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ABSTRACT

ON THE EXISTENCE OF HOPF CYCLES IN

OPTIMAL GROWTH MODELS WITH TIME DELAY

Mustafa Kerem Yüksel

M.A., Department of Economics

Supervisor: Assist. Prof. Dr. Hüseyin Çağrı Sağlam

September 2008

In this thesis, we analyzed the existence of cycles à la Poincaré-Andronov-

Hopf in optimal growth models with time delay. The analysis builds upon

a new method developed, which investigates the number of pure imaginary

roots of the characteristic equation. The method was applied to the time-to-

build models of Asea and Zak (1999) and Winkler (2004).

Keywords: Hopf Cycles, Optimal Growth Models, Delay.
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ÖZET

ZAMAN GECİKMELİ OPTİMAL BÜYÜME

MODELLERİNDE HOPF DÖNGÜLERİNİN VARLIĞI

ÜZERİNE

Mustafa Kerem Yüksel

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Hüseyin Çağrı Sağlam

Eylül 2008

Bu çalışmada zaman gecikmeli optimal büyüme modellerinde Poincaré-

Andronov-Hopf tarzında döngülerin varlığı incelenmiştir. Burada kullanılan

analiz karakteristik denklemlerinin saf sanal köklerinin sayısını irdeleyen yeni

bir metod üzerine kurulmuştur. Bu metod Asea ve Zak (1999) ve Winkler

(2004) tipi yatırım-üretim gecikmeli modellere uygulanmıştır.

Anahtar Kelimeler: Hopf Döngüleri, Optimal Büyüme Modelleri, Yatırım-

Üretim Gecikmeli Modeller.
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CHAPTER 1

INTRODUCTION

1.1 Literature Survey

Just in the beginning of his monumental work The Age of Revolution 1789-

1848 (first publication 1962), which explores the world between this period,

Eric J. Hobsbawn was wise to state that ’words are witnesses which often

speak louder than documents’ and only two sentences later he listed some

words which had invented or gained meaning (in terms of their modern usage)

within this period, words such as ’capitalism’, ’industry’, ’working class’ etc.

and more strikingly ’(economic) crises’ and ’statistics.’

Economic crises entered in economic literature as early as Jean-Baptiste

Say (1803). By 1830, there were inquiries on early theories of cycles and

crises and certainly there was some awareness of periodicity of times of pros-

perity and distress1 (Besomi, 2008). According to Besomi (2008), one of the

1According to Besomi (2008) Wade (1833) supplied dates for some crises years (p. 150):
1763,1772, 1793, 1811, 1816, 1825–6. Jevons (1878) also gave years of crises: 1763, 1772–3,
1783, 1793, (1804–5?), 1815, 1825 (p. 231).

Wade, J. 1833. History of the middle and working classes; with a popular exposition of
the economical and political principles which have influenced the past and present condition
of the industrious orders. Also an Appendix of prices, rates of wages, population, poor-
rates, mortality, marriages, crimes, schools, education, occupations, and other statistical
information, illustrative of the former and present state of society and of the agricultural,
commercial, and manufactoring classes, London: Effingham Wilson (reprinted: New York:
Kelly, 1966). 2nd edition 1834, 3rd edition 1835.

Jevons, W.S. 1878 “Commercial crises and sun-spots”, Pt. 1, Nature, vol. XIX, 14
November, pp. 33–37. Reprinted in Investigations in Currency and Finance, ed. by H. S.
Foxwell, London: Macmillan, 1884, pp. 221–35.c(Besomi, 2008)
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first accounts of ”waves” were by Thomas Tooke who in his 1823 publication

Thoughts and Details on the High and Low Prices of the Last Thirty Years,

attributed these crises mainly to exogeneous events such as bad seasons etc.,

and later incorporated some endogenous factors. Hyde Clarke (1838) was

of interest with the idea that ”cycles in nature and society are subject to

an elementary mathematical law.” (Besomi, 2008) Although Clarke was not

specifically interested in economics, an enourmous literature built upon the

crises and cycles in economics. Citing Besomi (2008); Coquelin2 (1848) as-

serted that ”commercial perturbations have become in certain countries in

some degree periodical”; Lawson3 (1848) declared these period would be five

to seven years; Jevons (1878) claimed a strict periodicity of 11 years in his

survey with reference to ”most writers”. One should note that early inves-

tigators were eager to identify the reasons to be exogeneous shocks to the

system, such as wars, bad seasons, embargoes, oppressive duties, the dangers

and difficulties of transportation, social unrest increasing uncertainty, arbi-

trary exactions, jobbing and speculations etc. The common point was that

these shocks either distrupts the proper working of the system or the proper

functioning of the exchange or production mechanisms (Besomi, 2008). These

crises were assumed to be corrected in the course of the self-adjusting nature

of the economy just after the exogenous determinant is removed.

A second group of analysts were then trying to model these cycles as a

part of the natural course of the economy. These group views cycles as a

resultant behaviour intrinsic to economic activity, not disjunct occurances.

This approach forced them to identify the cyclic phenomenon and charac-

terize it. Quoting Besomi (2008), the transition from the exogenous shock

models to ”proper theories of the cycle was a gradual process that took sev-

eral decades, and was only completed at the eve of World War I with the

2Coquelin, C. 1848. “Les Crises Commerciales et la Liberté des Banques”, Revue des
Deux Mondes XXVI, 1 November, pp. 445–70. Abridged as Coquelin 1850. (Besomi, 2008)

3Lawson, J. A. 1848. On commercial panics: a paper read before the Dublin Statistical
Society, Dublin. (Besomi, 2008)
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theories of Tugan-Baranowsky, Spiethoff, Mitchell, Bouniatian, Aftalion and

a few others.” Once again, Wade was one of the first who ”explicitly spoke of

a commercial cycle intrinsic to a mercantile society” and ”inseparable from

mercantile pursuits.” (Besomi 2008) Moreover, as the cause of fluctuations,

Wade was one of the first to come up with the idea of ”the lag between change

in price, change in demand and change in production, on which the principal

cyclical mechanism implicitly relied, becomes apparent.” (Besomi, 2008)

In accordance with Besomi (2008), Persons (1926) also divides theorists

into two groups (without giving exact references, but by just mentioning

names) according to the their approach to cycles. We can replicate its tax-

onomy here. The first group consists of economist who emphasize on factors

other than economic institutions:

- Periodic agricultural cycles generate economic cycles: W. S. Jevons, H.

S. Jevons, H. L. Moore

- Uneven expansion in the output of organic and inorganic materials is

the cause of the modern crisis: Werner Sombart

- A specific disturbance, such as an unusual harvest, the discovery of new

mineral deposits, the outbreak of war, invention, or other ”accident,”

may disturb economic equilibrium and set in motion a sequence which,

however, will not repeat itself unless another specific disturbance occurs:

Thornstein Veblen, Irving Fischer, A. B. Adams

- Variations in the mind of the business community (affected, of course,

by specific economic disturbances) are the dominating cause of trade

cycles: A. C. Pigou, Ellsworth Huntington, M. B. Hexter.

The second group economists are those who emphasize on factors related

to economic institutions:

3



- Given our economic institutions (particularly capitalistic production

and private property) it is their tendency to develop business fluctu-

ations: Joseph Schumpeter, Gustav Cassel, E. H Vogel, R. E. May, C.

F. Bickerdike.

- The capitalistic or roundabout system of production is the primary

cause of business fluctuations: Arthur Spiethoff, D. H. Robertson, Al-

bert Aftalion, T. E. Burton, G. H. Hull, L. H. Frank, T. W. Mitchell,

J. M. Clark.

- Excessive accumulation of capital equipment, accompanied by maldis-

tribution of income, is responsible for lapses from prosperity to depres-

sion: Mentor Bouniatian, Tugan-Baranowsky, John A. Hobson, M. T.

England, W. H. Beveridge, N. Johannsen, E. J. Rich.

- The fluctuation of money profits is the center from which business cycles

originate (eclectic theories): W. C. Mitchell, Jean Lescure, T. N. Carver.

- The nature of the flow of money and credit, under our present monetary

system, is the element responsible for the interruption of business pros-

perity: R. G. Hawtrey, Major C. H. Douglas, W. T. Foster and Waddill

Catchings, A. H. Hansen, W. C. Schluter, H. B. Hastings, H. Abbati,

W. H. Wakinshaw, P. W. Martin, Bilgram and Levy.

Persons (1926) also gives the justification of this classification with refer-

ence to essential points of the theories thereafter.

One should also notice that the two groups are divided in their terminol-

ogy, too, which is very apt with their theoretical background. Those who

understood crises as disconnected events shaped their language accordingly

with frequent use of ”crises”; yet those who evaluate cycles as a part of the

state of the economy exploits the use of the word ”cycle”. The crises theo-

rist tried to identify to reasoning of each crisis with a particular exogenous
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shock which lies in the background of all the crisis. W. S. Jevons (1878), for

example, thought that the sunspots with the exact periodicity of 10.45 years

are the main cause of crop-failures of which he believed to be every 10.44

years and this results with an economic burst. H. S. Jevons considered heat

emissions by the sun with the periodicity of 3.5 years to be prior reason of

crop cycles and thus the economic cycles. Irving Fischer was the one who

put forward most common causes of fluctuations as increase in the quantity

of money, shock to business confidence, short crops and invention. Ellsworth

Huntington, interestingly, makes a connection between business cycles and

mental attitude of the community which depends on health. M. B. Hexter

tried to find a link between fluctuations in birth-rate and in death-rate and

fluctuations in business enterprise. (Persons, 1926) On the other hand, those

who are tied with the cycles perspective tried to find a causality in the system

where one state logically preceeds the other (Besomi, 2008). Joseph Schum-

peter, for example, thought cycles to be ”essentially a process of adapting the

economic system to the gains or advances of the respective periods of expan-

sion” (Persons, 1926). R. E. May blames increased productivity of labour;

Albert Aftalion indicates the existence and the universality of the new indus-

trial technique which has caused the appearance and repetition of economic

cycles; L. H. Frank explains cycles with his theory of variations in the rates

of production-consumption of consumers’ goods; Mentor Bouniatian comes

up with two ideas: (1) the idea that the modification of the social utility

of wealth, resulting from changes in the relation between the production of

goods and the need for them, is a cause of the general advance of prices in

a period of prosperity [...] and of decline in a crisis, (2) the idea that the

time-using capitalistic process [...] is at the basis of a period of advance.”

