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Department of
Economics
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ABSTRACT

MEASURING SELF-SELECTIVITY VIA

GENERALIZED CONDORCET RULES

ALTUNTAŞ, Açelya

M.A., Department of Economics

Supervisor: Prof. Semih Koray

July 2011

In this thesis, we introduce a method to measure self-selectivity of social

choice functions. Due to Koray [2000], a neutral and unanimous social choice

function is known to be universally self-selective if and only if it is dictato-

rial. Therefore, in this study, we confine our set of test social choice func-

tions to particular singleton-valued refinements of generalized Condorcet rules.

We show that there are some non-dictatorial self-selective social choice func-

tions. Moreover, we define the notion of self-selectivity degree which enables

us to compare social choice functions according to the strength of their self-

selectivities. We conclude that the family of generalized Condorcet functions

is an appropriate set of test social choice functions when we localize the no-

tion of self-selectivity.

Keywords: Social choice, Self-selectivity, Self-selectivity degree, Generalized

Condorcet rules
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ÖZET

GENELLEŞTİRİLMİŞ CONDORCET KURALLARI

İLE KENDİNİ-SEÇERLİĞİN ÖLÇÜLMESİ

ALTUNTAŞ, Açelya

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Prof. Semih Koray

Temmuz 2011

Bu tez çalışmamızda, sosyal seçim fonksiyonlarının kendini-seçerliğini ölçmeye

yarayan bir yöntem sunulmaktadır. Koray [2000]’dan dolayı, nötr ve oy-

birlikçi bir sosyal seçim fonksiyonu ancak ve sadece diktatörlük olduğunda

evrensel kendini-seçerdir. Bu yüzden, bu çalışmada, sosyal seçim fonksi-

yonlarının test kümesi, tek-değerli genelleştirilmiş Condorcet kuralları incelt-

melerine sınırlandırılmaktadır. Bu kısıtlama altında, diktatörlük olmayan

kendini-seçer sosyal seçim fonksiyonları olduğu gösterilmektedir. Ayrıca, sosyal

seçim fonksiyonlarının kendini-seçerlik kuvvetlerine göre karşılaştırılmasını

sağlayan kendini-seçerlik derecesi kavramı tanıtılmaktadır. Kendini-seçerlik

kavramı yerel hale getirildiği zaman, elde edilen genelleştirilmiş Condorcet

fonksiyonlarının sosyal seçim fonksiyonlarının test kümesi için uygun olduğu

gösterilmektedir.

Anahtar Kelimeler: Sosyal seçim, Kendini-seçerlik, Kendini-seçerlik derecesi,

genelleştirilimiş Condorcet kuralları
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CHAPTER 1

INTRODUCTION

Self-selectivity of a social choice function (SCF) is concerned with “choosing

how to choose”. We imagine a society, which is going to make a choice from

a given set A of alternatives, is also to choose the choice function to be

employed in its choice from A. Here a natural question arises that concerns

consistency between the choice from the set A of alternatives and the set

A of available SCFs. More specifically, the society’s preference profile on A

induces a preference profile on A where the SCFs are ranked according to

the alternatives they choose over the initial preference profile on A. So, the

question now is whether an SCF F chooses itself, if it is used to make the

choice of the choice function from among any finite set of SCFs including F .

If it does so, then F will be called as self-selective. If it does not, then this

failure can be regarded as a lack of consistency on the part of this SCF F .

By Koray [2000], it is well known that a unanimous and neutral SCF is

universally self-selective if and only if it is dictatorial. The universality of

self-selectivity of an SCF F is that it selects itself among any finite set of

SCFs including F itself. There are two frequently used methods in social

choice theory when one wishes to escape impossibility results. One is the

restriction of the domain of preference profiles. The other one allows the

social choice rules (SCR) considered to be set-valued rather than singleton-
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valued. In addition to these two approaches, there is a third way which is

peculiar to self-selectivity. It consists of restricting the set of SCFs against

which self-selectivity is to be tested. In this study, we focus on restricting our

test SCFs to a particular family which is different than all families that have

been employed in previous studies.

Either of these three methods may or may not end up with escaping

dictatoriality depending upon the particular way the method in question is

employed. In order to escape impossibility, Ünel [1999] restricts the domain

of preference profiles to single-peaked ones and thereby provides a whole

class of non-dictatorial self-selective SCFs. Another result that allows the

existence of non-dictatorial self-selective SCRs is achieved by Koray [1998].

By allowing the SCRs considered to be set-valued, he proves that any neutral

top-majoritarian SCR which is self-selective at preference profiles where Con-

dorcet winner exists is a refinement of Condorcet rule. That is, he concludes

that the Condorcet rule is the maximal neutral and self-selective SCR at such

preference profiles. More recently, Koray and Slinko [2008] also find some

self-selective non-dictatorial SCFs by relaxing universal self-selectivity. They

start with a social choice correspondence (SCC) which can be thought of as a

constitutional rule reflecting the norms that a society wishes to adhere, and

restrict their test functions to singleton-valued refinements thereof. In par-

ticular, they prove that if an SCF is a refinement of Pareto correspondence

and self-selective relative to any set of test SCFs which are refinements of

Pareto correspondence, then it is either dictatorial or Pareto anti-dictatorial.

Although Koray and Ünel [2003] utilize a similar method to Koray and Slinko

[2008], they end up with only dictatorial SCFs. The difference is that they

restrict the set of available SCFs to tops-only ones. However, it turns out that

dictatoriality cannot be escaped by this particular restriction of test SCFs.

A natural question concerning a non-dictatorial, thus a non-universally

self-selective SCF F is “how self-selective it is”. F may not be choosing itself
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from a particular set of test SCFs rendering it non-self-selective. However,

it is only natural to consider an SCF F to be more self-selective in case it

beats more rivals by choosing itself from among them. If self-selectivity is

regarded as a particular measure of consistency on the part of an SCF, then

it becomes important to introduce a proper measure of self-selectivity. One

obvious candidate is associating with each SCF the maximal sets of SCFs that

it beats in terms of self-selectivity. In this study, we employ a special family

of test SCFs, namely singleton-valued refinements of generalized Condorcet

rules, to that end.

