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ABSTRACT

OPTIMAL TIMING OF AN ENERGY SAVING
TECHNOLOGY ADOPTION

HARMANKAYA, Mehmet Fatih

M.A., Department of Economics

Supervisor: Assist. Prof. Dr. Hüseyin Ça¼gr¬Sa¼glam

September 2011

In this thesis, we use two stage optimal control techniques to analyze the opti-

mal timing of energy saving technology adoptions. We assume that the physical

capital goods sector is relatively more energy intensive than consumption goods

sector. First, we solve a benchmark problem without exogenously growing en-

ergy saving technology frontier. In such a case, the economy sticks either to the

initial technology or immediately switches to a new technology, depending on

the growth rate advantage compared to the obsolescence and adjustment costs.

In the second step, we introduce exogenously growing energy saving technology

frontier. The anticipated level of the technology provides incentives to delay the

adoption and generates an interior switching time. Finally, we analyze numeri-

cally the e¤ects of the speed of adjustment to the new technology, growth rate

of technology, subjective time preference and planning horizon on the optimal

timing of technology adoption.

Keywords: Optimal Control, Technology Adoption, Energy Saving Technical

Progress, Embodiment

iii



ÖZET

ENERJ·I TASARRUFLU TEKNOLOJ·I
ADAPTASYONUNUN OPT·IMAL ZAMANLAMASI

HARMANKAYA, Mehmet Fatih

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Hüseyin Ça¼gr¬Sa¼glam

Eylül 2011

Bu tezde, enerji tasarru�u teknoloji adaptasyonunun optimal zamanlamas¬n¬analiz

etmek için iki aşamal¬optimal kontrol tekniklerini kullan¬yoruz. Fiziksel sermaye

mallar¬sektörünün, tüketim mallar¬sektörüne oranla enerjiye daha fazla ba¼g¬ml¬

oldu¼gunu varsay¬yoruz. Öncelikle, d¬̧ssal geli̧sen enerji tasarru�u teknoloji içer-

meyen temel bir model çözüyoruz. Böyle bir durumda, büyüme oran¬avantaj¬n¬n

eskime ve ayarlama maliyetleri kaŗs¬s¬ndaki durumuna ba¼gl¬ olarak ekonominin

başlang¬ç seviyesindeki teknolojide kald¬¼g¬n¬ya da daha yüksek enerji tasarrufu

sa¼glayan yeni teknolojiye başlang¬çta geçti¼gini gözlemliyoruz. ·Ikinci aşamada,

modele d¬̧ssal geli̧sen enerji tasarru�u teknoloji ekliyoruz. Böyle bir modelde,

öngörülen teknoloji seviyesi, adaptasyonun gecikmesini teşvik edip bu adaptasy-

onunun dahili zamanlarda gerçekleşmesini sa¼gl¬yor. Son olarak, yeni teknoloji

ayarlama h¬z¬n¬n, teknoloji geli̧sme oran¬n¬n, öznel zaman tercihinin ve planlama

süresinin teknoloji adaptasyonu optimal zamanlamas¬na etkilerini nümerik olarak

inceliyoruz.

Anahtar Kelimeler: Optimal Kontrol, Teknoloji Adaptasyonu, Enerji Tasarru�u

Teknik Geli̧sme, Somutlaşma
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CHAPTER 1

INTRODUCTION

Adoption of cleaner technologies has become one of the most important topics

in environment and growth �elds. This stems from the fact that due to scarcity and

the pollutant property of energy resources, consumers may shift their demands to

goods that are produced with less energy resources and �rms can switch technologies

which are using resources more e¢ ciently.

The adoption of cleaner technologies establishes the connection between tech-

nology switching and the environmental protection. Cunha-e-sa and Reis (2007)

study the optimal timing of adopting a cleaner technology and its e¤ects on the

growth rate of the economy in the context of an AK endogenous growth model.

They introduce environmental quality to their utility function which increases the

utility of the consumption. Boucekkine, Krawczyk and Vallee (2010) study the trade

o¤ between economic and environmental bene�ts where the agent can switch to a

cleaner technology that is economically ine¢ cient. They introduce pollution to the

utility which negatively e¤ects the total welfare. Di¤erently, this thesis examines

energy saving technology adoption which is not previously considered and includes

the adoption of a new technology in capital goods sector which uses energy more

e¢ ciently.

However, technology adoptions are costly due to the e¢ ciency losses and asso-

ciated costs of new technologies. Parente (1994) claims that, technology adoptions

induce e¢ ciency losses in human and physical capital. There exists a slow learning

process in which the economy is unable to produce at its best level. Moreover, when
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the economy switches to a new technology, the adoption costs occur via di¤erent

mechanisms. Such costs associated with technology adoption are called learning,

obsolescence and adjustment costs in the literature. When these are considered to-

gether with learning and other costs of new technologies, the following question may

emerge: Is it optimal to switch to the new technology or continue with the older

one? While trying to answer this question from an economic perspective, the timing

of this adoption is also taken into consideration.

