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ABSTRACT

REPLICATED HYPERGRAPH PARTITIONING

Reha Oğuz Selvitopi

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2010

Hypergraph partitioning is recently used in distributed information retrieval (IR)

and spatial databases to correctly capture the communication and disk access

costs. In the hypergraph models for these areas, the quality of the partitions

obtained using hypergraph partitioning can be crucial for the objective of the

targeted problem. Replication is a widely used terminology to address different

performance issues in distributed IR and database systems. The main motivation

behind replication is to improve the performance of the targeted issue at the cost

of using more space.

In this work, we focus on replicated hypergraph partitioning schemes that im-

prove the quality of hypergraph partitioning by vertex replication. To this end,

we propose a replicated partitioning scheme where replication and partitioning

are performed in conjunction. Our approach utilizes successful multilevel and

recursive bipartitioning methodologies for hypergraph partitioning. The repli-

cation is achieved in the uncoarsening phase of the multilevel methodology by

extending the efficient Fiduccia-Mattheyses (FM) iterative improvement heuris-

tic. We call this extended heuristic replicated FM (rFM). The proposed rFM

heuristic supports move, replication and unreplication operations on the vertices

by introducing new algorithms and vertex states. We show rFM has the same

complexity as FM and integrate the proposed replication scheme into the mul-

tilevel hypergraph partitioning tool PaToH. We test the proposed replication

scheme on realistic datasets and obtain promising results.

Keywords: Hypergraph partitioning, data replication, iterative improvement

heuristics.
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ÖZET

ÇOKLAMALI HİPERÇİZGE BÖLÜMLEME

Reha Oğuz Selvitopi

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2010

Hiperçizge bölümleme son zamanlarda dağıtık veri erişimi ve uzamsal veri ta-

banlarında iletişim ve disk erişim maliyetlerini doğru bir sekilde yakalamak için

kullanılmıştır. Bu alanlardaki hiperçizge modellerinde, hiperçizge bölümleme kul-

lanılarak elde edilen bölümlerin kalitesi hedeflenen problemin objektifi için çok

önemli olabilir. Çoklama, dağıtık veri erişimi ve veri tabanı sistemlerinde çeşitli

performans meselelerini ele almak için yaygın olarak kullanılan bir terminolojidir.

Çoklamanın arkasındaki ana motivasyon, hedeflenen konunun performansını daha

fazla alan kullanma pahasına geliştirmektir.

Bu çalışmada, hiperçizge bölümlemenin kalitesini düğüm çoklamasıyla

geliştiren hiperçizge bölümleme şemalarının üstüne odaklanıyoruz. Bu aşamada,

çoklama ve bölümlemenin bir arada yapıldığı bir çoklamalı hiperçizge bölümleme

şeması öneriyoruz. Yaklaşımımız, hiperçizge bölümlemesi için başarılı çok seviyeli

ve özyinelemeli ikiye bölümleme yöntemlerini kullanmaktadır. Çoklama, çok se-

viyeli yöntemin açılma safhasında verimli Fiduccia-Mattheyses (FM) yinelemeli

geliştirme sezgiselini genişleterek elde edilmektedir. Bu genişletilmiş versiyona

çoklamalı FM (rFM) diyoruz. Önerilen rFM sezgiseli yeni algoritmalar ve köşe

durumları öne sürerek taşıma, çoklama ve azlama işlemlerini desteklemektedir.

Önerilen çoklama şemasını çok seviyeli hiperçizge bölümleme aracı PaToH’a en-

tegre edip çeşitli gerçekçi veri takımları üstünde test ediyoruz.

Anahtar sözcükler : Hiperçizge bölümleme, veri çoklama, yinelemeli geliştirme

sezgiselleri.

iv



Acknowledgement

I would like to thank to my thesis supervisor Prof. Dr. Cevdet Aykanat for his

valuable suggestions, support and guidance throughout the development of this

thesis.
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Chapter 1

Introduction

There are various models that uses hypergraph partitioning for different objec-

tives in different fields such as parallel scientific computing [4, 14, 24, 60], VLSI

circuit design [2, 43], distributed IR [13] and database systems [21, 22, 44, 39].

In the areas where hypergraph partitioning (HP) is used, the hypergraph models

can broadly be classified into two categories as directional and undirectional hy-

pergraph models. Generally, hypergraph models in parallel scientific computing

and VLSI circuit design fall into directional models, whereas hypergraph models

in distributed IR and database systems fall into undirectional models.

Recently, undirectional hypergraph models are successfully used to address

the issues in distributed information retrieval (IR) [13] and spatial databases

[21, 22]. In distributed IR, hypergraph models are used to reduce the commu-

nication volume and improve the load balance. In spatial databases, the disk

access costs can be reduced for aggregate queries by using hypergraph models.

In the hypergraph models for both areas, improving the quality of the partitions

obtained using HP by reducing the cutsize is crucial for the problem.

Replication is a widely used terminology in various computer science fields

such as distributed IR [5, 11, 47, 48, 50, 57] and database systems [6, 7, 29, 61].

The basic purpose of replication differs from field to field. Generally, replication

is used to improve the performance of the target system by reducing the costs

1



CHAPTER 1. INTRODUCTION 2

of different objectives at the expense of using more space. Replication is a valu-

able tool in distributed IR systems to improve the query throughput and fault

tolerance. In database systems, the records in the database are replicated across

multiple sites to improve the performance of the read operations.

In this work, we propose a replication scheme for hypergraph partitioning

that aims to improve the quality of the partitions by replicating vertices that

uses undirectional hypergraph models. To our knowledge, this problem has not

been addressed for undirectional hypergraph models. In the context of directional

hypergraph models, especially in VLSI literature, this is a well-studied problem

[40, 33, 34, 45, 63, 26]. In VLSI circuit partitioning, the replication of a vertex

in a partitioned circuit may bring internal nets to the cut which are connected

to that vertex where input pins of the source vertex need to be replicated along

with the replicated vertex since the proposed hypergraph models are directional.

In our replication scheme, the replication of a vertex cannot bring any internal

net to the cut, i.e., replication cannot increase the cutsize of a bipartition. This

forms the basic difference between the replication schemes for directional and

undirectional hypergraph models.

Our approach is a single-phase methodology that performs replication along

with the partitioning. It uses multilevel and recursive bipartitioning frame-

works for HP. We achieve replication in the uncoarsening phase of the multilevel

methodology by using a refinement heuristic as a replication tool. We extend

the Fiduccia-Mattheyses (FM) heuristic [28] to be capable of replication and

unreplication of vertices in addition to standard move operation. We call this

extended heuristic replicated FM (rFM). The proposed heuristic operates on a

given bipartition and introduces new vertex states and gain update algorithms in

order to support replication and unreplication. To obtain multi-way partitions,

we adopt recursive bipartitioning methodology. The proposed replication scheme

is implemented and integrated into the state–of–the–art HP tool PaToH [15]. In

a concurrent work, a two-phase approach [64] is investigated where replication is

performed after obtaining a K-way partitioning.

This thesis is organized as follows. Chapter 2 gives the necessary background
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for this work and describes replicated HP problem. The previous works regarding

replication in various areas are investigated in Chapter 3. Chapter 4 describes

our methodology for solving replicated HP problem. We give the experimental

results in Chapter 5 and conclude our work in Chapter 6.



Chapter 2

Background and Problem

Definition

2.1 Definitions and Hypergraph Partitioning

Problem

A hypergraph H = (V ,N ) is defined as a set of vertices V and a set of nets N .

Each net nj ∈ N connects a subset of vertices. The vertices connected by net

nj are called its pins, and denoted as Pins(nj). The connection between a net

nj and vertex vi is referred to as a pin (nj, vi) of this net. The degree of a net

nj is equal to the number of its pins, |Pins(nj)|. The set of nets that connect

vertex vi is denoted as Nets(vi) and the size of this set is equal to |Nets(vi)|.

Each vertex has a weight associated with it, w(vi), and each net has a cost value,

c(nj). The cost function for a net is easily extended for a subset of nets M ⊆ N

where c(M) =
∑

nj∈M c(nj).

Π = {V1, . . . , VK} is a K-way partition ofH = (V ,N ) if Vk 6= ∅ for 1 ≤ k ≤ K,

and Vk ∩ Vl = ∅ for 1 ≤ k < l ≤ K, and
⋃K

k=1
Vk = V . A net is said to connect

a part if it connects at least one pin in that part. Connectivity set Λi of a net

is defined as the set of parts connected by that net. The number of parts in the

4



CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION 5

connectivity set of nj is denoted by λj = |Λj|. A net is said to be cut if it connects

more than one part (λj > 1), and uncut if it connects only one part (λj = 1).

The weight W (Vk) of a part Vk is simply the sum of the weights of the vertices

in that part.

The cutsize of the partition is given by

cutsize(Π) =
∑

nj∈N

(λj − 1)c(nj). (2.1)

This is also known as connectivity cutsize metric widely used in VLSI [43, 18]

and scientific applications [14, 59, 4].

PROBLEM 1. Hypergraph Partitioning. Given a hypregraph H = (V ,N ) and

an imbalance value ǫ, find a K-way partition Π = {V1, . . . , VK} that minimizes

the cutsize in Equation 2.1 such that (1+ǫ)Wavg ≤ Wmax where, Wavg = W (V)/K

and Wmax = max{W (Vk)} for k = 1, . . . , K.

This problem is known to be NP-hard [43].

2.2 Iterative Improvement Heuristics for HP

There are a number of algorithms based on iterative improvement heuristics for

solving the HP problem. These heuristics are generally applied to iteratively

improve the quality of a random initial partition. An excellent detailed discussion

of these techniques can be found in [2]. Most of these algorithms are based on

Fiduccia-Mattheyses (FM) [28] and Kernighan-Lin (KL) [38] heuristics, which

are designed to improve the cutsize of a bipartition. KL-based heuristics achieve

this by swapping vertices from the two parts of the bipartition, while FM-based

heuristics use vertex moves from one part to the other. Even though KL-based

heuristics perform slightly better in reducing the cutsize, FM-based heuristics are

widely used due to their better running-time performance.

In FM-based heuristics, the gain of a vertex is defined as the change in the

cutsize of the partition if that vertex were to be moved to its complementary
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part in a bipartition. FM heuristics perform multiple passes over all vertices,

where each pass comprises of a number of iterations. At the beginning of a pass,

all vertices are unlocked. At each iteration of a pass, the vertex with the highest

gain value is moved, locked and gain values of its unlocked neighbors are updated.

At the end of each iteration, the improvement in the cutsize is stored. A pass

terminates when all vertices become locked or there is no feasible move according

to balance constraint. At the end of a pass, the bipartition that resulted with

the minimum cutsize is restored. Multiple passes can be performed until the

improvement in the cutsize drops below a certain threshold. Usually, buckets or

heaps are used to store gain values.

The quality of the bipartitions produced by FM heuristic can further be im-

proved at the expense of higher running time. The look-ahead feature and gain

vectors are introduced [41] if there are more than one vertex with the highest

gain which means a tie-break will occur to select the vertex to move. Different

tie-breaking strategies and data structures for gains are investigated [31] and it is

shown how the choices can affect the quality of the partitions found by the algo-

rithm. There are also other ways such as using a probabilistic gain computation

[25] or adding compaction to FM [55]. On the other hand, FM can be made to

run faster [1] with a couple of simple techniques: (i) stop if it is unlikely to make

further improvement in a pass; (ii) initialize gains only in the first pass, by rolling

back the changes at the end of each pass; and (iii) use only boundary vertices to

move, thus reducing the number of vertices to operate on greatly.

2.3 Multilevel and Recursive Bipartitioning

Frameworks

KL and FM-based heuristics perform poorly on hypergraphs with high net degrees

and they are sensitive to the quality of the initial partition. To alleviate these

problems, in 1990s, multilevel algorithms are proposed [10, 32] and successfully

applied to HP problem. The basic idea behind the multilevel framework is to

perform a sequence of coarsening operations on the original hypergraph to obtain
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a coarser hypergraph with small net degrees over which FM heuristics perform

particularly better.

Multilevel methodology consists of 3 phases: coarsening, initial partitioning,

and uncoarsening. In the coarsening phase, Hi = (Vi,Ni) is coarsened into

Hi+1 = (Vi+1,Ni+1) for i = 0, . . . ,m. This is achieved by clustering vertices in

Hi where each of these clusters becomes a vertex in Hi+1. Starting from the

initial hypergraph H0 = (V0,N0), this coarsening operation is iteratively applied

to obtain H1,H2, . . . ,Hm where |V0| > |V1| > . . . > |Vm|. Coarsening phase ends

when the number of vertices in the coarsest hypergraph drops below a predeter-

mined value. In the initial partitioning phase, a bipartition Πm of the coarsest

hypergraph Hm is obtained. Since the coarsest hypergraph is small, the initial

bipartitioning algorithm can be run a couple of times and the best bipartition

can be selected. The uncoarsening phase contains exactly same number of lev-

els as the coarsening phase. At each level of the uncoarsening, the bipartition

Πi on Hi is projected back to Πi−1 on Hi−1. Each vertex in Hi is decomposed

into its forming vertices in Hi−1 in the projection. A finer hypergraph will have

more degrees of freedom with respect to its coarser counterpart, meaning that the

partition can further be improved. This is achieved by the refinement heuristics

discussed in Section 2.2.

