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ABSTRACT 

 

ANALYSIS OF GSTM1, GSTT1, GSTP1, AND TP53 POLYMORPHISMS AS 

GENETIC RISK FACTORS FOR BLADDER CANCER IN THE TURKISH 

POPULATION 

 

Gökçe Altay Törüner 

Ph.D in Molecular Biology and Genetics 

Supervisor: Assoc. Prof. Tayfun Özçelik 

September 2001, 93 pages 

 

The effect of the GSTM1 and GSTT1 null genotypes, the GSTP1 Ile105Val, and TP53 

Arg72Pro polymorphism on bladder cancer susceptibility was investigated in a case control 

study of 121 bladder cancer patients, and 121 age-sex matched controls in the Turkish 

population.  The adjusted odds ratio (for age, sex, and smoking status) for the GSTM1 null 

genotype is 1.94 (95% CI 1.15- 3.26) and for the GSTP1 105 Ile/Val or Val/Val genotypes is 

1.75 (95% CI 1.03- 2.99).  GSTT1, and TP53 loci was not shown to be associated with 

bladder cancer.  Combination of the two high risk genotypes, GSTM1 null and GSTP1 105 

Ile/Val or Val/Val, revealed that the risk increases by 3.91 times (95% CI 1.88-8.13) when 

compared with the combination of the low risk genotypes of these loci.  In individuals with a 

combined risk of cigarette smoking and the GSTM1 null genotype, bladder cancer risk is   

2.81 (95% CI 1.23-6.35) relative to persons who do not smoke and carry the GSTM1 present 

genotype.  The same risk for the GSTP1 105 Ile/Val or Val/Val genotypes is 2.38 (95% CI 

1.12-4.95).  These findings support the role for the GSTM1 null and the GSTP1 105 Ile/Val or 

Val/Val genotypes in the development of bladder cancer.  Furthermore, gene-gene (GSTM1- 

GSTP1) and gene-environment (GSTM1-smoking, GSTP1-smoking) interactions increase this 

risk substantially.  
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ÖZET 

 

GSTM1, GSTT1, GSTP1, AND TP53 GEN POLİMORFİZMLERİNİN TÜRK 

TOPLUMUNDA MESANE KANSERİ İÇİN GENETİK RİSK FAKTÖRÜ OLARAK 

İNCELENMESİ 

 

Gökçe Altay Törüner 

Moleküler Biyoloji ve Genetik Doktorası 

Tez Yöneticisi: Doç. Dr. Tayfun Özçelik 

Eylül 2001, 93 sayfa 

 

GSTM1 0/0 ve GSTT1 0/0 genotipleri ile, GSTP1 Ile105Val, ve TP53 Arg72Pro gen 

polimorfizmlerinin, Türk toplumunda mesane kanserine yatkınlıkla ilişkisi bir hasta-kontrol 

çalışması kapsamında incelendi.  Çalışma grupları 121 mesane kanseri hastasından ve  121 

yaş-cinsiyet açısından uyumlu kontrolden oluşmaktaydı.  Yaş, cinsiyet ve sigara öyküsü göz 

önüne alınarak gerekli istatistiki düzeltmeler yapıldıktan sonra, GSTM1 0/0 genotipinin 1.94 

(95% GA 1.15- 3.26) ve GSTP1 105 Ile/Val+ Val/Val genotiplerinin ise 1.75 (95% GA 1.03- 

2.99). kat risk artışına neden olduğu gözlendi.  Bu risk her iki lokus için, riskli genotipler 

birlikte incelediğinde 3.91 kat (95% CI 1.88-8.13) olarak saptandı.  GSTT1 ve TP53 lokusları 

ile mesane kanseri arasında bir ilişki tesbit edilmedi.  Sigara oyküsü ve riskli genotip bir arada 

bulunduğunda risk GSTM1 lokusu için 2.81 (95% CI 1.23-6.35), GSTP1 lokusu içinse 2.38 

(95% CI 1.12-4.95) olarak bulundu.  Bu bulgular GSTM1 0/0 ve GSTP1 105 Ile/Val+ Val/Val 

genotiplerinin mesane kanseri için bir risk faktörü olduğuna işaret etmektedir.  Ayrıca gen-

gen (GSTM1- GSTP1) ve gen-çevre (GSTM1-sigara öyküsü, GSTP1-sigara öyküsü) 

etkileşimleri gözlemlenen riski önemli ölçüde artırmaktadır. 
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1. Introduction 

1.1 Genetic Basis of Human Disease 

1.1.1 Mendellian Inheritance 

 None of the fellow monks in the Augustinian monastery, near Brno (in Czech 

republic) would have thought the impact of the work of their colleague, Gregor 

Mendel who likes crossbreeding peas in the garden. His work was published in 

published in the 1866 issue of the Verhandlungen des naturforschenden Vereins, the 

Proceedings of the Natural History Society in Brünn (Ostrer, 1998), and remained 

dormant until the beginning of 20th century. 

  Briefly Mendel crossed, parent peas, which has a difference only in one 

characteristic (i.e. seed shape or seed color). He observed that all the progeny (F1 

generation) has one trait, he named this appearing trait as dominant, and the lost trait 

is recessive.  When he crossed the F1 generation, he observed that 25% of the 

progeny (F2 generation) have the recessive trait that is present in F0, but not F1 

generation.  The reappearance of the recessive characteristic in F2 generation 

indicated that recessive genes are neither modified nor lost in F1 generation, but the 

dominant and recessive genes are independently transmitted, and so are able to 

segregate independently during the formation of sex cells.  This is called Mendel’s 

1st Law: Principle of Independent Segregation.  In his further experiments Mendel 

crossed the seeds with two traits, pure round yellow, and wrinkled green.  He saw 

that in F1 generation all seeds were dominant round yellow form, in F2 generation 

wrinkled yellow, and round green forms were also emerged with the ratio of 9 round 

yellow, 3 round green, 3 wrinkled yellow, and 1 wrinkled green.  He concluded that 

each gene pair was independently to the gamete during sex cell formation.   
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There is no tendency for genes from the same parent to segregate together.  This 

principle is called as Mendel’s second law: Principle of independent assortment 

(Watson, 1988). 

 Mendellian diseases are the diseases, which are the result of a single mutant 

gene that has a large effect on phenotype and that are inherited as simple patterns 

similar to or identical with those described by Mendel for certain discrete 

characteristics in garden peas (Gelether, 1998). 

In medical genetics, a trait is called dominant, if the individual is 

heterozygous (i.e. one copy of the mutant allele) for the mutant allele, and exhibits 

the disease phenotype.  A trait is regarded as recessive, if the individual is 

homozygous. (i.e. two copies of the mutant allele) or compound heterozygote (i.e. 

two different copies of the mutant allele).  If an allele is located on sex chromosome, 

it is called X-linked or Y-linked, but in other 22 chromosomes (autosomes),  the trait 

is called autosomal.  Since genes located on Y chromosome is very rare, for practical 

purposes there are four patterns of inheritance of monogeneic diseases.  Autosomal 

Dominant (AD), Autosomal Recessive (AR), X-linked Recessive (XR), and X-linked 

dominant (XD).  More than 6500 phenotypes have been reported as Mendellian 

diseases, and more than 50% are AD, 36% are AR, and less than 10% are X-linked 

(Gelether, 1998). 

 

1.1.2 Non-Mendellian Inheritance 

The Non-Mendellian pattern of inheritance of traits was observed due to two 

reasons.  One is the existence of other mammalian modes of inheritance,  which were 

not envisaged by Mendel laws.  The other  that is a trait (phenotype) is not 

necessarily composed of one inheritable unit (i.e. gene), many genes (polygenic) and 
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additional environmental factors (multifactorial) might be responsible for the 

phenotype. 

Mitochondrial inheritance, and genomic imprinting are the examples for the 

existence of different modes of inheritance (Ostrer, 1998).  In mitochondrial 

inheritance, only the maternal mitochondria are inherited, therefore only the maternal 

genes are transmitted.  This phenomenon is against the principal of independent 

segregation, since the concept of independence implicitly refers  to existence of more 

than one alleles, while in this case only the maternal allele is segregating.  Imprinting 

denotes to a case that the gene contributes to the phenotype, not due to whether is 

dominant or recessive vis-a-vis the other allele, but from which parent it is inherited.  

It is an exceptional situation where the Mendellian concepts of dominance are totally 

are meaningless.   

When a trait is dependent on more than one genes, or environmental factors, 

it is regarded as multifactorial, and/or polygenic traits. Although the terms polygenic 

and multifactorial are often used interchangeably, technically speaking their 

definitions are different.  Polygenic traits are the traits caused by the impact of the 

many genes, each having only a limited individual impact on phenotype, where as 

the term multifactorial points out the interaction of genetic susceptibility factors and 

the environment. (Gelehrter, 1998) 

It is impotent to note that most traits of medical importance, such as 

susceptibility to diabetes, hypertension, cancer, coronary heart disease and infection 

are inherited as multifactorial and/or polygenic traits (Lander and Schork 1994).  

Therefore the impact for the population is much more than the impact of Mendellian 

diseases.  However it should be remembered that in complex multifactorial diseases, 

not the disease by itself but the susceptibility to the disease is determined by genetic 
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factors.  The expression of the disease phenotype on a particular individual is based 

on the interaction of various genetic and environmental factors. 

The current paradigm is that the polygenic traits are usually quantitative 

rather than qualitative, and frequently distributed continuously in a Gaussian 

distribution.  The phenotype is, however, usually by definition is a discontinuous 

trait.  The threshold model is used for explaining the this phenomenon.  According to 

this model, the phenotype is observed, when the accumulated genetic load passes a 

threshold.   

 

 

 

1.2 Genetic Basis of Cancer 

1.2.1 General Information 

 Cancer is a genetic disease in the sense that mutations must take place for the 

expression of the phenotype.  It is a somatic masochism which are characterized by 

unscheduled, and uncontrolled cellular proliferation of the affected (Ponder 2001).  

The other common features of cancer cell phenotype are evading apoptosis, self-

sufficiency in growth signals, insensitivity to growth signals, limitless replicate 

potential, sustained angiogenesis, and tissue invasion and metastasis. (Hanahan ane 

Weinberg 2000).  It is quite striking to see the evolution of a normal behaving cells, 

to an aggressive cancer cells.  The current concept is that all the bunch of cancer cells 

(neoplastic clone) in a patient is the progeny of a single cell (clonal expansion), and a 

series of events (genetic or epigenetic alterations)  should take place for this 

transformation (multistep carcinogenesis).   These events can be classified as gain of 

function, and loss of function of events (Ponder 2001). 
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The genes involving in gain of function events are the proto-oncogenes.  They 

are “activated” in various ways, and this activation gives an evolutionary advantage 

to the cell on which the “activation” takes place. The oncogenes have the role in 

transmission of the signals for proliferation  (e.g. RAS), in proliferation in itself (e.g. 

cyclin D), and suppression of apoptosis (e.g. Bcl-2).  An important point is that these 

alterations are dominant in nature, (i.e. an alteration in one allele in cell is enough for 

the expression of the phenotype).  

The tumor suppressor genes are involved in loss of function events, as their 

name implies their loss is associated with neoplasia.   They are recessive in nature, 

since two of the alleles should be inactivated.  These genes are classified into two: 

Gatekeepers, and caretakers (Kinzler and Vogelstein 1997).  Gatekeepers are the 

genes that control the proliferation (e.g. Rb), where as caretakers are the genes 

responsible for maintaining the integrity of the genome (e.g. MLH1).  The tumor 

suppressor genes primarily involve in cycle control, apoptosis, and DNA repair.  The 

major genes whose alterations are important in cancer related events are shown in red 

in Figure 1. 
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Figure 1. The cellular pathways related to malignant transformation (adopted from 

Evan and Vousden 2001) 
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1.2.2 Genetic Predisposition to Cancer 

1.2.2.1 Mendellian Inheritance 

Importance of familial factors in the pathogenesis of cancer has been appreciated 

by the medical community, and obtaining a family history from the encountered 

cancer patient has been routinely conducted.  In some rare families cancer has been 

found to be segregating as an autosomal dominant trait in the family.  It was 

observed that familial history, early age of onset, and neoplasias at multiple sites 

(either in the same organ or different organs ) are the common denominators of these 

autosomal dominantly segregating familial cancers.  In 1971, Alfred Knudson 

proposed that the germline event in the familial retinablastoma leads to an 

inactivation of an autosomal tumor suppressor gene in all cells, and a somatic 

mutation has hit and inactivates the remaining allele, abrogating the total function of 

the protein, and causes neoplasia.  In somatic cancers, however two spontaneous 

mutations occur in the same cell (Knudson 1971).  This model fitted the clinical 

observations entirely since, it explains the multifocality, and early-age of onset in 

familial cancers.  Knudsons’ hypothesis was proven after the cloning of the 

retinablastoma gene, in 1987 (Lee et al. 1987), and became the central paradigm for 

familial cancers in many years.  The paradigm was challenged by Kinzler and 

Vogelstein (Kinzler and Vogelstein 1997), by gatekeeper and gatekeeper hypothesis.  

The reason was that no somatic mutations was found  in Hereditary Non-Polyposis 

colon cancer genes (MLH1, MSH2) which was responsible from DNA repair, and  

Hereditary Breast Cancer genes (BRCA1, BRCA2) in tumor tissues.  Recently 

however, this observations have been started to be challenged too by the detection of 

epigenetic silencing of these genes (Bevilacqua and Simpson 2000; Esteller et al. 
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2000).  The germ-line mutations in hereditary cancers are usually on the tumor 

suppressor genes which are responsible for regulation of cell cycle and DNA-repair 

with the notable exception of RET oncogene.  The genes and associated hereditary 

cancer syndromes are shown in Table 1. 