Roughly speaking, for each q ∈ [0, 1], an alternative is a q-Condorcet

winner if it defeats any other alternative in pairwise q-majority. The usual

definition of a Condorcet winner corresponds to q = 1
2
. There are three main

reasons why we take particular singleton-valued refinements of generalized

Condorcet rules as our test functions for self-selectivity. Firstly, we can hardly

disclaim the central position that the Condrocet rule occupies in social choice

theory, which is only confirmed by its closeness to self-selectivity established

by Koray [1998]. Secondly, different q-Condorcet functions exhibit a well-

behaved pattern concerning self-selectivity in the sense that the degree of

self-selectivity increases as q increases. Finally, in this framework, testing a

given SCF for self-selectivity against each test function separately turns out

to be equivalent to testing it against collections of arbitrary sets of SCFs of

finite sizes. In addition to the simplicity it brings to the analysis, one can

also expect the measure of self-selectivity introduced via q-Condorcet rules

to reflect a genuine yardstick for self-selectivity.

After formally defining the notion of self-selectivity degree relative to q-

Condorcet rules, we apply this notion to q-Condorcet functions, p-qualified

majority functions, some special scoring functions and majoritarian compro-

mise. We modify the notion of self-selectivity degree when we deal with k-

plurality rules as strictly speaking the degree notion does not apply to them

3



directly as it stands. We thereby obtain examples of non-dictatorial SCFs

which are not universally self-selective, but self-selective to a large extent.

In the next chapter, we introduce some basic definitions. Chapter 3 starts

with an illustrative example and shows some useful properties of the fam-

ily of generalized Condorcet rules. Chapter 4 reports a sequence of results

about some families of SCFs. Finally, Chapter 5 closes the thesis with some

concluding remarks.
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CHAPTER 2

PRELIMINARIES

Let N be a finite nonempty set of individuals with | N |= n. Let N denote

the set of natural numbers, set Im = {1, . . . ,m} and denote the set of all

linear orders on Im by L (Im) for each m ∈ N.

Definition 1. A function F : ∪m∈N L (Im)n → N is called a social choice

function (SCF) if, for each m ∈ N, R ∈ L (Im)n, one has F (R) ∈ Im. We

denote the set of all SCFs by F .

Take any finite set A with | A |= m ∈ N. Let µ : Im → A be a bijection,

i.e., a one-to-one and onto function. Now, any linear order profile L on A

induces a linear order profile Lµ on Im as follows: For all i ∈ N and k, l ∈ Im,

one has kLiµl if and only if µ(k)Liµ(l). We define F (L) = µ(F (Lµ)), where µ

is a bijection from Im to A.

For each m ∈ N, R ∈ L (Im)n and permutation σm on Im, we define the

permuted linear order profile Rσm on Im as follows: For all v ∈ N , ai, aj ∈ Im

one has aiR
v
σmaj ⇐⇒ σm(ai)R

vσm(aj).

Definition 2. F ∈ F is called neutral if, for each m ∈ N, σm on Im, one has

σm(F (Rσm)) = F (R). We denote the set of all neutral SCFs by N

Note that, neutrality of an SCF F implies that the labelling of the alterna-

tives does not matter and, also, it allows us to extend the domain of F to linear
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order profiles on any finite nonempty set. It is clear that µ(F (Lµ)) = v(F (Lv))

for any two bijections µ, v : Im → A if F is neutral. However, as we also con-

sider SCFs which are not neutral in this thesis, the bijection µ that is used

will matter.

Take any m ∈ N, R ∈ L (Im)n and nonempty finite subset A of F . Define

for all F,G ∈ A and i ∈ N , FRi
AG if and only if F (R)RiG(R). Note that

Ri
A is a complete preorder on A as more than one SCF in A can choose the

same alternative in Im. Thus, any linear order profile R ∈ L (Im)n induces a

preference profile RA on any nonempty finite subset A of F .

Definition 3. Let Ri
A be a complete preorder on A. A linear order Li is said

to be compatible with Ri
A if, for all F,G ∈ A, FRi

AG is implied by FLiG.

The set of all linear order profiles on A is denoted by L(A)n.

Definition 4. For all m ∈ N, R ∈ L (Im)n and nonempty finite subset A of

N , define the set of all linear order profiles on A induced by R, L(A, R), as

follows: L(A, R) = {L ∈ L(A)n | Li is a linear order on A compatible with

Ri
A for each i ∈ N}.

For each nonempty finite subset A of F , choose and fix a bijection µA :

Im → A, where | A |= m. Given an SCF F : ∪m∈N L (Im)n → N, for each

nonempty finite subset A of F , we obtain an extension F : L(A)n → A of F

via µA. Note that here we use the same symbol F for both the given SCF

and its extension to L(A)n, which we will continue to do in the sequel. This

will lead to no ambiguity so long as the family of bijection {µA} is kept fixed.

Definition 5. i. Given F ∈ F , m ∈ N, R ∈ L (Im)n and a finite subset A

of F with F ∈ A, we say that F is self-selective at R relative to A with

respect to {µA} if there exists some L ∈ L(A, R) such that F = F (L).

ii. F is said to be self-selective at R with respect to {µA} if F is self-selective

at R relative to any finite subset A of F with F ∈ A with respect to

{µA}.
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iii. F is said to be universally self-selective with respect to {µA} if F is

self-selective at each R ∈ ∪m∈N L (Im)n relative to any finite subset A

of F with F ∈ A with respect to {µA}.

Definition 6. Let | N |= n, A ⊆ F be given. An SCF F ∈ F is said to be

self-selective relative to A if there is some {µA} such that F is self-selective

at each R ∈ ∪m∈NL(Im)n relative to A with respect to {µA}.

Definition 7. An SCF F ∈ F is said to be unanimous if, for all m ∈ N,

R ∈ L(Im)n and a ∈ Im we have [∀i ∈ N,∀b ∈ Im : aRib]⇒ F (R) = a.

Definition 8. An SCF F ∈ F is said to be dictatorial if and only if ∃i ∈

N,∀m ∈ N, ∀R ∈ L(Im)n such that F (R) = arg maxIm R
i.

