
BALANCE PRESERVING MIN-CUT
REPLICATION SET FOR A K-WAY

HYPERGRAPH PARTITIONING

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Volkan Yazıcı

September, 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Özcan Öztürk

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Oya-Ekin Karaşan

Approved for the Institute of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Institute

ii

ABSTRACT

BALANCE PRESERVING MIN-CUT REPLICATION
SET FOR A K-WAY HYPERGRAPH PARTITIONING

Volkan Yazıcı

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2010

Replication is a widely used technique in information retrieval and database sys-

tems for providing fault-tolerance and reducing parallelization and processing

costs. Combinatorial models based on hypergraph partitioning are proposed for

various problems arising in information retrieval and database systems. We con-

sider the possibility of using vertex replication to improve the quality of hyper-

graph partitioning. In this study, we focus on the Balance Preserving Min-Cut

Replication Set (BPMCRS) problem, where we are initially given a maximum

replication capacity and a K-way hypergraph partition with an initial imbalance

ratio. The objective in the BPMCRS problem is finding optimal vertex replication

sets for each part of the given partition such that the initial cutsize of the partition

is improved as much as possible and the initial imbalance is either preserved or

reduced under the given replication capacity constraint. In order to address the

BPMCRS problem, we propose a model based on a unique blend of coarsening and

integer linear programming (ILP) schemes. This coarsening algorithm is based

on the Dulmage-Mendelsohn decomposition. Experiments show that the ILP for-

mulation coupled with the Dulmage-Mendelsohn decomposition-based coarsening

provides high quality results in feasible execution times for reducing the cost of

a given K-way hypergraph partition.

Keywords: partitioning, hypergraph partitioning, replication.

iii

ÖZET

K PARÇALI BIR HİPERÇİZGE BÖLÜMLEMESİ İÇİN
DENGE KORUMALI MİN-KESİT ÇOKLAMA KÜMESİ

Volkan Yazıcı

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2010

Çoklama, veri erişimi ve veritabanı sistemlerinde aksaklığa dayanıklılık ve par-

alelizasyon ve işleme yüklerinin azaltılması için sıkça kullanılan bir tekniktir.

Veri erişimi ve veritabanı sistemlerinde hiperçizge bölümlemesine dayanan bir çok

kombinasyonel model önerilmiştir. Bu çalışmada, düğüm çoklamaları kullanılarak

hiperçizge bölümlemelerindeki kesit boyutunun azaltılması üzerinde durmaktayız.

Bu amaçla, verilen bir maksimum çoklama kapasitesi ve K parçalı hiperçizge

bölümlemesi ile Denge Korumalı Min-Kesit Çoklama Kümesi’nin (DKMKÇK)

bulunması problemi üzerine yoğunlaşmaktayız. DKMKÇK probleminde amaç,

her parça için bulunacak bir çoklama kümesi ile baştaki bölümlemenin dengesini

koruyarak kesit boyutunu azaltmaktır. Bu amaçla, küçültme (coarsening) ve

tamsayı doğrusal programlama (integer linear programming (ILP)) yöntemlerinin

seçkin bileşiminden oluşan bir model öneriyoruz. Modelde kullanılan küçültme al-

goritması Dulmage-Mendelsohn ayrışımına dayanmaktadır. Yapılan deneylerde,

Dulmage-Mendelsohn ayrışımına dayalı küçültme yöntemi ile birlikte kullanılan

ILP formülasyonunun mantıklı çalışma zamanları içinde, verilen bir K parçalı

hiperçizge bölümlemesinin kesit boyutunu düğüm çoklamaları ile oldukça yüksek

seviyelerde azalttığı gözlemlenmiştir.

Anahtar sözcükler : bölümleme, hiperçizge bölümleme, çoklama.

iv

Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisor Prof. Dr.

Cevdet Aykanat for the continuous support of my M.S. study and research, for

his patience, motivation, enthusiasm, and immense knowledge.

Besides my advisor, I would like to thank the rest of my thesis committee: Asst.

Prof. Dr. Özcan Özturk and Assoc. Prof. Dr. Oya-Ekin Karaşan, for their

encouragement, insightful comments, and hard questions.

I also would like to thank Ata Türk, Enver Kayaarslan, Tayfun Küçükyılmaz,

Reha Oğuz Selvitopi, Önder Bulut, and Ahmet Camcı, for their valuable contri-

butions, fruitful hints and inspiring discussions.

v

vi

Anneme, Babama ve Kardeşime...

Contents

1 Introduction 1

2 Preliminaries 5

2.1 K-Way Hypergraph Partitioning 5

2.2 K-Way Hypergraph Partitioning With Vertex Replication 7

2.3 The Dulmage-Mendelsohn Decomposition 8

3 Balance Preserving Min-Cut Replication Set 12

3.1 Boundary Adjacency Hypergraph Construction 13

3.2 Vertex Selection in Boundary Adjacency Hypergraph 18

3.3 Coarsening of Boundary Adjacency Hypergraph 20

3.4 Balance Preserving Replication Capacity Computation 23

3.5 Part Visit Order for Replication 24

4 Experimental Results 25

4.1 Data Set Collection . 25

vii

CONTENTS viii

4.2 Implementation Details . 27

4.3 Initial K-Way Hypergraph Partitioning 28

4.4 Replication Results . 28

4.5 Comparison of Coarsening Algorithms and The Effect of Coarsening 32

4.6 Part Visit Orderings . 33

4.7 System Resource Consumptions 34

5 Conclusion 35

A SUK to MCRS Transformation 36

B Finding the Cutsize of a Partition With Vertex Replications 38

List of Figures

2.1 The Dulmage-Mendelsohn decomposition. 10

3.1 A 3-way partition of a sample hypergraph H. 16

3.2 Sample boundary adjacency hypergraph construction. 16

3.3 Sample net splitting problem. 17

3.4 The fine-grained Dulmage-Mendelsohn decomposition of sample

boundary adjacency hypergraph Hcon
1 22

A.1 Sample SUK problem to MCRS problem transformation. 37

ix

List of Tables

4.1 Data set properties. 27

4.2 Properties of hypergraph partitions. 29

4.3 Replication results. 31

x

Chapter 1

Introduction

In the literature, combinatorial models based on hypergraph partitioning are

proposed for various complex and irregular problems arising in parallel scientific

computing [4, 16, 17, 27, 65, 66], VLSI design [2, 41, 46], information retrieval [15],

software engineering [8], and database design [25, 26, 43, 47, 62]. These models

formulate an original problem as a hypergraph partitioning problem, trying to

optimize a certain objective function (e.g., minimizing the total volume of com-

munication in parallel volume rendering, optimizing the placement of circuitry on

a die area, minimizing the access to disk pages in processing GIS queries) while

maintaining a constraint (e.g., balancing the computational load in a parallel sys-

tem, using disk page capacities as an upper bound in data allocation) imposed

by the problem. In general, the solution quality of the hypergraph partitioning

problem directly relates to the formulated problem. Hence, efficient and effective

hypergraph partitioning algorithms are important for many applications.

Combinatorial models based on hypergraph partitioning can broadly be cat-

egorized into two groups. In the former group, which we call as undirectional

hypergraph partitioning models, hypergraphs are used to model a shared relation

among the tasks or data represented by the vertices. For instance, hypergraph

partitioning models used in database design, information retrieval [15], and GIS

queries [25, 26] can be categorized in this group. In the latter group, which we call

as directional hypergraph partitioning models, hypergraphs are used to model a

1

CHAPTER 1. INTRODUCTION 2

directional (source-destination) relation among the tasks or data represented by

the vertices. For example, hypergraph partitioning models used in matrix vec-

tor multiplication [18, 19, 70] and VLSI design [2, 41, 46] can be categorized in

this group. In this study, we focus on the undirectional hypergraph partitioning

models. Directional hypergraph partitioning models are out of the scope of this

work.

Replication is a widely used technique in information retrieval and database

systems. This technique is generally used for providing fault-tolerance (e.g., max-

imizing the availability of data in case of a disk failure) and reducing paralleliza-

tion (e.g., minimizing communication costs in information retrieval systems) and

processing (e.g., minimizing disk access costs of a database system) costs. We

consider the possibility of using vertex replication to improve the quality of par-

titioning objective in undirectional hypergraph models. We refer to this problem

as hypergraph partitioning with vertex replication and there are two viable ap-

proaches to this problem. In the first approach, which we call as one-phase,

replication is performed concurrently with the partitioning. A concurrent work

proposes a heuristic for this problem in [60]. In the second approach, which we

call as two-phase, replication is performed in two separate phases: In the first

phase, hypergraph is partitioned and in the second phase, replication is applied

to the partition produced in the previous phase. In this study, we propose an

efficient and effective replication phase based on a unique blend of an integer lin-

ear programming (ILP) formulation and a coarsening algorithm. This coarsening

algorithm is based on the Dulmage-Mendelsohn decomposition. In this approach,

we iterate over available parts and try to find replication sets corresponding to

the vertices that are to be replicated into iterated parts. Replication set of each

part is constrained by a maximum replication capacity. Replication sets should

be determined in such a way that the partition imbalance is preserved after the

replication.

In the literature, there are various studies for replication in different do-

mains. Below we discuss related studies from VLSI design, relational and spatial

databases, and information retrieval domains.

CHAPTER 1. INTRODUCTION 3

In VLSI design, the first in-depth discussion about logic replication is given

by [56], where they propose a heuristic approach. Later, [44] and [51] extend

the Fidduccia and Mattheyses (FM) iterative improvement algorithm to allow

vertices to be duplicated during partitioning. [37] proposes a network flow model

to the optimal replication for min-cut partitioning, and an FM based heuristic to

the size constrained min-cut replication problem. [45] introduces the concept of

functional replication. [69] provides an optimal solution to the min-area min-cut

replication problem. [3] presents a survey about circuit partitioning and provide

a brief list of existing logic replication schemes. [31] provides enhancements for

available gate replication heuristics.

Replication is a well-studied topic in database literature as well, and it is

generally coupled with reliability, fault recovery, and parallelization. There are

various publications about distributed databases and replication dating back to

mid-70s [22, 40, 61]. A majority of these studies are concerned about fault re-

covery and thus apply full replication of the whole database. [53] presents a

survey of current state of the art technologies in distributed database systems.