The optimal timing of technology adoptions depends on the growth advantages,

the speed of learning and the obsolescence costs (see Boucekkine, Saglam and Vallee

(2004)). Real income, human capital, the trade between countries and the type of

government are among the other determinants of technology adoption according to

Comin and Hobjin (2003) which includes their empirical analysis on cross-country

technology adoption in the time period from 1788 to 2001. We investigate the e¤ects

of some of these determinants on the optimal switching time.

Boucekkine, Saglam and Vallee (2004) studies various adoption problems in the

optimal growth framework. They study the optimal timing of switching to new tech-

nologies with and without learning behavior. Two stage optimal control techniques

are used to determine the switching time. When learning behavior does not exist,

the solution will be immediate or never adoption. However, when it is introduced,

the economy will switch immediately or choose the delay option. Saglam (2010) also

studies the optimal pattern of technology adoption with multiple switches instead

of a single switch. They introduce technology-speci�c adjustment cost on the de-

preciation parameter to explain the loss of expertise caused by newer technologies.

We simply consider the adjustment cost of the new technology similar to Saglam

(2010).

The usage of energy resources have been extensively analyzed in the optimal

growth literature. Most of these analyses are based on the assumption that phys-

ical capital and consumption good use the same technology in production. This

assumption implies that the energy intensities of these goods are same. However,
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as Perez-Barahona (2007) states, physical capital accumulation usually involves the

transformation of raw materials into iron, steel and non-ferrous metals. Transport

and storage of goods are also included in physical capital whereas consumption good

sector is more related to food, clothes and construction. Azamahoau et al. (2006)

shows that energy intensities of physical capital goods are much more higher than

consumption goods. They �nd that the ratio between energy consumption and the

value added is 0.809 for iron and steel, 0.85 for storage and transport whereas 0.134

in food and tobacco, 0.082 in textile production. Perez-Barahona (2007) uses a type

of setting where physical capital accumulation is more energy intensive than con-

sumption good. They consider a general equilibrium model consisting of �nal good,

physical capital and resource extraction sectors. Within these sectors, they study

the implications of assuming di¤erent technologies for physical capital accumulation

and consumption.

In this thesis, we use a simple optimal growth model to solve the technology

adoption problems in continuous time. Technological progress is assumed to be

embodied in capital good production, speci�cally in energy usage. In addition to

switching to the new technology, our problem involves obsolescence costs and learn-

ing costs integrated in depreciation term. The economy starts with a given initial

technological menu and level of embodied technical change in energy saving tech-

nology. New technological menu is also available starting from the beginning of the

planning horizon. The agent may switch to the new technology or continue to use

the current one at any instant of the time. However, new technology is costly as

more embodiment in capital sector, speci�cally in energy sector, implies a decrease

in the relative price of capital. This decrease induces a rise in the level of resources

used in investment which drops the consumption level. The welfare cost of this drop

is referred to obsolescence costs as stated in Saglam (2010). In addition to these ob-

solescence costs, switching to the new technology induces accelerated erosion e¤ect

on physical capital which can be considered as the learning cost of new technology.

The loss of expertise after switching is expressed by using associating accelerated
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depreciation to the new technology. We want to examine under which conditions

and when, the economy would switch to a more e¢ cient energy saving technical

progress knowing the obsolescence and learning costs of the switching.

We consider a simple AK type production function in consumption good and

Cobb-Douglas type function in capital good sector. Due to AK production function,

long term growth is no longer exogenous. Boucekkine et al. (2004) assume that

in the new technology case, disembodied technological progress is lower in order

to represent the loss of expertise after switching. Di¤erently, we introduce costs

of the new technology in the depreciation parameter. In our benchmark model, we

assume that the higher level of embodied technical progress is available with a higher

depreciation rate because of learning costs. In the extended model, we assume that

there exists an anticipated technology adoption and time-varying embodied energy

saving technological progress.

In the capital good sector, we consider a capital accumulation rule similar to

Perez-Barrahona (2007) which implies that energy intensity of capital good is higher

than consumption good. In contrast with Perez-Barrahona (2007), we do not in-

clude the extraction sector of energy resource. Instead, energy is assumed to be

purchased directly with a given cost function in order to simplify the model. We

are able to derive the paths followed by the decision variables analytically which

allows us to use two-stage optimal control techniques proposed by Tomiyama and

Rossana (1989). By using this approach, we can generate three possible decisions

related to optimal timing: immediate adoption, technological sclerosis, i.e., sticking

to the initial technology through the planning horizon implying corner solutions and

delayed adoption as an interior solution.

