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ABSTRACT

DETECTION OF TREE TRUNKS AS VISUAL

LANDMARKS IN OUTDOOR ENVIRONMENTS

Tuğba Yıldız

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Uluc. Saranlı

August, 2010

One of the basic problems to be addressed for a robot navigating in an outdoor

environment is the tracking of its position and state. A fundamental first step

in using algorithms for solving this problem, such as various visual Simultaneous

Localization and Mapping (SLAM) strategies, is the extraction and identifica-

tion of suitable stationary “landmarks” in the environment. This is particularly

challenging in the outdoors geometrically consistent features such as lines are not

frequent. In this thesis, we focus on using trees as persistent visual landmark

features in outdoor settings. Existing work to this end only uses intensity infor-

mation in images and does not work well in low-contrast settings. In contrast, we

propose a novel method to incorporate both color and intensity information as

well as regional attributes in an image towards robust of detection of tree trunks.

We describe both extensions to the well-known edge-flow method as well as com-

plementary Gabor-based edge detection methods to extract dominant edges in

the vertical direction. The final stages of our algorithm then group these vertical

edges into potential tree trunks using the integration of perceptual organization

and all available image features.

We characterize the detection performance of our algorithm for two different

datasets, one homogeneous dataset with different images of the same tree types

and a heterogeneous dataset with images taken from a much more diverse set of

trees under more dramatic variations in illumination, viewpoint and background

conditions. Our experiments show that our algorithm correctly finds up to 90%

of trees with a false-positive rate lower than 15% in both datasets. These results

establish that the integration of all available color, intensity and structure infor-

mation results in a high performance tree trunk detection system that is suitable

for use within a SLAM framework that outperforms other methods that only use

image intensity information.
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ÖZET

DIS. ORTAMLARDA GÖRSEL YER İS.ARETLERİ

OLARAK AĞAC. GÖVDELERİNİN TESPİTİ

Tuğba Yıldız

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Uluc. Saranlı

Ağustos, 2010

Dıs. ortamda, robotun konumunun ve durumunun takip edilmesi, robotun nav-

igasyonu ic.in ele alınması gereken temel sorunlardan biridir. Bu problemi

c.özebilmek ic.in kullanılan, c.es.itli Görüntü Tabanlı Es. Zamanlı Lokalizasyon ve

Harita C. ıkarma (visual SLAM) stratejileri gibi algorithmaların ilk temel adımı

ortamda bulunan uygun sabit “yer is.aretc.ilerinin” saptanması ve c.ıkarılmasıdır.

Fakat dıs. ortamda bulunması gereken geometrik olarak tutarlı c.izgiler gibi

özelliklerin sık bulunmaması, robotun navigasyonunu zorlas.tırmaktadır. Bu tez

c.alıs.masında, dıs. ortamlarda sürekli görsel yer is.areti özellikleri olarak ağac.ların

kullanılmasına odaklanılmaktadır. Bu amac.la yapılan c.alıs.malarda sadece

görüntülerdeki yoğunluk bilgisi kullanılmakta ve düs.ük kontrast ayarlarında bu

c.alıs.maların yeterli seviyede sonuc. vermediği gözlemlenmis.tir. Buna kars.ılık,

c.alıs.mamızda ağac. gövdelerinin stabil algılanmasına yönelik görüntüde, renk ve

yoğunluk bilgilerini, bölgesel özellikleri ile birles.tiren yeni bir yöntem öneriyoruz.

Dikey yönde bulunan baskın kenarları c.ıkarmak ic.in iyi bilinen kenar-akıs.ı (edge-

flow) yönteminin yanı sıra, tamamlayıcı Gabor tabanlı kenar belirleme yöntemine

uyguladığımız değis.iklikleri ac.ıkladık. Algoritmamızın son as.amalarında algısal

organizasyon ve mevcut tüm görüntü özelliklerinin entegrasyonu kullanılarak bu

dikey kenarlar potansiyel ağac. gövdeleri olarak gruplanır.

Algoritmamızın algılama performansını karakterize edebilmek ic.in biri homo-

jen diğeri heterojen olmak üzere iki farklı veri kümesi kullandık. Bunlardan

ilki, aynı ağac. türlerinden alınan farklı görüntülerden olus.mus.tur. Diğerinde ise

aydınlatma, bakıs. ac.ısı ve arka plan kos.ullarında daha dramatik değis.imler altında

ağac.ların farklı türlerinden alınan görüntüler yer almaktadır. Deneylerimiz, algo-

ritmamızın her iki veri kümesinde de 15% den daha düs.ük yalancı pozitiflik oranı

ile ağac.ların 90% kadarını doğru olarak bulduğunu göstermektedır. Deneyimiz,
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sadece görüntü yoğunluğu bilgileri kullanan diğer yöntemlerden üstün olan, mev-

cut renk, yoğunluk ve yapı bilgisinin entegrasyonu ile tasarlanmıs. ve bir SLAM

c.erc.evesinde kullanımı uygun olan yüksek performanslı bir ağac. gövdesi algılama

sisteminin tanımlandığını göstermektedir.

Anahtar sözcükler : Kenar bulma, algısal gruplama, renk, Gabor dalgacıkları,

nesne bulma, ağac. gövdesi belirleme, görsel yer is.aretleri, görsel SLAM, bilgisa-

yarla görme, örüntü tanıma, görüntü is.leme.
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tant Professor Dr. Uluç Saranlı for his endless support, guidance, and encour-

agement throughout my M.S. study. His guidance helped me in all the time of

research and writing of this thesis. He was always there to listen and give advice

when I needed. I am very grateful to my advisor for his tremendous patience,

and endless enthusiasm during our research meetings and stimulating discussions,

which carried me forward to this day. This work is an achievement of his contin-

uous encouragement and invaluable advice. I could not have imagined having a

better advisor for my M.S. study. He was much more than an academic advisor.

It was a great pleasure for me to have the chance of working with him.

I would also like to thank to my jury members, Assistant Prof. Dr. Selim
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Dr. Kemal Leblebicioğlu from Middle East Technical University for giving me

the opportunity to be a part of this brilliant project environment. I learned a lot

from them during our research meetings and studies.

Maybe one of the most rewarding aspect of my M.S. study was the opportunity

to work with the all members of my research group, Bilkent Dexterous Robotics

and Locomotion (BDRL), all helped me a lot along my way both technically

and physiologically. I am very thankful to all members, especially to Akın Avcı
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Chapter 1

Introduction

Today, robotic systems are used instead of humans in many areas such as the au-

tomotive and manufacturing industry for lifting heavy objects [2–5], cutting and

shaping parts, assembling machinery, inspection of manufactured parts, the mil-

itary for warfare [2, 5–10], autonomous soldiers, tanks, weapons systems, planes,

fighter jets and bombers, unmanned autonomous helicopters, investigation of haz-

ardous and dangerous environments, space and earth exploration [2, 5, 7, 11–13],

transportation [2, 14, 15] and medical applications [16] to perform tasks which are

too dirty, dangerous or dull for humans. To perform such tasks, robots need to

be able to move by themselves, that is, ‘autonomously ’. An autonomous robot

is a robot which can move by itself, either on the ground or in the air/space or

underwater without human guidance [5]. This can be achieved by equipping these

systems with various on-board sensors and computational resources in order to

guide their motion.

An important application of autonomous robotic systems is to travel where

people cannot go, or where hazards for human presence are too big (e.g. explo-

ration of other planets where the surface has no air, water or resources to support

human life [11, 12] or exploration of underwater life where pressure, light, currents

or other factors limit human exploration [13]). Such applications require percep-

tion of the environment through sensors. Processing of sensor outputs helps build

useful representations of the unknown environment, which can then be used for

1
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navigating and controlling the system.

Autonomous robot navigation is known as the ability of a robot to move from

one location to another without continuous human guidance, while avoiding ob-

stacles in unstructured environments based on its sensor information [17]. In

order for a mobile robot to successfully perform a navigation task, it often re-

quires to answer the following questions: “Where am I now?”, “Where am I

going?”, and “How should I reach there?”. These questions are formally known

as robot localization (pose estimation), goal specification, and path planning, re-

spectively. Autonomous robot navigation in an unknown environment is an open

research problem that many researchers have addressed over the years. Related

studies show that among most successful navigation algorithms are the ones that

are based on robot localization [18]. Thus, the ability of a robot to localize itself

is critical to its autonomous operation and navigation.

Robot localization is defined as the process of determining the exact position

of a robot within its environment and is a fundamental problem in autonomous

robot applications [18]. Robotic systems can rely on various types of sensors to

gain information about the environment and their own position. These sensors

include infrared sensors, ultrasound sensors, laser range scanners, global position-

ing system (GPS), inertial measurement units (IMU) and cameras.

Traditionally, information from wheel, GPS and IMU sensors have been used

to obtain a robot’s position and speed, and possibly its trajectory in a given map

of its environment [19]. Despite the popularity and usefulness of above sensing

techniques, they suffer from drift, low resolution, high cost or size problems,

limiting their applicability. For example, wheel odometry performance degrades

in presence of wheel slippage and GPS suffers from low resolution and low update

rates. GPS outages are also common in some settings, such as urban environments

or forests. Similarly, IMU sensors are expensive, prone too high noise levels

especially at low speeds and their accuracy is affected due to the need for double

integration over time if position estimates are required [20–22].

In contrast, absolute positioning and localization are still possible by per-

forming map-based robot localization, also known as simultaneous localization
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and mapping (SLAM). There has been extensive research into the SLAM prob-

lem over the past two decades (see [23, 24] for a comprehensive survey). In the

following section, we will give a brief overview about SLAM.

1.1 SLAM: An overview

SLAM is a process by which an autonomous robot can build a map of an environ-

ment and at the same time, use this map to estimate its location [25]. SLAM is a

suitable solution for autonomous robot navigation in outdoor settings when GPSs

may be unavailable or unreliable. The processes of localization and mapping are

strongly coupled. To determine the robot’s location, the robot must have a map,

but to build the map, the robot must also first know its location. This strong

coupling is one of the factors that makes SLAM difficult.

In SLAM, the robot has to recognize salient features or landmarks present

in the environment to build its navigation map. These are detected by using

external sensors (e.g. laser range sensor, sonar sensor and camera) that provide

information relative to the position of the robot. Initially, both the map and

the robot position are unknown, the robot has a known kinematic model and

it is moving through the unknown environment populated with landmarks [26].

Consequently, a simultaneous estimate of both robot and landmark locations is

required. The two main problematic issues in SLAM are what landmarks to look

for and how to detect them.

1.1.1 Landmark Selection

Navigation maps are built via using landmarks. Consequently, in order to per-

form SLAM, landmarks have to be detected in the robot’s environment. A key

characteristic for a good landmark is that it can be reliably detected [27]. This

means that the robot should be able to detect it over several frames. Addition-

ally, the same landmark should be detectable when the same area is visited again,
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meaning that detection has to be stable under viewpoint changes. Landmarks

can be natural (like roof or tree edges) or artificial (like reflective stripes, active

beacons or transmitters) having a fixed and known geometric properties [28].

Detecting landmarks is a difficult task. For this reason, in most implemen-

tations, SLAM landmarks have been restricted to artificial beacons with known

geometric properties [29–31]. Natural landmark-based methods for autonomous

localization have become increasingly popular [1, 28] as they do not require any

infrastructure or other external information. Such methods require that natural

landmarks can be robustly detected in sensor data, that the localization algo-

rithm can reliably associate landmarks from one sensor observation to the next,

and that the method can overcome problems of occlusion, ambiguity and noise

inherent in observation data [28].

As pointed out by [32], there is a need for methods which enable a robot to

autonomously choose landmarks. A good method should pick landmarks which

are best suited for the environment the robot wishes to map. For example, in in-

door environments, features such as walls (line-segments), corners (diffuse points)

or doorways (range discontinuities) are used as landmarks. They can easily be

determined and provide robots with good structure and organization for image

processing tasks. In outdoor environments however, similar simple features are

sparse and infrequently observed. Thus, outdoor environments tend to be un-

structured, inhibiting the use of the same indoor algorithms. In unstructured

or natural environments, it is difficult to specify a generic feature that could be

present in all environments. For instance, features tracked in an off-road en-

vironment would be different than those tracked in an urban location or in an

outdoor park or in an underwater setting. In such environments, the knowledge

of the environment could significantly reduce the search space of candidate land-

marks. The identified environment dictates what landmarks should be selected

for SLAM [33]. This is, however beyond the scope of this thesis, which focuses on

the problem of object detection as natural landmarks for SLAM. In this context,

our experimental setting (a sparsely forested outdoor environment) and land-

marks (tree trunks) are chosen beforehand and the problem we focus on is that

of detecting these landmarks.
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1.1.2 Sensor Selection

In order to achieve accurate localization of the robot, the robot must be equipped

with a sensory system capable of taking measurements of the relative location

between landmarks and the robot itself. These sensors are exteroceptive sensors

such as laser range finders (LRFs), sonar sensors or cameras to localize landmarks

around the robot and subsequently improve the robot pose prediction [24].

One of the most important factors that determines the performance of SLAM

algorithms is naturally the accuracy of the relative external sensor. For example,

in the case of sonar or laser sensors, this is determined by the range and bearing

errors when observing a feature or landmark [26]. Additional sensory sources,

such as, compasses, infrared technology and GPS may also be used to better

perceive robot state and the outside world [23]. However, all these sensors carry

certain errors, often referred to as measurement noise, and also have several range

limitations making necessary to navigate through the environment.

Another important issue for SLAM is data association, defined as the problem

of recognizing a previously viewed landmark and maintaining correspondence be-

tween a measurement and a landmark. In this context, there has been significant

research related to SLAM using various kinds of sensors [34–43]. Many of these

mapping systems rely on Laser Range Finders (LRFs) or sonars.

LRFs are accurate active sensors but they are slow, expensive and they can

be bulky. Their most common form operates on the time of flight principle

by sending a laser pulse in a narrow beam towards the object and measuring

the time taken by the pulse to be reflected off the target and returned to the

sender. Sonar-based systems are fast and cheap but usually very crude. They

provide measurements and recognition capability similar to vision, but they do

not provide appearance data. In summary, due to their high cost, problems with

speed, accuracy and safety, active sensor-based SLAM methods have limitations

in practical applications. Also, its dependence on inertial sensors implies that a

small error can have large effects on later position estimates [23].
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While traditionally LRFs have been primarily used as exteroceptive sensors

for outdoor SLAM, vision sensors, especially cameras, received increasingly more

attention [44–49] due to their low cost, low power consumption, passive sensing,

compactness, light-weight and capacity to providing textual information. Fur-

thermore, cameras provide more information than LRFs or sonars.

As mentioned before, laser range sensors or sonars have been traditionally

used to detect landmarks. However, landmarks that they can detect are limited

in complexity due to the low bandwidth information these sensors can provide.

Consequently, in this thesis, we use a camera as our exteroceptive sensor to

perform detection of landmarks.

1.2 Problem Statement

The work in this thesis addresses the problem of detecting tree trunks in images

of cluttered outdoor environments for the purpose of using them as landmarks for

visual-SLAM-based autonomous robot localization using a single digital camera

as a sensor. The problem of detecting tree trunks can be formulated as follows:

Given an arbitrary image, determine whether or not there are any tree trunks in

the image, and if present, report the base location and extent/size of each tree

trunk. This problem is rather challenging for the following reasons:

• Image conditions such as lighting (spectra, source distribution and inten-

sity) and camera characteristics (sensor response, lenses) may substantially

change the appearance of a tree trunk.

• Different cameras may produce different appearance information even for

the same tree under the same pose and illumination.

• Varying viewpoint may change the appearance of a tree trunk.

• Trees have a high degree of variability in size, color, brightness and texture

even for trees within the same species.
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• Different types of trees will have different appearances depending on the

texture of the bark, the smoothness of the trunk, the density of the branches,

shadow, brightness and color.

• Some potential background objects such as rocks and sand share similar

texture and color information with trees. Nevertheless, a common feature

of all tree trunks is their quasi-vertical and symmetric structure. Even as

such, some potential background objects such as buildings, dustbins, rods,

roads or traffic signs and pipes shares similar structural information with

trees.

• Tree trunks can be of any intensity in the image, from very dark to very

light. Also, some tree trunks’ intensity is very close to background objects

such as leaves, glass and road. Moreover, when the image resolution is low,

not many details are visible.

• Tree trunks may be partially occluded by the environment in the images,

mostly undergrowth.

We need to address all these issues to obtain a reasonably good tree trunk detec-

tion system.

1.3 Existing Work on Tree Detection

In this section, we provide some background information on various techniques

that have been suggested to detect trees in images. Maeyama et al. [50] proposes

a method that estimates the position of a mobile robot using trees as landmarks

in an outdoor environment. In this method, both sonar and vision sensors used

to detect trees in images. The tree detection algorithm they propose is based

on two assumptions: First, they assume that the structure of a tree in an image

is vertical, meaning that both sides of a tree in an image are vertical edges. As

a result of this, a differential operator in x-direction is applied to an image to

obtain the vertical edges in the image. Their other assumption is that the tree
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constitutes an image area whose intensity values are darker than the background

and uniform in shading. As a result of this, the differential values on the left side

edges of trees trunk are negative, while those on the right are positive. In addition

to this, distance measurements obtained by a sonar sensor are used to make an

estimate of the position of central axes of trees in images. Those positions are then

used as landmarks to estimate the robot’s position in the environment. The main

drawbacks of this method are its assumptions on the homogeneous appearance of

trees and the lower intensity values on the tree. Consequently, this method would

not work well for images with a wide variety of illumination, non-homogeneity

in bark texture and the background sharing similar appearance and/or structure

information with trees in the foreground.

Asmar et al. [33] proposes a method that detects trees in an outdoor environ-

ment using local descriptors. This method involves the construction of a training

set in a weakly supervised manner. The training set consists of both positive

and negative images; positive images are ones which contain trees while negative

images are those which contain only background objects. In the training phase, a

Difference of Gaussian filter is applied to images at different scales in order to de-

tect interest points inside the image and those points are represented using scale

invariant local descriptors. Similar descriptors are clustered together and those

clusters are used as object classifiers. Object classifiers are then ranked according

to their classification likelihood by the purpose of reducing mismatch probabil-

ities. As a result, descriptors representing trees receive high ranks while those

representing background receive low ranks. When a query image is encountered,

descriptors are then used to match with existing clusters. The rank information

is used to classify it as a tree or a background object. An important property of

object detection using local descriptor is its repeatability. Different trees present

a large amount of variability in their appearance and thus, none of the internal

features of one tree are probably to be found on another tree. The only common

characteristic between tree trunks is their quasi-vertical and symmetric structure.

Under such conditions, it is difficult to correctly detect trees in images using lo-

cal descriptors. Another problem is that interest points or regions need to be

distinctive from the rest of the image. However the backgrounds of tree images
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(e.g. glass, sand, rock, etc.) share similar color and texture signatures with the

trees in the image.

Huertas et al. [51] proposes a stereo-based tree traversability algorithm that

estimates the locations and diameters of trees in the scene by detecting portions

of tree trunks using their vertical structural information. They assume that por-

tions of tree trunk (called as tree trunks fragments) are discernable from the

background, meaning that portions of tree trunk appear either brighter or darker

than the background, and thus the boundaries that delineate portions of the trunk

are detectable and also have opposite contrast. First, their proposed method de-

tects edges that belong in contours having vertical or near vertical directions by

applying edge detection in horizontal direction and contour extraction. Then, the

method uses edge contrast polarity and stereo range data to match pairs of edges

of opposing contrast along the horizontal direction that correspond to the bound-

aries of individual potential tree trunks fragments. Subsequently, the diameter of

each tree trunk fragment is estimated based on stereo range data and estimated

diameters are then used to construct a tree traversability image. Their proposed

method focuses on detecting tree trunk fragments rather than tree trunks. This

means that the system does not attempt to group tree trunk fragments to form

tree trunks. Hence, multiple fragments on a single tree trunk can be observed.

The main disadvantage of this method is their assumption on intensity values on

trees. Only tree trunk fragments that appear darker or brighter than the back-

ground can be detected by this method. Consequently, this method is not very

robust under varying illumination conditions and environmental settings.

