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ABSTRACT

PHYSICAL SIMULATION OF WOOD COMBUSTION
BY USING PARTICLE SYSTEM

Gizem GÜRCÜOĞLU

M.S. in Computer Engineering

Supervisor: Prof. Dr. Bülent ÖZGÜÇ

August, 2010

In computer graphics, the most challenging problem is modeling natural phe-

nomena such as water, fire, smoke etc. The reason behind this challenge is the

structural complexity, as the simulation of natural phenomena depends on some

physical equations that are difficult to implement and model. In complex phys-

ically based simulations, it is required to keep track of several properties of the

object that participates in the simulation. These properties can change and their

alteration may affect other physical and thermal properties of object. As one

of natural phenomena, burning wood has various properties such as combustion

reaction, heat transfer, heat distribution, fuel consumption and object shape in

which change in one during the duration of simulation alters the effects of some

other properties.

There have been several models for animating and modeling fire phenomena.

The problem with most of the existing studies related to fire modeling is that

decomposition of the burning solid is not mentioned, instead solids are treated

only as fuel source.

In this thesis, we represent a physically based simulation of a particle based

method for decomposition of burning wood and combustion process. In our work,

besides being a fuel source, physical and thermal affects of combustion process

over wood has been observed. A particle based system has been modelled in

order to simulate the decomposition of a wood object depending on internal and

external properties and their interactions and the motion of the spreading fire

according to combustion process.

Keywords: Solid models, physically based modeling, fire simulation, wood com-

bustion, wood decomposition.
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ÖZET

ODUN YANMASININ PARÇACIK SİSTEM TABANLI
FİZİKSEL SİMÜLASYONU

Gizem GÜRCÜOĞLU

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Bülent ÖZGÜÇ

Ağustos, 2010

Bilgisayar grafiğinde, en karmaşık sorun, su, ateş, duman ve benzeri doğal

fenomenlerin modellenmesidir. Bu karmaşanın ardındaki neden yapısal olup,

doğal fenomen simülasyonlarının, uygulanması ve modellenmesi zor olan fizik-

sel denklemlere dayanmasıdır. Karmaşık fiziksel simülasyonlarda, simülasyona

katılan cismin çeşitli özelliklerinin kayıt altına alınması gerekmektedir. Bu

özellikler değişebilir ve bunların değişimi, cismin diğer fiziksel ve termal

özelliklerini etkileyebilir. Doğal fenomenlerden biri olan odun yanması da, yanma

reaksiyonu, ısı aktarımı, ısı yayılımı, yakıt tüketimi ve cisim şekli gibi çeşitli

özelliklere sahiptir ki simulasyon süresince bunların herhangi birindeki değişim,

bazı diğer özelliklerin etkilerini değiştirir.

Ateş fenomeninin modellenmesi ve hareketlendirilmesini içeren bir çok model

bulunmaktadır. Ateş modellenmesi ile ilgili var olan çalışmaların çoğundaki

sorun, yanan katı cismin parçalanmasına değinilmemiş olunması, bunun yerine

katı cismin sadece yakıt kaynağı olarak kullanılmasıdır.

Bu tezde, yanan odunun parçalanması ve yanma sürecinin parçacık tabanlı

yönteme dayanan fiziksel simulasyonunu sunuyoruz. Bu çalışmamızda, odunun

yakıt kaynağı olmasının dışında, yanma sürecinin odun üzerindeki fiziksel ve ter-

mal etkileri gözlemlenmektedir. Odun cisminin içsel ve dışsal özellikleri ve bun-

ların etkileşimlerine dayanan parçalanma, ve yanma sürecine göre belirlenen ateş

yayılım hareketi simülasyonu için parçacık tabanlı sistem modellenmiştir.

Anahtar sözcükler : Katı modeller, fiziksel modelleme, ateş simülasyonu, odun

yanması, odun parçalanması.
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Chapter 1

Introduction

Motivation

In computer graphics, complex physical simulations have important role in

creating realistic graphical applications. Many complex physical simulations re-

quire modeling of different number of natural phenomena. To provide realism,

the level of accuracy is retrieved by keeping the track of all the details of all

physical phenomena. However, in computer graphics it is not preferred. Instead,

the physical model is simplified and a simple simulation is used to implement the

physical model.

One of the significant complex physical phenomena is fire modeling. In [2–

16], many researchers have proposed several approaches to model and render fire

propagation. However, in these fire models, none of them has emphasized the

decomposition of burning solid. Instead, they only treated solids as fuel source,

as in [17].

In computer graphics, object deformation has been widely used in simulations.

As [18], some of them have not been applied to physical applications, they only

used to deform purely geometric techniques; others such as [19–21] have been ap-

plied to physical simulations in order to change the shape of an object depending

on physical principles.
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CHAPTER 1. INTRODUCTION 2

One of the deformable objects that has been widely worked on is wood. It has a

complex chemical structure. Effects of physical and thermal combustive reactions

have different affects on wood object. In literature, there is a significant amount

of research that has been done in order to understand the chemical, physical

and thermal combustion mechanism of wood. Some of these studies have worked

on the complete combustion phases of wood [22, 23]. Some of them focus on

subprocesses such as drying, pyrolysis, char gasification, or thermal conductivity

and thermal diffusivity values that trigger the combustion reaction of wood [24–

30].

Although there are many significant studies in areas of complex physical sim-

ulations such as fire construction and propagation, wood combustion and object

deformation; there has not been any approach yet that combine all of these to-

gether.

In this thesis, we have focused on physically based simulation of wood com-

bustion by using particle system. In our work, not only a simple simulation

will be presented, but by generalizing the approach presented in [24], we will

model a real combustion process and its graphical simulation depending on ori-

ented particle system approach. During the combustion process, hot volatiles are

produced. Depending on the gas production, we will propagate fire. Moreover,

decomposition of wood object will be analyzed according to the real combustion

reaction equations. Additionally, since our simulation depends on physics, we

will also model falling behavior of wood object under combustion depending on

physical and thermal changes. Thus, our aim is merging all above areas in order

to simulate a real wood combustion process as a complex physical simulation.

Outline of the Thesis

• Chapter 2 presents a comprehensive investigation of the previous work on

Particle Systems, Wood Structure and Combustion, Fire and Object De-

formation.

• Chapter 3 explains our proposed system, physical simulation of wood com-

bustion by using particle system in detail.
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• Chapter 4 contains the results of an experimental evaluation of the proposed

physical simulation of wood combustion by using particle system.

• Chapter 5 concludes the thesis with a summary of the current system and

future directions for the improvements on this system.



Chapter 2

Background

This chapter is mainly divided into four sections. In the first section, historical

information for particle system model-technique to model our system is briefly

explained. The second section presents wood in general and mainly two subsec-

tions structure of wood and combustion of wood are presented. The third section

briefly explains the different approaches for fire simulation. Finally, approaches

related to different representations of object deformation are presented.

2.1 Particle System

Particle Systems were first used in computer graphics by Reeves in 1983 [31]. He

defined a particle system model as “a cloud of primitive particles” for modeling

of “fuzzy objects” such as fire, smoke, clouds and water. These fuzzy objects

do not have smooth, well-defined and shiny surfaces, instead their surfaces are

irregular, complex and ill-defined. In his work, Reeves analyzed the dynamic and

fluid changes especially in shape and appearance of these objects.

The representation of particle systems differs in three basic ways from the

representations normally used in image synthesis.

4



CHAPTER 2. BACKGROUND 5

• An object is represented by “clouds of primitive particles” that define object

volume, instead of a set of primitive surface elements such as polygons or

patches that define object boundary.

• A particle system is not a static entity. Its particles change form and move

along time. New particles are “born” and old particles “die”.

• An object represented by particle system is not deterministic, since its shape

and form are not completely specified. Instead, stochastic processes are used

to create and change an object’s shape and appearance.

While modeling fuzzy objects, particle system model has several advantages

over classical surface oriented techniques.

• By specifying a particle as a point in 3D space, it is a much simpler primitive

than a polygon which is the simplest element of surface oriented representa-

tions. By using particle system model, more of the basic primitives can be

processed and more complex images can be produced in the same amount

of computation time.