As noted by [33], database systems encapsulate major implications within itself

(e.g. transaction management [7], recoverability [9, 23], and serializability [7])

and considering the dynamic nature of the databases, studied methodologies in

distributed database replication mainly focus on the consistency issues. With the

impact of geographical information systems in the past decade, there has been a

growing interest in the storage modelling of large-scale spatial network databases

[25, 26] and multidimensional access methods [32, 58]. [63] provides models for

declustering and load-balancing in parallel geographic information systems. [59]

gives a survey of data partitioning and replication management in distributed

geographical information systems. [57] provides a survey of replicated decluster-

ing schemes for spatial data. [35] presents a selective data replication scheme for

distributed geographical data sets.

Another application area where replication is dubbed as indispensable is

search and information retrieval systems. There are many surveys [5, 34, 50,

67, 68] investigating the fundamental concepts of the field. With the growing

need for performance and wide acceptance of distributed computing, traditional

CHAPTER 1. INTRODUCTION 4

information retrieval concepts are augmented for scalability, parallelization and

fault-tolerance purposes. Caching, clustering and replication concepts are uti-

lized to enhance these architectures. [36] proposes a text retrieval system which

utilizes clustering and full replication of the data structures for scalability pur-

poses. [48] gives a comparison of replication and caching approaches for infor-

mation retrieval systems. [6] presents an overview of the clustering architecture

deployed at Google, where they exploit replication via sharding through clus-

ters. [12, 13, 14] present distributed information retrieval architectures utilizing

different clustering and replication models. They present their findings on the

effects of networking and query distribution over the performance of replication

and clustering. [49] proposes a pipelined distributed information retrieval model,

where a naive partial replication scheme duplicating the most frequent terms on

all disks.

Chapter 2

Preliminaries

In this chapter, notations that will be used throughout the thesis and the

Dulmage-Mendelsohn decomposition is given. In Section 2.1, K-way hypergraph

partitioning is presented. Next, in Section 2.2, partitioning with vertex replication

is given. Finally, in Section 2.3, a brief explanation of the Dulmage-Mendelsohn

decomposition will be shown.

2.1 K-Way Hypergraph Partitioning

A hypergraph H = (V ,N) is defined as a two-tuple, where V denotes the set of

vertices and N denotes the set of nets (hyperedges) among those vertices. Every

net n ∈ N connects a subset of vertices. The vertices connected by a net n are

called its pins and denoted as Pins(n) ⊆ V . Two vertices are said to be adjacent if

they are connected by at least one common net. That is, v ∈ Adj(u) if there exists

a net n such that u, v ∈ Pins(n). A weight w(v) and a cost c(n) are assigned for

each vertex v and net n, respectively. Adjacency Adj(·) and weight w(·) operators

easily extend to a set U of vertices, that is, Adj(U) =
(⋃

u∈U Adj(u)
)
− U and

w(U) =
∑

v∈U w(v).

A K-way vertex partition of H is denoted as Π(V) = {V1, V2, . . . , VK}. Here,

5

CHAPTER 2. PRELIMINARIES 6

parts Vk ⊆ V , for k = 1, 2, . . . , K, are pairwise disjoint and mutually exhaustive.

In a partition Π of H, a net that connects at least one vertex in a part is said

to connect that part. The connectivity set Λ(n) of a net n is defined as the set

of parts connected by n. The connectivity λ(n) = |Λ(n)| of a net n denotes the

number of parts connected by n. A net n is said to be cut if it connects more

than one part (i.e., λ(n) > 1), and uncut otherwise (i.e., λ(n) = 1). The cut

and uncut nets are also referred to as external and internal nets, respectively.

Next(Vk) denotes the set of external nets of part Vk. A vertex is said to be a

boundary vertex if it is connected by at least one cut net.

For a K-way partition Π of a given hypergraph H, imbalance ratio ibr(Π) is

defined as follows:

ibr(Π) =
Wmax

Wavg

− 1.

Here, Wmax = maxVk∈Π{w(Vk)} and Wavg = Wtot/K, where Wtot = w(V).

There are various cutsize metrics for representing the cost χ(Π) of a partition

Π. Two most widely used cutsize metrics are given below.

• Cut-net metric: The cutsize is equal to the sum of the costs of the cut nets.

χ(Π) =
∑

n∈Next

c(n) (2.1)

• Connectivity metric: Each cut net n contributes (λ(n)− 1)c(n) to the cut-

size.

χ(Π) =
∑

n∈Next

(λ(n)− 1) c(n) (2.2)

Given these definitions, the K-way hypergraph partitioning problem is defined

as follows.

Definition 1 K-Way Hypergraph Partition. Given a hypergraph H = (V ,N),

number of parts K, a maximum imbalance ratio ε, and a cutsize metric χ(·); find

CHAPTER 2. PRELIMINARIES 7

a K-way partition Π of H that minimizes χ(Π) subject to the balancing constraint

ibr(Π) ≤ ε.

This problem is known [46] to be an NP-hard problem.

2.2 K-Way Hypergraph Partitioning With Ver-

tex Replication

For a given K-way partition Π of H, R(Π) = {R1, R2, . . . , RK} denotes the

replication set, where Rk ⊆ V and Rk ∩ Vk 6= ∅, for k = 1, 2, . . . , K. That is, Rk

denotes the subset of vertices added to part Vk of Π as replicated vertices. Note

that replication subsets are possibly pairwise overlapping since a vertex might be

replicated in more than one part. The replication set R(Π) for a given partition

Π of H induces the following K-way hypergraph partition with vertex replication:

Πr(Π,R) = {V r
1 = V1 ∪R1, V

r
2 = V2 ∪R2, . . . , V

r
K = VK ∪RK}.

Note that although Vk’s of Π are pairwise disjoint, V r
k ’s of Πr are overlapping.

Previously defined χ(·) and ibr(·) functions are directly applicable to Πr without

any changes. The total weight after replication is defined as W r
tot = Wtot +∑

Rk∈Rw(Rk). The main problem addressed in this paper is the following.

Problem 1 Balance Preserving Min-Cut Replication Set (BPMCRS) for a K-

Way Hypergraph Partition. Given a hypergraph H = (V ,N), a K-way partition

Π of H, and a replication capacity ratio ρ; find a K-way replication set R(Π) that

minimizes the cutsize χ(Πr) of the induced replicated partition Πr subject to the

replication capacity constraint of W r
tot ≤ (1 + ρ)Wtot and the balancing constraint

of ibr(Πr) ≤ ibr(Π).

Even without the balancing constraint, the min-cut replication set (MCRS)

problem is known [38] to be NP-hard. Alternative to the proof of Hwang [38],

CHAPTER 2. PRELIMINARIES 8

a simple transformation of the set-union knapsack (SUK) problem – which is

known [42] to be NP-hard – to the MCRS problem is presented in Appendix A.

2.3 The Dulmage-Mendelsohn Decomposition

The Dulmage-Mendelsohn (DM) decomposition is a canonical decomposition on

bipartite graphs and described in a series of papers [28, 29, 30, 39] by Dulmage,

Johnson, and Mendelsohn. Pothen and Fan [55] formalized this decomposition

by a series of lemmas and explained their enhancements.

A bipartite graph G = (V = R ∪ C, E) is a graph whose vertex set V is

partitioned into two parts R and C such that the edges in E connect vertices

in two different parts. A matching on a bipartite graph is a subset of its edges

without any common vertices. A maximum matching is a matching that contains

the largest possible number of edges.

Definition 2 The Dulmage-Mendelsohn Decomposition. Let M be a maximum

matching for a bipartite graph G = (V = R ∪ C, E). The Dulmage-Mendelsohn

decomposition canonically decomposes G into three parts

Π = {VH = RH ∪ CH , VS = RS ∪ CS, VV = RV ∪ CV },

where RH , RS, RV and CH , CS, CV respectively are subsets of R and C sets with

the following definitions based on M:

RV = {vi ∈ R | vi is reachable by an alternating path from some unmatched vertex vj ∈ R}

RH = {vi ∈ R | vi is reachable by an alternating path from some unmatched vertex vj ∈ C}

RS = R− (RV ∪RH)

CV = {vi ∈ C | vi is reachable by an alternating path from some unmatched vertex vj ∈ R}

CH = {vi ∈ C | vi is reachable by an alternating path from some unmatched vertex vj ∈ C}

CS = C − (CV ∪ CH)

CHAPTER 2. PRELIMINARIES 9

Following properties given in [54, 55] regarding the RH , RS, RV and CH , CS,

RS subsets provide certain features related with the structure of the Dulmage-

Mendelsohn decomposition. The sets RV , RS, and RH are pairwise disjoint;

similarly, the sets CV , CS, and CH are pairwise disjoint. A matching edge of M
connects: a vertex in RV only to a vertex in CV ; a vertex in RS only to a vertex

in CS; and a vertex in RH only to a vertex in CH . Vertices in RS are perfectly

matched to vertices in CS. No edge connects: a vertex in CH to vertices in RS

or RV ; a vertex in CS to vertices in RV . CH and RV are the unique smallest sets

that maximize the |CH | − |RH | and |RV | − |CV | differences, respectively. The

subsets RH , RS, RV and CH , CS, CV are independent of the choice of the maxi-

mum matching M ; hence the Dulmage-Mendelsohn decomposition is a canonical

decomposition of the bipartite graph.

For larger bipartite graphs, one might opt for a more fine-grained decompo-

sition. For this purpose, Pothen and Fan [55] further decomposes RH , RS, RV

and CH , CS, CV sets into smaller subsets. For the simplicity of the forthcoming

discussions, the Dulmage-Mendelsohn decomposition will be referred to as coarse-

grained decomposition and enhancements of Pothen and Fan will be referred to

as fine-grained decomposition.

GX denotes a bipartite subgraph of G, where X is one of H, S, or V . That

is, for a given bipartite subgraph GX = (VX = RX ∪ CX , EX), EX corresponds

to the subset of edges in E , which connects either a vertex from RX to a vertex

in CX , or a vertex from CX to a vertex in RX . The fine-grained decomposition

is formalized as follows.

Definition 3 Fine-Grained Dulmage-Mendelsohn Decomposition. Let M be a

maximum matching for a bipartite graph G = (V = R ∪ C, E) and GH , GS, GV

be bipartite subgraphs induced by the coarse-grained decomposition of R and C
sets into RH , RS, RV and CH , CS, CV subsets. Fine-grained decomposition of

bipartite subgraphs GH , GS, and GV is constructed as follows.