The organization of the paper is as follows. In Chapter 2, the benchmark model

will be introduced and solved by using two-stage optimal control technique for both

�nite and in�nite horizon. The procedure of the two-stage approach and how it

works will also be presented. In Chapter 3, we will extend our model by allowing the

energy saving technology frontier level to increase throughout the time. We apply

4



same procedure as benchmark case in order to reach optimal timing of adoption.

However, as in many optimal timing problems, we are unable to reach open form

analytic solutions. Thus, in Chapter 4, numerical analysis and comparative statics

for the parameters of the will take place. Finally, Chapter 5 concludes the paper.

5



CHAPTER 2

THE BENCHMARK MODEL

2.1 The Model

In this section, we consider an economy inhabited by a representative agent who

deals with the problem of technology adoption which tries to maximize the following

inter-temporal utility function:

TZ
0

u(C(t))e��tdt

where C is the aggregate consumption and u(:) is assumed to be increasing and

concave. We do not analyze any labor dynamics throughout the paper, so population

is assumed to be normalized to one and there is no population growth. Time horizon

is taken as �nite1 in order to illustrate the sensitivity of optimal adoption timing to

the optimization horizon and � denotes the subjective time preference.

For the consumption good sector, we use AK technology which uses physical

capital as only input.

Y (t) = A(t)K(t) (1)

where A denotes marginal productivity of capital and K denotes physical capital

used to produce consumption good. The �nal good is either consumed or invested

1In�nite time horizon is considered separately in subsection 2.3
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in physical capital or used for purchasing energy, which is used in production of

capital good, satisfying the budget constraint:

Y (t) = C(t) + I(t) + f(R(t)) (2)

where I and R denotes investment and energy usage respectively and f is a convex

cost function of energy.

Energy saving technological progress is special for our model. Increasing the

e¢ ciency of energy usage is the fundamental aim of the problem. By improving

energy e¢ ciency, same level of capital good can be produced by low level of energy.

The energy intensity of physical capital is higher with respect to the consumption

good. To imply this intensity, we assume that physical capital accumulation is a

function of energy and investment.2 Energy is purchased directly with a given cost

function. The technology for physical capital uses Cobb-Douglas function with the

following accumulation rule:

:

K(t) = (q(t)R(t))�I(t)1�� � �(t)K(t)

Here, q(t) denotes the energy saving technological progress, which is assumed to be

constant for this section, �(t) denotes the depreciation function and K(0) = K0 > 0

is taken as given. Accordingly, we assume that the energy and the investment are

substitutes in physical capital production. Energy is purchased at a price of p

relative to the consumption good to be used in capital good production.

There are two technological menus for the economy. The economy starts with

(�1; q1) and another option (�2; q2) is available starting from t = 0 where q2 > q1

and �2 > �1. The economy can switch to a new technological regime with a more

e¢ cient energy usage in capital production at any instant of time. In contrast to

increase in A the rise in q will only a¤ect the capital goods. This rise will decrease

the relative price of physical capital which induces a drop in consumption which

2See Perez-Barrahona (2007)
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is referred as obsolescence cost. Moreover, switching to a more e¢ cient energy

saving technology incurs a loss in expertise expressed as an increased depreciation.

Switching to a new technology induces accelerated erosion in physical capital and a

slow adjustment process for reaching the best productivity level of the technology.

Due to this erosion e¤ect the depreciation function after switching is composed of

two parts including the technology speci�c adjustment cost of the adoption. The

second part is eroded with the speed of � as time passes. Put di¤erently, � can be

expressed as the speed of learning the usage of the new technology. More precisely,

we have:

�2(t) = � + �e
��(t�t1) 8t 2 [t1; T ] (3)

where � and � are positive parameters and adjustment costs are eliminated with a

speed measured by the parameter, �:

Now, assume that the economy switches to a new technology regime at a date

t1. The state equation of capital di¤ers after and before t1 due to the technological

menu change. Before the adoption, i.e., 0 � t < t1; the evolution of physical capital

can be written as:

:

K(t) = (q1R(t))
�I(t)1�� � �1(t)K(t) (4)

After the adoption, i.e., t1 � t < T; the evolution of capital is:

:

K(t) = (q2R(t))
�I(t)1�� � �2(t)K(t) (5)

where �1(t) = � and �2(t) is given as in equation (3). Note that, there is a trade

o¤ between two consecutive regimes. The productivity parameter of energy, q is

higher in new technology regime, however, as the depreciation rate increases in

the switching time, the capital accumulation is negatively e¤ected. To solve the

problem, we can move to the two stage optimal control approach.
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2.2 Two Stage Optimal Control Approach

Our optimal control problem can be written as

max
R;C;t1

TZ
0

u(C(t))e��tdt

subject to the constraints (1); (2); (4) and (5) and given K0 > 0. Due to its dynamic

structure, the problem can be rewritten as:

U(C; t1) =

t1Z
0

u(C(t))e��tdt+

TZ
t1

u(C(t))e��tdt

Here, t1 2 [0; T ] denotes the optimal switching time to new technologic regime.

