242.15 0.03

70.4 239.51 239.45 0.03

72 237.06 237.06 0.00
73.7 234.82 234.82 0.00
75.3 232.99 232.99 0.00
77 231.53 231.3 0.10

78.6 229.94 229.94 0.00
80.2 228.78 228.78 0.00
81.9 227.75 227.75 0.00
83.5 227.79 226.97 0.36

85.2 226.31 226.31 0.00
86.8 225.9 225.85 0.02

88.5 225.51 225.51 0.00
90.1 225.33 225.33 0.00
91.7 225.27 225.27 0.00
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Figure 6.1: Efficient Frontier Generated by the Proposed Algorithm for One
Replication
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Figure 6.2: Deviations on Different Regions of the Efficient Frontier
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either improves DICOPT or presents the same solution with DICOPT. The posi-

tive deviations are written in bold to highlight the cases which BARON improves

DICOPT.

The points generated for this replication by the proposed approximation al-

gorithm are plotted in Figure 6.1 to indicate the shape of the efficient frontier

of our bicriteria problem. Percent deviations of the proposed algorithm from

Model 1 solved by DICOPT and BARON are plotted in Figures 6.2a and 6.2b,

respectively, to visualize the deviations. The first points (maximum makespan,

minimum cost) and the last points (minimum makespan, maximum cost) on Fig-

ures 6.2a and 6.2b correspond to the points B and C on Figure 3.1, respectively.

6.3 Percent Deviations of Each Factor Combi-

nation

For the approximation algorithm, the minimum, average, and maximum values

of the percent deviations from DICOPT are given for all factor combinations in

Table 6.5. Since we took 5 replications for each factor combination and each

replication has 25 efficient points, average deviation considers these 25 · 5 = 125

points. The worst performance of the approximation algorithm is at a factor

combination n=20, A1=H, A2=H, and As=L with respect to mean deviation

from both Model 1 and 2. On the other hand, the best performance is at a factor

combination n=30, A1=H, A2=L, and As=L and n=30, A1=L, A2=L, and As=H

again with respect to mean deviation from both Model 1 and 2, respectively. The

maximum deviation of the algorithm from Model 2 appears at factor combination

n=20, A1=H, A2=H, and As=L. Approximation algorithm improves the solution

of Model 1 by 0.0595 at factor combination n=30, A1=L, A2=L, and As=H and

the solution of Model 2 by 0.0438 at factor combination n=30, A1=H, A2=L, and

As=L.

The minimum, average, and maximum values of the percent deviations of

the approximation algorithm from Model 1 solved by BARON are also given for
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Table 6.5: Percent Deviations (DICOPT) for Each Factor Combination

Percent Deviations (DICOPT)
Model 1 Model 2

n A1 A2 As Min Mean Max Min Mean Max
20 L L L -2.72 0.05 0.30 -0.65 0.01 0.33
20 H L L -1.95 0.05 0.40 -0.70 -0.01 0.39
20 L H L -0.94 0.07 0.37 -1.11 0.03 0.41
20 H H L -1.62 0.11 0.42 -0.42 0.09 0.61
20 L L H -1.09 -0.03 0.33 -1.24 -0.02 0.33
20 H L H -2.12 0.05 0.55 -0.86 -0.03 0.55
20 L H H -3.44 -0.06 0.35 -0.92 -0.03 0.34
20 H H H -3.75 0.06 0.41 -0.83 0.06 0.42
30 L L L -5.22 -0.17 0.13 -0.84 -0.03 0.14
30 H L L -2.07 -0.03 0.38 -4.38 -0.20 0.25
30 L H L -1.40 0.04 0.22 -2.55 -0.06 0.26
30 H H L -1.71 -0.04 0.26 -0.57 0.02 0.32
30 L L H -5.95 -0.19 0.13 -0.71 -0.05 0.13
30 H L H -0.47 0.06 0.28 -1.14 -0.14 0.29
30 L H H -3.54 -0.06 0.29 -1.42 -0.08 0.22
30 H H H -4.27 -0.04 0.30 -0.55 0.04 0.3

all factor combinations in Table 6.6. Mean deviations indicate that approxima-

tion algorithm performs worst with a factor combination n=30, A1=H, A2=L,

and As=L and best with a factor combination n=30, A1=H, A2=H, and As=L.

Maximum and minimum deviations among all replications are 0.017 at replica-

tion with a factor combination n=30, A1=H, A2=L, and As=H and -0.0019 at

replication with a factor combination n=30, A1=H, A2=L, and As=L, respec-

tively. Negative deviations mean that our algorithm finds a better solution than

BARON.