Koray [2000] shows that when m ≥ 3 any neutral and unanimous SCF F

is universally self-selective if and only if it is dictatorial.

Remark 1. Take any non-dictatorial SCF F ∈ F . Let F be tested only

against itself, i.e. A = {F} ⊂ F . Then F is trivially self-selective relative

to A. On the other hand, if we let A = N then, by Koray [2000], F is not

self-selective relative to A since it is a non-dictatorial SCF. So, we conclude

that there exists a maximal finite nonempty subset A of N such that F is

self-selective relative to A.

Definition 9. Given any m ∈ N, R ∈ L(Im)n, q ∈ [0, 1], an alternative

a ∈ Im is said to be a q-Condorcet winner at R if | {i ∈ N | aRib} |≥ nq for

all b ∈ Im \ {a}.

We denote the set of all q-Condorcet winners at R ∈ ∪m∈N L (Im)n by

CWq(R). An SCR Cq is called the q-Condorcet rule if it selects all q-Condorcet

winners at each R ∈ ∪m∈N L (Im)n.

Remark 2. Take any R ∈ ∪m∈NL(Im)n. For q = 0, Cq(R) = Im. For q = 1 we

have Cq(R) = {a} if L(a,Ri) = Im for each i ∈ N and Cq(R) = ∅ otherwise.
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We only consider societies with odd number of individuals, i.e., n = 2k+1

where k ≥ 1 is an integer. Moreover, for any m ∈ N, we fix the usual ordering

on Im, so we have 1 < 2 < · · · < m.

Definition 10. Given m ∈ N, R ∈ L(Im)n the q-Condorcet function, Cq, is

defined by:

Cq(R) =

 1 if CWq(R) = ∅

min{CWq(R)} if CWq(R) 6= ∅

Basically, for R ∈ ∪m∈N L (Im), if the set of q-Condorcet winners is empty,

then the q-Condorcet function chooses the minimal alternative of Im relative

to the ordering defined above. If the winner set is non-empty, then the q-

Condorcet function chooses the minimal alternative of the winner set relative

to the ordering that we defined.

For any R ∈ ∪m∈N L (Im)n, let CWq(L) be the set of all q-Condorcet

winners at L ∈ L(A, R). Now, given m ∈ N, R ∈ L(Im)n, A ⊆ F , the

self-selectivity of the q-Condorcet function relative to A is defined as follows:

- When CWq(L) = ∅ for some L ∈ L(A, R), Cq is self-selective at R

relative to A.

- When CWq(L) 6= ∅ for each L ∈ L(A, R), Cq is self-selective at R

relative to A if Cq ∈ CWq(L) for some L ∈ L(A, R).

Note that there always is a bijection µA : A → Ik, where k =| A |, such

that µA(Cq) is minimal in µA(CWq(L)). Thus, the definition is consistent

with our general definition of self-selectivity at R relative to A.

8



CHAPTER 3

GENERALIZED CONDORCET

FUNCTIONS AND SELF-SELECTIVITY

DEGREE

We, first, test the self-selectivity of Cq relative toA = {Cq, Cq′} for each q′ ∈

(0, 1] and obtain some useful properties of the family of particular singleton-

valued refinements of generalized Condorcet rules. Then, we define the notion

of self-selectivity degree of an SCF relative to q-Condorcet rules to measure

self-selectivity of SCFs.

Before proceeding further, it will be illuminating to see how the self-

selectivity of Cq differs relative to A′ = {Cq, Cq′} where q, q′ ∈ (0, 1] are such

that q < q′, CWq′(R) ⊆ CWq(R), and A′′ = {Cq, Cq′′} where q, q′′ ∈ (0, 1] are

such that q′′ < q, CWq(R) $ CWq′′(R) at each R ∈ ∪m∈NL(Im)n.

3.1 Example

Consider a society N = {α, β, γ, δ, ζ} consisting of five individuals. Take

C 1
2
, C 2

3
, C 1

3
∈ F , which are all unanimous. Now let us consider the following

9



linear order profile R ∈ I4:

Rα Rβ Rγ Rδ Rζ

2 2 3 3 4

1 1 2 2 3

4 4 1 1 2

3 3 4 4 1

First consider the case where C 1
2

is tested only against C 2
3
, i.e., the set of

available SCFs is A′ = {C 1
2
, C 2

3
}. We have CW 1

2
(R) = CW 2

3
(R) = ∅ implying

that C 1
2
(R) = C 2

3
(R) = 1. The complete preorder RA′ on A′ induced by R

is represented in the following table with a comma separating alternatives

indicating an indifference class:

Rα
A′ Rβ

A′ Rγ
A′ Rδ

A′ Rζ
A′

C 1
2
, C 2

3
C 1

2
, C 2

3
C 1

2
, C 2

3
C 1

2
, C 2

3
C 1

2
, C 2

3

Thus, we have 24 linear order profiles compatible with the above complete

preorder profile in each component. The linear order profile L′ is a member

of L(A′, R):

L
′α L

′β L
′γ L

′δ L
′ζ

C 1
2

C 1
2

C 1
2

C 1
2

C 1
2

C 2
3

C 2
3

C 2
3

C 2
3

C 2
3

Since C 1
2
(L′) = C 1

2
, we conclude that C 1

2
is self-selective at R relative to

A′. Roughly speaking, C 1
2

is self-selective at R when it is tested against a

less generous SCF, namely C 2
3
.

Now consider the case where the set of available SCFs, A′′, consists of

only C 1
2

and C 1
3
, i.e., A′′ = {C 1

2
, C 1

3
}. Since CW 1

3
(R) = {2, 3}, we have

C 1
3
(R) = 2. Thus, L(A′′, R) consists of one member L′′ only, where:

10



L
′′α L

′′β L
′′γ L

′′δ L
′′ζ

C 1
3

C 1
3

C 1
3

C 1
3

C 1
3

C 1
2

C 1
2

C 1
2

C 1
2

C 1
2

Now, C 1
2
(L′′) = C 1

3
6= C 1

2
. Since L(A′′, R) = {L′′}, this means that C 1

2

is not self-selective at R relative to A′′. That is, C 1
2

is not self-selective at R

when it is tested against a more generous SCF C 1
3
.