Teng et al. [52] proposes an algorithm for tree segmentation. They consider

only trees having clear tree trunk (homogeneity in bark texture and color ap-

pearance) and leaf region. In this algorithm, trunk and leaf regions of a tree are

individually identified and the trunk structure of a tree is also extracted. Their

proposed algorithm consists of three stages: preliminary segmentation, trunk

structure extraction and leaf region identification. In preliminary segmentation

stage, the image is partitioned into several regions using EM algorithm and an

energy function is formulated according to the color, position, and direction of

the segmented regions. Then, non-trunk regions are removed using a systematic
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method to correctly extract the trunk structure and after that, the trunk struc-

ture is extracted by minimizing an energy function. After obtaining the trunk

structure, leaf regions are then easily extracted by finding consistent regions lo-

cated above the trunk regions. In our case, most of images do not contain leaf

regions. However, in this method, tree trunk regions are determined based on

the locations of leaf regions, meaning that although, the regions that belong tree

trunks are classified as non-tree trunk regions if they do not have leaf regions

above them. Additionally, those locations are used to reduce the effect of back-

ground regions similar to trees and the locations of trunk regions are utilized

to eliminate the effect of background regions similar to leafs. Consequently, for

these reasons, this method is not suitable for our case.

Asmar et al. [1] also proposes a method to detect tree trunks in images for the

sake of using them as landmarks for visual SLAM. In this method, a tree trunk is

defined as follows: “A tree trunk is a combination of symmetric and continuous

lines, its base is connected to the ground, its direction is predominantly vertical,

and the value of its aspect ratio is constrained and this definition is used as a basis

for the detection of tree trunks.” Their proposed algorithm is based on the vertical

nature of the tree trunks and location of the tree trunks base. In this algorithm,

edges dominant in the quasi-vertical direction are obtained first by applying a

Canny edge detection algorithm in the vertical direction to the input image.

Vertically dominant edges are then perceptually organized into continuous and

symmetric lines, and are subsequently grouped into tree landmarks by minimizing

the entropy of the image and removing non-tree lines using the location of the

tree trunk base. The Ground-Sky (G-S) separation line, obtained by applying the

Canny edge detection algorithm in the horizontal direction to the input image, is

located in each image and used to estimate the position of the tree trunk base.

Our proposed solution is inspired from this method and substantially improves on

performance when the intensity of tree trunk regions is similar to the background.

In such case, vertical edges are not obtained accurately with this method (i.e,

some of the tree edges are not detected or the location of tree edges are not

obtained correctly). In addition, this method does not distinguish well trees

from background objects that have similar structure and appearance because
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of using only intensity information. Consequently, the main drawback of this

method is using only intensity information to obtain edges in an image. However,

our proposed method is very close in spirit to this work and improves on its

performance under varying illumination, texture and background conditions.

Ali et al. [53] proposes a classification based tree detection and distance mea-

surement method for autonomous vehicle navigation in forest environments. This

method consists of three parts: the training step, the pixel/block classification

step and the segmentation and distance measurement step. In the training step,

each training image is divided into small non-overlapping blocks and each block

is classified as either background (leaves, snow, bushes with snow, and leaves

with snow) or foreground objects (brown and black tree trunks) manually. Then,

both color (color histogram or mean or standard deviation of color) and texture

(Co-occurrence matrix, Gabor filters, or Local Binary Patterns-LBP) features

are computed from each block and stored in vector form. Subsequently, feature

vectors are obtained by using only color, only texture or the fusion of both by

simply concatenating both type of features into a single feature vector without

considering their weights. After that, feature vectors are classified using Artificial

Neural Networks (ANN) or K-Nearest Neighbor (kNN) classification algorithm.

In the pixel/block classification step, test image is also divided into small blocks

and feature vectors are extracted from each small block. Then, those feature

vectors are fed into the selected classifier (ANN or kNN) to classify each block

as tree or background. In the segmentation and distance step, a binary image

based on the classification results is constructed by assigning white color to tree

blocks and black color to others in an image and the distance between the base

of the tree and the tire of vehicle is estimated by using a simple heuristic method

based on pixel ratio and the width of the tire as a reference. The main draw-

back of this method is that it only detects trees in a known environment under

known climate conditions. Their background classes only consist of leaves, snow,

bushes with snow, and leaves with snow. Therefore, this method is not suitable

for our case since we try to detect trees in cluttered outdoor environment under

unknown climate conditions. Moreover, the performance of this method is based

on the classification performance of small blocks and this situation might cause
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problems such as some trees not being recognized.

1.4 Our Contributions

This thesis presents a novel method for detecting tree trunks in cluttered out-

door environments using a single digital camera. Our method incorporates both

appearance and structure information in an image towards robust of detection

of tree trunks. The tree trunk structure is defined as follows, inspired from [1]:

‘A tree trunk is a combination of symmetric and continuous edges, its direction

is predominantly vertical, and the value of its aspect ratio is constrained.” This

definition is used as a basis for our solution. In our method, edge strengths of

images are first obtained using intensity, color and texture information. Subse-

quently, dominant edges in the vertical direction are detected using a variant of

the Edge Flow segmentation algorithm [54, 55] or complementary Gabor-based

edge detection algorithm. These dominant edges are then grouped into poten-

tial tree trunks using the integration of perceptual organization properties and

regional attributes.

The major contributions of this thesis are as follows:

• Due to the difficulties explained in Section 1.2, using only appearance in-

formation or structure information cannot be expected to produce good

results. Therefore, we use an integration of both appearance (i.e. regional

attributes) and structure information (i.e. perceptual organization) to de-

tect tree trunks in cluttered outdoor environments.

• We use a specifically tuned color filter as a pre-processing step. We trans-

form an image into color distance map (CDM) using a pre-computed tree

color probability distribution. The CDM is later used as color information

during edge detection and grouping. Using the CDM makes the procedure

simple because it reduces the image to a single channel of distance values

and informative because it implicitly uses color information while retaining

structural information that is present in the image.
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• We apply odd Gabor filters bank to both intensity image and CDM to

compute the edge strengths at different orientations of an image. By this

way, we use intensity, color and texture information during edge detection.

• In the original Edge Flow method [54, 55], after obtaining the edge energies

and the corresponding probabilities from different image attributes, they are

combined together to form a single edge flow field for boundary detection. In

our case, instead of handling each image attributes separately, we consider

all image attributes simultaneously. Moreover, instead of using the gradient

of the smoothed image for computing edge energies, we use the Gabor

representations of the image.

• We present a Gabor-based edge detection method that uses the edge

strength of the image at the vertical orientation to detect the vertical edges

in the image.

• During edge grouping process, we consider both perceptual organization

tools and regional information. Using regional information enables us to

measure the consistency and accuracy of predicted edge pairs with image

structure. In other words, a geometric relationship defined between two

edge contours is verified if associated regional attributes are in agreement.

We use regional properties along each edge contour and in pixels surround-

ing each edge contour to verify the predicted pairs. We construct edge

classification masks, that indicates whether a pixel is a part of the desirable

structure or not, for the sake of using them as regional information. Also,

we use CDM as regional information.

• In contrast to [1], in addition to continuity and symmetry, we use proximity,

parallelism and co-curvilinearity properties of edges and regional informa-

tion during edge grouping process. Moreover, in addition to intensity, we

use color and texture information during edge detection process.

The effectiveness of our proposed algorithm for detecting trees is then evaluated

on an extensive collection of outdoor images containing trees.
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1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 gives the details of

the proposed tree trunks detection system, which integrates perceptual organi-

zation capabilities with low-level image features. Experimental results are then

presented in Chapter 3 to demonstrate the robustness of the method under a

variety of environmental conditions and experimental results are then discussed.

Moreover, the accuracy of our proposed method is compared to the method pro-

posed by Asmar et al. [1] and comparison results are also discussed in Chapter

3. Chapter 4 concludes with a summary of our proposed method and introduces

the focus of our future research.

Moreover, relevant approaches for object detection are discussed in Appendix

A. Besides, we discuss potential solutions and emphasize which one is suitable

for our case.



Chapter 2

Detection and Extraction of Tree

Trunks

In this chapter, we describe our algorithm for detecting and extracting tree trunks

in color images of outdoor scenes. To make this method quick and easily under-

standable, we first briefly explain the algorithm and then, discuss each step in

detail.

2.1 Motivation and Algorithm Overview

Our problem can be defined as detecting tree trunks for the purpose of using

them as natural landmarks for autonomous robot localization in cluttered outdoor

environments using a single digital camera as a sensor. The task of detecting tree

trunks is to determine whether or not there are any tree trunks in a given image,

and if present, to localize each tree trunk (See Figure 2.1). In this work, inspired

from [1], we define tree trunks as follows: “A tree trunk is a combination of

symmetric and continuous edges with a predominantly vertical orientation, and

having a limited range of possible aspect ratios.” Our problem is hence reduced to

detecting quasi-vertical edges in images using both color and intensity as well as

texture information and then, grouping detected edges into potential tree trunks

15
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Figure 2.1: Example result of our tree trunks detection algorithm. Detected tree
trunks: The base of each tree trunk is represented by a diamond and the edges
of each tree truck are represented by overlaid thick lines.

by using the integration of both geometric relationships and regional attributes.

To this end, we propose a novel edge-based segmentation method to effi-

ciently extract tree trunks from color images of outdoor scenes with wide range of

tree-color variations, varying illumination conditions, shadows, non-homogeneous

bark texture, different tree orientations and complex background. The proposed

method consists of two steps: learning of tree colors and detecting of tree trunks.

In the learning step, based on a set of sample pixels extracted from a wide variety

of trees having different color tones and captured in different lighting and illu-

mination conditions, the distribution of tree colors is modeled using a Gaussian

mixture model.

Once the color model is learned, Figure 2.2 summarizes the general flow of

our tree trunk detection algorithm with each one of the six steps briefly explained

below:

1. Pre-processing : We collect tree images from different kinds of trees under

different illumination and weather conditions. Those images are represented
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Figure 2.2: Block diagram of our tree trunk detection algorithm.

in the RGB color space and depending on the selection of color space, the

images are converted into the selected color space such as HSV, NRGB,

YCbCr or gray-scale. If desired, those images are resized after smoothing

with a Gaussian filter at appropriate scale to speed up the tree detection

procedure. In our experiments, we have observed that images with 640 ×
480 pixels in resolution still preserves sufficient color, intensity and texture

information.

2. Tree-colored pixels detection: The original image is transformed into a tree-

color distance image. Tree-colored pixels in the image are detected by using

the tree color probability distribution computed during the learning phase,

modeled using a Gaussian mixture model (GMM).

3. Obtaining intensity image: Ideally, the background in the image has dif-

ferent intensity with the trees in the foreground so we also transform the

original image into an intensity image. After that, the intensity image is

smoothed using an Anisotropic diffusion filter [56]. This is necessary step



CHAPTER 2. DETECTION AND EXTRACTION OF TREE TRUNKS 18

since most real images are noisy and have corrupted data. Moreover, elim-

inating noisy pixels improves the efficiency and accuracy of the rest of the

proposed algorithm. Finally, the resulting image is normalized to the range

[0, 1].

4. Computation of Edge energies : Edge energies of the image at different ori-

entations and scales are computed by filtering both intensity image and

tree-color distance images with a bank of odd Gabor filters. These edge

energies indicate strengths of the intensity, texture and color changes.

5. Edge detection: Quasi-vertical edges in the image are detected by using a

modified version of the Edge Flow method or using complementary Gabor-

based edge detection method.

6. Edge Grouping : Detected edges are grouped into potential tree trunks by

using the integration of a variety of geometrical properties of edges such

as curvilinearity, continuity, and symmetry and regional attributes such as

color and edge classification masks.

In the following sections, we will describe the details of each of these components.

2.2 Color Learning and Transformation

Color is a perceptual phenomenon related to human response to different wave-

lengths in the visible electromagnetic spectrum [57]. Human eye can discern

thousands of color shades and intensities while only two-dozen shades of gray

color, and responses more quickly and accurately to what is happening in a scene

if it is in color [58]. Color is helpful in making many objects “stand out” when

they would be subdued or even hidden in a gray-level (monochrome) image [59].

Compared to monochrome image, a color image provides in addition to inten-

sity, the additional information (chromatic information) about the objects and

the scenes. Using chromatic information allows to overcome problems which are

difficult to solve images for which only intensity is available [59]. Therefore, color
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is useful or even necessary for pattern recognition and computer vision systems,

particularly important to detect or recognize the objects that can be easily cate-

gorized in color distribution [59, 60].

In computer vision, researchers have attempted to use color information in

many applications such as image or scene segmentation [59, 61, 62], object detec-

tion or recognition [63–68], detection of certain colored regions in images [64, 69–

73] and edge detection [74–77]. In our case, color information is mainly used to

detect the certain colored regions (tree-colored patches) in images.

In this thesis, one of our novel contributions is the use of color information

to distinguish trees from the background. Color is highly robust to scale and

orientation changes, and also not effected much by the motion of other objects

[59, 60]. However, color information is influenced by illumination conditions and

differs from tree to tree. In addition, different cameras may record colors differ-

ently. In order to address all these problems, and to effectively distinguish trees

from background objects based on color information, we need a reliable color

model. This model must accommodate trees of different color tones and different

illumination and lighting conditions.

Both non-parametric and parametric methods are used for modeling color

distribution in the literature. The key idea of the non-parametric color modeling

methods is to estimate color distribution from the training data without deriving

an explicit model of the color distribution. Non-parametric techniques include

piecewise linear decision boundaries (such as thresholds on color features) [78,

79], and Bayesian classifier with the histogram technique [64, 80]. In case of

parametric modeling, on the other hand, a predefined statistical model is selected

to model the color distribution. Parametric techniques include modeling of color

distributions using unimodal Gaussians or mixtures of Gaussians [62, 70, 72, 81–

83] or multiple Gaussian components [65] or an elliptic boundary model [84].

Besides, nonlinear models such as multilayer perceptrons are used to model color

distribution[85].

Parametric modeling is more sensitive to the choice of color space than the

non-parametric modeling because of the effect of the shape of color distribution.
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On the other hand, non-parametric models are not only independent of the shape

of color distribution, but also they are faster in training and testing. However,

non-parametric techniques require a large amount of training data and thus, more

storage requirements and there is no way to generalize the training data, so they

may not be practical in many cases [86]. On the other hand, Gaussian mod-

els can generalize well with less training dataset and also have very less storage

requirements. The performance of Gaussian models directly depends on the rep-

resentativeness of the training dataset, which is going to be more compact for

certain applications (such as skin color detection) in color model representation.

Therefore, in this work, Gaussian models will be discussed.

Our algorithm assumes that tree trunks have families of roughly similar colors.

Hence, we propose to use a color distance map (CDM), where distance value of

each pixel gives an idea of how close the pixel color resembles a tree trunk. This

procedure is efficient since it reduces the image to a single channel of distance

values and informative since it retains the structure of the image. The proposed

method constructs the CDM based on a tree color model: The input image is

transformed into a CDM (tree-color distance image) such that the value of each

pixel shows the possibility that the pixel belongs one of previously learned tree

color classes, calculated based on the Mahalanobis distance between the pixel‘s

color value and the tree color model.

In summary, our method requires the selection of a suitable color space, a

reliable color model to represent the distribution of tree colors and a suitable

similarity criteria to distinguish tree-regions from non-tree regions based on color

information. Our method consists of two steps: color learning and color trans-

formation which are described in detail in the following sections.

2.2.1 Learning Tree Color Models

Our tree color model learning algorithm involves three steps, shown in Figure 2.3

and briefly explained below:
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Figure 2.3: Algorithm for tree color model learning based on GMM.

1. Collection of the training dataset : The training dataset for our algorithm

consists of RGB images including different kinds of trees under different

illumination and lighting conditions.

2. Selection of color samples : Objects in real-world images are rarely smooth

in terms of color. With regard to trees, a tree is never completely homo-

geneous in terms of color. Image smoothing may help to negate some of

this noisy information, which would otherwise be garnered from an image

and can impact on further image processing steps. In order to eliminate

image noise, training images are smoothed with a 5 × 5 median filter [87–

89]. Then, tree-colored patches are manually selected from each image to

obtain a large enough set of pixels with desired range of colors.

3. Color space selection: A suitable color space must be chosen to represent

color models for tree trunks. Tree pixels are then converted to the selected

color space. Different color spaces, namely YCbCr [59, 62, 65, 66, 90–92],

HSV [59, 67, 73, 74, 90–95] and RGB [59, 64, 69, 90, 92] will be considered.

The HSV seems to be a good alternative since it is compatible with the

human color perception, but HSV family presents lower reliability when the
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scenes are complex and they contain similar colors such as wood textures

[96]. Moreover during the image acquisition, camera provides RGB image

directly, so choice between RGB and YCbCr arises here.

RGB components vary with the changes in the lighting conditions, thus

color detection may fail if the lighting condition changes. YCbCr is a linear

transformation of RGB so that it produces nearly same results with RGB.

Hence, CbCr subspace is considered first for color detection. According to

our experiments, CbCr produces quite better results than RGB but color

transformation is required. For example, each image of size 640 × 480 pixels

requires (640x480 =) 307200 transformations. In order to avoid such a huge

amount of heavy calculations, and since most cameras provide RGB images

directly and with respect to our observations, RGB is the best alternative

in this thesis. Therefore, RGB color space is used here to represent color

distribution of tree-colored samples.

4. Learning of tree color model parameters: We use a Gaussian mixture model

to model the distribution of the tree colors since closed form estimates

of their parameters can be computed using the Expectation-Maximization

(EM) algorithm.

In the RGB color space, we model the distribution of tree colors using a Gaus-

sian mixture model (GMM). To estimate the parameters of the Gaussian mixture

model, we use the standard Expectation-Maximization (EM) algorithm. The al-

gorithm begins by making an initial guess for the parameters of the Gaussian

mixture model using the k-means algorithm. Then, the EM algorithm is run on

the training data using a stopping criterion that checks whether the change in

negative log-likelihood between two iterations, which can be regarded as an error

function, is less than a given threshold. In other words, given the training data

D = {x1, . . . , xn}, the change in error function is computed by using the Equation

2.1 [82]:

∆t+1 = Et+1 − Et = −
n

∑

i=1

ln(
pt+1(xi)

pt(xi)
) , (2.1)

where pt+1(X) denotes the probability density evaluated using ‘new’ values for the

parameters, while pt(X) represents the density evaluated using ‘old’ parameter
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values. By setting the derivatives of ∆t+1 to zero, we obtain the following update

equations for the parameters of mixture model [82]:

µt+1
j =

∑n

i=1 pt(j|xi)xi
∑n

i=1 pt(j|xi)
(2.2)

Σt+1
j =

∑n

i=1 pt(j|xi)(xi − µt+1
j )(xi − µt+1

j )T

∑n

i=1 pt(j|xi)
(2.3)

αt+1
j =

∑n

i=1 pt(j|xi)

n
, (2.4)

where

pt(j|xi) =
pt(xi|j)αt

j
∑k

m=1 αt
mpt(xi|m)

(2.5)

.

The number of components in the mixture k can be either supplied by the

user or chosen using the Minimum Description Length (MDL) Principle [97] that

tries to find a compromise between model complexity and the complexity of the

data approximation. Under MDL, the best model M is the one that minimizes

the sum of the model’s complexity (κM

2
log n, where κM is the number of free

parameters in model M) and the efficiency of the description of the training data

with respect to that model (− log p(D|M)). For a Gaussian mixture model with k

components, the number of free parameters becomes κM = (k−1)+kd+k(d(d+1)
2

)

and the best k∗ can be found as

k∗ = arg min
k

[
κM

2
log n −

n
∑

i=1

log(
k

∑

j=1

αjp(xi|j))] (2.6)

2.2.2 Computing the Color Distance Map

Using the tree color model computed using the algorithm described above, we

transform color images into tree-color distance images, where the gray-level in-

tensity of each pixel represents its possibility of belonging to a tree color class.

More formally, each pixel value represents the minimum Mahalanobis distance

from its color to the tree color model clusters. Hence, tree-color distance image

can be considered as a color distance map, showing how far the color of each pixel

is from the learned model.
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We define Color Distance (CD) as the Mahalanobis distance between the color

of a pixel and a tree color cluster. The CD is naturally related to the probability

(not formally) of a color to be considered as tree color. The lower the CD is, the

higher the probability of that pixel being a part of a tree trunk is. The Color

Distance Map (CDM) is then defined as a gray-scale image obtained from a color

image by assigning to each pixel in the image, the Mahalanobis distance from the

color value of the pixel to the ‘closest’ tree color cluster. Some properties of the

CDM are listed below:

1. The CDM represents the likelihood (not formally) of each pixel in the image

being a part of a tree trunk regardless of the number of tree clusters specified

by the color model.

2. The CDM provides both color and shape information. Despite being a single

channel image, the CDM still retains enough shape and color information

because CDs represents distance in the color space.