As mentioned before, the upper bounds of the processing times are affected by

the factors A1, A2 and As. The assignment of flexible operations may also change

with respect to the processing time values selected from different intervals which

is expected to affect the efficiency of the proposed approximation algorithm. Ac-

cording to the results of percent deviations for each factor combination presented,

we may claim that the performance of the proposed approximation algorithm is

independent of the level of the factors. The algorithm generates good quality
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Table 6.6: Percent Deviations (BARON) for Each Factor Combination

Percent Deviations
(BARON) Model 1

n A1 A2 As Min Mean Max
20 L L L 0.00 0.10 0.33
20 H L L -0.06 0.10 0.39
20 L H L 0.00 0.12 0.52
20 H H L -0.05 0.09 0.33
20 L L H -0.01 0.18 0.61
20 H L H -0.02 0.10 0.35
20 L H H 0.00 0.10 0.55
20 H H H 0.00 0.14 0.42
30 L L L -0.03 0.04 0.17
30 H L L -0.19 0.32 1.00
30 L H L -0.04 0.07 0.24
30 H H L -0.08 0.04 0.13
30 L L H 0.00 0.10 0.32
30 H L H -0.16 0.08 1.70
30 L H H -0.08 0.07 0.29
30 H H H 0.00 0.09 0.30

solutions at both levels. Although the factor n mainly determines the size of the

problem and CPU time to solve the problem, presented results indicates that the

approximation algorithm performs better for high level of number of jobs.

The percent deviations of approximation algorithm from Model 1 and 2 solved

by DICOPT and from Model 1 solved by BARON are arranged according to each

factor being at levels L and H, which are presented in Tables 6.7 and 6.8. When

mean deviations are considered in Table 6.7, approximation approximation algo-

rithm performs better when A1 and A2 are at low levels and As is at high level

with respect to both Model 1 and 2. The algorithm has the best performance

when n=30. The algorithm outputs minimums of min, mean and max deviations

at this level. According to the deviations presented in Table 6.8, the approxima-

tion algorithm generates better solutions at low levels of A1 as in Table 6.7, but

worse solutions at low levels of A2 which is different than Table 6.7. It also shows

the same performance for both levels of As. As in Table 6.7, the approximation

algorithm seems to perform better for n=30 in Table 6.8.
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Table 6.7: Percent Deviations (DICOPT) for Each Factor Level

Percent Deviations (DICOPT)
Model 1 Model 2

Factor Level Min Mean Max Min Mean Max
A1 L -5.95 -0.04 0.37 -2.55 -0.03 0.41

H -4.27 0.03 0.55 -4.38 -0.02 0.61
A2 L -5.95 -0.026 0.55 -4.38 -0.06 0.55

H -4.27 0.01 0.42 -2.55 0.01 0.61
As L -5.22 0.01 0.42 -4.38 -0.02 0.61

H -5.95 -0.026 0.55 -1.42 -0.03 0.55
n L -3.75 0.038 0.55 -1.24 0.01 0.61

H -5.95 -0.054 0.38 -4.38 -0.06 0.32

Table 6.8: Percent Deviations (BARON) for Each Factor Level

Percent Deviations
(BARON) Model 1

Factor Level Min Mean Max
A1 L -0.08 0.10 0.61

H -0.19 0.12 1.70
A2 L -0.19 0.13 1.70

H -0.08 0.09 0.55
As L -0.19 0.11 1.00

H -0.16 0.11 1.70
n L -0.06 0.12 0.61

H -0.19 0.10 1.70
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Table 6.9: Algorithm vs. DICOPT Solutions for Each Factor Combination

Model 1 Model 2
n A1 A2 As Total = 0 > 0 < 0 X = 0 > 0 < 0 X
20 L L L 125 19 92 14 - 19 63 39 4
20 H L L 125 16 96 13 - 16 59 50 -
20 L H L 125 14 98 13 - 16 73 36 -
20 L L H 125 22 84 18 1 22 64 39 -
20 H H L 125 17 101 7 - 16 85 24 -
20 L H H 125 16 90 19 - 18 58 49 -
20 H L H 125 14 98 13 - 11 58 56 -
20 H H H 125 18 98 9 - 18 78 29 -
30 L L L 125 22 85 16 2 19 44 57 5
30 H L L 125 18 77 21 9 10 31 72 12
30 L H L 125 20 93 12 - 20 58 46 1
30 L L H 125 26 84 15 - 22 45 57 1
30 H H L 125 18 80 25 2 14 68 38 5
30 L H H 125 13 88 19 5 18 39 64 4
30 H L H 125 18 91 14 2 12 43 66 4
30 H H H 125 18 84 23 - 14 69 41 1