Since, two stage optimal control technique is well suited to our problem, we use this

approach to �nd the value of the optimal t1. This approach needs to divide the

problem into two stages and operates in the following way:

2.2.1 The Second Stage Problem

We �rst assume that switching realizes at t1 and the initial capital stock at t1 is

given, namely K(t1) = K1. For this stage we use logarithmic utility function and

try to maximize:

U2(K1; t1) =

TZ
t1

ln(C(t))e��tdt

subject to the state equation (5) and free K(T ). In order to simplify the model we

take linear cost function for energy. The corresponding Hamiltonian can be de�ned

as:

H2 = e
��t ln(C(t)) + �2(t)[(q2R(t))

�(A(t)K(t)� C(t)� pR(t))1�� � �2(t)K(t)]

9



To simplify notation, we will not use time index after this point unless it is

necessary. First order conditions can be written as:

H2
C =

e��t

C
� �2[(1� �)(q2R)�(AK � C � pR)��] = 0;

H2
R = �2[�q2(q2R)

��1(AK � C � pR)1�� � p(1� �)(q2R)�(AK � C � pR)��] = 0;

H2
K = �2

�
(1� �)A(q2R)�(AK � C � pR)�� � �2

�
= �

�
�2

where H2
C , H

2
R and H

2
K are the �rst order conditions with respect to consumption,

energy and capital respectively and K1 is given. By using �rst order condition for

energy usage we reach:

R(t) =
�

p
AK(t)� C(t)

for every t 2 [t1; T ]. Replacing this value on the �rst order condition for consumption

we get the value of co-state variable as:

�2(t) =
e��t

C(t)
(1� �)��1( p

�q2
)�

Using this equation with the �rst order condition for physical capital, we have:

�
C(t)

C(t)
=

A

(1� �)��1( p
�q2
)�
� �2 � �

From this equation we reach the paths followed by consumption, capital and co-state

variable.

C(t) = a1e
At(1��)1��( p

q2�
)��+ e�(t+t1)��

�
�t(�+�)

where a1 is the constant of integration which is unknown.
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K(t) =
1

�
e
�A(t1�t(�1+�))(1��)�

�
p
q2�

���
+
(�1+e(�t+t1)�)�

�
�t1��t(�+�)(1� �)���

p

q2�

���
[a1e

At1(1��)�
�

p
q2�

���
+ �
�
�
et� � et1�

�
(�1 + �)

+e
t�+t1

�
A(1��)��

�
p
q2�

���
�+�+�

�
K1(1� �)�

�
p

q2�

���
�];

�2(t) =
e
�At1(1��)1��( p

q2�
)��+t�� e(�t+t1)��

� (1� �)��1 ( p
q2�
)�

a1
:

By using the limit condition for the economy, lim
t!T
�2(t)K(t) = 0, we can reach

the value of a1 as:

a1 =
e
� �
�
+T�+t1

�
�A(1��)1��( p

q2�
)��+�+�

�
K1(1� �)�

�
p
q2�

��
�

eT� � et1� :

By incorporating these values into the integration, we get the value for the

optimal welfare in the second stage as U�2 (K1; t1) which is twice di¤erentiable both

with respect to K1 and t1.

2.2.2 The First Stage Problem

After solving the second stage problem, we now turn to the original problem and

rewrite it as:

max
C;R;t1

U(C; t1) =

t1Z
0

u(C(t))e��tdt+ U�2 (K1; t1)

subject to the constraint (4) with givenK0 and freeK1 values. To solve this problem,

by using Pontryagin maximum principle and taking K1 and t1 as �xed, we can write

corresponding Hamiltonian as:

H1 = e
��t ln(C(t)) + �1(t)[(q1R(t))

�(A(t)K(t)� C(t)� pR(t))1�� � �1K(t)]

11



and get the paths for consumption, capital and co-state variables as follows:

C(t) = a0e
At(1��)1��( p

q1�
)���t(�+�)

where a0 is the constant of integration which is unknown.