Recursive Bipartitioning (RB) is the most commonly used method for ob-

taining K-way partitions of hypergraphs although there are other methods that

are based on direct K-way partitioning as in [36, 3]. In the RB paradigm, the

initial hypergraph is bipartitioned into two new hypergraphs and then, these two

new hypergraphs are further bipartitioned in a recursive manner. This proce-

dure continues until reaching the desired number of parts in lg2 K steps. Cut-net

splitting scheme [14] is used in order to capture the connectivity cutsize metric

in Equation 2.1.
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2.4 Motivation and Replicated HP Problem

In this study, we focus on the HP problem with vertex replication. We refer to this

problem as replicated hypergraph partitioning problem. Even though a variant

of this problem arises in VLSI literature as will be explained in Related Work

chapter, our focus is replication in distributed information retrieval and spatial

databases. The hypergraph models are used in distributed IR [13] for improving

load balance and reducing communication cost. In spatial databases [21, 22], the

hypergraph models are used for reducing total disk access cost. In this work, we

investigate the effects of replication in the hypergraph models for the mentioned

areas where the vertices are replicated. In these areas, replication can help in

improving the quality of the partitions by reducing the cutsize at the cost of

using more physical space. Although we address the problems in distributed IR

and spatial databases, our replication scheme can be used for any area where HP

is used as a methodology and the used hypergraph model is undirectional. In our

replication scheme, the replication of a vertex should not bring any internal net

to the cut as opposed to the replication schemes in VLSI literature. The problem

is formulated as follows:

PROBLEM 2. Replicated Hypergraph Partitioning. Given an H = (V ,N ),

an imbalance value ǫ, and a replication ratio ρ, find K covering subsets of V,

ΠR = {V1, . . . , VK} such that
⋃K

k=1
Vk = V,

∑K

k=1
W (Vk) ≤ (1 + ρ)W (V) and

(1 + ǫ)Wavg ≤ Wmax where, Wavg = (1 + ρ)W (V)/K and Wmax = max{Wk} for

k = 1, . . . , K.



Chapter 3

Related Work

Replication is a widely used term in various disciplines of computer science.

Specifically, we investigate the replication schemes in VLSI literature, distributed

database systems, distributed information retrieval (IR) and spatial databases.

First replication schemes in VLSI circuit design and partitioning arise in the

form of gate replication to reduce pin counts and improve the cutsize of the parti-

tioned circuits. In this respect, there are two main approaches in VLSI literature:

iterative improvement based replication heuristics that generally use an extended

version of the FM heuristic, and graph theoretical approaches that are generally

centered on a flow network formulation of the original problem. Replication in

logic partitioning requires replication of the pins between the replicated cell (ver-

tex) and its input nets thus, these input nets become cut after replication of that

vertex.

One of the first iterative improvement based replication schemes is proposed

by Kring and Newton [40]. They provide an extended version of the FM algorithm

to handle replication in two-way partitioned networks by introducing new defini-

tions for cell states and moves. There are two different move selection techniques

introduced in their work: cleaning of unnecessary replications immediately even

if there are higher gain moves and, the prohibition of replications whose gains are

under a certain threshold. Kuznar et al. [8] introduced the concept of functional

9
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replication for partitioning a specific FPGA (Field Programmable Gate Array)

library, on Xilinx-based devices. Their approach is similar to [40], as they use

an FM heuristic by extending it to handle replication. The difference of their

work lies in the definition of a cell, which stands for configurable logic blocks

rather than logic gates as opposed to other approaches which use FM for VLSI

circuit partitioning. In the replication schemes for logic partitioning, when a cell

is replicated, all of its input pins must be replicated too. However, in functional

replication, some input pins need not to be replicated since they may not be

required to generate the replicated cell’s required outputs. In this way, they are

able to remove some of the nets connected to input pins of the replicated cell

which results in better cutsize values. Hwang and El Gamal [33, 34] formulate

the min-cut replication problem and give the optimum solution for finding the

min-cut replication sets of a K-way partitioned directed graph. Their approach

uses a max-flow algorithm to find the replication set of a part that minimizes

the cut. They show that this approach can independently be applied to find the

replication sets of all parts for a given partition. The drawback of their algorithm

is that the size of the replication sets are not guaranteed to be minimum; this

may lead to unnecessary replications, and therefore, to the parts’ violation of

their size limits. To solve the size constrained min-cut replication problem, they

first apply the optimal min-cut replication algorithm on each part, and then, if

any part violates its size constraint after the replication, a modified FM heuris-

tic is used on those to find a feasible solution. Their solution for hypergraphs

is straightforward, which is to replace each net with a directed tree and to use

the same algorithm. However, this does not guarantee the minimum cutsize as

opposed to partitioning graphs. Liu et al. [45] present an optimal algorithm for

the two-way partitioning of graphs with replication and without size constraints.

Their formulation of the problem requires a pair of source and sink nodes, rather

than an initial partition as in [34]. They use the linear programming method for

constructing the replication graph of the original graph, and then, a maximum

flow algorithm on this replication graph to find the optimum replication schema.

In the case of hypergraphs, they give a heuristic to construct the replication graph

and extend FM to a directed FM to partition the replication graph (DFRG) for
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minimizing the replication cut cost and satisfying the size constraints. Both ap-

proaches, [34] and [45], use a directed version of FM, where a part is chosen to

be the source part and only the nets that have a source in the source part and a

sink in the other part are considered to be in the cut. [34] uses it on the original

graph while [45] uses it on the replication graph. Yang and Wong [63] propose

algorithms for finding optimal solutions to the min-area min-cut replication prob-

lem for directed graphs and hypergraphs. In their work, they use different flow

network models to find min-cut replication sets with minimum sizes. The graph

flow network model they use is the same model used in [34]. They propose a new

hypergraph flow network model which correctly models the hypergraph. In this

approach, their algorithm searches the components in reverse order of [34] which

leads to a smaller flow network model. Thus, their algorithm can find smaller

cut sizes in a shorter amount of time. Detailed discussion and comparison of

replication techniques in circuit partitioning can be found in [26].

In parallel information retrieval systems, the index is partitioned across several

machines to be able to process very large text collections efficiently. There are

typically two types of index partitioning schemes [57, 35, 12, 49, 51] in distributed

IR: document partitioning and term partitioning. Replication is a widely used

technique in parallel IR systems to improve query throughput and fault tolerance

whatever the partitioning scheme is. Tomasic and Garcia-Molina [58] compare

different index distributions in their work and conclude replication is necessary

for improving query throughput. Lu and McKinley [47] compare the partial

replication and caching to improve the IR system performance and conclude that

although caching is simpler and faster, partial replication has the capability of

exploiting locality of different queries that require similar answers. They extend

their work in [48] by including a study of query locality and a replica selection

function. In the distributed IR system of Google [5], the entire system is replicated

in order to improve query throughput. Cacheda et al. [11] compare a replicated

IR system with a distributed and clustered IR system. Moffat et. al [50] proposes

selective inverted list replication to improve the load balancing in a pipelined and

term-distributed IR system. Their selective replication approach replicates the

inverted lists of high workload terms.
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The replication in database systems is used for increasing availability and

improving performance of the whole system [6, 7, 29, 61]. The replication is

achieved by replicating records in the database across multiple sites. There is a

compromise between the consistency of the replicas and the performance of the

distributed database system. By replicating a record, the performance of the read

operations is increased. However, this performance improvement is bounded by

the write operations on the replicated records where serializability and consistency

become critical issues as the number of replicas increases. There are mainly two

techniques to solve the problem of consistency among multiple replicas. The

first one is eager (pessimistic) replication [20, 37] where the write operation on

a record is immediately propagated across other replicas and thus, there is one

single version of a replica. The other technique is lazy (optimistic) replication

[42, 56] where the updates are not propagated immediately and the different

versions of the replicas may diverge. Another replication scheme is adaptive

replication [62] where the replication of a record may change with respect to read

and write patterns on that record. Replication in spatial databases [30, 53] is

rather a new and unexplored topic although there are a few studies that explores

replication of spatial data [52, 27].



Chapter 4

Replicated Hypergraph

Partitioning

The multilevel framework discussed in Chapter 2.3 is enhanced to solve repli-

cated HP problem. Specifically, the replication is achieved in the uncoarsening

phase of the multilevel scheme by extending the FM heuristic that is used as the

refinement algorithm. We call this extended heuristic replicated FM (rFM). Our

proposed algorithm supports move, replication and unreplication operations on

the vertices and it strives for minimizing the cutsize while maintaining balance

as conventional FM-based algorithms. The multilevel replicated HP algorithm

is used in a recursive bipartitioning framework (Section 2.3) to obtain a K-way

replicated hypergraph partitioning. In this framework, after each bipartition-

ing, two sub-hypergraphs are constructed from the obtained partitions and these

sub-hypergraphs are used for further bipartitions. In these sub-hypergraphs, the

replicated vertices are considered as “real” vertices for the new hypergraphs and

necessary pins are added. Thus, the coarsening and the initial partitioning phases

of the multilevel scheme can be used as-is without being affected by the replica-

tion. After achieving a K-way partition by recursive bipartitioning, in order to

compute the cutsize we have to decide which instances of the vertices will be used

for each net. This decision affects the cutsize hence, must be done carefully.

13
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4.1 Replicated FM (rFM)

4.1.1 Definitions

In a two-way replicated partition ΠR = {VA, VB}, a vertex can belong to VA, VB,

or to both of them if it is replicated, and hence, it can be in one of three states

A, B, AB.

State(vi) =















A if vi ∈ VA,

B if vi ∈ VB,

AB if vi ∈ VA and vi ∈ VB.

We use the letters A and B to denote the parts of a bipartition. Each instance

of a replicated vertex is referred to as replica.

The number of non-replicated vertices that are connected by nj in A and B are

denoted as σA(nj) and σB(nj) respectively. Similarly, the number of replicated

vertices that are connected by nj is represented by σAB(nj). In the examples,

we use the notation σ(nj) = (σA(nj) : σB(nj) : σAB(nj)) to denote the pin

distribution of nj. Note that |Pins(nj)| = σA(nj) + σB(nj) + σAB(nj). A net

nj is said to be cut if σA(nj) > 0 and σB(nj) > 0. The cut-state of a net shows

whether the net is cut.

There are 3 operations in rFM: move, replication and unreplication. The move

and replication operations are defined for the non-replicated vertices, whereas the

unreplication operation is defined for the replicated vertices. Therefore, a non-

replicated vertex has move and replication gains whereas a replicated vertex has

unreplication gains. Unreplication operation requires two different gain values to

be maintained since there are two instances of a replicated vertex in A and B,

and each of them may have different unreplication gain. The gain definitions are

as follows:

• Move gain, gm(vi), is defined as the change in the cutsize if the vertex vi

were to be moved to the other part. The move gain of vi is equal to the

difference between the sum of the costs of the nets saved from the cut and
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(a) Initial hypergraph before
move and replication.
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(b) After moving v1.
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(c) After replicating v1.

Figure 4.1: Move and replication of a vertex.

the sum of the costs of the internal nets that are brought to the cut. A

simple example of move operation is seen in Figs. 4.1a and 4.1b. Moving v1

from part A to B brings net n1 into the cut while saving net n2 from the

cut. Hence, gm(v1) = c(n2)− c(n1). After the move operation, v1 is locked.

The locked vertices in the examples are illustrated by gray color.

• Replication gain, gr(vi), is defined as the change in the cutsize if the vertex

vi were to be replicated to the other part. The replication gain of vi is

equal to the sum of the costs of the nets saved from the cut. When a vertex

is replicated, it cannot bring any internal net to the cut and thus, cannot

increase the cutsize. This forms the basic difference between the move

and the replication operation. Consequently, for any vertex vi, we have

gr(vi) ≥ 0 and gr(vi) ≥ gm(vi). Figs. 4.1a and 4.1c show the replication of

v1 from part A to B. The replication of v1 saves net n2 from the cut as the

move of v1 does, however, net n1 still remains as an internal net, as opposed

to the move operation on the same vertex. Hence, gr(v1) = c(n2). In the
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examples, if a net is internal and connects a replicated vertex, we illustrate

this by putting a pin to the replica that is in the part of the internal net and

omit the pin to other replica. On the contrary, if an external net connects

a replicated vertex, a replica of the replicated vertex is randomly chosen to

include a pin to that external net.

v5

v2 v4

v3
n3

n2

n4

v1 v1

A B

n1

(a) Initial hypergraph be-
fore unreplication.

v1

v5

v4
n4

v3

v2

n3

n1

n2

A B

(b) After unreplicating the
replica of v1 from part A.

v2

v3

v1
v4

v5n3

n4

n2

n1

A B

(c) After unreplicating the
replica of v1 from part B.

Figure 4.2: Unreplication of a replicated vertex.