 

Table 1: List of Familial Cancer Genes and Syndromes 
 
Gene Locus Cancer syndrome 
APC 5q21 Familial polyposis of colon 
BRCA1 17q21 Hereditary Breast/Ovarian Cancer 
BRCA2 13q12 Hereditary Breast/Ovarian Cancer 
CDH1 16q22.1 Familial gastric carcinoma 
CDKN2A 9p21 Cutaneous malignant melanoma 
CDKN1C 11p15.5 Beckwith-Wiedeman Syndrome 
CYLD 16q12.1  Familial cylindramotosis 
EXT1 8q24.11-q24.13 Multiple extoses type 1 
EXT2 11p12-p11 Multiple extoses type 2 
MADH4 18q21.1 Juvenile Polyposis 
MEN1 11q13 Multiple endocrine neoplasia type1 
MLH1 3p21 Hereditary non-polyposis colon cancer 
MSH2 2p16 Hereditary non-polyposis colon cancer 
NF1 17q11.2 Neurofibromatosis type 1 
NF2 22q12.2 Neurofibromatosis type 
PRKAR1A 17q23-q24 Carney Complex 
PTCH 9q22 Nevoid basal cell carcinoma 
PTEN 10q23.3 Cowdens Syndrome 
RB1 13q14 Familial Retinablastoma 
RET 10q11.2 multiple endocrine neoplasia MEN2A, MEN2B and medullar 

thyroid carcinoma  
SDHD 11q23 Familial paraganglioma 
SMARCB1 22q11 Rhabdoid predisposition syndrome 
TP53 17p13 Li-Fraumeni Syndrome 
TSC1 9q34 Tuberous Sclerosis 1 
TSC2 16p13.3 Tuberous Sclerosis 1 
STK11 19p13.3 Peutz-Jegers syndrome 
VHL 3p25 Von Hipple- Lindau Syndrome 
WT1 11p13 Familial Wilms Tumor 

 
 
Adopted from (Futreal et al. 2001), the locus and function information is gathered from GeneCards 
(http://bioinfo.weizmann.ac.il/cards/) 
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1.2.2.2 Multifactorial Inheritance 

1.2.2.2.1 General Concepts 
 Cancer pathogenesis is a complex phenomenon.  For the pathogenesis, not 

only what kind of pathway events (i.e. mutations or change in the expression of 

genes) will occur, but also the factors affecting that probability of the events will 

occur, and factors that influence the effect of pathway of events are important. 

(Ponder 2001) (Figure 2). The factors affecting the probability of the events in the 

cell are actually synonymous, in clinical grounds, with the factors associated with the 

cancer risk.  In cancer syndromes segregating in mendellian fashion, usually part of 

the pathway of events leading to malignant transformation (e.g. RB mutation), or 

factors affecting the genomic stability in the cell is inherited (e.g. MLH1 mutation), 

where as in cancers segregating in non-Mendellian fashion (i.e. so called sporadic 

cancers), the factors affecting the probability of the events (i.e. mutations) are very 

important.  The main factors are primarily the way the carcinogens are metabolized 

(Phase I and Phase II drug metabolizing enzymes polymorphisms), and how efficient 

is  the DNA damage is handled (DNA repair enzyme polymorphisms).  However the 

polymorphisms in the genes regulating immune response, hormone regulation, 

nuclear transcription factors, and cell cycle regulation and apoptosis have been also 

regarded as important genetic risk factors (see Table 2 for major gene 

polymorphisms). The impact of these gene polymorphisms for the individual (i.e. 

their penetrance) is not as dramatic as the genes showing autosomal dominant 

inheritance.However their impact  for the population in terms of public health may 

be quite important, considering their high frequency in the population.   
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Table 2 Major gene polymorphisms associated with cancer 

Gene Locus Protein Function 
CYP1A1 15q22-q24 Cytochrome P450 1A1 Phase I xenobiotic metabolism 
CYP1A2 15q22-qter Cytochrome P450 1A2 Phase I xenobiotic metabolism 
CYP1B1 2p22-p21 

 
Cytochrome P450 1B1 Phase I xenobiotic metabolism 

CYP2A6 19q13.2 Cytochrome P450 2A6 Phase I xenobiotic metabolism 
CYP2C9 10q24 Cytochrome P450 1A1 Phase I xenobiotic metabolism 
CYP2C19 10q24.1-q24.3 Cytochrome P450 1A1 Phase I xenobiotic metabolism 
CYP2D6 22q13.1 Cytochrome P450 1A1 Phase I xenobiotic metabolism 
CYP3A4 7q22.1 Cytochrome P450 1A1 Phase I xenobiotic metabolism 
MPO 17q23.1 Myeloperoxidase Phase I xenobiotic metabolism 
DIA4 16q22.1  NAD(P)H: quinone reductase Phase I xenobiotic metabolism 
GSTM1 1p13.3 Glutathione-S-transferase M1 Phase II xenobiotic metabolism 
GSTP1 11q13 Glutathione-S-transferase P1 Phase II xenobiotic metabolism 
GSTT1 22q11.2 Glutathione-S-transferase T1 Phase II xenobiotic metabolism 
NAT1 8p23.1-p21.3 Arylamine N-acetyltransferase type 1 Phase II xenobiotic metabolism 
NAT2 8p23.1-p21.3 Arylamine N-acetyltransferase type 1 Phase II xenobiotic metabolism 
SULT1A1 16p12.1  Phenol sulfotransferase 1A1 Phase II xenobiotic metabolism 
SULT1A2 16p12.1-p11.2 Phenol sulfotransferase 1A1 Phase II xenobiotic metabolism 
ERCC1 19q13.2-q13.3 Excision repair cross-complementing 

rodent repair deficiency, complementation 
group 1  

DNA repair 

ERCC2 19q13.2-q13.3 Excision repair cross-complementing 
rodent repair deficiency, complementation 
group 2  

DNA repair 

XRCC1 19q13.2 X-ray repair complementing defective 
repair in Chinese hamster cells 1 

DNA repair 

XRRC3 14q32.3 X-ray repair complementing defective 
repair in Chinese hamster cells 3 

DNA repair 

XRRC4 16p13.3-p13.13 X-ray repair complementing defective 
repair in Chinese hamster cells 4 

DNA repair 

XRCC5 2q35 
 

X-ray repair complementing defective 
repair in Chinese hamster cells 5  

DNA repair 

MGMT 10q26 O-6-methylguanine-DNA 
methyltransferase  

DNA repair 

POLB 8p11.2 Polymerase (DNA directed), beta  DNA repair 
ALOX5 10q11.2 Arachidonate 5-lipoxygenase  Inflammatory and immune response 
PTGS1  9q32-q33.3 Prostaglandin-endoperoxide synthase 1  Inflammatory and immune response 
PTGS2  1q25.2-q25.3 Prostaglandin-endoperoxide synthase 2  Inflammatory and immune response 
CCR2 3p21 Chemokine (C-C motif) receptor 2  Inflammatory and immune response 
CCR5 3p21  Chemokine (C-C motif) receptor 5 Inflammatory and immune response 
IL1A 2q14 Interleukin-1 Inflammatory and immune response 
TNF 6p21.3 TNF (tumor necrosis factor (TNF 

superfamily, member 2))  
Inflammatory and immune response 

VDR  12q12-q14 Vitamin D (1,25- dihydroxyvitamin D3) 
receptor  

Hormone regulation 

CYP11a 15q23-q24 Cytochrome P450, subfamily Xia Hormone regulation 
CYP17 10q24.3 Cytochrome P450, subfamily XVII  Hormone regulation 
CYP19 15q21.1 Cytochrome P450, subfamily XIX  Hormone regulation 
ESRRA 11q12 Estrogen-related receptor alpha  Hormone regulation 
MC1R 16q24.3 Melanocortin 1 receptor (alpha 

melanocyte stimulating hormone 
receptor)  

Hormone regulation 

AHR 7p15 Aryl hydrocarbon receptor  Nuclear transcription factor receptor 
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Gene Locus Protein Function 
PPARA 22q13.31 peroxisome proliferative activated 

receptor, alpha 
Nuclear transcription factor receptor 

PPARG 3p25 peroxisome proliferative activated 
receptor, gamma  

Nuclear transcription factor receptor 

NR1I2  3q12-q13.3 nuclear receptor subfamily 1, group I, 
member 2  

Nuclear transcription factor receptor 

TNFRSF6 10q24.1 tumor necrosis factor receptor 
superfamily, member 6  

Cell cycle regulation and apoptosis 

TP53 17p13.1 tumor protein p53  
 

Apoptosis, cell cycle regulation, 

CASP10 2q33-q34 
 

caspase 10, apoptosis-related cysteine 
protease 

Apoptosis, cell cycle regulation 

DFFB  1p36.3 DNA fragmentation factor, 40 kD, beta 
polypeptide (caspase-activated DNase)  

Apoptosis, cell cycle regulation 

 
Partially adopted from Brockmoller et al, 2000, the locus and function information is gathered from 
GeneCards (http://bioinfo.weizmann.ac.il/cards/) 
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 Figure 2. A framework for genetic effects on cancer development. 

(adopted from Ponder 2001) 
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1.2.2.2.2 Glutathione S-Tranferases 
Glutahione S-tranferases comprises a super gene family of  enzymes of phase 

2 enzymes which are responsible of the conjugation of the glutathione to the 

compounds with a electrophilic, which are activated by cytochrome p450 enzymes 

(Strange and Fryer 1999).  This super family is made of four gene familes (or 

enzyme classes in a protein oriented perspective), which called are alpha, mu, pi and 

theta. (there is also a zeta form, which is classified in theta category) (Seidegard and 

Ekstöm, 1997; Miller et al. 2000).  Each gene family is tandemly located in a 

particular locus.  Alpha is on 6q22, Mu is 1p13, Pi is on 11q13, and  Theta is on 

22q13.2.  Glutathione S-tranferases are dimeric proteins which are located in the 

cytosol.  In addition to these cytosolic enzymes, there are microsamal enzymes 

which conjugate glutathione.  The microsomal enzymes, which are present in outer 

membrane of microsome mitochondria, do not have a structural similarity to 

cytosolic GSTs, 

 
Table 3: The Glutathione S-tranferases 
 
Enzyme Class Gene Locus Compartment 
GST A1-1 Alpha GSTA1 6p12 Cytosol 
GSTA2-2 Alpha GSTA2 6p12 Cytosol 
GSTA3-3 Alpha GSTA4 6p12 Cytosol 
GSTA4-4 Alpha GSTA2 6p12 Cytosol 
GSTM1-1 Mu GSTM1 1p13 Cytosol 
GSTM2-2 Mu GSTM2 1p13 Cytosol 
GSTM3-3 Mu GSTM3 1p13 Cytosol 
GSTM4-4 Mu GSTM4 1p13 Cytosol 
GSTM5-5 Mu GSTM5 1p13 Cytosol 
GSTP1-1 Pi GSTP1 11q13 Cytosol 
GSTT1-1 Theta GSTT1 22q11.2 Cytosol 
GSTT1-2 Theta GSTT2 22q11.2 Cytosol 
GSTZ1-1 Theta (zeta?) GSTZ1 14q24.3 Cytosol 
Microsomal gst-1 - MGST1 1q23 Microsomal membrane 
Microsomal gst-2 - MGST2 4q28-q31 Microsomal membrane 
Microsomal gst-3 - MGST3 12p12.3-p12.1  Microsomal membrane 
Partially adopted from (Siegard and Ekstöm, 1997), the locus information is gathered from GeneCards 

(http://bioinfo.weizmann.ac.il/cards/) 
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The range of potential substrates of GSTs is very large, since they can 

metabolize compounds with an electrophilic center due to high nuclophilicity of the 

reduced thiol of these enzymes.  However, in a biological perspective the substrates 

of these enzymes can be classified as products of oxidative stress and xenobiotic 

activation (Strange et al. 1999). 

Oxidative products of lipids and DNA can be metabolized by these enzymes.  

Alpha class of enzymes metabolizes cumene hydoxyoperoxidase, and 4-

hydroxyonel, which are products of lipid peroxidation.  GSTT2 also catalyze cumene 

hydoxyoperoxidease.  GSTT1 detoxifies oxidative lipid products, and DNA.  GSTP1 

involves in the detoxification of base propenals (Norppa, 1997) 

In addition to metabolizing the products of oxidative stress, these enzymes 

also catalyze the xenobiotics, which are also environmental carcinogens.  One of 

most important of them is Polycyclic aromatic hydrocarbons.  These compounds are 

activated by cytochrome p450 enzymes.  The activated intermediate metabolites 

actually the carcinogenic form.  These epoxide are effective subsrates for mu, and pi 

class of enzymes.  GSTP1-1 enzyme metabolizes the carcinogenic products such as 

benzo(a)pyrene diol epoxide and acrolein, which are derived from cigarette smoke.  

GSTT1 enzymes also involve in the metabolism of carcinogenic substances, such as 

methylating agents, pesticides and industrial solvents. (Seidegard and Ekstöm, 1997; 

Strange et al, 1999) 

It is quite obvious that, the activity of the GSTs is highly critical in the 

detoxification of the carcinogens.  Therefore changes in the activity of these enzymes   

should have important consequences during the carcinogenic process.  The functional 

consequences of GSTM1 and the GSTT1 null genotypes are clear in terms of 

enzymatic activity: No gene, no enzyme, no activity.  The GSTP1 313 A/G 
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polymorphism at the nucleotide level leads to an amino acid difference of isoleucine 

and valinbe at codon 105 in the protein.  The valine aminoacid results in decreased 

enzyme activity (Ali-Osman et al. 1997).  Although it is easy to deduce this 

hypothesis, it is not so easy to prove, which is the main reason that so much 

controversy exist in the literature about the importance of the genetic polymorphisms 

and cancer risk.  