K(t) =
1

�
e
�t
�
�A(1��)1��

�
p
q1�

����
(1� �)��

�
p

q1�

���
�
a0
�
et� � 1

�
(�1 + �) + et�K0(1� �)�

�
p

q1�

��
�

�
;

�1(t) =
e
t1
�
(1��)1��( p

q1�
)��+�

�
(1� �)��1 ( p

q1�
)�

a0
:

By using the continuity condition �2(t�1) = �1(t
�
1) for co-state variable at t

�
1 we �nd

a0 as:

a0 =
e
T�+t1

�
�A(1��)1��( p

q1�
)��+�+�

�
K1(1� �)�1+�

�
p
q1�

��
�

eT� � et1� :

and by using the continuity condition for capital stock we solve for K1:

K1 =

e�t1(�+�)
�
�et1

�
A(1��)1��( p

q1�
)��+�

�
+ e

At1(1��)1��( p
q1�

)��+T�

�
K0

eT� � 1 :

2.2.3 Value of the Optimal t1

Since t1 exists in the one of the state equation, namely in equation (5), we need to

satisfy the following equations in order to have the interior solution:

@U�2 (K1; t1)

@t1
= H�

1 (K1; t1) +

t1Z
0

@H�
1

@t1
dt

This equation is the same as in Tomiyama and Rossana (1989):
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H�
2 (K1; t

�
1)�H�

1 (K1; t
�
1) =

t1Z
0

@H�
1

@t1
dt+

TZ
t1

@H�
2

@t1
dt (6)

In this case, the su¢ cient condition for maximum can be written as:

@H�
2 (K1; t1)

@t1
� @H�

1 (K1; t1)

@t1
<

@

@t1

24 t1Z
0

@H�
1

@t1
dt+

TZ
t1

@H�
2

@t1
dt

35
Corner solutions may also arise in this situation:

(i) Immediate switching: t�1 = 0 if

H�
1 (K1; t

�
1)�H�

2 (K1; t
�
1) �

t�1Z
0

@H�
1

@t1
dt+

TZ
t�1

@H�
2

@t1
dt when t�1 = 0 (7)

(ii) Technological sclerosis: The economy will never switch to new technology

on [0; T ] if

H�
1 (K1; t

�
1)�H�

2 (K1; t
�
1) �

t�1Z
0

@H�
1

@t1
dt+

TZ
t�1

@H�
2

@t1
dt when t�1 = T (8)

Using the �rst and the second stage problems together, we characterize the con-

sumption, capital, energy and co-state variables paths for given K0 and t1. Finally,

in order to determine optimal t1, we use the equation (6) and get the equation that

optimal t1 should satisfy. However, for this case we have no interior solution for t1

such that it belongs to the interval (0; T ). As stated above, corner solutions which

are immediate switching or technological sclerosis may arise in this case. If the ex-

pression (7) holds at t1 = 0, then the economy will switch immediately to the new

technology. Otherwise, the expression (8) holds at t1 = T , the technology will never

switch to the newer one, i.e. technological sclerosis occurs.

Note that, there is no incentive to switch to the new technological regime in the

time interval (0; T ). If the associated costs are to be eliminated su¢ ciently to in-

crease the total welfare during the planning horizon, the option of delaying adoption

cannot be optimal. In this case, the economy switches to the new technology imme-
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diately. Otherwise, if the costs cannot be eliminated su¢ ciently and total welfare

is less than no switching case, the economy will never switch to new technology. In

this type of model, there is no delaying option of new regime, i.e., delaying adoption

will have no bene�t.

The increase in the rate of the energy saving technological progress is associated

with an increase in the depreciation rate of the physical capital, which is decreasing

with the time up to the initial level. The change in this rate is combined with the

costs induced by the loss in expertise, namely learning and obsolescence costs. If the

economy switches to new regime and resulting improvement in e¢ ciency is enough

to compensate the loss in expertise, the economy will face a higher growth rate and

will not delay the adoption.

2.3 The In�nite Horizon Case

In this section, we study the in�nite horizon extension of our benchmark model,

i.e., T = 1. For this case, we follow the same steps as in the solution of the

benchmark model. The optimization horizon enters to the model in the second

stage optimization, so-called new technology problem. Now the limit conditions are

replaced by the transversality conditions as when T goes to in�nity:

lim
t!1

��2(t)K
�(t) = 0

As one can easily check this is the unique departure from the benchmark �nite

horizon model. In the new technology problem, on [t1;1), paths for consumption,

capital and co-state variable remains same as in �nite case except for the coe¢ cient

a1. In this case, a1 can be written as:

a1 = e
� �
�
+t1

�
�A(1��)1��( p

q2�
)��+�+�

�
K1(1� �)��1

�
p

q2�

��
�:

In the old technology problem, the situation is similar to the new technology

problem. On [0; t1); paths for consumption, capital and co-state variable remains
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same as in �nite case except for the coe¢ cient a0. By using continuity of co-state

variable at t1, we get a0 as:

a0 = e
t1
�
�A(1��)1��( p

q1�
)��+�+�

�
K1(1� �)��1

�
p

q1�

��
�:

Also, using the continuity for the physical capital leads

K1 = e
At1(1��)1��( p

q1�
)��+�t1(�+�)K0:

Now, following the same steps as in the �nite case and by using equation (6) for

our problem, we reach the equation that t1 should satisfy. For this case, we have no

interior solution for t1 such that it belongs to the interval (0;1). Corner solutions

which are immediate switching or technological sclerosis also arise in this case. If

the expression (7) holds at t1 = 0, then the economy will switch immediately to the

new technology. Otherwise, the expression (8) holds at t1 =1, the technology will

never switch to the newer one, i.e., the technological sclerosis occurs. Similar to the

previous case, there is no incentive to delay the adoption of the new technology.