In the following proposition, we generalize the result that we provide in

the above example and thereby show that q-Condorcet functions exhibit a

well-behaved pattern in terms of self-selectivity. That is, any q-Condorcet

function chooses itself whenever it is tested against a less generous Condorcet

function and fails to choose itself whenever it is tested against a more generous

Condorcet function.

3.2 Results

Proposition 1. Let N be a finite nonempty set of individuals and q ∈ (0, 1]

be given.

1. Cq is self-selective relative to A = {Cq, Cq′}, where q′ ∈ (0, 1] is such

that q < q′ and CWq′(R) ⊆ CWq(R) at any R ∈ ∪m∈N L (Im)n.

2. Cq is not self-selective relative to A = {Cq, Cq′}, where q′ ∈ (0, 1] is

such that q′ < q and CWq(R) $ CWq′(R) at any R ∈ ∪m∈N L (Im)n.

Proof. First, note that, given m ∈ N, R ∈ L (Im)n, CWq(R) = CW l+1
n

(R) for

any q ∈ ( l
n
, l+1
n

], where l is an integer from the set {0, 1, . . . , n−1}. Now take

any q ∈ (0, 1], and let A = {Cq, Cq′} for some q′ ∈ (0, 1].

Case 1. Let q′ ∈ (0, 1] be such that q < q′ and CWq′(R) ⊆ CWq(R)

at any R ∈ ∪m∈NL(Im)n. Now, take any R ∈ ∪m∈N L (Im)n. If CWq(R) = ∅,

then CWq′(R) = ∅. Thus, Cq(R) = Cq′(R) = {1}. Hence, Cq is self-selective
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at R relative to A. If CWq(R) 6= ∅, then Cq ∈ CWq(L) for any L ∈ L(A, R).

Therefore, Cq is self-selective at R relative to A.

Case 2. Let q′ ∈ (0, 1] be such that q′ < q and CWq(R) $ CWq′(R)

at any R ∈ ∪m∈NL(Im)n. Then we have dnq′e < dnqe as CWq(R) $ CWq′(R)

at any R ∈ ∪m∈NL(Im)n. Set r = n
dnq′e , and consider brc. Now let m =

brc + 2, and construct a preference profile R̃ ∈ L (Im)n as follows: For i ∈

{(brc − t)dnq′e + 1, . . . , (brc − t + 1)dnq′e}, let L(m − t, R̃i) = Im where

t ∈ {1, 2, . . . , brc}, (m−s)R̃i(m−s−1) for any s ∈ {0, 1, . . . ,m−2} and 1R̃im.

For i ∈ {brcdnq′e + 1, . . . , n}, let L(m,Ri) = Im, and (m − s)R̃i(m − s − 1)

for any s ∈ {0, 1, . . . ,m− 2}. Pictorially, R̃ is defined as follows:

R̃1 · · · R̃dnq′e

2

1

m

m− 1

...

3

R̃dnq
′e+1 · · · R̃2dnq′e

3

2

1

m

...

4

· · ·

· · ·

R̃(brc−1)dnq′e+1 · · · R̃brcdnq′e

m− 1

m− 2

...

2

1

m

R̃brcdnq
′e+1 · · ·Rn

m

m− 1

...

3

2

1

Now for any a ∈ Im \{1}, we have | {i ∈ N | aR̃i(a+ 1)} |= dnq′e < dnqe.

Therefore, a /∈ CWq(R̃), in particular Cq(R̃) 6= a. Moreover for each i ∈ N

2R̃i1, thus 1 /∈ CWq(R̃). Hence CWq(R̃) = ∅, so Cq(R̃) = 1. On the

other hand, 2 ∈ CWq′(R̃) and 1 /∈ CWq′(R̃) implying that Cq′(R̃) = 2.

12



So, we have Cq′L
iCq for each i ∈ N , where L(A, R̃) = L, which implies that

Cq(L) = Cq′ 6= Cq. Hence, Cq is not self-selective at R̃ relative to A, thus it

is not self-selective relative to A.

Definition 11. An SCF F is said to be of degree (1-q) if it is self-selective

relative to A = {F,Cq′} for any q′ ∈ (q, 1], and it is not self-selective relative

to A = {F,Cq′} for some q′ ∈ (0, q].

Remark 3. By previous proposition, given | N |= n, Cq has degree n−l
n

where

q ∈ ( l
n
, l+1
n

] for some integer l ∈ {0, 1, . . . , n− 1}.

An immediate corollary to the above proposition shows the maximal sub-

set, Ar, of the set of rival SCFs such that Cq is self-selective relative to

A = {Cq} ∪ Ar.

Corrolary 1. Let N be a finite nonempty set of individuals and q ∈ (0, 1]

be such that q ∈ ( l
n
, l+1
n

] for some integer l ∈ {0, 1, . . . , n − 1}. Now, Ar =

{Cq′ | q′ ∈ ( l
n
, 1]} is the maximal subfamily of {Cq | q ∈ (0, 1]} such that Cq

is self-selective relative to A = {Cq} ∪ Ar.

Proof. First note that by previous proposition, Cq′ /∈ Ar for any q ∈ (0, l
n
].

Let m ∈ N, R ∈ L(Im)n be given. If CWq(R) = ∅ then for any q′ ∈ ( l
n
, 1],

CWq′(R) = ∅. So, Cq(R) = Cq′(R) = 1 for any Cq′ ∈ Ar, implying that

Cq is self-selective at R relative to A = {Cq} ∪ Ar. If CWq(R) 6= ∅, then

Cq(R) ∈ CWq(L) for any L ∈ L(A, R). Therefore, Cq is self-selective at R

relative to A. Hence, Cq is self-selective relative to Ar.

Remark 4. If the self-selectivity degree of an SCF F increases, then F be-

comes more self-selective.

The above corollary provides a useful property of the family of generalized

Condorcet functions. By the previous proposition, a Condorcet function,

Cq, is not self-selective when it is tested against a more generous Condorcet

function Cq′ . So, the corollary implies that, Cq fails to choose itself among

13



any set of rival SCFs including Cq′ . Furthermore, if a Condorcet function

chooses itself in pairwise tests with other Condorcet functions, then it also

chooses itself after the aggregation of the test SCFs.