(Persons, 1926)4

As the theories of fluctuations improved from crises to cycles the question

4A more detailed list of theories and explanations can be found in Persons (1926).
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”how” takes place of the question ”why” (Besomi, 2008). Ragnar Frisch

(1933) offered to define the dynamics in a theory within a mathematical

setup5. Frisch and Holme (1935) tried to identify the roots a characteristic

equation of a specific type of mixed difference and differential equation which

occurs in economic dynamics of Michal Kalecki. (Kalecki will be discussed

later.)

The crises of capitalist mode of production had also a particular place

in marxist economic literature. Besomi (2008) references the ”the young

Friedrich Engels” who gives an elegant dialectical interpretation of the in his

Outlines of a Critique to Political Economy (1844, pp. 433-4). Although

neither Marx nor Engels put forward a complete theory of this cyclic crises,

they assumed that this cycles are intrinsically embedded in the nature of

capitalist production. Marx called these as ”realization crises” which are

based on the failure of the realization of the expected profits of the capitalist.

Failure were assumed to be rooted in the overproduction of the economy due

to insufficient planning, which Marx referred as the ”anarchy of the capitalist

production”. It was Michal Kalecki who tried to find mathematical reasoning

for the marxists approach in a series of papers during 1930s and later. In

his one of the most influential articles, Kalecki introduced lag structure in

the economy to explore the cyclic behaviour, which he showed rigorously

for the first time that business cycles depends endogenously to production

(investment) lags. (Kalecki, 1935) (A brief exposition of Kaleckian Model is

still to be discussed with the literature that builds upon.)

Before discussing in detail the Kaleckian setup and other models, we

should track the improvement of mathematical apparatus. Apparently, af-

ter a seminar by Kalecki at a meeting in the Econometric Society at Ley-

den, Frisch and Holme (1935) were first to analyze the roots of difference-

5Frisch (1933) was a model of persistent fluctuations as a result of the superposition of
random exogenous schocks upon a damped system. (Besomi, 2006). These type of models
will be revised later and finally evolve into real business cycle models.
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differential equations of the form
.
y (t) = ay(t) − cy(t − θ) and characterize

the main properties with respect to the roots according to the exogenous (em-

prical econometric) parameters a and c. It was James and Belz (1938) who

contributed to the mathematics of the problem by further characterization.

James and Belz (1938) suggested that ”a solution of a difference-differential

equation might be developed in terms of an infinite series of characteristic

solutions” and investigates ”the conditions under which such a development

is possible.” In addition to this, this paper gave methods ”for determining

the coefficients of the development, when it exists” and showed that the so-

lutions of certain forms of integro-differential equations ”can be given in the

form of an infinite series derived from a consideration of related difference-

differential equations.” Hayes (1950) partially closed the literature on roots

by giving the properties of the roots of transcendental equations of the form

τ(s) = ses − a1e
s − a2 = 0 which is nothing but the resultant characteristic

equation of a subset of difference-differential equations with constant coeffi-

cients, which frequently occur in dynamic economic systems with delays. As

Zak (1999) points out, the first thorough analysis of a general class of Delay

Differential Equations (DDEs) was by Bellman and Cooke (1963) with later

fundamental work by Hale (1977).

Kalecki (1935)6 introduced production lags, a time delay between the in-

vestment decisions and delivery of the capital goods, to show the generation

of endogenous cycles. Kalecki employed a linear delay differential equation of

the deviation of investment which he denoted as J .7 The investment equation

6A brief exposition of the Kalecki (1935) model and its properties can be found in Zak
(1999) and Szyd�lowski (2002). These texts reproduces Kalecki’s results with contemporary
techniques which are also employed in this thesis.

7Michal Kalecki studied the underlying forces of cycles in economy throughout his life
and his bunch of theories vary from linear difference differential equation systems to ex-
ogenous factors. As Besomi (2006), in his study about Kalecki’s business cycle theories,
pointed out Kalecki ”either failed to provide a rigorous proof of the stability of the cycle
when the model was endogenous or failed to provide an explanation of the cycle relying on
the properties of the economic system, resorting instead to exogenous shocks to explain the
persistence of fluctuations.” Kalecki interpreted cycles as the dynamic expression of the
”intrinsic antagonism of capitalism” however he ”acknowledged the existence of disturbing
factors, from which he abstracted in order to isolate a pure cycle.” Besomi (2006) also

7



was J̇ (t) = AJ(t) − BJ(t − θ)8. Kalecki’s models exhibit endogenous cycles

by employing simple time lags in a linear DDE. Lags in the model serves two

purposes: (1) Lag structure was emprically significant9 and (2) linear ordi-

nary differentials equations are known to be unable to give cyclic solutions

while linear DDEs may exhibit endogenous cycles. Apart from showing that

there can exist endogeously driven cycles in the economy rather than crises

determined by exogeneous schocks, Kalecki developed the mathematical tech-

niques to characterize the stabiliy properties in linear DDEs. Obviously, one

should wait for Hayes (1950) for a full understanding of the stability proper-

ties in linear one delay DEs, although Kalecki (1935) presented a thorough

stability analysis (Zak, 1999). Kaldor (1940) criticizes Kalecki (1935) by

pointing out that the drawback of the model is that ”the existence of an

undamped cycle can be shown only as a result of a happy coincidence, of

a particular constellation of the various time-lags and parameters assumed”

and ”the amplitude of the cycle depends on the size of the initial shock.”

Instead Kaldor (1940) proposed a nonlinear investment decision to obtain

cycles of the economy. Inspired by Kaldor (1940), Ichimura (1954) explored

the possibility of an economic system with a unique limit cycle; Chang and

Smyth (1971) reexamined the model and stated the necessary and sufficient

conditions of an existence of a limit cycle; Grasman and Wentzel (1994) con-

sidered the co-existence of a limit cycle and an equilibrium.The dynamics of

Kaldor-Kalecki type of models have been extensively studied on a series of

papers by Krawiec and Szyd�lowski (1999, 2000, 2001, 2005) and Krawiec, et

al. (1999). Kaldor-Kalecki models has two mechanisms which would lead to

reports that ”Kalecki’s models describes damped fluctuations around a line of stationary
equilibrium and rely for the persistence o fluctuations on exogenous shocks” and moreover,
all his models ”crucially depend for cyclicality upon one or more reaction lags.”

8The exact LDDE studied by M. Kalecki (1935, pp. 332) was
.

J (t) = m
θ J(t)−m+nθ

θ J(t−
θ) where m and n were assumed to constants.

9Kalecki (1935, pp. 337-338) estimates the lag between the curves of beginning and
termination of building schemes (dwelling, industrial and public buildings) as 8 months
and lags between orders and deliveries in the machinery-making industry as 6 months
based on the data supplied by German Institut fuer Konjunkturforschung. He assumed
”that the average duration of θ is 0.6 years.”

8



cyclic behaviour, one being the nonlinearity of the investment function and

the other being the time delay in investment (Krawiec and Szyd�lowski, 2001).

Krawiec and Szyd�lowski (1999, 2001) proves that it is the time to build as-

sumption rather that the nonlinear (s-shaped) investment function that leads

to the generation of cycles.

The main tool in these papers for creating cycles is the Hopf bifurcation.

”In 1942, Hopf published the ground-breaking work in which he presented

the conditions necessary for the appearance of periodic solutions, represented

in phase space by a limit cycle” (Szyd�lowski, 2002). With reference to the

contributors of the study of the sufficient conditions under which periodic

orbits occur from stationary states are called Poincaré–Andronov–Hopf the-

orems (These theorems are inserted just before their appropriate use in the

thesis for the sake of completeness). As Kind (1999) points out generally it

is easy to prove the Hopf bifurcation since it doesn’t require any information

on the nonlinear parts of the equation system. Moreover, in systems with

the dimension higher than two, the Hopf bifurcation may be the only tool

for the analysis of the cyclical equilibria, since the Poincaré-Bendixson theo-

rem is not applicable. Furthermore, when the conditions of Hopf bifurcation

is satisfied, it guarantees both the existence and uniqueness of periodic tra-

jectories (Krawiec and Szyd�lowski, 1999). However, Hopf theorem gives no

information on the number and the stability of closed orbits. On the other

hand, nonlinear parts can be used in the calculation of a stability coefficient in

order to determine the stability properties of the closed orbits (Kind, 1999).

Guckenheimer and Holmes (1983, Thm 3.4.2, pp. 151-153) both gives the

theory and an example in that direction. Feichtinger (1992) is an example of

such a calculation in economic literature.

Zak (1999) summarized Kalecki’s contribution and extended his results

to a general equilibrium setup, which has been an open reseearch area until

9



then10. Zak (1999) inserts a production lag into a basic one sector Solowian

model and showed that the results also admits Hopf cycles under certain

conditions. Later, Krawiec and Szyd�lowski (2004) reprodued the results and

improved the analysis of the same model. Zak (1999) also copies the results

of an important contribution to the literature which marked an important

”false” attempt to extend the same analysis to the optimal growth models

(OGM) with lags. Asea and Zak (1999) was the first to lay out the main

tools and showed that there exists a cyclic behaviour in these type of model.

However, this paper contains a little error on the dynamic equations which

erroneously leads to Hopf cycles. The corrected characteristic equation11 is

not easy to analyze to find out whether the roots satisfy Hopf conditions, so

studies afterwards turn to numerical analysis to reveal periodic behaviour.