• Unreplication gain, gu,A(vi) or gu,B(vi), is defined as the change in the cutsize

if a replica of the replicated vertex vi were to be unreplicated from its

current part. Since unreplication of a replica cannot improve the cutsize,

the maximum unreplication gain of a replica is zero. Thus, for any replicated

vertex vi, gu,A(vi) ≤ 0 and gu,B(vi) ≤ 0. A replica that has an unreplication

gain of zero means that this replica is unnecessary and its deletion will

not change the cutsize. Furthermore, unreplication of a replica can be

“harmful” by bringing internal nets to the cut. This means that the replica

is necessary in which case it will have a negative unreplication gain. Fig. 4.2

shows the unreplication of a necessary and an unnecessary replica. Initially,
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there are two replicas of v1 in the sample hypergraph in Fig. 4.2a. The

replica in part A is necessary, and its deletion causes the internal net n1 to

be cut, as seen in Fig. 4.2b. On the other hand, the replica in part B is

unnecessary, and its deletion does not change the set of nets in the cut, as

seen in Fig. 4.2c. Hence, gu,A(v1) = −c(n1) and gu,B(v1) = 0.

4.1.2 Overall rFM Algorithm

Replicated FM performs predetermined number of passes over all vertices where

each pass comprises of a sequence of operations. Each iteration of a pass starts

with selection of a vertex and an operation (move, replication or unreplication)

to be performed on that vertex. The selected operation must not violate the size

constraints on the weights of the parts. After the selected operation is applied

on the vertex, the vertex is locked and the gain values of its unlocked neighbors

and the pin distributions of its nets are updated. The size constraints need to be

updated if the performed operation is replication or unreplication since the total

vertex weight changes. A pass stops when there are no more valid operations. At

the end of a pass, a rollback procedure is applied to the point where the partition

with the minimum cutsize is seen and then, all vertices are unlocked for further

passes. These basic steps are shown in Algorithm 1.

Algorithm 1: Basic Steps of RFM

Input: H = (V ,N ),Π R = {VA, VB}
Initialize pin distributions, gains and priority queues.1

while there are passes to perform do2

while there is any valid operation do3

(v, op)← Select the vertex and the operation to perform on it with4

respect to the selection criteria.
Perform op on v, store the change in the cutsize and lock v.5

Update gains of unlocked neighbors of v and pin distributions of6

Nets(v).
if op is replication or unreplication then7

Update size constraints of parts.8

Unlock all vertices and rollback to the point where the minimum9

cutsize is seen.
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4.1.2.1 Operation Selection

We use a priority based approach for selecting the current operation and disallow

some operations that do not satisfy certain conditions. The selection strategy

is based on principles such as minimizing the number of unnecessary replicas,

limiting replication amount and improving balance.

The highest priority is given to the unreplication operation with a gain value

of zero to get rid of unnecessary replica(s) immediately. If a replica has a negative

unreplication gain, it means this replica is necessary and its deletion will cause an

increase in the cutsize. We do not perform unreplication operations with negative

gains and therefore, we do not allow necessary replicas to be deleted.

If there is no replica with an unreplication gain of zero, we make a choice

between move and replication by selecting the operation with the higher gain.

In the case where the gains of the examined move and replication operations are

equal, the move operation is given a higher priority in order to not to consume the

given replication allowance. The replication with a gain value of zero is disallowed

simply because such operations will produce unnecessary replicas; however, the

zero gain moves that improve the balance are performed. Since for any vertex

vi, gr(vi) ≥ gm(vi), in a single pass, the number of replication operations tends

to outweigh the number of move operations. This issue can be addressed by the

gradient methodology, which is discussed in the following subsections.

4.1.2.2 Gradient Methodology

The gradient methodology is proposed and used for the FM heuristics that is

capable of replication in [26, 46] to obtain partitions with better cutsize. The

basic idea of the gradient methodology is to introduce the replication in the later

iterations of a pass, especially when the improvement achieved in the cutsize by

performing only move operations drops below a certain threshold. As mentioned

in [26], early replication can have a negative effect on the final partition by limiting

the algorithm’s ability to change the current partition. Furthermore, by using the
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replication in the later iterations, the algorithm can proceed by using the local

minima reached by the move operations. In rFM, we adopt and modify this

methodology by using move and unreplication operations till the improvement

in the cutsize drops below a certain threshold and then, we allow replication

operations.

4.1.2.3 Early-Exit

We adopt the early-exit scheme for rFM which is a well-known technique to

improve the running time performance of the FM-based heuristics. In the early-

exit scheme, if there are no improvements in the cutsize for a predetermined

number of iterations, the algorithm stops because it is unlikely to further improve

the partition.

4.1.2.4 Locking

In conventional move-based FM algorithms, after moving a vertex, it is locked

to avoid thrashing. Similarly, in rFM, we also lock the operated vertex after

performing a move operation. Furthermore, after performing a replication op-

eration on vi ∈ VA, both replicas of vi are locked. The replica of vi in part A

is locked since the unreplication of this replica would leave the replica in part

B alone where performing these two operations (replicating vi ∈ VA and then

unreplication of its replica in part A) simply becomes equivalent to performing

a move operation on vi. The unreplication gain of the replica in part B will be

negative after the replication of vi since only positive gain valued replications

are allowed which means this replica is necessary and thus, it is locked. Finally,

after unreplication of a replicated vertex, the remaining replica, which is now a

non-replicated vertex, is locked. That is because the move or replication of this

non-replicated vertex will not improve the cutsize.
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4.1.2.5 Data Structures

We maintain 6 priority queues keyed according to the gain values of the vertices

with respect to operations. For efficiency purposes, the priority queues are im-

plemented as binary heaps. We do not use buckets for storing gain values since

the buckets do not perform well when the variation between net costs is high.

There are two heaps for the move gains (heapMA and heapMB), two heaps for

the replication gains (heapRA and heapRB), and two heaps for the unreplication

gains (heapUA and heapUB). A non-replicated vertex has its move and replica-

tion gains stored in two heaps (either in heapMA and heapRA or heapMB and

heapRB). Similarly, the two replicas of a replicated vertex have their unreplication

gains stored in two heaps (in heapUA and heapUB).

In the selection of the vertex and the operation to be performed on that vertex,

the root nodes of all heaps are retrieved and the selection is done according to the

criteria mentioned above. After the selection is done, we perform an extract-max

operation on the heap of the selected vertex and a delete operation on another

heap since the selected vertex possesses another gain value. The deletion opera-

tion for the other gain value of the selected vertex is required since the vertex is

locked and no further operation should be available for this vertex throughout the

current pass. For instance, if an extract-max operation is performed on heapMA,

it is required to perform a delete operation on heapRA or vice versa. Similarly, if

an extract-max operation is performed on heapUA, we need to perform a delete

operation on heapUB. Performing an operation may cause gain updates on the

neighbors of the operated vertex. A gain update for any vertex may require

increase-key or decrease-key operation on the heaps of this vertex belong to.

4.1.3 Initial Gain Computation and Gain Update Algo-

rithms

In this section, we describe the initial gain computation and gain update algo-

rithms in detail. The gain values of the vertices need to be computed at the
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beginning of each pass of rFM. After each operation, gain updates may be re-

quired for the neighbors of the operated vertex. For each neighbor of the operated

vertex, there are at most two gain updates since any vertex possesses two gain

values. When compared to the conventional FM-based algorithms in the VLSI

literature, rFM has more gain updates and hence, more heap operations. The

examples in this section respect to the basics of the operation selection criteria

mentioned in Section 4.1.2. For the sake of simplicity, we assume each net has

unit cost.

A net nj is said to be critical if an operation on this net would change its

cut-state. A net can be critical to a part with respect to its pin distribution.

Each type of operation imposes different pin distributions for the criticality of

nj. In the conventional move-based FM algorithm, the move gains are updated

whenever the criticality of a net changes. It is interesting to note that the same

applies for the update of the replication and the unreplication gains where the

criticality of the nets for these two operations is a subset of the criticality of the

nets for the move operation. Clearly, the criticality of a net for the move and

the replication operation requires at least two non-replicated vertices to exist for

that net (σA(nj) + σB(nj) > 1), since the nets that have a single non-replicated

pin cannot be critical for the move and replication operations (σA(nj) = 1 or

σB(nj) = 1). For the move operation,

nj is move-critical to part A if σA(nj) = 1 or σB(nj) = 0, (4.1)

nj is move-critical to part B if σB(nj) = 1 or σA(nj) = 0. (4.2)

The criticality of the internal nets in the move operation is not valid for the

replication operation since the replication of a vertex connected to an internal

net cannot change the cut-state of that net. However, as in the move operation,

the external nets having only one non-replicated pin in a part are critical to that

part. Thus, for the replication operation,

nj is replication-critical to part A if σA(nj) = 1, (4.3)

nj is replication-critical to part B if σB(nj) = 1. (4.4)

For a net to be critical for the unreplication operation, it must have at least one
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(a) nj is internal to part A.
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Figure 4.3: A net with no non-replicated vertices can be internal to any part.

replicated vertex (σAB(nj) > 0). As mentioned in Section 4.1.2, the unreplication

operation can only change the cut-state of the internal nets. Thus, criticality of a

net for the unreplication operation requires it to be internal to a part. Similar to

the criticality of the internal nets in the move operation, unreplication operation

imposes the same conditions on the criticality of nets. There is an exception

for the unreplication operation where a net can be internal but still may not be

critical. This exception occurs if the net has pins only to the replicated vertices

meaning that the net can be internal to any part, i.e., σA(nj) = σB(nj) = 0

and σAB(nj) > 0. In this condition, unreplication of any replica connected to

this net will not make it external. Such nets are also not critical for the move

operation since they do not have any non-replicated pins to operate on. Thus,

the criticality conditions of the nets for the unreplication operation are still a

subset of the criticality conditions of the nets for the move operation. In Fig. 4.3,

the net nj has three replicated vertices vr, vs, vt and no non-replicated vertices.

In this case, nj can be internal to any part as seen in Figs. 4.3a and 4.3b.

Unreplication of a replica connected by nj does not make it external since the

number of non-replicated vertices connected by nj will be equal to one after

unreplication and, single pin nets are clearly internal nets as explained. Fig. 4.4

shows various unreplication operations on the bipartition in Fig. 4.3. As seen in

Fig. 4.4a, unreplication of the replica of vs from part B does not make nj external.

Similarly, unreplication of the replica of vs from part A does not make nj external

in Fig. 4.4b. However, two unreplication operations on nj, one from part A and

one from part B, will make nj external since σA(nj) > 0 and σB(nj) > 0 after

these operations. This condition is illustrated in Fig. 4.4c where the replica of vr
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in part A and the replica of vs in part B are unreplicated. Consequently, for the

unreplication operation,

nj is unreplication-critical to part A if σB(nj) = 0 and σA(nj) > 0, (4.5)

nj is unreplication-critical to part B if σA(nj) = 0 and σB(nj) > 0. (4.6)

vr

vt

vs

vt

vr

A B

nj

(a) The bipartition af-
ter unreplication of the
replica of vs from part
B in the hypergraph in
Fig. 4.3.

vt

vr

vt

vr

A B

vs
nj

(b) The bipartition af-
ter unreplication of the
replica of vs from part
A in the hypergraph in
Fig. 4.3.

A B
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vt vt
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nj

(c) The bipartition af-
ter unreplication of the
replica of vr from part
A and unreplication of
the replica of vs from
part B in the hyper-
graph in Fig. 4.3.

Figure 4.4: Various unreplication operations on the replicas of a net that has no
non-replicated vertices.

4.1.3.1 Initial gain computation

The initial gain computation given in Algorithm 2 consists of two main loops.

The first loop resets the initial gain values by traversing vertices (lines 1–7) and

the second loop completes the initialization of gains by traversing pins of the nets

(lines 8–20). While resetting gain values, all nets are considered to be internal for

the move gains, gainless for the replication gains and external for the unreplication

gains. Then, in the completion of the gain values, the move and replication gains

are modified for the external and/or critical nets whereas the unreplication gains

are modified for the internal (or critical) nets.

The move and replication gains of the non-replicated vertices are initially

set to their minimum possible values. If a net nj is external, its pins’ move

and replication gains may need to be updated. If this external net is move- or

replication-critical to a part (see Equations 4.1, 4.2, 4.3 and 4.4), the move and
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Algorithm 2: Initial move, replication and unreplication gain computation

Input: H = (V ,N ),Π R = {VA, VB}
foreach vi ∈ V do1

if State(vi) 6= AB then2

gm(vi)← −c(Nets(vi))3

gr(vi)← 04

else5

gu,A(vi)← 06

gu,B(vi)← 07

foreach nj ∈ N do8

foreach vi ∈ Pins(nj) do9

if State(vi) 6= AB and nj is external then10

if (σA(nj) = 1 and State(vi) = A) or (σB(nj) = 1 and11

State(vi) = B) then � nj is critical to part A or B
gm(vi)← gm(vi) + 2 ∗ c(nj)12

gr(vi)← gr(vi) + c(nj)13

else14

gm(vi)← gm(vi) + c(nj)15

else if State(vi) = AB and nj is internal then16

if σA(nj) > 0 and σB(nj) = 0 then � nj is critical to part A17

gu,A(vi)← gu,A(vi)− c(nj)18

else if σB(nj) > 0 and σA(nj) = 0 then � nj is critical to part19

B
gu,B(vi)← gu,B(vi)− c(nj)20
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Figure 4.5: Initial gains and pin distributions.

replication gains of the vertex which is in the part that nj is critical to must

be updated since it can be saved from the cut with either move or replication.