The distribution of the tree colors is modeled using a GMM in the RGB

color space and hence, the centroid of each model cluster is determined by the

mean vector µj and its shape is determined by the covariance matrix Σj. Let

c = [R, G, B]T be a color pixel located at coordinate (x, y) of a color image.

The CDM of this pixel can be computed as

CDM(x, y) := arg min
j

CD(c, µj, Σj) where j = 1, . . . , k (2.7)

where CD(c, µj, Σj) is the Mahalanobis distance from the pixel c to the j’th

model cluster, defined as

CD(c, µj, Σj) := (c − µj)
T Σ−1

j (c − µj) (2.8)

Here, taking the smallest CD ensures that the distance to the closer cluster is

chosen. Thus, a single CDM represents all clusters included in the tree color

model. CDM values represent the probability (not formally) of each pixel to be

taken as a tree pixel.
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Due to large variations in lighting and illumination conditions and the exis-

tence of background objects similar in color to trees, there are usually isolated

groups of “noise” pixels in the resulting CDM. These regions typically have a size

of a few pixels and can be eliminated using morphological opening and closing

operators. Opening suppresses bright details smaler than the structuring ele-

ment and closing suppresses dark details smaller than the structuring element

[88, 89, 98, 99]. We apply sequential opening and closing operations using 3 × 3

square structuring elements to eliminate these “noise” regions. Opening elimi-

nates small bumps that are connected to tree regions and closing gets rid of small

blobs within tree regions. After that, we apply an Anisotropic diffusion filter

[56] to the resulting CDM. Eliminating “noise” regions in this manner improves

the efficiency and accuracy of the rest of the proposed algorithm. Finally, the

resulting CDM is normalized to the range [0, 1].

A sample color image and its resulting color distance map are shown in Figure

2.4.

(a) Original color image (b) Intensity image (c) Color distance map

Figure 2.4: Color Transformation based on Mahalanobis distance. Dark regions
have a high probability (not formally) of having color values close to the learned
tree color model.

2.3 Gabor-based Edge Energy Computation

In recent years, the Gabor filters have been received considerable attention in

image processing applications especially texture segmentation and analysis [100–

104]. Texture segmentation requires both simultaneous measurements in spatial
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and frequency domains. Filters with smaller bandwidths in the frequency domain

are more desirable because they allow us to make finer distinctions among different

textures. On the other hand, accurate localization of texture boundaries requires

filters that are localized in the spatial domain. However, normally the effective

width of a filter in the spatial domain and its bandwidth in the frequency domain

are inversely related according the uncertainty principle [100]. An important

property of Gabor filters is that they optimally achieve joint localization, or

resolution, in both spatial and frequency domains [105]. That is why the Gabor

filters are well suited for texture segmentation and analysis problems. The other

reason is that the Gabor filters are closely related to the human visual system

because the receptive profiles of simple cortical cells in the visual cortex of some

mammals can be approximated by these filters [101, 105, 106]. Also, the Gabor

filters have been used in many applications, such as object detection, document

analysis, edge detection, iris identification, image coding, image reconstruction,

and image representation.

Gabor filters can be used to detect components corresponding to different

scales and orientations in images [100]. The frequency and orientation selective

properties of a Gabor filter allow the filter to be tuned to give maximum response

to edges or lines in an image at a specific orientation and frequency. Gabor filters

can hence be considered as orientation and scale tunable edge and line detectors.

Thus, a properly tuned Gabor filter can be used to effectively enhance edge

structure while reducing image noise in an image. In this work, we use Gabor

filters to detect and enhance edge structures in near-vertical orientations.

In this work, edge energy is used to measure the strength of local image infor-

mation change such as intensity, color and texture. Edge energy gives maximum

response at edge/boundary locations in an image. Ideally, images contain homo-

geneous (non-textured) regions and an edge is defined as the boundary between

two regions with relatively distinct intensity/color information. Unfortunately,

most natural images contain highly textured objects and it would be necessary to

utilize texture information during edge detection; otherwise, edge detection rou-

tine produces too many undesirable and irrelevant edges within texture regions.

For this reason, we propose an edge energy computation method based directly
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on a bank of Gabor filters. Edge energies of an image are obtained by convolving

the image with these filters. Additionally, it also would be necessary to utilize

color information while detecting edges in an image since color provides much

more information than intensity. For this reason, we use both intensity and color

distance images to compute Gabor-based edge energies.

In the sequel, we use the term “Gabor wavelet representation” to refer to

a bank of Gabor filters, normalized to have DC responses equal to zero. The

Gabor wavelet representation used in this work was proposed by Manjunath and

Ma [107].

2.3.1 Construction of Gabor Wavelets

A 2−D Gabor filter is generally defined as a linear filter whose impulse response

is defined by a harmonic function multiplied by a Gaussian function [5]. It can

be written as:

h(x, y) = s(x, y)g(x, y) (2.9)

where s(x, y) is a complex sinusoid, known as a carrier, and g(x, y) is a 2 − D

Gaussian function, known as envelope. Despite this simple form, there is no

standard and precise definition of a 2−D Gabor function, with several variations

appearing in the literature [100, 103, 105, 107, 108]. Most of these variations are

related to use of different measures of width for the Gaussian envelope and the

frequency of the sinusoid. The Gabor function, normalized in an appropriate way,

can be used as a mother wavelet to generate a family of nonorthogonal Gabor

wavelets based on wavelet theory [107, 109, 110]. However, as pointed out by Jain

and Farrokhnia [100], although the Gabor function can be an admissible wavelet,

by removing the DC response of the function, it does not result in an orthogonal

decomposition, which means that a wavelet transform based upon the Gabor

wavelet is redundant. A formal mathematical derivation of 2-D Gabor wavelets

along with the computation of the frame bounds for which this family of wavelets

forms a tight frame is provided by Lee [109]. Despite the lack of orthogonality

presented by the Gabor wavelets, the Gabor function is the only function that
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can achieve the theoretical limit for joint resolution of information in both the

space and spatial-frequency domains. The Gabor wavelet representation used in

this work was proposed by Manjunath and Ma [107].

A 2-D Gabor function g(x, y) is defined as a Gaussian modulated by a complex

sinusoid [107]. It can be specified by the frequency of the sinusoid W and the

standard deviations σx and σy of the Gaussian envelope as [107]:

g(x, y) =
1

2πσxσy

exp

[−1

2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πjWx

]

. (2.10)

The frequency response of this filter, G(u, v) is written as:

G(u, v) =
1

2πσuσv

exp
−1

2

[

(u − W )2

σ2
u

+
(v − W )2

σ2
v

]

, (2.11)

where σu = 1/2πσx and σv = 1/2πσx, and x, y,W are filter parameters.

Gabor wavelets (a bank of Gabor filters) are generated by appropriate dilation

and rotation of g(x, y) by using the generating function gmn(x, y)

gmn(x, y) = a−mg(x
′

, y
′

), a > 1, m, n = integers (2.12)

x
′

= a−m(x cos θ + y sin θ)

y
′

= a−m(−x sin θ + y cos θ) ,

where θ = nπ/K denotes the orientation of the wavelet, m and n specify the

scale and orientation of the wavelet, respectively, with m = 0, 1, 2, . . . , S − 1,

n = 0, 1, 2, . . . , K − 1 and S and K are the total number of desired scales and

orientations. The number of Gabor filters is equal to the product of the numbers

of scales and orientations. The scale factor a−m in equation (2.13) makes the filter

energy independent of m; in other words, ensures equal energy among different

filters. Examples of Gabor wavelets are shown in Figure 2.5. Note that light and

dark gray shadow indicate positive and negative values of the filter, respectively.

The lack of orthogonality of the Gabor wavelets implies that there is redundant

information in the filtered images, and the design strategy proposed by [107] is

used to reduce this redundancy. This strategy projects the filters so as to ensure
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Figure 2.5: Examples of Gabor wavelets in the spatial domain with six orienta-
tions and four different scales.

that the half-peak magnitude support of the filter responses in the frequency

domain touch each other. By doing this, we can ensure that the filters capture the

maximum amount of information with minimum redundancy. In this design, the

scale factor a and filter parameters σu and σv (and thus σx and σy) are computed

in terms of lower and upper center frequencies and the number of orientations

and scales as follows:

a =

(

Uh

Ul

)

(

1

S−1

)

(2.13)

σu =
(a − 1)Uh

(a + 1)
√

2ln2

σv =

tan

(

π
2k

)

[

Uh − 2ln2( σ2
u

Uh

)

]

√

2ln2 − (2ln2)2σ2
u

U2

h

,

where W = Uh, Ul and Uh denote lower and upper center frequencies of interest.

These parameters are chosen according to the scales of the details of interest

in images. In addition, based on the range of these two center frequencies, an
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appropriate number of Gabor filters are generated to cover the spectrum. In our

application, the highest center frequency Uh and the lowest one Ul were set to

0.45 cycles/pixel and 0.05 cycles/pixel, respectively based on our experiments.

The number of orientations K was chosen as 4 and the number of scales S was

chosen as 2.

Gabor filters in Equation 2.10 are all similar since they can be generated from

the same filter, also known as the mother wavelet. As described before, a Gabor

filter can localize direction spatial frequency θ. When applied to an image, the

output responds maximally at those particular edges whose orientation is θ. We

can use this property to detect edges at quasi-vertical orientations of an image.

Existing methods in the literature use either complex-valued Gabor filters [103]

or pairs of Gabor filters with quadrature-phase relationship [111].

A 2-D Gabor filter is commonly used as a quadrature pair, because it consists

of two functions out of phase by π/2 radians, conveniently located in the real

(RGF) and imaginary (IGF) parts of a complex Gabor filter. RGF is given by a

cosine wave modulated by a Gaussian, and IGF is given by a sine wave modulated

by a Gaussian as illustrated in Figure 2.6. RGF is an even function and extracts

symmetric components such as blob features in a particular direction from an

image; while, IGF is an odd function and extracts antisymmetric components

such as edge transitions (see Figure 2.7). Hence, RGF is sensitive to oriented

lines and can be used to extract blob features from an image [112, 113]; whereas,

IGF is sensitive to oriented edges and can be used to detect both sharp and

smooth edge transitions [112, 114].

Image boundaries in images can be characterized by edges; therefore, in our

Gabor wavelet representation uses only odd-valued, anti-symmetric filters (IGF)

which are oriented over a range of 180◦. The response to the odd-symmetric filter

components will remain unchanged for filters oriented 180◦ out of phase and the

even-symmetric component will be negated. In order to ensure that the designed

bank of Gabor filters becomes a family of admissible 2-D Gabor wavelets [109],

the filters must satisfy the admissibility condition of finite energy [110] which

implies that their Fourier transforms are pure band-pass functions having zero
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Figure 2.6: Intensity plot of the real (left) and imaginary (right) parts of a ver-
tically oriented 2-D Gabor filter in spatial domain with mid-gray values rep-
resenting zero, darker values representing negative numbers and lighter values
representing positive numbers.

response at DC. This condition was achieved by setting the DC gain of each filter

G(0, 0) as zero, which ensures that the filters do not respond to regions with

constant intensity.

As mentioned, while designing the bank of odd Gabor filters, we use two

different scales to cover the spectrum. The examples of IGFs with orientation

θ = 0 and two different scales are given in Figure 2.8. IGFs at the smaller scale

detect small-scale gray-level variations and hence locate most edges. However,

they tend to be more sensitive to noise. On the other hand, IGFs at the larger

scale capture more global edge information by detecting large-scale gray-level

transitions and is less sensitive to noise. Hence, we use only IGFs at the larger

scale to compute the edge energies since it is global edges (i.e. large-scale gray-

level transitions) we are interested in. Examples of IGFs used in our work are

shown in Figure 2.9.

2.3.2 Computation of the Edge Energy

Edge energies in an image are obtained by convolving the image with IGFs at the

same scale but different orientations. These edge energies indicate the strength

of the change in local image attributes such as intensity, color and texture. Let
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Figure 2.7: Real (left) and imaginary (right) parts of a vertically oriented 2-D
Gabor filter in the spatial domain. RGF consists of a central positive lobe and
two negative lobes and hence can be used to detect symmetric components. IGF
consists of a single positive and a single negative lobe and hence can be used to
detect antisymmetric components.

I(x, y) be a gray-scale image, the convolution of the image I(x, y) and a Gabor

filter godd
m, n(x, y) is defined as follows:

Om, n(x, y) = I(x, y) ∗ godd
m, n(x, y) , (2.14)

where Om, n(x, y) is called as the Gabor representation of an image I(x, y) cor-

responding to the gabor filter at orientation n and scale m; godd
m, n(x, y) indicates

only the anti-symmetric (IGF) part of the complex Gabor filter and ∗ represents

the convolution operator. m indicates the scale of the filter, as explained be-

fore we use only IGFs at larger scale, thus m in equation (2.14) is set to 1. n

specifies the orientation of the filter. The real part of the Gabor representation

Real{Om, n(x, y)} of an image is considered as the edge energy of the image at

orientation n and scale m. Figure 2.10 shows the real part of the Gabor repre-

sentations of the image, shown in Figure 2.4.b, at different orientations.
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(a) IGF at the larger scale (b) IGF at the smaller scale

Figure 2.8: Examples of odd Gabor filter (IGFs) in the spatial domain with
orientation θ = 0 and two different scales.

According to the convolution theorem, filtering in spatial domain consists of

convolving an image with a filter and the same result can be obtained in the

frequency domain by taking the inverse Fourier transform of the multiplication of

the Fourier transform of the image by the Fourier transform of the spatial filter.

In general, filtering in frequency domain is faster than spatial domain filtering

when the filters are big [89, 98, 115, 116]. In our case, the size of the Gabor filters

is 128×128 pixels and so, the filtering operation is done in the frequency domain.

While computing the edge energy of an image, we consider both intensity and

color informations. Our algorithm for Gabor-based edge energy computation is

summarized in Figure 2.11, with the following steps:

1. Preprocessing : Fourier transforms of both the intensity and color distance

images are computed.

2. Computation of Edge Energies : Fourier transforms of both the intensity

and color distance images are multiplied by the Fourier transforms of the

IGFs at different orientations followed by inverse Fourier transforms. The

real parts of the Gabor representations are considered as edge energy.

3. Fusion of Edge Energies : Resulting edge energies are fused based on the
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(a) θ = 0 (b) θ = π/4

(c) θ = π/2 (d) θ = 3π/4

Figure 2.9: Examples of odd Gabor filters in the spatial domain with four orien-
tations and same scale.
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(a) θ = 0 (b) θ = π/4

(c) θ = π/3 (d) θ = 3π/4

Figure 2.10: The Gabor responses of the intensity image, shown in Figure 2.4.b
at four different orientations.
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Figure 2.11: Algorithm for Gabor-based Edge Energy computation.

simple point-wise summation operation, meaning that at each orientation,

we sum up the resulting edge energies at this orientation.

4. Elimination of weak Edge Energies : At each orientation, we apply the hys-

teresis thresholding to the resulting edge energy at this orientation to elim-

inate weak edge energies.

Edge energies computed using this method capture the strength of both inten-

sity and color changes. Figure 2.12 shows an example edge energy computation

at the vertical orientation. When the odd-gabor filter at orientation θ is applied
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to an image, the output responds maximally at edges whose orientation is θ and

this situation can be clearly seen in the Figure. In addition, an important char-

acteristic of Gabor filters can be seen in the Figure: the filters do not respond to

regions with nearly uniform intensity.

(a) Color Edge Energy (b) Intensity Edge Energy

(c) The resulting Edge Energy before elim-
inating weak Edge Energies

(d) The resulting Edge Energy after elim-
inating weak Edge Energies (the result of
Edge Energy fusion)

Figure 2.12: Example Gabor-based Edge Energy computation at vertical orien-
tation for the image shown in Figure 2.4(a). Bright pixels indicate high response,
while dark pixels indicate low response.
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2.4 Edge Detection using the Modified Edge

Flow Method

In this section, we first explain the original Edge Flow method proposed by Ma

and Manjunath [54, 55], and then describe specific changes we made, followed by

an explanation of how the modified method is applied to images in order to detect

the quasi-vertical edges.

2.4.1 The Original Edge Flow Method

In contrast to traditional edge detection approaches which directly localize

edges/image boundaries at the local maxima of the gradient in intensity/image

feature space, the ‘Edge Flow’ approach proposed by Ma and Manjunath [54, 55]

performs an indirect detection and localization of edges/image boundaries. It

does so by first identifying a flow direction at each pixel location that points

to the closest boundary, followed by the detection of locations that encounter

two opposing directions of edge flow. Since any image feature including inten-

sity, color, texture, or their combination can be used to define the edge flow,

this scheme provides a general framework for integrating different types of image

features for boundary detection. The general form of the edge flow vector F at

image location s with an orientation θ is defined as:

F (s, θ) = [E(s, θ), P (s, θ), P (s, θ + π)] , (2.15)

where E(s, θ) is the edge energy at location s along the orientation θ, P (s, θ)

represents the probability of finding the image boundary if the corresponding flow

at location s ‘flows’ in the direction θ and P (s, θ + π) represents the probability

of finding the image boundary if the corresponding flow at location s ‘flows’

backwards, i.e, in the direction θ + π. The first component, E(s, θ), is used to

measure the energy of local image information change while the remaining two

components, P (s, θ) and P (s, θ + π), are used to represent the probability of the

flow direction. Details of this algorithm are explained in [54, 55].
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2.4.1.1 Intensity or Color Edge Flow

To compute E(s, θ), a smoothed image Iσ(x, y) is first obtained from the original

image I(x, y) using the Gaussian kernel Gσ(x, y). The scale parameter, σ, controls

both the edge energy computation and the local flow direction estimation, so that

only edges larger than the specified scale are detected. The edge energy E(s, θ)

at scale σ is defined to be the magnitude of the gradient of the smoothed image

Iσ(x, y) along the orientation θ, computed as

E(s, θ) = | ∂

∂n
Iσ(x, y)| = | ∂

∂n
[I(x, y) ∗ Gσ(x, y)]| (2.16)

= |I(x, y) ∗ ∂

∂n
Gσ(x, y)|

= |I(x, y) ∗ GDσ,θ(x, y)| ,

where ∗ represents the convolution operator, s = (x, y) and n represent the unit

vector in the gradient direction θ. Here, GDσ(x, y) represents the first derivative

of the Gaussian along the x-axis so that GDσ,θ(x, y) is the first derivative of the

Gaussian along orientation θ, computed as

GDσ,θ(x, y) = GDσ(x′, y′) (2.17)

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ .

This edge energy indicates the strength of the intensity or color change.

For each edge energy, there are two possible flow directions: forward (θ) and

backward (θ + π). The probability of finding the nearest boundary in each of

the two directions are obtained by looking into the prediction errors toward the

surrounding neighbors in the two directions. For instance, image information at

location s is used to predict its neighbor in the direction θ. Ideally they should

have similar image information if they belong to the same object and thus, the

prediction error Err(s, θ) at (x, y) is computed as

Error(s, θ) = |Iσ(x + d cos θ, y + d sin θ) − Iσ(x, y)| (2.18)

= |I(x, y) ∗ DOOGσ,θ(x, y)| ,
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where d is the prediction distance, and is proportional to the scale σ at which

the image is being analyzed. Here, DOOGσ(x, y) denotes the difference of off-

set Gaussian along the x-axis so that DOOGσ,θ(x, y) is the difference of offset

Gaussian along orientation θ, computed as

DOOGσ,θ(x, y) = DOOGσ(x′, y′) (2.19)

DOOGσ(x′, y′) = Gσ(x′, y′) − Gσ(x′ + d, y′)

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ .

A larger prediction error Error(s, θ) in a particular direction implies a higher

probability of finding a boundary in that direction because ideally they should

have similar intensities/color intensities if they belong to the same object. For

that reason, the probabilities of edge flow direction are assigned in proportion to

their corresponding prediction errors. An edge probability P (s, θ) is defined as

P (s, θ) =
Error(s, θ)

Error(s, θ) + Error(s, θ + π)
(2.20)

2.4.1.2 Edge Flow Vectors

Edge energies and corresponding probabilities obtained from different image at-

tributes are combined together to form a single edge flow field for boundary

detection:

E(s, θ) =
∑

a∈A

Ea(s, θ).w(a) and
∑

a∈A

w(a) = 1 (2.21)

P (s, θ) =
∑

a∈A

Pa(s, θ).w(a) , (2.22)

where E(s, θ) and P (s, θ) represent the energy and probability of the edge flow

computed from image attribute a, and A represents the set of image attributes,

i.e, A = {intensity, color,}. w(a) is the weighting coefficient associated with

image attribute a.