The data pointing out the significance of these polymorphisms are based on 

mainly two groups of studies.  First group of studies is focused on the association 

of the polymorphisms and cellular markers showing mutagenic potential. Sister 

chromatid exchange, Comet assay, and DNA adduct studies are in this group 

(Norppa, 1997).  The second group of studies is case-control and/or case-case type 

of studies.  In these type of studies, genotype frequencies of these polymorphism, 

and risk factors were assessed. 

The association of GSTM1 null genotype with bladder and lung cancer has 

been replicated in many studies in many ethnic groups.  The results of association 

studies on other cancer sites such as breast, colon, liver, gastric cancer,  pituitary 

adenoma, endometrial cancer, and acute lymphoctic leukemia and larynx are not so 

replicable.  (Table 4). 

GSTP1 related data for association studies are largely discordant, though the 

polymorphisms of this gene might be of importance for neoplasms of breast, 

prostate, bladder, esophagus and ALL (Table 5).   

GSTT1 seems to be associated with cancers of larynx, and skin (basal cell 

carcinoma), astrocytomas, meningioma, and astrocytomas, ALL and 

myelodysplastic syndome, but not with cancers of bladder, gastric, liver, 

endometrium, and ovaries (Table 6). 
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Table 4. Case-control studies on the association of GSTM1 null genotype and cancer 
 
Reference Population Cancer # of cases # of controls Comments 
(Chen et al. 1996a) USA mixed ALL 197 416 Not associated per se, but interacts with GSTT 
(Krajinovic et al. 1999) French -Canadian ALL 177 304 Associated 
(Saadat and Saadat 2000) Iranian ALL 38 75 Associated, 
(Chen et al. 1996b) US Mixed AML 96 201 Not associated 
(Crump et al. 2000) USA mixed AML 297 152 No risk 
[Chen, 1996 #266] USA mixed Anal cancer 71 360 Not associated 
(Elexpuru-Camiruaga et al. 1995) UK Caucasian Astrocytoma 109 577 Not associated 
(Heagerty et al. 1994) UK Caucasian BCC 435 153 Associated 
(Heagerty et al. 1996) UK Caucasian BCC 699 561 Associated 
(Marshall et al. 2000a) UK Mixed BCC 112 112 Not associated 
(Yengi et al. 1996) UK BCC 286 300 Not associated 
(Aktas et al. 2001) Turkish Bladder 102 201 Associated, increase risk of invasion 
(Anwar et al. 1996) Egyptian Bladder 22 21 Associated, interacts with CYP2D6 
(Bell et al. 1993) USA mixed Bladder 229 211 Associated, interacts with smoking 
(Brockmoller et al. 1996b) German Bladder 374 373 Associated 
(Georgiou et al. 2000) Greece Bladder 89 147 Associated 
(Katoh et al. 1998) Japanese Bladder 145 145 Associated, interacts with GSTT1 
(Kempkes et al. 1996) German Bladder 113 170 Associated 
(Kim et al. 2000b) Korea Bladder 121 222 Associated, interacts with asthma? 
(Lin et al. 1994) USA mixed  Bladder 114 1104 Not associated 
(Mungan et al. 2000) Dutch Bladder 61 69 Associated 
(Okkels et al. 1996) Danish Bladder 159 342 Not associated 
(Rothman et al. 1996) Chinese Bladder 38 43 Not associated 
(Salagovic et al. 1999) Slovakian Bladder 76 248 Not associated Per se, interacts with GSTT, and smoking1 
(Schnakenberg et al. 2000a) German Bladder 157 223 Not associated Per se, interacts with NAT2 
(Steinhoff et al. 2000) German Bladder 135 127 Associated 
(Zhong et al. 1993) UK Bladder 97 225 Not associated 
(Ambrosone et al. 1995) USA caucasian Breast 494 439 Not associated 
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Reference Population Cancer # of cases # of controls Comments 
(Bailey et al. 1998) US Mixed Breast 263 263 Not associated 
(Charrier et al. 1999) French Breast 361 437 Assocaition with postmenapausal risk 
(Curran et al. 2000) Australia Breast 129 129 No risk 
(Garcia-Closas et al. 1999) USA mixed Breast 466 466 Not associated 
(Helzlsouer et al. 1998) US mixed Breast 110  133 Associated, and interacts with GSTP1 
(Maugard et al. 2001) French Breast 220 196 Not associated 
(Millikan et al. 2000) US mixed Breast 688 561 Not associated 
(Mitrunen et al. 2001) Finn Breast 483 482 Associated in premenaposal woman,  interacts with GSTP1, 

GSTT1 
(Park et al. 2000b) Korea Breast 189 189 Associated, interacts with GSTT1 
(Zhong et al. 1993) UK Breast 197 225 Not associated 
(Chen and Nirunsuksiri 1999) USA Caucasian Cervix 190 206 No risk 
(Goodman et al. 2001) USA Hawai Cervix 131 180 Not associated 
(Abdel-Rahman et al. 1999) Egyptian Colon 66 55 No risk 

(Butler et al. 2001) Australian Colon 219 200 Not associated 
(Chenevix-Trench et al. 1995) Australia Colon 132 100 Not associated 
(Deakin et al. 1996) UK Caucasian Colon 252 577 Not associated 
(Gawronska-Szklarz et al. 1999) Poland Colon 70 145 Associated 
(Gertig et al. 1998) USA mixed Colon 212 221 Not associated 
(Guo et al. 1996) Chinese Colon 19 23 Associated 
(Inoue et al. 2001) Japanese Colon 205 220 Not associated 
(Katoh et al. 1996) Japanese Colon 103 126 Associated 
(Lin et al. 1995) USA mixed  Colon 446 488 Not associated 
(Saadat and Saadat 2001) Iranian Colon 42 131 Not associated Per se, interacts with GSTT1 
(Welfare et al. 1999) UK Colon 178 178 No association 
(Zhang et al. 1999) Swedish Colon 99 109 No association 
(Zhong et al. 1993) UK Colon 196 225 Associated 
(Esteller et al. 1997) Spanish Endometrium 80 60 Not associated 
(Tan et al. 2000) Chinese Esopahgus 150 146 Associated 
(van Lieshout et al. 1999) Holland Esopahgus(Barret) 98 247 No association 
(Lin et al. 1998b) China Esophagus 45 45 Associated, interacts with GSTM1 
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Reference Population Cancer # of cases # of controls Comments 
(Morita et al. 1997) Japanese Esophagus 53 132 Not associated 
(Katoh et al. 1996) Japanese Gastric 139 126 Associated 
(Baranov et al. 1996) Russian GI 37 67 Associated 
(McGlynn et al. 1995) USA Asian  HCC 52 116 Associated 
(Omer et al. 2001) Sudan HCC 110 189 Associated, interacts with peanut butter 
(Yu et al. 1995b) Taiwan HCC 30 150 Not associated 
(Cheng et al. 1999) USA mixed Head and Neck 162 315 Associated 
(Kihara et al. 1997) Japanese Head and Neck 150 474 Associated, interacts with smoking 
(Ko et al. 2001) German Head and Neck   Not associated 
(Matthias et al. 1999b) German Head and Neck 398 216 Not associated 
(McWilliams et al. 2000) US mixed Head and Neck 160 114 Not associated 
(Morita et al. 1999) Japanese Head and neck 145 164 Not associated 
(Olshan et al. 2000) US mixed Head and Neck 182 202 Not associated Per se, but interacts with CYP1A1 
(Trizna et al. 1995) USA Head and Neck 186 42 Associated 
(Hong et al. 2000a) Korea Larynx 82 63 Associated, interact with GSTT1 
(Jahnke et al. 1996) UK Caucasian Larynx 269 216 Associated 
[Jourenkova, 1998 #88] French Larynx 129 172 Not associated Per se, but interacts with GSTM1 
(Jourenkova-Mironova et al. 1999b) Frecnh Larynx 129 172 Not associated per se, but interacts with GSTT 
(Lemos et al. 1999) Portugese Leukemia (mixed) 64 128 Not associated 
(Nair et al. 1999) Indian Leukoplakia 98 82 Associated, 
(Alexandrie et al. 1994) Swedish Lung 296 329 Not associated 
(Belogubova et al. 2000) Russian Lung 58 297 No 
(Bennett et al. 1999) USA Mixed Lung 106  Smoking, interacts with GSTM1 null hebotype 
(Brockmoller et al. 1993) German Lung 117 200 Not associated 
(Chen et al. 2001) Chinese Lung 106 106 Combined risk with CYP1A1 Val allele 
(Dresler et al. 2000) USA mixed Lung 180 163 Combined risk with CYPA1 for females 
(El-Zein et al. 1997) USA Caucasian Lung 52 48 Associated 
(Ford et al. 2000) USA Black Lung 117 120 Associated, interacts with smoking 
(Gao and Zhang 1999) Chinese Lung 59 132 Associated 
(Hirvonen et al. 1993) Finn Lung 138 142 Associated 
(Hou et al. 2000) Norwegian Lung 282 357 Associated, interacts with NAT2 
(Kelsey et al. 1997b) US Mixed Lung 168 278 No association 
(Kihara and Noda 1994) Japanese Lung 178 201 Associated, interacts with smoking 
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Reference Population Cancer # of cases # of controls Comments 
(Kihara and Noda 1995b) Japanese Lung 447 469 Associated, interacts with smoking 
(Kihara and Noda 1995a) Japanese Lung 118 301 Associated, interacts with smoking, and CYP1A1 
(Kihara and Noda 1999) Japanese Lung 382 257 Associated, interacts with GSTP1 and smoking 
(Lan et al. 2000) China Lung 122 122 Associated, interacts with smoky coal 
(London et al. 1995) USA mixed  Lung 342 716 Not associated 
(Moreira et al. 1996) Portugese Lung 98 84 Not associated 
(Persson et al. 1999) Chinese Lung 76 122 Not associated 
(Ryberg et al. 1997) Norwegian Lung 63 177 Associated 
(Saarikoski et al. 1998) Finn Lung 208 294 Not associated Per se, interacts with GSTM1 
(Stucker et al. 2000) French Lung 247 254 Associated, interacts with CYP1A1 
(To-Figueras et al. 1996) Spanish Lung 139 147 Associated, interacts with TP53 
(Woodson et al. 1999) USA mixed Lung 319 333 No association 
(Xue et al. 2001) Chinese Lung 112 112 Associated, interacts with CYP1A1 
(Baranov et al. 1996) Russian Lung,  58 67 Associated 
(Deakin et al. 1996) UK Caucasian Lung,  108 577 Not associated 
(Davies et al. 2000) USA Caucasian MDS 232 153 Associated 
(Heagerty et al. 1994) UK Caucasian Melanoma 64 153 Not associated 
(Lafuente et al. 1995) Spanish Melanoma 183 147 Associated 
(Shanley et al. 1995) Australia Melanoma 124 100 Not associated 
(Kanetsky et al. 2001) USA Caucasian Melanoma 362 271 Not associated Per se, but interacts with hair color 
(Elexpuru-Camiruaga et al. 1995) UK Caucasian Meningioma 49 577 Not associated 
(Hirvonen et al. 1995) Finn Mesothelioma 44 270 Associated, interacts with smoking 
(Deakin et al. 1996) UK Caucasian Oral 40 577 Not associated 
(Hung et al. 1997) Taiwanese Oral 41 123 Associated, interacts with GSTT1 
(Katoh et al. 1999) Japaneese Oral 92 147 Associated 
(Kietthubthew et al. 2001) Thailand Oral 53 53 Assocaited, interacts with smoking 
(Park et al. 2000a) US Black Oral 63 103 Associated, interacts with smokiing 
(Baxter et al. 2001) Australia Ovarian 293 219 Associated 
(Lallas et al. 2000) US mixed Ovarian 80 80 Not associated 
(Sarhanis et al. 1996) UK Caucasian Ovary 84 312 Not associated 
(Spurdle et al. 2001) Australian Ovary 285 299 Associated with endometrois, and clear cell Ca 
(Liu et al. 2000) Canada (mixed) Pancreas 149 149 Not assocaited 
(Jourenkova-Mironova et al. 1999a) French Pharynx 121 172 Not associated 
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Reference Population Cancer # of cases # of controls Comments 
(Fryer et al. 1993) UK Caucasian Pituitary adenoma 113 89 Associated 
(Autrup et al. 1999) Danish Prostate 153 288 Associated 
(Gsur et al. 2001) Austira Prostate 166 166 Not associated 
(Kelada et al. 2000) USA mixed Prostate 276 499 Not associated 
(Kote-Jarai et al. 2001) UK Mixed Prostate 275 280 Not associated 
(Murata et al. 2001) Japanese Prostate 126 126 Not associated 
(Rebbeck et al. 1999) US Mixed Prostate 237 239 Not associated 
(Bruning et al. 1997) German RCC 45 48 Associated 
(Longuemaux et al. 1999) French RCC 173 211 Not associated Per se, but interacts with GSTP1 and NAT2 
(Sweeney et al. 2000) US Mixed RCC 130 505 No association 
(Heagerty et al. 1994) UK Caucasian SCC 85 153 Not associated 
(Setiawan et al. 2000) Chinese Stoamch 91 429 Not associated 
(Kato et al. 1996) Japanese Stomach 82 151 Not associated 
(Saadat and Saadat 2001) Iranian Stomach 46 131 Associated, interacts with GSTT1 
(Deakin et al. 1996) UK Caucasian Stomach, 136 577 Not associated 
(Chen et al. 1999) USA Mixed Vulva 137 248 Noı risk 
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Table 5. Case control studies on the association of GSTP1 Ile105Val polymorphism and cancer 
 