Winkler, et al. (2003), Winkler, et al. (2005), Collard, et al. (2006), Col-

lard, et al. (2008), Brandt-Pollmann, et al. (2008) are among such studies.12

Unlike Solowian systems which result with a characteristic equation of the

form h(λ)
def
= λ − Ae−λr = 0; in optimal growth models, one should deal

with more complex characteristic equations. Apart from the nonlinearity of

the utility and production functions, OGM is governed by a 2-by-2 system

of equations (one for state and the other for control dynamics), so the de-

gree of the polynomial is greater, if one can mention about degree of quasi

polynomials. Collard, et al. (2006) numerically showed that the advanced

terms in Euler equations governing the dynamic system dampens the fluc-

tuation caused by the lags through a kind of smoothing effect (They call

this phenamenon ’time-to-build echo’). Short run dynamics of time-to-build

10Zak (1999, pp. 325ff) also claimed that Kaleckian cycle in Kalecki (1935) was nothing
but Hopf cycles.

11Winkler et all. (2003) gives the correct dynamics and characteristic equations for any
utility and production function. In Collard et all. (2008) one can find the correct dynamics
and characteristic equations for a specific concave production function (f(k) = Akα) and
in Collard et all. (2006) the case of CES utility function (u(c) = c1−σ−1

1−σ ) and the same
production technology is studied.

12The mathematical background of the nonexistence of Hopf bifurcation will be main
theme of this thesis and discussed later.
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echoes was further studied by Collard, et al. (2008) in where one can find the

associated numerical simulations. Winkler, et al. (2004) provides numerical

solutions of models of time delay OGMs for a linear limitational production

function, while Winkler, et al. (2005) gives a numerical analysis of a time-

lagged capital accumulation OGM with Leontief type of production functions.

Brandt-Pollmann, et al. (2008) extends the numerical solutions to objective

functions with state externalities.

Dockner (1985) was of special interest since it directed a new research of

Hopf cycles in economy. Dockner (1985) gave the root characteristics (local

stability properties) of a 4-by-4 system of dynamic equations in a simple form,

where these 4-by-4 is generally the resultant dynamics of nonlinear optimal

control problems with one control and two state variables. These results have

been exploited extensively by Wirl in a series of papers13, with models of two

states, one inducings an externality on the objective function. Note that the

etiology of cycles in these models are the externality which is expressed with

one of the state variables in objective function, rather than time delays in the

evolution of states. The optimality of such cycles has been studied by Dockner

and Feichtinger (1991). Optimality of cycles (in a similar two state approach)

in more specific setups has also been studied. Wirl (1994) investigates cyclical

optimality in a Ramsey model with wealth effects and Wirl (1995) repeats the

same for renewable resource stocks can be exemplified. Wirl (1992) simplifies

the findings of Dockner (1985) in economic framework of two-dimensional

optimal control models and gives an economic interpretation to the necessary

conditions for cyclic behaviour. Wirl (1994) repeats and extends Wirl (1992).

Wirl (1997, 1999, 2002) further extend the results to optimal control problems

with one state and an externality. Since the externality is not included in

the Hamiltonian of the optimal control problem, the model has a 3-by-3

dynamics, yet the findings are in similar direction. Wirl (1999) constructs an

13See various papers in references.
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environmental model and repeats the analysis. Wirl (2004) analyzes a model

of optimal saving with optimal intertemporal renewable resources in terms of

thresholds and cycles.

One should also mention the seminal work by Kydland and Prescott

(1982). In their paper, Kydland and Prescott (1982) formulated a discrete

time theoretical framework and showed that US post-war economy fitted well.

This is one of the major studies that supports the idea that the time-to-build

assumption contributes to the cyclical behaviour in the economy even when

the simplest equilibrium growth model is employed.

In this thesis, the author tries to sharpen the analysis of one sector OGM

with one control and one state variables and time delays. One of the by-

products of this study is the proof of the nonexistence of Hopf bifurcation in

a similar model of Asea and Zak (1999). Moreover, the nonexistence of Hopf

bifurcations in OGM models of with time delays will be generalized. The main

outcome of this study is the presentation of a new method for the analysis

of the quasi-polynomials with a degree of two. With the employment of this

method, the nonexistence of Hopf cycles in Ramsey type optimal growth

models with delay was shown.

1.2 Characteristic Equation of Dynamic Sys-

tems and Its Roots

A dynamic system of differential equations induces a characteristic equation

of which the placement of the roots of the equations in the complex plane

gives clues about the behaviour (stability, indeterminacy etc.) of the system.

The characteristic equation determines the behaviour of the system near its

steady state (i.e. equilibrium point). Following Hale and Lunel (1993, pp.

17), a linear differential equation of the form
.
x (t) = Ax(t) + Bx(t− r) has a

nontrivial solution ceλt (c, constant) if and only if h(λ)
def
= λ−A−Be−λr = 0.
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Because of the transcendental function of λ, this is not a polynomial but is

the type of funtional form which is called quasi-polynomials. The analysis of

quasi-polynomials in economics dates back to M. Kalecki (1935). In his paper,

Kalecki (1935) introduced a gestation period to the model and ended up with a

quasi-polynomial. Later, Frisch and Holme (1935) and James and Belz (1938)

contributed to the literature on the characteristic solutions of mixed difference

and differential equations. However, a major breakthrough in the analysis was

by Hayes (1950). Hayes gave the properties of certain difference-differential

equations, mainly the ones of the form h(λ)
def
= λeλr − Aeλr − B = 014. Note

that this equation is equivalent in roots with the equation above.

Periodic solutions to dynamic systems are also analyzed extensively in

control theory. One way to detect limit cycles is Hopf bifurcation. Hopf bi-

furcation discards tedious calculations and provides a powerful and easy tool

to detect limit cycles. Kind (1999) comfirms this by stating ”in most cases

the proof of a Hopf bifurcation is not difficult because it does not require

any information on the nonlinear parts of the equation system. Moreover, in

systems whose dimensions are higher than two, the Hopf bifurcation theorem

may constitute the only tool for the analysis of cyclical equilibria, since the

Poincaré–Bendixson theorem is not applicable in these cases”. Hopf cycles

appear when a fixed point loses or gains stability due to a change in a param-

eter and meanwhile a cycle either emerges from or collapses in to the fixed

point (Asea and Zak, 1999). Under the circumstances the system can either

have a stable fixed point sorrounded by an unstable cycle (called a subcritical

Hopf bifurcation); or a stable cycle loses its stability and a stable cycle ap-

pears (called a supercritical Hopf bifurcation) as the parameter(s) approaches

to a critical value (Asea and Zak, 1999). Both cases can be economically sig-

nificantly meaningful. Supercritical case which implies a stable cycle can be

considered as a stylized business cycle or growth cycles and the subcritical

14For a summary of the roots of certain types of quasi-polynomials, see Özbay (2000,
pp. 110-113).
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case can correspond to the corridor stability. (Kind, 1999)

Let us state the Poincaré-Andronov-Hopf Theorem (Hale and Koçak,

1991, Thm. 11.12, pp. 344) here for the sake of completeness:

Theorem 1 (Poincaré-Andronov-Hopf, Hale and Koçak, 1991) Let
.
x =

A(μ)x + F(μ,x) be a Ck, with k ≥ 3, planar vector field depending on a

scalar parameter μ such that. F(μ, 0) = 0 and DxF(μ, 0) = 0 for all suf-

ficienty small |μ|. Assume that the linear part A(μ) at the origin has the

eigenvalues α(μ) ± iβ(μ) with α(0) = 0 and β(0) �= 0. Furthermore, sup-

pose that the eigenvalues cross the imaginary axis with nonzero speed, that

is, dα
dμ

(0) �= 0. Then, in any neighborhood U of the origin in R2 and any

given μ0 > 0 there is a μ with |μ| < μ0 such that the differential equation

.
x = A(μ̄)x + F(μ̄,x) has a nontrivial periodic orbit in U .

According to the above theorem, one can summarize the sufficient condi-

tions for Hopf Bifurcation as follows:

- (H1) A(μ) has only one pair of pure imaginary eigenvalues15. (Pre-Hopf

Condition)16

- (H2) These eigenvalues cross the imaginary axis with nonzero speed,

i.e., dα
dμ

(0) �= 0. (Transverse Crossing)

The pre-Hopf condition is necessary for Hopf Bifurcation. Therefore, if

this condition is not met Hopf Bifurcation doesn’t exist for the system which

implies that limit cycles do not occur via Hopf Bifurcation, if not via any

other way17.

15Note that A(μ) is nothing but the Jacobian matrix that results from linearization of
the system, if the system is nonlinear. If x̄ is the equilibrium point of ẋ = f(x), then

the linear differential equation ẋ = Df(x̄)x =

(
∂f1
∂x1

(x) ∂f1
∂x2

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x)

)
is the linear variational

equation or the linearization of the vector field f at the equilibrium point x̄. (Hale and
Koçak, 1991, Defn. 9.4, pp. 267)

16The name is given by the author of the thesis.
17Asea and Zak (1999, pp. 1164ff) mentions other ways in which periodic orbits may

arise. Heteroclinic orbits are given as an option, yet there are stated to be ”rare”.
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The scope of this thesis is limited to 2-by-2 systems, if not the results can

be generalized to larger dimensional systems. In a 2-by-2 dynamic system of

differential equations, the characteristic equation is generally a quadratic one,

if not a quasi polynomial. Below, we presented a method to determine one pair

of pure imaginary eigenvalues from the characteristic equation. Define h1(λ)

be the characteristic equation of a 2-by-2 system of differential equations of

.
x and

.
u, which is of the form:

(
∂

.
u (t)

∂u (t)
|(x,u) − λ

)(
∂

.
x (t)

∂x (t)
|(x,u) − λ

)
− ∂

.
u (t)

∂x (t)
|(x,u)

∂
.
x (t)

∂u (t)
|(x,u) = 0. (1.1)

Define h2(λ, m) where m ∈ C as follows:

(
∂

.
u (t)

∂u (t)
|(x,u) − λ − m

)(
∂

.
x (t)

∂x (t)
|(x,u) − λ + m

)
= 0. (1.2)

Proposition 1 {λ ∈ C|h2(λ, m) = 0 ∧ h2(λ, m) = h1(λ)} =

{λ ∈ C|h1(λ) = 0}
Proof Suppose λ ∈ {μ ∈ C|h2(μ, m) = 0 ∧ h2(μ, m) = h1(μ)} .Then there

exists m ∈ C such that h2(λ, m) = 0 ∧ h2(λ, m) = h1(λ). But then h1(λ) =

h2(λ, m) = 0, that is λ ∈ {μ ∈ C|h1(μ) = 0}, i.e.