Then, the strongest flow direction for finding the nearest boundary is identified
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with:

Θ(s) = arg max
Θ

{

∑

Θ<Θ′<Θ+π

P (s, Θ′)

}

(2.23)

Once the flow direction and the edge energy are determined, the resulting edge

flow is defined to be the vector sum of the edge flows with their directions in the

identified range, and is given by

~F (s) =
∑

Θ(s)<Θ<Θ(s)+π

E(s, Θ). exp(j, Θ) (2.24)

where ~F (s) is a complex number with its magnitude representing the resulting

edge energy and angle representing the flow direction.

2.4.1.3 Edge Flow Propagation and Boundary Detection

Once the edge flow vector field is produced, edge flow vectors in the field are

propagated towards edges. The propagation ends and edge locations are identified

when two opposing directions of flow encounter each other. At each location, the

local edge flow is transmitted to its neighbor in the direction of flow if the neighbor

also has a similar flow direction (the angle between them is less than 90 degrees).

The steps are as follows:

1. Set n = 0 and ~F0(s) = ~F (s).

2. Set the initial edge flow vector ~Fn+1(s) at time n + 1 to zero.

3. At each image location s = (x, y), identify the neighbor s′ = (x′, y′) which is

in the direction of edge flow vector ~Fn(s), i.e., ∠~Fn(s) = atan(y′−y)/(x′−x).

4. Propagate the edge flow vector if ~Fn(s′). ~Fn(s) > 0 (the dot means inner

product): ~Fn+1(s
′) = ~Fn+1(s

′) + ~Fn(s); else ~Fn+1(s) = ~Fn+1(s) + ~Fn(s).

5. If nothing has been changed, stop the iteration. Otherwise, set n = n + 1

and go to step 2 and repeat.
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Once the edge flow propagation reaches a stable state, image boundaries are

detected by identifying locations with non-zero edge flows coming from two op-

posing directions. For both x and y components of the edge flow vector field, the

transition from positive to negative (in x -vertical edges- and y -horizontal edges-

directions respectively) are marked as the edges. Then, the boundaries are found

by linking the edges.

2.4.2 The Modified Edge Flow Method

We summarize below, our improvements and additions to the vector field gener-

ation and edge detection procedures of the original Edge Flow method:

1) Instead of using the gradient of the smoothed image for computing the

vector magnitudes (referred to as edge energy computation), we utilize the

Gabor representations of the image.

2) In the original Edge Flow method, after obtaining the edge energies and

the corresponding probabilities from different image attributes, they are

combined together to form a single edge flow field for boundary detection. In

our case, instead of handling each image attributes separately, we consider

all image attributes at the same time. That means we have a single edge

flow field for boundary detection. Thus, we do not need to apply this step.

4) We do not detect horizontal edges.

5) We do not apply the boundary connection and region merging stages pro-

posed by the original Edge Flow method, but replace these steps with our

edge grouping steps.

6) Instead of using each color band separately, we use the color distance map.

We then use this modified Edge Flow algorithm to detect vertical edges in

images of natural scenes with trees. The following is a list of the steps within our

modified edge flow algorithm:
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1. Input parameters: Intensity image, Color Distance Map and Edge Energies

at different orientations

2. Construction of the edge flow vector F (s, θ) = [E(s, θ), P (s, θ), P (s, θ +

π)] at image location s with an orientation θ

2.1 Computation of Edge Probabilities (P (s, θ)): Edge probabilities for

the color distance map and the intensity image are obtained separately

by filtering both images with DooG filters. The resulting images are

combined by taking their weighted sum (see Figure 2.13).

2.2 Estimation of the flow directions: The best direction of finding the

nearest boundary is identified by using the edge probabilities at differ-

ent directions.

3. Edge Flow Propagation and Boundary Detection: Edge flow vectors are

propagated and locations where two opposing directions of flow encounter

each other are identified. Then, vertical edges are detected at locations

having non-zero edge flow vectors coming from opposing directions relative

to the vertical axis.

After obtaining vertical edges, detected edges are thinned and the result is

stored as a binary edge map. This array is used later to obtain edge information.

Figure 2.14 shows the extracted quasi-vertical edges when applying the modified

Edge Flow method to the image shown in 2.4(a),

2.5 Gabor-based Edge Detection

An image smoothed with the first derivative of a Gaussian filter, has a maximum

at the location of the edge [117]. Consequently, the problem of edge detection

can be reduced to finding local maxima in the filtered image. Our use of the odd

Gabor filter is very similar to the derivative of a Gaussian used in the Canny

algorithm and thus it is not surprising that it yields good edge detection perfor-

mance.
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(a) Color edge probability (b) Intensity edge probability

(c) The resulting edge probability (the re-
sult of edge probability fusion)

Figure 2.13: Example Edge Probability computation at vertical orientation for
the image shown in 2.4(a).
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Figure 2.14: Example edge detection using the Modified Edge Flow method:
Quasi-vertical edges are detected from the image shown in 2.4(a).

Analyzing the responses of the odd Gabor filter at the vertical orientation

enables us to find vertical edges in images. Since Gabor filter responses have

higher values for image regions which are similar to filter shape, we can extract

local maxima of the filter response within each horizontal line to detect vertical

edges. A point (xk, yk) is hence labeled as a local maxima if it satisfies the

inequality G(xk−1, yk) < G(xk, yk)&G(xk, yk) > G(xk+1, yk). Figure 2.15 shows

the result of applying the Gabor-based edge detection algorithm to the image

shown in Figure 2.4(a).

It is important to note that the Gabor response of an image at the vertical

direction is obtained during the Edge Energy computation process. As such, we

use the Edge Energy of an image in the vertical orientation as the Gabor response.

Moreover, a Gabor filter which is sensitive to the vertical orientation should be

used, since we are interested in quasi-vertical edges in images.
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(a) Gabor response of the image at the ver-
tical direction

(b) Extracted vertical edges

Figure 2.15: Example Gabor-based edge detection: Quasi-vertical edges are de-
tected from the shown in Figure 2.4(a).

2.6 Regional Attributes

Even though the proposed edge detection methods significantly improve edge

structures within images, there are still some difficulties in extracting boundary

representations for tree trunks. Some of these difficulties are: (1) gaps between

boundary fragments of the same physical contour, (2) noisy edges caused by

bark textures inside tree trunks, and (3) matching of opposing boundaries of

a tree trunk. Perceptual grouping can be used to alleviate these problems but

these methods need to be augmented to further check for consistency of predicted

contour pairs. Regional attributes, on the other hand, can be used to verify the

consistency and correctness of these pairs.

We use regional attributes to characterize important image properties along

a contour, across different contours, and for pixels surrounding the contour. Re-

gional attributes can be color, intensity, texture, edge classification masks or any

other property that indicate whether two or more contours belong to the same

object.

Regional attributes can help us measure the consistency and accuracy of a

potential contour pairing. In other words, a relationship defined between two

contours can be validated if associated region attributes are in agreement. For
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example, in [118], the authors successfully link edge contours and extract bound-

aries by analyzing the distribution of intensity values in pixels surrounding each

contour.

In this study, region properties along each contour (Section 2.6.1) and in pixels

surrounding each contour (Section 2.6.2) are analyzed to verify the potential

contour pairs. Additionally, we analyze magnitudes of Gabor filter responses to

prune weak/noisy edges in images (Section 2.7.3).

2.6.1 Edge Classification Masks

Analyzing the signs and magnitudes of quadrature pair filter responses (e.g. dif-

ference of offset Gaussian filters) over the entire contour enables us to classify each

contour as having positive, negative or indeterminate polarity. The responses of

these filters are positive at image locations with edges oriented at θ, and nega-

tive at image locations with edges oriented at θ + π. Consequently, by analyzing

these response values, we can classify a contour as having a positive, negative or

indeterminate edge polarities.

Using edge classification masks as regional attributes while grouping detected

edge contours into potential contour pairs, we can check the correctness and con-

sistency of potential edge contour pairs. This way, we can partially eliminate

problems caused by extraction of erroneous geometric relationships, such as ac-

cidental boundaries and wrong links between unrelated objects in an image. For

instance, later in the thesis, we describe a method to form contiguous edges by

correcting disconnected edges if both contours have same edge polarity (Section

2.7.2); or similarly, we will group edge contours into potential tree trunks if both

contours have opposing edge polarities (Section 2.7.5).

In this study, we utilize both intensity and color distance images to construct

edge classification masks, called as intensity edge mask and color edge mask re-

spectively. These masks are obtained by applying a horizontal DooG filter to
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both color distance and intensity images at the desired scale. Figure 2.16 illus-

trates the DooG filter used in constructing these edge masks and Figure 2.17

shows color and intensity edge masks of the image shown in Figure 2.4(a).

Figure 2.16: The DooG filter used in constructing edge classification masks. The
response of filter is positive at image locations with edges oriented at θ = 0 and
negative at image locations with edges oriented at θ = π

After obtaining the edge masks, each pixel in each edge mask is labeled as

positive, negative or indeterminate. All pixels with a response above zero are

labeled as positive, belonging to one side of tree trunks. In contrast, pixels with

a response below zero are labeled as negative, belonging to the opposite side of

tree trunks. Pixels with response value close to zero are labeled as indeterminate

since we are not sure which side of trees these pixels belong to. Figure 2.18 shows

labeled edge masks resulting from processing the image shown in Figure 2.4(a).

A contour is then classified according to the response values of the pixels con-

stituting this contour as having positive, negative or indeterminate edge polarity.

If the number of positive candidates is greater than the number of negative can-

didates, then a contour is considered as having a positive edge polarity. If the
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(a) Color edge mask (b) Intensity edge mask

Figure 2.17: Example edge classification masks construction. Bright pixel values
indicate the higher probability of finding an edge at orientation θ = 0 whereas
darker pixel values indicate the higher probability of finding an edge at orientation
θ = π and mid-gray pixel values indicate the lower probability of finding an edge
at orientation θ = 0 and θ = π, meaning that, indicate similar regions.

(a) Labeled color edge mask (b) Labeled intensity edge mask

Figure 2.18: Labeled edge masks
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number of negative candidates is greater than the number of positive candidates,

then this contour is considered as having a negative edge polarity. Otherwise, the

contour is considered as having an indeterminate edge polarity.

2.6.2 Construction of a Suitable Band

Pixels surrounding a contour may also help us measure the consistency and ac-

curacy of potential pairs. To do so, we first represent the region surrounding a

contour and then, compute a set of characteristic measures.

o w

s1

o w

s1
Deleted

region

s2

s2

two suitable band of  s1

(a) (b)

Figure 2.19: Construction of a suitable band of a potential pair. The two param-
eters ‘o’ and ‘w’ determine the size of the band. (a) shows the situation of being
no occlusion, and (b) shows the situation of being occlusion.

Inspired from [118], a suitable band is then chosen for each contour within

each potential pair. Each contour has two bands, one on each side, whose size

is determined by two parameters ‘o’ (offset) and ‘w’ (width). The width must
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be selected such that this band contains enough samples to compute region at-

tributes. For our algorithm, we found that choosing the offset o and width w to

be 1 and 3 pixels, respectively produces good results.

The construction of this band is as follows: From every pixel along the actual

contour, we analyze along each column for a collision with another contour. If

such a collision takes place, the region pixels in that column after the collision

position are deleted (see Figure 2.19-b). In the case of being no collision, the

construction of this band is illustrated in Figure 2.19-a. A corresponding band is

defined on the other side of the actual contour.

A statistical evaluation of the color properties of the suitable bands of a con-

tour pair is crucial for a successful discrimination of geometric relation into strong

or weak. To do so, we firstly compute the standard deviations and mean values

of the color values inside the defined bands of each contour. The contour pair is

then classified into strong or weak, by analyzing these statistical measurements.

This classification later helps us to decide whether the contour pair is accepted or

not. For instance, later in the thesis, we describe a method to link broken edges if

at least one sides of both contours have similar statistical measurements (Section

2.7.2); or similarly, we will group closely positioned and parallel contours into a

single curvilinear structure if each side of the at least one of the contours have

similar statistical measurements (Section 2.7.4).

2.7 Edge Grouping

Unfortunately, the edge map contains spurious points generated by image noise,

and discontinuities (or gaps) between boundary fragments caused by poor con-

trast or variations in the distribution of image information. This is one of the

most important problems encountered while extracting boundary representations

of objects in outdoor images. Our aim is to detect boundaries of an image so that

they are coherent, consistent and accurate. To achieve this, we need to utilize

perceptual organization tools, aiming to produce sensible segmentation of scenes
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into surfaces and objects. Our main aim of using perceptual organization in this

study is object detection in reasonable complex outdoor images.

Perceptual organization consists of organizing low-level features into more

consistent higher level features such as surfaces and objects. The human visual

system is very good at detecting geometric relationships such as collinearity, sym-

metry, parallelism, connectivity, and repetitive patterns among image elements

in complex scenes or images [119]. Many existing techniques based on perceptual

organization (e.g. [119–121]) rely only on the geometric arrangement of edge-

points to produce higher level features. Hence, they do not consider important

information contained in low-level image properties such as intensity, texture,

color, or local edge/line classification. Therefore, the major problem with these

techniques is that they cannot control whether potential edge pairs are consis-

tent with evidence already present in existing edge contours. Low-level image

properties impose strong constraints on the detection or segmentation process.

Therefore, we need to use a method that integrates perceptual organization with

the low-level image properties explained in Section 2.6.

Perceptual grouping can occur at a number of different levels using different

primitive features, including points, lines, texture elements, surfaces and regions.

In this study, edge contours in an image are utilized as the basic grouping prim-

itive. Mohan and Nevatia [121] describe a vision system that uses perceptual

organization techniques on curves to perform surface and object segmentation.

While performing perceptual organization on edge contours, our work is inspired

from the work of Mohan and Nevatia [121]. However, Mohan and Nevatia [121]

only consider geometric relationships among image elements, such as proximity,

closure, and continuity, and do not consider any low-level image information, such

as intensity, texture or color. In fact, it is difficult in our application to detect the

accurate and coherent object boundaries with an image structure by using only

edge information. Thus, we consider both geometric relationships among edge

contours such as continuity, symmetry and proximity and region information in

the surround, along and across of the contours such as intensity and color while

performing perceptual grouping of the detected edge contours into potential tree

trunks.
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In this process, potential tree trunks in an outdoor image are detected by

utilizing the edge map, edge masks and the color distance map. Keeping in mind

that each tree trunk is defined as a combination of continuous and symmetric

edges, the edge map is used to detect these edges in an image and edge masks

and the color distance map are used to verify that detected edges belong to the

edges of potential tree trunks. This means, we first obtain left and right side

edges of each tree trunk and then pair up left edges to corresponding right edges

to form a potential tree trunk.

In this section, we describe a method that uses both geometric relationships

and regional attributes to group detected edges into potential tree trunks. First,

we connect disjoint edges in such a way that they form smooth contours through

contiguous edges without any gaps by using the continuity relation between them.

These contours can be considered as the left or right side edges of tree trunks.

Subsequently, to eliminate the edges representing bark textures inside tree trunks

these contours are pruned based on their Gabor responses and then, closely po-

sitioned and parallel contours are grouped into a single contour by using the

proximity relation between them to handle the problems associated with poten-

tial erroneous symmetry relations. After that, these contours are grouped into

potential tree trunks by using the symmetry relation between them. This step

can be considered as pairing up left side edges to corresponding right side edges

to form potential tree trunks. Our method is summarized as follows:

1. We first link edge-points to form edge contours.

2. We then group edge contours based on continuity relation to form smooth

edge contours.

3. We then prune edge contours based on their Gabor responses in the vertical

direction to eliminate weak edges.

4. We then group edge contours based on proximity relation to handle the

problems associated with closely positioned and parallel edges.

5. Finally, we group edge contours based on symmetry relation to form poten-

tial tree trunks.
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In the following subsections, each step is explained in detail.

2.7.1 Edge Linking

The problem of linking/tracking edges can be defined as the grouping of edge-

points into edge contours. Extraction of object boundaries in an image requires

edge linking as the preprocessing step. It is interesting to note that the edge link-

ing process can be considered as a form of low-level perceptual grouping joining

edge points into the more abstract feature of edges.

Edge pixels are linked based on the eight-point neighborhood connectiv-

ity to form edge contour chains. These edge contours may contain erroneous

links at forks of trees due to edge displacement at junctions and edge dropouts

at end-points. We define a junction point as any pixel having two or more

eight-connected neighbors and an end-point as any pixel having only one eight-

connected neighbor. All edge points are checked to extract the entire endpoint

and junction set. To eliminate linking errors at junction points, this process

tracks all possible edges at junctions and chooses the longest of them while prun-

ing others. This way, noisy edge pixels that tend to deviate the tree edges in

the wrong direction are eliminated. Moreover, we discard contours shorter than

a certain threshold. Figure 2.20 shows an example for the edge linking step.

Figure 2.20: Result of the edge linking (left) Before (right) After

The output of this process is a list of edge contours, each represented as a list
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of edge pixels.

2.7.2 Edge Grouping based on Continuity

An important problem in extracting boundary representations for tree trunks is

the presence of discontinuities between boundary fragments. To deal with this

problem, we need to produce more reliable, smooth and continuous edge contours

by closing these gaps. By doing so, we can obtain more accurate and coherent

boundary representations of tree trunks.

Continuity is a relationship between edge contours that lie along a common

line or curve. Hence, the process of continuity (and cocurvilinearity) based edge

grouping can be described as the joining of edge fragments which lie along lines

of similar curvature in order to obtain larger contours in the form of smooth

curves [121]. An important problem in this process is that of deciding how edge

fragments should group together to form smoother and larger contours. Using

information provided by our edge detection process, we can define a continu-

ity relation between two edge contours. However, this alone cannot distinguish

between false and true continuity relation, and thus may produce wrong links

between unrelated object boundaries. True continuity involves two disconnected

edge contours of the same physical boundary. On the other hand, false continuity

interprets two disconnected edge contours of different objects as the same phys-

ical boundary. To distinguish these two situations, a verification step checking

whether the selected contours are consistent with the evidence from existing con-

tours and the image structure is required. Therefore, it will be useful to consider

regional attributes during the extraction of edge contour pairs that define the

continuity relation. This way, the number of mismatched edge contour pairs can

be reduced.

We propose an approach that combines the continuity relation with regional

attributes to group disconnected edge fragments into a single curvilinear struc-

ture. Using regional attributes enables us to check whether two contours belong

to the same object boundary or not.
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A quantitative measure of continuity relationship between two edge contours

is first computed to determine continuity strength between the contours. This

value is then utilized to predict potential joins between contours. As we are only

interested in quasi vertical edges, contour pairs that define a co-circularity relation

(joins with smaller strength values) are rejected. Suitable bands are subsequently

constructed for each potential join. Statistical measurements are then computed

from low-level image properties in these bands. These measurements and edge

classification masks are subsequently used to verify the accuracy and consistency

of the predicted joins with image structure. This way, we can select potential

joins and edge contour pairs. All remaining edge contours are now checked for

continuity relationship.

For a contour pair S1 and S2, there are four potential joins, j1, j2, j3 and

j4 from each end-point of contour as depicted in the Figure 2.21-a. Since we are

interested in quasi vertical edges, edge contours are grouped by selecting the most

co-linear, or least bent, joins among all possible four joins. Hence, the continuity

relation between S1 and S2 can be divided into two parts: (1) co-linearity and

(2) co-circularity. Both of these measures are related to the directed angles θsd

defined from termination direction of S1 to connection line (dashed line) and θds

defined from connection line to termination direction of S2 as depicted in the

Figures 2.21-b to 2.21-e.

Co-linearity is defined as the degree to which contours are parallel. If edge

contours are co-linear, this indicates that θsd is positive and θds is negative,

or vice versa. Hence, a perfect parallelism can be defined as θsd + θds = 0

as depicted in Figure 2.22-a. Thus, a measure of co-linearity can be given

by θsd + θds. If the edge contours are co-linear, this measure is close to 0.

In other words, this suggests that contours having opposing directions (i.e.

signs of θsd and θds are opposite) tend to be co-linear with each other, as

depicted in the Figures 2.21-d and 2.21-e. It is important to note that this

situation is also valid for co-curvilinearity.

Co-circularity is defined as the degree to which contours are co-circular. If

edge contours are co-circular, this indicates that both θsd and θds is positive,
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or negative. Hence, a perfect co-circular relation can be defined as θsd−θds =

0 as depicted in Figure 2.22-b. Thus, a measure of co-circularity can be

given by θsd − θds. If the edge contours are co-circular, this measure is close

to 0. In other words, this suggests that contours having the same angular

direction (i.e. signs of θsd and θds are same) tend to be co-circular with each

other, as depicted in the Figures 2.21-b and 2.21-c.