Table 6.10: Algorithm vs. BARON Solutions for Each Factor Combination

Model 1
n A1 A2 As Total = 0 > 0 < 0 X
20 L L L 125 22 103 - -
20 H L L 125 18 97 10 -
20 L H L 125 18 107 - -
20 L L H 125 23 101 1 -
20 H H L 125 17 107 1 -
20 L H H 125 21 103 1 -
20 H L H 125 19 106 - -
20 H H H 125 19 106 - -
30 L L L 125 29 93 3 -
30 H L L 125 24 96 5 -
30 L H L 125 23 97 5 -
30 L L H 125 32 88 5 -
30 H H L 125 20 105 - -
30 L H H 125 29 84 12 -
30 H L H 125 21 98 6 -
30 H H H 125 20 105 - -
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Tables 6.9 and 6.10 compare the solutions generated by the approximation

algorithm with the solutions of mathematical Models 1 and 2 solved by DICOPT

and mathematical Model 1 solved by BARON, respectively. “Total” represents

the number of efficient points considered. Since we take 5 replications for each

factor combination and we generated 25 efficient points for a replication, 125

efficient points exist for each factor combination. “ = 0”, “ < 0”, and “ > 0” rep-

resent the number of efficient points generated by the mathematical model which

presents the same manufacturing cost as the approximation algorithm, bigger,

and smaller manufacturing costs than the approximation algorithm, respectively.

“X” is the number of efficient points that the mathematical model cannot gener-

ate integer solutions but presents relaxed solution. As can be seen in the tables,

although DICOPT can not generate integer solutions at some replications, no

such points exist for BARON. According to Table 6.9, the number of these points

increase for n = 30. The efficient points that belong to the case “ < 0” is smaller

for Model 1 than Model 2 solved by DICOPT. The number of efficient points of

this case for Model 1 solved by BARON is also smaller than DICOPT.

Detailed tables including the results of each replication for all factor combi-

nations are presented in Appendix A.

6.4 Overall Percent Deviations

In Table 6.11, the overall percent deviations of all factor combinations are pre-

sented. Mean deviations show that our proposed approximation algorithm im-

proves both Model 1 and 2 solved using DICOPT. DICOPT outputs better re-

sults for Model 1 than Model 2 when mean deviations are considered. The mean

deviation of the approximation algorithm from Model 1 solved by BARON is

0.0011, which indicates that the approximation algorithm generates good quality

solutions.
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Table 6.11: Overall Percent Deviations

Percent Deviations
Model 1(DICOPT) Model 2(DICOPT) Model 1(BARON)
Min Mean Max Min Mean Max Min Mean Max
-5.95 -0.003 0.55 -4.38 -0.025 0.61 -0.19 0.11 1.70

Table 6.12: CPU Times of Proposed Algorithm

Proposed Algorithm
n A1 A2 As Min (x10−2) Mean (x10−2) Max (x10−2)
20 L L L 0.44 0.72 0.91
20 H L L 0.29 0.72 1.07
20 L H L 0.80 1.12 1.88
20 L L H 0.44 0.59 0.85
20 H H L 0.62 1.00 1.43
20 L H H 0.50 0.72 1.25
20 H L H 0.50 0.80 1.00
20 H H H 0.62 1.23 2.93
30 L L L 0.44 0.79 1.58
30 H L L 0.68 1.15 1.87
30 L H L 0.62 1.05 1.87
30 L L H 0.62 0.76 0.87
30 H H L 0.81 1.32 1.87
30 L H H 0.87 1.57 3.00
30 H L H 0.62 1.15 2.31
30 H H H 1.25 1.81 2.56

6.5 CPU Times

CPU results of all factor combinations are presented for the approximation algo-

rithm, Model 1 and 2 solved by DICOPT in Tables 6.12 and 6.13, respectively.

Due to CPU restrictions, even for 30 jobs processed, it is not possible to run

the mathematical model till the end by DICOPT. Therefore, we run the DICOPT

with a time limit of 1000 seconds, which is the default. This same limit is also

used for BARON. BARON solver did not stop before the time limit exceeded for

all replications, which means every replication has a CPU time of 1000 seconds.

Hence, we do not present a CPU time requirement table for BARON.
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Table 6.13: CPU Times of Mathematical Models (DICOPT)

GAMS (DICOPT)
Model 1 Model 2

n A1 A2 As Min Mean Max Min Mean Max
20 L L L 0.16 10.6 1000 0.19 6.11 115
20 H L L 0.02 7.02 651 0.12 5.69 87
20 L H L 0.01 26.7 1000 0.21 4.97 86
20 L L H 0.16 3.56 74 0.18 2.86 59
20 H H L 0.02 9.94 805 0.01 5.69 113
20 L H H 0.08 6.96 594 0.16 6.09 235
20 H L H 0.06 9.18 748 0.14 2.6 33
20 H H H 0.16 2.85 79 0.2 6.04 150
30 L L L 0.14 66.4 1000* 0.16 82.4 1000*
30 H L L 0.14 90.14 1000* 0.2 129.71 1000*
30 L H L 0.14 49.41 1000 0.17 88.72 1000*
30 L L H 0.11 74.17 1000 0.2 24.92 1000*
30 H H L 0.02 65.2 1000* 0.19 81.59 1000*
30 L H H 0.09 57.37 1000* 0.16 40.76 1000*
30 H L H 0.2 81.24 1000* 0.23 72.62 1000*
30 H H H 0.02 25.04 1000 0.22 40.54 1000*