• The particle system model is procedural and controlled by random numbers.

Therefore, in order to obtain highly-detailed model, it is not required to have

more human design time as it is necessary in surface based systems.

• Finally, particle systems model objects are “alive”. It is difficult to represent

the complexity level of primitives by surface based modeling techniques.

A particle system is a collection of many minute particles that represent a

fuzzy object. Each particle in Reeves particle system has attributes that directly

or indirectly effect the behavior of the particle or ultimately how and where the

particle is rendered. Over a period of time, particles are generated into a system,

move and change form and finally die out of the system depending on values of

particle attributes. A simple algorithm defined by Reeves is as follows:

• New particles are generated into the system.
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• Each new particle is assigned its individual attributes.

• Any particle that has existed for a predetermined time is destroyed.

• Remaining particles are moved and transformed according to their dynamic

attributes.

• Active particles are rendered in a frame buffer.

The approach above was later extended by Reeves and Blau [32], Fournier and

Reeves [32], Sims [33], and many others to model such diverse phenomena as trees

and grass, ocean spray, fireworks, waterfalls, fire, snowstorms and explosions. In

Reeves [31] and Sims [33] fire and waterfall models, particles move under the

influence of force fields and contraints but do not interact with each other.

Reynolds [34], in his work on flocking behavior, greatly enhanced the power

of the particle system as a modeling tool. He proposed the idea of coupling the

particles so that they interact with each other as well as with their environment,

and demonstrated that it is possible to exploit simple local rules of interaction

between large numbers of simple primitives to produce complex aggregate behav-

iors.

Miller and Pearce [35], Terzopoulos et al. [36], and Tonnesen [37] all explored

coupled particle systems as a way to model liquid-like and melting materials.

Miller [38], Szeliski and Tonnesen [39], and van Wijk [40] proposed particle inter-

actions that are a function of direction, producing deformable sheets and surfaces

of particles. Our own interest is representing a particle system based model of

wood combustion by considering both internal and external interactions of each

particle.

2.2 Wood

The use of wood as a fuel source for heating is as old as civilization itself. His-

torically, it was limited in use only by the distribution of technology required to
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make a spark. The burning of wood is currently the largest use of energy derived

from a solid fuel biomass. Wood heat is still common throughout much of the

world.[41]

2.2.1 Wood Structure

Wood instead of being a relatively solid material like a steel or concrete, is basi-

cally composed of many tubular fiber units or cells, cemented together. In Fig-

ure 2.1, annual ring which is a layer of wood cells added to a tree trunk or stem

during one growing season is shown in vertical cross-section. Each annual growth

ring is composed of an inner part called earlywood (springwood), which is formed

early in the growing season, and an outer part, called latewood (summerwood),

which is formed later.

Figure 2.1: Annual Rings of Wood [1]

Mainly, wood is divided into two different types as softwood and hardwood.

Hardwoods have more complex structure than softwoods. The most significant

feature separating hardwoods from softwoods is the presence of pores or vessels.

Therefore, hardwoods shown in Figure 2.2 have less resin and burn slower and

longer, whereas softwoods shown in Figure 2.3 burn quickly [1].

Type of wood, whether it is hardwood or softwood, burned in the combustion

process is important for the heat value and the energy efficiency. Therefore, in

our simulation, we modeled an oak which is a hardwood.
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Figure 2.2: Hardwoods: Ash, Red Oak, White Oak, Beech and Hickory

Figure 2.3: Softwoods: Eastern White Pine, Sugar Pine, Tamarack, Larch and
Spruce

2.2.2 Wood Combustion

Understanding the mechanisms and processes involved in the combustion of

wood forms the basis of developing more efficient combustion systems. Many

researchers have developed several numerical methodologies for the complete com-

bustion of wood, while others have focused on some of the specific sub-processes

involved such as heat transfer, pyrolysis, char and external gas phase processes

etc. A detailed computational model of wood combustion has been developed

by Bryden [22]. This wood combustion model handles full range of sizes and

moisture contents with or without external combustion. This work was extended

by Bryden et al. [23] to examine the effect of wood size, moisture content and

temperature on the rate of pyrolysis and formation of tar, volatiles and char.

Porteiro et al. [24] presented a mathematical model including most known

sub-processes involved for the simulation of a single particle’s thermal degrada-

tion under combustion condition. The model uses a novel discretization scheme

and combines intra-particle combustion processes with extra-particle transport

processes, including thermal and diffusional control mechanisms.
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Thunman and Leckner [25] have worked on the effective thermal conductivity

which is one of the most important parameters of modeling thermal conversion

of wood. The variation in thermal conductivity with temperature and conversion

of the wood has to be considered in the progress of combustion. They derived a

model to calculate the effective thermal conductivity in parallel and perpendicular

to the fibres, applied to different stages of combustion of wood.

Thunman et al. [26] have developed a simplified model for the combustion of

solid fuel particles that is relevant for particle sizes and shapes. Typical shapes

(spheres, finite cylinders, and parallelepipeds) are also considered. The model

treats the particle in one dimension. The model only requires the transfer of

heat and mass to an element of its external surface in order to describe the

conversion inside a fuel particle. According to their work, when modeling a large

combustion system, it is a great advantage that the conversion is related to the

external surface, because the model does not have to be limited to just a single

particle. In fact, it can handle the conversion of a solid phase in a computational

cell, where the conversion is related to surface area per unit volume, instead of

the surface area of a single particle. The model shows satisfactory agreement

with measurements performed on more than 60 samples of particles of different

sizes, wood species, and moisture contents.

In [27], the influence from structural changes, heat transfer properties of dry

wood and pyrolysis mechanism on the pyrolysis of large wood particles were

studied. A model of wood pyrolysis was modified to include structural changes.

Bruch et al. [28] represented a computer model to describe the conversion of

wood under packed-bed conditions. The packed bed is an arrangement of a finite

number of particles, typically sized between 5 and 25 mm, with a void space left

between them. Each particle is undergoing a thermal conversion process, which is

described by a one-dimensional and transient model. Within the single-particle

model, heating, drying, pyrolysis, gasification and combustion are considered,

whereby each particle exchanges energy due to conduction and radiation with its

neighbours. Because of the one-dimensional discretization of the particles, heat

transfer and mass transfer is taken into account explicitly.
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Another work related to thermal decomposition is represented by Peters and

Bruch [29]. In their work, a flexible and stable simulation method is presented

to predict the thermal conversion of wood particles. A combination of several

subprocesses which overrates different properties and sizes represents the global

process of thermal conversion. This approach allows for simultaneous processes

e.g. reactions in time and covers the entire range between transport-limited

(shrinking core) and kinetically limited (reacting core) reaction regimes. Thus,

the model is applicable to simulate sufficiently accurate the thermal decomposi-

tion of each particle in a packed bed, of which the entire conversion is regarded

as the sum of all particle processes.

According to Ragland and Aerts [30], detailed computer modeling of combus-

tion processes requires accurate property values. Fuel properties for combustion

analysis of wood can be conveniently grouped into physical, thermal, chemical,

and mineral properties. In their approach, they reviewed existing property data

on wood which are required for the analysis of combustion systems and to suggest

properties that need further quantification.

2.3 Fire

Simulating fire phenomena has an important role in computer graphics applica-

tions such as entertainment, visual simulation, battlefield visualization, and even

landscape design. However, the visualization and animation of fire is challenging

problem. Many researchers have carried out different approaches to model and

render the dynamic behavior of fire.

A good survey has been given by Nielson and Madsen [2]. Over a decade

ago, Perlin [3] presented a noise-based method to model fire in which fractal

perturbation is used to simulate its turbulent movements. His approach is easy

to implement, whereas fire front propagation or external effects such as wind

cannot be described by his approach.

Inakage [4] represented a model of a simple laminar flame which was texture
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mapped onto a flame-like implicit primitive and then he traced as a volume-based

model. He used a physical model to emit light in the regions of combustion. How-

ever, his model is computationally expensive and deals with still images rather

than multiple animated flames.