{λ ∈ C|h2(λ, m) = 0 ∧ h2(λ, m) = h1(λ)} ⊆ {λ ∈ C|h1(λ) = 0}

On the contrary, suppose λ ∈ {μ ∈ C|h1(μ) = 0}. Now let m be such that

m(
∂

.
u (t)

∂u (t)
|(x,u) − ∂

.
x (t)

∂x (t)
|(x,u)) − m2 = −∂

.
u (t)

∂x (t)
|(x,u)

∂
.
x (t)

∂u (t)
|(x,u)

Then we have:

h1(λ) =

(
∂

.
u (t)

∂u (t)
|(x,u) − λ

)(
∂

.
x (t)

∂x (t)
|(x,u) − λ

)
− ∂

.
u (t)

∂x (t)
|(x,u)

∂
.
x (t)

∂u (t)
|(x,u) = 0
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=

(
∂

.
u (t)

∂u (t)
|(x,u) − λ

)(
∂

.
x (t)

∂x (t)
|(x,u) − λ

)
+ m(

∂
.
u (t)

∂u (t)
|(x,u) − ∂

.
x (t)

∂x (t)
|(x,u)) − m2

=

(
∂

.
u (t)

∂u (t)
|(x,u) − λ − m

)(
∂

.
x (t)

∂x (t)
|(x,u) − λ + m

)
= h2(λ, m).

Thus, λ ∈ {μ ∈ C|h2(μ, m) = 0 ∧ h2(μ, m) = h1(μ)},
i.e.

{λ ∈ C|h2(λ, m) = 0 ∧ h2(λ, m) = h1(λ)} ⊇ {λ ∈ C|h1(λ) = 0} .

Therefore,

{λ ∈ C|h2(λ, m) = 0 ∧ h2(λ, m) = h1(λ)} = {λ ∈ C|h1(λ) = 0}

�

The proposition above declares that roots of the h1(λ) = 0 is also the roots

of h2(λ, m) = 0 for some m ∈ C, and vice versa. That is, no roots of the

characteristic equation is discarded with the transformation. The point in this

transformation of h1(λ) to h2(λ, m) is that now h2(λ, m) is a product of two

polynomials (possibly quasi-polynomials if delay is incorporated in the model)

which is easy to study. One can show the nonexistence of the Hopf Bifurcation

by showing that there are more than one pair of pure imaginary roots to

any of the polynomials of which their product constitutes the characteristic

equation, so by contradicting the pre-Hopf condition. On the contrary, one

can also show that pre-Hopf condition is met by simply showing that one of

the polynomials admit one pair of pure imaginary roots and the other admits

none.
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CHAPTER 2

A GENERAL ONE SECTOR MODEL WITH DELAY

Consider the following model which will be base for the analysis of models in

the thesis:

max
∞∫
0

e−rtf(x(t), u(t))dt

subject to

.
x (t) = g1 (x(t − d)) + g2 (u(t − τ)) + g3 (x(t)),

x (0) = x0 and (x (t) ,
.
x (t)) ⊂ R2,

For all the models used, the following assumptions on parameters were

made throughout the text, unless otherwise stated. The discount factor is

positive (r > 0); the delay parameters are nonnegative if they are employed

(τ , d ≥ 0); depreciation is nonnegative if it is used (δ ≥ 0). The results holds

for any assumption on the utility and production functions provided that the

solution exists, given their differentiability. So, suppose f(x, u) ∈ C3(R2,R)

and g1(x) ∈ C3(R,R).

The corresponding Hamiltonian of the system will be:

H (x(t), u(t), λ(t), t) =

e−rtf(x(t), u(t)) + λ (t) [g1 (x(t − d)) + g2 (u(t − τ )) + g3 (x(t))] , (2.1)

17



Given the standard notation for partial derivatives, i.e. fx ≡ ∂f
∂x

, the first

order conditions (FOCs) will be as follows:

Hu = 0 : fue
−rt + λ (t + τ ) g2u = 0,

Hx = −
.

λ (t) : −
.

λ (t) = e−rtfx + λ(t + d)g1x + λ(t)g3x,

Hλ =
.
x (t) :

.
x (t) = g1 (x(t − d)) + g2 (u(t − d)) + g3 (x(t)),

After some tedious calculations which is given in appendix A

u̇ (t)

[
f u u − fug2 u u

g2u

]
+ fux

.
x =

(r − g3x(t + d))fu + g2u

(
e−rτfx(t + τ) − e−rd fu(t + d)

g2u(t + d)
g1x(t + τ )

)
, (2.2)

Consistent with the standart assumptions of economic theory, let us con-

centrate on the case that

g1u = g2x = g3u = g2 u u = g2ux = 0

Then, from the first order conditions, the dynamics of the DDE system

will be as follows:

f uuu̇ (t) + fuxẋ =[
(r − g3x(t + d))fu + g2u

(
e−rτfx(t + τ) − e−rd fu(t + d)

g2u(t + d)
g1x(t + τ )

)]
,

(2.3)

ẋ (t) = g1 (x(t − d)) + g2 (u(t − d)) + g3 (x(t)). (2.4)

Given f u u �= 0, the steady state equations will be as follows:

18



(r − g3x(x))fu(x, u) + g2u(u)
(
e−rτfx(x, u) − e−rd fu(x,u)

g2u(u)
g1x(x)

)
= 0,

g1(x) + g2(u) + g3(x) = 0.

In order to determine the characteristic equation of the system, we should

first obtain the characteristic matrix. The elements of the characteristic ma-

trix are as follows yet their derivation is given in the Appendix B.

∂
.
u (t)

∂u (t)
|(x,u) =

(
r − e−rdedλg1x − g3x

)
+

fxu

f u u

(
e−rτeλτ − e−λτ

)
g2u, (2.5)

∂
.
u (t)

∂x (t)
|(x,u) =

1

f u u
[(r − 2g3x − e−rdedλg1x − g1xe

−λd)fux

− fu

(
e−rdeλτg1xx + g3xxe

λd
)

+ g2ue
−rτfxxe

λτ ], (2.6)

∂
.
x (t)

∂u (t)
|(x,u) = g2ue

−λτ , (2.7)

∂
.
x (t)

∂x (t)
|(x,u) = g1xe

−λd + g3x. (2.8)

Accordingly, the general form of the characteristic equation can be recast

as:

(
∂

.
u (t)

∂u (t)
|(x,u) − λ

)(
∂

.
x (t)

∂x (t)
|(x,u) − λ

)
− ∂

.
u (t)

∂x (t)
|(x,u)

∂
.
x (t)

∂u (t)
|(x,u) = 0. (2.9)
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2.1 Extended Ramsey Setup: Standart Ram-

sey with Wealth Externalities

Suppose f(x(t), u(t)) be some utility function, d = 0 = τ , g1 (x(t)) =

p (x(t)) − δx(t) for some production function and g2 (u(t)) = −u(t) for the

control (consumption) and state (capital) variables u(t) and x(t).

max
∞∫
0

e−rtf(x(t), u(t))dt

subject to

.
x (t) = p (x(t)) − u(t) − δx(t),

x (0) = x0 and (x (t) ,
.
x (t)) ⊂ R2,

This model is a simple Ramsey type optimal growth model with wealth

externalities in the objective function. The corresponding Hamiltonian of the

system will be:

H (x(t), c(t), λ(t), t) = e−rtu(x(t), c(t)) + λ (t) [p (x(t)) − u(t) − δx(t)] .

(2.10)

The FOC will be as follows:

Hc = 0 : fue
−rt − λ (t) = 0,

Hx = −
.

λ (t) : −
.

λ (t) = e−rtfx + λ(t)(px − δ),

Hλ =
.
x (t) :

.
x (t) = p (x(t)) − u(t) − δx(t)).

Then, from the first order conditions, the dynamics of the DE system will

be as follows:

.
u (t) =

1

f u u
((r + δ − px) fu − fx − fux

.
x) , (2.11)
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.
x (t) = p (x(t)) − u(t) − δx(t)). (2.12)

Given f u u �= 0, the steady state equations will be as follows:

(r + δ − px) fu = fx,

p(x) − δx = u.

The corresponding characteristic equation of the system will be obtained

from the following elements of the characteristic matrix.

∂
.
u (t)

∂u (t)
|(x,u) = (r + δ − px) , (2.13)

∂
.
u (t)

∂x (t)
|(x,u) =

1

f uu
[(r + 2 (δ − px))fux + fupxx − fxx] , (2.14)

∂
.
x (t)

∂u (t)
|(x,u) = −1, (2.15)

∂
.
x (t)

∂x (t)
|(x,u) = px − δ. (2.16)

As mentioned before, the general form of the characteristic equation will

be

(r + δ − px − λ) (px − δ − λ) +
1

f uu
[(r + 2 (δ − px))fux + fupxx − fxx] = 0.

(2.17)

This is a quadratic equation where the roots are

λ1,2 =
r

2
±
√

(r + 2(δ − px))2 − 4
f u u

[(r + 2 (δ − px))fux + fupxx − fxx]

2
.