S1

S2

j2

j3

j4

j1

S1

S2

j3

θsd

θds

(-)

(-)
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S2

θsd

θds
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S2

j2

θsd (-)

S1
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θsd
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θds
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j1

(a) (b) (c) (d) (e)

Co-circularity Co-circularity Co-linearity Co-linearity

Figure 2.21: Analyzing directed angles (θsd and θds) for all possible joins enables
us to distinguish between co-linearity and co-circularity (a) All possible joins
between S1 and S2, denoted as j1, j2, j3 and j4, (b) directed angles for the join
j3 define a co-circularity relation since both of them are negative, (c) directed
angles for the join j4 also define a co-circularity relation as both of them are
positive, (d) directed angles for the join j2 define a co-linearity relation since θsd

is negative and θds is positive, and finally (e) directed angles for the join j1 also
define a co-linearity relation as θsd is positive and θds is negative.

As shown in Figures 2.21 and 2.22, we should only consider the two joins j1

and j2 since other joins tend to be co-circular with each other. The term source

henceforth is used to refer to the edge contour which joins the other contour from

its ending, and the term destination is used to refer the other contour as depicted

in the Figure 2.23.

The continuity strength value (i.e a measure of bending) of each potential
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connection

line

destination

source

θsd
θds

destinationsource

connection

line

θds
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Co-linearity Co-circularity

Figure 2.22: Co-linearity vs Co-circularity (a) Co-linearity := θsd + θds = 0, and
(b) Co-circularity := θsd − θds = 0

join, j1 or j2, is then computed by using the following geometric quantities (See

Figure 2.23):

• Gap size l is defined as the length of the connection line.

• Length of the source contour Ls is defined as the distance between the end-

points of the source contour.

• Length of the destination contour Ld is defined as the distance between the

end-points of the destination contour.

• Angular difference θsd is defined between the connection line and the source

contour.

• Angular difference θds is defined between the connection line and the desti-

nation contour.

• The amount of co-linearity θcl is defined between the contours.

The continuity strength for the potential join between two edge contours is pro-

portional to the length of the shortest contour and inversely proportional to the
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Figure 2.23: Analyzing a contour pair S1 and S2 for continuity. S1 is the source
contour whereas S2 is the destination contour. The distance between the end-
points joining the source contour to the destination contour is denoted l. The
directed angle θsd is defined as the angle from the termination direction of the
source contour to the connection line. The directed angle θds is defined as the
angle from the connection line to the termination direction of the destination
contour. The two termination directions (→) are the tangent vectors of the
contours at the considered end-points.

distance between the considered end-points of the contours, angular difference be-

tween the contours and connection line, and the amount of parallelism between

the contours, as given in Equation 2.25:

C =
e−(θ2

sd
+θ2

ds
+θ2

cl
) ∗ min(Ld, Ls)

l
, (2.25)

where C is the continuity strength value. However, if the gap size is too small

(l < 5 pixels), angle calculations are not reliable for computing the continuity

strength value between the contours. To handle such situations, we should give

contour pairs with a large distance between the considered endpoints a tighter

angular threshold than contour pairs with short distance. Hence, if the gap

size too small, we cancel angle terms from the above formula and the continuity

strength value C is then calculated as follows:

C =
e−(θ2

cl
) ∗ min(Ld, Ls)

l
. (2.26)
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The geometrical measures used in Equation 2.25 are computed as follows (see

Figure 2.24.a):

S1
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θds
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vsd
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l

l connection

line

connection
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Figure 2.24: Variables of continuity strength for all possible joins between S1
and S2 (a) S1 ⇒ source and S2 ⇒ destination, and (b) S2 ⇒ source and S1 ⇒
destination

l : The connection line is constructed joining the end of the source contour p12 to

the beginning of the destination contour p21. The length of the connection

line is then computed as follows:

l = norm(p12 − p21)

θsd : Defined as the directed angle from the termination direction of the source

contour to the connection line. The termination direction is computed

as follows: (1) the source contour is approximated by a straight line by

iteratively applying total least square approach to half of all pixels from

its ending (dashed lines on S1), denoted as S11. The iteration stops when

the total least square error is smaller than the specified threshold. This

makes the contour less sensitive to residuals in the endpoint coordinates.

(2) The unit vector of the straight line joining its beginning to ending is

constructed, denoted as v̂12. (3) The tangent vector of the S11 in the

direction of v̂12 is the termination direction, denoted as v̂s. Then, the unit
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vector of the connection line that starts from the end of the source contour

to the beginning of the destination contour is constructed, denoted as v̂sd.

The directed angle from v̂s to v̂sd is the θsd.

θsd = ∠(v̂s, v̂sd) = arccos(v̂s, v̂sd)

θds : Defined as the directed angle from the connection line to the termination

direction of the destination contour. The termination direction is computed

similar to θsd, denoted as v̂d. The unit vector of connection line here starts

from the beginning of the destination contour to the end of the source

contour, denoted as v̂ds. The directed angle from v̂ds to v̂d is the θds.

θds = ∠(v̂ds, v̂d) = arccos(v̂dsv̂d)

θcl : Defined as the degree to which contours are parallel. In other words, it

expresses departure from co-linearity and measured as follows:

θcl = θsd + θds

Potential joins are then selected or rejected comparing the computed geomet-

ric quantities to certain threshold values in order to ensure that source contours

only connect to correct destination contours. Only joins are related over con-

tinuity if l < lth, abs(θsd) < θth, abs(θds) < θth, abs(θcl) < clth and C < Cth

where lth is maximum distance, θth is maximum absolute angle difference, clth

is maximum absolute amount of co-linearity, and Cth is threshold for continu-

ity strength. Moreover, for any pair of contours, if its two potential joins satisfy

these constraints, the join with maximum continuity strength is considered as the

potential join of this pair. It is important to note that if the gap size is too small,

we do not apply the angle constraints to potential joins. In our application, the

following continuity parameters were chosen based on our experiments (see Table

2.1).

This step is considered as a kind of filtering process which allows only a small

subset of joins through and thus, subsequent processing of edge contour pairs

can be much faster. It is also important to note that the computation of the
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Table 2.1: Continuity Parameters

lth (pixel) θth(radian) clth (radian) Cth

40 π/4 π/6 1.5

continuity strength values is very fast because only the end-points of contours

are used for the computation.

After this step, for each potential edge contour pair and its related join that

satisfy above constraints, the accuracy and consistency of the continuity relation-

ship between the pair is validated using regional attributes. This way, we can

reduce the number of wrong links between unrelated objects.

For this process, we use both edge classification masks and statistical mea-

surements computed from color distance values in regions surrounding a potential

contour pair to verify the accuracy of its potential join. Statistical measurements

are most useful when color properties are uniform on both sides of a potential

join. The distribution of color distance values within a tree trunk region and its

immediate surround is ideally nearly uniform. In reality, however, parts of the

same tree trunk may appear bright while other parts may appear dark. Therefore,

analyzing only color features is not enough to determine whether pairs of edge

contours are valid. On the other hand, tree trunk regions in an image appear

either brighter or darker than their background, and thus boundary fragments on

the same side of a tree trunk have same edge polarity. Consequently, the decision

on which edge contour pairs are accepted or rejected is made by using both edge

classification masks and statistical measurements.

A contour pair and its associated join are first verified by using statistical

measurements of color distance values in their surrounding regions. Differences

in color distance values at the location of a join cannot be directly used since

if these differences were relevant, edge detectors would not have failed at these

locations in the first place. However, we still can measure the uniformity of the

color distance values on each side of a potential join. To do so, we first represent

the surrounding regions of each side of a potential join and each edge contour

by constructing suitable bands as explained in Section 2.6.2 (see Figure 2.25).
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After that, we compute the standard deviations (σR1, ..., σR6) and mean values

(µR1, ..., µR6) in the color distance values along the defined bands (R1 − R6). A

contour pair is finally classified into strong or weak, based on these computed

statistical measurements.

R2R1

R3 R4

R5 R6

(a) (b)

S1

S2 S2

S1

J J

Figure 2.25: Construction of suitable bands for a potential pair. (a) Construction
of suitable bands on each side of the edge contours, and (b) Construction of
suitable bands on each side of the potential join.

A contour pair is defined as strong if the following requirements are met (see

Figure 2.25):

1. Absolute difference between the mean values of each side of the contours

must be smaller than some user defined threshold:

abs(µR1 − µR3) < µth & abs(µR2 − µR4) < µth,

2. Absolute difference between the mean values of each side of the contours

and potential join must be smaller than some user defined threshold:

(abs(µR1 − µR5) < µth & abs(µR3 − µR5) < µth) & ...
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(abs(µR2 − µR6) < µth & abs(µR4 − µR6) < µth),

3. Standard deviation of each side of the potential join must be smaller than

maximum of the standard deviations of that side of the contour:

σR6 < max(σR2, σR4) & σR6 < max(σR2, σR4).

Otherwise, the pair is defined as weak. The continuity relation between a contour

pair is accepted if the pair is classified as strong. In our application, the threshold

µth was chosen to be 10 based on our experiments.

Edge classification masks are then analyzed to verify the continuity relation

between a contour pair. The continuity selection and rejection rules of pairs of

edge contours based on edge masks are explained in Table 2.2 and Table 2.3.

Table 2.2: Continuity consistency

S2/S1 negative indeterminate positive

negative accept unknown reject
indeterminate unknown unknown unknown

positive reject unknown accept

Table 2.3: Confirmation of continuities

Intensity/Color accept unknown reject

accept accept accept accept
unknown accept reject reject

reject accept reject accept

Table 2.2 shows the usage of the edge masks during the verification of continu-

ities, while Table 2.3 shows the final result of the verification process. S1 and S2

demonstrate left and right sides of an edge contour pair, respectively. For exam-

ple, let we consider the situation: both S1 and S2 positive according to intensity

edge mask, and S1 positive and S2 negative according to color edge mask. This

pair is accepted according to intensity and rejected according to color. When

examining both results, we decide to accept this pair.
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Following this filtering, equivalence sets of accepted contour pairs are

formed based on continuity, meaning that all edge contour pairs which

have a common edge contour are grouped into a single set. For in-

stance, suppose that the grouping step produced the following 6 couples:

{1, 5}, {5, 4}, {4, 8}, {2, 3}, {3, 7}, {7, 9}. All pairs that have a common

component are grouped into a one set, resulting in two sets of edge contours:

{1, 4, 5, 8} , {2, 3, 7, 9}. Each set is simply represented by a single contour formed

by linking the edge contours in that group.

The process of continuity based grouping is an iterative process. The joins

with the maximum continuity strength values are joined in the first iteration.

Subsequent iterations cause joins with smaller continuity strength values to be

considered. The process continues until no potential pair is found. Also, the

threshold value for continuity strength is set to half of its current value for subse-

quent iterations until a minimum continuity strength value is reached (0.1). This

way, more global information is used as the algorithm proceeds. Moreover, most

problems associated with small gaps or wrong linking in the original edges, can

be recovered with this method. Larger gaps are also bridged since the process

continues until a potential pair cannot longer be found. Figure 2.26 shows the

effectiveness of edge grouping using continuity relation on bridging gaps (forming

smooth edge contour)and eliminating wrong linking.

Figure 2.26: Effect of applying edge grouping based on continuity relation. Left:
before edge grouping, Right: after edge grouping
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2.7.3 Gabor-based Edge Pruning

Analyzing the magnitudes of the Gabor filter responses at the vertical orienta-

tion over the entire edge contour enables us to decide on whether the contour is

accepted or not. In other words, an edge contour can be pruned according to the

statistical measurements of the magnitudes of the Gabor responses of the pixels

constituting the contour. To do so, the average Gabor (texture) value for each of

the potential edge contour is computed and those below than a certain threshold

are rejected. The reason of this is that tree edge contours give significantly larger

average Gabor values in the vertical direction than those of contours generated

by bark textures inside tree trunks. The threshold is automatically obtained as

follows: The maximum average value of the potential edge contours is determined

and then, multiplied by a user-defined ratio. The threshold is set to the result

of the multiplication. Figure 2.27 shows the effectiveness of Gabor-based edge

pruning on eliminating weak edges such as the edges representing grass and inside

tree trunks.

(a) Before Gabor edge pruning (b) After Gabor edge pruning

Figure 2.27: Effect of applying Gabor-based edge pruning.

2.7.4 Edge Grouping based on Proximity

The most important reason we use proximity grouping is to reduce the effect of

barks inside tree trunks. This way, we can obtain more accurate, consistent and
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coherent boundaries for tree trunks.

Proximity is a relationship where closely positioned and parallel contours are

grouped into a single curvilinear structure to form more coherent object bound-

aries. Figure 2.28 illustrates proximity based edge grouping. Such a grouping

scheme can be considered as a scale space approach, where closely positioned and

parallel contours are interpreted as boundaries of objects when examined at the

appropriate scale rather than as representing multiple, narrow objects [121]. At

the scale of objects, there exists an upper bound on how distant two contours

can be from each other and still be considered to belong to the same object‘s

boundary. Consider Figure 2.28, the edge contour on the right represents the

same edge as those on the left, but at a larger scale, the scale of the contour on

the right.

Scanning

Window

Figure 2.28: Proximity grouping, also known as co-curvilinearity on proximity

However, if proximity grouping relies solely on edge information, it would not

be able to distinguish between false and true proximity relations. True proximity

involves two closely positioned and parallel edge contours of the same physical

boundary. On the other hand, false proximity interprets edge contours of differ-

ent objects as the same physical boundary. Hence, these two cases need to be

distinguished. Therefore, it may be useful to consider regional information during

the extraction of closely positioned and parallel contours. This way, the number

of mismatched edge contour pairs can be reduced.

We propose an approach that combines the proximity grouping with regional
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attributes to group edge contours into a single curvilinear structure. For this

process, due to similar reasons for continuity we use both edge classification

masks and statistical measurements as regional attributes to verify the accuracy

of predicted pairs. In the case of proximity, color values are expected to be nearly

uniform on both sides of at least one of the contours that define a true proximity

relation.

All remaining edge contours are now checked for proximity relationship. Prox-

imities are extracted from an image by first considering all possible pairings of

closely positioned and parallel edge contours in the image. Those possible pairs

are then validated using regional attributes. In summary, this process involves

three steps: (1) computation of the proximity relation, (2) computation of the

parallelism relation, and (3) validation of possible proximities using regional at-

tributes.

Two edge contours are related by a proximity relation if the minimum distance

between the contours is below than a certain threshold which defines the size of

the scanning window. Those pairs that do not satisfy the proximity constraints

are removed. The choice of this threshold is naturally crucial to the success of this

process. If the threshold is too large, then an unacceptable loss of edge detail will

result. If it is too small, the procedure will have very little effect. Unfortunately, it

is not a simple problem to determine the correct value for the threshold. Typically,

an analysis of the distribution of distances between edge contours in the image

may be useful in automatically setting the threshold [121]. In our application,

the threshold was chosen to be 15 pixels based on our experiments.

Inspired from [118], while determining the minimum distance between two

contours S1 and S2, eight distances should be evaluated (see Figure 2.29): four

endpoint and four projection distances. If the smallest distance of the eight is

below than the threshold, then the contours are related by a proximity relation.

Endpoint distances are defined as the Euclidean distances between the four end-

points, and the projection distances are computed by projecting the endpoints of

the one contour (source) onto the other contour (target). For this process, the

projection point is defined as the corresponding edge point on the target contour.
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Figure 2.29: Analyzing a proximity relation between an edge contour pair S1 and
S2. Endpoint distances are denoted as d1, d2, d3, and d4 and the projection
distances are denoted as d5, d6, d7, and d8.

During the projection process, two situations may occur: (1) the projected point

lies inside the endpoints of the target contour or (2) it lies outside. If inside,

the Euclidean distance between the projection point and the related endpoint is

computed; otherwise, the distance is forced to be infinity. For example, in Fig-

ure 2.29, the projection distances d5 and d8 are infinite as their projections are

outside, and the minimum distance is d7.

Two edge contours S1 and S2 are related by a parallelism relation if the

difference in the orientation of the straight lines joining the end-points of contours

is smaller than a certain threshold, and the contours overlap. Contour pairs which

meet those constraints are related by a parallelism relation. Those pairs that do

not satisfy parallelism constraints are removed.

Contour pairs which satisfy both proximity and parallelism relations are now

verified using regional attributes. A potential pair is first verified by using sta-

tistical measurements of color distance values in regions surrounding each side

of each edge contour, as illustrated in Figure 2.30). A statistical evaluation of

the color properties around a contour is crucial for a successful verification of the

proximity relation. To do so, we first compute the standard deviations (σRl, σRr

and σRw) and mean values (µRl, µRr and µRw) in the color distance values along

(Rl and Rr) and across (Rw) the defined suitable bands. The contour is then

classified into strong or weak, based on these computed statistical measurements.

A strong contour means that the contour is located between two different re-

gions whereas a weak contour is probably located between two similar regions. A
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contour is then defined as weak if the one of the following requirements are met:

1. Absolute difference between the mean values of each side of the contour

and the standard deviation of each side of the contour must be smaller

than some user defined thresholds:

(abs(µRl − µRr) < µth) & (max(σRl, σRr) < σth),

2. Standard deviation across the contour must be smaller than the standard

deviation along each side of the contour:

(σRw < σRl) & (σRw < σRr),

3. Standard deviation across the contour must be smaller than some user de-

fined threshold:

σRw < σthr.

Otherwise, the contour is considered as strong. The proximity relation between a

contour pair is then accepted if one of the edge contours is classified as weak. In

our application, the threshold σth and σthr were chosen to be 5 and 3, respectively

based on our experiments.

Edge polarity is then used to decide whether a pair is accepted or not. The

proximity selection and rejection rules of pairs of edge contours based on both

intensity and color edge masks are shown in Table 2.2 and Table 2.4.

Table 2.4: Confirmation of proximities

Intensity/Color accept unknown reject

accept accept reject accept
unknown reject reject reject

reject accept reject accept

As shown in Table 2.2, the usage of the edge masks during the verification of

proximities is the same as continuity but only final decision related to the results
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Figure 2.30: Construction of suitable bands for a potential edge contour. The
construction of suitable bands along each side of the contour and across the sides
are described.

of both edge masks is different. Table 2.4 shows the final result of the verification

process for proximities. For example, let we consider the situation: both S1 and

S2 positive according to intensity edge mask, and S1 positive and S2 negative

according to color edge mask. This pair is accepted according to intensity and

rejected according to color. When analyzing both results, we decide to reject this

pair.

Equivalence sets of accepted contour pairs are then formed based on proximity

and each set is simply represented by the longest contour in this set. Moreover,

the gaps caused by incorrectly removing weak edges are closed by interpolating

new edge points based on the orientation of the longest contour in this set and

the end-points of the gap. In other words, the image is recovered by grouping

the contours of each set based on the continuity of the longest contour in this

set. Figure 2.31 shows the effectiveness of edge grouping using proximity relation
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on eliminating the effects of bark textures inside tree trunks and obtaining more

coherent and accurate image boundaries for tree trunks.

Figure 2.31: Effect of applying edge grouping based on proximity relation. Left:
before edge grouping, Right: after edge grouping

2.7.5 Edge Grouping based on Symmetry

The aim of the procedures explained in previous sections is to produce more

reliable, smooth and continuous edge contours by reducing noise, filling gaps and

handling minor errors in the edge detection process. Object detection typically

requires object features described at a higher level than edges.

Symmetry is a characterization (measure) of the structural relationship be-

tween two edge contours. Contours which belong to the same object are likely to

exhibit higher measure of symmetry than contours belonging to different objects

[121]. Hence, if symmetries can be reliably detected in an image, then the process

of image segmentation or more specifically, object detection or segmentation, be-

comes simpler. For example, tree trunk detection can be defined as the process

of extracting symmetric lines from an edge image. Potential tree trunk areas can

hence be detected using a symmetry relationship between edge contours.

Mohan and Nevatia [121] and Asmar et al. [33] use a quantitative measure

of the symmetry relationship between two curves to decide whether or not they

belong to same surface or object. This measure indicates the likelihood of two



CHAPTER 2. DETECTION AND EXTRACTION OF TREE TRUNKS 73

symmetric curves to be physically related (e.g, as boundaries of the same surface

or object). An advantage of this approach is that sections of curves are grouped

as a whole, thereby reducing computation time compared with a point by point

analysis. One of the problems with this approach however is that it relies only on

edge information when evaluating symmetries. Other important image features

such as color, texture and intensity are ignored. If accidental boundaries occur

between unrelated objects in an image, then it is probably that an erroneous

symmetry will be extracted. Hence, it may also be useful to consider other image

features during the extraction of symmetric curves.