Its move gain is increased twice c(nj) since initially all nets are considered to be

internal for the move operation and its replication gain is increased by c(nj). On

the other hand, if this external net is not move- or replication-critical, the move

gain of its pins are increased by c(nj). This can be seen as a simple correction

for considering all nets as internal while resetting move gain values.

In contrast to move and replication gains, unreplication gains are initially set

to their maximum possible values. If a net nj is unreplication-critical and thus

internal (see Equations 4.5 and 4.6), the unreplication gains of its replicated pins

may need to be updated. The unreplication gains of the replicas that are in the

same part with this internal net need to be decremented by c(nj) if nj has at

least one non-replicated vertex in the same part.

Fig. 4.5 shows a sample bipartition, the pin distributions of the nets and the
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gain values of the vertices in this hypergraph after Algorithm 2 is run. As seen in

the figure, the nets n1, n3 and n5 are move-critical to part A, whereas n2, n4, n6

and n7 are move-critical to part B. The internal nets which are critical for the

move operation cannot be critical for the replication operation. If we omit such

nets from the set of the critical nets for the move operation, we get the critical

nets for the replication operation. Thus, n5 is replication-critical to part A while

n4 and n6 are replication-critical to part B. Only internal nets that connects at

least one replicated vertex can be critical for the unreplication operation. In this

case, n1 is unreplication-critical to part A and n2 is unreplication-critical to part

B. The nets n4, n5 and n6 are in the cut thus, the cutsize of the bipartition in

Fig. 4.5 is 3.

4.1.3.2 Gain updates after move operation

Algorithm 3 shows the procedure of gain updates after moving the given vertex

v∗ from part A to B. The algorithm includes updating fields of v∗, the pin

distributions of Nets(v∗) and the gain values of neighbors of v∗. The necessary

field updates on v∗ are performed by updating the state and locked fields of v∗

to reflect the move operation. The pin distribution of each net nj ∈ Nets(v∗)

needs to be updated by decrementing σA(nj) by 1 and incrementing σB(nj) by 1.

When the pin distribution of nj changes, its criticality may change with respect

to operation type for part A or B. The change in the criticality of nj may require

various gain updates on the unlocked pins of this net.

After decrementing the number of pins of nj in A, we check the value of

σA(nj) to see if the criticality of nj has changed. If σA(nj) = 0, nj becomes

internal to part B by becoming move- and unreplication-critical to this part (see

Equations 4.2 and 4.6). In this case, the move and the unreplication gains of the

unlocked vertices and replicas connected to nj in B need to be decremented by

c(nj). If σA(nj) = 1, nj becomes move- and replication-critical to part A (see

Equations 4.1 and 4.3). The only vertex of nj in A can now save nj from the cut

and thus, the move and replication gains of this vertex must be incremented by

c(nj) if it is unlocked.



CHAPTER 4. REPLICATED HYPERGRAPH PARTITIONING 27

Algorithm 3: Gain updates after moving v∗ from part A to B

Input: H = (V ,N ),Π R = {VA, VB}, v
∗ ∈ VA

State(v∗)← B1

Lock v∗
2

foreach nj ∈ Nets(v∗) do3

σA(nj)← σA(nj)− 14

if σA(nj) = 0 then � nj becomes critical to part B5

foreach unlocked vi ∈ Pins(nj) do6

if State(vi) = B then7

gm(vi)← gm(vi)− c(nj)8

else if State(vi) = AB then9

gu,B(vi)← gu,B(vi)− c(nj)10

else if σA(nj) = 1 then � nj becomes critical to part A11

foreach unlocked vi ∈ Pins(nj) do12

if State(vi) = A then13

gm(vi)← gm(vi) + c(nj)14

gr(vi)← gr(vi) + c(nj)15

σB(nj)← σB(nj) + 116

if σB(nj) = 1 then � nj was critical to part A17

foreach unlocked vi ∈ Pins(nj) do18

if State(vi) = A then19

gm(vi)← gm(vi) + c(nj)20

else if State(vi) = AB then21

gu,A(vi)← gu,A(vi) + c(nj)22

else if σB(nj) = 2 then � nj was critical to part B23

foreach unlocked vi ∈ Pins(nj) do24

if State(vi) = B then25

gm(vi)← gm(vi)− c(nj)26

gr(vi)← gr(vi)− c(nj)27
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Figure 4.6: Gains and pin distributions after moving v4.

After incrementing the number of pins of nj in B, we check the value of σB(nj)

to see if the criticality of nj has changed. If σB(nj) = 1, it means nj was internal

and move- and unreplication-critical to part A (see Equations 4.1 and 4.5). Now

because nj becomes external, the move of the vertices or the unreplication of the

replicas connected to nj in A will not make it external. Thus, the move and

the unreplication gains of the unlocked vertices and the replicas in B need to

be incremented by c(nj). Finally, if σB(nj) = 2, it means nj was move- and

replication-critical to part B (see Equations 4.2 and 4.4). Before the move of

v∗, nj had only one vertex in B which can save nj from the cut. However, after

moving v∗ to B, nj now has two vertices in B and it cannot be saved from the

cut anymore. Hence, the move and replication gains of unlocked pin of nj in B

must be decremented by c(nj).

In Fig. 4.5, when we consider the selection criteria, since there are no replicas

with a gain value of zero, we are to select move or replication operation. The

highest move gain value is equal to the highest replication gain value which is 1.

In such a condition where a tie-break occurs, we select the move operation which
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in this case is the move of v4. Fig. 4.6 shows the bipartition after moving and

locking v4. After updating the pin distributions of Nets(v4) = {n5, n6}, the gain

values of the neighbors of v4 may need to be updated. The pin distribution of n5

becomes σA(n5) = 0 and σB(n5) = 3. The net n5 becomes critical to part B and

thus, the move gains of the pins of n5 in B, v6 and v7, are decreased by one. The

pin distribution of n6 becomes σA(n6) = 1 and σB(n6) = 2. Since σA(n6) = 1,

n6 becomes critical to part A which means the move and replication gains of v5

need to be incremented by one. Finally, n6 was critical to part B before the

movement of v4 meaning that the move and replication gains of v7 need to be

decremented by one. When the gain updates are completed, the cutsize of the

bipartition becomes 2. The pin distributions and the gain values after running

Algorithm 3 are shown in the table in Fig. 4.6.

4.1.3.3 Gain updates after replication operation

Algorithm 4 shows the procedure of gain updates after replicating the given vertex

v∗ from A to B. The procedure starts with changing the state of v∗ to replicated

(AB) and locking both replicas of v∗. Then, for each net nj connecting v∗, the

pin distributions of nj are updated and checked for their criticality conditions

whether they changed or not. Since v∗ was in A before replication, σA(nj) is

decremented by 1 and, σAB(nj) is incremented by 1 since v∗ is replicated now.

The replication of v∗ from A does not change the σB(nj) values of the nets that

connect v∗, thus the criticality conditions that include σB(nj) need not to be

checked.

After decrementing σA(nj) for each nj ∈ Nets(v∗), we check the pin distri-

bution of nj regarding σA(nj) for the criticality conditions. If σA(nj) = 0, nj

becomes move- and unreplication-critical for part B (see Equations 4.2 and 4.6).

In this condition, the move gains of the unlocked vertices and the unreplication

gains of the unlocked replicas connected to nj need to be decremented by c(nj)

since nj is internal now and the move of any vertex or the unreplication of any

replica would bring it to cut. There are some exceptional cases for the replication

and the unreplication operations since the value of σB(nj) does not change. One
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Algorithm 4: Gain updates after replicating v∗ from part A to B

Input: H = (V ,N ),Π R = {VA, VB}, v
∗ ∈ VA

State(v∗)← AB1

Lock v∗
2

foreach nj ∈ Nets(v∗) do3

σA(nj)← σA(nj)− 14

σAB(nj)← σAB(nj) + 15

if σA(nj) = 0 then � nj becomes critical to part B6

foreach unlocked vi ∈ Pins(nj) do7

if State(vi) = B then8

gm(vi)← gm(vi)− c(nj)9

if σB(nj) = 1 then10

gr(vi)← gr(vi)− c(nj)11

else if State(vi) = AB then12

if σB(nj) = 0 then13

gu,A(vi)← gu,A(vi) + c(nj)14

else if σB(nj) > 0 then15

gu,B(vi)← gu,B(vi)− c(nj)16

else if σA(nj) = 1 then � nj becomes critical to part A17

foreach unlocked vi ∈ Pins(nj) do18

if State(vi) = A then19

gm(vi)← gm(vi) + c(nj)20

if σB(nj) > 0 then21

gr(vi)← gr(vi) + c(nj)22
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of these cases occurs for the replication operation if σB(nj) = 1 where the repli-

cation of the only vertex connected to nj in B will not save nj from cut anymore

and thus, its replication gain must be decremented by c(nj). The other case is for

the unreplication operation and occurs if σB(nj) = 0 which means there are no

non-replicated vertices connected to nj. In this case, unreplication of the replicas

in A were bringing nj to the cut before the replication of v∗. However, after

replication of v∗, unreplication of these replicas will not bring nj to the cut and

thus, their unreplication gains must be incremented by c(nj).

If σA(nj) = 1, nj becomes move- and replication-critical to part A (see Equa-

tions 4.1 and 4.3). The move or the replication of the only non-replicated vertex

vi connected to nj in A can now save nj from the cut and thus, the move and

replication gain of this vertex must be incremented by c(nj). However, the repli-

cation gain of vi needs to be incremented only if σB(nj) > 0. That is because

in the condition where σB(nj) = 0 before the replication of v∗, the replication

of vi will not change the cutsize and, after the replication of v∗, the replication

of vi will still not change the cutsize of the partition. Thus, if σB(nj) = 0, the

replication gain of vi need not be incremented.

After moving v4, now we are to select another vertex to operate on in Fig. 4.6.

There are two operations with the highest gain which are the replication of v5

and the replication of v6 and the gain values of these operations are 1. We select

to replicate v6. Fig. 4.7 shows the bipartition after replicating v6 and locking

both replicas of it. After the pin distributions of Nets(v6) = {n2, n4, n5, n7}

are updated, the criticalities of n2, n4 and n7 change and the gain values of the

vertices connected to these nets may need to be updated. For n2, σB(n2) = 0

which makes it critical to part A and since σA(n2) = 0, it has no non-replicated

vertices. Thus, the unreplication gain of the replica of v1 in B is incremented by

one. The pin distribution of n4 for B becomes σB(n4) = 0 making it critical to

part A. The move gains of the vertices connected to n4 in A, v2 and v3, need to

be decremented by one, however, since σA(n4) = 2, the replication gain values

of these two vertices need not to be updated. Finally, n7 becomes critical to

part B since σB(n7) = 1 and thus the move and replication gains of the only

non-replicated vertex in B that is connected to n7 may need to be updated. This
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Figure 4.7: Gains and pin distributions after replicating v6.

vertex is v7 and its move gain is incremented by one, however, its replication gain

is not incremented since σA(nj) = 0. After the gain updates, the cutsize of the

bipartition becomes 1. The gain values and the pin distributions after running

Algorithm 4 are shown in Fig. 4.7.

4.1.3.4 Gain updates after unreplication operation

Algorithm 5 shows the procedure of gain updates after unreplication of the given

replica v∗ from A. Firstly, the state of the replicated vertex v∗ is changed to B

and it is locked. The pin distributions of each net nj ∈ Nets(v∗) are updated by

incrementing σB(nj) by 1 and decrementing σAB(nj) by 1. Then, the criticality

conditions of the nets connected to v∗ are checked for the gain updates of the

neighbors of v∗. Since the value of σA(nj) does not change, it is not necessary to

check the criticality conditions that include σA(nj).