In [5], Takahashi and Chiba combined a user defined vortex-based velocity

field and a 2D fuel map to describe the movement of fire. They used a gridded

representation of the space, where each grid cell contains a certain amount of

fuel gas and heat. Fire itself is modeled by placing geometric primitives around

particle trajectories, which are influenced by a vector field.

Stam and Fiume [6] presented a similar model in three spatial dimensions for

the creation, extinguishing and spread of fire. The spread of the fire is controlled

by the amount of fuel available, the geometry of the environment and the initial

conditions. They use a map covering the object defining the amount of fuel and

temperature on every point on the object. Their velocity field is predefined, and

then the temperature and density fields are advected using an advection-diffusion

type equation. They render the fire using a diffusion approximation which takes

into account multiple scattering.

Foster and Metaxas [7] presented a method for simulating turbulent gas and

fire. Qian [42] used a front tracking method to simulate infinitely thin premixed

flame surface, which is explicitly represented by connected marker points.

Recently, Nguyen [8] presented a method based on the Navier-Stokes equations

to model fuel with hot gaseous products. By using the level set method to track

the moving flame surface they produced realistic looking turbulent flames.

Bukowski and Sequin [9] integrated the Berkeley Architectural Walkthrough

Program with the National Institute of Standards and Technology’s CFAST fire

simulator. The integrated system creates a simulation based design environment

for building fire safety systems. An application of physically accurate firelight,

and the impact of different fuel types on the color of flames and the scene they

illuminate is given in the work of Devlin and Chalmers [10].
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Accurate ray casting through fire using spatially sparse measured data rather

than simulated data was discussed by Rushmeier [11] using radiation path inte-

gration software documented in [12].

In Siegel’s approach [13], fire animation is done using turbulent wind fields

and rendering is based on warped blobs. The approach is costly and user controls

are not so flexible and intuitive.

Perry and Picard [14] have a similar representation as a velocity spread model

from combustion science to propagate flames. They reuse the same polygons

used for modeling to spread the fire. The flame front is represented by a set of

particles, adding new particles as the front expands.

Beaudin [15] use a similar but more accurate flame front technique to model

the spreading of the flames. They guarantee that the boundary lies on the object,

unlike the work of Perry and Picard [14]. They plant the root of the flame

skeleton on the surface and displace the skeleton with the air vector field. They

use an implicit surface representation to dress up the flame skeletons during the

rendering. Their method is fast, interactive, and allows for quick preview, but

lacks accurate air and smoke motion inside the simulation volume.

Melek and Keyser [16] used a modified interactive fluid dynamics solver to

describe the motion of a 3-gas system. They simulate the motion of oxidizing

air, fuel gases, and exhaust gases. The burning process is simulated by consum-

ing fuel and air based on the amounts of fuel and air inside each grid cell. The

combustion process produces heat, and they model the resulting spread of tem-

perature through the system. The heat distribution induces convection currents

in the air, causing the flame to take the appropriate shape. By modeling heat

distribution, they also simulate the spread of fire to and self-ignition in other

combustible solids.

Zao and Wei [17] introduced a method for fire propagation and burning con-

sumption of objects represented as volumetric data sets. Advantages of using

volumetric data sets are having high quality results, convenience of implemen-

tation and computation, and usability of arbitrary objects. A volumetric fire
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propagation model is based on distance field which is defined as the distance of

any point in space to the nearest surface of the object. Shell volume is another

term commonly used. It stores the densities of all voxels. When using values

of a shell volume model, distance field is generated for fire propagation around

a voxel object based on voxel densities. Using a technique called enhanced dis-

tance field representation, fire-front points are guaranteed to stick to the virtual

surface while propagating. This propagation method can be easily applied also

to polygonal objects. A shell volume is employed that rapidly generates narrow

bands, which are then used in a fast marching method to create the distance

field for volumetric data for any given isovalue. In this model, the object burning

consumption by modifying the fuel property of object voxels and remove burnt

voxels from the rendering.

Additionally, there has been many thundering works about high-speed com-

bustion phenomena such as explosions [43] and [44]. Musgrave [43] concentrated

on the explosive cloud portion of the explosion event using a fractal noise ap-

proach. Neff and Fiume [44] model and visualize the blast wave portion of an

explosion based on a blast curve approach.

Yngve [45] proposed a solution for the compressible version of the fluid flow

equations, modeling the shock waves created by explosions. In their model the

propagation of an explosion through the surrounding air is used as a compu-

tational fluid dynamics based approach to solve the equations for compressible,

viscous flow. Their system includes two way coupling between solid objects and

surrounding fluid, and uses the spectacular brittle fracture technology of the work

of Brien and Hodgins [46]. While the compressible flow equations are useful for

modeling shock waves and other compressible phenomena, they introduce a very

strict time step restriction associated with the acoustic waves which makes the

solution computationally expensive [46].



CHAPTER 2. BACKGROUND 14

2.4 Object Decomposition

In computer graphics and animations, deformable objects have been widely used

especially in animation of clothing, facial expressions and human or animal char-

acters. In [47], many mathematical and computational techniques are examined

for modeling object deformation in computer graphics applications.

Many applications do not necessarily apply the physical principles. They

are only based on purely geometric techniques which are computationally more

efficient. Basically, curves and surfaces are required to model deformation of an

object. It can be provided by Bezier curves, double-quadratic curves, B-splines,

rational B-splines, and non-uniform rational B-splines (NURBS). These methods

can be represented by both planar and 3D curves and have related 2D patches

in order to specify surfaces. In these representations, the curve or surface is

represented by a set of control points. The shape of the objects are adjusted by

moving control points to new positions, by adding or deleting control points, or

by changing their weights.

One of the significant method in order to deform an object is Free-form de-

formation (FFD). It provides not only adjusting individual control points but

also a higher and more powerful level of control. By changing the space values in

which the object lies, free-form deformation method can alter the shape of object.

Free-form deformation technique can be applied to many graphical representa-

tions such as points, polygons, splines, parametric patches, and implicit surfaces.

Sederberg and Parry [18] developed a technique for deforming the solid geomet-

ric models by using free form deformation techniques. Their method could be

applied to quadratics, CSG based models, parametric surface patches or implicit

objects with derivative continuity.

Mass-spring models are used to model simulations of physical principles which

are not represented by purely geometric techniques. It is a physically based

technique used to model deformation of objects. An object is modeled as a

collection of point masses connected by springs in a lattice structure. Mass-spring

systems have been used especially in facial animations. Terzopoulos and Waters
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[19] were the first to apply dynamic mass-spring systems to facial modeling. They

constructed a three-layer mesh of mass points based on three anatomically distinct

layers of facial tissue which are the dermis, a layer of subcutaneous fatty tissue,

and the muscle layer respectively.

Continuum models are more accurate physical models that treat deformable

objects as a continuum: solid bodies with mass and energies distributed through-

out. Separating the model from the method used to solve has an important role.

Models can be discrete or continuous but the computational methods used to

solve the models are ultimately discrete. The equilibrium of a model acted on by

external forces is considered by the full continuum model of a deformable object.

General finite element method (FEM) is used to find an approximation for a

continuous function that satisfies some equilibrium expression such as the defor-

mation equilibrium expression. In FEM, the continuum, or object, is divided into

elements joined at discrete node points. A function that solves the equilibrium

equation is found for each element. The solution is subject to constraints at the

node points and the element boundaries so that continuity between the elements

is achieved. Finite element method has limitations because of the computational

requirements. It is difficult to apply real time systems. Because the force vectors

and mass matrices should be computed for each integration over the object which

is costly. Therefore, it is preferred to apply only small deformations. Gouret and

Thalmann [20] used FEM to model interactions between the soft tissues in a

human hand and a deformable object. They use 3D elements with linear interpo-

lation functions and a dynamic formulation to animate the interaction. Chen and

Zeltzer [21] used 20-node brick elements with parabolic interpolation functions to

model deformation of muscles and other objects.



Chapter 3

Proposed System

In this chapter, our work for simulating the combustion process of a piece of wood

by using particle system model is presented.