14



CHAPTER 4

SELF-SELECTIVITY DEGREES OF SOME

FAMILIES OF SOCIAL CHOICE

FUNCTIONS

4.1 p-Qualified Majority Functions

Now, given m ∈ N, λ ∈ L (Im), write τ(λ) = a if and only if L(a, λ) = Im

for some a ∈ Im. For any m ∈ N, R ∈ L (Im)n let T (R) = {τ(Ri) : i ∈ N}.

Definition 12. Let R ∈ ∪m∈N L (Im)n be given. An alternative a ∈ T (R)

is said to be a p-qualified majority winner for some p ∈ [0, 1] if | {i ∈ N :

L(a,Ri) = Im} |≥ np.

We denote set of all p-qualified majority winners by MWp(R) at each

R ∈ ∪m∈N L (Im)n. An SCR Mp is said to be a p-qualified majority rule if it

selects all p-qualified majority winners at each R ∈ ∪m∈N L (Im)n.

Definition 13. Given m ∈ N, R ∈ L (Im)n, the p-qualified majority function,

Mp, is defined by:

Mp(R) =

 1 if MWp(R) = ∅

min{MWp(R)} if MWp(R) 6= ∅

Now, let MWp(L) be the set of all p-qualified majority winners where

15



L ∈ L(A, R) for R ∈ L (Im)n. Given m ∈ N, R ∈ L (Im)n, the self-selectivity

of the p-qualified majority function relative to A is defined as follows1 :

- When MWp(L) = ∅ for some L ∈ L(A, R), then Mp is trivially

self-selective at R relative to A.

- When MWp(L) 6= ∅ for each L ∈ L(A, R), Mp is self-selective at R

relative to A if Mp ∈MWp(L) for some L ∈ L(A, R).

Proposition 2. Let N be a finite nonempty society with n ≥ 3.

1. Mp is self-selective relative to A = {Mp, Cq} for every q ∈ (n−1
n
, 1] when

p ∈ ( 1
n
, 1].

2. Mp is self-selective relative to A = {Mp, Cq} for every q ∈ (0, 1] when

p ∈ [0, 1
n
].

Proof. (1) Take any m ∈ N, R ∈ L (Im)n, q ∈ (n−1
n
, 1] and let A = {Mp, Cq},

where p ∈ ( 1
n
, 1]. First, consider the case where CWq(R) 6= ∅. Then we have

MWp(R) 6= ∅, and in particular Cq(R) = Mp(R). Thus, Mp is self-selective

at R relative to A. Now, consider the case where CWq(R) = ∅. Then we

have either MWp(R) = ∅ or MWp(R) 6= ∅. If the former holds, we have

Cq(R) = Mp(R) = 1. If the latter holds, Mp ∈MWp(L), where L ∈ L(A, R).

Therefore, Mp is self-selective at R relative to A.

Now, let A = {Mp, Cq} for some q ∈ (0, n−1
n

], where p ∈ ( 1
n
, 1]. Set

m = n+ 2, and define R̃ ∈ L (Im)n as follows: An alternative a ∈ Im is most

preferred by individual i ∈ N if a− i = 2, | {i ∈ N | L(2, R̃i = m− 1} |= n,

and 1 ∈ Im is bottom ranked by all individuals. That is we have:

1Note that here and in the definitions of self-selectivity for other classes of SCRs in the
sequel, the note closing chapter 2 applies.

16



R̃1 R̃2 . . . R̃n

3 4 . . . n+ 2

2 2 . . . 2

...
...

...
...

1 1 . . . 1

So, MWp(R) = ∅ implying thatMp(R̃) = 1. On the other hand, CWq(R̃) 6=

∅ and 1 /∈ CWq(R̃). Hence, L(A, R̃) consists of only one element L where Cq

is top ranked by all individuals. Thus, Mp(L) = Cq 6= Mp. Therefore, Mp is

not self-selective relative to A.

(2) Take any m ∈ N, R ∈ L (Im)n, q ∈ (0, 1] and let A = {Mp, Cq} where

p ∈ [0, 1
n
]. Clearly, MWp(R) = T (R). Now, take any L ∈ L(A, R), then

we have Mp ∈ MWp(L). Hence Mp is self-selective relative to A whenever

p ∈ [0, 1
n
].

Corrolary 2. Let N be a finite nonempty society with n ≥ 3.

1. For p ∈ ( 1
n
, 1], Mp has degree 1

n
.

2. For p ∈ [0, 1
n
], Mp has degree 1.

Proof. Follows from the definition of self-selectivity degree.

Corrolary 3. Let N be a finite nonempty society with n ≥ 3.

1. For p ∈ ( 1
n
, 1], Ar = {Cq | q ∈ (n−1

n
, 1]} is the maximal subfamily of

{Cq | q ∈ (0, 1]} such that Mp is self-selective relative to A = {Mp}∪Ar.

2. For p ∈ [0, 1
n
], Ar = {Cq | q ∈ (0, 1]} is the maximal family such that

Mp is self-selective relative to A = {Mp} ∪ Ar.

Proof. (1) Note that by above proposition, Cq /∈ Ar for any q ∈ (0, n−1
n

]. Let

m ∈ N, R ∈ L (Im)n be given. We now that Cq = Cq′ for any q, q′ ∈ (n−1
n
, 1].

So we have either CWq(R) = ∅ or CWq(R) 6= ∅. Thus, as we discussed in the

above proposition, both cases imply that Mp is self-selective relative to A.
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(2) Obvious.

4.2 Convex and Concave Scoring Functions

Given any m ∈ N, consider a vector s = (m,m − 1, . . . , 1) ∈ Rm. For any

i ∈ N, a ∈ Im denote ai with [ai = sk if and only if | {b ∈ Im | bRia} |= k−1].

Definition 14. Given any m ∈ N, R ∈ L (Im)n, an alternative a ∈ Im is said

to be a scoring winner at R if
∑

i∈N ai ≥
∑

i∈N bi for any b ∈ Im.