After the value of σB(nj) is incremented, the criticality of nj must be checked
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Algorithm 5: Gain updates after unreplicating v∗ from part A

Input: H = (V ,N ),Π R = {VA, VB}, v
∗ ∈ VA

State(v∗)← B1

Lock v∗
2

foreach nj ∈ Nets(v∗) do3

σB(nj)← σB(nj) + 14

σAB(nj)← σAB(nj)− 15

if σB(nj) = 1 then � nj was critical to part A6

foreach unlocked vi ∈ Pins(nj) do7

if State(vi) = A then8

gm(vi)← gm(vi) + c(nj)9

if σA(nj) = 1 then10

gr(vi)← gr(vi) + c(nj)11

else if State(vi) = AB then12

if σA(nj) = 0 then13

gu,B(vi)← gu,B(vi)− c(nj)14

else if σA(nj) > 0 then15

gu,A(vi)← gu,A(vi) + c(nj)16

else if σB(nj) = 2 then � nj was critical to part B17

foreach unlocked vi ∈ Pins(nj) do18

if State(vi) = B then19

gm(vi)← gm(vi)− c(nj)20

if σA(nj) > 0 then21

gr(vi)← gr(vi)− c(nj)22
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to see if there are any necessary gain updates for the neighbors of v∗. If σB(nj) =

1, it means nj was move- and unreplication-critical to part A (see Equations 4.1

and 4.5). In this case, the move and the replication gains of the unlocked vertices

and the unlocked replicas in A are increased by c(nj) since nj is no more an

internal net. Similar to the gain updates after replication of a vertex, there

are two exceptional cases. The first case occurs for the replication operation if

σA(nj) = 1 where the replication gain of the only vertex of nj in A needs to

be incremented since this vertex can save nj from cut. The other case is for

the unreplication operation and occurs when σA(nj) = 0 meaning that nj had

no non-replicated vertex before the unreplication of v∗ and unreplication of the

replicas in B were not bringing nj to the cut. However, after the unreplication

of v∗, the unreplication of the replicas in B will bring nj to the cut and thus, the

unreplication gains of these replicas must be decremented by c(nj).

If σB(nj) = 2, it means nj was move- and replication-critical to part B (see

Equations 4.2 and 4.4). In this case, nj has two pins in B and one of them, v∗, is

already locked. The move and replication gains of the other vertex, vi, need to be

decremented by c(nj) since this vertex can no more save nj from cut. However,

if σA(nj) = 0, it is not necessary to decrement the replication gain of vi. That

is because the replication of vi does not change the cutsize before or after the

unreplication of v∗.

In Fig. 4.7 after the replication of v6, there exists an unnecessary replica in

part B with an unreplication gain of zero. According to the selection criteria,

the unreplication operation with a gain of zero has the highest priority. Thus,

the selected operation is the unreplication of an unnecessary replica which is the

unreplication of v1 from B. Fig. 4.8 shows the bipartition after the unreplication

of v1 from B and locking it. After the pin distributions of Nets(v1) = {n1, n2}

are updated, the gains of neighbors of v1 may need to be updated. The pin

distribution of n1 for A is σA(n1) = 3 and its criticality has not changed. On the

other hand, the pin distribution of n2 for A is σA(n2) = 1 which means n2 was

critical to part A. However, since none of the vertices connected to n2 is unlocked,

there is no need to perform gain updates for the pins of n2. The unreplication

of an unnecessary replica cannot change the cutsize thus, after the gain updates,



CHAPTER 4. REPLICATED HYPERGRAPH PARTITIONING 35

A B

σ(n1) = (3 : 0 : 0)

σ(n3) = (3 : 0 : 0)

σ(n4) = (2 : 0 : 1)

σ(n5) = (0 : 2 : 1)

σ(n6) = (1 : 2 : 0)

σ(n2) = (1 : 0 : 1)

v1

v2

v6

v3

v5

cutsize = 1

σ(n7) = (0 : 1 : 1)

v6

v4

v7

n1

gm(v2) = −3

gr(v2) = 0

gm(v3) = −3

gr(v3) = 0

gm(v5) = 0

gr(v5) = 1

gm(v7) = −1

gr(v7) = 0

n6

n4

n5

n7

n2

n3

Figure 4.8: Gains and pin distributions after unreplicating v1 from VB

the cutsize is still 1. The gain values and the pin distributions after running

Algorithm 5 are shown in Fig. 4.8.

4.1.3.5 Complexity Analysis of rFM

A single pass of rFM consists of initial gain computation, repeatedly selecting a

vertex to operate on and gain updates of neighbors of the selected vertex after

performing an operation on that vertex (see Algorithm 1). The total number

of vertices is equal to the sum of the number of non-replicated vertices and the

number of replicated vertices. This is because, in our implementation, when

a vertex is replicated, the new replica of this vertex is not added to the data

structure of the current hypergraph throughout the corresponding uncoarsening

phase. For a replicated vertex connected to a net, there is only a single pin of that

net for the replicated vertex. Thus, clearly, the number of vertices and the number

of pins of the hypergraph at the beginning of a coarsening phase will be equal to

the number of vertices and the number of pins of the hypergraph at the end of
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the corresponding uncoarsening phase. Section 4.3 explains how the replicated

vertices and their pins are handled in the construction of sub-hypergraphs for

further bisections.

Let n and p be the number of vertices and the number of pins of a given

bipartition ΠR = {VA, VB} on H = (V ,N ) for a pass of rFM. Let r be the number

of replicated vertices and s be the number of non-replicated vertices. Clearly,

n = r+s. The initial gain computation takes O(p) time since in Algorithm 2, the

pins of each net are traversed. After the initial gain computation is completed,

these gain values are stored in 6 heaps. For each heap, it is required to perform

build-heap operations. The build-heap operations on heapMA and heapMB will

take a total of O(s) time and similarly, the build-heap operations on heapRA and

heapRB will take a total of O(s) time since the number of vertices on heapMA and

heapMB or heapRA and heapRB is equal to number of non-replicated vertices,

s (see Section 4.1.2 for the abbreviations of the heaps we use). The build-heap

operation on heapUA will take O(r) time and similarly, the build-heap operation

on heapUB will take O(r) time since each heap possesses r number of elements.

Thus, the total time required for building heaps is equal to O(r + r + s + s) =

O(2n) = O(n).

The selection procedure consists of checking maximum gain values in 6 heaps,

which takes constant amount of time. After selecting the gain value from one

of the heaps with respect to the selection criteria, we perform an extract-max

operation on the selected heap and a delete operation on another heap for the

other gain value of the selected vertex (Section 4.1.2). No matter the selected

heap, the extract-max and delete operations on the heaps will be bounded by the

number of total vertices since the maximum number of elements in a single heap

can be at most n. Thus, a single selection operation will take O(1 + 2 log n) =

O(log n). In a single pass of rFM where all vertices are exhausted, we can make

at most n selections. Consequently, the cost of selection in a single pass of rFM

is equal to O(n log n).

In the original move based FM algorithm [28], the gain updates take O(p) time

since in a single pass, there are at most three update operations for the vertices



CHAPTER 4. REPLICATED HYPERGRAPH PARTITIONING 37

connected to nj and, the move gain of a vertex connected to nj is updated at most

twice on these three update operations. This is due to the critical net definitions

for the move operations and the locking schemes the FM algorithm uses [28]. In

rFM, we use the same critical net definitions and locking schemes as the original

FM algorithm. The critical net definitions of the newly introduced replication

and unreplication operations are subset of the critical net definitions of the move

operation (see Section 4.1.3). Thus, the complexity of gain updates in a single pass

of rFM is the same as the FM heuristic. In rFM, since each vertex possesses two

gains, in the worst case, both of these gain values may need to be updated, which

doubles the number of gain updates for any vertex compared to FM. Each gain

update requires an increase-key or decrease-key operations on the corresponding

heap. Consequently, the complexity of rFM is O(2p log n) = O(p log n). This is

equal to the complexity of the heap implementation of original FM where gains

are stored in heaps instead of buckets.

Given these complexity values, the complexity of a single pass of rFM is

O(n + n log n + p log n) = O(p log n) since p ≥ n.

In our implementation, the space that rFM requires is modest. For each

vertex, an additional gain value is stored compared to original FM. For each

net, it is necessary to store an extra field that indicates the number of replicated

vertices in addition to the number of non-replicated vertices that are in part A

and B.

4.2 rFM and Multilevel Framework

The multilevel framework for HP consists of 3 phases as mentioned in Chapter 2.3.

The replication is achieved in the uncoarsening phase of the multilevel scheme

where the refinement algorithm rFM is used as a replication tool. The coarsening

and the initial partitioning phases are used as-is since they do not include the

replication process.

At each level of the uncoarsening phase, we perform multiple passes to refine
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the current bipartition. At the end of each level, the bipartition ΠR
i on the coarser

hypergraph Hi is projected back to the bipartition ΠR
i−1 on the finer hypergraph

Hi−1. The projection includes the decomposition of each super-vertex in Hi to its

constituent vertices in Hi−1. The decomposition of a non-replicated super-vertex

in Hi results in multiple non-replicated vertices in Hi−1. Similarly, the decom-

position of a replicated super-vertex in Hi results in multiple replicated vertices

in Hi−1. The existence of replicated vertices does not disturb the projection pro-

cess. Clearly, the decomposition of a replicated super-vertex to its constituent

replicated vertices will not change the cut-state of the nets this replicated super-

vertex is connected to. Furthermore, the single pin nets which are eliminated in

the coarsening phase of the corresponding level will occur in the finer hypergraph.

If this single pin is a replicated vertex, such nets will have only replicated vertices

connected to it in the finer hypergraph and thus, the single pin nets will still be

internal.

Unnecessary replicas tend to occur excessively at the beginning of each un-

coarsening level due to the increase in the degrees of freedom after the projection

of a coarser hypergraph to a finer hypergraph. Such replicas hamper the refine-

ment and partitioning if they are not removed, since:

• They consume the given replication amount needlessly which may prevent

the positive gain replications to be performed.

• In the construction of the new hypergraphs for further bipartitions, they

can cause the new hypergraphs to become unnecessarily bigger.

In the operation selection, we give the unreplication of unnecessary replicas the

highest priority (Section 4.1.2). By giving this operation the highest priority,

the majority of the unnecessary replicas are eliminated at the beginning of each

uncoarsening level.
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4.3 Recursive Bipartitioning and Replica Selec-

tion

The K-way HP problem is generally solved with Recursive Bipartitioning frame-

work (Chapter 2.3). In the RB scheme, firstly a 2-way partition of the initial

hypergraph is obtained and then, the obtained parts are bipartitioned in a recur-

sive manner until reaching K parts. We use the same scheme to obtain multi-way

partitioning of a given hypergraph for the replicated HP problem. After each bi-

partition, two new hypergraphs are constructed from the parts of the bipartition

for further bipartitioning. In the construction of the new hypergraphs, the replicas

of the replicated vertices become non-replicated vertices for the new hypergraphs

and the necessary pins are placed for these vertices. Consequently, the weight

and the number of pins of the resulting hypergraphs are greater when compared

to the HP without replication.

4.3.1 Cut-net Splitting

In the RB framework, the cut-net splitting scheme is used in order to capture the

connectivity cutsize metric. After each bipartitioning, two sub-hypergraphs, HA

and HB, are constructed from ΠR = {VA, VB}. The vertex sets of HA and HB are

equivalent to VA and VB respectively. Clearly, the internal nets in A will be in the

net set of HA and the internal nets in B will be in the net set of HB. Each cut-net

net nj ∈ ΠR is split into two nets, nA
j and nB

j , where Pins(nA
j ) = Pins(nj) ∩ VA

and Pins(nB
j ) = Pins(nj) ∩ VB. Then, nA

j is added to the net list of HA if

σA(nA
j ) > 1 and nB

j is added to the net list of HB if σB(nB
j ) > 1. Clearly,

σB(nA
j ) = 0 and σA(nB

j ) = 0. Single pin nets are eliminated in splitting since

they cannot contribute to cutsize in further bipartitions.

The cut-net splitting scheme is extended to include pins to the replicas of the

replicated vertices. In the cut-net splitting scheme, where there are replicated

vertices, we need to add pins to the replicas of the replicated vertices in order to

preserve the flexibility of performing move or replication operations on them in



CHAPTER 4. REPLICATED HYPERGRAPH PARTITIONING 40

va

vb

vc

vr

vd

ve

vr

nj

A B

(a) Before net splitting.

vr

nA
j

va

vb

vc

vr

ve

vd

nB
j

A B

(b) After net splitting

Figure 4.9: Cut-net splitting, no pins of net nj are discarded.

the newly constructed hypergraphs. After the split of a cut-net nj, a pin is added

for each replica of the replicated vertex connected by nj in part A if σA(nA
j ) > 1

and for each replica of nj in part B if σB(nB
j ) > 1. We do not add pin(s) to the

replica(s) in part A if σA(nA
j ) < 2 since nA

j cannot be cut in further bipartitions

in HA. Similarly, we do not add pin(s) to the replica(s) in part B if σB(nB
j ) < 2

since nB
j cannot be cut in further bipartitions in HB. Figs. 4.9 and 4.10 show the

splitting two different cut-nets. In Fig. 4.9, the vertex vr is replicated and the

pins for the replicas of vr need to be added for the split nets since σA(nA
j ) = 3

and σB(nB
j ) = 2. In Fig. 4.10, there are two replicated vertices, vr and vs. After

the splitting of nj, we do not need to add the pins to the replicas of vr and vs in

part A since σA(nA
j ) = 1. However, we need to add pins to the replicas of vr and

vs in part B since σB(nB
j ) = 2.
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Figure 4.10: Cut-net splitting, the pins of net nj in part A are discarded.
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4.3.2 Replica Selection

The replication of a vertex vi brings the problem of selecting replicas of vi for each

net it is connected by. If a net nj connects replicated vertices, we need to decide

which replicas of these replicated vertices will be used by nj. This is required for

a couple of reasons: (i) the cut computation of the final partition and; (ii) the

investigated real world problem may enforce the nets to make a choice from which

parts their replicas will be used. We propose a simple replica selection technique.