We have divided our system into three main sections as “Wood”, “Fire” and

“Falling Down of Wood under Combustion”. In the first section, our main object,

wood is explained in detail. The latter section, fire construction and propagation

is discussed. In the final section, falling behavior of wood under combustion is

examined.

3.1 Wood

This section is mainly divided into three subsections. In the first subsection,

modeling structure of wood is briefly explained. The latter subsection includes

decomposition process of wood in detail. Moreover, in the third section, our wood

simulation and implementation approach is presented.

16
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3.1.1 Wood Modeling

Wood is even more structurally advanced because it is actually a multi-layered,

fdament-reinforced, closed-end tube [1]. In our work, wood is designed as a multi-

layered structure in order to be consistent with the wood structure in real. Each

layer which is counted to determine the age of the tree as in real-wood model, is a

particle system composed by rings and each ring is a collection of particles in our

implementation. A particle is denoted as Pijk, where i indicates layer number, j

indicates ring number and k indicates the particle index. The width of the wood

is determined by the number of nested layers,
∑
i, and the height of the wood is

determined by the number of lined up rings,
∑
j. In Figure 3.1, 5-layered wood

model is shown in order to highlight the layered structure. In Figure 3.2, 20 rings

of a layer are shown to denote the rings used in wood structure. The wood model

presented in this thesis has 7 layers and each layer has 43 rings. In each ring, 360

particles are positioned. Totally, our wood model consists of 10x43x360 (108360)

particles.

Figure 3.1: Layers of Wood Model

Modeling combustion of wood requires adequate knowledge of wood proper-

ties. In general case, properties of wood can be conveniently grouped mainly into

physical and thermal properties. Physical properties of wood required for com-

bustion process include wood density, particle size, internal and external surface

area per unit volume, porosity, and color. Besides, additional physical proper-

ties are hold in our wood model in order to be used while combustion process is

activated. These are position, life span, ignition time and velocity explained as
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Figure 3.2: Rings of Wood Model

below. The significant thermal properties of wood for combustion analysis include

specific heat of wood, the thermal conductivity of wood and thermal diffusivity

of wood. In order to hold all properties required for combustion reaction, each

particle in our representation has the properties below.

Physical Properties:

• Color: is a physical property that changes according to combustion process.

Depending on changes in thermal properties, color of each particle has been

darkened, especially in phase of high-temperature drying.

• Size: is a physical property that specifies the dimension of each particle.

Depending on the increase in size, storage capacity for heat also increases.

• Density: is another physical property of each wood particle. Total value of

particle density consists the density of wood. Porosity is needed for detailed

modeling of pulverized wood combustion. Therefore, in our work it is not

specified as a particle property, instead it is used as a helper property to

determine the degree of particle density.

• Position: is a physical property that holds the location of a particle. It

specifies the selected particle’s layer and ring coordinates. By having a

multi-layered structure, each particle in our system has to keep its layer

number and ring number.
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• LocalCoordinate: is a physical property that holds particle’s local coordi-

nate frame (relative to the global frame (X, Y, Z)) in a vector representa-

tion which adds 3 new degrees of freedom (co-planarity, co-normality and

co-circularity)to each particle’s state.

• Life: is a physical property that specifies the life time of the particle. If life

time of a particle ends, then the particle will die out.

• Velocity: is a physical property that holds speed value and direction of wood

particle’s speed as a vector representation. Initially, before wood starts to

burn, velocity of each particle is set to zero in a Cartesian coordinate system.

Velocity property is also affected by changes in thermal properties.

• Char: is another physical property that denotes if the particle will burn or

not. In our simulation, not all wood particles are burned. Some of them

behaves as char, ash etc. This will be defined in following sections in detail.

• Spark: is an incandescent particle, especially one thrown off from a burning

substance. This is specified as a physical property in our wood modeling

according to the above definition to determine whether the selected particle

will be a spark or not during the combustion process.

• Fired: is a physical property that defines if the particle reaches a fixed

amount of heat, ‘Fired’ property is set and spark particle starts its motion.

Thermal Properties:

• Heat: is the most significant thermal property that holds the temperature of

each particle. Specific heat depends on temperature and moisture content,

not the density of wood.

• Thermal Conductivity: is a property that is specified as the measure of the

ability of wood to transfer heat. The thermal conductivity of wood increases

depends on changes in density, moisture content and temperature of wood.

In our wood modeling, each particle’s thermal conductivity property defines

the rate of heat transfer among neighboring particles.
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• Thermal Diffusivity: is a thermal property that controls the capability of a

wood particle to hold or release heat.

Each particle that has all the above physical and thermal properties consist

our particle based wood model.

3.1.2 Wood Combustion

The general process of wood combustion is extremely complex and includes var-

ious physical, thermal and chemical reactions and sub-processes. Several mathe-

matical models have been developed for the complete combustion of wood parti-

cles while some of them have been focused on the specific sub-processes of wood

combustion such as drying, pyrolysis, char gasification, etc. In our approach, we

have adapted one of the mathematical models including most of the specific sub-

processes - drying, pyrolysis and charring- for simulation of a single wood particle

degradation under combustion conditions described in [24]. Instead of using the

formulas and approach for combustion described in [24] identically, we have in-

spired from their approach and on the basis of this study, we have generalized a

method for any combustible particles in our wood model.

In [24], researchers have assumed that if the particle and external conditions

are isotropic, every point at a determined radial distance from the surface of the

particle will be in the same degradation. Hence at any specific distance from the

centre of the particle, defined as r, a control volume dV is defined. The control

surface G(r) is defined as the surface placed at a predetermined position r, which

is related to the control volume as in Eq. 3.1

dV (r) = G(r)dr (3.1)

A set of equations with an initial and boundary conditions are described in

order to specify heat transfer, convective and diffusive mass transport inside a

particle. In the following general differential equation, the conservation of mass,
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type and energy inside the particle is described as:

∂

∂t
(ψi, ϕi) +

1

G(r)

∂

∂r
(G(r)ψiuϕi) =

1

G(r)

∂

∂r

(
G(r)Γi

∂ϕi

∂r

)
+ Si (3.2)

where Γi is the diffusion coefficient, ψi is the generalized densities, ϕi is the

dependent variable and Si stands for the source/sink term. In Eq. 3.2, from left to

right, each term stands for rate of increase in control volume, net rate of decrease

due to convective transport, net rate of increase due to diffusion across boundaries

of the control volume and net rate of creation inside the control volume.

According to immediate outflow and thermal equilibrium between gas and

solid inside the control volume, the velocity of gases passing through a control

surface placed at a distance r from the center of the particle at any given time is:

u(r) =
1

G(r)ρG

∫ b

a
−
[
ω̇′′′h + (1− χ)ω̇′′′p + (1 + ζ)ω̇′′′c

]
G(r∗)dr∗ (3.3)

where χ stands for char yield during pyrolysis and ζ stands for the amount of oxy-

gen consumed during char oxidation. Each reaction term is intrinsically negative

as it represents the evolution of each solid type that are moisture, wood and char,

inside the control volume over time. By simplifying Eq. 3.3, we have calculated

velocity of gas of each particle in order to use while modeling fire propagation.

Boundary conditions at the surface of the particle depend on two internal

thermal properties. These are rate of thermal conductivity of the wood particle

and thermal diffusivity of each wood particle.

Thermal conductivity is a measure of the rate of heat flow through one unit

thickness of a wood particle subjected to a temperature gradient. It varies in

wood depending on emittance, particle density, moisture content, temperature

and the type of gas enclosed in the wood particle. Thermal conductivity increases

markedly with increasing moisture content bring about as twice as high at 100

per cent moisture content as it is at 10 per cent. In Eq. 3.4, effective thermal
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conductivity, λ, depending on change in temperature is calculated by addition of

external radiative heat flux of the particle to the total value of convective heat

transfer coefficient, control surface area and change in temperature in this area.

λ∗
(
∂T

∂r

)
r=R

= Q̇rad + hS(Tg − Tr=R) (3.4)

Symmetry conditions for heat and mass transfer are also applied at the parti-

cle’s centre. In Eq. 3.5, thermal diffusivity which is the diffusional mass transport

of oxygen inside the particle depends on the availability of oxygen on the particle

surface, which at the same time depends on the balance between diffusional mass

transfer through the gas-solid inter-phase and chemical reaction at the surface.