We denote the set of all scoring winners by SW (R) at eachR ∈ ∪m∈N L (Im)n.

Now, an SCR S is called as a scoring rule if it selects all scoring winners at

each R ∈ ∪m∈N L (Im)n.

Definition 15. Let m ∈ N be given.

i. An SCR S ∈ N is called a concave scoring rule if si ≥ si+1 for any

i ∈ {1, 2, . . . ,m− 1} and s1 − s2 ≤ s2 − s3 ≤ . . . ≤ sm−1 − sm.

ii. An SCR S ∈ N is called a convex scoring rule if si ≥ si+1 for any

i ∈ {1, 2, . . . ,m− 1} and s1 − s2 ≥ s2 − s3 ≥ . . . ≥ sm−1 − sm.

Definition 16. Given m ∈ N, R ∈ ∪m∈N L (Im)n, an SCF S ∈ F is called a

scoring function if S(R) = min{SW (R)}.

A scoring function is said to be self-selective relative to a set, A, containing

itself if, for any R ∈ ∪m∈N L (Im)n, there exists L ∈ L(A, R) such that S ∈

SW (L).

Proposition 3. 1. Given n ≥ 3, a concave scoring function S is not self-

selective relative to A = {S,Cq} for any q ∈ (0, 1].

2. Given n ≥ 5, a convex scoring function S is not self-selective relative

to A = {S,Cq} for any q ∈ (0, 1].
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Proof. First consider the case where s1 − s2 = s2 − s3 = . . . = sm−1 − sm

for any m ∈ N. Now let m = n + 1, and define R̃ ∈ L (Im)n as follows:

For the first n − 1 individual, let L(1, R̃i) = Im and, tR̃i(t + 1) for every

t ∈ {1, 2, ..,m− 1}. For the last individual, let L(2, R̃i) = Im, L(1, R̃i) = {1},

and tR̃i(t+ 1) for every t ∈ {2, 3, . . . ,m− 1}. Pictorially, R̃ is defined as:

R̃1 R̃2 · · · R̃n−1 R̃n

1 1 · · · 1 2

2 2 · · · 2 3

3 3 · · · 3 4

...
...

...
...

...

m− 1 m− 1 · · · m− 1 m

m m · · · m 1

For any q ∈ (0, 1], we have either CWq(R̃) = ∅ or 1 ∈ CWq(R̃). Thus,

Cq(R̃) = 1. On the other hand,
∑

i∈N 2i >
∑

i∈N ai for any a ∈ Im \ {2}.

Therefore, S(R̃) = 2. Thus, S(L) = Cq 6= S as |{i ∈ N |CqLiS}| = n − 1,

where L(A, R̃) = L. Hence, S is not self-selective relative to A = {S,Cq} for

any q ∈ (0, 1].

Now, consider the cases where we have at least one strict inequality be-

tween sj − sj+1 and sj+1 − sj+2 for some j ∈ {1, . . . ,m− 2}.

Let S be a concave scoring function. Set m = n and let R̃ be defined as

above. Then, for any q ∈ (0, 1], either CWq(R̃) = ∅, or 1 ∈ CWq(R̃). Thus,

Cq(R̃) = 1. Moreover, we have
∑

i∈N 2i >
∑

i∈N ai for any a ∈ Im \ {2}.

Hence, S(R̃) = 2. As |{i ∈ N |CqLiS}| = n− 1, where L(A, R̃) = L, S(L) =

Cq 6= S. Thus, a concave scoring function S is not self-selective relative to

A = {S,Cq} for any q ∈ (0, 1].

Now, consider a convex scoring function S. Take any m ∈ N. Define R′ ∈

L (Im)n as follows: For i ∈ {1, . . . , n−1
2
}, L(2, R

′i) = Im and L(1, R
′i) = {1}.

For i ∈ {n+1
2
, . . . , n}, L(1, R

′i) = Im and L(2, R
′i) = Im \ {1}.
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R
′1 . . . R

′ n−1
2 R

′ n+1
2 . . . R

′n

2 . . . 2 1 . . . 1

...
...

... 2 . . . 2

...
...

...
...

...
...

1 . . . 1
...

...
...

So, for any q ∈ (0, 1] we have Cq(R
′) = 1. If

∑
i∈N 2i >

∑
i∈N 1i holds

then S is not self-selective relative to A. This situation occurs if and only if

the following inequality holds:

(
n− 1

2
)(s2 − sm) > (s1 − s2)

Now, define R′′ ∈ L (Im)n as follows: For i ∈ {1, . . . , n−1
2
}, L(2, R

′i) = Im

and L(1, R
′i) = Im \ {2}. For i ∈ {n+1

2
, . . . , n}, L(a,R

′′i) = Im if a− i = 5−n
2

for some a ∈ Im, 1 is the second choice and 2 is the third choice of each

i ∈ {n+1
2
, . . . , n}.

R
′′1 . . . R

′′ n−1
2 R

′′ n+1
2 . . . R

′′n

2 . . . 2 3 . . . 3 + (n−1
2

)

1 . . . 1 1 . . . 1

...
...

... 2 . . . 2

...
...

...
...

...
...

Then, we have Cq(R
′′) = 1 for each q ∈ (0, 1]. Again, if

∑
i∈N 2i >

∑
i∈N 1i

holds then S is not self-selective relative to A. But this situation requires the

following inequality:

s1 − s2 > (
n+ 1

n− 1
)(s2 − s3)

Combining the above two inequalities imply that for n ≥ 5, a convex scoring

function S is not self-selective relative to A = {S,Cq} for any q ∈ (0, 1].

We say that a SCF F has degree −∞ if it is not self-selective relative to
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A = {F,Cq} for any q ∈ (0, 1]. So, we have an immediate corollary to the

above proposition:

Corrolary 4. Let N be a finite nonempty set of individuals.

1. For any n ≥ 3, a concave scoring function S has degree −∞.

2. For any n ≥ 5, a convex scoring function S has degree −∞.

Proof. By definition.

4.3 k-Plurality Functions and Majoritarian Com-

promise

Now, consider a different type of scoring rule, namely the k-plurality rule.