The basic motivation behind this technique is not to increase the cutsize with

careless replica selection. Fig. 4.11 shows various replica selection alternatives for

nj in a 3-way partition. There are two replicated vertices connected to nj, vr and

vs, each having three replicas and, there is a non-replicated vertex connected to

nj in part P2, vn. Clearly, λj will be at least one because of the non-replicated

vertex in P2. If we select the replica of vr in P1 and the replica of vs in P3 for

nj as in Fig. 4.11a, nj is cut (λj = 3) and the contribution of nj to the cutsize is

2c(nj). Another selection alternative may be to select the both replicas of vr and

vs in P3 as in Fig. 4.11b. In this case, nj is cut (λj = 2) and the contribution of

nj to the cutsize is c(nj). The logical selection alternative is seen in Fig. 4.11c,

where the both replicas of vr and vs are selected from P2, from the part of vn. In

this replica selection alternative, nj is uncut (λj = 1) and nj does not contribute

to the cutsize of the partition. This example shows how replica selection can be

crucial in computing cutsize of given partitions.

Our replica selection technique consists of evaluating each net’s replicas and

making a decision about which one to use after obtaining a K-way partitioning.

The replica selection decision is based on the pin distributions of nets. Consider

a net nj and a replicated vertex vi connected by it that has n replicas, r1, . . . , rn,

we are to pick one of n replicas of vi for nj. For each ri, we count the number

of non-replicated and replicated vertices connected by nj which are in the same

part with ri. Then, we pick the replica with the highest number of non-replicated

vertices. Selecting such a replica will not increase the cutsize since the part of the

selected replica already contributes to cutsize for nj because of the non-replicated

vertices connected to nj in that part. If the number of non-replicated vertices
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(a) Careless replica selection for
nj (λj = 3).
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(b) Another careless replica se-
lection for nj (λj = 2).
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(c) Careful replica selection for
nj (λj = 1).

Figure 4.11: Three replica selection alternatives for nj.
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connected to nj which are in the same part with ri is zero for all replicas, we pick

the replica with the highest number of replicated vertices which are connected to

nj and in the same part with ri. In this way, we assure nj to select its replicas

from the part which possesses the highest number of replicated vertices connected

to nj. If this value is zero too, then we randomly pick one of the replicas of vi

for nj. Fig. 4.12 shows an example of this selection technique on nets nj and nk

in a 4-way partition. There are two replicated vertices, vr, vs and, three non-

replicated vertices, vm, vn, vp. After the replica selections are done for nj and nk

with respect to the criteria mentioned above, λj = 3 and λk = 2.

P1 P2

P3 P4

vs

vr vr

nkvs

vn

vp

vmnj

Figure 4.12: Replica selection for nj (λj = 3) and nk (λk = 2).

4.3.3 Replication Amount Distribution

The RB scheme consists of multiple bipartitions. The replication amount used

in each bipartitioning can have an effect on the cutsize of the final partition. We

try 2 different replication amount distribution schemes in this work:

• Level-wise Replication. The replication amount is distributed evenly among

the levels of the RB. Firstly, the total replication amount is divided by the

number of levels, lg2 K. Then, for each specific level, the replication amount

is evenly distributed among the hypergraphs in this level.

• Bisection-wise Replication. In this scheme, each bipartitioning possesses

the same amount of replication.



Chapter 5

Experimental Results

In this chapter, we conduct experiments to test the performance of the proposed

replication scheme on the cutsize and balance of the partitions. Firstly, we briefly

explain the integration of our replication scheme into the multilevel hypergraph

partitioning tool PaToH [15] and give details of the experimental setup. Then,

we discuss the properties of the datasets used in the experiments. In the ex-

periments, we compare two important quality metrics, cutsize and imbalance,

of the partitions with and without replication. We also evaluate the gradient

methodology described in the previous chapter in our experiments.

5.1 Experimental Setup

The proposed replication scheme is implemented and integrated into the multi-

level HP tool PaToH. This version of PaToH is capable of vertex replication and,

we call it replicated PaToH (repl-PaToH). As mentioned in previous chapters,

replication is achieved in the uncoarsening phase of the multilevel methodology.

In the coarsening and the initial partitioning phases, PaToH is used as-is, how-

ever, the uncoarsening phase is written from scratch. In our experiments, we use

the same parameters for PaToH and repl-PaToH in the coarsening and the initial

44
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partitioning phases. We use agglomerative clustering (absorption clustering us-

ing pins) and greedy hypergraph growing partition algorithms in the coarsening

and initial partitioning phases, respectively. The initial partitioning algorithm is

run multiple times and the bipartition with minimum cutsize is selected for the

uncoarsening phase.

The parameters that are used in the uncoarsening phase are worth to mention

for both versions:

• Refinement algorithm, is the algorithm that is used as the refinement algo-

rithm in the uncoarsening phase. For PaToH, boundary FM (BFM) and

boundary KL (BKL) algorithm is used. For repl-PaToH, we use the rFM

algorithm described in the previous chapter.

• Initial and final imbalance, are the values that must be assured at the begin-

ning and at the end of each uncoarsening phase, respectively. Maintaining

a loose initial imbalance value may help FM based heuristics to work better

since at the beginning levels, the average weight of a single vertex is greater

and performing an operation on a vertex may be prevented due to tight size

constraints on the parts. Thus, the initial imbalance is set to 0.12 and the

final imbalance is set to 0.10 for PaToH and repl-PaToH.

• Number of passes, is the value that how many times the refinement algo-

rithm is run at each level of the uncoarsening phase. We set this parameter

to 3 for PaToH and repl-PaToH in our experiments.

• Window size, is the number of operations that is allowed to be performed

which do not improve the cutsize. The window size is set to 100 for both

PaToH and repl-PaToH.

The experiments are conducted on a 4 × AMD Six-Core Opteron, each core

having a clock frequency of 2.1 GHz, 64 KB L1 Instruction and Data cache,

512 KB L2 cache and 6 MB shared L3 cache. Each processor has a 32 GB of

memory which makes a total of 128 GB memory. The implementation is done
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Data set # vertices # nets # pins Avg. net deg. Avg. net weight Avg. vertex weight

California HPN 10141 17369 52965 3.05 13.36 48.76
Minnesota7 34222 46056 149493 3.25 26.86 47.11
New Mexico 448959 510477 1682429 3.30 17.32 43.64
Oldenburg 4465 7886 22085 2.80 15.06 42.62
Oregon 507212 574353 1844579 3.21 17.96 41.96
San Francisco 166558 197630 654990 3.31 18.34 44.99
San Joaquin 17444 26225 80785 3.08 16.66 46.17
Washington 548901 613598 1980535 3.23 21.77 42.01
Wyoming 254648 302494 984039 3.25 17.53 43.85

CalGovernerRecall 172556 30805 3545766 115.10 1.00 1.00
Facebook 4618974 66568 14277456 214.48 1.00 1.00
Stanford 281903 281903 2312497 8.20 1.00 8.20

Table 5.1: The properties of the data sets used in our experiments.

in C programming language and all files are compiled with gcc –O3 optimization

flag enabled.

5.2 Datasets

In the experiments, we test our algorithm on various datasets from spatial network

and information retrieval fields. Various characteristics of these datasets are

depicted in Table 5.1 such as number of vertices, nets and pins, average net degree,

average net and vertex weight. There are 9 data sets for spatial networks that

include data sets from US Department of Transportation [23] (California HPN

dataset), US Tiger/Line [16] (Minnesota7 that includes data from 7 countries,

New Mexico, Oregon, San Francisco, Washington and Wyoming datasets) and

Brinkhoff’s network data generator [9] (Oldenburg and San Joaquin datasets).

There are 3 data sets for information retrieval. Two of them are crawled using

Stanford WebBase Project [17, 54] (Facebook and CalGovernerRecall datasets)

and the other one is from University of Florida Sparse Matrix Collection [19]

(Stanford dataset which depicts the Stanford web graph).

The basic difference between the spatial network and IR datasets is clearly
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the average net degree where in IR datasets this value is much higher. In the

hypergraph models for road networks, the junctions are considered as both nets

and vertices and each junction has an average of about three roads connected to

it when we consider the datasets in Table 5.1. However, in IR based hypergraph

models, generally the nets represent the documents and the pins of a net represent

the terms/links in that document. From this perspective, it is obvious that

average degree of a net for the hypergraph models in IR will be higher than those

in spatial networks.

5.3 Results

The results include two important quality metrics in HP: cutsize and imbalance.

We illustrate the results for K = 32, 64, 128, 256 and ρ = 0.05, 0.10, 0.20. Firstly,

we compare PaToH and two replication amount distribution schemes (bisection-

wise and level-wise) mentioned in Chapter 4. Then, rFM heuristic and the gra-

dient methodology is compared. Each instance is run 10 times and the average

of these runs is shown in the results.

Tables 5.2, 5.3, 5.4 and 5.5 show the cutsize and imbalance values of PaToH

and repl-PaToH with two different replication schemes, bisection-wise and level-

wise replication. Figs. 5.1, 5.2, 5.3 and 5.4 illustrate the improvement in the

cutsize of two different replication schemes which are represented in the men-

tioned tables. In spatial network datasets, the improvement in the cutsize is

greater than the improvement in the IR datasets. This is mainly due to the dif-

ference of average net degrees between these datasets. In IR datasets, the average

net degree is high and saving a net from cut is harder compared to the nets in

spatial network datasets. For example, in Table 5.3, for spatial network datasets,

the average improvement of repl-PaToH (bisection-wise) for ρ = 0.05, 0.10 and,

0.20 is 56.52, 62.55 and, 62.32, respectively whereas for IR datasets, these val-

ues are 13.22, 17.87 and, 22.62, respectively. The values in other tables indicate

similar results where the improvement in the cutsize in IR datasets is lower. As

ρ grows higher, generally, the cutsize decreases for a specific value of K since
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Dataset ρ PaToH repl-PaToH, bisection-wise repl-PaToH, level-wise

Cut Imb. Cut Cut Imp. (%) Imb. Cut Cut Imp. (%) Imb.

California HPN 0.05 13810 5.72 6501 52.92 4.78 8791 36.34 5.18
0.10 13896 5.49 3599 74.10 5.29 6559 52.79 5.59
0.20 13921 6.21 3368 75.80 7.26 4693 66.28 5.76

Minnesota7 0.05 20542 5.11 4252 79.30 5.98 6868 66.56 4.55
0.10 20279 5.14 4969 75.49 4.04 6335 68.76 4.09
0.20 20118 5.28 7000 65.20 5.08 7081 64.80 3.79

New Mexico 0.05 23241 6.72 8900 61.70 4.54 10434 55.10 3.24
0.10 23210 6.16 10033 56.77 2.85 11800 49.15 1.80
0.20 23163 6.18 11949 48.41 2.01 13633 41.14 1.15

Oldenburg 0.05 10348 6.34 5751 44.42 5.45 6701 35.24 5.37
0.10 10325 5.98 3247 68.55 5.28 5054 51.05 4.91
0.20 10406 6.05 2665 74.38 4.98 3658 64.84 5.10

Oregon 0.05 29125 6.30 11584 60.22 4.67 12790 56.08 3.62
0.10 28550 6.02 13071 54.21 2.64 14305 49.89 1.86
0.20 28704 6.98 13958 51.37 1.64 17286 39.77 1.24

San Francisco 0.05 25402 6.40 6827 73.12 4.13 7854 69.08 4.02
0.10 25393 6.48 7938 68.73 2.92 8225 67.60 2.70
0.20 25361 7.01 9124 64.02 2.64 10035 60.43 1.81

San Joaquin 0.05 17723 6.20 5898 66.72 6.02 8617 51.37 5.09
0.10 17417 5.57 4141 76.22 6.29 6324 63.69 4.72
0.20 17582 6.55 4631 73.66 5.54 5328 69.69 4.96

Washington 0.05 27088 6.48 8611 68.21 4.06 9448 65.12 3.05
0.10 27114 5.99 10206 62.35 3.26 11859 56.26 1.63
0.20 27251 6.33 12186 55.28 2.00 13076 52.01 1.83

Wyoming 0.05 28821 6.08 11998 58.37 3.73 14121 51.00 3.50
0.10 28746 6.43 14461 49.69 2.70 15399 46.43 1.85
0.20 28747 6.42 15907 44.66 1.51 17794 38.10 0.83

AVERAGE 0.05 6.15 62.78 4.82 53.99 4.18
0.10 5.92 65.12 3.92 56.18 3.24
0.20 6.33 61.42 3.63 55.23 2.94

CalGovernerRecall 0.05 90677 3.19 87866 3.10 9.10 90147 0.58 8.18
0.10 92010 3.66 84604 8.04 9.89 87368 5.04 8.47
0.20 90056 3.65 81315 9.70 9.56 85353 5.22 9.05

Facebook 0.05 173581 0.00 159872 7.89 9.06 168977 2.65 8.99
0.10 174658 0.00 158727 9.12 8.59 160176 8.29 8.57
0.20 176880 0.00 153042 13.47 7.51 154873 12.44 8.29

Stanford 0.05 5552 4.62 3779 31.93 9.36 4138 25.46 8.95
0.10 5563 4.71 3302 40.64 9.82 3847 30.84 9.78
0.20 5451 4.94 3012 44.74 9.29 3665 32.76 8.37

AVERAGE 0.05 2.60 14.31 9.17 9.56 8.71
0.10 2.79 19.27 9.43 14.72 8.94
0.20 2.86 22.64 8.79 16.81 8.57

AVERAGE (All) 0.05 5.26 50.66 5.91 42.88 5.32
0.10 5.14 53.66 5.30 45.82 4.66
0.20 5.47 51.72 4.92 45.62 4.35

Table 5.2: The cut and imbalance values for K = 32.
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Dataset ρ PaToH repl-PaToH, bisection-wise repl-PaToH, level-wise

Cut Imb. Cut Cut Imp. (%) Imb. Cut Cut Imp. (%) Imb.