Reference Population Cancer # of cases # of controls Comments 
(Marshall et al. 2000a) UK Mixed BCC 112 112 Val/Val is associated 
(Harries et al. 1997) UK mixed Bladder 76 155 Not associated 
(Steinhoff et al. 2000) German Bladder 135 127 Not associated 
(Curran et al. 2000) Australian Breast 129 129 Not associated 
(Helzlsouer et al. 1998) US mixed Breast 110  133 Val allele is associated, and interacts with GSTM1 
(Krajinovic et al. 2001) French-Canadian Breast 149 207 Not associated 
(Lavigne et al. 1997) US Mixed Breast 112 112 Not associated 
(Maugard et al. 2001) French Breast 220 196 Ile allele is associated 
(Millikan et al. 2000) US mixed Breast 688 561 Not associated 
(Mitrunen et al. 2001) Finn Breast 483 482 Not associated Per se, but interacts with GSTT1, GSTM1 
(Harris et al. 1998) Australian Colon 131 199 Not associated 
(Katoh et al. 1999) Japanese Colon 47 122 Not associated 
(Welfare et al. 1999) UK Mixed Colon 178 178 Not associated 
(Yoshioka et al. 1999) Japanese Colon 106 100 Not associated Per se, but interacts with GSTM1 
(Tan et al. 2000) Chinese Esopahgus 150 146 Not associated 
(van Lieshout et al. 1999) Holland Esopahgus 98 247 Val/Val is associated 
(Lee et al. 2000) Taiwanese Esophagus 90 254 Ile/Ile is associated, and interacts with smoking 
(Lin et al. 1998b) Chinese Esophagus 45 45 Not associated 
(Morita et al. 1999) Japanese Head and neck 145 164 Ile/Ile is associated 
(Olshan et al. 2000) US mixed Head and Neck 182 202 Not associated  
(Jourenkova-Mironova et al. 1999b) French Larynx 129 172 Not associated 
(Harris et al. 1998) Australian Lung 184 199 Not associated 
(Katoh et al. 1999) Japanese Lung 382 257 Not associated 
(Kihara and Noda 1999) Japanese Lung 382 257 Not associated Per se, but interacts with GSTM1 
(Ryberg et al. 1997) Norwegian Lung 135 342 Associated, interacts with GSTM1 
(Saarikoski et al. 1998) Finn Lung 208 294 Not associated 
(To-Figueras et al. 1999) Spanish Lung 164 200 Not associated 
(Katoh et al. 1999) Japanese Oral 83 122 Val/Val is associated 
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Reference Population Cancer # of cases # of controls Comments 
(Matthias et al. 1998) German Oral/Pharynx 380 180 Val/Val is associated 
(Spurdle et al. 2001) Australian Ovary 285 299 Not associated 
(Jourenkova-Mironova et al. 1999a) French Pharynx 121 172 Not associated 
(Autrup et al. 1999) Danish Prostate 153 288 Not associated 
(Gsur et al. 2001) Austrian Prostate 166 166 Ile/Ile is associated  
(Harries et al. 1997) UK mixed Prostate 36 155 Val/Val is associated 
(Kote-Jarai et al. 2001) UK Mixed Prostate 275 280 Not associated 
[Wadelius, 1999 #66] Swede, Dane Prostate 425 425 Not associated 
(Longuemaux et al. 1999) French RCC 173 211 Val allele is associated and interacts with GSTM1 
(Sweeney et al. 2000) US Mixed RCC 130 505 Not associated 
(Katoh et al. 1999) Japanese Stomach   Not associated 
(Harries et al. 1997) UK mixed Testis   Not associated 

(Katoh et al. 1999) Japanese Urothelial   Not associated 
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Table 6. Case control studies on the association of GSTT1 null genotype and cancer 
 
Reference Population Cancer # of cases # of controls Comments 
(Infante-Rivard et al. 1999) French-Canadian ALL 491 491 Not associated 
(Krajinovic et al. 1999) French –Canadian ALL 177 304 Not associated 
(Crump et al. 2000) US Mixed AML 297 152 Not associated 
(Chen et al. 1996a) USA mixed Anal cancer 71 360 Not associated 
(Elexpuru-Camiruaga et al. 1995) UK Caucasian Astrocytoma 109 577 Associated 
(van Lieshout et al. 1999) Holland Barret’s esopahgus 98 247 Not associated 
(Heagerty et al. 1996) UK Caucasian BCC 699 561 Not associated 
(Marshall et al. 2000a) UK Mixed BCC 112 112 Not associated 
(Yengi et al. 1996) UK BCC 286 300 Not associated 
(Brockmoller et al. 1996a) German Bladder 374 373 Not associated 
(Georgiou et al. 2000) Greek Bladder 89 147 Not associated 
(Katoh et al. 1998) Japanese Bladder 145 145 Not associated,  but interacts with GSTM1 
(Kempkes et al. 1996) German Bladder 113 170 Not associated,  but interacts with smoking 
(Kim et al. 2000b) Korea Bladder 121 222 Not associated 
(Salagovic et al. 1999) Slovakian Bladder 76 248 Associated, interacts with GSTM1, and smoking1 
(Schnakenberg et al. 2000b) German Bladder 157 223 Not associated  
(Steinhoff et al. 2000) German Bladder 135 127 Not associated 
(Bailey et al. 1998) US Mixed Breast 263 263 Not associated 
(Charrier et al. 1999) French Breast 361 437 Association with postmenopausal risk 
(Curran et al. 2000) Australian Breast 129 129 Not associated 
(Helzlsouer et al. 1998) US mixed Breast 110 133 Not associated 
(Millikan et al. 2000) US mixed Breast 688 561 Not associated 
(Mitrunen et al. 2001) Finn Breast 483 482 Not associated 
(Park et al. 1997) Korea Breast 189 189 Associated, interacts with GSTM1 
(Goodman et al. 2001) USA Hawai Cervix 131 180 Not associated 
(Kim et al. 2000a) Korean Cervix 181 181 Associated, interacts with GSTM1 
(Warwick et al. 1994) UK Cervix 175 180 Associated 
(Abdel-Rahman et al. 1999) Egyptian Colon 66 55 Not associated 
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Reference Population Cancer # of cases # of controls Comments 
(Butler et al. 2001) Australian Colon 219 200 Not associated 
(Chenevix-Trench et al. 1995) Australia Colon 132 100 Not associated 
(Deakin et al. 1996) UK Caucasian Colon 252 577 Associated 
(Gertig et al. 1998) USA mixed Colon 212 221 Not associated 
(Guo et al. 1996) Chinese Colon 19 23 Associated 
(Inoue et al. 2001) Japanese Colon 205 220 Not associated 
(Katoh et al. 1996) Japanese Colon 103 126 Associated 
(Saadat and Saadat 2001) Iranian Colon 42 131 Not associated Per se, interacts with GSTM1 
(Welfare et al. 1999) UK Colon 178 178 No association 
(Zhang et al. 1999) Swedish Colon 99 109 Associated 
(Esteller et al. 1997) Spanish Endometrium 80 60 Not associated 
(Tan et al. 2000) Chinese Esopahgus 150 146 No association 
(Lin et al. 1998a) China Esophagus 45 45 Associated, interacts with GSTM1 
(Katoh et al. 1996) Japanese Gastric 139 126 Associated 
(Wiencke et al. 1997) US Caucasian Glioma 188 166 Associated with oligodendroglioma 
(Omer et al. 2001) Sudan HCC 110 189 Associated, interacts with peanut butter 
(Yu et al. 1995a) Taiwan HCC 30 150 Not associated 
(Cheng et al. 1999) US Mixed Head and Neck 162 315 Associated ,interacts with GSTM1 
(Ko et al. 2001) German Head and Neck   Not associated 
(Matthias et al. 1999a) German Head and Neck 398 216 Not associated 
(McWilliams et al. 1995) US mixed Head and Neck 160 114 Not associated 
(Olshan et al. 2000) US mixed Head and Neck 182 202 Not associated Per se, but interacts with smoking 
(Trizna et al. 1995) USA Head and Neck 186 42 Not associated 
(Hong et al. 2000b) Korea Larynx 82 63 Not associated Per se, but interacts with GSTM1 
(Jahnke et al. 1996) UK Caucasian Larynx 269 216 Associated 
(Jourenkova et al. 1998) French Larynx 129 172 Not associated Per se, but interacts with GSTM1 
(Jourenkova-Mironova et al. 1999b) Frecnh Larynx 129 172 Not associated per se, but interacts with GSTT 
(Nair et al. 1999) Indian Leukoplakia 98 82 Associated 
(Bennett et al. 1999) USA Mixed Lung 106  Not associated 
(El-Zein et al. 1997) USA Caucasian Lung 52 48 Associated 
(Kelsey et al. 1997a) US Mixed Lung 168 278 Not associated 
(Kihara and Noda 1994) Japanese Lung 178 201 Associated, interacts with smoking 
(Lan et al. 2000) China Lung 122 122 Not associated 
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Reference Population Cancer # of cases # of controls Comments 
(Saarikoski et al. 1998) Finn Lung 208 294 Not associated Per se, interacts with GSTM1 
(To-Figueras et al. 1996) Spanish Lung 139 147 Not associated 
(Xue et al. 2001) Chinese Lung 112 112 Associated, interacts with CYP1A1 
(Deakin et al. 1996) UK Caucasian Lung,  108 577 Not associated 
(Chen et al. 1996b) US Mixed MDS 96 201 Associated 
(Davies et al. 2001) USA Caucasian MDS 232 153 Not associated 
(Kanetsky et al. 2001) USA Caucasian Melanoma 362 271 Not associated Per se, but interacts with hair color 
(Shanley et al. 1995) Australia Melanoma 124 100 Not associated 
(Elexpuru-Camiruaga et al. 1995) UK Caucasian Meningioma 49 577 Associated 
(Deakin et al. 1996) UK Caucasian Oral 40 577 Not associated 
(Hung et al. 1997) Taiwanese Oral 41 123 Associated, interacts with GSTM1 
(Katoh et al. 1999) Japaneese Oral 92 147 Not associated 
(Kietthubthew et al. 2001) Thailand Oral 53 53 Not associated 
(Sarhanis et al. 1996) UK Caucasian Ovary 84 312 Not associated 
(Spurdle et al. 2001) Australian Ovary 285 299 Not associated 
(Liu et al. 2000) Canada (mixed) Pancreas 149 149 Not associated 
(Jourenkova-Mironova et al. 1999a) French Pharynx 121 172 Associated 
(Autrup et al. 1999) Danish Prostate 153 288 Not associated, but interacts with GSTM1 
(Gsur et al. 2001) Austira Prostate 166 166 Not associated 
(Kelada et al. 2000) USA mixed Prostate 276 499 Associated, interacts with smoking 
(Kote-Jarai et al. 2001) UK Mixed Prostate 275 280 Not associated 
(Murata et al. 2001) Japanese Prostate 126 126 Not associated 
(Rebbeck et al. 1999) US Mixed Prostate 237 239 Associated 
(Bruning et al. 1997) German RCC 45 48 Associated 
(Longuemaux et al. 1999) French RCC 173 211 Not associated Per se, but interacts with GSTP1 and NAT2 
(Sweeney et al. 2000) US Mixed RCC 130 505 Associated 
(Setiawan et al. 2000) Chinese Stoamch 91 429 Associated 
(Kato et al. 1996) Japanese Stomach 82 151 Not associated 
(Saadat and Saadat 2001) Iranian Stomach 46 131 Associated, interacts with GSTM1 
(Deakin et al. 1996) UK Caucasian Stomach, 136 577 Not associated 
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1.2.2.2.3 TP53 gene 
 

TP53 is an tumor supressor gene that has been mutated in 50% of all human 

cancers. It involves the in the cellular functions which are highly related with cancer 

such as cell cycle regulation, DNA repair, apoptosis and senescence.  In addition to 

mutations, some polymorphisms exist in the coding region of the gene. These 

polymorphisms are located in codon 21, codon 36, codon 47, codon 72 and codon 

213 of the gene.   The polymophisms at codon 21, codon 36, and codon 213 gene 

does not result in an aminoacid change, where as nuclotide change at codon 47 

results in Pro-Ser, and at codon 72 results in Arg-Pro change (Table 7) 

Table 7. Major exonic polymorphisms of TP53 gene 

Codon Exon Nucleotide change Amino Acid Change Reference 
21 2 GAC -> GAT Asp ->Asp Ahuja et al, 1990 
36 2 CCG -> CCA Pro ->Pro Felix et al, 1994 
47 4 CCG -> TCG Pro ->Ser Felley-Bosco et al, 1993 
72 4 CGC -> CCC Arg ->Pro Matlasheski et al, 1987 
213 6 CGA -> CGG Arg->Arg Carbone et al, 1991 
 
 

The most interesting polymorphism of the TP 53 gene is Arg72Pro 

polymorphism. It has been known since 1987 (Matlashewski et al. 1987), however its 

significance as a genetic susceptibility factor for cancer is still a matter of 

controversy.  The association studies on various cancers reveal quite discordant 

results (see Table 8).  The biological consequences of the polymorphism is not clear 

either.  The current models for the biological relevance are as follows: 1. P53 protein 

encoded by Arg allele is more likely to degraded by a ubiquitin dependent 

mechanism upon the combination of E6 protein of Human Papilloma Virus (HPV).  