In this case, we consider the energy saving technology to jump the given constant

level. As a result, we �nd that there is no interior switching option for this setup of

the model. Accordingly, we introduce exogenously growing energy saving technology

in the next section which guarantees interior solution for optimal timing.
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CHAPTER 3

EXOGENOUSLY GROWING ENERGY

SAVING TECHNOLOGY FRONTIER

In the benchmark model, we assumed that the technology is constant at switching

time. However, the energy speci�c technology level is continually increasing along

with time. This situation leads the representative agent to wait for a jump to a

higher level of technology by delaying the adoption. In our model, the agent knows

the growth in the technology will continue till the end of the planning horizon and

make decisions accordingly. At t = 0, the level of the energy saving technological

progress is anticipated at any instant of the optimization period.

We consider a linearly increasing technology with a speed of 
. The available

level of energy saving technology at time t is given by q(t) = 1+ 
t.3 At any

t1, the economy may switch to a more e¢ cient energy using technology e¤ecting

the e¢ ciency of capital goods sector positively, where the adopted energy saving

technology level will be q(t1) = 1+ 
t1. As explained in the benchmark model,

this rise in q will only a¤ect the capital goods, in contrast to an increase in A.

The rise will induce a drop in consumption which is referred as obsolescence cost.

Moreover, switching to a more e¢ cient energy saving technology incurs a loss in

expertise which can be expressed as an accelerated depreciation. As a result, the

3See Dogan, Le Van and Saglam (2011). Moreover, exponentially growing technology case,
namely q(t) = e
t, may also be examined.
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accumulation rule for the stock of capital for the second stage is:

:

K(t) = [(1 + 
t1)R(t)]
�I(t)1�� � �2(t)K(t)

All other assumptions, equations and the parameters remain as in the benchmark

model. We will follow exactly the same steps as in the benchmark model. As

de�ned in the two stage optimal control approach, we start by de�ning corresponding

Hamiltonian for the second stage as:

H2 = e
��t ln(C(t))+�2(t)[((1+
t1)(R(t))

�(A(t)K(t)�C(t)�pR(t))1����2(t)K(t)]

After writing the �rst order conditions and making necessary calculations in-

cluding algebraic operations similar to the benchmark case, we get the paths for

consumption, capital and costate variable for second stage are as follows:

C(t) = a1e
At(1��)1��( p

�+t1�

)��+ e�(t�t1)��

�
�t(�+�);

K(t) =
1

�
e
�A(t1�t(�1+�))(1��)��

�
p

�+t1�


���
+
(�1+e(�t+t1)�)�

�
�t1��t(�+�)(1� �)���

p

�+ t1�


���
[a1e

At1(1��)��
�

p
�+t1�


���
+ �
�
�
et� � et1�

�
(�1 + �)

+e
t�+t1

�
A(1��)��

�
p

�+t1�


���
�+�+�

�
K1(1� �)�

�
p

�+ t1�


���
�];

�2(t) =
e
�At1(1��)1��( p

�+t1�

)��+t�� e(�t+t1)��

� (1� �)��1 ( p
�+t1�


)�

a1

By using the limit condition for the economy, lim
t!T
�2(t)K(t) = 0, we can reach

the value of a1 as:
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a1 =
e
� �
�
+T�+t1

�
�A(1��)1��( p

�+t1�

)��+�+�

�
K1(1� �)�1+�

�
p

�+t1�


��
�

eT� � et1�

Again solving the �rst stage problem similar to the benchmark case by taking

q(0) = 1 and t1 and K1 �xed, we solve the �rst stage problem by using Pontryagin

maximum principle and write the �rst order conditions. By using these conditions

we get the results for the �rst stage:

C(t) = a0e
At(1��)1��( p

�
)���t(�+�)

K(t) =
1

�
e
�t
�
�A(1��)1��( p�)

���
(1� �)��

� p
�

���
h
a0
�
et� � 1

�
(�1 + �) + et�K0(1� �)�

� p
�

��
�
i

�1(t) =
et1((1��)