• Find connected components in GH and GV subgraphs.

• Using GS, construct a new directed bipartite graph G′S, where matched edges

CHAPTER 2. PRELIMINARIES 10

1

2

3

4

5

6

7

8

9 19

18

17

16

15

14

13

12

11

10

R
C

(a) Sample bi-
partite graph.

3

4

5

6

9

7

8

1

2

19

10

18

17

16

15

14

13

12

11

CH

CS

CV

RV

RS

RH

(b) Coarse-
grained Dulmage-
Mendelsohn
decomposition.

3

4

5

6

9

7

8

1

2

19

10

18

17

16

15

14

13

12

11

RH

RS

RV

CV

CS

CH

(c) Fine-grained
Dulmage-Mendelsohn
decomposition.

Figure 2.1: The Dulmage-Mendelsohn decomposition.

are left undirected, and other unmatched edges are directed from CS to RS.

Find strongly connected components in G′S.

Depending on the structure of the given bipartite graph and maximum match-

ing, resultant fine-grained decomposition is expected to provide much more num-

ber of partitions than its coarse-grained equivalent.

For a given bipartite graph G = (V , E), a maximum matching can be found

in O(|E|
√
|V|) time due to Hopcroft-Karp algorithm. In the coarse-grained de-

composition phase, a depth-first search is performed for every unmatched ver-

tex for finding alternating paths. Thus, coarse-grained decomposition runs in

O(|E|
√
|V|) + O(|V|(|V| + |E|)) time, that is, in O(|V|(|V| + |E|)) time. In the

fine-grained decomposition phase, connected components for GH and GV can be

found in O(|V|+ |E|) time via breadth-first search and strongly-connected compo-

nents in G′S can be found in O(|V|+ |E|) time via Tarjan’s algorithm [64]. Hence,

decomposition phase takes O(|V|(|V|+ |E|)) time in total.

CHAPTER 2. PRELIMINARIES 11

In Fig. 2.1, application of coarse-grained and fine-grained Dulmage-

Mendelsohn decompositions are demonstrated on a sample bipartite graph G =

(V = R ∪ C, E). This sample hypergraph is composed of 19 vertices and 17

undirected edges. Fig. 2.1b demonstrates a coarse-grained Dulmage-Mendelsohn

decomposition of G for a given maximum matching M. Here, matched edges

are drawn in black and VH , VS, and VV parts produced by the coarse-grained

decomposition are separated via borders. For instance, v3 is matched with v12

and RH = {v3, v4} and CH = {v11, v12, v13, v14, v15}.

Fig. 2.1c demonstrates a fine-grained decomposition of the sample bipartite

graph G in Fig. 2.1a. Here, components are separated via dashed lines. That

is, vertices v3, v11, v12 and edges between them constitute a connected component

in GH . As seen in Fig. 2.1c, unmatched edges (v5, v17), (v6, v16), and (v9, v17) in

GS are directed from CS to RS to construct G′S. There appears two strongly-

connected components in G′S: v5, v6, v16, v17 and v9, v18.

Chapter 3

Balance Preserving Min-Cut

Replication Set

In this chapter, we propose an efficient and effective approach for solving the

BPMCRS problem. It is clear that, given a K-way partition Π of H, only the

boundary vertices in Π have the potential of decreasing the cutsize via replication.

Thus, only the boundary vertices are considered for finding a good replication set

R. In order to be able to handle the balancing constraints on the weights of

the parts of the replicated partition, we propose a part-oriented approach by

investigating the replications to be performed on each part (in some particular

order).

Consider a replication set Rk for a part Vk of Π. Note that Rk has to maximize

the reduction in the cutsize without violating the maximum weight constraint of

part Vk. It is also clear that, replication of vertices of Rk into part Vk can only

decrease the cutsize due to the external nets of part Vk. So, while searching for a

good Rk, we consider only the external nets of part Vk and the boundary vertices

of other parts that are connected by the external nets of part Vk. That is, we

only consider the net set Next(Vk) and the vertex set Adj(Vk) for finding an Rk.

Algorithm 1 displays a general framework for our approach. As seen in the

algorithm, for each part Vk, we first compute the replication capacity κk so that

12

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 13

Algorithm 1 find replication set(H,Π,W, ρ)

1: Πr
0 ← Π

2: for k ← 1 to K do
3: κk = (1 + ρ)Wavg − w(Vk)
4: Hk ← construct(H, k,Πr

k−1)
5: Hcoarse

k ← coarsen(Hk)
6: Rk ← select(Hcoarse

k , κk)
7: Πr

k ← {V1 ∪R1, . . . , Vk ∪Rk, Vk+1, . . . , VK}
8: update(k)
9: end for

10: Πr ← Πr
K

the initial imbalance will be preserved or improved after the replication. Then, we

construct the hypergraph Hk, which is referred to here as the boundary adjacency

hypergraph. Vertices of Hk correspond to Adj(Vk) and nets of Hk are derived from

Next(Vk). This hypergraph construction process is described in Section 3.1. After

constructing Hk, a good Rk is selected from the vertices of Adj(Vk) via using an

ILP approach described in Section 3.2. In order to reduce the high computa-

tion cost of ILP for large Hk, a novel Dulmage-Mendelsohn decomposition-based

coarsening scheme for Hk is described in Section 3.3.

3.1 Boundary Adjacency Hypergraph Con-

struction

Without loss of generality, here we describe the boundary adjacency hypergraph

construction operation to be performed in the kth iteration of our algorithm for

the purpose of deciding on the vertices to be replicated into part Vk. Note that

prior to this construction process, the effects of the replications performed in the

previous iterations are reflected on Πr
k−1 (line 7 of Algorithm 1) and the boundary

vertices and cut nets are updated accordingly (line 8 of Algorithm 1). For the

simplicity of the forthcoming discussions, we use Adj(Vk) and Next(Vk) to refer

to the updated adjacency vertex and external net sets of part Vk, respectively.

For example, consider an external net nj of part Vk in the original partition Πr
0.

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 14

During an earlier iteration ` < k, if all pins of net nj that lie in part Vk are

replicated into part V`, then net nj disappears in Next(Vk). In such a case, those

pins of net nj that lie in part V` and that are only connected by net nj to part

Vk disappear from Adj(Vk).

Algorithm 2 update(k)

1: for l← (k + 1) to K do
2: for each net nj ∈ Next(Vk) do
3: if (Pins(nj) ∩ V`) ∩Rk 6= ∅ then
4: for each vertex v ∈ (Pins(nj) ∩ Vk) do
5: if Nets(v) ∩Next(V`) = {nj} then
6: Adj(V`) = Adj(V`)− {v}
7: end if
8: end for
9: Next(V`) = Next(V`)− {nj}

10: Λ(nj) = Λ(nj)− V` {optional for cut-net metric}
11: end if
12: end for
13: end for

Two distinct boundary adjacency hypergraphs are required to encapsulate the

cut-net (Eq. 2.1) and connectivity (Eq. 2.2) cutsize metrics, which will be referred

to as Hcut
k and Hcon

k , respectively. The construction process for the former and

latter are depicted in Algorithms 3 and 4, respectively. In both hypergraphs, the

vertex set is composed of Adj(Vk). In both of these hypergraphs, the objective

is to find a set of vertices Rk ⊆ Adj(Vk) to be replicated into part Vk, such that

the total cost of nets covered by Rk is maximized without violating the balance

constraint imposed on Vk. The net set definition for Hcut
k and Hcon

k should be

done in according to this coverage objective. Note that a net nj of Hcut
k /Hcon

k is

said to be covered by Rk if all pins of nj in Adj(Vk) lie within Rk.

Algorithm 3 construct(H, k,Πr
k−1) for cut-net metric

1: Vcut
k ← Adj(Vk)

2: N cut
k ← Next(Vk)

3: for each net nj ∈ Next(Vk) do
4: Pins(nj)← Pins(nj)− Vk

5: end for
6: return Hcut

k ← (Vcut
k ,N cut

k)

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 15

For the cut-net metric, in order to reduce the cutsize related with a net nj

in Next(VK), the net nj should be made internal to part Vk, which is feasible

only when all pins of net nj in Adj(VK) are replicated into Vk. Thus, the net

set of Hcut
k is selected as the external net set of part Vk (line 2 of Algorithm 3).

Since Hcut
k is used to find the set of vertices to be replicated into part Vk, the

boundary vertices of part Vk should be extracted from the pin list of the nets of

Hcut
k (lines 3–4 of Algorithm 3).

Algorithm 4 construct(H, k,Πr
k−1, κk) for connectivity metric

1: Vcon
k ← Adj(Vk)

2: N con
k ← ∅

3: for each net nj ∈ Next(Vk) do
4: for each part V` ∈ Λ(nj) and V` 6= Vk do
5: N con

k ← N con
k ∪ {n`

j}
6: Pins(n`

j)← Pins(nj) ∩ V`

7: end for
8: end for
9: return Hcon

k ← (Vcon
k ,Vcon

k)

For the connectivity metric, in order to reduce the cutsize related with a net

nj in Next(VK), it is sufficient to replicate a subset of the pins of net nj so that

λ(nj) in Πr will decrease. That is, number of parts connected by net nj will

decrease after the replication. For this reason, the nets of Hcon
k is derived from

Next(Vk) by applying a net splitting operation to each external net in such a

way that each external net nj is split into λ(nj) − 1 new nets. This splitting

operation is performed as follows: For each net nj in Next(Vk), we traverse over

the connectivity set Λ(nj) of nj and introduce a new net n`
j for each part V` 6= Vk

in Λ(nj). The newly introduced net n`
j is set to connect only those pins of nj

that lie in part V` (lines 4–6 of Algorithm 4).

Fig. 3.1 shows a 3-way partition of a sample hypergraph H with 24 boundary

vertices and 19 cut nets. In figures, circles denote vertices and dots denote nets,

where a number i in a circle denotes a vertex vi and a number j besides a dot

denotes a net nj. Note that only boundary vertices and cut nets are numbered for

the sake of simplicity. Fig. 3.2 shows the boundary adjacency hypergraphs Hcut
1

(Fig. 3.2a) and Hcon
1 (Fig. 3.2b) for part V1 for cut-net and connectivity metrics,

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 16

13

12

11

10

7

9

6

5

4

3

2

1

8

19

18

17

16

15

14 10

19

18

16

17

15

13

12

11

9

8

7

6

5

14
1

2

3

4

20

21

23

24

22

V3

V1

V2

Figure 3.1: A 3-way partition of a sample hypergraph H.