This model is used for the explanation of the observed susceptibility due to Arg alele 

in HPV associated cancers, particularly cervix cancer.  The other model differences 
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the between Arg and Pro forms of  the p53 protein in binding to p73 protein, and 

neutrolize p73 induced apoptosis.  Arg form binds stronger (Marin et al. 2000) 
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Table 8. Case control studies on the association of TP53 Arg72Pro polymorphism and cancer 

Reference Population Cancer # of cases # of controls Comments 
(Chen et al. 2000) Taiwanese Bladder 59 58 Pro allele is associated with invasiveness 
(Papadakis et al. 2000) Greek Breast 56 61 Arg/Arg genotype is associated 
(Sjalander et al. 1996) Swedish Breast   Pro allele is associated 
(Agorastos et al. 2000) Greek Cervix 88 30 Arg/Arg genotype is associated 
(Baek et al. 2000) Korean Cervix 52 103 No association 
(Kim et al. 2001) Korean Cervix 134 100 No association 
(Madeleine et al. 2000) US Mixed Cervix 111 164 No association 
(Minaguchi et al. 1998) Japanese Cervix 103 110 No association 
(Pegoraro et al. 2000) Zulu Cervix 121 251 No association 
(Rosenthal et al. 1998) UK caucasian Cervix 50 150 No association 
(Tenti et al. 2000) Italian Cervix 101 140 No association 
(Zehbe et al. 1999) Swedish Cervix 30 626 Arg/Arg genotype is associated 
(Zehbe et al. 1999) Italian Cervix 28 40 Arg/Arg genotype is associated 
(Murata et al. 1996) Japansee Colon 115 152 No association 
(Lee et al. 2000) Taiwanese Esophagus 90 254 Pro/Pro genotype is associated 
(Peixoto Guimaraes et al. 2001) China Esophagus 57 32 No association 
(Yu et al. 1999) Taiwanese HCC 80 328 Not associated Per se, but interacts with 

GSTM1 and smoking 
(Hamel et al. 2000) French-Canadian Head and Neck 163 163 No association 
(Fan et al. 2000) US Mixed Lung 482 510 Pro allele is associated  
(Jin et al. 1995) US Black Lung 67 74 Pro/Pro genotype is associated 
(Jin et al. 1995) US  Mexican Lung 42 40 Pro/Pro genotype is associated 
(Kawajiri et al. 1993) Japanese Lung   Pro/Pro genotype is associated 
(Murata et al. 1996) Japanese Lung 191 152 Arg/Arg genotype is associated 
(Pierce et al. 2000) US Mixed Lung 334 446 No association 
(To-Figueras et al. 1996) Spanish Lung 139 147 Not associated Per se, but interacts with 

GSTM1  
(Wang et al. 1999) Taiwanese Lung   Pro/Pro genotype is associated 
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Reference Population Cancer # of cases # of controls Comments 
(Weston et al. 1994) US Mixed Lung 31  39 No association 
(Birgander et al. 1996) Chinese Nasopahrynx 73 105 Pro allele is associated 
(Golovleva et al. 1997) Chinese Nasopharynx 64 99 Pro/Pro genotype is associated, and 

interacts with IFNA17 gene 
(Summersgill et al. 2000) US Mixed Oral 202 303 No association 
(Tandle et al. 2001) Indian Oral 72 153 No association 
(Rosenthal et al. 1998) UK caucasian Ovarian 96 150 No association 
(Wu et al. 1995) Japanese Prostate 33 56 No association 
(Wu et al. 1995) Japanese Renal 85 56 No association 
(Bastiaens et al. 2001) Holland Skin SCC 86 168 No association 
(Marshall et al. 2000b) UK mixed Skin SCC 55 177 No association 
(O'Connor et al. 2001) Irish Skin SCC 55 115 No association 
(Wu et al. 1995) Japanese Testicular 28 56 No association 
(Wu et al. 1995) Japanese Urothelial  151 56 No association 
(Rosenthal et al. 2000) UK Mixed Vulva 52 246 Pro allele is associated  
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1.3 Bladder Cancer 

1.3.1 Clinical Information 
 
1.3.1.1 Epidemiology and Etiology 

Bladder cancer is the first cancer that an association between environmetal 

risk factors and the incidence of cancer has been demonstrated.  As early as in 1985 

Dr. Ludwig Rehn reported on bladder cancer patients who manufactured anniline 

dyes (Johansson and Cohen, 1997).  Although the main cause of bladder cancer is 

cigarette smoking throughout the world, local conditions also play a role.  In the 

developed countries such as United states, occupational exposure is responsible for 

25% of cases.  Schistomasis plays an important role in Egypt, Balkan nephropathy is 

associated with bladder cancer in former Yugoslavia and Bulgaria, and arsenic in 

drinking water is an important factor in Argentina, Chile and Taiwan.  Age, sex and 

the race is also an important risk determinant. Bladder cancer is more common in 

males, old persons (more than 55), and  Caucasians than females, young persons 

(less than 55), and Blacks (Johansson and Cohen, 1997). 

Bladder cancer is the 3rd most common cancer in males, and the 8th most 

common cancer in females in the Turkish population (Özsarı and Atasver 1997).  

These observations are smilar to European Union countries particularly Greece, Italy 

and Spain (Black et al, 1997).  The main etiological agent in Turkey is cigarette 

smoking (Akdas et al, 1990; Fidaner et al, 2001). 

 

1.3.1.2 Pathology 

95 % of bladder cancers are transitional cell carcinoma of the bladder.  

Squamous cell carcinoma constitutes about remaining 4%.  The other rare 

histological forms are adenocarcinoma, and undifferentiatd carcinoma  
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The stage is defined as the estimation of extent (size and location) of the 

cancer at the current time. More specifically, how extensive is the cancer within the 

bladder and if it has spread to tissues around the bladder, or to other parts of the 

body.  Currently two staging systems are used one is Marshall-Jewett- Strong, which 

has been developed by Jewett and Strong in 1946, and modified in 1952 

the other is TNM system (Tumor, Lymph node, and Metastasis) which has been 

developed by Union Internationale Contre Le Cancer (UICC).  TNM staging is 

shown in Table 9.  In daily paractice, tumors are also classified as superfical and 

invasive.  Superficial tumors are the tumors which did not invade the muscularis 

propria (i.e lower tha n T2).  The patients with superfial tumors has a better 

prognosis compared to the patiens with invasive tumors.(Lapham et al, 1997). 

The tumor grading is based on anaplasia.  Grade 1 tumors show mild 

cytological atypia and rare mitosis; Grade 2 tumors show moderate cytological atypia 

and the presence of mitotic figures; Grade 3 tumors show severe cytological atypia 

and frequent mitotic figures. 
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Table 9. TNM staging of Bladder Cancer 

Primary Tumor 
TX Primary tumor can not be assesed 
T0 No evidence of primary tumor 
Tis Carcinoma in situ 
Ta Papillary non-invasive carcinoma 
T1 Tumor invades subepithelial tissue 
T2 Tumor invades superficial muscle 
T3 Tumor invades deep muscle 
T4 Tumor invades adjacent organs 
Regional Lymph Nodes (N) 
NX Regional lymph nodes can not be assesed 
N0 No regional lymph node metastasis 
N1 Metastasis in a single lymph node, less than 2cm. 
N2 Metastasis in a single lymph node, more than 

2cm, but less than 5cm or multiple lymphnodes 
N3 Metastasis in a single lymph node, more than 5cm 
Distant metastasis 
MX Metastasis can not be assesed. 
M0 No distant metastasis 
M1 Distant metastasis 
 
 

 

1.3.2 Genetic predispositon to bladder cancer 
 

The genetic factors have an influence on the risk factor.  Broadly speaking 

there are two patterns of inheritance of bladder cancer.  One is the very rare 

Mendellian pattern, the other is the multifactorial (polygenic) pattern of inheritance.  

The Mendellian form of bladder cancer has been reported alone (Fraumeni and B. 

1967; Capps et al. 1968) or along with other cancers as a syndromic fashion 

(McCullough et al. 1975; Chan and Pratt 1977; Nagane et al. 1996).  No specific 

gene has been identified yet.  Althouhg in a family, a germ line translocation has 

been reported (Schoenberg et al. 1996), this observation coul not be in larger studies 

(Aben et al. 2001).  Large epidemiological studies have shown that, the first degree 

relatives appear to have an increased risk for bladder cancer by a factor of 2 

compared to general population (Kiemeney and Schoenberg 1996; Dong and 
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Hemminki 2001) and the interaction of the familial and environmental risk factors 

have been demonstrated by epidemiological studies(Kunze et al. 1992).  The current 

paradigm is that primarily bladder cancer is a multifactorial disease, in which 

environmental and genetic factors interact in the predispositon.  The association 

studies between genetic polymorphism and bladder cancer usually points out an 

association between GSTM1 and NAT2 locus, and bladder cancer.  The cytochrome 

p450 enzyme and H-Ras polymoprphisms does not seem to be risk factor.  The 

polymorphisms of GSTP1, XRRC1, TP53 are emerging hot topics because of initial 

observed assocaitions (Table 10). 
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Table 10: Genetic association (case-control) studies on bladder cancer 

Reference Population Genes # of cases # of 
controls 

Comments 

(Abdel-Rahman et 
al. 1998) 

Egyptian GSTM1 
GSTT1 

37 34 Association for GSTM1 
Association for GSTT1 
Combined effects of GSTM1, and GSTT1 

(Aktas et al. 2001) Turkish GSTM1 102 201 Association for GSTM1, increase risk of invasion 
(Anwar et al. 
1996) 

Egyptian GSTM1 
CYP2E1  
CYP2D6 

22 21 Association for GSTM1 
No association for CYP2E1 
No association for CYP2D6 
Combined effects of GSTM1, and CYP2D6 

(Bell et al. 1993) USA mixed GSTM1 229 211 Associated, interacts with smoking 
(Benitez et al, 
1990) 

Spanish CYP2D6 125 556 Association for CYP2D6 

(Brockmoller et al. 
1996a) 

German GSTM1 
GSTT1 
NAT2 
CYP1A1 
CYP2C19 
CYP2D6 
CYP2E1 

374 373 Association for GSTM1 
No association for GSTT1 
Association for NAT2 
No association for CYP1A1 
No association for CYP2C19 
No association for CYP2D6 
No association for CYP2E1 

(Chen et al. 2000) Taiwanese TP53 57 58 Not associated, but 72 Pro is associated with invasiveness 
(Farker et al.1998 ) German CYP2E1 224 304 No association for CYP2E1 
(Georgiou et al. 
2000) 

Greece GSTM1 
GSTT1 

89 147 Association for GSTM1, 
No association for GSTT1 

(Hanssen et al, 
1985) 

German NAT1-
NAT2 

105 42 Association for NAT1-NAT2 

(Harries et al, 
1997) 

UK mixed GSTP1   Association for GSTP1 

(Hayward et al, 
1988) 

 H-RAS 35 168 No association for H-RAS 

[Hsieh, 1999 #39] Taiwan NAT1 
NAT2 

74 184 No association for NAT1 
No association for NAT2 



 35

 
(Inatomi et al. 
1999) 

Japanese NAT2 85 146 Association for NAT2 
Combined effects with smoking 

(Ishikawa et al, 
1987) 

Japanese H-RAS 58 58 No association for H-RAS 

(Katoh et al. 1995) Japanese CYP1A1 
GSTM1 

83 101 No association for CYP1A1 
Association for GSTM1 

(Katoh et al. 1998) Japanese GSTM1 
GSTT1 

145 145 Association for GSTM1, 
No association for GSTT1 
Combined effects of GSTM1, T1 and smoking 

(Katoh et al, 1999) Japanese GSTP1   No association for GSTP1 
(Kempkes et al. 
1996) 

German GSTM1 
GSTT1 

113 170 Association for GSTM1, 
No association for GSTT1 

(Kim et al. 2000b) Korea NAT2 
GSTM1 

121 222 No association for NAT2 
Association for GSTM1 
 

(Lin et al. 1994) USA mixed  GSTM1 114 1104 No association for GSTM1 
(Mungan et al. 
2000) 

Dutch GSTM1 61 69 Association for GSTM1 

(Okkels et al. 
1996) 

Danish GSTM1 159 342 No association for GSTM1 

(Okkels et al. 
1997) 

Danish NAT1 
NAT2 
GSTM1 

242 242 No association for NAT1 
No association for NAT2 
No association for GSTM1 

(Risch et al, 1995) UK Caucasian NAT2 189 54 Association for NAT2 
Combined effects with smoking 

(Rothman et al. 
1996) 

Chinese GSTM1 38 43 No association for GSTM1 

(Salagovic et al. 
1999) 

Slovakian GSTM1 
GSTT1 

76 248 No association for GSTM1 
Association for GSTT1 
Combined effects of both genes with smoking 
 

Schnakenberg et 
al, 1998) 

German NAT2 60 154 Association for NAT2 
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Reference Population Genes # of cases # of 
controls 

Comments 

(Steinhoff et al. 
2000) 

German GSTM1 
GSTP1 
GSTT1 

135 127 Association for GSTM1 
No association for GSTP1 
No association for GSTT1 

(Stern et al, 2001) US Mixed XRCC1 235 213 Association for XRCC1 
(Taylor et al. 1998)  US Mixed NAT1 

NAT2 
230 203 Association for NAT1 

No association for GSTM1 
Combined effects of NAT1, NAT2, and smoking 

(Mommsen et al, 
1985) 

Swedish NAT1-
NAT2 

228 100 Association for NAT1-NAT2 (phenotyping study) 

(Ladero et al, 
1985) 

Finn NAT1-
NAT2 

157 130 Association for NAT1-NAT2 (phenotyping study) 

(Karakaya et al, 
1986) 

Turkish NAT1-
NAT2 

23 109 No association for NAT1-NAT2 (assayed by sulfamethazine 
metabolism) 

(Horai et al, 1989) Japanese CYPD6 
NAT1-
NAT2 

51 203 No association for CYPD6 (assayed by metoprolol 
metabolsim) 
No association for NAT2 (assayed by dapsone metabolism) 

(Hayes et al, 1993) China NAT2 38 43 No association for NAT2, when exposed to benzidine 
(Kaisary et 
al,1997) 

US Mixed CYPD6 
NAT1-
NAT2 

98 110 Association for CYPD6 (assayed by debrosquine metabolsm) 
No association for NAT2 (assayed by dapsone metabolism) 

(Zhong et al. 1993) UK GSTM1 97 225 No association for GSTM1 



 37 

1.4 Aim 

The purpose of this study is to determine whether GSTM1 null, GSTP1 

Ile105Val, GSTT1 null, and TP53 Arg72Pro polymorphisms are genetic susceptibilty 

factors for the bladder cancer in the Turkey.  The questions that this work 

specifically deals are: 

  

1. Are Glutathione S-tranferase and TP53 polymorphisms genetic risk factors for 

the bladder cancer in Turkish population? 