(2.18)

Since r �= 0, there is no Hopf Bifurcation in the model because the pre-

Hopf condition is not satisfied.
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2.2 The Model with
.
x (t) = p (x(t − d)) − δx(t −

d) − u(t)

Let f(x(t), u(t)) be an utility function and τ = 0, g1 (x(t)) = p (x(t)) −
δx(t) for some production function p(.) and g2 (u(t)) = −u(t) for the control

(consumption) and state (capital) variables u(t) and x(t).

max
∞∫
0

e−rtf(x(t), u(t))dt

subject to

.
x (t) = p (x(t − d)) − δx(t − d) − u(t),

x (0) = x0 and (x (t) ,
.
x (t)) ⊂ R2,

This model is an extended version of the Ramsey model with time-to-

build delay. Asea and Zak (1999) analyzes a simpler version where the wealth

externality is omitted, which will also be the main interest here. This model

is optimized here to obtain the fisrt order conditions of the most general form

at hand. The corresponding Hamiltonian of the system will be:

H (x(t), u(t), λ(t), t) =

e−rtf(x(t), u(t)) + λ (t) [p (x(t − d)) − δx(t − d) − u(t)] . (2.19)

The FOCs are as follows:

Hu = 0 : fue
−rt = λ (t) ,

Hx = −
.

λ (t) : −λ̇ (t) = e−rtfx + λ(t + d)(px − δ),

Hλ =
.
x (t) :

.
x (t) = p (x(t − d)) − δx(t − d) − u(t).

Then, from the first order conditions, the dynamics of the DE system will

be as follows:
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.
u (t) =

1

f u u

[
rfu − fx − e−rdfu(t + d)(px − δ) − fux

.
x
]
, (2.20)

.
x (t) = p (x(t − d)) − δx(t − d) − u(t). (2.21)

Given f u u �= 0, the steady state equations are as follows:

(
r − e−rd(px − δ)

)
fu = fx,

p(x) − δx = u.

The corresponding characteristic equation of the system is obtained from

the following elements of the characteristic matrix.

∂
.
u (t)

∂u (t)
|(x,u) =

(
r − e−rdeλd(px − δ)

)
, (2.22)

∂
.
u (t)

∂x (t)
|(x,u) =

1

f u u

[
(rfux − fxx + (e−rdeλd − e−λd)(px − δ)fux − fue

−rdpxx

]
, (2.23)

∂
.
x (t)

∂u (t)
|(x,u) = −1, (2.24)

∂
.
x (t)

∂x (t)
|(x,u) = e−λd(px − δ). (2.25)

Characteristic equation of the dynamic system is obtained as follows

(
r − e−rdeλd(px − δ) − λ

) (
e−λd(px − δ) − λ

)
+

1

f uu

[
(rfux − fxx + (e−rdeλd − e−λd)(px − δ)fux − fue

−rdpxx

]
= 0. (2.26)

23



Lets switch back to Asea and Zak (1999) and find out the reasons of the

nonexistence of Hopf cycles. The only difference of this model and Asea and

Zak (1999) is the wealth externality in the objective function, which is absent

in the beforementioned paper. To achieve the same model, we can simply

assume fx = 0. Then, we obtain the following characteristic equation:

(
r − e−rdeλd(px − δ) − λ

) (
e−λd(px − δ) − λ

)− fu

f u u
e−rdpxx = 0, (2.27)

The important point in this analysis is the existence of one pair of imagi-

nary root to the characteristic equation that would lead to Hopf bifurcation.

Asea and Zak (1999) unfortunately obtained an erroneous characteristic equa-

tion and showed the existence of Hopf cycles. Collard, et al. (2008) couldn’t

show the existence of such roots for the corrected equation. Actually, their

conjucture was the cycles are smoothened by the advanced terms in dynamic

equations of the system. This is numerically verified.

The main contribution of the thesis is that it presents a coinsize method

to show whether there are pure imaginary roots to the characteristic equation

or not, and whether there are one piar or more given their existence. Before

applying our method it must be noted that the steady state equation reduces

to r = e−rd(px−δ). For the ease of notation, let us define A ≡ − fu

f u u
e−rdpxx ∈

R. Suppose that there exists

α + iβ = m ∈ C

such that

(
r − e−rdeλd(px − δ) − λ − m

) (
e−λd(px − δ) − λ + m

)
= 0

=
(
r − e−rdeλd(px − δ) − λ

) (
e−λd(px − δ) − λ

)
+ A. (2.28)
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We are interested in pure imaginary roots to the equation, so suppose there

exists λ = iω where ω ∈ R:

(
r − e−rdeiωd(px − δ) − iω − m

) (
e−iωd(px − δ) − iω + m

)
= 0, (2.29)

m(r − e−rdeiωd(px − δ) − e−iωd(px − δ)) − m2 = A. (2.30)

Now the equation (??) leads to two equations since the real and imaginary

parts of the left and right hand sides should be equal. Recalling the Euler’s

formula which states eiθ = cos θ + i sin θ, the extension of the equation (??)

is as follows:

(α + iβ)
[
r − (px − δ)(e−rd + 1) cos dω − i(px − δ)(e−rd − 1) sin dω

]
− (α + iβ)2 = A, (2.31)

A quick analysis of this equation states that β �= 0 (i.e. m ∈ C \ R). If

m ∈ R i.e. β = 0, then the equation becomes

α
[
r − (px − δ)(e−rd + 1) cos dω − i(px − δ)(e−rd − 1) sin dω

]− α2 = A

which implies that (px − δ)(e−rd − 1) = r(1− erd) = 0 which contradicts with

rd �= 0. Thus β �= 0. The two equations that are derived from the real and

complex parts of the equation (??) are as follows:

25



α
[
r − (px − δ)(e−rd + 1) cos dω

]
+ β

[
(px − δ)(e−rd − 1) sin dω

]
− (α2 − β2

)
= A, (2.32)

− α
[
(px − δ)(e−rd − 1) sin dω

]
+ β

[
r − (px − δ)(e−rd + 1) cos dω

]
− 2αβ = 0, (2.33)

The characteristic equation was cast as

(
r − e−rdeλd(px − δ) − λ − m

)︸ ︷︷ ︸ (
e−λd(px − δ) − λ + m

)︸ ︷︷ ︸ = 0.

Polynomial 1 Polynomial 2

i. Let us first suppose

(
e−iωd(px − δ) − iω + m

)
= 0 (2.34)

and ignore polynomial 1 of the equation (??). This will lead to two

equations from the real and imaginary parts of the equality, which are;

cos dω =
−α

px − δ
, (2.35)

sin dω =
β − ω

px − δ
. (2.36)

By means of these equations:

|α| ≤ |px − δ| , (2.37)

|β − ω| ≤ |px − δ| . (2.38)
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Now, substituting (??) and (??) into equations (??) and (??), we obtain

that

α
[
r + α(e−rd + 1)

]
+ β

[
(e−rd − 1) (β − ω)

]− (α2 − β2
)

= A, (2.39)

−α
[
(e−rd − 1) (β − ω)

]
+ β

[
r + α(e−rd + 1)

]− 2αβ = 0. (2.40)

A brief analysis states that α �= 0. If α = 0, then βr = 0, i.e. r = 0, a

contradiction. With the earlier finding of β �= 0, we found that m is neither

of the form m = α ∈ R nor m = iβ ∈ C, but m = α + iβ ∈ C.

If we rearrange the terms of the equation (??):

β =
−ω(e−rd − 1)

r
α. (2.41)

If we substitute β from equation (??) into equation (??), we obtain the

following quadratic equation:

α2

[
1 +

(
ω(e−rd − 1)

r

)2
]

e−rd + α

[
r +

(
ω(e−rd − 1)

)2
r

]
− A = 0. (2.42)

With every solution α to the equation (??), we have a corresponding β

that will constitute a solution α + iβ = m to the equation (??).

Note that if
(
r − e−rdeiωd(px − δ) − iω − m

)
= 0 has no solution and

this quadratic equation has only one root , then pre-Hopf condition is ver-

ified. However, if there exists two different α’s to the quadratic equa-

tion, then there will definitely be more than one pure imaginary roots

for the characteristic equation irrespective of the number of solutions to
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(
r − e−rdeiωd(px − δ) − iω − m

)
= 0. Without any effort, this will imply that

the pre-Hopf condition is not justified. This is one of the vital elements of this

thesis that it provides a clear cut method for the analysis of the verification

of the pre-Hopf condition.

In order to eliminate the imaginary roots and justify the existence of two

distinct solutions the following relation should be justified:

(
r +

(
ω(e−rd − 1)

)2
r

)2

+ 4A

[
1 +

(
ω(e−rd − 1)

r

)2
]

e−rd > 0. (2.43)

Note that this relation holds for any parameter combination if A > 0.

However, under the neoclassical assumptions, which are fu > 0, f uu < 0 and

pxx < 0, A = − fu

f u u
e−rdpxx < 0. Therefore a further analysis should be made

to determine the root characteristics of equation (??).

ii. We also have to concentrate on the other polynomial of the character-

istic equation (??). So, suppose

(
r − e−rdeiωd(px − δ) − iω − m

)
= 0. (2.44)

This implies that:

cos dω =
(r − α)

px − δ
erd =

(r − α)

r
, (2.45)

sin dω = −(ω + β)

px − δ
erd =

−(ω + β)

r
. (2.46)

First of all, equations (??) and (??) insert two inequalities:

|r − α| ≤ e−rd |px − δ| = |r| , (2.47)
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|ω + β| ≤ e−rd |px − δ| = |r| . (2.48)

Now, substituting (??) and (??) into (??) and (??), we achieve that

α
[
r − (r − α)(erd + 1)

]− β
[
(ω + β)(1 − erd)

]− (α2 − β2
)

= A, (2.49)

α
[
(ω + β)(1 − erd)

]
+ β

[
r − (r − α)(erd + 1)

]− 2αβ = 0. (2.50)

If we rearrange the terms of the equation (??):

β =
ω(erd − 1)

r
α. (2.51)

If we insert β of the equation (??) into the equation (??), we obtain the

following quadratic equation:

erd(1 +

(
ω(erd − 1)

r

)2

)α2 −
(

rerd +

(
ω(erd − 1)

)2
r

)
α − A = 0. (2.52)

In order to eliminate the imaginary roots and justify the existence of two

distinct solutions the following relation should be justified:

(
rerd +

(
ω(erd − 1)

)2
r

)2

+ 4Aerd

(
1 +

(
ω(erd − 1)

r

)2
)

> 0. (2.53)

Similarly we should further our studies about the roots of this equation

under neoclassical assumptions A = − fu

f u u
e−rdpxx < 0.