The results indicate that the proposed algorithm can generate a relatively

good solution in a very small CPU time which is much smaller than DICOPT

and BARON can generate. As the number of jobs increases the increase in the

CPU time is very small for the algorithm. As can be seen in Table 6.13 DICOPT

can not generate any integer solutions in 1000 seconds for some of the replica-

tions, represented as 1000*. Also for some of the replications, DICOPT stops

due to 1000 seconds CPU restriction and reports the best integer solution. Solver

BARON can generate integer solutions for all replications unlike DICOPT. Ac-

cording to the analysis in Sections 6.3 and 6.4 BARON generates better solutions

than DICOPT. However, the CPU requirement of BARON is much higher as

compared with DICOPT. On the contrary, presented approximation algorithm is

advantageous to both of these in terms of CPU times.

Overall CPU time requirements are also presented in Tables 6.14 and 6.15.

The results show that CPU requirement of approximation algorithm is the small-

est and BARON solver is the largest.
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Table 6.14: Overall CPU Times of Approximation Algorithm

Min Mean Max
(x10−2)

0.29 1.03 2.93

Table 6.15: Overall CPU Times of Mathematical Models

Model 1(DICOPT) Model 2(DICOPT) Model 1(BARON)
Min Mean Max Min Mean Max Min Mean Max
0.01 36.61 1000* 0.01 37.58 1000* 1000 1000 1000

6.6 Summary

In this chapter, we performed a computational study. Percent deviations of ap-

proximation algorithm from the mathematical models and required CPU times

are presented to test the performance of our proposed approximation algorithm.

The results indicate that the approximation algorithm finds high quality solutions

in small CPU times.



Chapter 7

Conclusion and Future Work

This thesis considers a scheduling problem with controllable processing times and

flexible operations. Controllability of processing times and flexibility in manu-

facturing systems subjects has been widely studied individually in scheduling

literature. However, this is the first study that considers both assignment of

flexible operations and controllability through a bicriteria objective at the same

time.

In the following section, we mention the contributions of the current study

and in section 7.2 we suggest possible extensions and future research directions.

7.1 Contributions

In this thesis, we studied a nonpreemptive two-machine flowshop environment in

which identical jobs are processed. Each job has three operations, one of which

is a flexible operation. Hence, the flexible operations should be assigned to one

of the machines in order to minimize the makespan. In this study, the processing

times of operations are assumed to be controllable, so the processing times of

operations should also be determined. We considered a bicriteria objective of

minimizing the manufacturing cost and the makespan. Since these two objectives
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cannot be minimized at the sane time, we determined a set of efficient discrete

points of makespan and manufacturing cost objectives.

We proposed a mixed integer nonlinear program (Model 1) to solve the prob-

lem. One of the alternatives to solve MINLP formulations is to call DICOPT

solver of GAMS. Because of the underlying algorithm in DICOPT, linearization

of the constraints is thought to be helpful. Hence, the constraints of Model 1

are linearized and presented as an alternative model as Model 2. Models 1 and

2 could not be decided to be better than the other because at each iteration

there exists efficient points at which the models improve each other. Therefore,

we present runs of both models for DICOPT. Another alternative for generating

good quality solutions is to use BARON solver. Since overall percent deviations of

approximation algorithm from Model 1 and 2, solved by DICOPT, indicates that

Model 1 performs better than Model 2, BARON runs are only taken for Model 1.

Because of the CPU time restriction, it is not possible to run the mathematical

models by both solvers till the end. Hence, we run the models with a time limit

of 1000 seconds.

Benefits of controllable processing times was presented via examples. Idle

times can be eliminated by means of controllable processing times to achieve the

same makespan values as fixed processing time production case at a lower cost.

The first example eliminates idle times by expanding the processing time values.

However, controllability of the processing times also affects the assignment of

flexible operations as well as the processing time values to eliminate idle times.

The second example was given to highlight this idea.

We provided some theoretical optimality properties of the problem which are

used in the development of approximation algorithm. We also presented some

algorithmic rules to point out the application of presented lemmas in the proposed

approximation algorithm. The first rule eliminates dominated solutions to get

nondominated ones, and the second rule determines the next efficient point on

the frontier given a nondominated solution.

Since the mathematical programming formulation may not be efficient in

terms of CPU time, we proposed an approximation algorithm. It is coded in
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C++ language and compiled with a GNU compiler. The algorithm generates

a set of approximately efficient solutions that can be presented to the decision

maker quickly.