8

7

6

5

4

3

2

9

10

11

12

13

1

10

19

18

16

17

15

13

12

11

9

8

7

6

5

14
1

2

3

4

A
dj

(V
1
)
∩
V

3
A
dj

(V
1
)
∩
V

2

V
c
u

t
1

=
A
dj

(V
1
)

N
c
u

t
1

=
N

e
x
t
(V

1
)

(a) Boundary adjacency hy-
pergraph Hcut

1 of part V1.

1

2

3	

4

5

6

11

12

13

10

19

18

16

17

15

13

12

11

9

8

7

6

5

14

A
dj

(V
1
)
∩
V

3
A
dj

(V
1
)
∩
V

2

73

93

103

72

82

92

102

83

V
c
o
n

1
=
A
dj

(V
1
)

N
c
o
n

1

(b) Boundary adjacency
hypergraph Hcon

1 of part
V1.

Figure 3.2: Sample boundary adjacency hypergraph construction.

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 17

1

1

2

3

4

4

5

Rm

Vm ∩Adj(Vk)

V` ∩Adj(Vk)

Vcon
k

N con
k

(a) n1 has multiple choices for v4 connec-
tion.

1

1

2

3

4

4

5

(b) v4 of n1

is selected from
V`.

1

1

2

3

4

4

5

(c) v4 of n1

is selected from
Rm.

Figure 3.3: Sample net splitting problem.

respectively. Comparing Fig. 3.1, with Figs. 3.2a and 3.2b shows that V2’s and

V3’s boundary vertices v5, v6, . . . , v19 that are connected by at least one external

net of V1 constitute the vertices of both Hcut
1 and Hcon

1 .

Comparing Fig. 3.1 with Figs. 3.2a and 3.2b shows that each of the external

nets n1, n2, . . . , n13 of V1 incurs a net in Hcut
1 . Similarly, each of the external

nets n1, n2, . . . , n6 and n11, n12, n13 of V1, which have a connectivity of 2, incurs a

single net in Hcon
1 . On the other hand, each of the external nets n7, n8, n9, n10 of

V1, which have a connectivity of 3, incurs 2 nets in Hcon
1 . For example, n7 with

Pins(n7) = {v10, v14, v16} connects both parts V2 and V3, and it incurs two nets

n2
7 and n3

7 in Hcon
1 , where Pins(n2

7) = {v10} and Pins(n3
7) = {v14, v16}. Note that

n2
7 and n3

7 are respectively shown as 72 and 73 in Fig. 3.2b.

As seen in Fig. 3.2a, net n9 of Hcut
1 is covered by the vertex set {v9, v10, v11}.

So, the cut-net cutsize related with net n9 can be reduced only if all of the vertices

v9, v10, v11 are replicated into part V1. On the other hand, as seen in Fig. 3.2b,

net n2
9 of Hcon

1 is covered by the vertex set {v9, v10} and n3
9 of Hcon

1 is covered

by the vertex set {v11}. So, the connectivity cutsize related with net n9 can be

reduced by 1 (assuming unit net costs) either by replicating vertices v9 and v10

into part V1 or by replicating vertex v11 into part V1. Note that, although the

vertex set {v9, v10, v11} covers only net n9 in Hcut
1 , it covers nets n2

9, n
3
7, n

3
8, and

n3
9 in Hcon

1 . So, replicating the vertex set {v9, v10, v11} into part V1 reduces the

cut-net cutsize by 1, whereas, it reduces the connectivity cutsize by 4.

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 18

In the first iteration of Algorithm 1, each net splitting is unique in Hcon
1 ,

since there are no replicated vertices. However, in the following iterations of

Algorithm 1, net splittings may not be unique for the further Hcon
k constructions

because of the replicated vertices. That is, multiple copies of a vertex induces

multiple pin selection options for a net. And each different pin selection induces

a different net splitting in the boundary adjacency hypergraph. Fig. 3.3 shows

this pin selection problem that occurs in the construction of Hcon
k , where vertex

v4 was replicated into part Vm in the mth iteration for m < k. Figs. 3.3b and

3.3c show two possible selections for net n1, which connects to the replicated

vertex v4. In Fig. 3.3b, replication of v4 and v5 appear to be necessary to cover

n1, whereas, in Fig. 3.3c, replication of v5 is sufficient to cover n1. As depicted

in Fig. 3.3, pin selections of nets directly affect the minimization of the number

of replicated vertices for covering a particular net. In our proposed model, for a

net nj and vertex vj ∈ Pins(nj), if there exists a copy of vj in part Vk that was

previously replicated into Vk for the purpose of decreasing the connectivity set of

λ(nj), then nj is connected to vj in part Vk; otherwise, it is connected to the vj

in part V` that is provided by the initial partitioning. For instance, in Fig. 3.3, if

v4 is replicated to part Vm in a previous iteration for n1, then n1 is connected to

v4 in Rm; otherwise, it is connected to v4 in V`.

3.2 Vertex Selection in Boundary Adjacency

Hypergraph

In our approach, boundary adjacency hypergraph Hk = (Vk,Nk) is derived from

the cut nets of part Vk and the adjacent vertices to part Vk. Since nets inHcut
k and

Hcon
k correspond to the cut nets for the cut-net and connectivity cutsize metrics,

covering these nets has a direct effect on the cutsize related with part Vk. Hence,

it is clear that only the vertices in Vk have the potential of decreasing the cutsize

related with part Vk via replication. In this section, our objective is the optimal

selection of a subset Rk of vertices in Vk that are to be replicated into part Vk.

Optimality in this context is defined as, given boundary adjacency hypergraph

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 19

Hk and maximum replication capacity κk, selecting a subset Rk of vertices in Vk

that maximize the sum of the costs of the covered nets under a given capacity

constraint of w(Rk) ≤ κk. This net coverage objective corresponds to the set-

union knapsack problem [42] (SUKP). (See Appendix A for details.) We provide

an ILP formulation for this problem as follows.

maximize
∑

nj∈Nk

c(nj)x(nj) (3.1)

subject to |Pins(nj)|x(nj) ≤
∑

vi∈Pins(nj)

y(vi) for ∀nj∈Nk (3.2)

∑
vi∈Vk

w(vi)y(vi) ≤ κk (3.3)

where x(nj) =

1, if net nj is covered

0, otherwise

y(vi) =

1, if vertex vi is selected

0, otherwise

Binary variable x(nj) is set to 1, if a net nj is covered by the selected vertices.

Likewise, if a vertex vi is selected for replication, binary variable y(vi) is set to

1. Objective (3.1) tries to maximize the sum of the cost c(nj) of every covered

net for which x(nj) = 1. Inequality (3.2) constrains a net nj to be covered if

all of its pins are selected, i.e., net nj is covered if y(vi) = 1 for every vi ∈
Pins(nj). In expression (3.3), the sum of the weights of the selected vertices

are constrained by κk. Since there are no restrictions on vertex replications,

but inequality (3.3), formulation might produce redundant vertex replications as

much as κk allows. That is, for certain vertices vi, y(vi) can be set to 1, where

vi is not contained by the adjacencies of the covered nets. But once the set of

x(nj) is computed, necessary y(vi) values can be extracted from Pins(nj) without

allowing any redundant vertex replications.

In given ILP formulation, for each boundary adjacency hypergraph Hk, there

are |Vk|+ |Nk| variables for x(nj) and y(nj), and |Nk|+1 constraints (inequalities

(3.2) and (3.3)), and a single maximization objective.

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 20

ILP model formalized in expressions (3.1)–(3.3) provides the optimal net cov-

erage for a given boundary adjacency hypergraph Hk and maximum replication

capacity κk. In Appendix A, the relation between set-union knapsack problem

and net coverage in boundary adjacency hypergraph is detailed and it is proved

that the net coverage problem is an NP-hard problem. Hence, from a practical

point of view, this formulation is expected to consume a significant amount of

time as the sum of input variables – |Vk| and |Nk| – increase in size. To reduce

this high computation cost of the ILP phase, below preprocessing procedures are

introduced and applied to Hk at each iteration before the vertex selection process

for replication.

1. Remove infeasible nets (that κk isn’t sufficient to cover via vertex replica-

tion) and the vertices that are only connected by such nets.

2. Use heuristics to coarsen boundary adjacency hypergraph into a smaller

hypergraph.

3. Restrict ILP solver running time to a certain duration.

3.3 Coarsening of Boundary Adjacency Hyper-

graph

In order to reduce the high computation cost of the ILP phase, we propose an

effective coarsening approach based on the Dulmage-Mendelsohn decomposition.

At kth iteration of the algorithm, we coarsen the boundary adjacency hypergraph

Hk to Hcoarse
k . Then, instead of Hk, we pass this Hcoarse

k to the ILP solver.

The Dulmage-Mendelsohn decomposition operates on bipartite graphs

G = (V = R∪ C, E), hence, each boundary adjacency hypergraph Hk = (Vk,Nk)

is represented in terms of its bipartite graph equivalent Gk = (Vk = Rk ∪ Ck, Ek)

for coarsening. Vertices Vk and nets Nk in Hk constitute the Rk and Ck sets in

Gk, respectively. That is, for a vertex vi ∈ Vk there is a corresponding vertex

vvi
∈ Rk and for a net nj ∈ Nk there is a corresponding vertex vnj

∈ Ck. Pins

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 21

between nets and vertices constitute the edge set Ek of Gk. That is, for a net

nj ∈ Nk and vi ∈ Pins(nj) there is an undirected edge (vvi
, vnj

) in Ek. After the

decomposition, clusters in Gk are easily projected back to Hk by reversing back

the transformation.

Vertex selection in boundary adjacency hypergraph is constrained by the to-

tal weight of the selected vertices for replication and its objective is to maximize

the cost of the nets covered. Thus, our objective in the coarsening phase is to

cluster vertices and nets in such a way that the vertex groups with similar net

coverage characteristics get clustered together. Characterization in this context

is intuitively estimated as a ratio between the number of vertices in the cluster

and the nets covered by these vertices. That is, clusters with small number of

vertices covering a large number of nets correspond to the high-quality replica-

tions; clusters with average number of vertices covering an average number of

nets correspond to the mid-quality replications; and, clusters with large number

of vertices covering a small number of nets correspond to the low-quality repli-

cations. As described in Section 2.3, the coarse-grained Dulmage-Mendelsohn

decomposition states that CH and RV are the unique smallest sets that maximize

the |CH | − |RH | and |RV | − |CV | differences and |RS| = |CS|. We know that every

boundary adjacency hypergraph Hk can be represented as a bipartite graph Gk.