2. Are Glutathione S-tranferase and TP53 polymorphisms are associated with the 

invasiveness in bladder cancer? 

3. Is there a risk increase due to the interaction of cigarette smoking with 

Glutathione S-tranferase and TP53 polymorphisms?  

 

The GSTM1 locus was included in this study, since in some populations negative 

results were reported, and no data about this polymorphism was available for the 

Turkish population at the beginning of the study.  

The GSTP1 locus was studied, because its role as a risk factor for bladder cancer 

were less established.  Actually there were only two studies with opposite 

conclusions in regard to the association of bladder cancer with this locus.  This is the 

third study adressing this issue, and the first study where cigarette smoking was 

taken into account in the design of the study. 

The GSTT1 locus was analyzed, due to the fact no data was available for the 

Turkish population in regard to the association with bladder cancer.  

TP53 Arg72Pro polymorphism was studied, as data was not available not only 

for the Turkish population, but also for the Caucasians in general. 
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2.Materials and Methods 

2.1 Materials 

2.1.1 Subjects 

121 bladder cancers, 121 age-sex matched controls, and 77 random controls 

were enrolled to the study.  Information about the participants were first recorded to 

the appropriate forms, and this data is stored in computer also in Excel format.  10 ml 

of venous blood were obtained from all participants, and genomic DNA is isolated as 

described in section 2.1.2.  Informed consent was obtained from all subjects  

2.1.1.1 Patient group 

121 bladder cancer patients (transitional cell carcinoma, mean age: 60.15, 

standard deviation: 11.10, age range: 25- 87, % of smokers: 72.0, male-female ratio: 

5:1) diagnosed at Hacettepe University Medical School (n=92), and Ankara Numune 

Hospital (n=29).  Information about sex, age of the patient, smoking status and 

histopathology of the tumor was obtained from medical records.   

 

2.1.1.2 Age-sex matched control group 

The age-sex matched control group comprised of 121 individuals from 

Atatürk Chest Disease Research Hospital (non-cancer patients, mean age: 59.33, 

standard deviation: 13.58, age range: 23-79, % of smokers: 63.8, male-female ratio: 

5:1).  Information about sex, age of the patient,  and smoking status was obtained 

from medical records. 
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2.1.1.3 Random controls 

77 randomly selected Bilkent University students were also included in the 

study. Information age and sex of the patient was obtained by face to face interview 

during venoupuncture. 

 

2.1.2 Oligonucleotides 

The following oligonucleotides, in table were used during the PCR experiments. 
 
 
Table 11.  List of oligonucleotides for PCR experiments 
 
Primer Sequence Reference Target gene Size 
G1  
G2 

5’-GAA CTC CCT GAA AAG CTA AAG C 
5’-GTT GGG CTC AAA TAT ACG GTG G 

Anwar et al.  
1996 

GSTM1 215 bp 

P105-F 
P105-R 

5’-ACC CCA GGG CTC TAT GGG AA 
5’-TGA GGG CAC AAG AAG CCC CT 

Harries et al.  
1997 

GSTP1 176bp 

GSTT1-F 
GSTT1-R 

5’-AGG CAG CAG TGG GGG AGG ACC 
5’-CTC ACC GGA TCA TGG CCA GCA 

Bringuier et al. 
1998 

GSTT1 138bp 

CYP2E1-F 
CYP2E1-R 

5’-CCA GTC GAG TCT ACA TTG TCA 
5’-TTC ATT CTG TCT TCT AAC TGG 

Anwar et al.  
1996 

CYP2E1 412bp 

P53+ 
P53- 

5’-TCC CCC CTT GCC GTC CCA A 
5’-CGT GCA AGT CAC AGA CTT’ 

Storey et al,  
1998 

TP53  279bp 
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2.1.3 Chemical and Reagents 

Agarose    Basica LE, EU 

Boric acid    Sigma, St.Louis, MO, USA  

Bromophenol blue   Sigma, St.Louis, MO, USA 

Chloroform     Carlo Erba, Milano, Italy 

Ethanol     Merck, Frankfurt, Germany 

Ethidium bromide    Sigma, St.Louis, MO, USA 

Ficoll Type 400    Sigma, St.Louis, MO, USA 

Isoamyl alcohol     Carlo Erba, Milano, Italy 

NuSieve 3:1 Agarose    Basica LE, EU 

Phenol    Carlo Erba, Milano, Italy 

Proteinase K     Appligene-Oncor, USA 

pUC Mix Marker, 8    MBI Fermentas Inc., NY, USA 

Sodium acetate     Carlo Erba, Milano, Italy 

Sodium dodecyl sulfate(SDS) Sigma, St.Louis, MO, USA 

TrisHCl      Sigma, St.Louis, MO, USA 

Trisodium citrate     Sigma, St.Louis, MO, USA 

Xylene cyanol      Sigma, St.Louis, MO, USA 
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2.1.4 PCR Materials 

Gene Amp PCR system 9600  Perkin Elmer, CA, USA 

Taq polymerase (5U/µl)  MBI Fermentas Inc., NY, USA 

10X PCR buffer  

(100 mM Tris-HCl (pH 8.8 at 25 °C),  

500 mM KCl, 0.8% Nonidet P40)  MBI Fermentas Inc., NY, USA 

25 mM MgCl2    MBI Fermentas Inc., NY, USA 

10 mM dNTP mix   MBI Fermentas Inc., NY, USA 

ThermowellTM (0.2 ml) tubes  Corning Costar Corp.,MA, USA 

   

 
2.1.5 Restriction enzymes 
Alw261    MBI Fermentas Inc., NY, USA 

BstU1     MBI Fermentas Inc., NY, USA 
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2.1.6 Standard solutions 

 
Agarose gel loading buffer (6X) 

15 % ficoll 

0.05 % bromphenol blue 

0.05 % xylene cyanol 

 

Extraction buffer 

10 mM Tris HCl, pH 8.0 

10 mM EDTA, pH 8.0 

0.5 % SDS 

 

Proteinase K  20 mg/ml 

 

SSC (20X) 

  3 M NaCl 

  0.3 M trisodium citrate, pH 7.0 

 

TE Buffer 

  10 mM Tris HCl pH 8.0 

    1 mM EDTA 

 

Tris-boric acid-EDTA (TBE) (10 X) (1L) 

  108 g Tris Hcl 

   55 g boric acid 
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  20 ml 0.5 M EDTA 

  Complete final volume to 1 L with ddH2O 
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2.2 Methods 

2.2.1 DNA isolation 
 
 Blood samples can be stored at 4 0 C for a maximum of five days before 

aliquoting and freezing. Before starting DNA isolation, blood was frozen in 700 µl 

aliquots at - 80 0 C for at least one day.  Blood was thawed and 800 µl of 1X SSC 

was added and the content was mixed by vortexing. Then, it was centrifuged in a 

microfuge (Heraeus instruments, Biofuge, Osterode, Germany) at 13000 rpm for 1 

minute. The supernatant was removed and discarded into the disinfectant. It is 

important not to disturb the cell pellet during this step.  1.4 ml 1X SSC was added, 

the tube was vortexed briefly to resuspend the cell pellet, and was centrifuged at 

13000 rpm for a minute.  The supernatant was removed again.  The washing 

proceedure with 1XSSC can be repeated for several times if necessary.  800 µl 

extraction buffer (10 mM TrisHCl ph 8.0, 10 mM EDTA pH 8.0, 0.5 % SDS) and 10 

µl proteinase K (20 g/ml ddH2O) were added to the tube, and the cell pellet was 

resuspended. The suspension was incubated at 56 0 C for at least 4  hours. If  the cell 

pellet were dissolved, overnight incubation was done.  When the cell pellet was 

dissolved completely 400 µl phenol/chloroform/isoamyl alcohol (25:24:1) was 

added,  then the tube was vortexed for 60 seconds. This step must be carried out in 

the fume hood.  Afterwards  the tube was centrifuged in a microfuge for 5 minutes at 

13,000 rpm. The upper aqueous layer (∼ 700 µl) (the part containing DNA) was 

removed and placed in a new tube. If DNA supernatant was sticky or if the interface 

was not clear after this step, the supernatant was not removed, and the extraction was 

repeated until the interface is clear.  The recovered supernatant was separated into 

two tubes (350 µl per tube)  The DNA was then precipitated from the suspension by 

adding 35 µl NaOAc (3M, pH 5.2) and 700 µl ice-cold absolute ethanol (EtOH) are 
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added to each tube, mixing by inversion and placing at - 20 0 C for 30 minutes. The 

tubes were spun in a microfuge for 15 minutes at 13,000 rpm. After removing the 

absolute ethanol, the pellet was washed with 1.0 ml room temperature 70 % ethanol. 

Then the tubes were centifuged in a microfuge for 5 minutes at 13,000 rpm.  All the 

alcohol was removed with a micropipette and the tubes were left open on the bench 

(∼30 min) to allow the ethanol to evaporate. The isolated DNA was solubilized in 

200 µl TE (pH 8.0) by incubating at 56 0 C for at least 1 hour.  Overnight incubation 

was done the pellet was not in solution. The DNA was then stored at - 20 0 C.  

 

2.2.2 Polymerase Chain Reaction (PCR) 

 Polymerase chain reaction (PCR) is a technique, which is used to in the 

analysis of specific nucleotide sequences.  PCR amplification involves two 

oligonucleotide primers that flank the target DNA and repeated cycles of 

amplification.  There are three distinct events in PCR cycle : Template denaturation, 

primer annealing and DNA synthesis.  After denaturation (i.e seperation of DNA 

doublestrands), the primers anneal to their complementary single-stranded target 

sequences.  The last step is the extension of the oligonucleotide primer by the heat 

stable Thermus aquaticus (Taq) tpolymerase. Each cycle causes an exponential 

increase of the target DNA fragment, about 2n where n is the number of the cycles.  

Initial denaturation or final elongation steps can be added to before and after of PCR 

cycles for better yield.   
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2.2.3 Agarose Gel Elcetrophoresis 

Agarose gel electrophoresis is a commonly used method for DNA analysis. 

The method is based on the mobility of DNA molecules in the pores of agarose, 

which is an algue derrived polymer. DNA runs in the agarose (from cathode to 

anode) during the electrophoresis, since it has a negative charge due to phosphate 

groups in the backbone.  The rate of migration is a function of the size of the pores ( 

i.e concentration of the agarose), the magnitude of the applied current, and the 

weight and the shape of the DNA molecule. 

 For the purpose of the analysis of PCR amplification products, and TP53 

fragments after digestion, 2% (gr/ml) agarose gels were used.  Agarose gels were 

preapered with 1XTBE.  They contain 1 µl of Ethidium Bromide solution (20mg/ml).  

5 µl of PCR products was loaded in 1 µl 6X loading buffer to the gel.  Runs were 

performed with 1XTBE at 100 V for 30 minutes. 

 GSTP1 digestion products were analyzed in 3% 3:1 NuSieve gel.  20 µl of 

digested PCR product was loaded 4 µl 6X loading buffer to the gel.  Runs were 

performed with 1XTBE at 60 V for 2 hours . The gel was stained in a container with 

with Ethidium Bromide solution (1 mg/ml) 

 

2.2.4 Analysis with restriction endonucleases 

Restriction enzyme digestion of PCR products were performed in 25 µl 

reaction volumes. Reactions are carried out using the reaction buffer and conditions 

recommended by the manufacturer. Two unist of enzyme is used to digest the PCR 

products.  PCR samples were run on agarose gel before the digestion. The incubation 

temperature was 37 0 C for all of the enzymes. After digestion, heat inactivation was 

performed at 65 0 C.  After incubation the cut and uncut PCR fragments were 
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analysed by agarose gel electrophoresis. DNA size markers are used to calculate the 

sizes of the bands. 

 

2.2.5 Genotyping of DNA samples 
 

2.2.5.1 GSTM1 genotyping 

GSTM1 genotyping was done by simultaneous amplification of GSTM1 

primers with CYP2E1 primers (Table 2) in the same polymerase chain reaction 

(PCR) tube..  PCR products were electrophoresed in 2% agarose gels, and visualized 

by ethidium bromide staining.  Null genotype was scored by the presence of a 412-bp 

CYP2E1 band in the absence of a 215 bp GSTM1 fragment. (See Figure 3 for 

schematic description.) 

11 22 33

++ --

215 (GSTM1)

412(CYP2E1))

 
Figure 3. Schematic description of GSTM1 genotyping 
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2.2.5.2 GSTP1 genotyping 

 
Ile105Val polymorphism in GSTP1 was analyzed by this method.  