In this method, each individual gives exactly one point to each of the k-

alternatives which she likes best, and then k-plurality rule chooses the alter-

native which gets the most points. Given m ∈ N, the scoring vector of a

k-plurality rule, 1 ≤ k ≤ m − 12, assigns 1 to the first k-components and 0

to the rest, i.e. s = (1, . . . , 1, 0, . . . , 0). We denote the set of all k-plurality

winners by PWk(R) at each R ∈ ∪m∈N L (Im)n, and define an SCR Pk as a

k-plurality rule if it selects all k-plurality winners at each R ∈ ∪m∈N L (Im)n.

Definition 17. Given m ∈ N, R ∈ L (Im)n, an SCF Pk ∈ N is said to be a

k-plurality function if Pk(R) = min{PWk(R)}.

A k-plurality function is said to be self-selective relative to a set, A, con-

taining itself if, for any R ∈ ∪m∈N L (Im)n, there exists L ∈ L(A, R) such that

Pk ∈ PWk(L).

A k-plurality function is a convex scoring function for k = 1. Therefore,

from previous proposition, it is known that a 1-plurality function, P1, is not

2Given m ∈ N, k-plurality rule, when k = m, is trivially self-selective relative to any set
of test functions Ar = {Cq | q ∈ (0, 1]} with | Ar |≥ k − 1.
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self-selective relative to A = {P1, Cq} for any q ∈ (0, 1] whenever n ≥ 5. The

following remark gives a preference profile over a set of alternatives when

there are exactly 3 individuals such that P1 is not self-selective relative to

A = {P1, Cq} for any q ∈ (0, 1].

Remark 5. Let n = 3, and consider P1. Set m = 4 and define R ∈ L (Im)n as

follows:

R1 R2 R3

2 3 4

1 1 1

3 2 2

4 4 3

Clearly, for any q ∈ (0, 1], Cq(R) = 1. On the other hand we have

P1(R) = 2. So, Cq is top ranked by individuals 2 and 3, and P1 is top ranked

by individual 1 over the linear order profile L, where L(A, R) = {L}. So,

P1(L) = Cq implying that 1-plurality function is not self-selective relative to

A for any n ≥ 3.

Thus, a 1-plurality function has degree −∞ for n ≥ 3. However, if we

test Pk, for k > 1, against only one SCF, then Pk is not well-defined over

the preference profile on the set of SCFs since we only have two functions as

alternatives over the induced preference profile on the set of SCFs. Therefore,

for k > 1, the self-selectivity degree of a k-plurality function is not well-

defined. The following remark shows that whenever we test a k-plurality

function, k > 1, against any set of q-Condorcet functions, so that Pk is well-

defined over the induced preference profile on the set of SCFs, Pk is never self-

selective relative to the set of rival SCFs. Thus we need to test a k-plurality

function against any set of q-Condorcet functions with | {Cq | q ∈ (0, 1]} |≥ k.

Remark 6. Take any finite nonempty set of individuals N with n ≥ 3. Con-

sider any k-plurality function, Pk, for k ≥ 3. Take any Ar = {Cq | q ∈ (0, 1]}
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with | Ar |≥ k, and let A = {Pk} ∪ Ar. Set m = 4 + (k − 3)n, and de-

fine R ∈ L (Im)n as follows: For i ∈ {1, . . . , n−1
2
}, 2Ri3Ri4Ri(4 + i). For

i ∈ {n+1
2
, . . . , n− 1}, 1Ri2Ri4Ri(4 + i). For i = n, 3Ri1Ri2Ri(4 + i). Finally,

for each i ∈ N , [(4 + i) + tn]Ri[(4 + i) + (t + 1)n]. That is, we have the

following preference profile:

R1 . . . R
n−1
2 R

n+1
2 . . . Rn−1 Rn

2 . . . 2 1 . . . 1 3

3 . . . 3 2 . . . 2 1

4 . . . 4 4 . . . 4 2

5 . . . n+7
2

n+9
2

. . . n+ 3 n+ 4

n+ 5 . . . 3n+7
2

3n+9
2

. . . 2n+ 3 2n+ 4

...
...

...
...

...
...

...

So, for any q ∈ (0, 1], we have Cq(R) = 1. On the other hand, for any

k ≥ 3, Pk = 2. It is given that | Ar |≥ k. Thus, for any L ∈ L(A, R),

Pk(L) ∈ A \ {Pk} since | {i ∈ N | 1Ri2} |= n+1
2

. Hence, Pk is not self-

selective relative to A for k ≥ 3.

Let n = 3, and consider P2. Take any Ar as defined above with | Ar |≥ 2,

and let A = {P2} ∪ Ar. Set m = 3 and define R ∈ L (Im) as follows:

3R12R11, 1R22R23, and 1R32R33. Clearly Cq(R) = 1 for each q ∈ (0, 1],

however P2(R) = 2. So, for any L ∈ L(A, R), P2(L) ∈ A \ {P2}. Therefore,

P2 is not self-selective relative to A for n = 3. Now, let n ≥ 5, m = 3

and define R ∈ L (Im) as follows: For i ∈ {1, . . . , n−1
2
}, 2Ri3Ri1. For i ∈

{n+1
2
, . . . , n− 1}, 1Ri2Ri3. Finally, for i = n, 3Ri1Ri2.

R1 . . . R
n−1
2

2

3

1

R
n+1
2 . . . Rn−1

1

2

3

Rn

3

1

2
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Thus, we have P2(R) = 2 and, for each q ∈ (0, 1], Cq(R) = 1 implying that

P2(L) ∈ A \ {P2}. Hence, a 2-plurality function is not self-selective relative

to A.

As we have seen, in k-plurality rule, an alternative does not need to have

the majority of the votes to get chosen. Moreover, number k is exogenous for

each preference profile over the set of alternatives. The next SCR, majori-

tarian compromise3, basically differs from k-plurality rule within these two

situations. Firstly, in majoritarian compromise rule, an alternative needs to

have at least a majority of the votes to get chosen, which is more restrictive

than a plurality rule. Secondly, the number k is endogenously determined

for each preference profile over the set of alternatives, which is less restric-

tive than a plurality rule. We provide self-selectivity degree of majoritarian

compromise rule and conclude that it inherits almost the same self-selectivity

properties with any k-plurality rule.