Obviously, number of roots to the characteristic equation (??) will be

determined by the signs of the relations (??) and (??). Consider the following
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table (Let #m denote the number of roots to equations (??) or (??)):

#m eqn. (??)> 0 eqn. (??)= 0 eqn. (??)< 0

eqn. (??)> 0 ≥ 2 ≥ 2 ≥ 2

eqn. (??)= 0 ≥ 2 ≤ 2 ≤ 1

eqn. (??)< 0 ≥ 2 ≤ 1 = 0

If we rewrite this table in terms of pre-Hopf condition we arrive the fol-

lowing:

#m eqn. (??)> 0 eqn. (??)= 0 eqn. (??)< 0

eqn. (??)> 0 No Hopf No Hopf No Hopf

eqn. (??)= 0 No Hopf ≤ 2 ≤ 1

eqn. (??)< 0 No Hopf ≤ 1 No Hopf

Note that the elements of the first row and first column don’t meet the

pre-Hopf condition already since in these conditions there exists more than

one pure imaginary roots. However relations (??)< 0 and (??)< 0 doesn’t

meet the pre-Hopf condition because there is no pure imaginary root. For the

sake of completeness, we will show that the rest of the cases are not possible

simultaneously.

Before all, consider the functional form in equation (??):

(
r +

(
ω(e−rd − 1)

)2
r

)2

+ 4A

[
1 +

(
ω(e−rd − 1)

r

)2
]

e−rd

Rearranging the terms,

(
r +

(
ω(e−rd − 1)

)2
r

)2

+ 4A

[
1 +

(
ω(e−rd − 1)

r

)2
]

e−rd =

(
r +

(
ω(e−rd − 1)

)2
r

)2

+
4A

r

[
r +

(
ω(e−rd − 1)

)2
r

]
e−rd =
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(
r +

(
ω(e−rd − 1)

)2
r

+
2A

r
e−rd

)2

− 4A2

r2
e−2rd =

1

r

(
r +

(
ω(e−rd − 1)

)2
r

)(
r2 +

(
ω(e−rd − 1)

)2
+ 4Ae−rd

)
=

1

r︸︷︷︸
(

r +

(
ω(e−rd − 1)

)2
r

)
︸ ︷︷ ︸

(
r2 +

(
ω(e−rd − 1)

)2
+ 4Ae−rd

)
.

> 0 > 0

(2.54)

It is then clear that

(
r +

(ω(e−rd−1))
2

r

)2

+ 4A

[
1 +

(
ω(e−rd−1)

r

)2
]

e−rd � 0

if and only if r2 +
(
ω(e−rd − 1)

)2
+ 4Ae−rd � 0.

Case 1: Suppose relations (??)< 0 and (??)= 0 hold simultaneously. These

imply that

r2 +
(
ω(e−rd − 1)

)2
+ 4Ae−rd < 0, (2.55)

and

A = −
(
r2erd +

(
ω(erd − 1)

)2)2

4erd
(
r2 + (ω(erd − 1))2

) . (2.56)

Substituting (??) into (??):

r2 +
(
ω(e−rd − 1)

)2 −
(
r2erd +

(
ω(erd − 1)

)2)2

erd
(
r2 + (ω(erd − 1))2

) e−rd =

r2 +
(
ω(e−rd − 1)

)2 −
(
r2 + e−rd

(
ω(erd − 1)

)2)2

r2 + (ω(erd − 1))2 =

r2
(
ω(erd − 1)

)2
+ r2e−2rd

(
ω(erd − 1)

)2 − 2r2e−rd
(
ω(erd − 1)

)2
r2 + (ω(erd − 1))2 =
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r2
(
ω(erd − 1)

)2
r2 + (ω(erd − 1))2

(
1 + e−2rd − 2e−rd

)
=

r2
(
ω(erd − 1)

)2
r2 + (ω(erd − 1))2

(
1 − e−rd

)2
> 0 (2.57)

which leads to a conradiction with (??). Thus this case is not possible.

Case 2: Suppose relations (??)= 0 and (??)= 0 hold simultaneously. These

imply that

r2 +
(
ω(e−rd − 1)

)2
+ 4Ae−rd = 0, (2.58)

and

A = −
(
r2erd +

(
ω(erd − 1)

)2)2

4erd
(
r2 + (ω(erd − 1))2

) . (2.59)

Substituting (??) into (??):

r2 +
(
ω(e−rd − 1)

)2 −
(
r2erd +

(
ω(erd − 1)

)2)2

erd
(
r2 + (ω(erd − 1))2

) e−rd =

r2 +
(
ω(e−rd − 1)

)2 −
(
r2 + e−rd

(
ω(erd − 1)

)2)2

r2 + (ω(erd − 1))2 =

r2
(
ω(erd − 1)

)2
+ r2e−2rd

(
ω(erd − 1)

)2 − 2r2e−rd
(
ω(erd − 1)

)2
r2 + (ω(erd − 1))2 =

r2
(
ω(erd − 1)

)2
r2 + (ω(erd − 1))2

(
1 + e−2rd − 2e−rd

)
=

r2
(
ω(erd − 1)

)2
r2 + (ω(erd − 1))2

(
1 − e−rd

)2
> 0. (2.60)

which leads to a conradiction with (??). Thus this case is not possible.
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Case 3: Suppose relations (??)= 0 and (??)< 0 hold simultaneously. These

imply that

r2 +
(
ω(e−rd − 1)

)2
+ 4Ae−rd = 0 (2.61)

i.e., A = −r2+(ω(e−rd−1))
2

4e−rd and

(
rerd +

(
ω(erd − 1)

)2
r

)2

+ 4Aerd

(
1 +

(
ω(erd − 1)

r

)2
)

< 0. (2.62)

Substituting (??) into (??):

(
rerd +

(
ω(erd − 1)

)2
r

)2

− r2 +
(
ω(e−rd − 1)

)2
e−rd

erd

(
r2 +

(
ω(erd − 1)

)2
r2

)
=

1

r2
[
(
r2erd +

(
ω(erd − 1)

)2)2

−
(
r2 +

(
ω(e−rd − 1)

)2)
e2rd

(
r2 +

(
ω(erd − 1)

)2)
] <

1

r2

(
r2erd +

(
ω(erd − 1)

)2) [
r2erd − r2e2rd

]
=

erd
(
r2erd +

(
ω(erd − 1)

)2) [
1 − erd

]
< 0, (2.63)

Even if at first glance (??)= 0 and (??)< 0 seems to be consistent. How-

ever, further investigation on the roots wil lead a contradiction. r2 +
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(
ω(e−rd − 1)

)2
+ 4Ae−rd = 0 implies that equation (??), i.e.,

α2

[
1 +

(
ω(e−rd − 1)

r

)2
]

e−rd + α

[
r +

(
ω(e−rd − 1)

)2
r

]
− A = 0

has only one (double) root. Then;

α = −r

2
erd, (2.64)

By equation (??):

β =
ω(1 − erd)

2
, (2.65)

Then by equations (??) and (??),

cos dω =
1

2

rerd

px − δ
=

1

2
, (2.66)

sin dω =
ω(1−erd

2
− 1)

px − δ
= −1

2

ω(erd + 1)

px − δ
, (2.67)

Then dω = ±π
3
. Suppose dω = π

3
, then sin dω =

√
3

2
= −1

2
ω(erd+1)

px−δ
, i.e.

ω = −
√

3(px−δ)
(erd+1)

= −
√

3rerd

(erd+1)
. That is, 0 > −π

3
√

3
= rderd

(erd+1)
> 0, a contradiction.

Now, suppose dω = −π
3
, then sin dω = −√

3
2

= −1
2

ω(erd+1)
px−δ

, i.e. ω =
√

3(px−δ)
(erd+1)

=
√

3rerd

(erd+1)
. That is, 0 > −π

3
√

3
= rderd

(erd+1)
> 0, another contradiction. Thus, even

if there is only one pure imaginary root, this root is not consistent with the

rest of the system. Therefore, this case is not also possible.

Finally, after showing that the three cases are also not possible we can

conclude that no matter what the sign of the relations (??) and (??) pre-

Hopf condition is not verified. Therefore Hopf cycles for this type of optimal

growth models with time-to-build delay is not analytically possible.
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2.3 The Model with
.
x (t) = p (x(t − d)) − u(t −

d) − δx(t)

Suppose f(x(t), u(t)) be some utility function, τ = d, g1 (x(t)) = p (x(t)) and

g3 (x(t)) = −δx(t) for some production function and g2 (u(t)) = −u(t) for the

control (consumption) and state (capital) variables u(t) and x(t).

max
∞∫
0

e−rtf(x(t), u(t))dt

subject to

.
x (t) = p (x(t − d)) − u(t − d) − δx(t),

x (0) = x0 and (x (t) ,
.
x (t)) ⊂ R2,

This is another type of delay structure in the literature.Winkler (2004)

analyzes a simpler version where the wealth externality is omitted, which will

also be the main interest here. The corresponding Hamiltonian of the system

is:

H (x(t), u(t), λ(t), t) =

e−rtf(x(t), u(t)) + λ (t) [p (x(t − d)) − u(t − d) − δx(t)] . (2.68)

The FOCs are as follows:

Hu = 0 : fue
−rt = λ (t + d) ,

Hx = −
.