The Chapman-Enskog theory was used for determining the transport properties,

while the specific heat, conductivity and viscosity of the gases involved have been

calculated using expressions derived from the literature.

D∗
(
∂Yo

∂r

)
r=R

= km [Yo∞ − (Yo)r=R] (3.5)

In our work, thermal conductivity and thermal diffusivity are calculated as

defined in Eq. 3.4 and Eq. 3.5 to be used in heat transfer and heat diffusion

processes.

The work of Porteiro et al. [24], they mainly specified three distinct pre-

cursor reactions for combustion process as drying/vaporization of water, pyroly-

sis/devolatilization and gasification of char. For particle size of interest, vaporiza-

tion and devolatilization are thermally controlled while char conversion can either

be kinetically or diffusionally controlled depending on operation conditions.

In the following sections, we briefly explain their approach for each combustion

reaction and how we have adapted them to our work.
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3.1.2.1 Drying

Vaporization of water is the pre-combustion stage of each wood particle to be

burned. Water in wood normally moves from higher to lower layers of moisture

content which supports the common statement that “wood dries from the outside

in”, which means that the surface of the wood must be drier than the interior

if moisture is to be removed. Drying can mainly be divided into two phases:

movement of water from the interior to the surface of wood, and removal of water

from the surface.

The surface particle of wood reaches to the moisture equilibrium with the

surrounding air soon after drying begins. This is the beginning of the development

of a typical moisture gradient, that is the difference in moisture content between

the inner and outer layers of wood. The surface of wood particle tends to reach

moisture equilibrium with the surrounding air if the air circulation is fast enough

to evaporate water from the surface as fast as it comes to the surface. If the air

circulation is too slow, a longer time is required for the surfaces of wood particle

to reach moisture equilibrium.

The rate at which moisture moves in wood depends on the humidity of the

surrounding air, the steepness of the moisture gradient, and the temperature

of each wood particle. The lower the humidity, the greater the capillary flow.

Low humidity also stimulates diffusion by lowering the moisture content at the

surface, thereby steepening the moisture gradient and increasing diffusion rate.

The higher the temperature of the wood particle, the faster moisture will move

from the wetter interior to the drier surface. Drying rate is also affected by

thickness in which drying time increases with thickness and at a rate that is

proportional to thickness. [48]

Moisture evaporation was considered to occur at 373 K and to be thermally

controlled. Any heat transmitted to a moist zone that has reached its evaporation

temperature will therefore be fully involved in evaporation until local moisture

has been completely evaporated. Furthermore, no recondensation of steam is

admitted, nor is the flow of steam towards the centre of the particle. By knowing
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that during drying the temperature of the control volume is constant, and that

no flow of gas enters the control volume from beneath, as pyrolysis below 373

K can be ignored, the energy balance leads to the reaction rate for drying as in

Eq. 3.7:

Moisture
k4→ WaterV apour (3.6)

ω̇′′′h (r) =

 −
1

G(r)|∆Hh|
∂
∂r

(
G(r)λ∗ ∂T

∂r

)
0

if T ≥ Tevap and ρh > 0. (3.7)

In Eq. 3.7, G(r) stands for area of control surface, ∆Hh stands for reaction en-

thalpy, λ stands for thermal conductivity which is calculated according to Eq. 3.4

and set to thermal property value of particle. We have adapted parameters of

Eq. 3.7 to our drying procedure. Surface control area, G(r), has been calculated

depending on value of Size property of particle. In our approach, we have set

the value of reaction enthalpy, ∆Hh, as a constant. Coordinate of each particle

to dry, r is hold by Position property of particle in our approach. If a parti-

cle’s temperature T is hold as Heat property of each particle that is greater than

or equal to evaporation temperature Tevap = (373K) and drying density, ρh, is

greater than zero, then reaction process for drying will begin.

As the basis of [24], we have extended the physical process performed for

drying a wood particle as drying a wood that has been formed by many wood

particles. The graphical implementation will be explained in section 3.1.3.1 in

detail.

3.1.2.2 Pyrolysis

Ignition and combustion of wood is mainly based on the pyrolysis phase. Pyrolysis

is defined as the thermal decomposition of materials - in our case, wood - in the
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Figure 3.3: Simple sketch of pyrolysis chemistry

absence of oxygen or when significantly less oxygen is present than required for

complete combustion. Pyrolysis has been considered by three parallel reactions

for the transformation of wood into gas, tar and char as shown in Eq. 3.8 and

Figure 3.3 schematically.

DryWood


k1→ Gas
k2→ Tar
k3→ Char

(3.8)

The general changes in wood structure that occur during pyrolysis phase are

listed as below [49]:

1. Heat transfer from a wood particle, to increase the temperature inside the

fuel

2. The initiation of primary pyrolysis reactions at this higher temperature

releases volatiles and forms char

3. The flow of hot volatiles toward cooler solids results in heat transfer between

hot volatiles and cooler unpyrolyzed fuel

4. Condensation of some of the volatiles in the cooler parts of the fuel, followed

by secondary reactions, can produce tar
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5. Autocatalytic secondary pyrolysis reactions proceed while primary pyrolytic

reactions (item 2, above) simultaneously occur in competition

6. Further thermal decomposition, reforming, water gas shift reactions, radi-

cals recombination, and dehydrations can also occur, which are a function

of the process’s residence time/temperature/pressure profile.

Net reaction rate of a wood particle during pyrolysis phase is given in Eq. 3.9.

ω̇′′′p = −ρw

3∑
i=1

ki exp

(
− Ei

R0Tp

)
(3.9)

In order to start pyrolysis reaction, the most significant parameter, pyrolysis

temperature, (Tp), has to be reached. Particle density (ρw), mass transfer co-

efficient (ki), ideal gas constant (R0) and activation energy value (E), have to

be known. Mass transfer coefficient (ki), ideal gas constant (R0) and activation

energy value (E) are all constant parameters in our implementation. In our ap-

proach, while pyrolysis temperature (Tp) is reached by particle temperature (T )

hold in property (Heat), thermal decomposition of wood object will be started.

We will explain our graphical approach in section 3.1.3.1.

3.1.2.3 Charring

Charring is a chemical process of incomplete combustion of a solid when subjected

to high heat. The resulting residue matter is called “Char”. Charring can be

either a deliberate and controlled reaction used in manufacturing or it may be

the result of naturally occurring processes as in our case. By the action of heat,

charring removes hydrogen and oxygen from the solid, so that the remaining char

is composed primarily of carbon.

The char net reaction rate for a wood particle is given in Eq. 3.10. Under

combustion conditions, char reaction is normally controlled by the diffusion of

oxygen from the bulk. The charring rate of wood is also very sensitive to the

presence of inorganic impurities, such as fire retardants, because they affect the

chemical kinetics of the pyrolysis process.



CHAPTER 3. PROPOSED SYSTEM 27

ω̇′′′c = −kc exp
(−Ec

R0Tc

)
ρGYo

Mc

MO2

S ′′′ (3.10)

In order to begin charring reaction, temperature (Tc), required to begin char-

ring has to be reached. Same as in pyrolysis phase, particle density (ρG), mass

transfer coefficient (kc), ideal gas constant (R0) and activation energy value have

to be known. Additionally, rate of char weight (Mc) to oxygen weight (MO2) is

required to char combustion process. Surface area of a particle (S), is required to

calculate the rate of charring material. In section 3.1.3.3, graphical representation

will be explained in detail.

3.1.3 Wood Simulation

Our system is mainly a simulation for combustion of a wood object. It allows

us to visualize physical and thermal effects that change shape and internal struc-

ture of wood. Our simulation works by generating an animation frame per time

step. For generating the animation frames, for each wood particle, physical and

thermal equations required to implement real combustion reactions specified in

Section 3.1.2 are calculated respectively, and their updated positions and orienta-

tions are determined for each frame. This process is repeated until all the desired

frames of animation - combustion of whole wood - are generated.