Amplification was carried out using primers p105F, and p1051R (Table 2).  176 bp 

amplified product was digested with 2 U Alw261 at 37oC for 4 hours.  The digested 

fragments were electrophoresed in 3% NuSieve gel. Presence of the restriction site 

resulted in two fragments of 91 bp and 85 bp which was indicative of the Val allele. 

(See Figure 4 for schematic description.) 

11 22 33

176

ValVal//Val Val   IleIle//Val Val   IleIle//Ile    Ile    

91

85

 
Figure 4. Schematic description of GSTP1 genotyping 
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2.2.5.3 GSTT1 genotyping 

GSTT1 genotype was determined by using the previously described primers 

GSTT1F, and GSTT1R  in combination with the above mentioned GSTP1 primers. A 

GSTT1 specific 138 bp fragment was observed in positive individuals.  Null 

genotype was scored after confirming with at least two independent experiments. 

(See Figure 5 for schematic description.) 

11 22 33

++ --

138 bp (GSTT1))

176 bp (GSTP1))

 
Figure 5. Schematic description of GSTT1 genotyping 
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2.2.5.4 TP53 genotyping 

P53 Arg72Pro polymorphism was determined by a PCR-RFLP method. 

Amplification was carried out using primers P53+  and , P53-.  279 bp amplified 

product was digested with BstU1 enzyme at 37oC for 4 hours and electrophoresed in 

2% agarose gels.  Presence of the restriction site resulted in two fragments of 160 bp, 

and 129 bp which was indicative of the Arg allele. 

11 22 33

279

ArgArg  ArgPro  ProProArgArg  ArgPro  ProPro

161

128

 
Figure 6. Schematic description of TP53 codon 72 genotyping 
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2.2.6 Statistics 
 
2.2.6.1 Chi-square test 

The chi-square test is a technique for the analysis of counts and frequency 

data.  It is primarily used for evaluation of categorical variables, (e.g GSTP1 

genotype, whose values are Ile/Ile, Ile/Val, and Val/Val).  The quantative data 

employed in the computation of the statistic, are the frequncies associated with each 

category of the one or more variables under study.  There are two type of frequecies: 

Observed, and Expected.  Observed frequencies are the number of the subjects that 

fall into varios categories of the variable of interest (e.g variable: GSTP1, categories: 

Ile/Ile, Ile/Val, and Val/Val).  Expected frequencies are the number of subjects which 

are expected to be observed, if null hypothesis is about the variable is true.  (Null 

hypothesis is the hypothesis to be tested , which is also called as a hypothesis of no 

difference). The test statistic for chi-squre test is   

 

Where the null hypothesis is true, X2 is distributed approxiamately as X2 with 

k-r degrees of freedom.  In determining the the degrees of freedom, k is the number 

of the groups for which observed and expected frequencies are available, and r is the 

number of the restrictions or constraints imposed on the given comparison.  For the 

analysis of the contingency tables , in which r rows represent the various levels of 

one criterion, and the columns represent the various level of a second criterion, 

degrees of freedom are calculated as (r-1)(c-1)=df 

The quantity X2 will be small if the observed and expected frequencies are 

close and will be large if the differences are large.  The calculated X2 value is 

compared to the tabulated (in a X2 table or stored in a computer) X2 value with the 

appropriate degrees of freedom.  Null hypothesis rejected if the calculated X2 is 

X=Σ [ (Oi- Ei) 
Ei ] 2 
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larger or equal to the tabulated X2 for a chosen α (α value denotes type I error which 

is rejecting the the probability of rejecting the true null hypothesis -i.e. stating that 

the difference is meaningful, where as it is not-.  The α values below 0.05 are 

accepted as statistically significant by convention). 

 

2.2.6.2 Odds ratio calculation 

There are two types of observational studies.  One is prospective, the other is 

reterospective.  Prospective study is related with future.  The subjects are stratified 

according to whether they have the risk factor or not.  Then after a certain time of 

follow up, the outcome was evaluated. (e.g GST genotyping now, follow up for 30 

years to see who will have bladder cancer).  Retrospective study, retrospective 

literally means looking back, is related with past.  The persons with the outcome, 

consitutes the study group, and  the subjects were determined whether they have the 

risk factor or not (e.g take a bladder cancer group, and control group, determine they 

smoked or not, and then GST genotyping).  In general prospective study is more 

expensive, and difficult to carry out, but the information is more valuable, since it 

resembles an experiment.  The term relative risk is used for the risk estimation 

obtained from prospective studies.  It is actually the ratio of the risk of devoloing a 

disease among subjects with the risk factor to the risk of developing the disease 

among subjects without the risk factor.    

The relative risk estimation is not meaningful in a retrospective study.  In a 

retrospoective studies odds ratio is used.  Odds ratio can be a  estimation of the 

relative risk if the disease in a given population if the studied disease is a  rare 

disease. (e.g cancer is OK, but not common cold).  A value greater than 1 indicates 

increaes odds of having disease among subjects in whom the risk factor is present.  
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An odds ratio value greater than 1 is statistically significant, if the lower border of 

95% confidince interval is greater than  1 (Daniel 1995). 

Odds ratios (OR) and 95 %confidence intervals (CI) were calculated 

according to these formulas. (Daniel 1995)  

 

OR=AD/BC 

95% CI= ln [OR]± e1.96 times square root of (1/A+1/B+1/C+1/D) 

 
Table 12. Sample 2x2 Table for OR analysis 

 Control Case 
Risky genotype A C 
Non-Risky genotype B D 
A: # of controls bearing the risky genotype 
B: # of controls bearing the non-risky genotype 
C: # of cases bearing the risky genotype 
D: # of cases bearing non risky genotype 
 
 
2.6.2.3  Analysis of Gene-Gene Inteaction 

The analysis was by a model adopted from (Yang and Khoury).  While using 

this method, both cases and controls are stratified accoding to the genotypes, then the 

odds ratios  were calculated by comparing the reference  (the stratum the individuals 

inheriting no risk genotypes) to the other strata respectively. (Table 10 ).  The odds 

ratio for the reference group (i.e 00 individuals) is 1, since odds ratio for this group is 

calculated by comparing the reference group by itself. 
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Table 13. A simple gene-gene interaction model for case- control studies 
 
Gene X Gene Y Cases Controls Odds ratio 
0 0 A00 B00 1 
0 1 A01 B01 RX=A01 B00/ A00 B01 
1 0 A10 B10 RY=A10 B00/ A00 B10 
1 1 A11 B11 RXY=A11 B00/ A00 B11 
           
0= risk allele absent; 1=risky allele present 
 
RX= Relative risk caused by risky alelle of Gene X 
RY= Relative risk caused by risky alelle of Gene Y 
RXY= Relative risk caused by risky alelles of Gene X and Gene Y 
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3. Results 
 
3.1 Glutathone S-transferases 

The genotype frequencies of the GSTM1, GSTP1 and GSTT1 polymorphisms 

in the patient, and the age-sex matched control groups is summarized in Table 14. 

The adjusted relative risk (for age, sex, and smoking status) conferred by the GSTM1 

null genotype for bladder cancer is 1.94 (95% CI 1.15-3.26).  Since the GSTP1 313 

Val/Val genotype frequency was too low in our population, GSTP1 105 Ile/Val and 

Val/Val genotypes were combined for cancer risk estimation.  The risk figure is 1.75 

(95% CI 1.03- 2.99).  Finally, GSTT1 null genotype was not found to be a significant 

risk factor (OR 1.27; 95% CI 0.66-2.47) for bladder cancer. 

 

 

Table 14. Distribution of the GSTM1, GSTP1 and GSTT1 genotypes in the age-
sex matched controls and bladder cancer patients 
 
Locus Genotype Case  

n=121 (%)  
Control  
n=121 (%)  

Crude OR  
(95% CI)  

Adjusted OR1       
(95%CI) 

p 

GSTM1 Present 46 (38.02)   66 (54.55)    
 Null 75 (61.98)   55 (45.45)    
    1.96 (1.18-3.22) 1.94 (1.15-3.26) 0.010 
GSTP1 Ile/Ile 67 (55.37)   83 (68.60)    
 Ile/Val 42 (34.71)   33 (27.27)    
 Val/Val 12 (  9.92)     5   (4.13)    
 Ile/Val or Val/Val 54 (44.63)   38 (31.40)    
    1.76 (1.04-2.94) 1.75 (1.03-2.99) 0.034 
GSTT1 Present 97 (80.17) 100 (82.64)    
 Null 24 (19.83)   21 (17.36)    
    1.17 (0.61-2.22) 1.27 (0.66-2.47) 0.620 
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A group of randomly selected university students (n=77) was also genotyped 

to compare with the age-sex matched control group.  In the randomly selected group, 

the GSTM1 null genotype is 46.7% (p=0.858), the GSTT1 null genotype is 17.25% 

(p=0.936), and the GSTP1 genotype frequencies are 67.53% (Ile/Ile), 31.16% 

(Ile/Val) and 1.31% (Val/Val) (p=0.820).  These results reveal that the genotype 

frequencies for the age-sex matched control group, and the randomly selected group 

is not significantly different.  This indicates absence of bias of ascertainement during 

the selection of the age-sex matched control group.  Distrubition of GST genotypes 

were in Hardy-Weinberg equilibrium in all three groups.   

Combination of the two high risk genotypes, GSTM1 null and GSTP1 105 

Ile/Val or Val/Val, revealed that the risk increases by 3.91 times (95% CI 1.88-8.13) 

when compared with the combination of the low risk genotypes of these loci (Table 

15).  

 

 
Table 15. Combination of the GSTM1 null with GSTP1 105 Ile/Val or Val/Val 
genotypes and bladder cancer risk 
 

Genotype 
at risk 

GSTM1 GSTP1 Case 
n=(121) 

Control 
(n=121) 

Crude OR 
(95%CI) 

Adjusted OR2 
(95%CI) 

None1 Present Ile/Ile 24 41 1.00 (referral) 1.00 (referral) 
       
One Null Ile/Val 43 42 1.75 (0.94-3.25) 2.07 (1.00-4.30 
 Present Ile/Val, Val/Val 22 25 1.50 (0.69-3.74) 1.89 (0.91-3.93) 
       
Two Null Ile/Val, Val/Val 32 13 4.20 (1.85-9.58) 3.91 (1.88-8.13) 
 
1The group that includes the combination of no-risk genotypes “None” ‘is used as a reference group 
for relative risk analysis. 
2Adjusted for age, sex and smoking status. 
 

The risk associated with the combination of the risky genotypes of all three 

GST loci was further investigated (Table 16), even though the GSTT1 null genotype 

alone does not appear to be a significant risk factor for bladder cancer in the Turkish 



 57 

population.  Individuals with all three putative low risk genotypes, that is the 

presence of GSTM1 and GSTT1 genotypes and the homozygous Ile/Ile genotype for 

GSTP1 is designated as the reference group.  The relative risk conferred by the three 

high-risk genotypes versus no high-risk genotype is 8.00 (95% CI 1.52-287.10).  

Table 16. GST genotype distribution and risk associated with genotype 
combinations 
 
High-risk  
Genotypes 

GSTM1 GSTP1 GSTT1 Cases 
(n=121)  

Controls  
(n=121) 

OR (95% CI) 

Three  Null Ile/Val or Val/Val Null 8 2 8.00 (1.52-287.10) 
Two  Null Ile/Val or Val/Val Present 24 11 4.36 (1.75-10.80) 
 Null A/A Null 7 8 1.75 (0.54-5.52) 
 Present Ile/Val or Val/Val Null 2 4 1.00 (0.16-5.58) 
One Null A/A Present 36 34 2.11 (1.06-4.41) 
 Present Ile/Val or Val/Val Present 20 21 1.90 (0.84-1.69) 
 Present A/A Null 7 7 2.00 (0.60-6.61) 
No Present A/A Positive 17 34 1.00 
 

 

The risk of bladder cancer from GST genotypes was also evaluated by 

smoking status (Table 17).  Among non smokers, a slight but not statistically 

significant increased risk of bladder cancer which was associated with the GSTM1 

null (OR 1.95; 95% CI 0.74-5.05), the GSTP1 Ile/Val or Val/Val (OR 1.78; 95% CI 

0.65-4.80), and the GSTT1 (OR 1.53; 95% CI 0.51-4.52) genotypes was observed.  

Among smokers a significantly elevated risk of bladder cancer which was associated 

with the GSTM1 null genotype was detected (OR 2.02; 95% CI 1.04-3.93).  An 

association was not observed for either GSTP1 or GSTT1. 

 

 The effect of the combined contributions of genotype and smoking status to 

bladder cancer risk is displayed in Table 18.  Individuals with the GSTM1 null 

genotype who smoke have an increased risk of 2.81 (95% CI 1.23-6.35) compared to 

the individuals with the GSTM1 present genotype who do not smoke.  With respect 
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to the GSTP1 locus, this risk figure is 2.38 (1.12-4.95).  An association with the 

GSTT1 locus was not found. 

The patients were also grouped according to the stage of the disease to 

determine whether GST genotypes are associated with the invasiveness of the tumor 

(Table 19).  Although statistically significant results could not be obtained, the 

GSTP1 105 Ile/Val+ Val/Val genotypes appear to be a risk factor for invasiveness 

either alone (OR: 2.06, 95% CI 0.91- 4.6) or in combination with the GSTM1 null 

genotype (OR: 3.42, 95% CI 0.96- 12.2).  