λ (t) : −
.

λ (t) = e−rtfx + λ(t + d)px − λ(t)δ,

Hλ =
.
x (t) :

.
x (t) = p (x(t − d)) − u(t − d) − δx(t).

(2.69)

After some tedious calculations:
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.
u (t) f u u = (r−δ)fu−

(
e−rdfx(t + d) + e−rdfu(t + d)px(t + d)

)−fux
.
x. (2.70)

Now in correlation with the assumptions of the economic theory, assume

g1u = g2x = g3u = g2 u u = g2ux = 0 (2.71)

Then, from the first order conditions, the dynamics of the DE system are

as follows:

.
u (t) +

fux

f u u

.
x =

1

f uu

[
(r − δ)fu −

(
e−rdfx(t + d) + e−rdfu(t + d)px(t + d)

)]
, (2.72)

.
x (t) = p (x(t − d)) − u(t − d) − δx(t). (2.73)

Given f u u �= 0, the steady state equations are as follows:

(r + δ − e−rdpx(x))fu = e−rdfx,

p(x) − δx = u.

The corresponding characteristic equation of the system is obtained from

the following elements of the characteristic matrix.

∂
.
u (t)

∂u (t)
|(x,u) =

(
r + δ − e−rdedλpx

)− fxu

f u u

(
e−rdeλd − e−λd

)
, (2.74)
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∂
.
u (t)

∂x (t)
|(x,u) =

1

f u u
[(r + 2δ − e−rdedλpx − pxe

−λd)fux

− fue
−rdeλdpxx − e−rdfxxe

λd], (2.75)

∂
.
x (t)

∂u (t)
|(x,u) = −e−λd, (2.76)

∂
.
x (t)

∂x (t)
|(x,u) = pxe

−λd − δ. (2.77)

Consider the model without wealth externality in the model, i.e. fx = 0.

Then the characteristic equation reduces:

(
r + δ − e−rdedλpx − λ

) (
pxe

−λd − δ − λ
)− fu

f u u
e−rdpxx = 0. (2.78)

Note that the steady state condition turns into r + δ = e−rdpx. Moreover,

for the ease of notation assume A ≡ − fu

f u u
e−rdpxx ∈ R. Suppose there exists

α + iβ = m ∈ C

such that

(
r + δ − e−rdedλpx − λ − m

) (
pxe

−λd − δ + m
)

= 0

=
(
r + δ − e−rdedλpx − λ

) (
pxe

−λd − δ − λ
)

+ A. (2.79)

We are interested in pure imaginary roots to the equation, so suppose

there exists λ = iω where ω ∈ R. So the equations become;
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(
r + δ − e−rdedλpx − λ − m

) (
pxe

−λd − δ − λ + m
)

= 0, (2.80)

m(r + 2δ − (e−rdedλ + e−λd
)
px) − m2 = A. (2.81)

Substituting m in (??):

(α + iβ)
[
r + δ − px(e−rd + 1) cos dω − i(e−rd − 1)px sin dω

]
− (α + iβ)2 = A. (2.82)

A quick analysis of this equation states that β �= 0 (i.e. m ∈ C \ R). If

m ∈ R i.e. β = 0, then this will imply that (e−rd−1)px = 0 which contradicts

with rd �= 0. Thus β �= 0. Now the equation (??) leads to two equations from

the real and imaginary parts.

α
[
r + δ − px(e−rd + 1) cos dω

]
+ β(e−rd − 1)px sin dω

− (α2 − β2
)

= A, (2.83)

−α(e−rd − 1)px sin dω + β
[
r + δ − px(e−rd + 1) cos dω

]− 2αβ = 0. (2.84)

The characteristic equation was cast as:

(
r + δ − e−rdedλpx − λ − m

)︸ ︷︷ ︸ (
pxe

−λd − δ − λ + m
)︸ ︷︷ ︸ = 0.

Polynomial 1 Polynomial 2
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i. Let us first suppose

pxe
−λd − δ − λ + m = 0. (2.85)

and ignore polynomial 1 of (??). From the real and imaginary parts;

cos dω =
δ − α

px

, (2.86)

sin dω =
β − ω

px

. (2.87)

By means of these equations:

|δ − α| ≤ px, (2.88)

|β − ω| ≤ px. (2.89)

Now, inserting (??) and (??) into (??) and (??), we obtain

α
[
r − δe−rd + α(1 + e−rd)

]
+ β(e−rd − 1) (β − ω)

− (α2 − β2
)

= A, (2.90)

−α(e−rd − 1) (β − ω) + β
[
r − δe−rd + α(1 + e−rd)

]− 2αβ = 0. (2.91)

If we rearrange the terms of the equation (??),

β =
−ω(e−rd − 1)

r − δe−rd
α. (2.92)
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If we insert β into equation (??), we obtain the following quadratic equa-

tion:

α2

[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

e−rd + α

[
r +

(
ω(e−rd − 1)

)2
r − δe−rd

]
− A = 0. (2.93)

Note that this is similiar with equation (??). The condition for the exis-

tence of real roots is as follows,

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

+ 4A

[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

e−rd > 0. (2.94)

Under the neoclassical assumptions, fu > 0, f u u < 0 and pxx < 0. Thus,

A = − fu

f uu
e−rdpxx < 0. We should further our studies about the roots of this

equation under neoclassical assumptions.

ii. We should also have to concentrate on the other part of the character-

istic equation (??). Now suppose

(
r + δ − e−rdedλpx − λ − m

)
= 0.

Then

cos dω =
(r + δ − α)

px
erd, (2.95)

sin dω =
−(ω + β)

px
erd. (2.96)

First of all, these equations insert two inequalities:

|r + δ − α| ≤ e−rdpx, (2.97)
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|ω + β| ≤ e−rdp. (2.98)

Now, inserting (??) and (??) into (??) and (??), we achieve that

α
[
α(1 + erd) − (r + δ) erd

]− β(1 − erd)(ω + β)

− (α2 − β2
)

= A, (2.99)

α(1 − erd)(ω + β) + β
[
α(1 + erd) − (r + δ) erd

]− 2αβ = 0. (2.100)

If we rearrange the terms of the equation (??),

β =
ω(1 − erd)

erd (r + δ)
α. (2.101)

If we insert β into (??), we obtain the following quadratic equation:

erd(1+

(
ω(1 − erd)

erd (r + δ)

)2

)α2−
(

(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

)
α−A = 0. (2.102)

For the elimination of the imaginary solutions and the existence of two

distinct solutions we should the following relation should hold,

(
(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

)2

+ 4Aerd

(
1 +

(
ω(1 − erd)

erd (r + δ)

)2
)

> 0. (2.103)

Now, we have to analyze equations (??) and (??) so that we can determine

the number of roots the characteristic equation (??). Consider the following

table (Let #m denote the number of roots to equations (??) or (??)) :
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#m eqn. (??)> 0 eqn. (??)= 0 eqn. (??)< 0

eqn. (??)> 0 ≥ 2 ≥ 2 ≥ 2

eqn. (??)= 0 ≥ 2 ≤ 2 ≤ 1

eqn. (??)< 0 ≥ 2 ≤ 1 = 0

If we rewrite this table in terms of pre-Hopf condition we arrive the fol-

lowing:

#m eqn. (??)> 0 eqn. (??)= 0 eqn. (??)< 0

eqn. (??)> 0 No Hopf No Hopf No Hopf

eqn. (??)= 0 No Hopf ≤ 2 ≤ 1

eqn. (??)< 0 No Hopf ≤ 1 No Hopf

Note that the elements of the first row and first column don’t meet the

pre-Hopf condition already since in these conditions there exists more than

one pure imaginary roots. However relations (??)< 0 and (??)< 0 doesn’t

meet the pre-Hopf condition because there is no pure imaginary root. For the

sake of completeness, we will show that the rest of the cases are not possible

simultaneously.

Before all, consider the functional form of equation (??), i.e.,

(
(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

)2

+ 4Aerd

(
1 +

(
ω(1 − erd)

erd (r + δ)

)2
)

.

Rearranging the terms

(
(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

)2

+ 4Aerd

(
1 +

(
ω(1 − erd)

erd (r + δ)

)2
)

=
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(
(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

+
2A

(r + δ)

)2

− 4A2

(r + δ)2 =

(
(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

)
(

(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

+
4A

(r + δ)

)
=

erd

(r + δ)

(
(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

)
(

(r + δ)2 +
(
ω(e−rd − 1)

)2
+ 4Ae−rd

)
=

(
e2rd +

(
ω(1 − erd)

(r + δ)

)2
)

︸ ︷︷ ︸
(

(r + δ)2 +
(
ω(e−rd − 1)

)2
+ 4Ae−rd

)
.

> 0

(2.104)

So, we conclude that

(
(r + δ) erd +

(ω(1−erd))
2

erd(r+δ)

)2

+

4Aerd

(
1 +

(
ω(1−erd)
erd(r+δ)

)2
)

� 0 if and only if (r + δ)2 +
(
ω(e−rd − 1)

)2
+

4Ae−rd � 0.