We presented computational results for the proposed models and approxi-

mation algorithm. We observed that mathematical model solved by BARON

generates better results than DICOPT, but it needs more CPU time to generate

solutions. Although DICOPT can not generate integer solutions at some replica-

tions in 1000 seconds, BARON can generate integer solutions for all replications

in this time limit. Percent deviations of the approximation algorithm from the

mathematical models and CPU times were given. Percent deviations indicate that

approximation algorithm generates good quality solutions in a very small CPU

time as compared with the mathematical models. The algorithm improves the

solutions of mathematical formulation solved by DICOPT on the average. The

deviations from the mathematical formulation solved by BARON are reasonable.

In this section, we presented the contributions of our study. In the next

section, we will offer some future research directions about the problem.

7.2 Future Research Directions

This study can be extended by increasing the number of machines and the number

of operations. As the number of machines and operations are increased, the

assignment of flexible operations to the machines will be a harder decision. In

this study, each job has only one flexible operation. The number of flexible

operations can also be increased in parallel with the number of machines and

operations.

Another extension of this thesis is to study processing nonidentical jobs in the

same scheduling environment. In our case, we have three different cost functions

for three operations and they are the same for all identical jobs. In processing

nonidentical jobs case, the cost functions of operations of all jobs could be dif-

ferent. In that case, the outcomes of Corollary 1 may not hold, so the number
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of processing time variables may increase. The mathematical formulation and

proposed approximation algorithm should be changed accordingly.

This problem can be studied for other scheduling objectives such as total

completion time. The scheduling environment may also be different. Jobshop

and openshop environments may be studied instead of flowshop.

7.3 Summary

In this chapter, we reviewed our study and discussed the contributions of this

study to the scheduling literature. We also suggested some future research direc-

tions as an extension to this study.
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Table A.1: Algorithm vs. DICOPT Solutions of Model 1

Factors Algorithm vs. Model 1 (DICOPT)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

20 1 4 19 0.09

0.11

2 -1.48

-0.35
20 2 5 14 0.14 6 -0.15
20 3 3 19 0.10 3 -0.10
20 4 4 19 0.11 2 -0.34
20 5 3 21 0.14 1 -0.02

1 0 0

20 1 2 21 0.17

0.14

2 -0.96

-0.57
20 2 5 19 0.12 1 -1.30
20 3 3 19 0.13 3 -0.66
20 4 2 19 0.16 4 -0.52
20 5 4 18 0.10 3 -0.04

0 1 0

20 1 3 19 0.10

0.13

3 -0.51

-0.23
20 2 3 19 0.15 3 -0.33
20 3 3 19 0.16 3 -0.06
20 4 2 21 0.12 2 -0.08
20 5 3 20 0.11 2 -0.04

0 0 1

20 1 6 17 0.14

0.11

2 -0.18

-0.71
20 2 3 19 0.09 3 -2.61
20 3 5 17 0.13 2 -0.76
20 4 4 14 0.07 7 -0.16
20 5 4 17 0.09 4 -0.49

1 1 0

20 1 4 20 0.12

0.16

1 -0.02

-0.42
20 2 3 20 0.17 2 -0.61
20 3 3 22 0.17 0 -
20 4 4 18 0.15 3 -0.03
20 5 3 21 0.19 1 -1.62

1 0 1

20 1 3 17 0.20

0.13

5 -0.85

-1.02
20 2 4 18 0.09 3 -1.14
20 3 2 16 0.09 7 -0.96
20 4 3 19 0.15 3 -0.91
20 5 4 20 0.10 1 -2.27

0 1 1

20 1 3 20 0.14

0.13

2 -1.14

-0.46
20 2 2 19 0.14 4 -0.31
20 3 4 18 0.10 3 -0.15
20 4 1 20 0.14 4 -0.50
20 5 4 21 0.11 0 -

1 1 1

20 1 4 20 0.19

0.17

1 -3.75

-1.10
20 2 2 21 0.18 2 -0.40
20 3 4 18 0.18 3 -1.29
20 4 4 18 0.16 3 -0.23
20 5 4 21 0.13 0 -
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Factors Algorithm vs. Model 1 (DICOPT)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

30 1 4 18 0.05

0.06

3 -2.68

-1.58
30 2 7 16 0.06 2 -0.05
30 3 3 18 0.08 3 -3.14
30 4 4 16 0.05 5 -1.20
30 5 4 17 0.04 3 -0.56

1 0 0

30 1 4 19 0.09

0.09

2 -0.56

-0.51
30 2 3 14 0.10 5 -0.45
30 3 2 15 0.07 5 -0.22
30 4 5 13 0.08 4 -0.72
30 5 4 16 0.09 5 -0.66

0 1 0

30 1 5 17 0.10

0.09

3 -0.50

-0.30
30 2 4 20 0.12 1 -0.59
30 3 4 20 0.08 1 -0.28
30 4 3 19 0.10 3 -0.30
30 5 4 17 0.07 4 -0.09