We also use a quantitative measure of symmetry to determine the symme-

try strength between two edge contours. The quantities that used during the

computation of the measure of symmetry between two edge contours are inspired

from the work of Mohan and Nevatia [121] and Asmar et al. [33]. However, we

made some changes to these methods. In particular, we use additional regional

information such as color and edge masks in this study for reducing the number

of mismatched edge contour pairs.

At this point of our algorithm, all remaining edge contours are checked for

the symmetry relationship. Symmetries are extracted from an image by first

considering all possible pairings of edge contours in the image. An edge pairing

is then considered as a possible symmetry only if it passes the following steps:

(1) symmetry axis construction, (2) computing the accuracy of symmetries using

regional attributes, and (3) computation of symmetry strength. These processes

are discussed in the following subsections.

2.7.5.1 Symmetry Axis Construction

Inspired from [122], we define the symmetry axis of a pair of edge contours as

the angle bisector between the straight lines fitting the contours. During the

construction of axial symmetry of edge contours, each edge contour is represented

as a straight line connecting the end points of the contour. This way, a useful

primitive shape, a straight contour, is obtained.



CHAPTER 2. DETECTION AND EXTRACTION OF TREE TRUNKS 74

Associated with each symmetry axis, there are geometric as well as symbolic

attributes. Geometric attributes are defined by quantitative, numeric measures

related to any pair of straight contours such as the position, length, width, point

of intersection, opening angle, symmetry axis and symmetry axis segment of the

pair of the contours. Symbolic attributes for a pair of straight contours are used

to classify the symmetry relation between the contours. By using symbolic at-

tributes, pairs of contours can be selected or rejected by applying simple selection

rules [118, 122].

Geometric attributes of any pair of straight contours are defined in this study

as follows (see Figure 2.32):

• End points of the straight contours S1 and S2, denoted as P1, P2, P3 and P4

• Symmetry axis Ls is defined as the angle bisector.

• Symmetry axis segment Ss is defined as the line segment on the symmetry

axis where the projections of the S1 and S2 overlap. If S1 and S2 are

separated, then Ss is considered as zero.

• Point of intersection Pc is defined as the point where the straight lines

going through the straight contours S1 and S2 intersect. If S1 and S2 are

parallel, then Pc is considered as infinity.

• Opening angle θoa defined as the angle between the straight lines going

through the straight contours S1 and S2. If S1 and S2 are parallel, then θoa

is considered as zero.

For each pair of straight contours S1 and S2, their symmetry axis and as-

sociated geometric attributes are determined by the following steps (see Figure

2.32):

1. Find the symmetry axis between S1 and S2.

1.1 Derive the equation of the line L1 passing through points P1 and P2

1.2 Derive the equation of the line L2 passing through points P3 and P4
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Figure 2.32: Geometric attributes computed for each pair of straight contours S1
and S2 are demonstrated. The most important geometric attributes are: open-
ing angle θoa, symmetry axis Ls, symmetry axis segment Ss and the point of
intersection Pc.

1.3 Find the intersection point Pc of L1 and L2

1.4 Compute the unit vectors ~vi1 and ~vi2 of L1 and L2 that starts from Pc

to the closest end points of S1 and S2.

1.5 Compute the unit vector ~vis of the angle bisector that starts from Pc

using ~vi1 and ~vi2 as follows:

~vis = ~vi1 + ~vi2

1.6 Derive the line equation of Ls using Pc and ~vis

Note: If S1 and S2 are parallel, then Ls is the line equidistant to both S1

and S2.

2. Compute the opening angle θoa using these computed unit vectors as follows:

θoa = ∠( ~vi1, ~vis) + ∠( ~vi2, ~vis)

Note: If S1 and S2 are parallel, then θoa is considered as zero.
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3. Find the symmetry axis segment Ss using the projections of end-points of

S1 and S2 onto Ls

Note: If S1 and S2 are separated, then Ss is considered as zero.

Symbolic attributes of any pair of straight contours are defined as follows:

• Type of the overlapping : Analyzing the relative position of the projections

of the edge contours onto the symmetry axis enables us to classify the type

of overlapping between the edge contours. There are there different classes

of overlapping: covered, overlapped and separated. These different classes

of overlapping are illustrated in Figure 2.33.

• Type of the corner junction: Analyzing the position of the point of inter-

section allows us to classify the type of corner junction between the edge

contours. There are three different classes of corner junction: X-junction,

L-junction and T-junction. These different classes of corner junction are

illustrated in Figure 2.34.

Two of the geometric attributes, which are the symmetry axis segment Ss and

the point of intersection Pc, are used for computing the symbolic attributes.

Pairs of straight contours are then formed; they are first selected or rejected

applying certain selection rules to the symbolic attributes. Only contour pairs are

accepted for which (1) the class of overlapping is either covered or overlapped, and

(2) the type of the corner is an L-junction. The computed geometric attributes are

then compared to certain user-defined threshold values. Only contour pairs are

accepted for which (1) opening angle should be below than pi/8 radians because

we seek edge contour pairs that are quasi-parallel, (2) the length of the symmetry

axis segment should be above than 10 pixels, (3) the distance between the edge

contours should be above than 6 pixels, (4) the length of the longer of the two

edge contours should be above 30 pixels, (5) the shorter of the two edge contours

should be no less than one third of the length of the longer one, (6) at least one

third of either edge contours should project onto the symmetry axis, and (7) the

ratio of the symmetry axis length to the distance between edge contours should
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Figure 2.33: Different classes of overlapping are illustrated. In (a) the projections
of the contours overlap and no one covers the other on the symmetry axis ⇒
overlapped. In (b) the projections of one contour completely covers the other
on the symmetry axis ⇒ covered. In (c) the projections of the contours do not
overlap each other on the symmetry axis ⇒ separated.

be above than 1. In our application, these threshold values were chosen based on

our experiments.

This step can be considered as a kind of filtering process which allows only

a small subset of edge contour pairs through and thus, subsequent processing of

edge contour pairs can be much faster. Following this filtering, the symmetry

relation is verified between the contour pair that satisfies above constraints using

regional attributes. This way, we can reduce the number of mismatched edge

contour pairs.

2.7.5.2 Computation of the Consistency of Symmetries with Image

Structure

Our objective is to locate boundaries of tree trunks in an image such that they

are coherent and accurate with the image structure. To do so, we should use both

structure and regional informations while evaluating symmetry relation between
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Figure 2.34: Different classes of corner junction are illustrated. In (a) the position
of Pc is between the end points of both contours ⇒ X-junction corner type. In
(b) the position of Pc is between the end points of only one contour ⇒ T-junction
corner type. In (c) the position of Pc is not between the end points of any of the
contours ⇒ L-junction corner type.

edge contour pairs. Using regional information allows us to check the accuracy

and consistency of the potential pairs. Thus, we propose an approach that incor-

porates the symmetry relation with regional attributes to match edge contours.

This way, most problems associated with accidental boundaries between unre-

lated objects in an image can be handled.

Our approach uses both color distance map and edge classification masks as

regional attributes to validate the matches between potential pairs. We assume

that tree trunk constitutes the image area in which at least 80 percent of color

values should be smaller than a certain threshold. This way, we can eliminate

background objects having similar structural properties with tree trunks. The

decision on which edge contour pairs are accepted based on color is made by

using the following steps:
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• Formation of potential tree trunks: Two symmetric edge contours form

a potential tree trunk region. The non-overlapped parts of the pair of

the edge contours are extended by interpolating new points based on the

existing edge contour and the symmetry axis between the contours. Then,

the corresponding end points of the extended version of the edge contours

are joined to form a potential tree trunk region.

• Extraction of color information: Color values in a potential tree trunk re-

gion are obtained using the corresponding pixel values in a color distance

map.

• Correction of symmetries using color information: In a potential tree trunk

region, the percentage of the number of pixels whose color values are below

a certain threshold (e.g 0.4) is calculated. If this value is below than 80,

the edge contour pair forming the tree trunk region is rejected.

In the case of color edge mask, tree trunks in a color distance map constitutes

an image area whose gray-scale values are darker than the background and nearly

uniform. Hence, differential values on the left side edges of tree trunks are nega-

tive, while those on right are positive, meaning that when applying a DooG filter

to a color distance map, the left side edges of tree trunks give negative response

values whereas those on right give positive. Therefore, pairs of edge contours

having positive values on the left side edges of tree trunks and negative values on

the right side are rejected according to color edge mask. In the case of intensity

edge mask, however, this situation is not valid since we do not know whether tree

trunk regions appear darker than the background, meaning that when applying a

DooG filter to an intensity image, the left side edges of tree trunks give negative

or positive response values whereas those on right give opposite response. The

symmetry selection and rejection rules of pairs of edge contours based on edge

masks are summarized in Table 2.5, Table 2.6 and Table 2.7.

Table 2.5 shows how to use color edge mask during the verification of sym-

metries, while Table 2.6 shows the usage of intensity edge mask. Table 2.7 shows

the final result of verification process. S1 and S2 demonstrate left and right sides
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Table 2.5: Color Symmetry Consistency

S2/S1 negative indeterminate positive

negative reject unknown accept
indeterminate reject unknown unknown

positive reject reject reject

Table 2.6: Intensity Symmetry Consistency

S2/S1 negative indeterminate positive

negative reject unknown accept
indeterminate unknown unknown unknown

positive accept unknown reject

of edge contour pair respectively. According to edge classification masks, all ac-

cepted edge contour pairs belong to opposite sides of potential tree trunks, one

belongs to left side of tree trunks while the other belongs to right. For example,

let we consider the situation: both S1 and S2 positive according to intensity edge

mask, and S1 positive and S2 negative according to color edge mask. This pair is

rejected according to intensity and accepted according to color. When examining

both results, we decide to accept this pair.

2.7.5.3 Computation of Symmetry Strength Value

A quantitative measure of the symmetry relation between two edge contours is

also used to determine the symmetry strength value between the edge contours.

This value is then utilized for selecting or rejecting pairs of edge contour. The

symmetry strength value of each pair is computed as a weighted sum of a numer-

ical representation of the following quantities (See Figure 2.35):

Table 2.7: Confirmation of symmetries

Intensity/Color accept unknown reject

accept accept reject accept
unknown accept reject reject

reject accept reject accept
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• Length of the proposed symmetry axis

• Overlap ratio defined as the ratio of the length of the two edge contours

covered by the proposed symmetry axis to the actual length of the two edge

contours

• Distance between the two edge contours

• Aspect ratio between the two edge contours defined as the ratio of the length

of the proposed symmetry axis to the distance between the two edge con-

tours

• Similarity of the length of the two edge contours defined as the difference

between the lengths of the two edge contours, normalized by the length of

the longer contour

• Difference in the alignment between the end-points of the two edge contours

defined as the difference between the y-coordinates of the corresponding

end-points of the two edge contours

• Amount of parallelism between the two edge contours defined as the angular

difference between the two edge contours

• Amount of parallelism between the ends of the two edge contours defined as

the angular difference between the ends of two edge contours (i.e. proposed

edge endcontours)

• Amount of skew between the two edge contours defined as the maximum

skewness between the edge contours and the proposed edge end-contours

The measure of symmetry strength for the proposed symmetry axis between two

edge contours is given in Equation 2.27:

S = 2AR − 40δθ − 20δl − 5δe − 3δsk + δorLs − δd − δal (2.27)

where S is the symmetry strength value, AR is the aspect ratio, δθ is the angular

difference between straight lines joining the end points of the contours in radians,
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Figure 2.35: Variables of symmetry strength

δe is the angular difference between the proposed end-contours in radians, δl is the

normalized length difference between the contours in pixels, δsk is the maximum

skewness between the contours and end-contours in pixels, Ls is the length of the

axis in pixels, δor is the overlap ratio, δd is the distance between the contours in

pixels, and δal is the difference between the end points of the contours in pixels.

The geometrical measures used in 2.27 are computed as follows (See Figure 2.35):

Ls : The symmetry line is constructed joining the intersection points (let pit and

pib) of the proposed symmetry axis and the straight lines joining the corre-

sponding end-points of the edge contours.

Ls = norm(pit − pib)

δd : The extended version of the edge contours are utilized. The average of the

sum of the differences between each corresponding edge points in x-direction

is considered as δd. Let S1x = xs1, xs2, ..., xsn and S2x = xd1, xd2, ..., xdn

are the x coordinates of the contours and n is the number of edge points

associated with the contour.
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δd = (
∑n

i (xsi − xdi))/n

AR : AR = Ls

δd

δθ : It is defined as the difference in orientation between the straight lines joining

the end points of the contours. Unit vector of these lines are computed and

then the angle between these vectors are considered as δθ. Let p1 and p2,

p3 and p4 are the end points of the contours S1 and S2, respectively.

ˆvs1 = p1−p2
norm(p1−p2)

ˆvs2 = p3−p4
norm(p3−p4)

δθ = ∠(v̂s1, v̂s2) = arccos(v̂s1, v̂s2)

δl : Let l1 and l2 are the lengths of the S1 and S2, respectively.

l1 = norm(p1 − p2) l2 = norm(p3 − p4)

δl = abs(l1−l2)
max(l1,l2)

δe : It is defined as the difference in orientation between the ends of both contours.

δe = abs(δe1) + abs(δe2)

where δe1 is the angular difference between the bottom parts of the edge

contours and δe2 is the angular difference between the top parts of the edge

contours. The orientations of top and bottom parts are each calculated

based on the orientation of the lines of best fits which are formed by applying

total least square approach to 15 pixels from each of the end points.

δsk : δsk = abs(δsk1 − δsk2) where δsk1 is the maximum skewness of S1 and δsk2 is

the maximum skewness of S2. Maximum skewness is calculated by taking

the maximum distance from the edge points of the contour to the straight

line joining the end points of the contour.

δal : Let p1 = (x1,y1), p2 = (x2,y2), p3 = (x3,y3) and p4 = (x4,y4), then

δl = min(abs(y1 − y3), abs(y2 − y4))

δor : Let l1′ and l2′ are the lengths of the contours covered by the proposed

symmetry axis.
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δor = min( l1′

l1
, l2′

l2
)

The weights used in 2.27 are chosen according to subjective importance of each

geometrical measure. In our application, the aspect ratio (AR) and the length of

the symmetry axis (Ls) are considered the most important measures, followed by

the amount of contour parallelism (δθ) and the normalized length difference (δl).

The amount of end-contour parallelism (δe), skewness (δsk), and the difference in

the alignment between the ends of contours (δal) are given less weighting because

some cases contours are segmented incorrectly resulting in shorter contours than

in reality, thus affecting the calculation of these measurements. The difference

between the contours (δd) is also considered most important; however, we cannot

assign a high weight to this measure because some of trees have large width

actually and the size of any object in a scene is inherently dependent on the

parameters of the image formation process. This situation is also valid for the

length of the symmetry axis. We try to handle this problem by multiplying the

length with overlap ratio. Through a process of trial and error, and taking into

account the most reliable measures and giving them more weighting, the weights

in 2.27 were decided.

It is important to note that the computation of the symmetry strength values

is very fast since only the end-points of edges are used for symmetry computation.

The maximum symmetry strength value is preserved for each edge contour

and symmetries which are within 1/10 of this value are selected as potential

symmetric contours. After processed all edge contours, the contours not paired

with any other contours by symmetry relation are eliminated. Then, equivalence

sets of edge contours are formed and each set is simply represented by the two

edge contours whose symmetry strength values are mutually maximum.

Since a tree trunk describes an area, it needs to be enclosed in a boundary.

The symmetric curves provide two boundaries; other boundaries are obtained by

straight lines joining the corresponding end points of the symmetric curves. This

way, pairs of edge contour form potential tree trunk regions and those regions

are checked whether or not be reasonable. Beside, after obtaining potential tree
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trunks in an image, the base location of each tree trunks is determined by calcu-

lating the midpoint of the bottom end-points of the pairs of edge contours that

constitute this tree trunk region (See Figure 2.1.

2.7.5.4 Choosing the Correct Tree Trunks

After this stage of processing, we have a number of potential tree trunks that

may or may not be reasonable. A decision still has to be made whether a given

tree trunk should be accepted or not. The heuristics used here is quite simple

and explained as follows:

• Overlapping tree trunks may occur due to the some reasons. Such reasons

are: (1) some parameters of the image formation process may cause one

tree trunk to be enclosed in another, (2) edge detection errors may cause

a number of symmetric contours to be considered as potential tree trunks

which are only slightly different, especially caused by bark textures inside

tree trunks, and are more appropriately represented as a single tree trunk,

and (3) a tree trunk may be extracted which completely overlaps a number

of smaller tree trunks due to the nature of the extraction of symmetric con-

tours process. To handle the problem of overlapping, we use the following

heuristics:

1: If a tree trunk completely enclosed by a larger tree trunk, then it is

rejected.

2: If both the symmetric contours of two tree trunks overlaps (not cov-

ers, shares a common region), then we conclude that two tree trunks

belonging to the same object if the difference in their geometrical mea-

surements (e.g. width, angular difference between the overlapped sym-

metric contours, and the difference in alignment (both x and y coordi-

nates) between the overlapped end points of the symmetric contours

is minimal. Otherwise the smaller tree trunk is rejected.

3: If one of the symmetric contours of two tree trunks overlaps (shares a

complete side), then the smaller one is rejected.
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The reason for rejecting tree trunks or considering as a single tree trunk is

the possible errors in the edge detection process. Often, small gaps between

edges appear, and even the techniques described above (cocurvilinearity,

continuity etc.) do not always bridge these gaps. Hence, there is a pos-

sibility that a viable edge contours will not be found even though it does

actually exist.

• A number of tree trunks may belong to same object and are not overlapped

because of the some reason such as big gap or edge contrast polarity. If

the difference in geometrical measurements (e.g. width, angular difference

between the corresponding symmetric contours, and the difference in align-

ment (both x and y coordinates) between the overlapped end points of the

symmetric contours is minimal, then we conclude that they are belong to

same object. Otherwise, nothing is done.

• The base location of the longest tree trunk is determined, and any tree

trunk whose y-coordinate of base location is above the y-coordinate of that

location and its length is smaller than the half of the longest one is rejected

since this tree trunk may contain noisy information and in our case, the

consistency is important.

• The longest tree trunks are determined and any tree trunk with length

below than some ratio of longest one is rejected since this tree trunk may

contain noisy information and in our case, the consistency is important.

Moreover, in this way, we can handle the problem of merged background

tree trunks. In our case, we do not interest the tree trunks that are far

away since these also give noisy information.

Figure 2.36 shows an example of symmetry based edge grouping.

Figure shows some examples of our tree detection algorithm with each edge

grouping step.
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Figure 2.36: Effect of applying edge grouping based on symmetry relation. Left:
before edge grouping, Right: after edge grouping
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Figure 2.37: Examples of our tree detection algorithm with each edge grouping
step: (a) Original color image, (b) Quasi-vertical edges detected with the Mod-
ified Edge Flow, (c) Result of edge linking, (d) Result of continuity-based edge
grouping, (e) Result of Gabor-based edge pruning, (f) Result of proximity-based
edge grouping, (g) Result of symmetry-based edge grouping, and (h) Final result.



Chapter 3

Experimental Results

In order to evaluate the accuracy of the method we propose for detecting tree

trunks, we captured and analyzed a large number of outdoor images from a diverse

set of trees under more dramatic variations in illumination, viewpoint and back-

ground conditions. In this chapter, we characterize the detection performance of

our algorithm for two different datasets, one homogeneous dataset with images

of the same tree types and a heterogeneous dataset with images of different tree

types. We show quantitative performance results of our detection algorithm on

these two datasets. We also compare the accuracy of our method to the method

proposed by Asmar et al. [1].

3.1 Experimental Setup

3.1.1 Dataset Selection

In order to obtain a fair and accurate evaluation of our system, we need a large

number of outdoor images containing trees. During training, a small part of these

images is used to generate a reliable tree color model whereas the rest is used

during testing to obtain general performance results.

89
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We collected a dataset of images from various forested cluttered outdoor envi-

ronments (e.g. park areas, forest areas and urban areas including streets, build-

ing, parking lots, etc.) using different digital cameras from different scene views.

These tree images incorporate different kinds of trees under varying lighting and

weather conditions.

Our dataset consists of 392 outdoor images of natural scenes containing one or

more trees in a variety of poses. These images are represented in the RGB color

space and recorded at a resolution of 640 × 480 pixels. In the sequel, we use the

term heterogeneous dataset to refer to this dataset. Figure 3.1 shows examples of

tree images in the heterogeneous dataset.