 59 

 

 

 
 

 

 

1 2 3 4 M

1 2 3 4 M

1 2 3 4 M5
A

B

C

1 2 3 4 M5
D

CYP2E1

GSTM1

GSTP1
kesilmemiş

GSTT1

GSTP1GSTP1
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Figure 3. Genotyping of Glutathione S-Tranferase genes  

A.  GSTM1 primers generate a 215 bp product, and the internal control CYP2E1 yields a 412 bp 
product. Sample 00-58 in lane 1 is positive, and samples 00-59, 00-60, 00-61 in lanes 2, 3, and 4 
respectively are negative (null genotype). CYP2E1 is positive in all lanes; B.  Amplified 176 bp 
GSTP1 fragment is digested with Alw261.  In the presence of the restriction site two fragments of 91 
and 85 bp are observed.  Individuals homozygous for the 313 AA allele have only the undigested 
fragment (97-121 in lane 1 and 97-584 in lane 4), heterozygous for the 313 AG alleles have both the 
undigested and the digested fragments (97-133 in lane 2), and homozygous for the 313 GG alleles 
have only the digested fragments (97-603 in lane 3); C. GSTT1 primers generate a 138 bp product.  
Samples 97-533, B4, B59 and B85 in lanes 1, 2, 4, 5 respectively are positive, and B32 in lane 3 is 
negative (null genotype); D.  GSTP1 is simutaneously analyzed as control for GSTT1 genotyping  
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Table 17. Distribution of GST genotypes stratified according to smoking status in cases and controls 

 

  Non smokers  Smokers 
Locus Genotype Case Control OR (95%CI)  Case Control OR (95%CI) 
GSTM1 Present 12 (38.70) 21 (55.20)   27 (33.75) 34 (50.70)  
GSTM1 Null 19 (61.30) 17 (44.80)   53 (66.25) 33 (49.30)  
    1.95 (0.74-5.05)    2.02 (1.04-3.93) 
GSTP1 Ile/Ile 18 (58.06) 27 (71.05)   45 (56.25) 45 (67.10)  
GSTP1 Ile/Val or Val/Val 13 (41.94) 11 (28.95)   35 (43.75) 22 (32.90)  
    1.78 (0.65-4.80)    1.59 (0.83-3.03) 
GSTT1 Present 22 (70.90) 30 (78.90)   66 (82.50) 56 (83.50)  
GSTT1 Null 9 (29.10) 8 (21.10)   14 (17.50) 11 (16.50)  
    1.53 (0.51-4.52)    1.08 (0.42-2.51) 
 

 

Table 18. Combined risk of bladder cancer associated with smoking and GST genotypes 

 

 OR (95% CI) 
 GSTM1  GSTP1  GSTT1 
Smoking status Present Null  Ile/Ile Ile/Val or Val/Val  Present Null 
No 1 1.95 (0.74-5.06)  1 1.77 (0.65-4.75  1 1.53 (0.53-4.34) 
Yes 1.38 (0.73-2.58) 2.81 (1.23-6.35)  1.50 (0.72-3.06) 2.38 (1.12-4.95)  1.60 (0.83-3.06) 1.73 (0.77-3.74) 
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Table 19. Distribution of the GSTM1, GSTP1 and GSTT1 genotypes in invasive 
and superficial bladder tumors. 
 

Locus Genotype Invasive1 tumors  
n=33 (%)  

Superficial tumors 
n=88 (%) 

OR  (95%CI) p 

GSTM1 Present 10 (30.30) 36 (40.91)   
 Null 23 (69.70) 52 (59.09)   
    1.59 (0.68-3.75) 0.28 
GSTP1 A/A 14 (42.42) 53 (60.23)   
 A/G 17 (51.52) 25 (28.41)   
 G/G 2 (  6.06) 10 (11.36)   
    2.06 (0.91-4.63) 0.07 
GSTT1 Present 29 (87.88) 68 (77.27)   
 Null 4 (12.12) 20 (22.73)   
    0.47 (0.15-0.49) 0.19 
 

1 “Invasive” denotes to at least muscle invasion (≥T2 stage) 
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3.2 TP53 codon 72 

 
The distribution of the p53 Arg72Pro genotypes in the patient, and the control 

groups is shown in Table 20.  A significant difference between the two groups was 

not found (p=0.878).   

 

Table 20. Distribution of the TP53genotypes in the age-sex matched controls and 
bladder cancer patients 
Locus Genotype Case  

n=121 (%)  
Control  
n=114 (%)  

Crude OR  
(95% CI)  

Adjusted OR1       
(95%CI) 

p 

TP53 Arg/Arg 43 (35.54) 42 (36.84)    
 Arg/Pro 57 (47.11) 55 (48.25)    
 Pro/Pro 21 (17.35) 17 (14.91)    
 Arg/Pro or Pro/Pro 78 (64.46) 72 (63.16)    
    1.06 (0.63-1.73) 1.07 (0.64-1.75) 0.878 
 

1Adjusted for age, sex and smoking status.  

 

In the randomly selected group, the p53 genotype frequencies are 42.85% 

(Arg/Arg), 45.45% (Arg/Pro) and 11.70% (Pro/Pro) (p=0.820).  These results reveal 

that the genotype frequencies for the age-sex matched control group, and the 

randomly selected group is not significantly different.  This indicates absence of bias 

of ascertainement during the selection of the age-sex matched control group.  

Distrubition of TP53 genotypes were in Hardy-Weinberg equilibrium in all three 

groups. 

The risk of bladder cancer from TP53 genotypes was also evaluated by 

smoking status.  An increased risk due to TP53 Arg72Pro polymorphism was 

observed in neither non-smoker, nor smoker groups.  
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When the tumors were stratified as superficial and invasive according to their 

pathological stage (Table 21), no statistically significant difference was observed 

(X2= 2.542, df: 2, p=0.281). 

 

Table 21. Distribution of the TP53 genotypes in invasive and superficial bladder 
tumors 
Locus Genotype Invasive1 tumors  

n=33 (%)  
Superficial tumors 
n=88 (%) 

OR  
(95%CI) 

p 

TP53 Arg/Arg 13 (39.40) 30 (34.09)   
 Arg/Pro 12 (36.36) 45 (51.14)   
 Pro/Pro 8 (24.24) 13 (14.77)   
 Arg/Pro or Pro/Pro 20 (60.60) 58 (65.91) 1.08 0.281 
      
 

 

Figure 8. Genotyping of TP53 gene 

Amplified 279 bp TP53 fragment is digested with BstU1.  In the presence of the restriction site two 

fragments of  160 and 119 bp are observed.  Individuals homozygous for the 72 Pro/Pro allele have 

only the undigested fragment (B-26 in lane 2), heterozygous for the 72 Arg/Pro alleles have both the 

undigested and the digested fragments (B-33 in lane 3, and B-34 in lane 4), and homozygous for the 

72 Arg/Arg alleles have only the digested fragments (97-603 in lane 5). PUC Mix DNA ladder (MBI 

Fermentas) in lane 1. 

1 2 3 4 5

279

160
129
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4. Discussion 

GSTM1, GSTP1, and GSTT1 polymorphisms were analyzed in 121 bladder 

cancer patients, and 121 age-sex matched controls.  When the two groups were 

compared, the relative risk conferred by the GSTM1 null genotype is 1.94, and 

GSTP1 105 Ile/Val or Val/Val genotypes is 1.75.  The GSTT1 null genotype was not 

found to be associated with a significantly increased bladder cancer risk (Table 14). 

When the genotype frequencies of the patient and the control groups were compared, 

non of the p53 Arg72Pro genotypes were found to be associated with a significantly 

increased bladder cancer risk (Table 20). Our odds ratio figure for the GSTM1 null 

genotype is in agreement with a recent meta-analysis study pointing out a slightly 

increased relative risk of the GSTM1 null genotype for bladder cancer, though our 

risk figure of 1.94 is higher than the reported risk of 1.5 in the meta-analysis (Johns 

and Houlston 2000).  Association of the GSTP1 105 Ile/Val and Val/Val genotypes 

with bladder cancer in the Turkish population is in concordance with the British 

(Harries et al. 1997), but not with the Japanese (Katoh et al. 1999) or the German 

(Steinhoff et al. 2000) populations, and the lack of association between bladder 

cancer and the GSTT1 locus is in agreement with the studies in the Greek (Georgiou 

et al. 2000)and the German (Kempkes et al. 1996; Steinhoff et al. 2000) populations, 

but not the Slovaks (Salagovic et al. 1999).  The lack of association of TP53 locus 

with susceptibility to bladder cancer is in agreement with the two previous bladder 

cancer studies (Wu et al. 1995; Chen et al. 2000) 

The patients were also grouped according to the stage of the disease to 

determine whether GST genotypes are associated with the invasiveness of the tumor 

(Table 19).  Although statistically significant results could not be obtained, the 

GST105 Ile/Val+ Val/Val genotypes appear to be a risk factor for invasiveness either 
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alone (OR: 2.06, 95% CI 0.91- 4.6) or in combination with the GSTM1 null genotype 

(OR: 3.42, 95% CI 0.96- 12.2).  GSTT1 and TP53 loci are not associated with 

invasiveness of bladder cancer.   

Bladder cancer is a malignancy in which gene-environment interactions are 

thought to play an important role in addition to the genetic status of the individual.  

Smoking is one of the important environmental risk factors. Since GSTs are involved 

in the metabolism of smoking related carcinogens such as epoxides and polycylic 

aromatic hyrocarbons,the risk of bladder cancer was anlyzed from GST genotypes by 

smoking status (Table 17), and the combined risk of bladder cancer associated with 

smoking and GST genotypes (Table 18).  In order to examine the genetic risk 

independently by eliminating the contribution of smoking to bladder cancer risk, we 

stratified the subjects by smoking status.  An association was observed only in 

individuals who smoke and carry the GSTM1 null genotype (OR 2.02; 95% CI 1.04-

3.93).  However, it should be noted  that the stratification process which reduced the 

analyzed number of samples may have resulted in statistically insignificant 

confidence intervals in the remaining groups.  Combined analyses of the smoking 

status and GST genotypes indicates an interaction between smoking and the GSTM1 

null genotype as well as the GSTP1 Ile/Val + Val/Val genotypes.  The risk figure is 

2.81 for the former and 2.38 for the latter. This observation is in accordance with the 

results of the U.S. (Bell et al. 1993) but not the Dutch (Mungan et al. 2000), and the 

Korean (Kim et al. 2000b) studies.  No data was available for GSTP1 locus in the 

literature for bladder cancer.  Neither stratification of the subjects according to their 

smoking status nor combined analysis revealed a significant association or 

interaction between smoking, and TP53 locus in terms of bladder cancer risk.  
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The combination of the GSTM1 null and the GSTP1 105 Ile/Val or ValVal 

genotypes leads approximately to a four times increased cancer risk when compared 

with the combination of the low risk genotypes of these loci (Table 17).  This 

observation suggests that gene-gene interactions may contribute to genetic 

susceptibility in bladder cancer.  Simultaneous analysis of the GSTM1 and GSTP1 

loci was conducted for bladder cancer in only one study from Germany (Steinhoff et 

al. 2000) where an increased risk was not observed.  On the other hand in a Japanese 

lung cancer (Kihara and Noda 1999), and a U.S. breast cancer (Helzlsouer et al. 

1998) study where the high risk genotypes of the GSTM1 and GSTP1 loci were 

analyzed simultaneously, a risk increase for combination of risky genotypes was 

detected. 

Population admixture is an important concern, particularly in countries like 

Turkey, having a genetically heterogenous population.  In order to avoid that 

problem, an independent random control group was also genotyped.  It was observed 

that the genotype distributions in the random group, and the age-sex matched control 

group are very similar for all genotyping experiments.  In addition the genotype 

frequencies of GSTM1, and GSTT1 genotypes in our control group (no data was 

present for GSTP1 locus) resemble the frequency figures from prior Turkish studies 

(Aktas et al, 2001; Oke et al, 1998).  Besides in a Turkish study an association for 

GSTM1 null genotype was observed (Aktas et al. 2001).  Therefore it is very 

unlikely that that the observed differences in age-sex matched control group, and 

bladder cancer group are not genuine. 
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Conclusion and Future Perspectives 

In this case- control study, the following observations are made 

 

1. GSTM1 null, and GSTP1 Ile105Val polymorphism, but not GSTT1 null, and 

TP53 Arg72Pro polymorphism is a genetic susceptibility factor for bladder 

cancer.  In addition the combination of the risky genotypes of GSTM1, and 

GSTP1 loci causes a substantial risk. 

2. GSTM1 null, and GSTP1 Ile105Val polymorphism, but not GSTT1 null, and 

TP53 Arg72Pro polymorphism is “marginally” (not statistically significant) 

associated with the invasiveness bladder cancer.  

3. The combined analysis of smoking and analyzed genes revealed that GSTT1 null, 

and TP53 Arg72Pro polymorphisms do not interact with smoking.  However the 

smokers who bear GSTM1 null or GSTP1 105 Ile/Val+Val/Val genotypes are 

under considerable risk compared to the non- smoking individuals who dont have 

these risky genotypes.   

 

As a future persrpective the followings can be done. 

1. This study should be replicated with a different cohort from the Turkish 

population.  Although it is unlikely, due to the reasons which are explained in 

the previous sections, population admixture is still a possibilty, which can not 

be totally ruled out, for the observed positive findings in this study.  

2. The marginal association of GSTM1, and GSTP1 loci with the invasiveness 

is quite interesting, additional patients can be enrolled to test that whether it is 

actual or an artifact. 
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3. Additional loci, which is thought  to be involved in bladder cancer 

pathogenesis, (Table ) can be analyzed with this study group. In my opinion 

XRCC1 is the first gene to study, since there is only one published paper 

about this gene in the litreature.  In the long run, multiple gene testing (e.g all 

the relevant polymorphisms) can be done by utilizing microarray technology. 
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