California HPN 0.05 24882 5.07 16074 35.39 5.38 18888 24.08 5.35
0.10 24847 5.04 10208 58.91 5.78 15319 38.34 5.31
0.20 25121 5.57 6769 73.05 8.37 11181 55.49 6.14

Minnesota7 0.05 38226 5.09 10623 72.21 5.51 17793 53.45 5.40
0.10 38176 5.60 7851 79.43 6.88 13493 64.65 4.93
0.20 37664 6.34 9889 73.74 6.40 12669 66.36 5.67

New Mexico 0.05 40443 6.57 15469 61.75 4.08 17505 56.71 3.81
0.10 40422 6.20 17420 56.90 2.96 19423 51.94 1.96
0.20 40443 6.50 20233 49.97 2.35 22222 45.05 1.75

Oldenburg 0.05 16866 5.18 11929 29.27 6.51 13273 21.30 5.30
0.10 16767 5.86 7546 54.99 5.34 10423 37.83 4.57
0.20 16690 6.02 5016 69.94 6.86 7557 54.72 5.06

Oregon 0.05 47694 6.52 18868 60.43 3.70 20735 56.52 3.90
0.10 47565 6.94 21179 55.47 3.15 22759 52.15 1.98
0.20 47592 6.54 23926 49.72 2.48 27158 42.93 1.34

San Francisco 0.05 44665 6.39 11385 74.51 5.02 16438 63.19 4.56
0.10 44815 6.58 13755 69.30 3.96 15903 64.51 3.08
0.20 44603 6.33 15672 64.86 3.11 18197 59.20 2.92

San Joaquin 0.05 29823 6.00 14955 49.85 6.17 19189 35.65 5.63
0.10 29838 5.74 8278 72.25 6.92 14543 51.26 5.09
0.20 29939 5.61 7643 74.47 8.90 10830 63.82 5.66

Washington 0.05 47565 6.09 16177 65.98 4.52 17683 62.82 3.82
0.10 47027 5.76 17646 62.47 3.89 19986 57.50 2.17
0.20 47639 5.95 20502 56.96 2.64 23064 51.58 1.65

Wyoming 0.05 47327 6.12 19270 59.28 4.53 21753 54.03 3.85
0.10 47439 6.33 22196 53.21 3.11 24557 48.23 2.24
0.20 47671 5.67 24706 48.17 2.45 28956 39.25 1.50

AVERAGE 0.05 5.89 56.52 5.05 47.53 4.63
0.10 6.01 62.55 4.67 51.82 3.48
0.20 6.06 62.32 4.84 53.16 3.52

CalGovernerRecall 0.05 139097 4.21 135886 2.30 9.14 136342 1.98 8.58
0.10 138494 4.53 132041 4.65 9.39 135345 2.27 8.91
0.20 138690 4.71 127518 8.05 9.92 132349 4.57 8.07

Facebook 0.05 225148 0.73 205894 8.55 9.88 216265 3.94 9.08
0.10 226226 0.47 197657 12.62 9.70 216342 4.36 8.64
0.20 225076 0.66 190866 15.19 9.15 197758 12.13 8.01

Stanford 0.05 9546 4.33 6794 28.82 8.74 7503 21.40 8.06
0.10 9485 4.39 6038 36.34 9.08 6777 28.55 8.45
0.20 9475 4.51 5248 44.61 9.44 6459 31.83 8.78

AVERAGE 0.05 3.09 13.22 9.25 9.11 8.57
0.10 3.13 17.87 9.39 11.77 8.67
0.20 3.29 22.62 9.50 16.18 8.29

AVERAGE (All) 0.05 5.19 45.70 6.10 37.92 5.61
0.10 5.29 51.38 5.85 41.80 4.78
0.20 5.37 52.39 6.01 43.91 4.71

Table 5.3: The cut and imbalance values for K = 64.
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Dataset ρ PaToH repl-PaToH, bisection-wise repl-PaToH, level-wise

Cut Imb. Cut Cut Imp. (%) Imb. Cut Cut Imp. (%) Imb.

California HPN 0.05 41424 5.95 31248 24.56 6.13 35072 15.33 5.55
0.10 41307 6.41 23458 43.21 5.61 30324 26.58 5.26
0.20 41464 5.86 14322 65.45 7.40 23808 42.58 5.89

Minnesota7 0.05 67591 5.93 28680 57.56 5.52 42993 36.39 5.44
0.10 67641 5.61 18017 73.36 7.19 33097 51.06 5.11
0.20 67517 5.77 14903 77.92 8.42 25824 61.75 5.96

New Mexico 0.05 68009 5.95 24827 63.49 4.69 27926 58.93 4.16
0.10 67586 6.25 27821 58.83 3.94 30373 55.06 2.63
0.20 67860 6.53 31490 53.59 2.92 35969 46.99 2.09

Oldenburg 0.05 27044 5.62 22345 17.37 6.21 23814 11.94 5.38
0.10 27016 5.97 18224 32.54 6.00 20995 22.28 5.28
0.20 26909 6.13 11130 58.63 7.01 16478 38.76 5.27

Oregon 0.05 76467 6.28 28145 63.19 4.72 33560 56.11 4.12
0.10 76594 5.84 32118 58.06 4.68 35731 53.35 2.94
0.20 76057 6.37 35735 53.01 3.79 39863 47.58 2.49

San Francisco 0.05 76022 6.43 20551 72.96 5.45 35533 53.25 4.43
0.10 76634 6.71 22367 70.81 5.91 29326 61.73 4.02
0.20 76264 6.22 26000 65.90 5.22 28869 62.14 4.48

San Joaquin 0.05 49140 5.46 31822 35.24 6.11 37108 24.48 5.40
0.10 49292 5.99 20612 58.18 7.29 29915 39.31 5.12
0.20 49106 5.71 13678 72.14 9.34 22753 53.66 5.71

Washington 0.05 84776 5.49 26875 68.29 5.05 31838 62.44 4.02
0.10 85026 6.27 29485 65.32 4.09 33335 60.79 2.83
0.20 84980 6.28 33831 60.18 3.13 37748 55.58 2.17

Wyoming 0.05 75084 5.68 27924 62.80 4.75 35813 52.30 4.41
0.10 75483 5.92 31904 57.73 4.05 37585 50.20 2.92
0.20 75303 5.57 36891 51.00 3.60 42084 44.11 2.45

AVERAGE 0.05 5.87 51.72 5.40 41.24 4.77
0.10 6.11 57.56 5.42 46.71 4.01
0.20 6.05 61.98 5.65 50.35 4.06

CalGovernerRecall 0.05 208593 5.00 202054 3.13 9.22 209112 -0.24 8.73
0.10 210678 4.89 199267 5.41 9.98 204978 2.70 8.26
0.20 208122 5.04 198644 4.55 9.38 206481 0.78 8.67

Facebook 0.05 290153 1.69 259257 10.64 9.57 262754 9.44 9.19
0.10 286970 1.30 256722 10.54 9.19 261865 8.74 8.42
0.20 285888 1.37 251918 11.88 9.58 269446 5.75 9.36

Stanford 0.05 14739 4.56 11479 22.11 8.91 12517 15.07 8.00
0.10 14813 4.72 10354 30.10 9.22 11708 20.96 9.09
0.20 14804 4.49 9202 37.84 9.99 10818 26.92 9.54

AVERAGE 0.05 3.75 11.96 9.23 8.09 8.64
0.10 3.64 15.35 9.46 10.80 8.59
0.20 3.64 18.09 9.65 11.15 9.19

AVERAGE (All) 0.05 5.34 41.78 6.36 32.95 5.74
0.10 5.49 47.01 6.43 37.73 5.16
0.20 5.45 51.01 6.65 40.55 5.34

Table 5.4: The cut and imbalance values for K = 128.
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Dataset ρ PaToH repl-PaToH, bisection-wise repl-PaToH, level-wise

Cut Imb. Cut Cut Imp. (%) Imb. Cut Cut Imp. (%) Imb.

California HPN 0.05 66204 5.59 57949 12.46 5.93 60868 8.05 5.54
0.10 66342 5.67 47508 28.38 6.79 55299 16.64 5.26
0.20 66326 5.67 33506 49.48 7.53 46024 30.60 6.09

Minnesota7 0.05 115126 5.73 68613 40.40 5.95 86645 24.73 5.15
0.10 115618 5.30 43859 62.06 6.93 71559 38.10 5.76
0.20 115198 5.58 29059 74.77 9.21 55411 51.89 6.70

New Mexico 0.05 115295 5.72 35863 68.89 6.07 52043 54.86 4.66
0.10 114937 5.74 41882 63.56 5.19 48228 58.03 3.41
0.20 115017 6.10 47545 58.66 4.40 54443 52.66 2.94

Oldenburg 0.05 44058 6.32 42680 3.12 7.37 41283 6.29 5.53
0.10 44113 6.32 39742 9.90 6.58 38277 13.22 5.51
0.20 44063 6.05 35483 19.47 7.81 33825 23.23 6.25

Oregon 0.05 123780 6.18 40339 67.41 6.04 55504 55.15 4.36
0.10 123141 6.23 47350 61.54 5.14 55977 54.54 3.59
0.20 123376 5.91 52547 57.40 4.84 59520 51.75 4.19

San Francisco 0.05 125656 5.73 42435 66.22 5.95 71058 43.45 4.63
0.10 125447 5.98 34045 72.86 7.13 55649 55.63 4.59
0.20 125553 6.83 38604 69.25 7.17 47008 62.55 5.68

San Joaquin 0.05 79818 5.77 61244 23.27 6.24 68954 13.61 5.46
0.10 79766 5.50 46238 42.03 6.21 58662 26.45 4.84
0.20 80077 5.87 28480 64.43 8.58 46752 41.61 5.46

Washington 0.05 144799 5.97 40308 72.16 5.32 58844 59.36 4.17
0.10 144929 6.17 46788 67.71 5.61 54376 62.48 3.50
0.20 145185 5.93 53653 63.04 4.91 59881 58.75 3.77

Wyoming 0.05 120624 5.48 40955 66.04 5.62 66101 45.20 4.41
0.10 120407 5.74 45552 62.16 5.44 57317 52.39 3.69
0.20 120791 5.92 52501 56.53 4.93 60785 49.67 3.70

AVERAGE 0.05 5.83 46.66 6.06 34.52 8.78
0.10 5.85 52.24 6.11 41.94 9.47
0.20 5.99 57.00 6.60 46.97 10.14

CalGovernerRecall 0.05 305429 5.76 301908 1.15 9.87 309517 -1.33 8.89
0.10 304936 6.10 300748 1.37 9.93 315186 -3.36 9.77
0.20 304065 6.03 298685 1.76 10.67 308817 -1.56 10.06

Facebook 0.05 367075 2.79 343711 6.36 10.80 345023 6.00 9.59
0.10 370908 2.69 337817 8.92 10.15 349106 5.87 9.63
0.20 372214 2.53 340130 8.61 10.81 337885 9.22 9.93

Stanford 0.05 22233 4.97 18883 15.06 8.15 20072 9.71 7.87
0.10 22121 4.08 17022 23.05 10.42 18831 14.87 9.01
0.20 22200 4.41 15462 30.35 10.34 17867 19.51 10.42

AVERAGE 0.05 4.51 7.52 9.61 4.79 8.78
0.10 4.29 11.11 10.17 5.79 9.47
0.20 4.32 13.57 10.61 9.06 10.14

AVERAGE (All) 0.05 5.50 36.88 6.94 27.09 5.86
0.10 5.46 41.96 7.13 32.91 5.71
0.20 5.57 46.15 7.60 37.49 6.27

Table 5.5: The cut and imbalance values for K = 256.
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with more replication, more nets can be saved from the cut. However, in some

datasets, the opposite of this can happen where as ρ increases, the cutsize can

decrease. For example in Table 5.4 for Oregon dataset with level-wise replication,

the improvement in the cutsize for ρ = 0.05, 0.10 and, 0.20 is 56.11, 53.35 and,

47.58, respectively. The main reason behind this anomaly is that if more replica-

tion amount is given to a hypergraph than the amount it needs, extra replication

can lead to partitions with worse cutsize. In other words, ρ = 0.10 or 0.20 for

the Oregon dataset gives more replication amount than this dataset needs and

thus, the partitions have slightly worse cutsize values. For a specific ρ, as the

value of K increases, the improvement in the cutsize decreases. For instance, for

ρ = 0.10, the average cutsize values of all datasets for K = 32, 64, 128 and, 256 are

53.66, 51.38, 47.01 and, 41.96, respectively. This is because as the number of parts

increases, the possibility of a cut-net connecting more parts also increases. The

imbalance values for repl-PaToH is close to PaToH for spatial network datasets

while repl-PaToH has clearly higher imbalance values for IR datasets since in

most of the cases, the given replication amount is not used uniformly in each

bipartitioning for these datasets.
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Figure 5.1: Improvement at K = 32.