Figure 3.1: Sample tree images in the heterogeneous dataset.

We also construct another dataset, called as the homogeneous dataset, with

the following properties: This dataset consists of images of same tree species

from different scene views within a forested outdoor environment under differ-

ent lighting, weather and background conditions. This dataset is a subset of the

heterogeneous dataset. The main difference of this dataset is that all trees in all

images share common characteristics, and exhibit little variation in their appear-

ance. Similar to the heterogeneous dataset, all tree images are represented in the

RGB color space and recorded at a resolution of 640 × 480 pixels. This dataset
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contains 40 outdoor images of natural scenes containing one or more trees in a

variety of poses. Figure 3.2 shows examples of tree images in the homogeneous

dataset.

Figure 3.2: Sample tree images in the homogeneous dataset.

The effectiveness of our proposed method for detecting tree trunks are then

evaluated on these two different datasets. Some images in these datasets are

used for training while the remaining images are used for testing. For training,

7 images from the heterogeneous dataset were used. One of these images is also

in the homogeneous dataset. Figure 3.3 shows sample tree trunks in the training

dataset. Although the training dataset is not very large, it is enough to represent

a diverse range of trees. For testing, 385 images from the heterogeneous dataset

and 39 images from the homogeneous dataset were used.
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Figure 3.3: Sample tree trunks in the training dataset.

3.1.2 Color Training

In order to construct a reliable tree color model, a set of colored tree samples is

required. We select these samples manually from training images. It is important

to note that the selection of tree colored samples is crucial for the performance

of our algorithm since some background objects share similar colors with trees.

Thus, we form a set of tree color samples by selecting most representative tree

patches. For both datasets, we use the same tree color model since the color

model that is constructed for the heterogeneous dataset also covers tree images

in the homogeneous dataset.

For both datasets, color training is performed on the RGB color space. We

collected 8666 color pixel samples for training. These tree colored samples form

a three dimensional point cloud in the RGB color space as shown in Figure

3.4(a). Figure 3.4(b) shows tree-colored and non-tree colored samples extracted

manually from the training dataset. Histograms for both tree and non-tree pixels

in the training dataset are shown in Figure 3.5. Due to the varying image and

background conditions, and the high amount of variability in the appearances of

trees in the images, most of the histograms for tree and non-tree have a significant

amount of overlap.

The cloud is then represented by estimating the parameters of the Gaussian

mixture, using EM algorithm as explained in Section 2.2.1. The mixture model is

computed using five Gaussian components. Figure 3.6 shows the tree color cloud



CHAPTER 3. EXPERIMENTAL RESULTS 93

0
50

100
150

200
250

0
50

100
150

200
250

0

50

100

150

200

250

RG

(a) Tree-colored pixels

0
50

100
150

200
250

0
50

100
150

200
250

0

50

100

150

200

250

RG

B

(b) Tree-colored vs. non-tree-colored pixels

Figure 3.4: Color distribution: (a) Tree-color cloud in RGB space, and (b) Tree-
colored vs. non-tree-colored pixels. Red points represent tree-colored pixels and
blue points represent non-tree pixels.
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Figure 3.5: 1-D histograms of tree vs. non-tree pixels with respect to individual
color components. Solid red and blue lines represent tree histograms and non-tree
histograms, respectively.
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and the Gaussian Mixture Model of the tree-color distribution in the RGB color

space from two different views. Figure 3.7(a) to 3.7(c) show the projections of

the tree color model on the RG, RB and GB subspaces, respectively.

Figure 3.8 shows some examples of color distance maps constructed using this

color model. Although these tree trunks have different colors, all of them are

correctly transformed into color distance maps by using this color model. As

can be seen from the Figure, a tree trunk constitutes the image area whose pixel

values are darker than the background and are nearly uniform. This shows that

even though our color model is based on a small set of samples, it accurately

represents tree colored patches.

3.1.3 Performance Metrics

In order to evaluate and measure the performance of our proposed method for

detecting tree trunks, the recall, false-alarm and missing rates are defined as

follows:

Recall rate: The ratio of the number of correctly detected tree trunks to the

number of all potential tree trunks manually counted in images and denoted

as Precall,

False-alarm rate: The ratio of the number of background objects misclassified

as tree trunks to the number of all detected tree trunks and denoted as Pfa,

Missing rate: The ratio of the number of tree trunks misclassified as back-

ground objects to the number of all potential tree trunks and denoted as

Pmiss.

These three quantitative measurements are computed as follows:

Precall := Ctrunk/Ntrunk ,

Pfa := Ftrunk/(Ctrunk + Ftrunk) ,

Pmiss := Mtrunk/Ntrunk = 1 − Precall . (3.1)
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Figure 3.6: Tree-color cloud in RGB space and Gaussian distribution components
which cover the cloud shown from two different views. Red points represent the
cloud and alpha blended black tones ellipses represent Gaussian components.



CHAPTER 3. EXPERIMENTAL RESULTS 97

0 50 100 150 200 250
0

50

100

150

200

250

R

G

(a) RG

0 50 100 150 200 250
0

50

100

150

200

250

R

B

(b) RB

0 50 100 150 200 250
0

50

100

150

200

250

G

B

(c) GB

Figure 3.7: The projections of the tree color model on the RG, RB and GB
subspaces, respectively.



CHAPTER 3. EXPERIMENTAL RESULTS 98

Figure 3.8: Sample color distance images. Dark regions correspond to smallest
color distances.

where Ntrunk is the total number of potential tree trunks, Ctrunk is the number

of correctly detected tree trunks, Ftrunk is the number of background objects

misclassified as tree trunks and Mtrunk is the number of tree trunks misclassified

as background objects. When calculating these three quantitative measurements,

the ground truth was manually obtained and only salient tree trunks were counted

as potential tree trunks.

Moreover, each of the correctly detected tree trunks are manually classified

into clean or noisy by examining its base location and width as follows:

Clean: If the detected base location of a tree trunk is less than the half of its

width away from the tree base location, it is considered as clean.

Noisy: If the detected base location of a tree trunk is greater than the half of

its width away from the tree base location, it is considered as noisy.
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Analyzing noisy and clean tree trunks enables us to evaluate our proposed

method on whether the resulting landmarks have desirable properties in the con-

text of data association during visual SLAM. Moreover, for visual SLAM, slighting

noisy landmarks are not a huge problem during landmark estimation since they

can be handled by using Kalman Filters. Some examples of noisy and clean tree

trunks are illustrated in Figure 3.9.

Figure 3.9: Examples of clean and noisy tree trunks.



CHAPTER 3. EXPERIMENTAL RESULTS 100

3.2 Performance on the Heterogeneous Dataset

In this section, we evaluate the performance of our proposed method for detecting

tree trunks on the heterogeneous dataset. For making fair comparisons, we also

implemented the method proposed by Asmar et al. [1]. Our solution is very close

in spirit to their method and in order to show improvements on its performance

under varying illumination, weather, texture and environmental conditions and

different tree types, we implemented their method. During the implementation,

we did not use the method for eliminating detected tree trunks based on the

Ground-Sky line as described in [1] because most of the images in our dataset

do not contain a reasonable Ground-Sky line. Instead, we used our proposed

method for correcting detected tree trunks. We implemented our proposed tree

trunks detection system by using two different proposed edge detection methods

that are Modified Edge Flow and Gabor-based methods described respectively

in Sections 2.4.2 and 2.5. All methods are implemented in Matlab and tested

on a Intel Core 2 Duo 2.00 GHz processor with 2MB of RAM. All the algorithm

parameters were tuned manually to get the best performance.

Accuracy comparisons of tree trunk detection among all three methods, the

Modified Edge Flow, Gabor-based and Asmar’s [1] are shown in Table 3.1. We

can see that the performance of our detection system is superior to Asmar’s

algorithm [1]. Classification of the correctly detected tree trunks into clean and

noisy is also shown in Table 3.2.

Method Ntrunks Ctrunks Ftrunks Mtrunks Precall Pfa Pmiss

Modified Edge Flow 1468 1285 176 183 88% 12% 12%
Gabor-based 1468 1306 401 162 89% 24% 11%
Asmar et al. [1] 1468 875 1275 593 60% 59% 40%

Table 3.1: Performance comparisons among three different methods for the het-
erogeneous dataset.

In terms of false alarms, the method proposed by Asmar et al. is the worst

followed by our approach with Gabor-base edge detection and our approach with
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Modified Edge Flow being the best one. Since Asmar’s method solely relies on

boundary information during edge grouping, it produces too many false alarms.

Moreover, since their method only uses intensity information during edge detec-

tion, it has a low percentage of correct detections. On the other hand, the main

characteristic of the Gabor-based method is that it tends to detect all tree trunks

in the images since it produces more continuous edges. As a consequence it has

a high percentage of correct detections but also a high false alarm rate. The

main drawback of this method is that it links weak background edges with strong

tree edges and thus, it extends boundaries of tree trunks and shifts their base

locations. This situation can cause more noisy tree trunks as seen in Table 3.2.

The highest percentage of correct detections is achieved by our approach with

Gabor-based edge detection followed with the Modified Edge Flow method. For

the miss rate measures, the Gabor-based method outperforms others. The Mod-

ified Edge Flow method exhibits perhaps the best trade-off between Precall and

Pfa. In addition, this method produces cleaner tree trunks as shown in Table

3.2. Thus, it is more suitable for use within a SLAM framework. In the case of

Gabor-based method, this method correctly classifies trees at 89% with a false

alarm rate of 24%, and these rates are satisfactory to successfully perform SLAM

because trees are initialized as landmarks into the SLAM map only after being

detected from several viewpoints. It is improbable that background objects which

are falsely classified as trees will be repeatedly detected from several camera view-

points.

Method Ctrunks Clean Noisy

Modified Edge Flow 1285 1065 220
Gabor-based 1306 757 549
Asmar et al. [1] 875 530 345

Table 3.2: Comparison of correctly detected tree trunks of our methods and
Asmar et al. [1] for the heterogeneous dataset in terms of ‘clean’ and ‘noisy’.

Asmar’s method only uses image intensity information during edge detection

and hence his method fails to detect tree trunks in low-level settings. For example,
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Figure 3.10 shows examples of tree trunks detection when images are captured

under different weather conditions (cloudy and rainy). As can be seen from the

Figure, in low contrast images, Asmar’s method often fails but rather sufficient

results are obtained with our method since we utilize color information during

the extraction of edges in an image. Since the sunny day has better lighting

conditions, Asmar’s method and also our proposed method work better in such

a day than other weather conditions. However, when neighboring objects have

different chromatic values but nearly equal intensities, edges are not detected

accurately with Asmar’s method as shown in Figure 3.11. In addition, Asmar’s

method often fails in the presence of highly textured tree objects and clutter,

hence it produces undesirable and irrelevant edges within texture regions as il-

lustrated in Figure 3.10 and 3.11. However, our method can accurately detect

texture boundaries instead of intensity since we also use texture information dur-

ing the extraction of edges in an image. In addition, Asmar’s method generates

many false alarms when a complicated background including many edges is han-

dled since Asmar’s method only uses perceptual organization tools during edge

grouping and not use proximity grouping to handle nearby parallel edges, and

thus it produces undesirable boundaries between unrelated objects as seen in Fig-

ure 3.10 and 3.11. In addition, Asmar’s method does not distinguish well trees

from background objects that share similar structure but different appearance

with trees since Asmar’s method does not contain any verification step based on

regional information. Consequently, the main drawbacks of Asmar’s method are

using only intensity information to obtain edges in an image and using only edge

information to obtain potential tree trunks. Thus, Asmar’s method has limited

abilities to handle tree trunks having non-homogeneous bark texture, cluttered

background conditions and low-level gray values. Asmar’s method only produces

reasonable good results under forested area with good lighting conditions.

Moreover in the proposed methods, most false candidates occur when a com-

plicated background, including background objects similar with trees in terms of

both appearance and structure information is handled. In the first and second

images of Figure 3.11 and 3.12, windowsills or colons of buildings, roads, traffic

signs and pipes are falsely classified as tree trunks but almost all tree trunks are
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Figure 3.10: Results of tree trunks detection methods under a cloudy and rainy
day. Although these tree trunks have different orientations, colors, textures and
backgrounds, almost all of them are correctly detected by our methods.

correctly detected. In the second image of Figure 3.10 and the third image of

Figure 3.12, trees in foreground is falsely merged with a tree in the background

as one because of the poor contrast of the tree trunks, homogeneity in their color

and texture appearance, and one side edges of the trees is completely missing.

In the last image of Figure 3.10, some undergrowths are falsely labeled as tree

trunks, caused by the similarity of the color distribution of the undergrowths with

trees. Additionally, some of the small tree trunks and the trees that are far away

are not detected. However, all other tree trunks are correctly detected. To over-

come these problems, we can use high threshold values during gabor pruning and

color verification. However, it is not necessary since as mentioned before trees

are initialized as landmarks into the SLAM map only after being detected from

several viewpoints and it is improbable that background objects which are falsely

classified as trees will be repeatedly detected from several camera viewpoints.
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Figure 3.11: Results of tree trunks detection methods under a sunny day. Al-
though these tree trunks have different orientations, colors, textures and back-
grounds, almost all of them are correctly detected by our methods.

Some results of our proposed method with the Modified Edge Flow are illus-

trated in Figure 3.13. For example, although the background objects have similar

color appearance with trees in our database, our method efficiently detects tree

trunk regions. Moreover, although the images have low contrast, our method

efficiently detects tree trunks. Additionally, our method efficiently distinguish

tree objects from the building, tube and traffic sign objects, although these ob-

jects have similar structure and appearance with trees in the foreground. It is

clear that the accuracy of tree trunk detection system is greatly affected by the

performance of the edge detection routine since this routine often fails to detect

edges in the presence of a little variation in both image attributes. Moreover,

Gabor-based edge pruning causes the problem of losing weak tree edges.

According to the results in Figure 3.9 to 3.13, even though tree trunks are

captured under different lighting, texture, color, pose and background conditions,
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Figure 3.12: Some examples of falsely detected tree trunks.

the proposed method still performs very well to detect all kinds of tree trunks.

Also, it detects tree trunks in the presence of non-homogeneity in bark texture,

shadows, occlusions and different color appearance in even a single tree object.

Compare with Asmar’s method [1], our proposed method can filter out most of

false candidates using regional information so that our approach has better effi-

ciency than Asmar’s approach [1] in tree trunks detection. In addition, since our

proposed method can eliminate many false alarms, our approach has higher tol-

erance to complicated backgrounds. It also makes our approach have the highest

detection accuracy. All the above results have proved that the proposed method

is a robust, accurate, and powerful tool for tree trunks detection.

3.3 Performance on the Homogeneous Dataset

In this section, we evaluate the performance of our proposed method for detecting

tree trunks on the homogeneous dataset in order to show that our tree trunks

detection method produces better results than Asmar’s method [1] even if images

of the same tree types in the forested environment were used. All methods are

tested on a Intel Core 2 Duo 2.00 GHz processor with 2MB of RAM. All the
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Figure 3.13: Some results of our proposed method for detecting tree trunks with
the Modified Edge Flow.

algorithm parameters were tuned manually to get the best performance.

Accuracy comparisons of tree trunk detection among all three methods, the

Modified Edge Flow, Gabor-based and Asmar’s [1] are shown in Table 3.3. We

can see that the performance of our detection system is superior to Asmar’s.

Classification of the correctly detected tree trunks into clean and noisy is also

shown in Table 3.4.

In terms of false alarms, the method proposed by Asmar et al. is the worst

and our approach with the Modified Edge Flow is the best one. The main draw-

backs of Asmar’s method are using only intensity information to obtain edges in
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Method Ntrunks Ctrunks Ftrunks Mtrunks Precall Pfa Pmiss

Modified Edge Flow 199 180 10 19 91% 5% 9%
Gabor-based 199 174 21 25 87% 11% 13%
Asmar et al. [1] 199 120 141 79 60% 54% 40%

Table 3.3: Performance comparisons among three different methods for the ho-
mogeneous dataset.

images and using only edge information to group detected edges into potential

tree trunks. Hence, it generates too many false detections.

The highest percentage of correct detections is achieved by our approach with

Modified Edge Flow followed with Gabor-based edge detection. For the miss rate

measures, the Modified Edge Flow method outperforms others. The Modified

Edge Flow method exhibits perhaps the best trade-off between Precall and Pfa. In

addition, this method produces cleaner tree trunks as shown in Table 3.4. Thus,

it is more suitable for use within a SLAM framework. In the case of Gabor-based

method, this method correctly classifies trees at 87% with a false alarm rate of

10%, and these rates are also satisfactory to successfully perform SLAM.

Method Ctrunks Clean Noisy

Modified Edge Flow 180 157 23
Gabor-based 174 107 67
Asmar et al. [1] 120 88 32

Table 3.4: Comparison of correctly detected tree trunks of our methods and
Asmar’s for the homogeneous dataset in terms of ‘clean’ and ‘noisy’.

Figure 3.14 and 3.15 show examples of tree trunks detection when images of

the same tree types in forested environment were used. Asmar’s method solely uti-

lizes image intensity information for detecting tree trunks and hence his method

fails to detect tree trunks when low contrast images are handled. In such cases,

neighboring objects have different chromatic values but nearly equal intensities so

that edges are not accurately detected with Asmar’s method as shown in the first
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image of Figure 3.14. As can be seen from the Figure, rather sufficient results

are obtained with our method since we utilize color in edge detection process.

Moreover, Asmar’s method generates many false detections when a complicated

background including many edges is handled (see Figure 3.15) since Asmar’s

method only utilizes perceptual organization during edge grouping. Hence, As-

mar’s method produces undesirable boundaries between unrelated objects as seen

in Figure 3.14 and 3.15. The most important reason of occurring such undesirable

boundaries is that during symmetry extraction, regional information is not used

to verify the coherence of the symmetries with image structure. However, because

of using regional information during edge grouping, our method eliminates most

of false detections and produces more coherent image boundaries. In addition,

Asmar’s method often fails in the presence of a little variation in bark textures as

seen in Figure 3.14 and 3.15 since any texture information is not considered dur-

ing edge detection and the proximate edges are not handled during edge grouping.

Hence, as can be seen from the Figure, Asmar’s method produces undesirable and

irrelevant edges within texture regions but rather sufficient results are obtained

with our method since texture is considered in our edge detection process and

proximity relation is used during edge grouping. Consequently, Asmar’s method

has limited abilities to detect tree trunks even if tree images are captured under

cluttered forested environment with good lighting conditions.

According to the results in Figure 3.14 and 3.15, the proposed method still

performs very well to detect tree trunks even though tree trunks have non-

homogeneity in bark texture and colors, and cluttered background conditions.

Compare with Asmar’s method [1], our proposed method can eliminate most of

false detections using regional information so that our approach has better effi-

ciency than Asmar’s in tree trunks detection and higher tolerance to complicated

backgrounds. All the above results have proved that the proposed method is a

robust, accurate, and powerful tool for tree trunks detection.
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Figure 3.14: Results of tree trunks detection methods in forested outdoor en-
vironment under different weather conditions. Although these tree trunks have
non-homogeneity in bark textures and colors, almost all of them are correctly
detected by our method.
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Figure 3.15: Results of tree trunks detection methods in cluttered forested out-
door environment under different weather conditions. Although these tree trunks
have non-homogeneity in bark textures and colors, and complicated background
conditions, almost all of them are correctly detected by our method.



Chapter 4

Conclusions & Future Work

In this thesis, we presents a novel method for detecting and extracting tree trunks

for the purpose of using them as landmarks for Visual SLAM in outdoor clut-

tered environments. This is a challenging problem since trees have a high degree

of variability in size, color, brightness and texture even for trees within the same

species. Moreover, different types of trees have different appearances depend-

ing on the texture of the bark, the smoothness of the trunk, the density of the

branches, shadow, brightness and color. In addition, background foliage shares

similar color and texture information with tress. Nevertheless, a common fea-

ture of all tree trunks is their quasi-vertical and symmetric structure. Even as

such, some potential background objects shares similar structural information

with trees.

Existing work to this end only uses either appearance or structure information

in images and does not work well in complicated background conditions. In con-

trast, our proposed method utilizes both appearance and structure information

while detecting tree trunks in images of cluttered outdoor scenes. To detect tree

trunks, edge strengths of images are first obtained using all available image fea-

tures. Subsequently, dominant edges in the vertical direction are detected using

the Modified Edge Flow method or complementary Gabor-based edge detection

method, and these vertical edges are then grouped into potential tree trunks using

the integration of perceptual organization capabilities and regional information.