Hence, we can use fine-grained Dulmage-Mendelsohn decomposition to encapsu-

late the replication characteristics of the original hypergraph into its coarsened

representation, where components in RH correspond to high-quality replications,

components in RS correspond to mid-quality replications, and components in RV

correspond to low-quality replications.

In Section 2.3, it is shown that the coarse-grained and fine-grained

Dulmage-Mendelsohn decomposition runs in O(|V|(|V| + |E|)) time in

total. In case of Gk = (Vk = Rk ∪ Ck, Ek) bipartite graph representa-

tion of the boundary adjacency hypergraph, this value is equal to

O(|Vk|(|Vk|+ |Ek|). And from the relation between Rk, Ck and Vk, Nk, it be-

comes O((|Vk|+ |Nk|)((|Vk|+ |Nk|) +
∑

nj∈Nk
|Pins(nj)|)).

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 22

1

2

3	

4

5

6

11

12

13

10

19

18

16

17

15

13

12

11

9

8

7

6

5

14
73

93

103

72

82

92

102

83

V
c
o
n

1 N
c
o
n

1

(a) Boundary ad-
jacency hypergraph
Hcon

1 in Fig. 3.2b.

3

3

5

6

1

2

4

1

2

3

4

5

6

2

4

5

6

1

11

13

12

11

10

9

8

7

7

8

9

10

11

17

16

15

14

11

13

12

19

18

8

10

9

5

7

6

73

83

93

103

RH

RS

RV

102

82

RV

RS

RH

V
c
o
n

1

72

N
c
o
n

1

CS

CV

CH

CS

CV

CH

92

(b) The fine-grained Dulmage-
Mendelsohn decomposition of
Hcon

1 .

1

2

3

4

5

6

7

8

9

10

11 11

10

9

8

7

6

5

4

3

2

1

C
oa

rs
en

ed
N

c
o
n

1

C
oa

rs
en

ed
V

c
o
n

1

(c) Coarsened Hcon
1 .

Figure 3.4: The fine-grained Dulmage-Mendelsohn decomposition of sample
boundary adjacency hypergraph Hcon

1 .

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 23

Fig. 3.4a demonstrates a simplified drawing of the boundary adjacency hy-

pergraph Hcon
1 given in Fig. 3.2b. Fig. 3.4b demonstrates the coarse-grained

and fine-grained Dulmage-Mendelsohn decomposition of Hcon
1 . In Fig. 3.4b, since

parts V2 and V3 are disjoint, it is possible to apply the Dulmage-Mendelsohn de-

composition separately to parts V2 and V3. Components in Fig. 3.4b constitute

the new vertices and nets in Fig. 3.4c. For instance, the 3rd component composed

of vertices v14, v15 and nets n3
7, n3

8 in Fig. 3.4b constitute the vertex v3 and net

n3 in the coarsened hypergraph in Fig. 3.4c.

3.4 Balance Preserving Replication Capacity

Computation

Maximum replication capacity κk represents the amount of replication allowed

into part Vk. Note that the maximum replication capacity κk of each part Vk

directly affects the contribution of Rk to the partition imbalance. That is, even

a single miscalculated κk might result in a significant change in the imbalance

of the whole partition. Hence, maximum replication capacity of each part must

be chosen in such a way that, after the replication, imbalance of the partition is

preserved and the replication capacity is consumed to reduce the cutsize as much

as possible. For this purpose, we set κk to (1 + ρ)Wavg − w(Vk) for each part Vk.

That is, we aim to raise the weight of part Vk, i.e., w(Vk), to the average weight of

a part after all available replication capacity is consumed, i.e., (1 +ρ)Wavg. Since

replication introduces new vertices to the parts, this scheme will just increase the

weight of the parts that are smaller than (1+ρ)Wavg. Hence, partition imbalance

changes as follows.

• If (1 + ρ)Wavg < Wmax, after the replication, Wavg is expected to increase,

while Wmax stays the same. Hence, balance will stay the same even in the

worst case, that is, no replication; otherwise, balance will be improved.

• Otherwise, we have enough room to raise the total weight of each part to

(1 + ρ)Wavg. That is, even if the replication doesn’t consume all available

CHAPTER 3. BALANCE PRESERVING MIN-CUT REPLICATION SET 24

capacity and increase the imbalance, we can reduce the final imbalance to

its initial value by making dummy vertex replications without considering

any net coverages.

At kth iteration of the algorithm, we try to raise w(Vk) to (1 + ρ)Wavg, which

corresponds to the part weight of an optimally balanced partition. Hence, after

the replication, a significant reduction in the partition imbalance ratio is highly

expected. This observation unsurprisingly holds with the experimental results as

well.

3.5 Part Visit Order for Replication

In our approach, parts are visited in some particular order and replication set Rk

of a part Vk directly affects the boundary adjacency graph H` for ` > k. Hence,

ordering of the parts plays an important role considering the global quality of the

proposed scheme. This effect can be observed both in the cutsize and imbalance

reduction. For instance, processing parts in increasing weight order might result

in poor imbalance reductions. That is, most of the replication capacity might be

consumed by larger parts and Wmax −Wavg difference could not be reduced as

expected. Moreover, one would intuitively select parts whose average boundary

adjacency hypergraph net degree is smaller compared to others. That is, consider

a net nj connected to m vertices in part Vk and n vertices in part V`. If m < n,

part ordering should be done in such a way that V` should be processed first to

cover net nj with the least possible number of replications, i.e., m vertices. In the

experimentation results, comparison of evaluated ordering schemes are given.

Chapter 4

Experimental Results

In this chapter, experimental results evaluated for various data set collections

are given. First, in Section 4.1, experimented data set collections are detailed.

Next, implementation details are given in Section 4.2. In Section 4.3, we present

the results regarding the initial partitions of the data sets. Then, in Section 4.4,

the replication results for cutsize and imbalance reductions are given. Next, in

Sections 4.5 and 4.6, we discuss the effect of coarsening and part ordering schemes

over replication results. Finally, we present system resource usage statistics of an

implementation of the proposed model in Section 4.7.

4.1 Data Set Collection

There are various hypergraph models successfully incorporated into spatial

database [26, 25] and information retrieval [15] systems. For experimentation

purposes, we used sample hypergraphs from these domains and investigated the

effect of replication in these hypergraph models.

To investigate the effect of replication in spatial databases, a wide range of

real-life road network (RN) data sets are collected from US Tiger/Line [11] (Min-

nesota7 including 7 counties Anoka, Carver, Dakota, Hennepin, Ramsey, Scott,

25

CHAPTER 4. EXPERIMENTAL RESULTS 26

Washington; San Francisco; Oregon; New Mexico; Washington), US Department

of Transportation [52] (California Highway Planning Network), and Brinkhoff’s

network data generator [10] (Oldenburg; San Joaquin). Hypergraph models of RN

data sets are constructed according to the clustering hypergraph model presented

in [26].

To examine the effect of replication in information retrieval systems, text

crawls are downloaded from the Stanford WebBase project[1, 21] (CalGovernor,

Facebook, Wikipedia) and University of Florida Sparse Matrix Collection [24]

(Stanford). Stanford data set represents links in a set of crawled web pages. In

hypergraph models of Stanford WebBase project data sets, terms correspond to

vertices and documents correspond to nets. This construction scheme is detailed

in [15].

Properties of the hypergraphs extracted from the collected data sets are pre-

sented in Table 4.1. Column explanations of the hypergraph properties table are

as follows.

Column Explanation

|Pins| Total number of pins in N , i.e., |Pins| =
∑

nj∈N |Pins(nj)|.
dNavg Average net degree.

cavg Average net cost.

dVavg Average vertex degree.

wavg Average vertex weight.

In Table 4.1, hypergraphs are grouped by their domains (RN and IR) and sorted

in increasing |Pins| order. As seen in the table, RN hypergraphs have relatively

small average net degrees. This may give us the intuition that in RN data sets,

covering a net is likely to be easier compared to IR data sets. In IR hypergraphs,

large |Pins| and dNavg values show that the boundary adjacency hypergraphs are

expected to be quite large in size, hence, it is expected that coarsening will play

an important role in these hypergraphs.

CHAPTER 4. EXPERIMENTAL RESULTS 27

Type H |V| |N | |Pins| dNavg cavg dVavg wavg

RN

Oldenburg 5389 13003 32945 2.5 8.4 6.1 46.9
California 14185 33414 94857 2.8 6.7 6.7 53.3
SanJoaquin 22987 44944 131603 2.9 8.3 5.7 52.5
Minnesota 46103 78371 239422 3.1 13.1 5.2 53.5
SanFrancisco 213371 319305 967917 3.0 9.1 4.5 51.5
Wyoming 317100 512754 1443433 2.8 8.9 4.6 49.0
NewMexico 556115 781219 2270120 2.9 8.9 4.1 49.5
Oregon 601672 811166 2332870 2.9 9.5 3.9 48.3
Washington 652063 824650 2427615 2.9 11.7 3.7 49.0

IR

Stanford 281903 281903 2312497 8.2 1.0 8.2 8.2
CalGovernor 92279 30805 3004908 97.5 1.0 32.6 1.0
Facebook 4618974 66568 14277456 214.5 1.0 3.1 1.0
Wikipedia 1350762 70115 43285851 617.4 1.0 32.0 1.0

Table 4.1: Data set properties.

Replication capacity is calculated by ρ|V |wavg and a high capacity will intu-

itively result in more replications covering more nets. Hence, low values of |V |wavg

is expected to produce relatively poor results in replication. For instance, Olden-

burg and CalGovernor is highly expected to fall in this area. However, this case

is not likely to be applicable for others.

4.2 Implementation Details

Conducted replication experiments are evaluated on a Debian GNU/Linux 5.0.4

(x86 64) system running on an AMD Opteron (2.1 GHz) processor. During tests,

ANSI C sources are compiled using gcc bundled with 4.3 release of GNU Compiler

Collections where -O3 -pipe -fomit-frame-pointer flags are turned on. IBM

ILOG CPLEX 12.1 is used in single-threaded mode to solve ILP problems. ILP

pass for each boundary adjacency hypergraph is time limited to 200 milliseconds.