0 0 1

30 1 4 18 0.06

0.06

3 -0.27

-1.30
30 2 6 14 0.09 5 -2.45
30 3 5 18 0.05 2 -3.06
30 4 6 17 0.04 2 -0.03
30 5 5 17 0.07 3 -0.05

1 1 0

30 1 3 14 0.07

0.10

8 -0.32

-0.51
30 2 4 20 0.12 0 -
30 3 4 18 0.10 2 -0.42
30 4 3 16 0.11 6 -0.23
30 5 4 12 0.05 9 -0.88

1 0 1

30 1 2 18 0.07

0.09

5 -0.87

-0.84
30 2 2 18 0.09 3 -1.19
30 3 4 19 0.09 2 -1.22
30 4 3 15 0.10 5 -0.63
30 5 2 18 0.11 4 -0.62

0 1 1

30 1 4 18 0.10

0.10

3 -0.11

-0.10
30 2 2 20 0.11 1 -0.03
30 3 5 16 0.06 4 -0.12
30 4 4 19 0.15 2 -0.25
30 5 3 18 0.08 4 -0.01

1 1 1

30 1 3 20 0.11

0.12

2 -1.51

-0.66
30 2 3 16 0.15 6 -0.98
30 3 4 17 0.13 4 -0.40
30 4 5 15 0.11 5 -0.79
30 5 3 16 0.11 6 -0.13
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Table A.2: Algorithm vs. DICOPT Solutions of Model 2

Factors Algorithm vs. Model 2 (Dicopt)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

20 1 4 9 0.10

0.11

12 -0.17

-0.14
20 2 4 13 0.13 8 -0.18
20 3 4 17 0.11 4 -0.06
20 4 3 13 0.10 9 -0.12
20 5 4 11 0.14 10 -0.10

1 0 0

20 1 3 17 0.16

0.14

5 -0.11

-0.19
20 2 5 11 0.13 9 -0.25
20 3 3 8 0.16 14 -0.12
20 4 2 14 0.15 9 -0.16
20 5 3 9 0.08 13 -0.26

0 1 0

20 1 5 16 0.11

0.14

4 -0.07

-0.17
20 2 5 12 0.20 8 -0.19
20 3 1 17 0.14 7 -0.22
20 4 2 16 0.15 7 -0.14
20 5 3 12 0.08 10 -0.19

0 0 1

20 1 6 12 0.13

0.11

7 -0.40

-0.25
20 2 4 11 0.08 10 -0.35
20 3 3 17 0.18 5 -0.41
20 4 4 10 0.06 11 -0.10
20 5 5 14 0.07 6 -0.07

1 1 0

20 1 4 13 0.173

0.169

8 -0.159

-0.125
20 2 4 19 0.163 2 -0.082
20 3 2 21 0.143 2 -0.054
20 4 4 16 0.195 5 -0.148
20 5 2 16 0.182 7 -0.103

1 0 1

20 1 3 14 0.18

0.12

8 -0.07

-0.22
20 2 4 12 0.09 9 -0.25
20 3 4 4 0.09 17 -0.23
20 4 4 17 0.13 4 -0.09
20 5 3 11 0.11 11 -0.35

0 1 1

20 1 2 14 0.16

0.14

9 -0.24

-0.21
20 2 2 11 0.17 12 -0.08
20 3 3 12 0.11 10 -0.16
20 4 2 12 0.16 11 -0.43
20 5 2 9 0.11 14 -0.18

1 1 1

20 1 5 16 0.21

0.18

4 -0.17

-0.21
20 2 3 15 0.21 7 -0.25
20 3 3 16 0.17 6 -0.15
20 4 3 17 0.16 5 -0.04
20 5 4 14 0.14 7 -0.38
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Factors Algorithm vs. Model 2 (Dicopt)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

30 1 6 6 0.05

0.05

12 -0.14

-0.11
30 2 5 11 0.05 9 -0.11
30 3 2 11 0.06 11 -0.09
30 4 3 4 0.04 16 -0.07
30 5 3 12 0.04 9 -0.16

1 0 0

30 1 2 6 0.07

0.08

16 -0.73

-0.34
30 2 2 8 0.11 12 -0.18
30 3 2 5 0.03 15 -0.42
30 4 1 7 0.09 14 -0.11
30 5 3 5 0.10 15 -0.17

0 1 0

30 1 6 12 0.10

0.11

7 -0.49

-0.29
30 2 3 15 0.12 6 -0.54
30 3 4 6 0.09 15 -0.22
30 4 3 14 0.12 8 -0.22
30 5 4 11 0.09 10 -0.15

0 0 1

30 1 4 10 0.06

0.06

11 -0.19

-0.16
30 2 5 12 0.08 8 -0.16
30 3 4 7 0.05 14 -0.14
30 4 5 7 0.06 13 -0.16
30 5 4 9 0.05 11 -0.14