1��( p
�
)��+�) (1� �)��1 ( p

�
)�

a0

After making heavy algebraic calculations, we will solve for optimal t1 by means

of the continuity and the optimality conditions. The continuity condition states

that the co-state variable for �rst stage and second stage at the adoption time will

yield the same value, i.e. �1 j
t=t1

(t) = �2 j
t=t1

(t). By using this continuity condition,

one can �nd a0 as:

a0 =
eT�+t1(�A(1��)

1��( p
�
)��+�+�)K1(1� �)�1+�

�
p
�

��
�

eT� � et1�

Also, the capital stock should have same value at t1 for both stages which yield:
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K1 =
e�t1(�+�)

�
�et1(A(1��)1��(

p
�
)��+�) + eAt1(1��)

1��( p
�
)��+T�

�
K0

eT� � 1

Now we can �nd the optimal value of t1. To achieve this, we need to apply

the optimality condition stated by Tomiyama and Rossana (1989) since our state

equation is dependent to t1. Solving this for our problem leads optimal value of t1

should satisfy following equation:

e�t1�(ln [(t1
)
�] +

1

�(� + �)
e�T (�+�)(�et1(�+�)��+ eT�+t1��
 (� + �) +

eT (�+�)(��� �
 (� + �)))� 1

(1 + t1
)�2
e�T (�+2�) (1� �)��AeT (�+�) (�1 + �)

(

�
p

(�+ �t1
)

���
(eT� (��
 + �+ t1
�)� et1� (��
 + �+ (t1 � T�+ t1�)
�)))

+
� p
�

���
(1 + t1
)(e

T� � et1�)�)) = 0

Since this equation cannot be solved analytically for t1, thus we make numerical

analysis in the next section.
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CHAPTER 4

NUMERICAL ANALYSIS

In this section, we perform the numerical analysis and comparative statics. We

analyze how the trade o¤between technical progress and adjustment costs, i.e., how

the optimal value of t1, responds to an exogenous changes of the parameters of the

model. For the benchmark parametrization, we start by taking parameters as given

in Saglam (2010). We take � = 0:1 when there is no adjustment in the depreciation.

This value is consistent with the literature as Nadiri and Prucha (1996) estimates

this rate between 0.059 and 0.12. Moreover, relative price of the energy is taken

as p = 1:5 to make the comparative analysis. We should also take the parameter

� carefully in order not to make depreciation rate exceed the necessary level for

interior switching or not to block the accumulation of capital.

As underlined earlier sections, productivity may not be high at the early stages

of the implementation of the new technology. There are many studies examining this

ine¢ ciency such as Bahk and Gort (1993). They use panel data from 15 di¤erent

industries and estimate that adjustment to new technology is realized within 6 years.

Consistent with these learning-by-doing models, we assume that adjustment cost is

eliminated with a speed of � = 0:7. The other parameters are taken as in Table 1.

Table 1. Values of the benchmark parametrization


 � � � � A K0 T

0:02 0:3 0:03 0:7 0:2 2 1 30

While �nding optimal technology adoption timing, it should be examined that

this value maximizes the total welfare. For this reason we calculate the total welfare

20



as a function of t1 by taking the given parameters. Our results show that the

value that we �nd is optimal and maximizes the total welfare. When we take the

parameters above, we �nd optimal t1 as 11:35 with a total welfare of 167:61 which

is its maximum value and the point where the second derivative is negative.

After �nding the optimal value of t1 and calculating optimal welfare we want to

see the e¤ects of the changes in the parameters. In table 2, the e¤ect of changes in

the technological growth parameter, 
; in table 3, the e¤ect of changes in price of

the energy, p; in table 4, the e¤ect of changes in adjustment parameter, �; in table

5, the e¤ect of changes in the time preference parameter, �; in table 6, the e¤ect of

changes in planning horizon, T ; in table 7, the e¤ect of changes in the Cobb-Douglas

parameter for energy usage, � are presented.

As expected, the increase in the growth rate of energy saving technical progress

accelerates the adoption of the new technology. The associated increase in the

growth rate advantage reduces the time required for the growth rate advantage to

dominate the costs of obsolescence and accelerated depreciation. With the higher

values of 
, instead of waiting switching, one may switch to new technology regime

before and the total welfare increases with the increase in 
.

Table 2. The e¤ect of changes in the technological growth parameter


 t�1 total welfare

0:01 15:23 165:55

0:02 11:35 167:61

0:03 10:27 169:76

0:04 9:71 171:86

0:05 9:35 173:89

The rise in the relative price of energy leads the decrease in the usage of energy

in capital good production. In this case, delaying adoption of the new technology

will increase the growth rate advantage of the adoption. Thus, when we increase the

linear price of the energy, optimal value of t1 increases, however when it is compared
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to 
, it has less e¤ect on the optimal timing. Moreover, as one can easily predict,

total welfare is decreasing with the increase in price.