PaToH [20] v3.1 is used with default parameters for initial partitioning of the

data sets. Coarsening is disabled for boundary adjacency hypergraphs where

total number of pins are smaller than or equal to 30.

CHAPTER 4. EXPERIMENTAL RESULTS 28

4.3 Initial K-Way Hypergraph Partitioning

In the BPMCRS problem, it is assumed that an initial partition of the supplied

hypergraph is provided. For this purpose, we partitioned the hypergraphs for two

different K values – 128 and 256 – via PaToH. In Table 4.2, partition properties of

the test hypergraphs are given. In this table, columns correspond to the particular

properties of partitions as follows.

Column Explanation

χ(Π) Connectivity cutsize.

ibr(Π) Imbalance ratio.

|N ∗| # of cut nets.

dN
∗

avg Average cut net degree.

c∗avg Average cut net cost.

λ∗avg Average cut net connectivity.

|V∗| # of boundary vertices.

dV
∗

avg Average boundary vertex degree.

w∗avg Average boundary vertex weight.

For RN data sets, where dN
∗

avg is approximately the same, the correlation be-

tween |Pins| in Table 4.1 and χ(Π) in Table 4.2 points out that the connectivity

cutsize increases proportional to the total number of pins. However, for IR data

sets, varying dN
∗

avg values also affect the χ(Π) and we observe that high dNavg values

generally imply high χ(Π) values.

4.4 Replication Results

In Table 4.3, replication results are listed for hypergraph partitions given in Ta-

ble 4.2. Column explanations of the Table 4.3 are as follows.

CHAPTER 4. EXPERIMENTAL RESULTS 29

Type K H χ(Π) ibr(Π) |N ∗| dN
∗

avg c∗avg |V∗| dV
∗

avg w∗avg

RN

128

Oldenburg 15377 4.3 1993 2.8 7.5 1498 7.1 50.3
California 21404 5.3 3661 3.2 5.7 3016 7.3 56.1
SanJoaquin 27939 25.4 3709 3.2 7.4 3136 7.2 57.7
Minnesota 40108 97.4 3719 3.3 10.7 3408 6.8 59.1
SanFrancisco 44986 5.6 6255 3.3 7.2 6194 6.2 56.3
Wyoming 46421 5.0 6527 3.0 7.1 6599 5.6 51.0
NewMexico 44386 4.2 6505 3.1 6.8 6896 5.4 51.9
Oregon 51154 5.0 7079 3.0 7.2 7463 5.3 51.3
Washington 58721 12.0 6621 3.1 8.8 7059 5.4 53.1

256

Oldenburg 24148 5.3 3068 2.8 7.6 2224 7.1 50.2
California 34254 5.5 5535 3.3 5.9 4554 7.2 56.1
SanJoaquin 44961 13.4 5777 3.2 7.6 4871 7.1 57.8
Minnesota 66581 177.1 6088 3.3 10.8 5595 6.8 59.0
SanFrancisco 72541 3.9 9972 3.3 7.2 10021 6.2 56.8
Wyoming 69708 32.3 9829 3.0 7.1 9935 5.6 51.5
NewMexico 73516 4.3 10489 3.1 7.0 11181 5.4 52.6
Oregon 77227 4.2 10678 3.1 7.2 11386 5.4 52.1
Washington 91527 5.4 10132 3.2 9.0 10994 5.4 53.8

IR

128

Stanford 15904 228.2 9181 116.2 1.0 167826 11.0 11.0
CalGovernor 201391 5.7 24476 119.6 1.0 92275 32.6 1.0
Facebook 324393 1.4 58467 234.7 1.0 4611479 3.1 1.0
Wikipedia 1040098 4.2 69117 623.5 1.0 1350568 32.0 1.0

256

Stanford 24408 777.3 12523 93.2 1.0 173321 10.9 10.9
CalGovernor 298223 5.1 27724 107.4 1.0 92278 32.6 1.0
Facebook 415405 1.2 61934 225.7 1.0 4617453 3.1 1.0
Wikipedia 1470241 4.9 69608 620.5 1.0 1350736 32.0 1.0

Table 4.2: Properties of hypergraph partitions.

CHAPTER 4. EXPERIMENTAL RESULTS 30

Column Explanation

χ(%) Connectivity cutsize reduction, i.e.,

χ(%) = (1− χ(Πr)/χ(Π))× 100.

ibr(%) Imbalance ratio reduction, i.e.,

ibr(%) = (1− ibr(Πr)/ibr(Π))× 100.

|Pins(Hk)| Average of total # of pins of each Hk, i.e.,

|Pins(Hk)| = (
∑K

k=1

∑
nj∈Nk

|Pins(nj)|)/K.

|Pins(%)| Reduction in pin count after coarsening, i.e.,

|Pins(%)| = (1− |Pins(Hcoarse
k)|/|Pins(Hk)|)× 100.

As seen in Table 4.3, since dN
∗

avg values are approximately the same for RN data

sets, in a majority of the tests |V| variable dominates the effect on the quality of

the replication. That is, compared to other RN hypergraphs, low |V| values of

Oldenburg hypergraph resulted in low quality replications due to the low repli-

cation capacity of ρ|V |wavg. On the other hand, for RN hypergraphs with high

|V| values – i.e., Wyoming, NewMexico, Oregon, and Washington – replication

removed almost every net from the cut. For 128-way RN hypergraph partitions,

a replication amount of 1%, provides 51.8% reduction in the connectivity cutsize

and 16.1% reduction in the imbalance ratio on the average. Same amount of

replication provides 56.7% reduction in the connectivity cutsize and 16.2% re-

duction in the imbalance ratio for 256-way hypergraph partitions. By looking at

these improvements, it can be concluded that RN hypergraphs are quite suitable

for replication.

For IR data sets, since dN
∗

avg values of the IR hypergraph partitions are much

larger than those of the RN hypergraphs and high replication percentages are

common practice in IR systems, replication is evaluated with higher values –

10% and 20% – of ρ. Compared to RN hypergraph partitions, both |V| and dN
∗

avg

values are quite varying among IR hypergraph partitions and both have a more

prominent effect on the quality of the replication. For instance, the effect of high

|V| and low dN
∗

avg values of Facebook is distinctive in the replication results. To

conclude, replication can yield promising results depending on the structure of

the hypergraph, which can be estimated by simple observations in |V| and dN
∗

avg

CHAPTER 4. EXPERIMENTAL RESULTS 31

Type ρ K H χ(%) ibr(%) |Pins(Hk)| |Pins(%)|

RN 0.01

128

Oldenburg 9.7 24.0 16.1 13.0
California 15.4 19.8 54.8 70.6

SanJoaquin 18.3 4.9 50.8 70.5
Minnesota 37.3 2.0 73.1 72.9

SanFrancisco 73.8 18.6 94.2 48.2
Wyoming 99.0 20.8 84.3 30.5

NewMexico 99.7 24.7 80.7 26.5
Oregon 100.0 20.7 89.7 24.0

Washington 100.0 9.3 86.5 14.3

256

Oldenburg 6.1 19.6 12.1 0.0
California 9.6 18.9 22.7 31.3

SanJoaquin 13.7 8.4 36.4 62.4
Minnesota 22.4 1.5 51.5 71.7

SanFrancisco 45.4 26.2 88.3 72.7
Wyoming 71.5 4.1 67.2 49.1

NewMexico 98.5 23.9 71.7 41.4
Oregon 99.9 24.5 70.7 39.5

Washington 99.2 19.2 70.0 34.6

IR

0.10

128

Stanford 49.6 13.1 2101.1 368.0
CalGovernor 3.8 100.0 7989.2 93.5

Facebook 44.6 100.0 649449.1 98.7
Wikipedia 11.4 100.0 3159094.2 98.6

256

Stanford 69.0 24.0 3348.7 422.7
CalGovernor 1.7 100.0 2082.7 90.9

Facebook 45.6 100.0 415554.9 98.3
Wikipedia 7.6 100.0 557740.3 97.8

0.20

128

Stanford 39.0 10.3 1111.0 182.5
CalGovernor 9.7 100.0 36296.2 96.2

Facebook 57.8 100.0 612529.1 98.7
Wikipedia 18.2 100.0 5732360.4 99.0

256

Stanford 52.9 18.8 1638.6 267.6
CalGovernor 5.1 100.0 6596.4 92.8

Facebook 59.2 100.0 383360.9 98.4
Wikipedia 15.7 100.0 2217957.5 98.0

Table 4.3: Replication results.

CHAPTER 4. EXPERIMENTAL RESULTS 32

values.

In Table 4.3, ibr(%) column gives the reduction in the imbalance ratio of

the partition in percentages. For RN data sets, small ρ|V |wavg doesn’t provide

enough replication capacity to improve the balance. Average partition imbalance

reduction is around 16% for RN hypergraphs. Since IR data sets provide con-

siderable amounts of replication capacity, average partition imbalance reduction

is around 100% for IR data sets. To summarize, replication provides significant

imbalance reductions in a majority of the conducted experiments.

In Table 4.3, the last two columns provide information about the average size

of the constructed boundary adjacency hypergraphs and the effect of the coars-

ening on these hypergraphs. For RN data sets, coarsening reduced the size of the

constructed boundary adjacency hypergraphs by 41.2%-44.7%, on the average,

for 128-way and 256-way partitions, respectively. For IR data sets, coarsening

reduced the size of the boundary adjacency hypergraphs by 96.3%-97.18% on the

average. These results imply that coarsening is quite effective in the contraction

of the boundary adjacency hypergraphs and provide significants reductions in the

size of input supplied to the ILP solver.

4.5 Comparison of Coarsening Algorithms and

The Effect of Coarsening

The Dulmage-Mendelsohn decomposition provides quite promising coarsening re-

sults. However, it does not take vertex weights and net costs into account. Hence,

it is possible that other coarsening algorithms can prove to be more effective

than the Dulmage-Mendelsohn decomposition by taking vertex weights and net

costs into account. To investigate this issue, we adopted 17 different state-of-

the-art coarsening algorithms (HCM, PHCM, MANDIS, AVEDIS, CANBERRA,

ABS, GCM, SHCM, HCC, HPC, ABSHCC, ABSHPC, CONC, GCC, SHCC, NC,

MNC) that are implemented in PaToH to obtain coarsened boundary adjacency

hypergraphs. We supplied these coarsened boundary adjacency hypergraphs to

CHAPTER 4. EXPERIMENTAL RESULTS 33

the ILP solver and observed their effects on the cutsize reduction.