Almost in all datasets, bisection-wise replication comes up with better cutsize

values than the level-wise replication. In bisection-wise replication, the initial bi-

partitions have lower replication amount with respect to their total vertex weight
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Figure 5.2: Improvement at K = 64.
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Figure 5.3: Improvement at K = 128.
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Figure 5.4: Improvement at K = 256.

whereas in level-wise replication, all bipartitions have equal replication amount.

From this, we can conclude that performing more replication at deeper levels of

the recursion tree can be more helpful in obtaining partitions with better cutsize.

On the contrary, level-wise replication has generally better imbalance values. The

reason behind this is that each bipartition gets equal replication amount with re-

spect to their total vertex weight and after performing replication, the total vertex

weights of the hypergraphs with replicated vertices are close to each other.

Tables 5.6, 5.7, 5.8 and 5.9 show the cutsize values of rFM and rFM with

gradient methodology (gradient-rFM). We used the same datasets and tested

them for both bisection-wise and level-wise replication. In the tables, we com-

pare the replication schemes separately for rFM and gradient-rFM. The lower

cutsize value for a specific replication scheme is illustrated as bold. For instance,

in Table 5.7 for the Washington dataset with ρ = 0.05, gradient-rFM (15803)

has a lower cutsize than rFM (16177) for bisection-wise replication whereas rFM

(17683) has lower cutsize value than gradient-rFM (18438) for level-wise repli-

cation. Generally, rFM performs better than gradient-rFM in spatial network

datasets. However, in IR datasets, gradient-rFM performs better; especially in

CalGovernerRecall dataset where for almost all K values, gradient-rFM is su-

perior to rFM. This can indicate that gradient-rFM may be well-suited to the

hypergraphs with relatively higher average net degree.
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Dataset ρ repl-PaToH, rFM repl-PaToH, rFM-gradient

Cut (bisection-wise) Cut (level-wise) Cut (bisection-wise) Cut (level-wise)

California HPN 0.05 6501 8791 6670 8755
0.10 3599 6559 3829 6650
0.20 3368 4693 3431 4715

Minnesota7 0.05 4252 6868 4826 7617
0.10 4969 6335 5295 6621
0.20 7000 7081 6822 7366

New Mexico 0.05 8900 10434 9077 10494
0.10 10033 11800 10515 11385
0.20 11949 13633 11321 14018

Oldenburg 0.05 5751 6701 5653 6759
0.10 3247 5054 3070 4989
0.20 2665 3658 2913 3662

Oregon 0.05 11584 12790 11767 12862
0.10 13071 14305 12807 14000
0.20 13958 17286 15068 15776

San Francisco 0.05 6827 7854 6771 7997
0.10 7938 8225 7780 9241
0.20 9124 10035 9240 10574

San Joaquin 0.05 5898 8617 5740 8741
0.10 4141 6324 4373 6550
0.20 4631 5328 4775 5529

Washington 0.05 8611 9448 9007 8899
0.10 10206 11859 9955 11221
0.20 12186 13076 12232 12498

Wyoming 0.05 11998 14121 12247 14810
0.10 14461 15399 14788 15925
0.20 15907 17794 16074 17706

CalGovernerRecall 0.05 87866 90147 86487 88574
0.10 84604 87368 85192 85050
0.20 81315 85353 80648 83147

Facebook 0.05 159872 168977 162041 162831
0.10 158727 160176 158801 164579
0.20 153042 154873 151484 156669

Stanford 0.05 3779 4138 3725 4082
0.10 3302 3847 3293 3798
0.20 3012 3665 3024 3560

Table 5.6: The cut values for rFM and gradient rFM for K = 32.
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Dataset ρ repl-PaToH, rFM repl-PaToH, rFM-gradient

Cut (bisection-wise) Cut (level-wise) Cut (bisection-wise) Cut (level-wise)

California HPN 0.05 16074 18888 15837 18830
0.10 10208 15319 10133 15445
0.20 6769 11181 6613 10976

Minnesota7 0.05 10623 17793 10325 18229
0.10 7851 13493 8238 13335
0.20 9889 12669 9800 12216

New Mexico 0.05 15469 17505 14915 16546
0.10 17420 19423 17522 19297
0.20 20233 22222 20084 22451

Oldenburg 0.05 11929 13273 12119 13393
0.10 7546 10423 7909 10668
0.20 5016 7557 4874 7729

Oregon 0.05 18868 20735 19041 20798
0.10 21179 22759 21217 22928
0.20 23926 27158 24453 26140

San Francisco 0.05 11385 16438 12078 16455
0.10 13755 15903 14222 15785
0.20 15672 18197 16127 18254

San Joaquin 0.05 14955 19189 14666 19141
0.10 8278 14543 9222 14453
0.20 7643 10830 7145 11063

Washington 0.05 16177 17683 15803 18438
0.10 17646 19986 17249 20342
0.20 20502 23064 20812 22730

Wyoming 0.05 19270 21753 18341 23142
0.10 22196 24557 21730 25165
0.20 24706 28956 25160 28049

CalGovernerRecall 0.05 135886 136342 131748 132269
0.10 132041 135345 129128 132609
0.20 127518 132349 123750 129782

Facebook 0.05 205894 216265 203023 206131
0.10 197657 216342 206643 222184
0.20 190866 197758 206423 200718

Stanford 0.05 6794 7503 6871 7413
0.10 6038 6777 5993 6878
0.20 5248 6459 5382 6368

Table 5.7: The cut values for rFM and gradient rFM for K = 64.
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Dataset ρ repl-PaToH, rFM repl-PaToH, rFM-gradient

Cut (bisection-wise) Cut (level-wise) Cut (bisection-wise) Cut (level-wise)

California HPN 0.05 31248 35072 31451 34952
0.10 23458 30324 23724 30395
0.20 14322 23808 14843 24027

Minnesota7 0.05 28680 42993 29124 43067
0.10 18017 33097 18444 33053
0.20 14903 25824 15998 26005

New Mexico 0.05 24827 27926 23936 27965
0.10 27821 30373 28212 30668
0.20 31490 35969 32399 36706

Oldenburg 0.05 22345 23814 22485 24043
0.10 18224 20995 18353 21022
0.20 11130 16478 11020 16527

Oregon 0.05 28145 33560 28586 32318
0.10 32118 35731 32372 36021
0.20 35735 39863 37040 40816

San Francisco 0.05 20551 35533 20914 35023
0.10 22367 29326 21957 28579
0.20 26000 28869 25530 28878

San Joaquin 0.05 31822 37108 32140 37012
0.10 20612 29915 21095 30145
0.20 13678 22753 13679 22810

Washington 0.05 26875 31838 25822 31278
0.10 29485 33335 29110 34627
0.20 33831 37748 33222 38087

Wyoming 0.05 27924 35813 27965 36304
0.10 31904 37585 32810 37234
0.20 36891 42084 36692 42609

CalGovernerRecall 0.05 202054 209112 201544 205582
0.10 199267 204978 196718 200668
0.20 198644 206481 197480 201590

Facebook 0.05 259257 262754 259425 260767
0.10 256722 261865 267026 272611
0.20 251918 269446 253770 272439

Stanford 0.05 11479 12517 11402 12513
0.10 10354 11708 10453 11547
0.20 9202 10818 9084 10667

Table 5.8: The cut values for rFM and gradient rFM for K = 128.
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Dataset ρ repl-PaToH, rFM repl-PaToH, rFM-gradient

Cut (bisection-wise) Cut (level-wise) Cut (bisection-wise) Cut (level-wise)

California HPN 0.05 57949 60868 57954 60765
0.10 47508 55299 48170 55296
0.20 33506 46024 33847 46598

Minnesota7 0.05 68613 86645 69524 86676
0.10 43859 71559 44825 71486
0.20 29059 55411 29016 55946

New Mexico 0.05 35863 52043 35977 51277
0.10 41882 48228 42475 49098
0.20 47545 54443 47889 53163

Oldenburg 0.05 42680 41283 42913 41344
0.10 39742 38277 39734 38204
0.20 35483 33825 35644 33743

Oregon 0.05 40339 55504 40763 55618
0.10 47350 55977 47160 54991
0.20 52547 59520 53203 59394

San Francisco 0.05 42435 71058 42755 72628
0.10 34045 55649 34896 56102
0.20 38604 47008 39253 47328

San Joaquin 0.05 61244 68954 61788 69460
0.10 46238 58662 46671 58638
0.20 28480 46752 28842 47403

Washington 0.05 40308 58844 41157 60109
0.10 46788 54376 47081 55802
0.20 53653 59881 52494 59022

Wyoming 0.05 40955 66101 41226 65738
0.10 45552 57317 46438 57020
0.20 52501 60785 52414 61383

CalGovernerRecall 0.05 301908 309517 293178 299822
0.10 300748 315186 293819 301121
0.20 298685 308817 287586 298014

Facebook 0.05 343711 345023 355325 340151
0.10 337817 349106 338080 340675
0.20 340130 337885 327400 340727

Stanford 0.05 18883 20072 18869 20146
0.10 17022 18831 16952 18835
0.20 15462 17867 15452 17682

Table 5.9: The cut values for rFM and gradient rFM for K = 256.



Chapter 6

Conclusion and Future Work

In this thesis, we proposed a heuristic based solution for the replicated hyper-

graph partitioning problem. In this problem, the vertices are replicated with

respect to given replication amount in order to improve the quality of the parti-

tions. This approach differs from the replication schemes in the VLSI literature

in the sense that the replication of a vertex cannot bring any net to the cut,

i.e., replication does not have any “side effects” except using more space. Our

replication scheme can be applied to the hypergraph models in different areas

such as distributed IR and spatial databases. For hypergraph partitioning, mul-

tilevel and recursive bipartitioning schemes are utilized. The basic FM heuristic

is extended to a version that is capable of replication, called replicated FM which

introduced new vertex states and gain update algorithms to support replication

and unreplication of vertices. We adopted various well-known concepts to further

improve the performance of rFM such as early-exit and gradient methodology.

We proposed solutions to the issues encountered while integrating our replication

scheme into the multilevel and recursive bipartitioning frameworks. These issues

include removal of unnecessary replications and replica selection for nets.

The results show that replication is a valuable method to obtain partitions

with better quality and the cutsize of the partitions can greatly be reduced using

little amount of replication. The different properties of the hypergraphs such as

average net degree have a great impact on our replication scheme as the results
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indicate. Generally, our replication scheme works well with the hypergraphs with

a low average net degree due to the characteristics of the FM based heuristics.

Distribution of the given replication amount among bipartitionings has an impor-

tant effect on the cutsize. Performing more replication at the deeper levels of the

recursion tree is a better replication distribution scheme compared to distributing

the given replication amount uniformly among all bipartitions. The rFM with

gradient methodology can outperform rFM in certain datasets although rFM gen-

erally performs better. This may indicate that rFM with gradient methodology

should be used with the hypergraphs that have relatively high average net degrees

whereas rFM should be used with the hypergraphs with low average net degrees.

Replication generally does not disturb the balance of the partitions. However, as

the results reveal, different replication distribution schemes have certain effects

on the balance of the partitions.

As future research, we have various ideas to that can further improve the

quality of the partitions:

• Different operation selection strategies may be tested for rFM like allow-

ing zero gain replication operations. Such an approach can be beneficial

since excess replication may have an effect of uncovering new positive gain

operations.

• We plan to try different replica selection strategies. A suitable approach

may be forcing the selection of the replicas for nets after each level of the

recursion tree. In this way, all replicas’ parts can be predetermined and the

pins of the unused replicas can be removed.

• We can further improve the balance of the partitions by using the remain-

ing replication amount after obtaining a K-way partitioning. This can be

achieved by replicating vertices from the most heavily loaded part to other

parts.

• A totally different approach would be using a replication scheme that oper-

ates on K-way partitions and using this scheme in each level of the recur-

sion tree. In other words, we can use a K-way refinement heuristic that can
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perform replication and unreplication operations on vertices. Performing

replication in each bipartitioning has the shortcoming of having a global

view over the partitions. Even if we obtain bipartitions with a cutsize value

of zero, this does not guarantee that the cutsize will be zero after obtaining

a K-way partitioning. Therefore, a K-way refinement heuristic can be a

perfect tool to overcome this problem.
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