As mentioned in Section 3.1.1, our wood object generation routine is fairly

simple. As we explained in previous sections, it is formed by nested layers and

ordered rings that are composed by particles. Hence, in order to simulate graph-

ically, necessary phases for combustion such as heat transfer, heat diffusion and

decomposition are carried out by particles. Therefore, interaction between parti-

cles, transfer of each property information among particles are highly important

to simulate combustion process. Before explaining graphical implementation of

each combustion reaction as subsections, we describe our approach to flow of

necessary information among particles.
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Figure 3.4: Control flow of information among particles

In Figure 3.4, enlarged graphical wood model is represented by 3 layers and

3 rings for each layer to show flow relations among particles. To make more

explicit description, we have assumed that each red, green, blue and white points

represents a particle schematically. Green particle (P21g0) is in 1string of 2nd layer.

Red particle, (P22r0), in between the white particles is in 2nd ring of 2nd layer.

Also, white particles, (P22w360) and (P22w1) are in 2nd ring of 2nd layer. Upper red

particle, (P12r0) is in 2nd ring of 1st layer and lower red particle, (P32r0) is in 2nd

ring of 3rd layer. Finally, blue particle, (P23b0) is in 3rd ring of 2nd layer. All these

colored points specified as particles are neighbor particles of middle red particle

in order to specify flow of required property information. White particles are

radial-neighbor particles, upper and lower red particles have same x-coordinates

values with middle red particle called as y-neighbor particle and, green and blue

particles have same x-coordinates values with middle red particle called as y-

neighbor particle. Required property values are calculated and compared with

these neighbor particles to determine how property information is transferred

between them. This procedure is repeated for each combustion reaction until all

particles will be processed. This approach is generalized in Algorithm 1. This will

be extended for each combustion process in the following subsections in detail.

Although Algorithm 1 suggests that initially Pi00 is fired, by generalizing

this initialization as our proposed system provides, the combustion process can

be started from any desired wood particle by triggering the required property

values of desired wood particle. In order to explain our approach clearly, we
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Algorithm 1 General algorithm for property value transfer

1. Set property value of P_i00 as initial value to the result of
calculation done related to reaction equation

2. For each P_ijk from layer number 0 to i-1

2.1 For each P_ijk from ring number 0 to j-1

2.1.2 For each P_ijk from particle index 0 to k-1

2.1.2.1 Calculate necessary reaction equation results
for radial , x and y neighbor particles.

2.1.2.2 Compare property value of P_ijk with
radial , x and y neighbor particles.

2.1.2.3 Update property value of each radial ,
x and y neighbor particles.

have defined three different wood combustion types as Left-Side Combustion,

Middle Combustion and Multiple Combustion. In Left-Side Combustion, we have

triggered the particle P000 which is the 1st particle found in 1st ring of 1st layer. In

Middle Combustion, we have triggered the particle P0220 which is the 1st particle

found in 21th ring of 1st layer. Finally, we have triggered particles P000 and P0330

which are the 1st particle found in 1st ring of 1st layer and the 1st particle found

in 32th ring of 1st layer respectively. During the following sections, with graphical

illustrations, we have given examples of each three wood combustion type for the

wood combustion processes.

3.1.3.1 Heat Transfer

Heat is begun to be transferred while wood particles reach to the pyrolysis tem-

perature, by applying a pyrolysis process at every simulation time step. How-

ever, before this combustion phase, as it is mentioned in Section 3.1.2.1, a pre-

combustion stage, drying, is applied to vaporize water included in wood structure.

In our approach, we have represented drying of each wood particle by darken-

ing its color. Color property of each wood particle is changed orderly according

to net reaction rate value calculated depending on appropriate conditions given

in Eq. 3.7. If combustion has not been started yet, wood particles will not be

decomposed in this stage. The procedure in the drying phase is summarized in
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Algorithm 2. The graphical representation of drying phase for wood combustion

types, Left-Side Combustion, Middle Combustion and Multiple Combustion have

been displayed in Figure 3.5.

Algorithm 2 Procedure for drying phase

1. Set Size , Position , Thermal Conductivity , Heat of P_ijk ,
1.1 If Heat of P_ijk >= T_evap and Density of P_ijk > 0

1.1.1 Calculate net reaction rate for drying in Eq.3.7.
1.1.2 Set Color of P_ijk to dark color.

1.2 If Heat of P_ijk < T_evap or Density of P_ijk <= 0
1.2.1 Color of P_ijk is NOT set.

2. Pass to each radial ,x and y neighbour particles of P_ijk ,

Pyrolysis phase is the main stage when heat is transferred to trigger thermal

decomposition of wood object. During pyrolysis, some of the solid fuel found

in each wood particle is converted into fuel gas. Thus, particle shrinks during

heterogeneous phase of combustion. Particle shrinkage is computed throughout

the process. Decomposition of a wood object will be explained in section 3.1.3.2

in detail. To make pyrolysis more clear, the procedure in the pyrolysis phase

is summarized in Algorithm 3. The graphical representation of pyrolysis phase

for each wood combustion types has been illustrated within the decomposition of

wood in Figure 3.6.

3.1.3.2 Decomposition

While organizing our decomposition process, we have adopted the techniques

described in [39], Surface Modeling with Oriented Particle System approach. Al-

though techniques for deformable objects such as spline models and deformable

surface models have been very successful in creating and animating such deforma-

tions, these methods either require the discretization of the surface into patches

(for spline surfaces) or the specification of local connectivity (for spring-mass

systems) and required highly significant amount of preprocessing before using

surface model. Instead of using such an explicit modeling technique, we have also

developed our particles as oriented particles by adding LocalCoordinate property
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Figure 3.5: Drying Phases of Left-Side Combustion, Middle Combustion and
Multiple Combustion

as a vector representation.

Each particle has a local coordinate frame which is updated during the sim-

ulation. New interaction potentials are designed which favor locally planar or

locally spherical arrangements of particles. These interaction potentials are used

in conjunction with more traditional long-range attraction forces and short-range

repulsion forces which control the average inter-particle spacing.

Surface model composed by oriented particles shares characteristics of both

deformable surface models and particle systems. Like traditional spline models, it

can be used to model free-form surfaces and to smoothly interpolate sparse data.

Like interacting particle models of solids and liquids, surfaces can be split, joined,

or extended without the need for re-pararnetrization or manual intervention [39].

Thus, in our work, we have chosen to model our wood object by combination of

oriented particles.
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Algorithm 3 Procedure for pyrolysis phase

1. Set Size , Position , LocalCoordinate , Velocity , Heat of P_ijk

to initial values,
2. Increase Heat for each time step,

2.1 If Heat of P_ijk >= T_p and Density of P_ijk > 0
2.1.1 Calculate Thermal Diffusivity of P_ijk according to
Eq.3.5.
2.1.2 Calculate Thermal Conductivity of P_ijk according to
Eq.3.4.
2.1.3 If Thermal Diffusivity > 0 and Thermal Conductivity > 0,

2.1.3.1 Calculate net reaction rate for pyrolysis in Eq.3.9
2.1.3.2 According to reaction rate calculated in 2.1.3.1,

set new Size , Velocity , Position and
LocalCoordinate values of P_ijk that will
be used in decomposition.

3. Pass to each radial ,x and y neighbor particles of
P_ijk to calculate 2.1.3.1.

In order to force particles to behave as surface-like structure, potential func-

tions are described. In [39], potential functions co-planarity, co-normality and

co-circularity are substituted as local coordinates of each particle. In our work,

each particle has Position and LocalCoordinate properties that denote particle

position and particle orientation of local coordinate frame respectively. There-

fore, decomposition of each particle is calculated according to new LocalCoordi-

nate property value that is defined by integration of potential functions and rate

of shrinkage that affects particle’s size depending on pyrolysis phase. Detailed

explanation related to potential functions can be found in [39]. The graphical rep-

resentation of decomposition for wood combustion types, Left-Side Combustion,

Middle Combustion and Multiple Combustion have been displayed in Figure 3.6.