1 1 0

30 1 1 17 0.08

0.10

6 -0.12

-0.12
30 2 3 14 0.13 7 -0.07
30 3 4 14 0.10 6 -0.14
30 4 2 16 0.10 7 -0.07
30 5 4 7 0.10 12 -0.17

1 0 1

30 1 4 7 0.06

0.07

14 -0.21

-0.21
30 2 4 10 0.06 10 -0.12
30 3 3 11 0.07 11 -0.11
30 4 4 6 0.06 13 -0.30
30 5 3 5 0.14 16 -0.27

0 1 1

30 1 2 9 0.08

0.12

14 -0.30

-0.33
30 2 1 9 0.16 13 -0.19
30 3 4 4 0.07 15 -0.46
30 4 1 12 0.16 12 -0.26
30 5 4 9 0.08 12 -0.40

1 1 1

30 1 1 14 0.11

0.12

9 -0.04

-0.09
30 2 3 15 0.13 7 -0.14
30 3 2 15 0.12 8 -0.08
30 4 4 11 0.11 10 -0.09
30 5 4 14 0.10 7 -0.09
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Table A.3: Algorithm vs. BARON Solutions of Model 1

Factors Algorithm vs. Model 1 (BARON)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

20 1 4 21 0.10

0.12

0 -

-
20 2 5 20 0.14 0 -
20 3 4 21 0.11 0 -
20 4 5 20 0.12 0 -
20 5 4 21 0.14 0 -

1 0 0

20 1 1 14 0.18

0.13

10 -0.04

-0.04
20 2 5 20 0.13 0 -
20 3 4 21 0.12 0 -
20 4 4 21 0.16 0 -
20 5 4 21 0.10 0 -

0 1 0

20 1 4 21 0.11

0.14

0 -

-
20 2 4 21 0.19 0 -
20 3 4 21 0.16 0 -
20 4 2 23 0.12 0 -
20 5 4 21 0.11 0 -

0 0 1

20 1 5 20 0.13

0.11

0 -

-0.05
20 2 5 20 0.09 0 -
20 3 4 21 0.15 0 -
20 4 4 20 0.09 1 -0.05
20 5 5 20 0.09 0 -

1 1 0

20 1 4 21 0.19

0.20

0 -

-0.01
20 2 4 21 0.20 0 -
20 3 3 22 0.18 0 -
20 4 4 21 0.26 0 -
20 5 2 22 0.18 1 -0.01

1 0 1

20 1 3 22 0.17

0.12

0 -

-0.02
20 2 4 20 0.09 1 -0.02
20 3 5 20 0.10 0 -
20 4 4 21 0.14 0 -
20 5 5 20 0.10 0 -

0 1 1

20 1 4 21 0.14

0.13

0 -

-
20 2 3 22 0.14 0 -
20 3 5 20 0.11 0 -
20 4 3 22 0.14 0 -
20 5 4 21 0.10 0 -

1 1 1

20 1 5 20 0.20

0.17

0 -

-
20 2 4 21 0.18 0 -
20 3 3 22 0.16 0 -
20 4 4 21 0.18 0 -
20 5 3 22 0.12 0 -
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Factors Algorithm vs. Model 1 (BARON)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

30 1 8 17 0.05

0.05

0 -

-0.02
30 2 6 19 0.05 0 -
30 3 5 18 0.08 2 -0.02
30 4 5 20 0.04 0 -
30 5 5 19 0.04 1 -0.02

1 0 0

30 1 5 20 0.06

0.10

0 -

-0.02
30 2 5 19 0.11 1 -0.02
30 3 4 21 0.12 0 -
30 4 6 17 0.07 2 -0.10
30 5 4 19 0.12 2 -0.02

0 1 0

30 1 5 19 0.09

0.09

1 -0.04

-0.02
30 2 5 20 0.11 0 -
30 3 5 20 0.08 0 -
30 4 4 21 0.10 0 -
30 5 4 17 0.09 4 -0.01

0 0 1

30 1 5 18 0.07

0.06

2 -0.05

-0.04
30 2 6 18 0.07 1 -0.05
30 3 8 17 0.03 0 -
30 4 8 17 0.05 0 -
30 5 5 18 0.07 2 -0.02

1 1 0

30 1 4 21 0.11

0.12

0 -

-
30 2 4 21 0.12 0 -
30 3 3 22 0.13 0 -
30 4 4 21 0.12 0 -
30 5 5 20 0.10 0 -

1 0 1

30 1 8 14 0.07

0.12

3 -0.05

-0.06
30 2 4 18 0.19 3 -0.03
30 3 6 17 0.09 2 -0.07
30 4 6 17 0.13 2 -0.10
30 5 5 18 0.10 2 -0.06

0 1 1

30 1 4 19 0.09

0.09

2 -0.02

-0.04
30 2 4 20 0.10 1 -0.08
30 3 7 17 0.05 1 -0.02
30 4 2 21 0.13 2 -0.04
30 5 4 21 0.06 0 -