In our experiments, we evaluated all of the adopted coarsening algorithms

over all data sets for different K and ρ settings. We observed that each of the

adopted coarsening algorithms show high fluctuations in the quality of the coars-

ened boundary adjacency hypergraphs. Quality measure in this context is the ef-

fectiveness of the ILP phase running on the coarsened hypergraphs. On the other

hand, the Dulmage-Mendelsohn decomposition showed a stable performance and

in a significant majority (87.6 %) of the experiments performed in the top three.

Coarsening provides a lossy compression of the boundary adjacency hyper-

graph. To further investigate the effectiveness of the coarsening and determine

the information loss due to the coarsening, experiments are evaluated with two

different setups. In the first setup S1, experiments are evaluated with the coars-

ening and time limitation constraints. In the second setup S2, ILP phase is

performed without coarsening and time limitations. In S2, since there is no limi-

tation on the execution time of the ILP solver, ILP phase dominated the majority

of the total runtime in tests. For IR data sets with dense boundary adjacency

hypergraphs – e.g., Facebook, Wikipedia – total replication phase took hours to

complete. In case of RN data sets, where boundary adjacency hypergraphs are

relatively sparse, ILP phase completed in the same amount of time. In S2, ILP

phase produced slightly better results in terms of the quality of the replication.

In S1, the reduction in the quality due to the loss of information in coarsening

varies between 2.3% and 7.8% compared to S2. To sum up, in a majority of the

experiments, S1 produces on par results with S2.

4.6 Part Visit Orderings

In the conducted experiments, three different part visit ordering schemes are

evaluated for hypergraphs given in Table 4.1. In the first scheme O1, parts are

ordered by increasing average net degree of their boundary adjacency hypergraph

values. In O2, parts are sorted in increasing weight order. In the last scheme O3,

CHAPTER 4. EXPERIMENTAL RESULTS 34

parts are chosen randomly. On the average, O1 and O2 performs around 5.7-

10.3% better results compared to O3 in terms of reduction in the connectivity

cutsize. O1 performs slightly (2.2%) better cutsize reductions compared to O2.

To conclude, since ILP phase coupled with coarsening performs quite effective in

terms of consuming replication capacity with the maximum possible number of

net coverages, part ordering generally causes relatively minor variations in the

replication quality. In conducted experiments, results are given according to O1

scheme.

4.7 System Resource Consumptions

At kth iteration of the replication algorithm, we construct the boundary ad-

jacency hypergraph Hk, coarsen Hk to Hcoarse
k , select vertices that are to be

replicated from Hcoarse
k via ILP. For RN data sets, where boundary adjacency hy-

pergraphs are generally small in size, ILP phase is generally dominated the total

runtime of the replication and replication is finished 3-8 times faster than the

partitioning time of PaToH. For IR data sets, where boundary adjacency hyper-

graphs are large in size, 60.8% of the total runtime is consumed by the coarsening,

and ILP and Hk construction took 28.2% and 11.1% of the total runtime, respec-

tively. In the experimented IR data sets, replication of large boundary adjacency

hypergraphs performed at most 3.5 times slower compared to the partitioning

time of PaToH.

Chapter 5

Conclusion

Motivated by the problem of finding a replication set for a given K-way hy-

pergraph partition and a maximum replication capacity ratio, we proposed a

part-oriented approach based on a unique blend of an ILP formulation and a

coarsening algorithm using the Dulmage-Mendelsohn decomposition. Experi-

ments show that proposed model provides promising results both in terms of

the quality of the replication set and the runtime performance. The Dulmage-

Mendelsohn decomposition-based coarsening scheme is found to be quite suc-

cessive for encapsulating the replication characteristics of a hypergraph into its

coarsened representation. In the light of conducted experiments, the Dulmage-

Mendelsohn decomposition-based coarsening coupled with the ILP formulation

provide effective results for covering nets in a boundary adjacency hypergraph.

35

Appendix A

SUK to MCRS Transformation

In this chapter, we present a simple transformation of SUK (Set-Union Knapsack)

problem [42] to an MCRS (Min-Cut Replication Set) problem, which is a gen-

eralization of Problem 1 without balancing constraints. SUK problem is defined

[42] as follows.

Definition 4 Set-Union Knapsack Problem. Given a set of n items N =

{1, 2, . . . , n} and a set of m so-called elements P = {1, 2, . . . ,m}, each item j

corresponds to a subset Pj of the element set P . The items j have nonnega-

tive profits pj, j = 1, 2, . . . , n, and the elements i have nonnegative weights wi,

i = 1, 2, . . . ,m. The total weight of a set of items is given by the total weight of

the elements of the union of the corresponding element sets. Find a subset of the

items with total weight not exceeding the knapsack capacity while maximizing the

profit.

SUK is known [42] to be an NP-hard problem. A simple transformation of

SUK problem to MCRS problem can be given as follows.

Theorem 1 Every set-union knapsack (SUK) problem can be represented in

terms of a min-cut replication set (MCRS) problem.

36

APPENDIX A. SUK TO MCRS TRANSFORMATION 37

1, 2, 3, ..., n

1, 2, 3 1, 3 2, 5, 6, 8
PmP3P2P1

N

(a) Sample SUK instance.
...

...

2

3

m

1

1

2

3

4

5

6

7

8

n

V2

N

V1

(b) SUK to MCRS trans-
formation.

Figure A.1: Sample SUK problem to MCRS problem transformation.

Proof. One can transform a SUK problem to an MCRS for 2-way hypergraph

partition Π = {V1, V2} problem, where elements of SUK problem correspond to

the boundary vertices of V1 and element sets correspond to the cut nets. Consider

a special MCRS problem where cut nets are connected to a single vertex in V2

whose weight is exceeding the given replication capacity. Thus only replication

of vertices in V1 into V2 is possible. A solution to this particular MCRS problem

would provide a solution to the SUK problem.

In Fig. A.1, a sample SUK to MCRS transformation is shown. In Fig. A.1a,

item set N and element set P are composed of n items and m elements, respec-

tively. Each item j in N is associated with an element set Pj, which is a subset

of P . Objective is to maximize the profit of the covered items, where there is

an upper bound on the total weight of the used elements. This SUK instance is

mapped to a MCRS problem in Fig. A.1b, where orientation of the replication

is forced towards a single direction. That is, the single vertex in part V1 weights

much more than the given replication capacity, forcing replication direction from

V1 to V2. In addition, items and elements correspond to nets and vertices in

Fig. A.1b, respectively. That is, P1 = {1, 2, 3} in Fig. A.1a is represented by net

n1 connecting vertices v1, v2, and v3 in Fig. A.1b.

Appendix B

Finding the Cutsize of a Partition

With Vertex Replications

Previous studies involving K-way hypergraph partitioning with vertex replica-

tions doesn’t investigate the effect of the cutsize metric on the conducted experi-

ments. However, computation of the minimum cutsize for a given partition with

vertex replications can stand as a major problem. For instance, the list of cut

nets is sufficient to compute the cutsize for cut-net metric (Eq. 2.1). However,

pin mapping of the nets (i.e., which partition should be used for a particular pin

of a cut net) are necessary for the computation of the cutsize for connectivity

metric (Eq. 2.2). Hence, depending on the used cutsize metric, finding the mini-

mum cutsize for a given partition with vertex replications is a significant problem.

(Without vertex replications, since every vertex has a unique copy and, hence,

every net has a unique pin mapping, this decision problem does not arise.) This

issue is generalized in Problem 2.

Problem 2 Finding the Cutsize of a Partition With Vertex Replication. Given

a partition with vertex replication Πr and a cutsize metric χ(·), find the minimum

χ(Πr).

38

APPENDIX B. FINDING THE CUTSIZE OF A PARTITION WITH VERTEX REPLICATIONS39

Considering the connectivity metric, even for a single net, finding the pin

mapping with the least possible number of parts is a set cover optimization prob-

lem (i.e., pins correspond to the element universe, and parts correspond to the

element sets), which is known to be NP-hard. On the other hand, it should be

noted that a majority of the pins of a cut net tends to be fixed (i.e., not replicated

and has a unique copy in some particular part) and after connecting the floating

pins (i.e., pins that can be connected to different copies in different parts) of a

cut net to these fixed parts, there remains an insignificant number of pins that

needs to be determined for connection. Hence, problem turns out to be relatively

cheaply computable in practice. But for a vast number of cut nets, this still can

stand as an intractable problem.

For cut-net metric, since Eq. 2.1 just depends on the determination of cut

nets, cutsize can be computed in linear time proportional to the size of the total

number of pins.

Bibliography

[1] The stanford webbase project. http://diglib.stanford.edu:8091/

~testbed/doc2/WebBase, Aug 2010.

[2] C. J. Alpert, J.-H. Huang, and A. B. Kahng. Multilevel circuit partitioning.

In DAC ’97: Proceedings of the 34th annual Design Automation Conference,

pages 530–533, New York, NY, USA, 1997. ACM.

[3] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: a

survey. Integr. VLSI J., 19(1-2):1–81, 1995.

[4] C. Aykanat, A. Pinar, and U. V. Çatalyürek. Permuting sparse rectangular

matrices into block-diagonal form. SIAM J. Sci. Comput., 25(6):1860–1879,

2004.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley, May 1999.

[6] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The google

cluster architecture. IEEE Micro, 23:22–28, 2003.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

[8] R. H. Bisseling, S. Cerav-erbas, M. Lorenz, R. Pendavingh, C. Reeves,

M. Rger, and A. Verhoeven. Partitioning a call graph. In in: Second Inter-

national Workshop on Combinatorial Scientific Computing, 2005.

40

BIBLIOGRAPHY 41

[9] L. A. Bjork. Recovery scenario for a db/dc system. In ACM ’73: Proceedings

of the ACM annual conference, pages 142–146, New York, NY, USA, 1973.

ACM.

[10] T. Brinkhoff. A framework for generating network-based moving objects.

Geoinformatica, 6(2):153–180, 2002.

[11] U. C. Bureau. Topologically integrated geographic encoding and referencing

system (TIGER). http://www.census.gov/geo/www/tiger/, 2002.