3.1.3.3 Char Production

After all particles have reached their pyrolysis temparature, decomposition of

wood starts. During this process, some particles have completed their assigned

life times and have transformed into a new form, called char. Other particles

have continued to convert their fuel gas to volatiles in order to propagate fire.
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Figure 3.6: Decomposition of Left-Side Combustion, Middle Combustion and
Multiple Combustion

It is defined in section 3.2 in detail. After required threshold heat value for

charring has been reached, char production has been started. In our algorithm,

if particle life time Life has ended, property Char is set as true, otherwise set

as false. The procedure for charring phase is summarized in Algorithm 4. The

graphical representation of char produced is displayed in Figure 3.7.

3.2 Fire

In this section, we will explain fire construction and fire propagation. As it is

mentioned in previous sections, throughout pyrolysis phase, depending on changes

in physical and thermal properties of a wood, solid fuel found in some wood

particles have started to char and remaining particles have converted into fuel

gas to propagate fire.
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Algorithm 4 Procedure for charring phase

1. Set Size , Life , Position , Thermal Conductivity , Heat of P_ijk ,
1.1 If Heat of P_ijk >= T_c and Density of P_ijk > 0 and

Life of P_ijk = 0
1.1.1 Calculate net reaction rate for charring in Eq.3.10.
1.1.2 Set Char of P_ijk as TRUE.

1.2 If Heat of P_ijk < T_c or Density of P_ijk <= 0
Life of P_ijk > 0
1.2.1 Char of P_ijk as FALSE.

2. Pass to each radial , x and y neighbour particles of P_ijk ,

Figure 3.7: Char Production in Proposed Wood Model

Each wood particle is a potential fuel source and wood particles passed drying

phase are named as active fuel source particles. Active fuel sources emit fuel gas

density according to the result of rate for passing velocity of gas in Eq. 3.3, into

the radial neighbor, x-neighbor and y-neighbor wood particles at every time step.

Potential fuel sources can later self-ignite and become active fuel sources. Every

wood particle has a pyrolysis temperature. When a wood particle reaches its

pyrolysis temperature, it becomes a fuel source. Since self-ignition temperature

of the fuel is much smaller than pyrolysis temperature, by having enough air in

the system, the resulting fuel gas starts burning when it mixes with air.

As mentioned in section 3.1.1, in our implementation, fire model has also

specific physical properties to model the propagation. These are as follows:
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Physical Properties:

• Color: is a physical property that specifies the starting color of fire particles

which comes out from emitter.

• FadeColor: is a physical property that specifies the final color of fire particles

that is shaded by using interpolation.

• FadeTime: is a physical property that defines how fast fire particles die.

• Life: is a physical property that specifies the life time of fire particle. If life

time of a fire particle ends, then fire particle will die out.

• Velocity: is a physical property that holds speed value and direction of fire

particle’s speed as a vector representation.

• Position: is a physical property that holds the location of a fire particle.

In our simulation, we have used a simple fire implementation. Mainly, after

initializing above fire particle properties according to values determined by inter-

nal combustion processes of wood, we have located the beginning position of fire

particles at specified locations. At every time step, according to speed of volatility

calculated in Eq. 3.3, new Position of each fire particle has been interpolated.

In same approach has already been applied while determining the colority of

fire particles. At first, we have visualized fuel gas as yellow and flame as red.

The intensity in Color from yellow to red is changed depending on interpolation

process applied according to density of gas (ρG) found in fire particles. As in real

process for wood burning, not only yellowish-red flames are produced, also some

white smokish flames are produced. To make it similar, in our implementation

these flames are already implemented. The type of flames depends on gas density

rate in each wood particle that triggers fire propagation. Graphical representation

of yellowish-red and white smokish flames are illustrated in Figure 3.8.

Additionally, in real wood combustion process, some tiny and incandescent

particles called sparks are rapidly thrown off from burning wood. We have also
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Figure 3.8: Fire and Smoke Propagation in Proposed Wood Model

implemented sparks in our simulation shown in Figure 3.9. Spark property of

wood particle determines whether the selected particle will be a spark or not

during the combustion process. It is set according to Heat property of each wood

particle. If Heat property of a wood particle has reached threshold temperature

value for sparking and Fired property is set, then selected wood particle is spec-

ified as spark and starts its defined motion. Motion is determined according to

Velocity property.
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Figure 3.9: Spark Propagation in Proposed Wood Model

3.3 Falling down of Wood under Combustion

In this section, we will explain how the wood falls down depending on the physical

and thermal changes during the decomposition phase of wood combustion. As our

simulation is based on physics, we have modeled falling behavior of wood under

combustion. In order to simulate falling behavior, we have used momentum.

In our implementation, wood stands on two non-conductive legs. Wood model

has been affected by three forces that are FK , FL and G which stands for “Center

of Mass” of the model, as illustrated in Figure 3.10 with their directions.

While pyrolysis phase has been entered, wood particles begin to form char

and release volatiles to propagate fire. In this transformation process, as wood

burns, total shape and volume of the wood shrinks due to dying out of each

combusted wood particle. While burning process has reached to a certain level,

the model begins to fall down. According to “Law of Momentum Conservation”,

the equilibrium state of wood is given in Eq. 3.11, where FK stands for the

reaction force from left side of the wood, FL stands for the reaction force from

right side of the wood, G stands for center of mass of the wood.
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Figure 3.10: Forces acted to Wood Model

FK + FL = G (3.11)

When wood particles begin to burn and as a result of this, there is no more

equilibrium on the non-conductive legs, the wood will start falling down according

to the conservation of momentum. In Eq. 3.12, the momentum of wood has been

calculated according to force K (FK).

FL ∗DL = G ∗DG (3.12)

By the modification of Eq. 3.11, in Eq. 3.12, DL stands for the distance of

force L (FL) to force K (FK) and DG stands for the distance of center of mass

(G) to force K (FK). In every time step, for decomposition reaction of each wood

particle, Eq. 3.12 is calculated recursively and depending on its value, the wood

object starts falling down. Our approach is generalized in Algorithm 5.

Algorithm 5 Procedure for falling down of wood under combustion

1. For each P_ijk ,
1.1 If Decomposition starts as defined in section ~3.1.3.2
1.1.1 Calculate ‘‘Momentum Conservation’’ according to Eq.3.12.

1.1.2 Set new Position of P_ijk to process falling down
behavior.

2. Pass to each radial ,x and y neighbor particles of P_ijk
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In Figure 3.11, falling behavior of wood has been shown and to emphasize

falling behavior, we have not displayed fire propagation.

Figure 3.11: Falling Down Of Wood



Chapter 4

Simulation Results

We have run our proposed simulation on a 2.40 GHz Intel Core2 Duo1 with a

Ati Mobil RadeonTM HD34302 graphics card and 4 GB RAM. This simulation

includes the simulation of burning and decomposition of wood, fire construction

and propagation, and falling behavior of wood under combustion process. Our

implementation is done using C++.

There are no similar simulations that analyze and visualize the physical and

thermal effects of combustion of wood based on real combustion reactions. There-

fore, in order to evaluate the success of the proposed physical simulation of wood

combustion by using a particle system, we have performed an experimental study

and will discuss the results in detail.

In our proposed simulation, as it is mentioned in section 3.1.1, there are 7

layers, 43 rings and 360 particles for each ring. Thus, there are a total of 108360

particles for the wood.

For each wood combustion type - Left-Side Combustion, Middle Combustion

and Multiple Combustion, we have measured the Combustion Duration for sev-

eral wood models in which each has different number of wood particles in their

1Intel Core2 Duo is a registered trademark of Intel Co.
2Ati Mobil RadeonTM HD3430 is a registered trademark of Advanced Micro Devices (AMD),

Inc.
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representations. Combustion Duration is defined as the duration that starts by

the drying of the 1st wood particle till the end of decomposition of the last wood

particle. Note that combustion process includes all physical and thermal sub-

processes - drying, pyrolysis and charring. However, in this experiment we have

only considered the wood particles, not the fire and the char particles. Therefore,

we have ignored char particles produced during charring phase and fire particles

produced during fire propagation phase. By multiplication of number of layers,

number of rings and the particle number in each ring, total number of wood par-

ticles have been calculated. We have used five different wood models. In each

model, we have fixed the number of rings as 43 and number of particles found in

each ring as 360, as same in our proposed system Figure 4.6. In order to increase

or decrease the total number of wood particles, we have only changed the layer

numbers. Wood models according to newly assigned layer numbers are shown in

Figure 4.1.