We define a majoritarian compromise rule as follows 4: We start by exam-

ining the first row of the preference profile. If an alternative gets a majority

of votes, then this alternative is referred as a majoritarian compromise win-

ner. If there is no majoritarian compromise winner at the first row, we start

considering alternatives at the first two rows of the preference profile. If a

majority of the individuals prefers an alternative as either their first best

or second best, then that alternative is chosen by the majoritarian compro-

mise rule. If there is no majoritarian compromise winner in the first two

rows, then we move on to the third row and apply the same procedure. We

stop when an alternative receives a majority support. We denote the set of

all majoritarian compromise winners by MCW (R) at each preference profile

R ∈ ∪m∈N L (Im)n, and define an SCR MC as a majoritarian compromise rule

if it selects all majoritarian compromise winners at each R ∈ ∪m∈N L (Im).

For each a ∈MCW (R) at a given preference profile R ∈ ∪m∈N L (Im)n, we

3Introduced by Murat Sertel.
4Sanver [2009]
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denote the set of individuals supporting that alternative by Supp(a). Then,

we define the set of majoritarian compromise winners with highest support,

MCW ∗(R), by

MCW ∗(R) = {a ∈MCW (R) | ∀b ∈MCW (R): | Supp(a) |≥| Supp(b) |}

Definition 18. Given m ∈ N, R ∈ L (Im)n, an SCF MC is called a majori-

tarian compromise function if MC(R) = min{MCW ∗(R)}.

The majoritarian compromise function is said to be self-selective relative

to a set, A, containing itself if for any R ∈ ∪m∈N L (Im)n, there exists L ∈

L(A, R) such that MC ∈MCW ∗(L).

Proposition 4. Let N be a finite nonempty set of individuals with n = 3.

MC is self-selective relative to A = {MC,Cq} for every q ∈ (0, 1].

Proof. Suppose, on the contrary, that there exist m ∈ N, R ∈ L (Im)n such

that MC is not self-selective at R relative to A = {MC,Cq} for some q ∈

(0, 1]. We have either CWq(R) = ∅ or CWq(R) 6= ∅. First consider the

case where CWq(R) = ∅, so Cq(R) = 1. Since MC is not self-selective at

R relative to A, we must have MC(R) ∈ Im \ {1}, and also | {i ∈ N |

1RiMC(R)} |≥ 2. However, this contradicts with MC(R) ∈ Im \ {1}. Now,

consider the case where CWq(R) 6= ∅, and let Cq(R) = a. Then we must have

MC(R) ∈ Im\{a}, and | {i ∈ N | aRiMC(R)} |≥ 2 again contradicting with

MC(R) ∈ Im \ {a}. Hence, MC is self-selective relative to A = {MC,Cq}

for every q ∈ (0, 1] whenever n = 3.

The above proposition implies that for n = 3, the majoritarian compro-

mise function has degree 1. The following corollary shows the maximal set

of rival SCF such that majoritarian compromise funtcion is relatively self-

selective when n = 3.
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Corrolary 5. Let N be a finite set of individuals with n = 3. Ar = {Cq |

q ∈ (0, 1]} is the maximal set such that MC is self-selective relative to A =

{MC} ∪ Ar.

Proof. Suppose that there exist m ∈ N, R ∈ L (Im)n such that for every

L ∈ L(A, R) we have MC /∈ MCW (L). Thus for some q ∈ (0, 1] we must

have MC(R) 6= Cq(R) and also | {i ∈ N | CqRiMC(R)} |≥ 2,contradicting

with MC(R) ∈MCW (R).

Proposition 5. Let N be a finite nonempty set of individuals with n ≥ 5.

MC is not self-selective relative to A = {MC,Cq} for every q ∈ (0, 1].

Proof. Let m = 4 and define R ∈ L (Im) as follows: For i ∈ {1, . . . , n−1
2
},

2Ri3Ri1Ri4. For i ∈ {n+1
2
, . . . , n − 1}, 1Ri2Ri3Ri4. For i = n, 3Ri1Ri2Ri4.

So we have:

R1 . . . R
n−1
2

2

3

1

4

R
n+1
2 . . . Rn−1

1

2

3

4

Rn

3

1

2

4

Thus, Cq(R) = 1 for every q ∈ (0, 1] and MC(R) = 2. Hence, MC(L) =

Cq where L is the only preference profile over A induced by R.

Thus, by definition, for every n ≥ 5, the majoritarian compromise function

has degree −∞.
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CHAPTER 5

CONCLUSION

In this thesis, we localize the notion of self-selectivity. For this purpose,

we restrict the set of rival SCFs to particular singleton-valued refinements

of generalized Condorcet rules. First, we characterize the self-selectivity of

generalized Condorcet functions and, then, show that this family of SCFs has

some useful properties. Well-behaved pattern with respect to self-selectivity

exhibited by this family allows us to define the concept of self-selectivity

degree of SCFs. Combining the self-selectivity degree of SCFs and the ag-

gregation property of test SCFs enable us to find the maximal set of SCFs

relative to which an SCF is self-selective. Hence, we show that self-selectivity

degree can be used to compare strength of self-selectivity of SCFs.

We test self-selectivity of some family of SCFs and obtain non-dictatorial

self-selective SCFs. However, for a given society, these non-dictatorial self-

selective SCFs are equal to either a 1-Condorcet function or a 1
n
-Condorcet

function. Hence, except the generalized Condorcet functions, there is not a

continuous change in the self-selectivity degree of non-dictatorial SCFs that

we test. That is, we observe sharp changes in self-selectivity degrees within

some families of SCFs. However, we still do not know due to which properties

of these SCFs there exist such a change in self-selectivity degree. Thus, a full

characterization of self-selective SCFs with this restricted set of test SCFs
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may shed some light on this problem. On the other hand, in our study, we

only consider SCFs. However, allowing social choice rules to be set-valued

and defining the self-selectivity degree accordingly are yet to be dealt with.

Finally, SCCs enable us to use algebraic operations. Thus, the change in

self-selectivity degree under algebraic operations is an open problem.
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