111
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Our experiments were conducted on two different datasets, with a comparison

to a previous method that only relies on image intensity information in edge de-

tection step and does not consider any regional information in edge grouping step.

Our experiments shows that our algorithm with the Modified Edge Flow method

correctly finds 88% of trees with a false alarm rate 12% in the heteregeneous

dataset and 91% precision rate with 5% false alarm rate in the homogeneous

dataset. In the case of using Gabor-based edge detection method, our algorithm

correctly finds 89% of trees with a false alarm rate 24% in the heteregeneous

dataset and 87% precision rate with 11% false alarm rate in the homogeneous

dataset. These results establish that the integration of apperance and structure

information results in a high performance tree trunk detection system under a

large variety of conditions that is suitable for use within a SLAM framework. In

addition, according to the experimental results our proposed method outperforms

the comparison method in terms of accurancy and robustness especially in the

presence of complicated background conditions and low-level image settings.

One possible future direction for our system is to evaluate its performance

on more comprehensive experiments such as video sequences. Moreover, to make

the tree trunks detection system more suitable for real time applications our

algorithm will be implemented using C language. Another idea for the future work

is to adjust the mixing weights of the image information during edge detection

process adaptively according to the current available image information rather

than having them fixed. Likewise, the gabor pruning and color thresholds will be

determined using more reliable adaptive thresholding method rather than having

them fixed. By this way, false and miss detections can be reduced. After that, we

will focus on performing tree recognition and matching. After completing these

steps, the system will be tested in a SLAM setting.
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Appendix A

Background on Object Detection

Object detection means determining whether or not one or more instances of a

target object is present in an image, and, if present, determine the locations and

sizes of all target objects in the image. Object detection methods differ from each

other based on the way they approach the following questions: “Which object

representation is suitable for object detection?”, ‘Which image features should be

used?” and “How should the appearance and shape of the object be modeled?”.

The answers to these questions depend on the environment in which the object

detection is performed. A large number of object detection methods have been

proposed which attempt to answer these questions for a variety of scenarios.

These methods can be grouped into two categories: object detection using local

descriptors and object detection using segmentation [123].

A.1 Motivation: Local Descriptors vs. Segmentation-

based Object Detection

Local descriptors based object detection requires the detection and description of

local image features: a local detector extracts salient regions (interest points or

regions) in an image, and each region is characterized by a local descriptor. For

130



APPENDIX A. BACKGROUND ON OBJECT DETECTION 131

any object in an image, interesting points on the object is extracted to provide

a “feature description” of the object. This description is then used to identify

the target objects in a query image. Hence, the problem of object detection

can be reduced to constructing feature space and matching query objects to

target objects in this feature space. Feature space is constructed using the local

descriptors, extracted from training images. Query images are then labeled by

matching their feature vectors to the nearest ones in the feature space according

to a matching criteria. It is important that features extracted from the training

image is robust to changes in image scale, noise, illumination, and local geometric

distortion to perform reliable detection.

Many different methods have been proposed in the literature for object detec-

tion using local descriptors for example [124–126]. Lowe [125] presents a method

for extracting distinctive invariant features from images that can be used to per-

form reliable object detection. The features are invariant to image scale and

rotation, and are robust to changes in affine distortion, viewpoint, illumination

and noise. Viola and Jones [126] propose a method for object detection based on

the combination of feature selection and local descriptors. This method selects a

discriminative set of rectangular Haar-like features and then constructs a strong

classifier by cascading these features using a AdaBoost. Dorko and Schmid [124]

presents an object class detection and recognition method based on discriminative

local features extracted from images of natural scenes. The features are invariant

to illumination, scale and optionally to rotation and affine deformations. In this

method, local descriptors are clustered first to characterize object class appear-

ance. Then, part classifiers on the groups are trained and subsequently, feature

selection is performed to determine the most discriminative parts.

The most important property of local descriptors based object detection tech-

niques is repeatability[124]. Hence, these techniques require that the sought ob-

ject be consisted of features which can be repeatedly detected and matched.

Unfortunately, this requirement rules out using local-descriptor-based object de-

tection systems to detect natural features such as tree trunks. None of the internal

features of one tree trunk are probably to be found on another tree trunk. The

only common property between tree trunks is that all of them stem from the
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ground and that their structure is quasi-vertical and quasi-symmetric [1]. Under

such conditions, only segmentation-based approaches are suitable object detec-

tion techniques for tree trunks.

Object detection using segmentation requires partitioning the query image

into similar regions before attempting to detect an object within it. The aim of

segmentation is to simplify the representation of an image into something that

is more meaningful and easier to analyze. The result of image segmentation is

a set of segments that collectively cover the entire image, or a set of contours

extracted from the image [57]. There are several image segmentation methods in

the literature such as thresholding, clustering, active contour and region growing.

The most used and common image segmentation algorithms are based on one of

the two basic properties of image attributes: discontinuity and similarity. In the

first approach, an image is partitioned into regions based on abrupt changes in

image attributes of the image. In the second approach, an image is partitioned

into regions that are similar to a set of predefined criterion [89].

The exact details of the segmentation process depends on the type of the

object that is sought since the segmentation process requires defining a suitable

representation of the object for detection process. Representing an object in-

volves two basic choices: (1) we can represent the object in terms of its external

characteristics (its shape) or (2) we can represent it in terms of its internal char-

acteristics (its appearance) [89]. Selecting the right features to characterize an

object plays a critical role in object detection. Feature selection is closely re-

lated to the object representation. An external representation is chosen when

the principal focus is on the shape or structural characteristics whereas an in-

ternal representation is selected when interest is on regional properties, such as

color and texture. For example, color and/or texture can be used as a feature

for appearance-based representations, while object edges can be used as features

for structure-based representation. In general, many detection algorithms use a

combination of these features. In our situation, we consider both appearance and

structural properties to obtain the most informative and useful representation for

tree trunks.
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Depending on how we represent an object, the segmentation-based object de-

tection methods can be divided into two groups: appearance-based segmentation

and structure-based segmentation. Structure-based approaches represent an ob-

ject by its shape and the shape is approximated by geometrical primitives such

as lines, rectangles, circles, polygons, and ellipses. Roads, vehicles and buildings

in aerial images are examples of such objects whose shapes are well approximated

by straight lines and rectangles [127–130]. Human facial features such as eyes and

mouth can also be regarded as simple shapes which are well approximated by el-

lipses. In contrast, for appearance-based models only the appearance information

such as color, texture and intensity is used [131, 132].

In our case, background objects share similar appearance information with

trees in the foreground. This leads to group background and foreground objects

together when using the appearance-based segmentation methods. Moreover, ap-

pearance information differs from tree to tree, even for the same tree under under

the same pose and illumination, meaning that trees have a high degree of vari-

ability in color, brightness and texture even for trees within the same species.

This can cause inconsistent segmentation results. Under such conditions, using

only visual information are not suitable for the representation of tree trunks.

On the other hand, the only distinctive common property between trees is their

quasi-vertical and symmetric line structure. Hence, structure information can be

used to define a suitable representation of tree trunks and thus, the possible seg-

mentation method for tree detection system can be considered as structure-based

segmentation. Hence, the problem of structure-based tree trunks detection can

be reduced to searching the image for quasi-vertical and symmetric lines that

can be later combined by the object detection process to form candidate objects,

which are subsequently compared to the model object. However, some back-

ground objects share similar structure information with trees. Therefore, using

only structure information may not be distinguish trees from the background ob-

jects whose shapes are similar to trees. To handle such situations, we should also

use appearance information for tree trunks detection process.

Edge-based structure detection methods (also known as edge-based segmen-

tation) rely on edges found in an image by using edge detecting methods. These
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edges mark the image locations of discontinuities in image attributes such as

intensity, color and texture. However, most edge-based segmentation methods

suffer from the fact that the extracted object boundaries are usually broken and

incomplete due to poor imaging conditions and/or occlusions. Hence, the image

resulting from edge detection cannot be directly used as a segmentation result.

Other processing steps must follow to group detected edges to obtain object con-

tours using the geometric relationships between edges. Therefore, in the following

sections, various edge-based segmentation and perceptual grouping techniques are

briefly discussed.

A.2 Edge-based Image Segmentation

An edge in an image characterized as a boundary or contour at which some phys-

ical aspect of the image changes abruptly. For example, in gray-level (intensity)

images an edge can be defined as a sharp change in brightness or intensity between

neighboring pixels. In color images, an edge can be characterized as a discon-

tinuity in the luminance component (i.e. YCrCb formats) or as a discontinuity

across all color components (i.e. RGB formats). In image processing, an edge

is often interpreted as one class of singularities. In a function, singularities can

be characterized easily as discontinuities where the gradient approaches infinity.

However, image data is discrete, so edges in an image often are defined as the

local maxima of the gradient. This is the definition we will use in this work.

Edge detection [133] is defined as the process of the identifying and locating

sharp discontinuities in an image. The discontinuities are abrupt changes in image

attributes such as intensity, color, texture and both of them, which characterize

object boundaries in an image. This means that if the edges in an image can be

identified accurately, all of the objects can be located and basic properties such

as area, perimeter, and shape can be measured. Therefore, edge detection is a

fundamental stage in image processing applications such as feature extraction and

classification, image segmentation, scene analysis, text finding, object detection

and identification, and object recognition and classification.
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The edges identified by edge detection are often disconnected. To produce

object contour however, one needs to link disconnected edges. Maedaa et al.

[134] present an edge linking method for boundary edges based on a directional

potential function (DPF). The DPF calculates the force strength for every pixel

at the edge discontinuous points and uses it as an indicator for the likelihood

of an edge connection. The DPFs are computed at eight directions around an

edge terminal/end point, and the linking between two pixels is executed toward

the maximum DPF. Ghita and Whelan [135] propose a method to close the gaps

in edges by analyzing the local information around edge terminators/endpoints.

In their method, the direction and the linking path for each edge terminator

are established by minimizing a cost function. Shih and Cheng [136] present an

adaptive morphological edge-linking algorithm to fill in the gaps between edge

segments. The edge-linking operation is performed in an iterative manner rather

than a single step, and broken edges are extended along their slope directions by

using the adaptive dilation operation with the suitable sized elliptical structur-

ing elements. The size and orientation of the structuring element are adjusted

according to the local properties, such as slope and curvature.

A.2.1 Edge Detection Techniques

Classical edge detectors work on gray-level (intensity) images; hence, edge loca-

tions in an image is found based on the discontinuities in intensity values. They

are based on the principle of matching local image segments with specific edge

patterns and the edge detection is realized by the convolution with a set of di-

rectional derivative masks [99]. Classical edge detection operators like Roberts,

Sobel, Prewitt and Laplacian are defined on a 3 by 3 pattern grid, which only

examined each pixels nearest neighbor. In situations where the edges are highly

directional, classical edge detector works well because their patterns fit the edges

better [137]. But in an image corrupted with noise these edge detectors cannot

distinguish actual edges from that of noise [138]. In addition, there are limita-

tions to the accuracy of the final edge. These edge detectors will only detect local

discontinuities, and it is possible that this may cause false edges to be extracted.
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Besides, the major drawback of such an operator in edge detection is the fact that

determining the actual location of the edge is difficult. Canny [117], on the other

hand, first presented the well-known three criteria of edge detectors: good de-

tection, good localization, and low spurious response. Besides, Canny has shown

that the first derivative of the Gaussian closely approximates the operator that

optimizes the product of signal-to-noise ratio and localization. His analysis is

based on “step-edges” corrupted by “additive Gaussian noise”. The Canny edge

detector is based on computing the squared gradient magnitude. Local maxima

of the gradient magnitude that are above some threshold are then identified as

edges. (See [89, 99, 133, 137–140] for detailed information about classical edge

detectors).

As explained before, the traditional edge detection methods are mainly based

on images intensity gradient value. In gray-level image containing homogeneous

(i.e. non-textured) objects, an edge can be defined as the boundary between

two regions with relatively distinct gray-level properties. Unfortunately, they

often fail in the presence of highly textured objects and clutter, which produce

too many undesirable and irrelevant edges within the texture regions [141]. In

such situations, it would be necessary to consider texture information during

the extraction of edges in images. Detecting texture boundaries requires to find

difference between different texture patterns in an image. Therefore efficient

texture descriptor should be employed to find this difference. In the existing

texture descriptors, Gabor-like spectrum coefficient is the most popular one. Shao

and Foerstner [142] propose a texture edge detection method based directly on

sum of Gabor coefficients gradient. Liu and Pok [143] propose a method that

encodes the Gabor coefficients by SOFM (self-mapping organization) algorithm.

The SOFM algorithm can map the high dimensional Gabor coefficients to one

dimension code and assign the similar code number to similar texture patterns.

After coding textures, Canny edge detector is applied on the images code map to

locate edges.

Images in real world include not only texture regions but also non-texture

regions. Therefore, in most recent works, researchers begin to integrate inten-

sity gradient with texture gradient for edge detection. Ma and Manjunath [55]
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propose a novel edge detection scheme based on “edge flow” which includes “in-

tensity edge flow” and “texture edge flow”. The two kinds of “edge flow” are

linearly combined to get the resultant “edge flow”. In their work, “texture edge

flow” is based on gradient of Gabor coefficients. Malik et al. [144] presents a

method that uses defined texture feature (texton) to provide texture information

for texture edge detection. The texton is based on the images Hilbert transform

which is similar with Gabor transformation. After getting the texture feature of

each pixel, a texture probability of each pixel is calculated to determine the im-

portance of the texture feature in the edge detection process. And then the edge

(contour) information is found by integrating texture and gradient information.

By considering texture information based on their spectrum characteristics, the

edge detection methods of [55, 144] can eliminate edges within texture regions.

The previously explained most of the edge detection methods work on the

gray-level representation of an image. This cuts down the amount of data you

have to work with (one channel instead of three), but you also lose some informa-

tion about the scene. By including the color components of the image, the edge

detector should be able to detect edges in regions with high color variation but

low intensity variation. Several approaches have been proposed for color images

from processing individual planes to vector-based approaches [145, 146].

In color images, on the other hand, more detailed edge information is expected

from color-based edge detection methods because color images provide more in-

formation than gray-level images. Novak and Shafer found [75] that 90 percent

of the edges are about the same in gray-level and in color images. Consequently,

there are still 10 percent of the edges left that may not be detected in intensity

images. These 10 percent may be important for a consecutive processing step as,

for example, edge-based image segmentation or edge-based stereo matching [146].

Also, it has to be pointed out that no edges will be detected in gray-level images

when neighboring objects have different hues but equal intensities. Such objects

can be distinguished in color images. Additionally, edge detection is sometimes

difficult in low contrast images but rather sufficient results can be obtained in

color images. Thus, in such situations, it would be necessary to consider color

information in edge detection process.
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Gradient-based color edge detection methods aim to take advantage of the

known strengths of the classical intensity-based edge detectors (i.e. Robert, Pre-

witt, Laplace, Canny, etc.) and tries to overcome its weaknesses by providing

more information using all color channels instead of a single intensity channel.

The simplest one is based on the Sobel operator [76, 77]. Sobel operator is applied

to each color components independently in RGB space or other color spaces and

the resulting gradients are combined using logical operators to obtain one edge

map. For example, a pixel is regarded as edge point if the mean or summation

of the gradient magnitude values in the all color channels exceeds a predefined

threshold value. Other approach is based on the Mexican Hat operator [147]

which uses convolution masks generated based on the negative Laplacian deriva-

tive of the Gaussian distribution. Mexican Hat operator is applied to the three

color channels in RGB space and a pixel is regarded as edge point if a zero-

crossing occurred in any of the three color channels. Another one is based on

Canny edge detector [139]. In this approach, Canny edge detector is applied to

each color channel separately in order to find a resulting colored edge map. Then,

the resulting edge maps found for each different color channels is combined into

one complete edge map by using simple summation operation.

The previously explained gradient-based approaches for color edge detection

based on performing edge detection to each color channels independently and

fusing the outputs of each color channel to form one edge map. Unfortunately,

this is not the same as computing edges in RGB color space directly and because

of this reason, the edge location and strength may not be accurate. Di Zenzo

[148] proposes a method based on computing the gradient of each color channels

by using Sobel operator and then combining these gradients into one by taking

the vector sum of the resulting gradients in order to perform edge detection only

one times. Wesolkowski and Jernigan [149] propose a method that combines

two color distance metrics for performing vector-based edge detection which are

Euclidean distance and vector angle. Euclidean distance metric is used to find

edges based on intensity difference information and vector angle metric is used

to find edges based on chromaticity difference (hue and saturation) information.

The combination of Euclidean distance and vector angle metrics helps to bridge
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the gap between intensity-based and hue-based differences. This is especially

visible in areas of image with a high intensity or saturation.

In most recent works, researchers begin to integrate intensity information with

texture and color information in edge detection. For example, in the “edge flow”

approach proposed by Ma and Manjunath [54, 55] provides a general framework

for considering different image features together for boundary detection.

In our case, it is not sufficient to use only one of the image attributes during

edge detection. Thus, we need an edge detection method which integrates both

intensity and color, as well as texture information. In our work, we propose an

edge detection algorithm by inspiring the “edge flow” approach proposed by Ma

and Manjunath [54, 55].

A.3 Perceptual Grouping

Perceptual grouping refers to the human visual ability to extract significant im-

age relations from lower-level primitive image features without any knowledge of

the image content and group them to obtain meaningful higher-level structure

[150]. The aim of perceptual grouping in computer vision is to organize image

primitives into higher level primitives thus explicitly representing structure con-

tained in the image data. Perceptual grouping involves detection of perceptually

significant structures in an image according to the laws discovered by the Gestalt

psychologists. These laws are known as the Gestalt laws and some of them are

briefly explained as follows [150]:

• Proximity : Closer elements belongs to the same object. This principle

allows closely spaced elements to be grouped, such as in clustering.

• Similarity : Similar elements tend to be grouped together. This principle al-

lows grouping to be performed on the basis of how similar the segments are.

This similarity may be in intensity, brightness, color, texture, orientation

or shape.
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• Common Fate: Elements that have coherent motion tend to be grouped

together. This principle allows to segment video data into segments of

moving objects.

• Common Region: Elements that lie inside the same closed region tend to

be grouped together.

• Parallelism: Parallel curves or elements tend to be grouped together.

• Closure: Curves or elements tend to be produced closed object rather than

an open object are grouped together. This principle can be used to solve

the problem in noisy segmented image, where often the whole boundary

cannot be obtained, forming a complete object.

• Good Continuation/Continuity : Elements that lie along a common line or

smoothed curve are grouped together so that the results have smooth and

continuous characteristics, rather than yielding abrupt changes.

• Symmetry : Curves or elements symmetric about some axis are grouped

together.

Perceptual grouping has a long history in computer vision, especially image seg-

mentation, contour extraction/grouping, object detection and recognition. The

crucial idea behind using perceptual grouping is that pieces of contour related by

some perceptually salient property are more likely to belong to the same object.

Lowe started the systematic use of grouping for object recognition in [119], and

[151]. His system uses properties such as proximity, co-linearity, co-curvilinearity

and parallelism to generate candidate groups for matching against known object

models. Mohan and Nevatia [120, 121] use geometric relationships such as proxim-

ity, co-curvilinearity, symmetry, and continuity to group edges into a description

hierarchy. Iqbal and Aggarwal [152] propose an approach for detection of large

man-made objects, such as buildings, bridges, towers, etc., is based on percep-

tual grouping of image primitives. Their system use properties such as continuity,

closure, proximity, co-linearity, co-circularity, symmetry and parallelism. Sarkar

and Boyer [153] introduce a voting based scheme for grouping that uses Bayesian
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Networks to infer structure from subsets of features. Guy and Medioni propose

an algorithm based on tensor voting with communication between neighboring

features [154, 155]. It incorporates constraints such as co-surfacity and good con-

tinuity, and is capable of performing perceptual completion on fragmented data.

Huttenlocher and Wayner [156], and Jacobs [157] among others have studied the

use of convexity as a grouping constraint. Jacobs [157] demonstrates the use

of convex groups for indexing in object recognition. Mahamud et al. [158] and

Estrada and Jepson [159] among others have studied the use of affine measure

as a grouping cost. Mahamud et al. [158] proposes a contour extraction method

based on the random walk probabilities of particles traveling between edges in

an image. The saliencies of links between image edges is calculated based on an

affinity measure that incorporates proximity and smooth continuation to extract

contours as connected components within the link saliency matrix. Estrada and

Jepson [159] propose algorithm that efficiently groups line segments into percep-

tually salient contours in complex images. A measure of affinity between pairs of

lines is used to guide group formation.