[12] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis. Network analysis

for distributed information retrieval architectures. Advances in Information

Retrieval, pages 527–529, 2005.

[13] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis. Performance compar-

ison of clustered and replicated information retrieval systems. In ECIR’07:

Proceedings of the 29th European conference on IR research, pages 124–135,

Berlin, Heidelberg, 2007. Springer-Verlag.

[14] F. Cacheda, V. Plachouras, and I. Ounis. A case study of distributed in-

formation retrieval architectures to index one terabyte of text. Inf. Process.

Manage., 41(5):1141–1161, 2005.

[15] B. B. Cambazoglu and C. Aykanat. A term-based inverted index organization

for communication-efficient parallel query processing. Tokio, Japan, October

2006.

[16] B. B. Cambazoglu and C. Aykanat. Hypergraph-partitioning-based remap-

ping models for image-space-parallel direct volume rendering of unstructured

grids. IEEE Trans. Parallel Distrib. Syst., 18(1):3–16, 2007.

[17] U. Catalyurek and C. Aykanat. Hypergraph-partitioning-based decomposi-

tion for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel

Distrib. Syst., 10(7):673–693, 1999.

[18] U. Catalyurek and C. Aykanat. Hypergraph-partitioning-based decomposi-

tion for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel

Distrib. Syst., 10(7):673–693, 1999.

BIBLIOGRAPHY 42

[19] U. Catalyurek and C. Aykanat. A hypergraph-partitioning approach for

coarse-grain decomposition. In Supercomputing ’01: Proceedings of the 2001

ACM/IEEE conference on Supercomputing (CDROM), pages 28–28, New

York, NY, USA, 2001. ACM.

[20] U. V. Catalyurek and C. Aykanat. PaToH : partitioning tool for hypergraphs.

Technical Report, 1999.

[21] J. Cho, H. Garcia-Molina, T. Haveliwala, W. Lam, A. Paepcke, S. Raghavan,

and G. Wesley. Stanford webbase components and applications. ACM Trans.

Internet Technol., 6(2):153–186, 2006.

[22] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned

networks. ACM Comput. Surv., 17(3):341–370, 1985.

[23] C. T. Davies, Jr. Recovery semantics for a db/dc system. In ACM ’73:

Proceedings of the ACM annual conference, pages 136–141, New York, NY,

USA, 1973. ACM.

[24] T. A. Davis. University of florida sparse matrix collection. NA Digest, 92,

1994.

[25] E. Demir and C. Aykanat. Efficient successor retrieval operations for aggre-

gate query processing on clustered road networks. Inf. Sci., 180(14):2743–

2762, 2010.

[26] E. Demir, C. Aykanat, and B. Barla Cambazoglu. Clustering spatial net-

works for aggregate query processing: A hypergraph approach. Inf. Syst.,

33(1):1–17, 2008.

[27] N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt. Uniformization and hy-

pergraph partitioning for the distributed computation of response time den-

sities in very large markov models. J. Parallel Distrib. Comput., 64(8):908–

920, 2004.

[28] A. L. Dulmage and i. Mendelsohn. Two algorithms for bipartite graphs. J.

Soc. Ind. Appl. Math., 1I:183–194, 1963.

BIBLIOGRAPHY 43

[29] A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Can.

J. Math., 10:517–534, 1958.

[30] A. L. Dulmage and N. S. Mendelsohn. A structure theory of bipartite graphs

of finite exterior dimension. Trans. Roy. Soc. Can. Sec., III(53):1–13, 1959.

[31] M. Enos, S. Hauck, and M. Sarrafzadeh. Replication for logic bipartitioning.

In ICCAD ’97: Proceedings of the 1997 IEEE/ACM international conference

on Computer-aided design, pages 342–349, Washington, DC, USA, 1997.

IEEE Computer Society.

[32] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput.

Surv., 30(2):170–231, 1998.

[33] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication

and a solution. In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD

international conference on Management of data, pages 173–182, New York,

NY, USA, 1996. ACM.

[34] E. Greengrass. Information Retrieval: A Survey. Nov 2000.

[35] X. Gu and R. T. Pascoe. Selective data replication for distributed geograph-

ical data sets. In GIS ’08: Proceedings of the 16th ACM SIGSPATIAL inter-

national conference on Advances in geographic information systems, pages

1–4, New York, NY, USA, 2008. ACM.

[36] D. Hawking. Scalable text retrieval for large digital libraries. In ECDL ’97:

Proceedings of the First European Conference on Research and Advanced

Technology for Digital Libraries, pages 127–145, London, UK, 1997. Springer-

Verlag.

[37] J. Hwang and A. El Gamal. Optimal replication for min-cut partitioning. In

ICCAD ’92: Proceedings of the 1992 IEEE/ACM international conference

on Computer-aided design, pages 432–435, Los Alamitos, CA, USA, 1992.

IEEE Computer Society Press.

[38] L. J. Hwang. Replication in partitioned networks. PhD thesis, 1994.

BIBLIOGRAPHY 44

[39] D. M. Johnson, A. L. Dulmage, and N. Mendelsohn. Connectivity and re-

ducibility of graphs. Can. J. Math., 14:529–539, 1962.

[40] J. B. R. Jr. and N. Goodman. A survey of research and development in

distributed database management. In VLDB ’1977: Proceedings of the third

international conference on Very large data bases, pages 48–62. VLDB En-

dowment, 1977.

[41] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph

partitioning: application in vlsi domain. In DAC ’97: Proceedings of the

34th annual Design Automation Conference, pages 526–529, New York, NY,

USA, 1997. ACM.

[42] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,

2004.

[43] M. Koyutürk and C. Aykanat. Iterative-improvement-based declustering

heuristics for multi-disk databases. Inf. Syst., 30(1):47–70, 2005.

[44] C. Kring and A. Newton. A cell-replicating approach to minicut-based cir-

cuit partitioning. In Computer-Aided Design, 1991. ICCAD-91. Digest of

Technical Papers., 1991 IEEE International Conference on, pages 2–5, 11-

14 1991.

[45] R. Kužnar, F. Brglez, and B. Zajc. Multi-way netlist partitioning into het-

erogeneous fpgas and minimization of total device cost and interconnect. In

DAC ’94: Proceedings of the 31st annual Design Automation Conference,

pages 238–243, New York, NY, USA, 1994. ACM.

[46] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.

Willey–Teubner, Chichester, U.K., 1990.

[47] D.-R. Liu and M.-Y. Wu. A hypergraph based approach to declustering

problems. Distrib. Parallel Databases, 10(3):269–288, 2001.

[48] Z. Lu and K. S. McKinley. Partial collection replication versus caching

for information retrieval systems. In SIGIR ’00: Proceedings of the 23rd

BIBLIOGRAPHY 45

annual international ACM SIGIR conference on Research and development

in information retrieval, pages 248–255, New York, NY, USA, 2000. ACM.

[49] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architec-

ture for distributed text query evaluation. Inf. Retr., 10(3):205–231, 2007.

[50] A. Moffat, J. Zobel, and D. Hawking. Recommended reading for ir research

students. SIGIR Forum, 39(2):3–14, 2005.

[51] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli. On clustering

for minimum delay/area. pages 6–9, nov 1991.

[52] U. D. of Transportation. Federal highway administration, the national high-

way planning network. http://www.fhwa.dot.gov/planning/nhpn/, 2004.

[53] M. T. Özsu and P. Valduriez. Distributed database systems: Where are we

now? Computer, 24(8):68–78, 1991.

[54] A. Pothen. Sparse null bases and marriage theorems. PhD thesis, Ithaca,

NY, USA, 1984.

[55] A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse

matrix. ACM Trans. Math. Softw., 16(4):303–324, 1990.

[56] R. L. Russo, P. H. Oden, and P. K. Wolff. A heuristic procedure for the

partitioning and mapping of computer logic graphs. IEEE Trans. Comput.,

20(12):1455–1462, 1971.

[57] A. Saman Tosun. Analysis and comparison of replicated declustering

schemes. IEEE Trans. Parallel Distrib. Syst., 18(11):1578–1591, 2007.

[58] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-

Wesley, Aug 1989.

[59] A. Selivonenko. Data partitioning and replication management in distributed

geographic information system (GIS) database. PhD thesis, Florida Interna-

tional University, 2005.

BIBLIOGRAPHY 46

[60] R. O. Selvitopi. Replicated hypergraph partitioning. Master’s thesis, Bilkent

University, Ankara, Turkey, 2010.

[61] R. M. Shapiro and R. E. Millstein. Reliability and fault recovery in dis-

tributed processing. In OCEANS’77, Conference Record, October 17–19,

1977, Los Angeles, volume II, pages 31D.1–31D.5, 1977.

[62] S. Shekhar, C.-T. Lu, S. Chawla, and S. Ravada. Efficient join-index-based

spatial-join processing: A clustering approach. IEEE Trans. on Knowl. and

Data Eng., 14(6):1400–1421, 2002.

[63] S. Shekhar, S. Ravada, D. Chubb, and G. Turner. Declustering and load-

balancing methods for parallelizing geographic information systems. Knowl-

edge and Data Engineering, IEEE Transactions on, 10(4):632 –655, jul/aug

1998.

[64] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 1(2):146–160, 1972.

[65] B. Uçar and C. Aykanat. Revisiting hypergraph models for sparse matrix

partitioning. SIAM Rev., 49(4):595–603, 2007.

[66] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribu-

tion method for parallel sparse matrix-vector multiplication. SIAM Rev.,

47(1):67–95, 2005.

[67] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes. Morgan

Kaufmann Publishing, San Francisco, May 1999.

[68] P. Yalagandula. A scalable information management middleware for large

distributed systems. PhD thesis, Austin, TX, USA, 2005. Adviser-Dahlin,

Michael D.

[69] H. H. Yang and D. F. Wong. New algorithms for min-cut replication in

partitioned circuits. In ICCAD ’95: Proceedings of the 1995 IEEE/ACM

international conference on Computer-aided design, pages 216–222, Wash-

ington, DC, USA, 1995. IEEE Computer Society.

BIBLIOGRAPHY 47

[70] A. N. Yzelman and R. H. Bisseling. Cache-oblivious sparse matrix-vector

multiplication by using sparse matrix partitioning methods. SIAM J. Sci.

Comput., 31(4):3128–3154, 2009.