1 1 1

30 1 4 21 0.10

0.12

0 -

-
30 2 4 21 0.12 0 -
30 3 4 21 0.12 0 -
30 4 4 21 0.10 0 -
30 5 4 21 0.10 0 -
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Table A.4: DICOPT vs. BARON Solutions of Model 1

Factors DICOPT vs BARON (Model 1)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

20 1 19 5 1.11

0.40

0 -

-0.01
20 2 18 6 0.30 1 -0.02
20 3 18 6 0.12 1 -0.01
20 4 23 2 0.51 0 -
20 5 20 4 0.01 1 -0.01

1 0 0

20 1 1 3 0.84

0.39

21 -0.11

-0.11
20 2 20 5 0.30 0 -
20 3 21 4 0.54 0 -
20 4 19 6 0.41 0 -
20 5 20 5 0.05 0 -

0 1 0

20 1 21 4 0.5

0.22

0 -

-0.09
20 2 19 6 0.38 0 -
20 3 18 7 0.07 0 -
20 4 19 6 0.08 0 -
20 5 22 2 0.14 1 -0.10

0 0 1

20 1 23 2 0.23

0.63

0 -

-0.14
20 2 22 3 2.72 0 -
20 3 19 6 0.38 0 -
20 4 17 8 0.24 0 -
20 5 19 5 0.45 1 -0.14

1 1 0

20 1 19 6 0.26

0.34

0 -

-0.02
20 2 20 5 0.43 0 -
20 3 22 3 0.10 0 -
20 4 22 7 0.39 0 -
20 5 19 4 0.43 2 -0.02

1 0 1

20 1 22 2 0.30

0.24

1 -0.08

-0.05
20 2 22 2 0.19 1 -0.02
20 3 20 5 0.42 0 -
20 4 22 3 0.14 0 -
20 5 21 3 0.03 1 -0.09

0 1 1

20 1 22 2 0.11

0.20

1 -0.01

-0.04
20 2 21 3 0.58 1 -0.05
20 3 21 4 0.23 0 -
20 4 21 3 0.14 1 -0.05
20 5 17 5 0.02 3 -0.04

1 1 1

20 1 19 4 0.02

0.29

2 -0.01

-0.09
20 2 23 2 0.07 0 -
20 3 19 6 0.62 0 -
20 4 20 5 0.33 0 -
20 5 21 3 0.05 1 -0.26
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Factors DICOPT vs BARON (Model 1)
A1 A2 As n Rep = 0 > 0 Avg Case Avg < 0 Avg Case Avg

(x10−2) (x10−2) (x10−2) (x10−2)

0 0 0

30 1 15 3 2.79

1.12

7 -0.02

-0.02
30 2 21 3 0.06 1 -0.01
30 3 10 5 2.03 9 -0.03
30 4 10 10 0.64 5 -0.02
30 5 21 3 0.60 0 -

1 0 0

30 1 20 3 0.62

0.38

2 -0.18

-0.07
30 2 11 7 0.25 4 -0.03
30 3 11 9 0.13 2 -0.01
30 4 7 6 0.56 9 -0.08
30 5 14 8 0.53 3 -0.03

0 1 0

30 1 17 2 0.86

0.18

6 -0.06

-0.05
30 2 12 4 0.20 9 -0.05
30 3 18 5 0.08 2 -0.02
30 4 16 8 0.15 1 -0.04
30 5 9 9 0.11 7 -0.05

0 0 1

30 1 17 5 0.20

0.61

3 -0.05

-0.03
30 2 9 12 1.10 4 -0.06
30 3 13 5 1.28 7 -0.02
30 4 15 6 0.04 4 -0.01
30 5 14 7 0.07 4 -0.01

1 1 0

30 1 13 11 0.36

0.47

1 -0.03

-0.03
30 2 20 1 0.04 3 -0.04
30 3 19 5 0.36 0 -
30 4 13 10 0.23 2 -0.03
30 5 13 10 0.94 2 -0.03

1 0 1

30 1 9 7 0.65

0.66

9 -0.05

-0.07
30 2 12 3 1.45 8 -0.06
30 3 14 4 0.66 7 -0.06
30 4 9 7 0.48 7 -0.11
30 5 10 6 0.49 8 -0.08

0 1 1

30 1 19 3 0.17

0.10

3 -0.08

-0.05
30 2 17 1 0.16 5 -0.08
30 3 17 5 0.13 3 -0.09
30 4 11 6 0.10 8 -0.04
30 5 12 5 0.02 8 -0.03

1 1 1

30 1 17 4 0.81

0.53

4 -0.03

-0.05
30 2 11 7 0.95 7 -0.06
30 3 18 5 0.39 2 -0.02
30 4 14 9 0.50 2 -0.01
30 5 14 8 0.15 3 -0.07
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