Case 1: Suppose (??)< 0 and (??)= 0 simultaneously. These imply that

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

+ 4A

[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

e−rd < 0 (2.105)

and

A = −
(

(r + δ)2 +
(
ω(e−rd − 1)

)2)
4e−rd

. (2.106)
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Substituting A;

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

−
(

(r + δ)2 +
(
ω(e−rd − 1)

)2)[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

=

1

(r − δe−rd)2 [
(
r
(
r − δe−rd

)
+
(
ω(e−rd − 1)

)2)2

−
(

(r + δ)2 +
(
ω(e−rd − 1)

)2)((
r − δe−rd

)2
+
(
ω(e−rd − 1)

)2)
] =

−δ

(r − δe−rd)2

[
(2r + δ)

(
r − δe−rd

)2
+
(
2r + δ(1 + e−rd)

)]
< 0. (2.107)

At first glance (??)< 0 and (??)= 0 seems consistent. However, further

investigation wil lead a contradiction. (??)= 0 implies that

erd(1+

(
ω(1 − erd)

erd (r + δ)

)2

)α2−
(

(r + δ) erd +

(
ω(1 − erd)

)2
erd (r + δ)

)
α−A = 0. (2.108)

has only one (double) root. Then;

α =
r + δ

2
, (2.109)

β =
ω(1 − erd)

2erd
. (2.110)

Then,

cos dω =
(r + δ)

2px
erd =

1

2
,

sin dω = −1

2

ω(erd + 1)

px
. (2.111)

Then dω = ±π
3
. Suppose dω = π

3
, then sin dω =

√
3

2
= −1

2
ω(erd+1)

px
,

i.e. ω = −
√

3px

(erd+1)
= −

√
3(r+δ)erd

(erd+1)
. That is, 0 > −π

3
√

3
=

√
3(r+δ)derd

(erd+1)
> 0, a

contradiction. Now, suppose dω = −π
3
, then sin dω = −√

3
2

= −1
2

ω(erd+1)
px

,
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i.e. ω =
√

3px

(erd+1)
=

√
3(r+δ)erd

(erd+1)
. That is, 0 > −π

3
√

3
=

√
3(r+δ)derd

(erd+1)
> 0, another

contradiction. Thus, even if there is only one pure imaginary root, this root

is not consistent with the rest of the system. Therefore, pre-Hopf condition

is not met for this case.

Case 2: Suppose (??)= 0 and (??)= 0 simultaneously. These imply that

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

+ 4A

[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

e−rd = 0 (2.112)

and

A = −
(

(r + δ)2 +
(
ω(e−rd − 1)

)2)
4e−rd

. (2.113)

Substituting A;

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

−
(

(r + δ)2 +
(
ω(e−rd − 1)

)2)
e−rd

[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

e−rd =

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

−
(

(r + δ)2 +
(
ω(e−rd − 1)

)2)[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

=

1

(r − δe−rd)2 [
(
r
(
r − δe−rd

)
+
(
ω(e−rd − 1)

)2)2

−
(

(r + δ)2 +
(
ω(e−rd − 1)

)2)((
r − δe−rd

)2
+
(
ω(e−rd − 1)

)2)
] =
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−δ

(r − δe−rd)2

[
(2r + δ)

(
r − δe−rd

)2
+
(
2r + δ(1 + e−rd)

)]
< 0. (2.114)

This contradicts with equation (??). Therefore this case is also not pos-

sible.

Case 3: Suppose (??)= 0 and (??)< 0 simultaneously. These imply that

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

+ 4A

[
1 +

(
ω(e−rd − 1)

r − δe−rd

)2
]

e−rd = 0, (2.115)

and

(r + δ)2 +
(
ω(e−rd − 1)

)2
+ 4Ae−rd < 0. (2.116)

Substituting A;

1

r − δe−rd

[
r − δe−rd +

(
ω(e−rd − 1)

)2
r − δe−rd

] [
(r + δ)2 +

(
ω(e−rd − 1)

)2]

−
(

r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

>

1

r − δe−rd

[
r +

(
ω(e−rd − 1)

)2
r − δe−rd

] [
(r + δ)2 +

(
ω(e−rd − 1)

)2]

−
(

r +

(
ω(e−rd − 1)

)2
r − δe−rd

)2

=

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)(
(r + δ)2

r − δe−rd
− r

)
=

δ

(
r +

(
ω(e−rd − 1)

)2
r − δe−rd

)(
2r + δ + e−rd

r − δe−rd

)
> 0. (2.117)
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However, this is contradicting to equation (??). Therefore this case is also

not possible. Note that these steps are correct irrespespective of the sign of

r − δe−rd.

Finally, after showing that the three cases are also not possible we can

conclude that no matter what the sign of the relations (??) and (??) pre-Hopf

condition is not verified. Therefore Hopf cycles for this type of optimal growth

models with this time-to-build delay structure is not analytically possible.
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CHAPTER 3

CONCLUSION

The main outcome of this study is the presentation of a new method for the

analysis of the quasi-polynomials with a degree of two1. With the employ-

ment of this method, the nonexistence of Hopf cycles in Ramsey type optimal

growth models with delay was shown. The existence of Hopf cycles was of

interest especially after Asea and Zak (1999), yet their cycle was a result of

an unfortunate erroneous characteristic equation. Collard, et al. (2008) con-

jectures a damping oscillation in the resultant dynamics due to the advanced

term in governing dynamic equations. Collard, et al. (2008) employed a

numerical simulation to expose the conjecture. The thesis proves the nonex-

istence of the periodic Hopf cycles in OGM with delay analytically for the

first time.

The analysis relies upon the number of pure imaginary roots to the char-

acteristic equation. The Hopf cycles can only be obtained under the existence

of only one pair of pure imaginary roots. With the employment of the tech-

nique presented here, the study shows that the characteristic equation of

Ramsey type optimal growth models leads to zero or two pure imaginary

roots. This, in turn, guarantees the nonexistence of Hopf cycles, since the

1Degree of quasi-polynomials is an abuse of language. Here the quasi-polynomials of
degree two implies a functional form

(e±λτ + c1 − λ)(e±λτ + c2 − λ) = 0.
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pre-Hopf condition is not satisfied.

The study can be extended in many ways. The case with wealth exter-

nalities which is incorporated in the objective function is one extension that

comes to mind, naturally. The complexity of the resultant equations are one

of the obstacles that prevents such an analysis in a brief way. The study

can also be extended so that it covers endogenous discounting, embodied and

disembodied technical change etc.
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APPENDIX

Finding
.
u in the general model:

From the first order conditions

Hu = 0 : fue
−rt + λ (t + τ ) g2u = 0, (3.1)

Hx = −
.

λ (t) : −
.

λ (t) = e−rtfx + λ(t + d)g1x + λ(t)g3x, (3.2)

Hλ =
.
x (t) :

.
x (t) = g1 (x(t − d)) + g2 (u(t − d)) + g3 (x(t)). (3.3)

Now taking the time derivative of equation (??), we obtain:

−rfue
−rt+e−rt(fuxẋ+f u uu̇)+λ̇ (t + τ) g2u+λ (t + τ ) g2 u u

.
u = 0, (3.4)

From equation (??), we also obtain the following equalities:

λ (t + τ ) = −e−rt fu

g2u
, (3.5)

λ (t) = −e−r(t−τ ) fu(t − τ )

g2u(t − τ)
, (3.6)

λ (t + d) = −e−r(t+d−τ ) fu(t + d − τ )

g2u(t + d − τ )
. (3.7)

Substituting equation (??) and (??) into (??), we obtain:

.

λ (t) = −e−rtfx + e−r(t+d−τ ) fu(t + d − τ)

g2u(t + d − τ)
g1x

+ e−r(t−τ ) fu(t − τ)

g2u(t − τ)
g3x, (3.8)

and

.

λ (t + τ ) = −e−r(t+τ)fx (t + τ)

+ e−r(t+d) fu(t + d)

g2u(t + d)
g1x (t + τ) + e−rt fu

g2u
g3x (t + τ) . (3.9)
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Using equation (??), (??) and (??), we find the following equation[
−e−rτfx (t + τ ) + e−rd fu(t + d)

g2u(t + d)
g1x (t + τ) +

fu

g2u
g3x (t + τ)

]
g2u

− rfu + (fux
.
x + f u u

.
u) − fu

g2u

g2 u u
.
u = 0, (3.10)

and finally by rearranging terms

.
u (t)

[
f u u − fug2 u u

g2u

]
+ fux

.
x =

(r − g3x(t + d))fu + g2u

(
e−rτfx(t + τ ) − e−rd fu(t + d)

g2u(t + d)
g1x(t + τ)

)
,

(3.11)

Derivation of the Elements of the Characteristic Matrix:

From the equation (3.11),

∂
.
u (t)

∂u (t)
|(x,u) =

1

f uu

[rf uu − fux

(
g1ue

−λd + g2ue
−λτ + g3u

)
+ g2 u u

(
e−rdfx − e−rτ fu

g2u

g1x

)
− g3xf u u − g3xufue

λd

+ g2u

(
e−rτfxue

λτ − e−rd
(f u ue

dλg1x + fue
λτg1xu) − g2 u u

g2u
fug1xe

λτ

g2u

)
],

(3.12)

Now since g1u = g2x = g3u = g2 u u = g2ux = 0;

∂
.
u (t)

∂u (t)
|(x,u) =

1

f uu
[rf uu − fuxg2ue

−λτ

+ g2u

(
e−rτfxue

λτ − e−rdf u ue
λdg1x

g2u

)
− g3xf u u] (3.13)

=
1

f u u

[
(
r − e−rdedλg1x − g3x

)
f u u − fuxg2ue

−λτ + g2ue
−rτfxue

λτ ] (3.14)

=
(
r − e−rdedλg1x − g3x

)
+

fxu

f u u

(
e−rτeλτ − e−λτ

)
g2u. (3.15)

Similarly,
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∂
.
u (t)

∂x (t)
|(x,u) =

1

f uu

[(r − g3x)fux − g3xxfue
λd

+ g2ux

(
e−rτfx − e−rd fu

g2u
g1x

)
− fux

(
g1xe

−λd + g3x

)
+ g2u

(
e−rτfxxe

λτ − e−rd
(fuxe

dλg1x + fue
λτg1xx) − g2ux

g2u
fug1xe

λτ

g2u

)
],

(3.16)

With the same assumptions, i.e., g1u = g2x = g3u = g2 u u = g2ux = 0;

∂
.
u (t)

∂x (t)
|(x,u) =

1

f uu
[(r − 2g3x − e−rdedλg1x − g1xe

−λd)fux

− fu

(
e−rdeλτg1xx + g3xxe

λd
)

+ g2ue
−rτfxxe

λτ ], (3.17)
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