Table 3. The e¤ect of changes in the energy price

p t�1 total welfare

1 11:01 197:32

1:5 11:35 167:61

2 11:63 148:69

2:5 11:88 135:37

3 12:10 125:12

An increase in � accelerates the adjustment to the new technology so that increase

in � will decrease the adoption time. The rise in � will eliminate the e¤ect of erosion

in capital faster. However, for su¢ ciently small values of �, the agent would never

switch to new technology and face a technologic sclerosis. Change in � does not

have signi�cant e¤ects on the total welfare.

Table 4. The e¤ect of changes in the adjustment parameter

� t�1 total welfare

0:1 no switch 165:41

0:3 16:84 165:41

0:5 12:62 166:75

0:7 11:35 167:61

0:9 10:71 168:16

1:1 10:31 168:54

The e¤ect of the time discounting parameter on the pattern of technology adop-

tions can be seen in Table 5. It is observed that if the impatience rate is higher,

the economy tends to delay the adoption. As � increases, the delay in the adoption

of the more e¢ cient technology occurs due to the obsolescence costs. With our

parameter setting, as � increases, the advantage of growth rate of new technology

is dominated by the obsolescence costs.
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Table 5. The e¤ect of changes in the subjective time preference

� t�1 total welfare

0:01 11:29 252:54

0:02 11:31 205:26

0:03 11:35 167:61

0:04 11:41 137:52

0:05 11:48 113:41

Now, we consider the optimal pattern of technology adoption shifts in response

to the changes in the planning horizon. It is clear that longer planning horizons

provides an incentive to delay the adoption to have more from the growth rate

advantage. As it is proven in Boucekkine et al. (2004), longer planning horizons

lead delays in the adoption time of new technology. On the other hand, if the

horizon is short enough, the agent would stick to the initial technology and end up

with technological sclerosis.

Table 6. The e¤ectof changes in the planning horizon

T t�1 total welfare

10 no switch 21:82

30 11:35 167:61

50 15:38 354:16

70 19:13 518:10

1 30:29 891:46

The e¤ect of changes in the share of the energy in capital good production is

presented in Table 7. If the share of energy gets higher, optimal adoption time

decreases which enables the economy to utilize more from the e¢ cient energy usage.
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Table 7. The e¤ect of changes in the share of energy in capital good production

� t�1 total welfare

0:2 12:28 203:25

0:3 11:35 167:61

0:4 10:87 146:85

0:5 10:55 136:15

0:6 10:30 133:63

Finally, the initial level of capital stock, K0 and the level of disembodied tech-

nology, A do not change the optimal adoption timing whereas any increase in initial

capital stock level yields a greater level of total welfare certainly. In addition to

these comparative statics, we observed that the main factor that a¤ects the adop-

tion is the obsolescence cost and adjustment cost due to loss in expertise caused

by the embodied technological change. The gain from the rate of this change is

associated with a reduction in the price of energy, also in capital, so that more

resources are supplied to capital production and consumption level drops. If the

adoption is delayed too much, the obsolescence cost gets higher and more drop in

consumption is realized. Therefore, it is not optimal to devote more time for waiting

later technologies in order to utilize the advantages of newer technology.
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CHAPTER 5

CONCLUSION

In this study, we have applied two stage optimal control techniques to solve the

optimal adoption problem in a model including energy usage and endogenous de-

preciation. We have �rst solved a benchmark model without exogenously growing

energy saving technology. To do so, we derived necessary conditions of optimality

for two stage optimal control problems in which the switching time appears in the

state equation. In this case, delaying the adoption is never optimal. If the growth

advantage of the technology adoption is higher than the obsolescence costs and ad-

justment costs associated with the depreciation, the economy switches immediately;

otherwise, it sticks to the initial technology and technologic sclerosis occurs.

In the second step, we have introduced exogenously growing energy saving tech-

nology to the benchmark model. We stated the optimality conditions in this setup

and reached the equations that value of the optimal timing should satisfy. Although,

we cannot derive the open form analytical optimal adoption timing, we showed nu-

merically that interior solution for optimal timing is attained. We also provided

numerically the e¤ects of the planning horizon, growth rate of technology, discount-

ing parameter, speed of adjustment, share of energy in capital good production

and initial level of capital stock on the optimal pattern of the technology adoption.

We �nd that increase in speed of adjustment decreases the optimal adoption time.

Moreover, any technology growth rate increase also decreases this time. However,
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increasing the planning horizon of the model delays the adoption to get more bene�ts

from increasing technology frontier.

Further extensions could be considered by applying multi-stage optimal control

which allow technology switches. Also, energy sector could be included covering

extraction processes and stock levels. Moreover, the damages and the harmful e¤ects

of pollutant energy resources could be added to the analysis. Finally, by increasing

the number of agents, the interactions among agents could be analyzed..
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