Figure 4.1: Wood Models as 3-Layered, 7-Layered, 14-Layered, 28-Layered, 70-
Layered

Width of the wood model increases depending on the layer number as seen in

Figure 4.1. In Table 4.1, for Left-Side Combustion type, total number of wood

particles for each wood model and their Combustion Durations are shown.

According to Table 4.1, for each wood model, rate of number of total wood

particles with respect to their Combustion Duration are illustrated in Figure 4.2.
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Table 4.1: Data of Five Wood Models in Left-Side Combustion

Layer × Circle × Particle Number
of Wood
Particles

Combustion
Duration
(msec)

≈Our System / 2 3× 43× 360 46440 198790
Our System 7× 43× 360 108360 225530
Our System x 2 14× 43× 360 216720 336010
Our System x 4 28× 43× 360 443440 567440
Our System x 10 70× 43× 360 1083600 1265000

Figure 4.2: Rate of Total Number of Wood Particles with respect to Combustion
Duration For Left-Side Combustion

The second bullet represents the rate of our proposed system simulation.

When the total number of wood particles is approximately half of our proposed

system, the difference of total number of wood particles is greater than the change

in Combustion Duration. This means that even though the total number of

wood particles is less, all wood models have to reach threshold temperature value

Tthreshold to start combustion process. In third, fourth and fifth bullets, the total

number of wood particles are twice, four times and ten times of the total number

of wood particles found in our proposed system respectively. As it is seen, there

is a linear increase in the rate of Combustion Duration after wood has begun to

combust from left most particle.
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In Table 4.2, for Middle Combustion type, total number of wood particles for

each wood model and their Combustion Durations are displayed.

Table 4.2: Data of Five Wood Models in Middle Combustion

Layer × Circle × Particle Number
of Wood
Particles

Combustion
Duration
(msec)

≈Our System / 2 3× 43× 360 46440 99770
Our System 7× 43× 360 108360 149590
Our System x 2 14× 43× 360 216720 242020
Our System x 4 28× 43× 360 443440 426690
Our System x 10 70× 43× 360 1083600 999770

According to Table 4.2, for each wood model, rate of number of total wood

particles with respect to their Combustion Duration are illustrated in Figure 4.3.

Figure 4.3: Rate of Total Number of Wood Particles with respect to Combustion
Duration for Middle Combustion

Same as in Left-Side Combustion case, while wood has begun to combust

from its middle particle, the rate of total number of wood particles with respect

to Combustion Duration linearly increases (Figure 4.3).

In Table 4.3, for Multiple Combustion type, total number of wood particles

for each wood model and their Combustion Durations are displayed.
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Table 4.3: Data of Five Wood Models in Multiple Combustion

Layer × Circle × Particle Number
of Wood
Particles

Combustion
Duration
(msec)

≈Our System / 2 3× 43× 360 46440 63230
Our System 7× 43× 360 108360 128550
Our System x 2 14× 43× 360 216720 228250
Our System x 4 28× 43× 360 443440 407330
Our System x 10 70× 43× 360 1083600 913090

According to Table 4.3, for each wood model, rate of number of total wood

particles with respect to their Combustion Duration are shown in Figure 4.4.

Figure 4.4: Rate of Total Number of Wood Particles with respect to Combustion
Duration for Multiple Combustion

As it is seen in Figure 4.4, the rate of number of total wood particles with re-

spect to their Combustion Duration distinguishes Multiple Combustion type from

Left-Side Combustion and Middle Combustion types. In Multiple Combustion, si-

multaneously two combustion processes have been applied to five different wood

models. Therefore, compared to Left-Side Combustion and Middle Combustion

types, a parabolic behavior has been observed in rate of number of total wood

particles with respect to their Combustion Duration.
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In order to perform a generalized analysis, we have measured the frame rate

for each of the five different wood models for Multiple Combustion type. In

this final experiment, in addition to real wood combustion reactions, fire and

smoke propagation, char production, spark propagation and falling behavior of

the burning wood model are also included. In Table 4.4, number of wood particles

found in each of the five wood models and corresponding frame rates (FPS) are

shown. As it is displayed in Figure 4.5, frame rate is inversely proportional to

the number of wood particles. While the number of wood particles has been

increased, the frame rate for each wood model is decreased.

Table 4.4: Frame Rate of Five Wood Models

Number of Wood Particles Frame Per Second(FPS) (Hz)
≈Our System / 2 46440 27
Our System 108360 24
Our System x 2 216720 22
Our System x 4 443440 19
Our System x 10 1083600 17

Figure 4.5: Frame Rate of Five Wood Model with respect to Combustion Duration
for Multiple Combustion
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Figure 4.6: Our Proposed System



Chapter 5

Conclusion and Future Work

Modeling natural phenomena is one of the most challenging problems of computer

graphics. The reason behind this challenge is the structural complexity, as the

simulation of natural phenomena depends on some physical equations that are

difficult to implement and model.

In our thesis, we have represented a physically based simulation of a particle

based method for decomposition of burning wood and combustion process. We

have implemented algorithms for drying, pyrolysis and charring subprocesses of

combustion process. Thermal and physical reactions used in our algorithms are

actual reactions defined in [24]. Therefore net reaction rates which have deter-

mined the amount of drying, pyrolyzing and charring are actual data values. This

means that we have implemented our physical simulation depending on actual

combustion reactions. Note that each wood particle has similar property values

which means in our wood modeling approach, there is no any shell structure.

Therefore, internal and external wood particles do not have different combustion

thresholds.

Interpolation operations have been used for fire propagation and each fire

particle position depends on the particle temperature value calculated during

pyrolysis phase of combustion reactions.

47



CHAPTER 5. CONCLUSION AND FUTURE WORK 48

Additionally, we have a simple algorithm for the falling behavior of wood

under combustion process. Depending on decomposition of each wood particle,

we have calculated momentum of wood object recursively and located the falling

wood particles to their new coordinate positions successfully.

While implementing our proposed system, we have applied “Surface Modeling

with Oriented Particle System” approach [39]. Although we have obtained satis-

factory results for decomposition of the wood object, we have not attained similar

results for deformation of the wood object. During heat transfer in drying and

pyrolysis phases, depending on changes in temperature of each wood particle, its

shape should also be shrinked. However, we have not observed such deformation

process in our simulation. We have rendered each particle with tiny textures, so

we could not achieve a realistic wood model as we have assumed.

We have an experimental work on our simulation in order to measure timing

performance of our proposed system. At first, we have modelled five different

wood models having different layer numbers. Then, we have measured each wood

model’s combustion duration. According to the results, we have observed that the

increase in total number of wood particle has a linear relation with the increase

in combustion duration. Additionally, we have measured the total system frame

rate for five different wood models. In this experiment, we have observed that the

increase in the number of wood particles is inversely proportional to the frame

rate of each wood model.

Additionally, our simulation have some limitations. One of the conspicuous

restriction is randomness of our physical based system. Due to the real combus-

tion reactions specified in [24], the flow of particle property has been calculated

according to the value of neighbor particle properties. The property values such

as heat transfer, color darkening, decomposition of each particle have been ap-

plied to their neighbors in a sequential manner. Therefore, randomness could not

be applied to combustion process in our approach. Also, height of wood model

has been specified with respect to the number of ordered rings and width of wood

model has been determined by the number of nested layers. The width and height

sizes are statically determined in our system as stated in Section 3.1.1. Width
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and height of wood model has not been altered conveniently.

As future work, deformation of wood object will be improved. Additionally,

rendering of wood object will be enhanced to make more realistic visualization.

One another work that can be done in future is the addition of shell structure to

the wood. Thus, the variation between the external layer and the internal layers

can be analyzed. Lastly, real sound effects can be added to the simulation in

order to make wood combustion more natural.
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